Sample records for materials 3d experimental

  1. Supplementary Material The pumping lid: Investigating multi-material 3D printing for equipment-free, programmable

    E-Print Network [OSTI]

    Ismagilov, Rustem F.

    Supplementary Material The pumping lid: Investigating multi-material 3D printing for equipment. #12;Experimental section 3D printing Lids and cups described in this paper were produced by multi-material 3D printing. The geometry of each part was designed using CAD software and exported to STL

  2. Fab trees for designing complex 3D printable materials

    E-Print Network [OSTI]

    Wang, Ye, M. Eng. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    With more 3D printable materials being invented, 3D printers nowadays could replicate not only geometries, but also appearance and physical properties. On the software side, the tight coupling between geometry and material ...

  3. 3D Printing of Functional and Biological Materials

    E-Print Network [OSTI]

    ! 3D Printing of Functional and Biological Materials Jennifer A. Lewis Wyss Professor)! Multimaterial 3D printing ! #12;3D antennas! Li ion microbatteries! Lightweight microlattices!Flexible sensors! 3D Printing of Integrated Electronic Devices ! #12;20 nm average , 5 ­ 50 nm

  4. 3D Printing of Scintillating Materials

    E-Print Network [OSTI]

    Y. Mishnayot; M. Layani; I. Cooperstein; S. Magdassi; G. Ron

    2014-06-15T23:59:59.000Z

    We demonstrate, for the first time, the applicability of 3D printing technique to the manufacture of scintillation detectors. We report of a formulation, usable in stereolithographic printing, that exhibits scintillation efficiency on the order of 30\\% of that of commercial polystyrene based scintillators. We discuss the applicability of these techniques and propose future enhancements that will allow tailoring the printed scintillation detectors to various application.

  5. 3D Printing of Scintillating Materials

    E-Print Network [OSTI]

    Mishnayot, Y; Cooperstein, I; Magdassi, S; Ron, G

    2014-01-01T23:59:59.000Z

    We demonstrate, for the first time, the applicability of 3D printing technique to the manufacture of scintillation detectors. We report of a formulation, usable in stereolithographic printing, that exhibits scintillation efficiency on the order of 30\\% of that of commercial polystyrene based scintillators. We discuss the applicability of these techniques and propose future enhancements that will allow tailoring the printed scintillation detectors to various application.

  6. Polymer Solar Cells: New Materials, 3D Morphology, and Tandem...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polymer Solar Cells: New Materials, 3D Morphology, and Tandem Devices March 2, 2010 at 3pm36-428 Ren Janssen Molecular Materials and Nanosystems, Eindhoven University of...

  7. 3D deformation field throughout the interior of materials.

    SciTech Connect (OSTI)

    Jin, Huiqing; Lu, Wei-Yang

    2013-09-01T23:59:59.000Z

    This report contains the one-year feasibility study for our three-year LDRD proposal that is aimed to develop an experimental technique to measure the 3D deformation fields inside a material body. In this feasibility study, we first apply Digital Volume Correlation (DVC) algorithm to pre-existing in-situ Xray Computed Tomography (XCT) image sets with pure rigid body translation. The calculated displacement field has very large random errors and low precision that are unacceptable. Then we enhance these tomography images by setting threshold of the intensity of each slice. DVC algorithm is able to obtain accurate deformation fields from these enhanced image sets and the deformation fields are consistent with the global mechanical loading that is applied to the specimen. Through this study, we prove that the internal markers inside the pre-existing tomography images of aluminum alloy can be enhanced and are suitable for DVC to calculate the deformation field throughout the material body.

  8. Vacuum Compatibility of 3D-Printed Materials

    E-Print Network [OSTI]

    Povilus, A P; Vendeiro, Z; Baquero-Ruiz, M; Fajans, J

    2013-01-01T23:59:59.000Z

    The fabrication fidelity and vacuum properties are tested for currently available 3D-printed materials including polyamide, glass, acrylic, and sterling silver. The silver was the only material found to be suitable to ultrahigh vacuum environments due to outgassing and sublimation observed in other materials.

  9. Design and fabrication of a modular multi-material 3D printer

    E-Print Network [OSTI]

    Lan, Justin (Justin T.)

    2013-01-01T23:59:59.000Z

    This thesis presents 3DP-0, a modular, multi-material 3D printer. Currently, 3D printers available on the market are typically expensive and difficult to develop. In addition, the simultaneous use of multiple materials in ...

  10. Experimental and Numerical Investigation of Forging Process to Reproduce a 3D Aluminium Foam Complex Shape

    SciTech Connect (OSTI)

    Filice, Luigino; Gagliardi, Francesco; Umbrello, Domenico [Department of Mechanical Engineering, University of Calabria, P. Bucci, 87036 Rende (Serbia and Montenegro) (Italy); Shivpuri, Rajiv [Department of Industrial, Welding and System Engineering, Ohio State University, 1971 Neil Avenue, 210 Baker Systems, Columbus, OH 43210-1217 (United States)

    2007-05-17T23:59:59.000Z

    Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.

  11. MAE SEMINAR Recent advances in Additive Manufacturing/3D Printing Technologies, Material Science and

    E-Print Network [OSTI]

    Mease, Kenneth D.

    MAE SEMINAR Recent advances in Additive Manufacturing/3D Printing Technologies, Material Science Samueli School of Engineering University of California Irvine 3D printing or Additive Manufacturing in different shapes. 3D printing is also considered distinct from traditional machining techniques, which

  12. MultiFab : a multi-material 3D printing platform

    E-Print Network [OSTI]

    Ramos-Maltés, Javier Eduardo

    2014-01-01T23:59:59.000Z

    This thesis presents the development of MultiFab, a multi-material 3D printing architecture that is high-resolution, scalable, and low-cost. MultiFab enables the 3D printing of parts with materials that interact optically ...

  13. 3D Printing of nanostructured catalytic materials | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, 2014Energy,FNeedDepartmentD Printing3D

  14. Design of electronics for a high-resolution, multi-material, and modular 3D printer

    E-Print Network [OSTI]

    Kwan, Joyce G

    2013-01-01T23:59:59.000Z

    Electronics for a high-resolution, multi-material, and modular 3D printer were designed and implemented. The driver for a piezoelectric inkjet print head can fire its nozzles with one of three droplet sizes ranging from 6 ...

  15. EXPERIMENTAL EVALUATION OF SIMULTANEOUS 3D LOCALIZATION OF SENSOR NODES AND TRACKING MOVING TARGETS

    E-Print Network [OSTI]

    Instituto de Sistemas e Robotica

    EXPERIMENTAL EVALUATION OF SIMULTANEOUS 3D LOCALIZATION OF SENSOR NODES AND TRACKING MOVING TARGETS sensor/target localization) which rely on infrared (IR), radio frequency/received signal strength (RF of a simultaneous localization and track- ing (SLAT) algorithm for sensor networks, whose aim is to determine

  16. 3D multi-scale imaging of experimental fracture generation in shale gas reservoirs.

    E-Print Network [OSTI]

    Henderson, Gideon

    in research and shale unconventional reservoirs that will provide you with the skills to enter the oil and gas3D multi-scale imaging of experimental fracture generation in shale gas reservoirs. Supervisory-grained organic carbon-rich rocks (shales) are increasingly being targeted as shale gas "reservoirs". Due

  17. Stochastic Simulation Model for the 3D Morphology of Composite Materials in Li-Ion Batteries

    E-Print Network [OSTI]

    Schmidt, Volker

    Stochastic Simulation Model for the 3D Morphology of Composite Materials in Li-Ion Batteries Ralf August 30, 2010 Abstract Battery technology plays an important role in energy storage. In particular, lithium­ ion (Li-ion) batteries are of great interest, because of their high capacity, long cycle life

  18. Preliminary Study for Dosimetric Characteristics of 3D-printed Materials with Megavoltage Photons

    E-Print Network [OSTI]

    Jeong, Seonghoon; Chung, Weon Kuu; Kim, Dong Wook

    2015-01-01T23:59:59.000Z

    In these days, 3D-printer is on the rise in various fields including radiation therapy. This preliminary study aimed to estimate the dose characteristics of the 3D-printer materials which could be used as the compensator or immobilizer in radiation treatment. The cubes which have 5cm length and different densities as 50%, 75% and 100% were printed by 3D-printer. A planning CT scans for cubes were performed using a CT simulator (Brilliance CT, Philips Medical System, Netherlands). Dose distributions behind the cube were calculated when 6MV photon beam passed through cube. The dose response for 3D-printed cube, air and water were measured by using EBT3 film and 2D array detector. When results of air case were normalized to 100, dose calculated by TPS and measured dose of 50% and 75% cube were 96~99. Measured and calculated doses of water and 100% cube were 82~84. HU values of 50%, 75% and 100% were -910, -860 and -10, respectively. From these results, 3D-printer in radiotherapy could be used for medical purpose...

  19. Cookoff Response of PBXN-109: Material Characterization and ALE3D Thermal Predictions

    SciTech Connect (OSTI)

    McClelland, M A; Tran, T D; Cunningham, B J; Weese, R K; Maienschein, J L

    2001-08-21T23:59:59.000Z

    Materials properties measurements are made for the RDX-based explosive, PBXN-109, and initial ALE3D model predictions are given for the cookoff temperature in a U.S. Navy test. This work is part of an effort in the U.S. Navy and Department of Energy (DOE) laboratories to understand the thermal explosion behavior of this material. Benchmark cookoff experiments are being performed by the U.S. Navy to validate DOE materials models and computer codes. The ALE3D computer code can model the coupled thermal, mechanical, and chemical behavior of heating, ignition, and explosion in cookoff tests. In our application, a standard three-step step model is selected for the chemical kinetics. The strength behavior of the solid constituents is represented by a Steinberg-Guinan model while polynomial and gamma-law expressions are used for the Equation Of State (EOS) for the solid and gas species, respectively. Materials characterization measurements are given for thermal expansion, heat capacity, shear modulus, bulk modulus, and One-Dimensional-Time-to-Explosion (ODTX). These measurements and those of the other project participants are used to determine parameters in the ALE3D chemical, mechanical, and thermal models. Time-dependent, two-dimensional results are given for the temperature and material expansion. The results show predicted cookoff temperatures slightly higher than the measured values.

  20. Cookoff Response of PBXN-109: Material Characterization and ALE3D Thermal Predictions

    SciTech Connect (OSTI)

    McClelland, M A; Tran, T D; Cunningham, B J; Weese, R K; Maienschein, J L

    2001-05-29T23:59:59.000Z

    Materials properties measurements are made for the RDX-based explosive, PBXN-109, and initial ALE3D model predictions are given for the cookoff temperature in a U.S. Navy test. This work is part of an effort in the U.S. Navy and Department of Energy (DOE) laboratories to understand the thermal explosion behavior of this material. Benchmark cookoff experiments are being performed by the U.S. Navy to validate DOE materials models and computer codes. The ALE3D computer code can model the coupled thermal, mechanical, and chemical behavior of heating, ignition, and explosion in cookoff tests. In our application, a standard three-step step model is selected for the chemical kinetics. The strength behavior of the solid constituents is represented by a Steinberg-Guinan model while polynomial and gamma-law expressions are used for the Equation Of State (EOS) for the solid and gas species, respectively. Materials characterization measurements are given for thermal expansion, heat capacity, shear modulus, bulk modulus, and One-Dimensional-Time-to-Explosion (ODTX). These measurements and those of the other project participants are used to determine parameters in the ALE3D chemical, mechanical, and thermal models. Time-dependent, two-dimensional results are given for the temperature and material expansion. The results show predicted cookoff temperatures slightly higher than the measured values.

  1. Improvement of 3D Printing Resolution by the Development of Shrinkable Materials

    E-Print Network [OSTI]

    Chia, Helena

    2014-01-01T23:59:59.000Z

    learned a lot about 3D printing and myself in this processderived microstructures by 3D printing: bio-and structuralScaffold development using 3D printing with a starch-based

  2. Improvement of 3D Printing Resolution by the Development of Shrinkable Materials

    E-Print Network [OSTI]

    Chia, Helena

    2014-01-01T23:59:59.000Z

    derived microstructures by 3D printing: bio-and structuralScaffold development using 3D printing with a starch-basedderived microstructures by 3D printing: bio-and structural

  3. ALE3D Model Predictions and Materials Characterization for the Cookoff Response of PBXN-109

    SciTech Connect (OSTI)

    McClelland, M A; Maienschein, J L; Nichols, A L; Wardell, J F; Atwood, A I; Curran, P O

    2002-03-19T23:59:59.000Z

    ALE3D simulations are presented for the thermal explosion of PBXN-109 (RDX, AI, HTPB, DOA) in support of an effort by the U. S. Navy and Department of Energy (DOE) to validate computational models. The U.S. Navy is performing benchmark tests for the slow cookoff of PBXN-109 in a sealed tube. Candidate models are being tested using the ALE3D code, which can simulate the coupled thermal, mechanical, and chemical behavior during heating, ignition, and explosion. The strength behavior of the solid constituents is represented by a Steinberg-Guinan model while polynomial and gamma-law expressions are used for the Equation Of State (EOS) for the solid and gas species, respectively. A void model is employed to represent the air in gaps. ALE3D model 'parameters are specified using measurements of thermal and mechanical properties including thermal expansion, heat capacity, shear modulus, and bulk modulus. A standard three-step chemical kinetics model is used during the thermal ramp, and a pressure-dependent burn front model is employed during the rapid expansion. Parameters for the three-step kinetics model are specified using measurements of the One-Dimensional-Time-to-Explosion (ODTX), while measurements for burn rate of pristine and thermally damaged material are employed to determine parameters in the burn front model. Results are given for calculations in which heating, ignition, and explosion are modeled in a single simulation. We compare model results to measurements for the cookoff temperature and tube wall strain.

  4. Computational Analysis of a 3D Hypersonic Intake for Experimental Testing at Mach 8

    E-Print Network [OSTI]

    of the Institute of Theoretical and Applied Mechanics (ITAM) in Novosibirsk, Russia. The AT-303 is a first rate demonstrator (see Fig. 1) is a variation of a 3D mixed compression inlet tested before at ITAM.1 Two phenomena

  5. Error bounds for space-time discretizations of a 3D model for shape-memory materials

    E-Print Network [OSTI]

    Stefanelli, Ulisse

    Error bounds for space-time discretizations of a 3D model for shape-memory materials Alexander in shape- memory materials. After recalling existence and uniqueness results, a fully evolution of shape-memory alloys (SMAs). The latter are metallic alloys showing some surprising thermo

  6. Experimental observation of 3-D, impulsive reconnection events in a laboratory plasma

    SciTech Connect (OSTI)

    Dorfman, S.; Ji, H.; Yamada, M.; Yoo, J.; Lawrence, E.; Myers, C.; Tharp, T. D. [Center for Magnetic Self-Organization, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)] [Center for Magnetic Self-Organization, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-01-15T23:59:59.000Z

    Fast, impulsive reconnection is commonly observed in laboratory, space, and astrophysical plasmas. In this work, impulsive, local, 3-D reconnection is identified for the first time in a laboratory current sheet. The two-fluid, impulsive reconnection events observed on the Magnetic Reconnection Experiment (MRX) [Yamada et al., Phys Plasmas 4, 1936 (1997)] cannot be explained by 2-D models and are therefore fundamentally three-dimensional. Several signatures of flux ropes are identified with these events; 3-D high current density regions with O-point structure form during a slow buildup period that precedes a fast disruption of the reconnecting current layer. The observed drop in the reconnection current and spike in the reconnection rate during the disruption are due to ejection of these flux ropes from the layer. Underscoring the 3-D nature of the events, strong out-of-plane gradients in both the density and reconnecting magnetic field are found to play a key role in this process. Electromagnetic fluctuations in the lower hybrid frequency range are observed to peak at the disruption time; however, they are not the key physics responsible for the impulsive phenomena observed. Important features of the disruption dynamics cannot be explained by an anomalous resistivity model. An important discrepancy in the layer width and force balance between the collisionless regime of MRX and kinetic simulations is also revisited. The wider layers observed in MRX may be due to the formation of flux ropes with a wide range of sizes; consistent with this hypothesis, flux rope signatures are observed down to the smallest scales resolved by the diagnostics. Finally, a 3-D two-fluid model is proposed to explain how the observed out-of-plane variation may lead to a localized region of enhanced reconnection that spreads in the direction of the out-of-plane electron flow, ejecting flux ropes from the layer in a 3-D manner.

  7. Evaluation of single-field macro element for predicting 3D material properties of plain weave composites

    E-Print Network [OSTI]

    Noh, Jae Huek

    1997-01-01T23:59:59.000Z

    EVALUATION OF SINGLE-FIELD MACRO ELEMENT FOR PREDICTING 3D MATERIAL PROPERTIES OF PLAIN WEAVE COMPOSITES A Thesis by JAE HUEK NOH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1997 Major Subject: Aerospace Engineering EVALUATION OF SINGLE-FIELD MACRO ELEMENT FOR PREDICTING 3D MATERIAL PROPERTIES OF PLAIN WEAVE COMPOSITES A Thesis JAE HUEK NOH Submitted to Texas AkM University in partial...

  8. Electrical Characterization of Trough Silicon Via (TSV) depending on Structural and Material Parameters based on 3D Full Wave Simulation

    E-Print Network [OSTI]

    Kim, Yong Jung

    Electrical Characterization of Trough Silicon Via (TSV) depending on Structural and Material the electrical characteristics of TSV depending on number of stacked TSVs. All electrical characterizations battery in one time charging. At the first trying for 3-D stacked chip packages, a wire- bonding

  9. Experimental onset threshold and magnetic pressure pileup for 3D Sweet-Parker reconnection

    SciTech Connect (OSTI)

    Intrator, Thomas P [Los Alamos National Laboratory; Sun, Xuan [Los Alamos National Laboratory; Lapenta, Giovanni [Los Alamos National Laboratory; Furno, Ivo [Los Alamos National Laboratory; [NON LANL

    2008-01-01T23:59:59.000Z

    In space, astrophysical and laboratory plasmas, magnetic reconnect ion converts magnetic into particle energy during unsteady, explosive events. The abrupt onset and cessation has been a long standing puzzle. We show the first three-dimensional (3D) laboratory example of onset and stagnation of Sweet-Parker type magnetic reconnection between magnetized and parallel current (flux) ropes driven by magnetohydrodynamic (MHD) attraction and 3D instability. Mutually attracting flux ropes advect and merge oppositely directed magnetic fields. Magnetic flux is annihilated, but reaches soon a threshold where magnetic flux and pressure pile up, and reconnection magnetic topology appears. This occurs when inflow speeds exceed the SweetParker speed v{sub SP} = v{sub A} / S{sup 1/2}, where v{sub A} is the Alfven speed and S is the Lundquist number for the reconnection layer, as magnetic flux arrives faster than flux annihilation can process it. Finally piled up fields generate MHD reaction forces that stall the inflow and the reconnection process.

  10. The 3D structure of the hadrons: recents results and experimental program at Jefferson Lab

    SciTech Connect (OSTI)

    Munoz Camacho, Carlos [Institut de Physique Nucleaire, Orsay

    2014-04-01T23:59:59.000Z

    The understanding of Quantum Chromodynamics (QCD) at large distances still remains one of the main outstanding problems of nuclear physics. Studying the internal structure of hadrons provides a way to probe QCD in the non-perturbative domain and can help us unravel the internal structure of the most elementary blocks of matter. Jefferson Lab (JLab) has already delivered results on how elementary quarks and gluons create nucleon structure and properties. The upgrade of JLab to 12 GeV will allow the full exploration of the valence-quark structure of nucleons and the extraction of real threedimensional pictures. I will present recent results and review the future experimental program at JLab.

  11. Experimental and theoretical study of the 3d {sup 2}D-level lifetimes of {sup 40}Ca{sup +}

    SciTech Connect (OSTI)

    Kreuter, A.; Becher, C.; Lancaster, G.P.T.; Mundt, A.B.; Russo, C.; Haeffner, H.; Roos, C.; Haensel, W.; Schmidt-Kaler, F.; Blatt, R.; Safronova, M.S. [Institut fuer Experimentalphysik, Universitaet Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria); Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States)

    2005-03-01T23:59:59.000Z

    We report measurements of the lifetimes of the 3d {sup 2}D{sub 5/2} and 3d {sup 2}D{sub 3/2} metastable states of a single laser-cooled {sup 40}Ca{sup +} ion in a linear Paul trap. We introduce a measurement technique based on high-efficiency quantum state detection after coherent excitation to the D{sub 5/2} state or incoherent shelving in the D{sub 3/2} state, and subsequent free, unperturbed spontaneous decay. The result for the natural lifetime of the D{sub 5/2} state of 1168(9) ms agrees excellently with the most precise published value. The lifetime of the D{sub 3/2} state is measured with a single ion and yields 1176(11) ms which improves the statistical uncertainty of previous results by a factor of four. We compare these experimental lifetimes to high-precision ab initio all order calculations [D{sub 3/2} state: 1196(11) ms; D{sub 5/2} state: 1165(11) ms] and find a very good agreement. These calculations represent an excellent test of high-precision atomic theory and will serve as a benchmark for the study of parity nonconservation in Ba{sup +} which has similar atomic structure.

  12. 3-D photo-patterning of refractive index structures in photosensitive thin film materials

    DOE Patents [OSTI]

    Potter, Jr., Barrett George (Albuquerque, NM); Potter, Kelly Simmons (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A method of making a three-dimensional refractive index structure in a photosensitive material using photo-patterning. The wavelengths at which a photosensitive material exhibits a change in refractive index upon exposure to optical radiation is first determined and then a portion of the surface of the photosensitive material is optically irradiated at a wavelength at which the photosensitive material exhibits a change in refractive index using a designed illumination system to produce a three-dimensional refractive index structure. The illumination system can be a micro-lenslet array, a macroscopic refractive lens array, or a binary optic phase mask. The method is a single-step, direct-write procedure to produce a designed refractive index structure.

  13. A facile route for 3D aerogels from nanostructured 1D and 2D materials

    E-Print Network [OSTI]

    Jung, Sung Mi

    Aerogels have numerous applications due to their high surface area and low densities. However, creating aerogels from a large variety of materials has remained an outstanding challenge. Here, we report a new methodology ...

  14. Image-based stochastic modeling of the 3D morphology of energy materials on various length scales

    E-Print Network [OSTI]

    Schmidt, Volker

    , to appear 3D image of uncompressed graphite electrode used in Li-ion batteries tomography: Helmholtz Center, 2013 | Volker Schmidt Contents Introduction 3D microstructure of uncompressed graphite electrodes 3D microstructure of compressed graphite electrodes 3D morphology of hybrid organic solar cells Charge transport

  15. A 3D Orthotropic Strain-Rate Dependent Elastic Damage Material Model.

    SciTech Connect (OSTI)

    English, Shawn Allen

    2014-09-01T23:59:59.000Z

    A three dimensional orthotropic elastic constitutive model with continuum damage and cohesive based fracture is implemented for a general polymer matrix composite lamina. The formulation assumes the possibility of distributed (continuum) damage followed b y localized damage. The current damage activation functions are simply partially interactive quadratic strain criteria . However, the code structure allows for changes in the functions without extraordinary effort. The material model formulation, implementation, characterization and use cases are presented.

  16. Vacuum compatibility of 3D-printed materials Alexander P. Povilus, Caroline J. Wurden, Zak Vendeiro, Marcelo Baquero-Ruiz, and Joel Fajans

    E-Print Network [OSTI]

    Fajans, Joel

    .1116/1.4873556] I. INTRODUCTION Additive manufacturing, or 3D printing, of parts has many potential advantages over printing is additive, it is possible that there are small voids in the material that would trap gases

  17. The optical applications of 3D sub-wavelength block-copolymer nanostructured functional materials

    E-Print Network [OSTI]

    Poole, Zsolt; Ohodnicki, Paul; Chen, Kevin

    2015-01-01T23:59:59.000Z

    A method to engineer the refractive indices of functional materials (TiO2, ZnO, SnO2, SiO2), by nanostructuring in the deep sub-wavelength regime (optical design techniques such as thin film optimization methods, transformation optics and conformal mapping. Refractive index optimized multi-layer anti-reflection coatings on crystalline silicon, which reduce light reflections from 38% down to ~3% with a wide angular span, are demonstrated with the developed wet processing route. A high temperature oxygen free fiber optic hydrogen sensor realized by accessing nano-engine...

  18. Analytic Solutions to 3-D Finite Deformation Problems Governed by St Venant-Kirchhoff Material

    E-Print Network [OSTI]

    David Yang Gao; Eldar Hajilarov

    2015-04-11T23:59:59.000Z

    This paper presents a detailed study on analytical solutions to a general nonlinear boundary-value problem in finite deformation theory. Based on canonical duality theory and the associated pure complementary energy principle in nonlinear elasticity proposed by Gao in 1999, we show that the general nonlinear partial differential equation for deformation is actually equivalent to an algebraic (tensor) equation in stress space. For St Venant-Kirchhoff materials, this coupled cubic algebraic equation can be solved principally to obtain all possible solutions. Our results show that for any given external source field such that the statically admissible first Piola-Kirchhoff stress field has no-zero eigenvalues, the problem has a unique global minimal solution, which is corresponding to a positive-definite second Piola-Kirchhoff stress S, and at most eight local solutions corresponding to negative-definite S. Additionally, the problem could have 15 unstable solutions corresponding to indefinite S. This paper demonstrates that the canonical duality theory and the pure complementary energy principle play fundamental roles in nonconvex analysis and finite deformation theory.

  19. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    08:59 ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which...

  20. Abstract --An experimental small animal PET using two 3-D position sensitive CdZnTe detectors was developed and tested.

    E-Print Network [OSTI]

    He, Zhong

    Abstract -- An experimental small animal PET using two 3-D position sensitive CdZnTe detectors scattering angle reconstruction are reported and discussed. I. INTRODUCTION onventional PET systems use, for molecular imaging and drug development using high resolution PET is gaining more and more interests. One

  1. High-? Al{sub 2}O{sub 3} material in low temperature wafer-level bonding for 3D integration application

    SciTech Connect (OSTI)

    Fan, J., E-mail: fanji@hust.edu.cn; Tu, L. C. [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)] [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Tan, C. S. [School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)] [School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-03-15T23:59:59.000Z

    This work systematically investigated a high-? Al{sub 2}O{sub 3} material for low temperature wafer-level bonding for potential applications in 3D microsystems. A clean Si wafer with an Al{sub 2}O{sub 3} layer thickness of 50 nm was applied as our experimental approach. Bonding was initiated in a clean room ambient after surface activation, followed by annealing under inert ambient conditions at 300?°C for 3 h. The investigation consisted of three parts: a mechanical support study using the four-point bending method, hermeticity measurements using the helium bomb test, and thermal conductivity analysis for potential heterogeneous bonding. Compared with samples bonded using a conventional oxide bonding material (SiO{sub 2}), a higher interfacial adhesion energy (?11.93 J/m{sup 2}) and a lower helium leak rate (?6.84 × 10{sup ?10} atm.cm{sup 3}/sec) were detected for samples bonded using Al{sub 2}O{sub 3}. More importantly, due to the excellent thermal conductivity performance of Al{sub 2}O{sub 3}, this technology can be used in heterogeneous direct bonding, which has potential applications for enhancing the performance of Si photonic integrated devices.

  2. CHARACTERIZATION OF MICRO-MECHANICAL PROPERTIES OF GRANULAR MATERIALS BASED ON THE USE OF 3D-T IMAGERY AND DISCRETE ELEMENT MODELING 

    E-Print Network [OSTI]

    Duong, Tam

    2012-05-07T23:59:59.000Z

    conditions by the use of distinct elements using PFC-3D. This allows for a direct comparison to achieving a better understanding on the assessment of micro properties of granular materials. The outcomes of this study also permit to conduct uncertainty...

  3. Part removal of 3D printed parts

    E-Print Network [OSTI]

    Peña Doll, Mateo

    2014-01-01T23:59:59.000Z

    An experimental study was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D printing using a patent ...

  4. Dynamic pulse buckling of cylindrical shells under axial impact: A comparison of 2D and 3D finite element calculations with experimental data

    SciTech Connect (OSTI)

    Hoffman, E.L.; Ammerman, D.J.

    1995-04-01T23:59:59.000Z

    A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several 2D and 3D finite element simulations of the event. The purpose of the work is to investigate the performance of various analysis codes and element types on a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry. Four axial impact tests were performed on 4 in-diameter, 8 in-long, 304 L stainless steel cylinders with a 3/16 in wall thickness. The cylinders were struck by a 597 lb mass with an impact velocity ranging from 42.2 to 45.1 ft/sec. During the impact event, a buckle formed at each end of the cylinder, and one of the two buckles became unstable and collapsed. The instability occurred at the top of the cylinder in three tests and at the bottom in one test. Numerical simulations of the test were performed using the following codes and element types: PRONTO2D with axisymmetric four-node quadrilaterals; PRONTO3D with both four-node shells and eight-node hexahedrons; and ABAQUS/Explicit with axisymmetric two-node shells and four-node quadrilaterals, and 3D four-node shells and eight-node hexahedrons. All of the calculations are compared to the tests with respect to deformed shape and impact load history. As in the tests, the location of the instability is not consistent in all of the calculations. However, the calculations show good agreement with impact load measurements with the exception of an initial load spike which is proven to be the dynamic response of the load cell to the impact. Finally, the PRONIT02D calculation is compared to the tests with respect to strain and acceleration histories. Accelerometer data exhibited good qualitative agreement with the calculations. The strain comparisons show that measurements are very sensitive to gage placement.

  5. atomic resolution 3d: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed 3D video database of spontaneous facial Cohn, Jeffrey F. 16 Improvement of 3D Printing Resolution by the Development of Shrinkable Materials University of California...

  6. angular resolution 3d: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed 3D video database of spontaneous facial Cohn, Jeffrey F. 18 Improvement of 3D Printing Resolution by the Development of Shrinkable Materials University of California...

  7. EXPERIMENTAL STUDIES OF MITIGATION MATERIALS FOR BLAST INDUCED TBI

    E-Print Network [OSTI]

    Young, Laurence Retman

    The objective of this experimental study is to compare the effects of various materials obstructing the flow of a blast wave and the ability of the given material to reduce the damage caused by the blast. Several methods ...

  8. 3D Printing Electronics

    E-Print Network [OSTI]

    Stryk, Oskar von

    Login Register Home Videos Jobs Games 3D Printing Electronics Design Software Designer Edge for 3D Printing · -- B6 Sigma Labs (ticker SGLB) is not the same company as Sigma Technologies

  9. TOPAZ3D. 3-D Finite Element Heat Transfer

    SciTech Connect (OSTI)

    Shapiro, A.B. [Lawrence Livermore National Lab., CA (United States)

    1992-02-24T23:59:59.000Z

    TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

  10. 3D NUCLEAR SEGMENTAT

    Energy Science and Technology Software Center (OSTI)

    003029WKSTN00 Delineation of nuclear structures in 3D multicellular systems  https://vision.lbl.gov/Software/3DMorphometry/ 

  11. Design for reliability of BEoL and 3-D TSV structures – A joint effort of FEA and innovative experimental techniques

    SciTech Connect (OSTI)

    Auersperg, Jürgen; Vogel, Dietmar; Auerswald, Ellen; Rzepka, Sven; Michel, Bernd [Fraunhofer ENAS, Micro Materials Center, Technologie-Campus 3, D-09126 Chemnitz (Germany)

    2014-06-19T23:59:59.000Z

    Copper-TSVs for 3D-IC-integration generate novel challenges for reliability analysis and prediction, e.g. the need to master multiple failure criteria for combined loading including residual stress, interface delamination, cracking and fatigue issues. So, the thermal expansion mismatch between copper and silicon leads to a stress situation in silicon surrounding the TSVs which is influencing the electron mobility and as a result the transient behavior of transistors. Furthermore, pumping and protrusion of copper is a challenge for Back-end of Line (BEoL) layers of advanced CMOS technologies already during manufacturing. These effects depend highly on the temperature dependent elastic-plastic behavior of the TSV-copper and the residual stresses determined by the electro deposition chemistry and annealing conditions. That’s why the authors pushed combined simulative/experimental approaches to extract the Young’s-modulus, initial yield stress and hardening coefficients in copper-TSVs from nanoindentation experiments, as well as the temperature dependent initial yield stress and hardening coefficients from bow measurements due to electroplated thin copper films on silicon under thermal cycling conditions. A FIB trench technique combined with digital image correlation is furthermore used to capture the residual stress state near the surface of TSVs. The extracted properties are discussed and used accordingly to investigate the pumping and protrusion of copper-TSVs during thermal cycling. Moreover, the cracking and delamination risks caused by the elevated temperature variation during BEoL ILD deposition are investigated with the help of fracture mechanics approaches.

  12. F3D

    Energy Science and Technology Software Center (OSTI)

    003188MLTPL00 F3D Image Processing and Analysis for Many - and Multi-core Platforms  http://camera.lbl.gov/software 

  13. Experimental Possibilities in Material Science enabled by FEL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Possibilities in Material Science enabled by FEL Sources Wednesday, July 1, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Joerg Hallmann, XFEL Program...

  14. Heat Transfer Simulation of Reactor Cavity Cooling System Experimental Facility using RELAP5-3D and Generation of View Factors using MCNP 

    E-Print Network [OSTI]

    Wu, Huali

    2013-08-08T23:59:59.000Z

    As one of the most attractive reactor types, The High Temperature Gas-cooled Reactor (HTGR) is designed to be passively safe with the incorporation of Reactor Cavity Cooling System (RCCS). In this paper, a RELAP5-3D simulation model is set up based...

  15. Characterizing tensile loading responses of 3D printed samples

    E-Print Network [OSTI]

    Haid, Christopher M

    2014-01-01T23:59:59.000Z

    An experimental study was performed to characterize the loading response of samples manufactured through 3D printing. Tensile testing was performed on a number of 3D printed samples created through Fused Filament Fabrication ...

  16. 3D Printing Prof. Hank Dietz & Paul Eberhart

    E-Print Network [OSTI]

    Dietz, Henry G. "Hank"

    3D Printing Prof. Hank Dietz & Paul Eberhart September 28, 2013 University of Kentucky Electrical/Craft: paper moves in Y, knife in X EDM/Laser: X/Y bed, vaporizes material #12;Subtractive 3D CNC: Computer "The whole is greater than the sum of its parts." ­ Aristotle #12;Additive 3D Building Material

  17. autostereoscopic 3d display: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or restrict themselves to light dif- fusion in volumes. We use multi-material 3D printing to fabricate objects Additional Key Words and Phrases: 3D printing, optical fibers...

  18. Ames Lab 101: 3D Metals Printer

    SciTech Connect (OSTI)

    Ott, Ryan

    2014-02-13T23:59:59.000Z

    To meet one of the biggest energy challenges of the 21st century - finding alternatives to rare-earth elements and other critical materials - scientists will need new and advanced tools. The Critical Materials Institute at the U.S. Department of Energy's Ames Laboratory has a new one: a 3D printer for metals research. 3D printing technology, which has captured the imagination of both industry and consumers, enables ideas to move quickly from the initial design phase to final form using materials including polymers, ceramics, paper and even food. But the Critical Materials Institute (CMI) will apply the advantages of the 3D printing process in a unique way: for materials discovery.

  19. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey(SC) GettingGitGraduateGrantsGraphene's 3D

  20. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Annual Report, 1993SemiconductorGraphene's 3D

  1. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Annual Report,Graphene's 3D Counterpart Print

  2. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Annual Report,Graphene's 3D Counterpart

  3. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Annual Report,Graphene's 3D

  4. automated 3-d voxel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: from a real-life application. 1 Introduction Recent advances in 3D printing technology have made of materials, higher printing speeds, and lower costs....

  5. assess 3d bone: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: from a real-life application. 1 Introduction Recent advances in 3D printing technology have made of materials, higher printing speeds, and lower costs....

  6. Evaluation of PC-ISO for customized, 3D printed, gynecologic 192Ir HDR brachytherapy applicators

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    A, Iuliano L, Violante MG. 3D printing technique applied toTengg-Kobligk H, et al. 3D printing based on imaging data:biocompatible, sterilizable 3D printing material, and its

  7. Sample measurement Choose 3D, for 3D scan

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Sample measurement M Choose 3D, for 3D scan -> load method ("3D_EEM.xml") -> Run Signal: save S1/R1 column names etc once saved, close all plots before taking next sample Processing via Matlab script "EEM

  8. Idea Generation 3D printing

    E-Print Network [OSTI]

    Papadopouli, Maria

    2012 Idea Generation 3D printing at nanoscale Cruising on electrical roads Pushing back against Centre micro and nanoscale 15 Taking 3D printing to the nanoscale 18 Fighting cancer with a "lab

  9. Experimental hypervelocity impact effects on simulated planetesimal materials

    SciTech Connect (OSTI)

    Tedeschi, W.J.; Schulze, J.F. [Sandia National Labs., Albuquerque, NM (United States); Remo, J.L. [Quantametrics, Inc., St. James, NY (United States); Young, R.P. Jr [Calspan Field Services, Inc., Arnold AFS, TN (United States). AEDC Div.

    1994-08-01T23:59:59.000Z

    Experimental results are presented from a series of hypervelocity impact tests on simulated comet and asteroid materials for the purpose of characterizing their response to hypervelocity kinetic energy impacts. Nine tests were conducted at the Air Force Arnold Engineering Development Center (AEDC) S1 Range Facility on ice, rock, and iron target samples using a spherical 2.39 mm diameter aluminum impactor (0.0192 gm) at impact velocities of from 7.6 to 8.4 km/sec. The test objectives were to collect target response phenomenology data on cratering, momentum deposition and enhancement, target fragmentation, and material response under hypervelocity impact loading conditions. A carefully designed ballistic pendulum was used to measure momentum deposition into the targets. Observations and measurements of the impacted samples provide important insights into the response of these materials to kinetic energy impacts, especially in regards to unexpectedly large measured values of momentum enhancement to some of the targets. Such information is required to allow us to successfully deflect or fragment comets or asteroids which might someday be detected on collision trajectories with Earth.

  10. 3-D hydro + cascade model at RHIC

    E-Print Network [OSTI]

    Chiho Nonaka; Steffen A. Bass

    2005-11-07T23:59:59.000Z

    We present a 3-D hydro + cascade model in which viscosity and a realistic freezeout process for the hadronic phase are taken into account. We compare our results to experimental data and discuss the finite state interaction effects on physical observables.

  11. Beyond 3D Printing: The New Dimensions of Additive Fabrication

    E-Print Network [OSTI]

    Keating, Steven John

    Additive fabrication, often referred to as 3D printing, is the construction of objects by adding material. This stands in contrast to subtractive methods, which involve removing material by means of milling or cutting. ...

  12. A two-fold interpenetrating 3D metal-organic framework material constructed from helical chains linked via 4,4'-H{sub 2}bpz fragments

    SciTech Connect (OSTI)

    Xie Yiming [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002 (China); College of Materials Science and Engineering, Huaqiao University, the Key Laboratory for Functional Materials of Fujian Higher Education, Quanzhou, Fujian 362021 (China); Zhao Zhenguo; Wu Xiaoyuan; Zhang Qisheng; Chen Lijuan; Wang Fei; Chen Shanci [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002 (China); Lu Canzhong [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002 (China)], E-mail: czlu@fjirsm.ac.cn

    2008-12-15T23:59:59.000Z

    A 3-connected dia-f-type metal-organic framework compound {l_brace}[Ag(L){sub 3/2}H{sub 2}PO{sub 4}]{r_brace}{sub n} (1) has been synthesized by self-assembly of 4,4'-H{sub 2}bpz (L=4,4'-H{sub 2}bpz=3,3',5,5'-tetramethyl-4,4'-bipyrazole) and Ag{sub 4}P{sub 2}O{sub 7} under hydrothermal conditions. It crystallizes in the tetragonal space group I4{sub 1}/acd with a=21.406(4) A, b=21.406(4) A, c=36.298(8) A, Z=32. X-ray single-crystal diffraction reveals that 1 has a three-dimensional framework with an unprecedented alternate left- and right-handed helices structure, featuring a non-uniform two-fold interpenetrated (4.14{sup 2}) net. Photoluminescent investigation reveals that the title compound displays interesting emissions in a wide region, which shows that the title compound may be a good potential candidate as a photoelectric material. - Graphical abstract: A 3-connected dia-f-type metal-organic framework compound [Ag(4,4'-bpz){sub 3/2}H{sub 2}PO{sub 4}] shows unprecedented alternating left- and right-handed helices structure, featuring a non-uniform two-fold interpenetrated (4.14{sup 2}) net.

  13. T-HEMP3D user manual

    SciTech Connect (OSTI)

    Turner, D.

    1983-08-01T23:59:59.000Z

    The T-HEMP3D (Transportable HEMP3D) computer program is a derivative of the STEALTH three-dimensional thermodynamics code developed by Science Applications, Inc., under the direction of Ron Hofmann. STEALTH, in turn, is based entirely on the original HEMP3D code written at Lawrence Livermore National Laboratory. The primary advantage STEALTH has over its predecessors is that it was designed using modern structured design techniques, with rigorous programming standards enforced. This yields two benefits. First, the code is easily changeable; this is a necessity for a physics code used for research. The second benefit is that the code is easily transportable between different types of computers. The STEALTH program was transferred to LLNL under a cooperative development agreement. Changes were made primarily in three areas: material specification, coordinate generation, and the addition of sliding surface boundary conditions. The code was renamed T-HEMP3D to avoid confusion with other versions of STEALTH. This document summarizes the input to T-HEMP3D, as used at LLNL. It does not describe the physics simulated by the program, nor the numerical techniques employed. Furthermore, it does not describe the separate job steps of coordinate generation and post-processing, including graphical display of results. (WHK)

  14. 3D World Building System

    SciTech Connect (OSTI)

    None

    2013-10-30T23:59:59.000Z

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  15. 3D World Building System

    ScienceCinema (OSTI)

    None

    2014-02-26T23:59:59.000Z

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  16. 3D Fingerprint Phantoms Sunpreet S. Arora, Kai Cao and Anil K. Jain

    E-Print Network [OSTI]

    ) printing the 3D fingerprint phantoms using a commodity 3D printer. Preliminary experimental results show3D Fingerprint Phantoms Sunpreet S. Arora, Kai Cao and Anil K. Jain Department of Computer Science, we propose creating 3D fin- gerprint phantoms (phantoms or imaging phantoms are specially designed

  17. High-pressure computational and experimental studies of energetic materials 

    E-Print Network [OSTI]

    Hunter, Steven

    2013-11-28T23:59:59.000Z

    On account of the high temperatures and pressures experienced by energetic materials during deflagration and detonation, it is important to know not only the physical properties of these materials at ambient temperatures ...

  18. Imaging atoms in 3-D

    ScienceCinema (OSTI)

    Ercius, Peter

    2014-06-27T23:59:59.000Z

    Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

  19. Imaging atoms in 3-D

    SciTech Connect (OSTI)

    Ercius, Peter

    2013-10-31T23:59:59.000Z

    Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

  20. Accepting the T3D

    SciTech Connect (OSTI)

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01T23:59:59.000Z

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  1. Experimental characterization of energetic material dynamics for multiphase blast simulation.

    SciTech Connect (OSTI)

    Beresh, Steven Jay; Wagner, Justin L.; Kearney, Sean Patrick; Wright, Elton K.; Baer, Melvin R.; Pruett, Brian Owen Matthew

    2011-09-01T23:59:59.000Z

    Currently there is a substantial lack of data for interactions of shock waves with particle fields having volume fractions residing between the dilute and granular regimes, which creates one of the largest sources of uncertainty in the simulation of energetic material detonation. To close this gap, a novel Multiphase Shock Tube has been constructed to drive a planar shock wave into a dense gas-solid field of particles. A nearly spatially isotropic field of particles is generated in the test section by a gravity-fed method that results in a spanwise curtain of spherical 100-micron particles having a volume fraction of about 19%. Interactions with incident shock Mach numbers of 1.66, 1.92, and 2.02 were achieved. High-speed schlieren imaging simultaneous with high-frequency wall pressure measurements are used to reveal the complex wave structure associated with the interaction. Following incident shock impingement, transmitted and reflected shocks are observed, which lead to differences in particle drag across the streamwise dimension of the curtain. Shortly thereafter, the particle field begins to propagate downstream and spread. For all three Mach numbers tested, the energy and momentum fluxes in the induced flow far downstream are reduced about 30-40% by the presence of the particle field. X-Ray diagnostics have been developed to penetrate the opacity of the flow, revealing the concentrations throughout the particle field as it expands and spreads downstream with time. Furthermore, an X-Ray particle tracking velocimetry diagnostic has been demonstrated to be feasible for this flow, which can be used to follow the trajectory of tracer particles seeded into the curtain. Additional experiments on single spherical particles accelerated behind an incident shock wave have shown that elevated particle drag coefficients can be attributed to increased compressibility rather than flow unsteadiness, clarifying confusing results from the historical database of shock tube experiments. The development of the Multiphase Shock Tube and associated diagnostic capabilities offers experimental capability to a previously inaccessible regime, which can provide unprecedented data concerning particle dynamics of dense gas-solid flows.

  2. EVENT CLASSIFICATION FOR 3-D POSITION SENSITIVE SEMICONDUCTOR DETECTORS

    E-Print Network [OSTI]

    He, Zhong

    Generation Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 Charge Cloud Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 iv #12;3.1.2 Experimental 3-D Detectors . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 IV

  3. 3D assembly and actuation of nanopatterned membranes using nanomagnets

    E-Print Network [OSTI]

    Nichol, Anthony John

    2011-01-01T23:59:59.000Z

    A new method for aligning and actuating membranes for 3D nano-assembly based on the interactions of nanomagnets has been developed. Arrays of nanopatterned magnetic material are integrated onto thin-film membranes. It is ...

  4. 3D Printed Microscope for Mobile Devices that Cost Pennies

    SciTech Connect (OSTI)

    Erikson, Rebecca; Baird, Cheryl; Hutchinson, Janine

    2014-09-15T23:59:59.000Z

    Scientists at PNNL have designed a 3D-printable microscope for mobile devices using pennies worth of plastic and glass materials. The microscope has a wide range of uses, from education to in-the-field science.

  5. Techniques for interactive 3-D scientific visualization

    SciTech Connect (OSTI)

    Glinert, E.P. (Rensselaer Polytechnic Inst., Troy, NY (USA). Dept. of Computer Science); Blattner, M.M. (Anderson (M.D.) Hospital and Tumor Inst., Houston, TX (USA). Dept. of Biomathematics California Univ., Davis, CA (USA). Dept. of Applied Science Lawrence Livermore National Lab., CA (USA)); Becker, B.G. (California Univ., Davis, CA (USA). Dept. of Applied Science Lawrence Livermore National La

    1990-09-24T23:59:59.000Z

    Interest in interactive 3-D graphics has exploded of late, fueled by (a) the allure of using scientific visualization to go where no-one has gone before'' and (b) by the development of new input devices which overcome some of the limitations imposed in the past by technology, yet which may be ill-suited to the kinds of interaction required by researchers active in scientific visualization. To resolve this tension, we propose a flat 5-D'' environment in which 2-D graphics are augmented by exploiting multiple human sensory modalities using cheap, conventional hardware readily available with personal computers and workstations. We discuss how interactions basic to 3-D scientific visualization, like searching a solution space and comparing two such spaces, are effectively carried out in our environment. Finally, we describe 3DMOVE, an experimental microworld we have implemented to test out some of our ideas. 40 refs., 4 figs.

  6. INTEGRATING DATA FROM 3D CAD AND 3D CAMERAS

    E-Print Network [OSTI]

    Bosché, Frédéric

    camera, 3D CAD, data fusion, construction automation 1 PhD Candidate, Department of Civil Engineering in Civil and Building Engineering Page 37 #12;INTRODUCTION Over the last fifty years, the construction2 , Carl T. Haas3 and Carlos H. Caldas4 ABSTRACT In a reversal of historic trends, the capital

  7. Experimental Investigation of Wallboard Containing Phase Change Material: Data for

    E-Print Network [OSTI]

    . It is then a potential method for reducing energy consumption in passively designed buildings. This tendency is confirmed/release of energy from the solar radiation and/or internal loads. The application of such materials for lightweight construction (e.g. a wood house) makes it possible to im- prove thermal comfort in summer and reduce heating

  8. A View of Manufacturing Through 3D Glasses | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from machining and casting technologies to materials science, welding, and yes, 3D printing. In the past few years, 3D printing, or additive as we call it in our labs, has...

  9. Stuff- The Materials that Shape our World - Experimental Learning Opportunities

    SciTech Connect (OSTI)

    Pam Rosenstein

    2012-04-30T23:59:59.000Z

    Making Stuff is a four-part series that explores how materials changed history and are shaping the future. To further enhance public engagement in and understanding of materials science, the project convened an extensive network of community coalitions across the country that hosted Making Stuff outreach activities and events, science cafes, and educator workshops in their local areas. Department Of Energy funding enabled us to increase the number of communities formally involved in the project, from 10 to 20 community hubs. Department of Energy funding also made it possible to develop a collection of materials science resources, activities and hands-on demonstrations for use in a variety of formal and informal settings, and Making Stuff activities were presented at science conferences and festivals around the country. The design, printing and national dissemination of the Making Stuff afterschool activity guide were also developed with DOE funding, as well as professional webinar trainings for scientists and educators to help facilitate many of the community activities and other online and print materials. Thanks to additional funding from the Department of Energy, we were able to expand the reach and scope of the projectâ??s outreach plan, specifically in the areas of: 1) content development, 2) training/professional development, 3) educational activities and 4) community partnerships. This report documents how the following DOE project goals were met: (1) Train scientists and provide teachers and informal educators with resources to engage youth with age appropriate information about materials science; (2) Provide activities and resources to five selected communities with ties to DOE researchers; (3) Increase interest in STEM.

  10. Experimental Techniques In The Recording And Display Of Archaeological Materials

    E-Print Network [OSTI]

    Koepnick, Samuel

    2011-08-08T23:59:59.000Z

    of MASTER OF ARTS Approved by: Chair of Committee, C. Wayne Smith Committee Members, Donny L. Hamilton Donald H. House Head of Department, Donny L. Hamilton May 2011 Major Subject: Anthropology iii ABSTRACT Experimental Techniques... and friends becomes an indispensible resource. First I would like to thank each member of my advisory committee; Dr. Smith for his technical knowledge, unique solutions to odd problems, and his consistently optimistic attitude, Dr. Hamilton for his...

  11. Characterization of 3D Photovoltaics

    E-Print Network [OSTI]

    Characterization of 3D Photovoltaics SEMICONDUCTORS Our goal is to provide industry with test structures and models of next-generation photovoltaics, with an initial focus on cadmium telluride (Cd (nanostructured) photovoltaic devices. Objective Impact and Customers · The U.S. Photovoltaic Industry Roadmap

  12. Materials for electrochemical capacitors: Theoretical and experimental constraints

    SciTech Connect (OSTI)

    Sarangapani, S. [ICET, Inc., Norwood, MA (United States); Tilak, B.V.; Chen, C.P. [Occidental Chemical Corp., Grand Island, NY (United States)

    1996-11-01T23:59:59.000Z

    Electrochemical capacitors, also called supercapacitors, are unique devices exhibiting 20 to 200 times greater capacitance than conventional capacitors. The large capacitance exhibited by these systems has been demonstrated to arise from a combination of the double-layer capacitance and pseudocapacitance associated with surface redox-type reactions. The purpose of this review is to survey the published data of available electrode materials possessing high specific double-layer or pseudocapacitance and examine their reported performance data in relation to their theoretical expectations.

  13. Experimental Study of Multi-type Macromolecule Porosity Moisture-Conditioned Material

    E-Print Network [OSTI]

    Huang, X.; Fan, Y.; Di, Y.

    2006-01-01T23:59:59.000Z

    MATERIALS AND EXPERIMENTAL DEVICES 4.1 The Experimental Materials (1) Porous materials: Concrete blocks, weight for 550Kg/m3, pore rate of 73%, saturated humidity rate of 45%, dimensions of 300?600?80mm. (2) Combined with the moisture conditioned... on buildings or wallpaper to adjust humidity. 2) Concrete blocks: 300?600?80mm. (3) Combined with the moisture conditioned plate and porous materials 1) Moisture conditioned plate: Absorbent resin adsorption salt solution, forms a Gel, mixed the Gel...

  14. Interactive 3D Animation System for Web3D Masayuki Furukawa, Shinya Fukumoto, Hiroshi Kawasaki

    E-Print Network [OSTI]

    Tokyo, University of

    of state model using a printer as a 3D object. In the example, three states of 3D object are defined can try 3D manual of printer by using tablet PC to learn the effectiveness of our 3D animation systemInteractive 3D Animation System for Web3D Masayuki Furukawa, Shinya Fukumoto, Hiroshi Kawasaki

  15. Experimentally characterized embedded Mckibben muscle as a nastic material for biomedical applications

    E-Print Network [OSTI]

    Ewumi, Omotayo F.

    2009-06-02T23:59:59.000Z

    This study presents the experimental results that characterize a nastic sheet material’s performance. We defined nastic sheet as a McKibben muscle designed from a foundation that would be embedded as an array in an elastomer matrix. The goal...

  16. SALT DAMAGE OF POROUS MATERIALS: A COMBINED THEORETICAL AND EXPERIMENTAL APPROACH

    E-Print Network [OSTI]

    Hinsch, Klaus

    SALT DAMAGE OF POROUS MATERIALS: A COMBINED THEORETICAL AND EXPERIMENTAL APPROACH Herbert Juling-resolved deformation data were promising and confirmed the dilatometric results. Keywords: salt crystallization, porous Introduction It is generally recognized that crystal growth of salts in porous materials is a major cause

  17. RELAP5 Model of a Two-phase ThermoSyphon Experimental Facility for Fuels and Materials Irradiation

    SciTech Connect (OSTI)

    Carbajo, Juan J [ORNL] [ORNL; McDuffee, Joel Lee [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) does not have a separate materials-irradiation flow loop and requires most materials and all fuel experiments to be placed inside a containment. This is necessary to ensure that internal contaminants such as fission products cannot be released into the primary coolant. As part of the safety basis justification, HFIR also requires that all experiments be able to withstand various accident conditions (e.g., loss of coolant) without generating vapor bubbles on the surface of the experiment in the primary coolant. As with any parallel flow system, HFIR is vulnerable to flow excursion events when vapor is generated in one of those flow paths. The effects of these requirements are to artificially increase experiment temperatures by introducing a barrier between the experimental materials and the HFIR coolant and to reduce experiment heat loads to ensure boiling doesn t occur. A new experimental facility for materials irradiation and testing in the HFIR is currently being developed to overcome these limitations. The new facility is unique in that it will have its own internal cooling flow totally independent of the reactor primary coolant and boiling is permitted. The reactor primary coolant will cool the outside of this facility without contacting the materials inside. The ThermoSyphon Test Loop (TSTL), a full scale prototype of the proposed irradiation facility to be tested outside the reactor, is being designed and fabricated (Ref. 1). The TSTL is a closed system working as a two-phase thermosyphon. A schematic is shown in Fig. 1. The bottom central part is the boiler/evaporator and contains three electric heaters. The vapor generated by the heaters will rise and be condensed in the upper condenser, the condensate will drain down the side walls and be circulated via a downcomer back into the bottom of the boiler. An external flow system provides coolant that simulates the HFIR primary coolant. The two-phase flow code RELAP5-3D (Ref. 2) is the main tool employed in this design. The model has multiple challenges: boiling, condensation and natural convection flows need to be modeled accurately.

  18. Computational Light Routing: 3D Printed Optical Fibers For Sensing and Display

    E-Print Network [OSTI]

    Computational Light Routing: 3D Printed Optical Fibers For Sensing and Display THIAGO PEREIRA or restrict themselves to light dif- fusion in volumes. We use multi-material 3D printing to fabricate objects Additional Key Words and Phrases: 3D printing, optical fibers ACM Reference Format: Pereira, T, Rusinkiewicz

  19. Voxel-Based Assessment of Printability of 3D Alexandru Telea1

    E-Print Network [OSTI]

    Telea, Alexandru C.

    from a real-life application. 1 Introduction Recent advances in 3D printing technology have made of materials, higher printing speeds, and lower costs. High-quality, low-cost 3D printing is now available on a given printer. As 3D printing technology works in a raster fashion, we implement our proposed metrics

  20. PRISACARIU, REID: PWP3D 1 PWP3D: Real-time segmentation and

    E-Print Network [OSTI]

    Oxford, University of

    method allows for fast 2D­3D pose tracking and 2D segmentation using a single, unified, energy function in print or electronic forms. #12;2 PRISACARIU, REID: PWP3D The most closely related work to our ownPRISACARIU, REID: PWP3D 1 PWP3D: Real-time segmentation and tracking of 3D objects Victor A

  1. Spec2Fab : a reducer-tuner model for translating specifications to 3D prints

    E-Print Network [OSTI]

    Chen, Desai

    2013-01-01T23:59:59.000Z

    Multi-material 3D printing allows objects to be composed of complex, heterogeneous arrangements of materials. It is often more natural to define a functional goal than to define the material composition of an object. ...

  2. Spec2Fab: A reducer-tuner model for translating specifications to 3D prints

    E-Print Network [OSTI]

    Chen, Desai

    Multi-material 3D printing allows objects to be composed of complex, heterogenous arrangements of materials. It is often more natural to define a functional goal than to define the material composition of an object. ...

  3. High throughput 3-D tissue cytometry

    E-Print Network [OSTI]

    Kwon, Hyuk-Sang, 1971-

    2007-01-01T23:59:59.000Z

    This thesis presents the ongoing technological development of high throughput 3-D tissue cytometry.and its applications in biomedicine. 3-D tissue cytometry has been developed in our laboratory based on two-photon microscopy ...

  4. A view-sequential 3D display

    E-Print Network [OSTI]

    Cossairt, Oliver S. (Oliver Strider), 1978-

    2003-01-01T23:59:59.000Z

    This thesis outlines the various techniques for creating electronic 3D displays and analyzes their commercial potential. The thesis argues for the use of view-sequential techniques in the design of 3D displays based on ...

  5. The Makerbot: Desktop 3D printing

    E-Print Network [OSTI]

    Roughan, Matthew

    The Makerbot: Desktop 3D printing Matthew Roughan School of Mathematical Sciences matthew is Lots of maths hidden in something like 3D printing Geometry and Linear algebra ++ Same math used

  6. 3D Printing Prof. Hank Dietz

    E-Print Network [OSTI]

    Dietz, Henry G. "Hank"

    3D Printing Prof. Hank Dietz TCMS, March 14, 2014 University of Kentucky Electrical & Computer #12;3D With Glue Layers of paper: printed with glue & cut Layers of powder: printed with glue Can also be printed in full color #12;3D Extrusion (RepRaps) FDM: Fused Deposition Modeling FFF: Fused

  7. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications q

    E-Print Network [OSTI]

    Harilal, S. S.

    - ments of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bondingExperimental studies of lithium-based surface chemistry for fusion plasma-facing materials.65.y a b s t r a c t Lithium has enhanced the operational performance of fusion devices such as: TFTR

  8. Printing 3D Models to the Genisys Xs 3D Printer By Sotiri Koyonos

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    Printing 3D Models to the Genisys Xs 3D Printer By Sotiri Koyonos VMIL Consultant 28 February 2003's Genisys Xs 3D printer. This document assumes that you have created a stereo lithography file (*.stl Abstract This document outlines the process for manufacturing three dimensional (3D) models on the ITG

  9. 3D Velocity from 3D Doppler Radial Velocity J. L. Barron,1

    E-Print Network [OSTI]

    Barron, John

    to compute local 3D velocity (local 3D optical flow). Radial velocity (measured by the Doppler effect3D Velocity from 3D Doppler Radial Velocity J. L. Barron,1 R. E. Mercer,1 X. Chen,1 P. Joe2 1 velocity data and qualitatively on real radial velocity data, obtained from the Doppler radar at Kurnell

  10. Mechanic Waves in Sand, 3d Simulations O Mouraillea,

    E-Print Network [OSTI]

    Luding, Stefan

    Mechanic Waves in Sand, 3d Simulations O Mouraillea, , W A Mulderb & S Ludinga a Particle propagation. The propagation of rotational energy in itself is studied as well. The control on the inter in granular materials. #12;Wave propagation, MD-Simulations 2 1. Introduction Sand, like other granular

  11. 3D rotational diffusion microrheology using 2D video microscopy

    E-Print Network [OSTI]

    Rémy Colin; Minhao Yan; Loudjy Chevry; Jean-François Berret; Bérengère Abou

    2012-01-05T23:59:59.000Z

    We propose a simple way to perform three-dimensional (3D) rotational microrheology using two-dimensional (2D) video microscopy. The 3D rotational brownian motion of micrometric wires in a viscous fluid is deduced from their projection on the focal plane of an optical microscope objective. The rotational diffusion coefficient of the wires of length between 1-100 \\mu m is extracted, as well as their diameter distribution in good agreement with electron microscopy measurements. This is a promising way to characterize soft visco-elastic materials, and probe the dimensions of anisotropic objects.

  12. XEDS STEM Tomography For 3D Chemical Characterization Of Nanoscale Particles

    SciTech Connect (OSTI)

    Genc, Arda; Kovarik, Libor; Gu, Meng; Cheng, Huikai; Plachinda, Pavel; Pullan, Lee; Freitag, Bert; Wang, Chong M.

    2013-08-01T23:59:59.000Z

    We present a tomography technique which couples scanning transmission electron microscopy (STEM) and X-ray energy dispersive spectrometry (XEDS) to resolve 3D distribution of elements in nanoscale materials. STEM imaging when combined with a symmetrically arranged XEDS detector design around the specimen overcomes many of the obstacles in 3D spectroscopic tomography of nanoscale materials and successfully elucidate the 3D chemical information in a large field of view of the TEM sample. We employed this technique to investigate 3D distribution of Nickel (Ni), Manganese (Mn) and Oxygen (O) in Li(NiMn)O2 battery cathode material. For this purpose, 2D elemental maps were acquired for a range of tilt angles and reconstructed to obtain 3D elemental distribution in an isolated Li(NiMnO2) nanoparticle. The results highlight the strength of this technique in 3D chemical analysis of nanoscale materials by successfully resolving Ni, Mn and O elemental distributions in 3D and discovering the new phenomenon of Ni surface segregation in this material. Furthermore, the comparison of simultaneously acquired HAADF STEM and XEDS STEM tomography results show that XEDS STEM tomography provides additional 3D chemical information of the material especially when there is low atomic number (Z) contrast in the material of interest.

  13. Experimental flame speed in multi-layered nano-energetic materials

    SciTech Connect (OSTI)

    Manesh, Navid Amini; Basu, Saptarshi; Kumar, Ranganathan [Department of Mechanical, Material and Aerospace Engineering, University of Central Florida, Orlando, FL (United States)

    2010-03-15T23:59:59.000Z

    This paper deals with the reaction of dense Metastable Intermolecular Composite (MIC) materials, which have a higher density than conventional energetic materials. The reaction of a multilayer thin film of aluminum and copper oxide has been studied by varying the substrate material and thicknesses. The in-plane speed of propagation of the reaction was experimentally determined using a time of- flight technique. The experiment shows that the reaction is completely quenched for a silicon substrate having an intervening silica layer of less than 200 nm. The speed of reaction seems to be constant at 40 m/s for silica layers with a thickness greater than 1 {mu}m. Different substrate materials such as glass and photoresist were also used. (author)

  14. Metrology of 3D nanostructures.

    SciTech Connect (OSTI)

    Barsic, Anthony [University of Colorado at Boulder, Boulder, CO] [University of Colorado at Boulder, Boulder, CO; Piestun, Rafael [University of Colorado at Boulder, Boulder, CO] [University of Colorado at Boulder, Boulder, CO; Boye, Robert R.

    2012-10-01T23:59:59.000Z

    We propose a superresolution technique to resolve dense clusters of blinking emitters. The method relies on two basic assumptions: the emitters are statistically independent, and a model of the imaging system is known. We numerically analyze the performance limits of the method as a function of the emitter density and the noise level. Numerical simulations show that five closely packed emitters can be resolved and localized to a precision of 17nm. The experimental resolution of five quantum dots located within a diffraction limited spot confirms the applicability of this approach.

  15. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D...

  16. 1610 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 11, 2012 MRI-Derived 3-D-Printed Breast Phantom

    E-Print Network [OSTI]

    Hagness, Susan C.

    1610 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 11, 2012 MRI-Derived 3-D-Printed Breast--We propose a 3-D-printed breast phantom for use in preclinical experimental microwave imaging studies the proce- dure for generating the 3-D-printed breast phantom and present the measured dielectric properties

  17. IN THIS ISSUE 2 3D Printing

    E-Print Network [OSTI]

    Hill, Wendell T.

    IN THIS ISSUE 2 3D Printing in McKeldin 3 Saving WMUC Radio 4 You Did What?!? 7 Dance at UMD, in this issue. Our Terrapin Learning Commons is embracing all things digital, and the acquisition of a 3D printer allows any student the op- portunity to make their visions a reality. This little addition

  18. 3-D seismology in the Arabian Gulf

    SciTech Connect (OSTI)

    Al-Husseini, M. [Gulf PetroLink, Manama (Bahrain); Chimblo, R. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-08-01T23:59:59.000Z

    Since 1977 when Aramco and GSI (Geophysical Services International) pioneered the first 3-D seismic survey in the Arabian Gulf, under the guidance of Aramco`s Chief Geophysicist John Hoke, 3-D seismology has been effectively used to map many complex subsurface geological phenomena. By the mid-1990s extensive 3-D surveys were acquired in Abu Dhabi, Oman, Qatar and Saudi Arabia. Also in the mid-1990`s Bahrain, Kuwait and Dubai were preparing to record surveys over their fields. On the structural side 3-D has refined seismic maps, focused faults and fractures systems, as well as outlined the distribution of facies, porosity and fluid saturation. In field development, 3D has not only reduced drilling costs significantly, but has also improved the understanding of fluid behavior in the reservoir. In Oman, Petroleum Development Oman (PDO) has now acquired the first Gulf 4-D seismic survey (time-lapse 3D survey) over the Yibal Field. The 4-D survey will allow PDO to directly monitor water encroachment in the highly-faulted Cretaceous Shu`aiba reservoir. In exploration, 3-D seismology has resolved complex prospects with structural and stratigraphic complications and reduced the risk in the selection of drilling locations. The many case studies from Saudi Arabia, Oman, Qatar and the United Arab Emirates, which are reviewed in this paper, attest to the effectiveness of 3D seismology in exploration and producing, in clastics and carbonates reservoirs, and in the Mesozoic and Paleozoic.

  19. 3, 35433588, 2003 3-D air pollution

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 3, 3543­3588, 2003 3-D air pollution modelling L. M. Frohn et al. Title Page Abstract hemispheric nested air pollution model L. M. Frohn, J. H. Christensen, J. Brandt, C. Geels, and K. M. Hansen 2003 Correspondence to: L. M. Frohn (lmf@dmu.dk) 3543 #12;ACPD 3, 3543­3588, 2003 3-D air pollution

  20. 3D Object Modelling via Registration

    E-Print Network [OSTI]

    matching on the GPU. So with the increasing demand for cheap 3D scanners and the advances of computer power, Iterative Closest Point, real time preview. #12;#12;Resumé Stereo vision har mange fordele frem for andre 3D

  1. Fabrication of 3D Silicon Sensors

    SciTech Connect (OSTI)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06T23:59:59.000Z

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  2. BEAMS3D Neutral Beam Injection Model

    SciTech Connect (OSTI)

    Lazerson, Samuel

    2014-04-14T23:59:59.000Z

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  3. Overall Dynamic Properties of 3-D periodic elastic composites

    E-Print Network [OSTI]

    Ankit Srivastava; Sia Nemat-Nasser

    2011-05-27T23:59:59.000Z

    A method for the homogenization of 3-D periodic elastic composites is presented. It allows for the evaluation of the averaged overall frequency dependent dynamic material constitutive tensors relating the averaged dynamic ?eld variable tensors of velocity, strain, stress, and linear momentum. The formulation is based on micromechanical modeling of a representative unit cell of a composite proposed by Nemat-Nasser & Hori (1993), Nemat-Nasser et. al. (1982) and Mura (1987) and is the 3-D generalization of the 1-D elastodynamic homogenization scheme presented by Nemat-Nasser & Srivastava (2011). We show that for 3-D periodic composites the overall compliance (stiffness) tensor is hermitian, irrespective of whether the corresponding unit cell is geometrically or materially symmetric.Overall mass density is shown to be a tensor and, like the overall compliance tensor, always hermitian. The average strain and linear momentum tensors are, however, coupled and the coupling tensors are shown to be each others' hermitian transpose. Finally we present a numerical example of a 3-D periodic composite composed of elastic cubes periodically distributed in an elastic matrix. The presented results corroborate the predictions of the theoretical treatment.

  4. Materials in Extreme Dynamic Environments Georgia Tech has a unique combination of experimental facilities and modeling and

    E-Print Network [OSTI]

    Li, Mo

    response of materials at various critical length and time scales emphasizes both highMaterials in Extreme Dynamic Environments Georgia Tech has a unique combination of experimental facilities and modeling and simulation capabilities to explore the behavior of materials subjected to high

  5. Analysis of the KROTOS KFC test by coupling X-Ray image analysis and MC3D calculations

    SciTech Connect (OSTI)

    Brayer, C.; Charton, A.; Grishchenko, D.; Fouquart, P.; Bullado, Y.; Compagnon, F.; Correggio, P.; Cassiaut-Louis, N.; Piluso, P. [Commissariat a l'Energie Atomique et Aux Energies Alternatives, CEA Cadarache, DEN, F-13108 Saint-Paul-Les-Durance (France)

    2012-07-01T23:59:59.000Z

    During a hypothetical severe accident sequence in a Pressurized Water Reactor (PWR), the hot molten materials (corium) issuing from the degraded reactor core may generate a steam explosion if they come in contact with water and may damage the structures and threaten the reactor integrity. The SERENA program is an international OECD project that aims at helping the understanding of this phenomenon also called Fuel Coolant Interaction (FCI) by providing data. CEA takes part in this program by performing tests in its KROTOS facility where steam explosions using prototypic corium can be triggered. Data about the different phases in the premixing are extracted from the KROTOS X-Ray radioscopy images by using KIWI software (KROTOS Image analysis of Water-corium Interaction) currently developed by CEA. The MC3D code, developed by IRSN, is a thermal-hydraulic multiphase code mainly dedicated to FCI studies. It is composed of two applications: premixing and explosion. An overall FCI calculation with MC3D requires a premixing calculation followed by an explosion calculation. The present paper proposes an alternative approach in which all the features of the premixing are extracted from the X-Ray pictures using the KIWI software and transferred to an MC3D dataset for a direct simulation of the explosion. The main hypothesis are discussed as well as the first explosion results obtained with MC3D for the KROTOS KFC test. These results are rather encouraging and are analyzed on the basis of comparisons with the experimental data. (authors)

  6. Computer Modelling of 3D Geological Surface

    E-Print Network [OSTI]

    Kodge, B G

    2011-01-01T23:59:59.000Z

    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  7. Experimental validation of flow properties in a novel Y- graft for the Fontan surgery

    E-Print Network [OSTI]

    Vermeyen, Craig

    2010-01-01T23:59:59.000Z

    3D printer. ..soluble material using a 3D printer, however, the printermodel printed using 3D printer. To obtain a wax model from

  8. Experimental and Simulation of Gamma Radiation Dose Rate for High Exposure Building Material

    E-Print Network [OSTI]

    Abbasi, Akbar

    2015-01-01T23:59:59.000Z

    Natural radioactivity concentrations in high exposure building materials are commonly used in Iran, which is measured a direct exposure by using {\\gamma}-ray spectrometry. The values for 226Ra, 232Th and 40K were in the ranges 3.8 - 94.2, 6.5 - 172.2 and 556.9 - 1539.2 Bqkg-1, respectively. The absorbed dose rates in the standard dwelling room due to 238U, 232Th series and 40K were calculated with MCNPX code. The simulation and experimental results were between 7.95 - 41.74 and 8.36 - 39.99 nGy h-1, respectively. These results were compared with experimental outing and there was overlap closely. The simulation results are able to develop for any kind of dwelling places.

  9. Experimental and Simulation of Gamma Radiation Dose Rate for High Exposure Building Material

    E-Print Network [OSTI]

    Akbar Abbasi; Mustfa Hassanzadeh

    2014-10-27T23:59:59.000Z

    Natural radioactivity concentrations in high exposure building materials are commonly used in Iran, which is measured a direct exposure by using {\\gamma}-ray spectrometry. The values for 226Ra, 232Th and 40K were in the ranges 3.8 - 94.2, 6.5 - 172.2 and 556.9 - 1539.2 Bqkg-1, respectively. The absorbed dose rates in the standard dwelling room due to 238U, 232Th series and 40K were calculated with MCNPX code. The simulation and experimental results were between 7.95 - 41.74 and 8.36 - 39.99 nGy h-1, respectively. These results were compared with experimental outing and there was overlap closely. The simulation results are able to develop for any kind of dwelling places.

  10. An experimental investigation of damage-dependent material damping of laminated composites 

    E-Print Network [OSTI]

    Smith, Scott Andrew

    1988-01-01T23:59:59.000Z

    Composites. (May 1988) Scott Andrew Smith, B. S. , Texas A&M University Co-Chairs of Advisory Committee: Dr. Alton L. Highsmith Dr. Charles E. Harris An experimental program was developed in which the material damping of laminated graphite... for Undamaged and Damaged Graphite/Epoxy Laminates. . . . . . . . . LIST OF TABLES Table Page 1 Lamina Properties for AS4/3502 Graphite/Epoxy. . . . 13 2 AS4/3502 Laminate Types Testes. . . 13 3 Damping Results for [0]s and [90]s Laminates...

  11. 3-D Model for Deactivation & Decommissioning

    Broader source: Energy.gov [DOE]

    The design and production of 3-D scale models that replicate the highly contaminated structures within the nuclear facility would provide a significant improvement in visualization of the work...

  12. 3D Hardware Canaries Sebastien Briais4

    E-Print Network [OSTI]

    surround the whole target and protect its content from physical attacks. 3D ICs are rel- atively hard reporting pre- liminary implementation results on silicon), we introduce a "hardware canary". The ca- nary

  13. 3D Spectroscopy and the Virtual Observatory

    E-Print Network [OSTI]

    Bryan W. Miller

    2007-08-15T23:59:59.000Z

    Integral field, or 3D, spectroscopy is the technique of obtaining spectral information over a two-dimensional, hopefully contiguous, field of view. While there is some form of astronomical 3D spectroscopy at all wavelengths, there has been a rapid increase in interest in optical and near-infrared 3D spectroscopy. This has resulted in the deployment of a large variety of integral-field spectrographs on most of the large optical/infrared telescopes. The amount of IFU data available in observatory archives is large and growing rapidly. The complications of treating IFU data as both imaging and spectroscopy make it a special challenge for the virtual observatory. This article describes the various techniques of optical and near-infrared spectroscopy and some of the general needs and issues related to the handling of 3D data by the virtual observatory.

  14. 3D TORUS V1.0

    Energy Science and Technology Software Center (OSTI)

    002440MLTPL00 3D Torus Routing Engine Module for OFA OpenSM v. 1.0  http://www.openfabrics.org/git?p=sashak/management.git;a=sum 

  15. Mechanical properties and corrosion behavior of materials exposed to an experimental, atmospheric fluidized-bed combustor

    SciTech Connect (OSTI)

    Ganesan, P.; Sagues, A.; Sethi, V.

    1984-06-01T23:59:59.000Z

    A joint materials test program developed by the Institute for Mining and Minerals Research (IMMR) and the Tennessee Valley Authority (TVA) involved the postexposure mechanical properties and corrosion behavior of candidate structural materials in an experimental, atmospheric fluidized-bed combustor (AFBC). This combustor was operated by Accurex Corporation at Research Triangle Park, North Carolina, under the direction of TVA. The materials studied were Type 304, Type 310, and INCOLOY alloy 800 in the form of disc coupons with and without crevice configurations. Type 304 was also used for mechanical property measurements. The alloys were exposed to the combustor environment at about840/sup 0/C for approximately 330 hours. The ranking in terms of decreasing weight loss was: (1) Type 304, (2) Type 310, and (3) INCOLOY alloy 800. The presence of tight crevices did not enhance the corrosion rate. In addition, the corrosion rates, based on the weight loss (typically 1 to 6 mpy), indicated that the alloys performed reasonably well when considering materials wastage. However, optical microscopy observations showed intergranular corrosion penetration in INCOLOY alloy 800 and Type 304. The mechanical properties of Type 304 were inferior to the unexposed alloy. A comparison of the data obtained from the combustor-exposed 304ss tensile samples with data from control samples exposed in vacuum to a similar thermal history indicated that the chemistry of the AFBC environment did not play a major role in the observed degradation of the mechanical properties.

  16. Studies of the 3D surface roughness height

    SciTech Connect (OSTI)

    Avisane, Anita; Rudzitis, Janis; Kumermanis, Maris [Institute of Mechanical Engineering, Riga Technical University, Ezermalas str. 6k, Riga (Latvia)

    2013-12-16T23:59:59.000Z

    Nowadays nano-coatings occupy more and more significant place in technology. Innovative, functional coatings acquire new aspects from the point of view of modern technologies, considering the aggregate of physical properties that can be achieved manipulating in the production process with the properties of coatings’ surfaces on micro- and nano-level. Nano-coatings are applied on machine parts, friction surfaces, contacting parts, corrosion surfaces, transparent conducting films (TCF), etc. The equipment available at present for the production of transparent conducting oxide (TCO) coatings with highest quality is based on expensive indium tin oxide (ITO) material; therefore cheaper alternatives are being searched for. One such offered alternative is zink oxide (ZnO) nano-coatings. Evaluating the TCF physical and mechanical properties and in view of the new ISO standard (EN ISO 25178) on the introduction of surface texture (3D surface roughness) in the engineering calculations, it is necessary to examine the height of 3D surface roughness, which is one of the most significant roughness parameters. The given paper studies the average values of 3D surface roughness height and the most often applied distribution laws are as follows: the normal distribution and Rayleigh distribution. The 3D surface is simulated by a normal random field.

  17. Biometrics - 3-D face analysis ... | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find Find MoreTechnical Report:BiomedicalBiometrics - 3-D

  18. XEDS STEM Tomography For 3D Chemical CharacterizationOf Nanoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    view of the TEM sample. We employed this technique to investigate 3D distribution of Nickel (Ni), Manganese (Mn) and Oxygen (O) in Li(NiMn)O2 battery cathode material. For this...

  19. Sculplexity: Sculptures of Complexity using 3D printing

    E-Print Network [OSTI]

    Reiss, D S; Evans, T S

    2014-01-01T23:59:59.000Z

    We show how to convert models of complex systems such as 2D cellular automata into a 3D printed object. Our method takes into account the limitations inherent to 3D printing processes and materials. Our approach automates the greater part of this task, bypassing the use of CAD software and the need for manual design. As a proof of concept, a physical object representing a modified forest fire model was successfully printed. Automated conversion methods similar to the ones developed here can be used to create objects for research, for demonstration and teaching, for outreach, or simply for aesthetic pleasure. As our outputs can be touched, they may be particularly useful for those with visual disabilities.

  20. 3D Self-Portraits Etienne Vouga2

    E-Print Network [OSTI]

    O'Brien, James F.

    scanning pose change output reconstruction textured reconstruction large variety of examples3D print Figure for applications such as online avatars or 3D printing (the miniature shown here was printed using a ZPrinter 650 and accurate cap- ture system for 3D self-portraits using a single 3D sensor. Figure 2: 3D printed miniatures

  1. Simnple, portable, 3-D projection routine

    SciTech Connect (OSTI)

    Wagner, J.S.

    1987-04-01T23:59:59.000Z

    A 3-D projection routine is presented for use in computer graphics applications. The routine is simple enough to be considered portable, and easily modified for special problems. There is often the need to draw three-dimensional objects on a two-dimensional plotting surface. For the object to appear realistic, perspective effects must be included that allow near objects to appear larger than distant objects. Several 3-D projection routines are commercially available, but they are proprietary, not portable, and not easily changed by the user. Most are restricted to surfaces that are functions of two variables. This makes them unsuitable for viewing physical objects such as accelerator prototypes or propagating beams. This report develops a very simple algorithm for 3-D projections; the core routine is only 39 FORTRAN lines long. It can be easily modified for special problems. Software dependent calls are confined to simple drivers that can be exchanged when different plotting software packages are used.

  2. 3D Modeling Engine Representation Summary Report

    SciTech Connect (OSTI)

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

    2014-09-01T23:59:59.000Z

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  3. Fourier transform of the 3d NS equations The 3d NS equations are

    E-Print Network [OSTI]

    Salmon, Rick

    1 Fourier transform of the 3d NS equations The 3d NS equations are (1) vi t + vj vi xj = - p xi easily add it in at the end. Our interest is in the advection and pressure terms. Introducing the Fourier transforms (2) vi x( ) = ui k( )eikx k p x( ) = p k( )eikx k we obtain the Fourier transform of (1

  4. METRIC FOR AUTOMATED DETECTION AND IDENTIFICATION OF 3D CAD ELEMENTS IN 3D SCANNED

    E-Print Network [OSTI]

    Bosché, Frédéric

    of 3D Computer-Aided Design (CAD) engines and more generally of Building Information Models on one side states is critical for performing efficient building and infrastructure construction, maintenance, and management. Three- dimensional (3D) laser scanners have the potential to be successfully applied

  5. Energy Savings in 3-D | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy savings in 3-D ORNL researchers show production, energy advantages of additive manufacturing ORNL 3-D printer in use. ORNL 3-D printer in use. Researchers at the Department...

  6. 3D engine for immersive virtual environments 

    E-Print Network [OSTI]

    Anderson, Christopher Dean

    2005-02-17T23:59:59.000Z

    The purpose of this project is to develop a software framework, a 3D engine, which will generate images to be projected onto facets of a spatially immersive display (SID). The goal is to develop a software library to support the creation of images...

  7. Speed-line for 3D animation 

    E-Print Network [OSTI]

    Song, Won Chan

    2007-04-25T23:59:59.000Z

    My thesis describes a tool which creates speed-lines automatically in 3D computer animations. Speed-lines are usually used in comic books to express fast motions in a still image. They are also used in 2D animations. ...

  8. 3-D Force-balanced Magnetospheric Configurations

    SciTech Connect (OSTI)

    Sorin Zaharia; C.Z. Cheng; K. Maezawa

    2003-02-10T23:59:59.000Z

    The knowledge of plasma pressure is essential for many physics applications in the magnetosphere, such as computing magnetospheric currents and deriving magnetosphere-ionosphere coupling. A thorough knowledge of the 3-D pressure distribution has however eluded the community, as most in-situ pressure observations are either in the ionosphere or the equatorial region of the magnetosphere. With the assumption of pressure isotropy there have been attempts to obtain the pressure at different locations by either (a) mapping observed data (e.g., in the ionosphere) along the field lines of an empirical magnetospheric field model or (b) computing a pressure profile in the equatorial plane (in 2-D) or along the Sun-Earth axis (in 1-D) that is in force balance with the magnetic stresses of an empirical model. However, the pressure distributions obtained through these methods are not in force balance with the empirical magnetic field at all locations. In order to find a global 3-D plasma pressure distribution in force balance with the magnetospheric magnetic field, we have developed the MAG-3D code, that solves the 3-D force balance equation J x B = (upside-down delta) P computationally. Our calculation is performed in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials as B = (upside-down delta) psi x (upside-down delta) alpha. The pressure distribution, P = P(psi,alpha), is prescribed in the equatorial plane and is based on satellite measurements. In addition, computational boundary conditions for y surfaces are imposed using empirical field models. Our results provide 3-D distributions of magnetic field and plasma pressure as well as parallel and transverse currents for both quiet-time and disturbed magnetospheric conditions.

  9. acquisition facilitates 3d: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Websites Summary: measurements and finally its instantiation through 3D printing, are presented. Laser scanner acquisition, reconstruction and 3D printing lend well...

  10. automatic 3d fe: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Technologies and Information Sciences Websites Summary: by means of the "3D printing" devices used in mechanical rapid prototyping. Another one is that 3D...

  11. 3D Printing in 30 Seconds | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Printing in 30 Seconds 3D Printing in 30 Seconds Addthis An error occurred. Unable to execute Javascript. Duration :38 Topic Science & Technology...

  12. Exploring materials in 3D down to the atomic scale

    E-Print Network [OSTI]

    right into Viktoriastrasse and follow signs for "Hotel Allegro/Kursaal" A At Viktoriaplatz turn left into Kornhausstrasse A Hotel Allegro/Kursaal is situated on the right side of the road There is paid parking on site

  13. ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. X, NO. X, JANUARY 2013 1 MRI-derived 3D-printed breast phantom for

    E-Print Network [OSTI]

    Van Veen, Barry D.

    ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. X, NO. X, JANUARY 2013 1 MRI-derived 3D-printed--We propose a 3D-printed breast phantom for use in pre-clinical experimental microwave imaging studies the procedure for generating the 3D-printed breast phantom and present the measured dielectric properties

  14. Automatic 3D modeling of palatal plaster casts Marco Andreetto

    E-Print Network [OSTI]

    Abu-Mostafa, Yaser S.

    duplicated by 3D printers. A second application where 3D models of palatal casts could also be usefulAutomatic 3D modeling of palatal plaster casts Marco Andreetto Dept. of Information Engineer corte@dei.unipd.it Abstract This work introduces a procedure for automatic 3D model- ing and discusses

  15. Scanning and Printing Persons in 3D Jurgen Sturm1

    E-Print Network [OSTI]

    Cremers, Daniel

    miniatures of persons using a Kinect sensor and a 3D color printer. To achieve this, we acquire color- through in rapid prototyping in recent years. Modern 3D printers are able to print colored 3D models at resolutions comparable to 2D paper printers. On the one hand, the creation of a detailed, printable 3D model

  16. Engineering Workshop 3D Modeling Using TinkerCAD

    E-Print Network [OSTI]

    Ohta, Shigemi

    using TinkerCAD · TinkerCad is used for online 3D modeling · Learn how to print the clip on a 3D printer the hole and the clip #12;Congratulations! You made a 3D model! #12;Now To Print It... Our Printers · MakerEngineering Workshop 3D Modeling Using TinkerCAD Sci-Ed Day 2014 Brookhaven National Laboratory

  17. CAN 3D PRINTING REVOLUTIONIZE GLOBAL MANUFACTURING? A DELPHI STUDY

    E-Print Network [OSTI]

    CAN 3D PRINTING REVOLUTIONIZE GLOBAL MANUFACTURING? A DELPHI STUDY ­ Master Thesis Proposal ­ BACKGROUND 3D printing (or additive manufacturing) is not an entirely new phenomenon. First introduced and president of Foxconn, calls it a nice "gimmick" and even Nick Allen, founder of 3D printing company 3D Print

  18. Restructuring of RELAP5-3D

    SciTech Connect (OSTI)

    George Mesina; Joshua Hykes

    2005-09-01T23:59:59.000Z

    The RELAP5-3D source code is unstructured with many interwoven logic flow paths. By restructuring the code, it becomes easier to read and understand, which reduces the time and money required for code development, debugging, and maintenance. A structured program is comprised of blocks of code with one entry and exit point and downward logic flow. IF tests and DO loops inherently create structured code, while GOTO statements are the main cause of unstructured code. FOR_STRUCT is a commercial software package that converts unstructured FORTRAN into structured programming; it was used to restructure individual subroutines. Primarily it transforms GOTO statements, ARITHMETIC IF statements, and COMPUTED GOTO statements into IF-ELSEIF-ELSE tests and DO loops. The complexity of RELAP5-3D complicated the task. First, FOR_STRUCT cannot completely restructure all the complex coding contained in RELAP5-3D. An iterative approach of multiple FOR_STRUCT applications gave some additional improvements. Second, FOR_STRUCT cannot restructure FORTRAN 90 coding, and RELAP5-3D is partially written in FORTRAN 90. Unix scripts for pre-processing subroutines into coding that FOR_STRUCT could handle and post-processing it back into FORTRAN 90 were written. Finally, FOR_STRUCT does not have the ability to restructure the RELAP5-3D code which contains pre-compiler directives. Variations of a file were processed with different pre-compiler options switched on or off, ensuring that every block of code was restructured. Then the variations were recombined to create a completely restructured source file. Unix scripts were written to perform these tasks, as well as to make some minor formatting improvements. In total, 447 files comprising some 180,000 lines of FORTRAN code were restructured. These showed significant reduction in the number of logic jumps contained as measured by reduction in the number of GOTO statements and line labels. The average number of GOTO statements per subroutine dropped from 8.8 before restructuring to 5.3 afterwards, a reduction of 40%. The maximum number of GOTO statements in any subroutine dropped from 213 to 99, a factor of 2.1. Finally, the maximum number of statement labels dropped from 210 to 43, a factor of nearly 5. While many blocks of code remain unstructured, a much greater fraction of the code is now structured. These measurements indicate a serious reduction in degree of interweaving of logic paths.

  19. Design, Optimization, Calibration, and a Case Study of a 3D-Printed, Low-cost Fingertip Sensor for Robotic Manipulation

    E-Print Network [OSTI]

    Todorov, Emanuel

    Design, Optimization, Calibration, and a Case Study of a 3D-Printed, Low-cost Fingertip Sensor fingertip force sensor for robotic manipulation. Our design makes the most of 3D printing technology sensor features a detachable fingertip made of 3D- printed materials, and a cantilever mechanism

  20. Volume xx (200y), Number z, pp. 110 3D Line Textures and the Visualization of

    E-Print Network [OSTI]

    Potter, Kristin

    set of line textures which indicate material properties while maintaining interactive frame rates. In this illustration, the sketchiness of the feature edges and material property lines is modified basedVolume xx (200y), Number z, pp. 1­10 3D Line Textures and the Visualization of Confidence

  1. Material unaccounted for at the Southwest Experimental Fast Oxide Reactor: The SEFOR MUF

    SciTech Connect (OSTI)

    Higinbotham, W.A.

    1994-11-07T23:59:59.000Z

    The U.S. Atomic Energy Commission contracted with the General Electric Company to design, construct, and operate the Southwest Experimental Fast Oxide Reactor (SEFOR) to measure the Doppler effect for fast neutron breeder reactors. It contracted with Nuclear Fuel Services to fabricate the fuel rods for the reactor. When the reactor went critical in May, 1969, it appeared that some of the mixed uranium-plutonium oxide (MOX) fuel rods did not contain the specified quantity of plutonium. The SEFOR operators soon found several fuel rods which appeared to be low in plutonium. The safeguards group at Brookhaven was asked to look into the problem and, if possible, determine how much plutonium was missing from the unirradiated rods and from the larger number which had been slightly irradiated in the reactor. It was decided that the plutonium content of the unirradiated and irradiated rods could be measured relative to a reference rod using a high resolution gamma-ray detector and also by neutron measurements using an auto-correlation circuit recently developed at the Naval Research Laboratory (NRL). During the next two years, Brookhaven personnel and C.V. Strain of NRL made several trips to the SEFOR reactor. About 250 of the 775 rods were measured by two or more methods, using a sodium-iodide detector, a high-resolution germanium detector, a neutron detector, or the reactor (to measure reactivity). The research team concluded that 4.6 {+-} 0.46 kg of plutonium was missing out of the 433 kg that the rods should have contained. This report describes the SEFOR experiment and the procedures used to determine the material unaccounted for, or MUF.

  2. 3D reconstruction of tensors and vectors

    SciTech Connect (OSTI)

    Defrise, Michel; Gullberg, Grant T.

    2005-02-17T23:59:59.000Z

    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

  3. Minimal Massive 3D Gravity Unitarity Redux

    E-Print Network [OSTI]

    Arvanitakis, Alex S.; Townsend, Paul K.

    2015-01-01T23:59:59.000Z

    be written as the integral of a Lagrangian 3-form constructed from three Lorentz-vector one-forms: the dreibein e, the (dual) Lorentz connection ? and a Lagrange multipler field h imposing a zero-torsion constraint [6, 7]. Using a 3D vector algebra notation... for Lorentz vectors we can write this Lagrangian 3-form as LTMG[e, ?, h] = ??e ·R + 1 6 ?0 e · e× e+ h · T + 1 µ LLCS(?) , (2.1) where T and R are the torsion and curvature 2-forms, respectively, and LLCS is the Lorentz-Chern-Simons (LCS) 3-form for ?...

  4. Interchanging Interactive 3-d Graphics for Astronomy

    E-Print Network [OSTI]

    C. J. Fluke; D. G. Barnes; N. T. Jones

    2008-12-09T23:59:59.000Z

    We demonstrate how interactive, three-dimensional (3-d) scientific visualizations can be efficiently interchanged between a variety of mediums. Through the use of an appropriate interchange format, and a unified interaction interface, we minimize the effort to produce visualizations appropriate for undertaking knowledge discovery at the astronomer's desktop, as part of conference presentations, in digital publications or as Web content. We use examples from cosmological visualization to address some of the issues of interchange, and to describe our approach to adapting S2PLOT desktop visualizations to the Web. Supporting demonstrations are available at http://astronomy.swin.edu.au/s2plot/interchange/

  5. Dielectric spectroscopy at the nanoscale by atomic force microscopy: A simple model linking materials properties and experimental response

    SciTech Connect (OSTI)

    Miccio, Luis A., E-mail: luisalejandro-miccio@ehu.es; Colmenero, Juan [Centro de Física de Materiales (CSIC-UPV/EHU), P. M. de Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center, P. M. de Lardizabal 4, 20018 San Sebastián (Spain); Departamento de Física de Materiales (UPV/EHU), 20080 San Sebastián (Spain); Kummali, Mohammed M.; Alegría, Ángel [Centro de Física de Materiales (CSIC-UPV/EHU), P. M. de Lardizabal 5, 20018 San Sebastián (Spain); Departamento de Física de Materiales (UPV/EHU), 20080 San Sebastián (Spain); Schwartz, Gustavo A. [Centro de Física de Materiales (CSIC-UPV/EHU), P. M. de Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center, P. M. de Lardizabal 4, 20018 San Sebastián (Spain)

    2014-05-14T23:59:59.000Z

    The use of an atomic force microscope for studying molecular dynamics through dielectric spectroscopy with spatial resolution in the nanometer scale is a recently developed approach. However, difficulties in the quantitative connection of the obtained data and the material dielectric properties, namely, frequency dependent dielectric permittivity, have limited its application. In this work, we develop a simple electrical model based on physically meaningful parameters to connect the atomic force microscopy (AFM) based dielectric spectroscopy experimental results with the material dielectric properties. We have tested the accuracy of the model and analyzed the relevance of the forces arising from the electrical interaction with the AFM probe cantilever. In this way, by using this model, it is now possible to obtain quantitative information of the local dielectric material properties in a broad frequency range. Furthermore, it is also possible to determine the experimental setup providing the best sensitivity in the detected signal.

  6. Infrared system for 3D scanning of metallic ,O.Aubreton, A.Bajard, B.Verney, F.Truchetet

    E-Print Network [OSTI]

    Boyer, Edmond

    and finally to develop an operational prototype. Keywords : 3D Scanning, Infrared, Scanning From Heating1 Infrared system for 3D scanning of metallic surfaces ,O.Aubreton, A.Bajard, B.Verney, F From Heating" and initially dedicated to glass material. In comparison to conventional active

  7. Volume 0 (1981), Number 0 pp. 110 COMPUTER GRAPHICS forum Resolution Independent NPR-Style 3D Line Textures

    E-Print Network [OSTI]

    Gooch, Amy

    1981-01-01T23:59:59.000Z

    and faint, sketchy feature lines. sketchiness of the feature edges and material property lines is modifiedVolume 0 (1981), Number 0 pp. 1­10 COMPUTER GRAPHICS forum Resolution Independent NPR-Style 3D Line-photorealistically rendered (NPR) scenes using 3D line primitives to define architectural features of the model, as well

  8. DSI3D - RCS user manual

    SciTech Connect (OSTI)

    Madsen, N.; Steich, D.; Cook, G. [and others

    1995-08-23T23:59:59.000Z

    The DSI3D-RCS code is designed to numerically evaluate radar cross sections on complex objects by solving Maxwell`s curl equations in the time-domain and in three space dimensions. The code has been designed to run on the new parallel processing computers as well as on conventional serial computers. The DSI3D-RCS code is unique for the following reasons: Allows the use of unstructured non-orthogonal grids, allows a variety of cell or element types, reduces to be the Finite Difference Time Domain (FDTD) method when orthogonal grids are used, preserves charge or divergence locally (and globally), is conditionally stable, is selectively non-dissipative, and is accurate for non-orthogonal grids. This method is derived using a Discrete Surface Integration (DSI) technique. As formulated, the DSI technique can be used with essentially arbitrary unstructured grids composed of convex polyhedral cells. This implementation of the DSI algorithm allows the use of unstructured grids that are composed of combinations of non-orthogonal the use of unstructured grids that are composed of combinations of non-orthogonal hexahedrons, tetrahedrons, triangular prisms and pyramids. This algorithm reduces to the conventional FDTD method when applied on a structured orthogonal hexahedral grid.

  9. 3D J-Integral Capability in Grizzly

    SciTech Connect (OSTI)

    Benjamin Spencer; Marie Backman; Pritam Chakraborty; William Hoffman

    2014-09-01T23:59:59.000Z

    This report summarizes work done to develop a capability to evaluate fracture contour J-Integrals in 3D in the Grizzly code. In the current fiscal year, a previously-developed 2D implementation of a J-Integral evaluation capability has been extended to work in 3D, and to include terms due both to mechanically-induced strains and due to gradients in thermal strains. This capability has been verified against a benchmark solution on a model of a curved crack front in 3D. The thermal term in this integral has been verified against a benchmark problem with a thermal gradient. These developments are part of a larger effort to develop Grizzly as a tool that can be used to predict the evolution of aging processes in nuclear power plant systems, structures, and components, and assess their capacity after being subjected to those aging processes. The capabilities described here have been developed to enable evaluations of Mode- stress intensity factors on axis-aligned flaws in reactor pressure vessels. These can be compared with the fracture toughness of the material to determine whether a pre-existing flaw would begin to propagate during a pos- tulated pressurized thermal shock accident. This report includes a demonstration calculation to show how Grizzly is used to perform a deterministic assessment of such a flaw propagation in a degraded reactor pressure vessel under pressurized thermal shock conditions. The stress intensity is calculated from J, and the toughness is computed using the fracture master curve and the degraded ductile to brittle transition temperature.

  10. Deformation Analysis of Sand Specimens using 3D Digital Image Correlation for the Calibration of an Elasto-Plastic Model

    E-Print Network [OSTI]

    Song, Ahran

    2012-10-19T23:59:59.000Z

    and softening laws. In addition, a two-dimensional axisymmetric finite element model was built to simulate the actual experimental conditions, including both the global and local kinematics effects captured by 3D digital image correlation analysis...

  11. An Experimental Study of Deformation and Fracture of a Nanostructured Metallic Material 

    E-Print Network [OSTI]

    Abdel Al, Nisrin Rizek

    2011-02-22T23:59:59.000Z

    with the finest microstructure. They also point to the need for careful characterization of temperature effects before such materials can be considered in structural applications....

  12. Process for 3D chip stacking

    DOE Patents [OSTI]

    Malba, Vincent (Livermore, CA)

    1998-01-01T23:59:59.000Z

    A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: 1) holding individual chips for batch processing, 2) depositing a dielectric passivation layer on the top and sidewalls of the chips, 3) opening vias in the dielectric, 4) forming the interconnects by laser pantography, and 5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume.

  13. Process for 3D chip stacking

    DOE Patents [OSTI]

    Malba, V.

    1998-11-10T23:59:59.000Z

    A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: (1) holding individual chips for batch processing, (2) depositing a dielectric passivation layer on the top and sidewalls of the chips, (3) opening vias in the dielectric, (4) forming the interconnects by laser pantography, and (5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume. 3 figs.

  14. 3D-Simulation Studies of SNS Ring Doublet Magnets

    SciTech Connect (OSTI)

    Wang, J.G.; Tsoupas N.; Venturini, M.

    2005-05-05T23:59:59.000Z

    The accumulator ring of the Spallation Neutron Source (SNS) at ORNL employs in its straight sections closely packed quadrupole doublemagnets with large aperture of R=15.1 cm an relatively short iron-to-iron distance of 51.4 cm. These quads have much extended fringe field, and magnetic interferences among them in the doublet assemblies is not avoidable. Though each magnet in the assemblies has been individually mapped to high accuracy of lower than 0.01 percent level, the experimental data including the magnetic interference effect will not be available. We have performed 3D computing simulations on a quadrupole doublet model in order to assess the degree of the interference and to obtain relevant data for the SNS commissioning and operation.

  15. A Desktop 3D Printer in Safety-Critical Java

    E-Print Network [OSTI]

    A Desktop 3D Printer in Safety-Critical Java Tórur Biskopstø Strøm Kongens Lyngby 2012 IMM-MSc-2012-critical use cases implemented according to the specification. This thesis presents a RepRap 3D desktop printer

  16. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema (OSTI)

    Zhang, Song

    2012-08-29T23:59:59.000Z

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  17. 3D Visualization of Water Transport in Ferns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Visualization of Water Transport in Ferns 3D Visualization of Water Transport in Ferns Print Monday, 08 April 2013 00:00 Plants transport water through elongated cells called...

  18. al modelado 3d: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael 72 ILLUSTRATING MATHEMATICS USING 3D PRINTERS CiteSeer Summary: Abstract. 3D printing technology can help to visualize proofs in mathematics. In this document we aim to...

  19. abnormal 3-d mri: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D...

  20. axial 3-d pet: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D...

  1. auslese von 3d: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D...

  2. adaptive 3-d segmentation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Farag, Aly A. 343 946 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 10, OCTOBER 1999 Model-Based Quantitation of 3-D Magnetic Biology and Medicine Websites Summary: of 3-D...

  3. 3D printing rises to the occasion | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D printing rises to the occasion ORNL group shows how it's done, one layer at a time A perforated metal box produced by an Arcam 3D printer. This detailed A perforated metal box...

  4. Animation : 2D versus 3D and their combined effect

    E-Print Network [OSTI]

    Au, Kristin C

    2014-01-01T23:59:59.000Z

    This thesis studies the differences in the perception of space and character movement between 2D and 3D animation. 2D animation is defined by elements constructed in a 2D environment while 3D animation by elements constructed ...

  5. Tracking Objects Using 3D Edge Detectors February 2013

    E-Print Network [OSTI]

    O'Leary, Dianne P.

    Tracking Objects Using 3D Edge Detectors February 2013 SIAM CSE 2013 Dianne P. O'Leary c 2013 1 #12;Tracking Objects Using 3D Edge Detectors Dianne P. O'Leary Computer Science Dept. and Institute

  6. The MIRTE Experimental Program: An Opportunity to Test Structural Materials in Various Configurations in Thermal Energy Spectrum

    SciTech Connect (OSTI)

    Leclaire, Nicolas; Le Dauphin, Francois-Xavier; Duhamel, Isabelle; Briggs, Blair; Piot, Jerome; Rennesson, Malvina; Laville, Arnaud

    2014-11-04T23:59:59.000Z

    The MIRTE (Materials in Interacting and Reflecting configurations, all Thicknesses) program was established to answer the needs of criticality safety practitioners in terms of experimental validation of structural materials and to possibly contribute to nuclear data improvement, which ultimately supports reactor safety analysis as well. MIRTE took the shape of a collaboration between the AREVA and ANDRA French industrialists and a noncommercial international funding partner such as the U.S. Department of Energy. The aim of this paper is to present the configurations of the MIRTE 1 and MIRTE 2 programs and to highlight the results of the titanium experiments recently published in the International Handbook of Evaluated Criticality Safety Benchmark Experiments.

  7. Running Head: IMMERSIVE 3D ENVIRONMENTS AND MUTLINGUALITY 1 Immersive 3D Environments and Multilinguality

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and Multilinguality: Some Non-Intrusive and Dynamic e-learning-oriented Scenarios based on Textual Information Samuel (Metaverse Roadmap Report, 2007). We will present some non-intrusive and dynamic e-learning based scenarios to these scenarios as non-intrusive because they do not interrupt the user's activities within the immersive 3D en

  8. C § ? Was ist X3D/VRML?

    E-Print Network [OSTI]

    Virtuelle Realität; Xd Vrml; G. Zachmann; Verhalten Und Animationen; Achtung Vrml Vr; G. Zachmann; Virtuelle Realität; Simulation Ws; Xd Vrml; Vorteile Von Xd

    C § ? Die Spezifikation von VRML ist an einigen Stellen nicht eindeutig § ? In X3D präzisiert § ? X3D hat 100+ Knoten (aufgeteilt in Components / Profiles) § ? VRML hat nur 54 Knoten § ? X3D hat 3 verschiedene sog. "File Encodings": § ? Classic: sieht aus wie VRML; Suffix =.wrl oder.x3dv- Jede Software, die X3D lesen kann, kann (im Prinzip) auch VRML lesen

  9. Numerical and experimental analyses of resin infusion manufacturing processes of composite materials

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Numerical and experimental analyses of resin infusion manufacturing processes of composite SAS, 38630 Les Avenières, France Abstract: Liquid Resin Infusion (LRI) processes are promising between the deformations of the porous medium and the resin flow during infusion [1

  10. Power-Supply-Network Design in 3D Integrated Systems

    E-Print Network [OSTI]

    Lim, Sung Kyu

    Power-Supply-Network Design in 3D Integrated Systems Michael B. Healy and Sung Kyu Lim School power-supply noise in a layout- level 3D design prototype, and the impact of possible 3D-specific changes to the power-supply network design and topology. Our results show that distributing power-supply

  11. Deep Learning Representation using Autoencoder for 3D Shape Retrieval

    E-Print Network [OSTI]

    benchmarks. I. INTRODUCTION With the fast development of 3D printer, Microsoft Kinect sensor and laserDeep Learning Representation using Autoencoder for 3D Shape Retrieval Zhuotun Zhu, Xinggang Wang@hust.edu.cn Abstract--We study the problem of how to build a deep learning representation for 3D shape. Deep learning

  12. Dynamic 3D Graphics Workload Characterization and the Architectural Implications

    E-Print Network [OSTI]

    Mitra, Tulika

    for this de#12;ciency is the absence of a detailed workload characterization of 3D applications. This paper previous similar studies because it focuses on dynamic behaviors of 3D applications, speci#12;cally, corre- lations of workload statistics among neighboring frames in interactive 3D applications. Such inter

  13. 3-D Earth model more accurately pinpoints explosions

    E-Print Network [OSTI]

    - 1 - 3-D Earth model more accurately pinpoints explosions October 25, 2013 During the Cold War, U) have partnered to develop a 3-D model of the Earth's mantle and crust called SALSA3D (Sandia-Los Alamos of explosions. Significance of the research After an explosion, the energy travels through the Earth as waves

  14. Tips and Tricks for Using the 3D Interpolation Tool

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    Tips and Tricks for Using the 3D Interpolation Tool This document describes how to download the 3D interpolation tool and use it for the purpose of performing multidimensional analysis on Marine, Atmospheric, Petroleum, Geological, and Groundwater point data. The 3D interpolation tool leverages new methods to solve

  15. Making a 3D Model of the Moon's Surface

    E-Print Network [OSTI]

    Christian, Eric

    information are we lack- ing? What additional information could we learn from a 3D model of the space shuttle? Show the students a 3D model of the space shuttle. What can we learn about the space shuttle from1 Making a 3D Model of the Moon's Surface Learning Objectives: · Students will make estimates about

  16. Hardware Assistance for Trustworthy Systems through 3-D Integration

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    Hardware Assistance for Trustworthy Systems through 3-D Integration Jonathan Valamehr , Mohit a separate control plane, stacked using 3- D integration, that allows for the function and economics computation plane by at- taching an optional control plane using 3-D integration. In a developed example we

  17. 3-D Graphics in R Ohio State University

    E-Print Network [OSTI]

    Gotelli, Nicholas J.

    3-D Graphics in R Luke Keele Ohio State University December 6, 2005 Three dimensional graphics may. And it is a good choice, but to get publication quality 3-D graphics requires more work than typically re- quired to produce quality graphics with the wireframe command. The standard 3-D plot command in R is persp. While

  18. 3-D cinematography with approximate and no geometry

    E-Print Network [OSTI]

    Magnor, Marcus

    3-D cinematography with approximate and no geometry Martin Eisemann, Timo Stich and Marcus Magnor Abstract 3-D cinematography is a new step towards full immersive video, allow- ing complete control of the book Image and Geometry Processing for 3-D Cinematography published by Springer. 1 Introduction

  19. 3D PRINTING FOR INTELLIGENT METALLIC STRUCTURES M. Strantza1

    E-Print Network [OSTI]

    Boyer, Edmond

    3D PRINTING FOR INTELLIGENT METALLIC STRUCTURES M. Strantza1 , D. De Baere2 , M. Rombouts3 , SSHM system is produced by 3D printing or additive manufacturing. Additive Manufacturing (AM) is a "process to enable its implementation. This work demonstrates the feasibility study of eSHM systems produced by 3D

  20. Shell Element Verification & Regression Problems for DYNA3D

    SciTech Connect (OSTI)

    Zywicz, E

    2008-02-01T23:59:59.000Z

    A series of quasi-static regression/verification problems were developed for the triangular and quadrilateral shell element formulations contained in Lawrence Livermore National Laboratory's explicit finite element program DYNA3D. Each regression problem imposes both displacement- and force-type boundary conditions to probe the five independent nodal degrees of freedom employed in the targeted formulation. When applicable, the finite element results are compared with small-strain linear-elastic closed-form reference solutions to verify select aspects of the formulations implementation. Although all problems in the suite depict the same geometry, material behavior, and loading conditions, each problem represents a unique combination of shell formulation, stabilization method, and integration rule. Collectively, the thirty-six new regression problems in the test suite cover nine different shell formulations, three hourglass stabilization methods, and three families of through-thickness integration rules.

  1. Sandia National Laboratories: 3-D graphene architecture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    graphene architecture Three-Dimensional Graphene Architectures On July 29, 2013, in Capabilities, Materials Science, News, News & Events, Office of Science, Research & Capabilities...

  2. Excitation energies and transition rates in the 3d2 states of Ca-like ions

    E-Print Network [OSTI]

    Johnson, Walter R.

    Excitation energies and transition rates in the 3d2 states of Ca-like ions U. I. Safronova,1 W. R October 2000; published 14 February 2001 Energies, transition probabilities, and lifetimes are calculated matrix elements. The resulting transition energies and lifetimes are compared with experimental values

  3. Experimental and Simulation Approaches for Optimizing the Thermal Performance of Building Enclosures Containing Phase Change Materials

    E-Print Network [OSTI]

    Lee, Kyoung Ok

    2014-05-31T23:59:59.000Z

    It has been proven that the integration of phase change materials (PCM) into building enclosures helps with wall thermal management as well as in reducing building energy consumption. Most older and some current PCM ...

  4. PWP3D: Real-time Segmentation and Tracking of 3D Objects Victor A. Prisacariu Ian D. Reid

    E-Print Network [OSTI]

    Oxford, University of

    the discrimination between statistical foreground and background appearance models, via direct optimisation of the 3D segmentation and 2D to 3D pose tracking, using a known 3D model. Given such a model, we aim to maximise embedding function, and we define an energy over this region and its immediate background surroundings based

  5. 3D Least Squares Velocity from 3D Doppler Radial X. Chen, J.L. Barron, R.E. Mercer

    E-Print Network [OSTI]

    Barron, John

    neighbourhoods to compute local 3D velocity. Radial velocity (measured by the Doppler effect) is the component3D Least Squares Velocity from 3D Doppler Radial Velocity X. Chen, J.L. Barron, R.E. Mercer Dept. Radial velocity can be used to predict the motion of storms in sequences of Doppler radar datasets

  6. An in situ SEM experimental study of the thermal stability of a LAST thermoelectric material

    SciTech Connect (OSTI)

    Ren, Fei [ORNL; Howe, Jane Y [ORNL; Walker, Larry R [ORNL; Case, Eldon D [Michigan State University, East Lansing; Lara-Curzio, Edgar [ORNL

    2011-01-01T23:59:59.000Z

    Thermal stability is a key factor affecting the deployment of thermoelectric (TE) materials in the application of power generation. LAST (Lead-Antimony-Silver-Tellurium) is an emerging material with promising TE properties. The current study focused on the thermal stability of a LAST composition Ag0.86Pb19SbTe20 fabricated from a cast ingot. Using a customized heating stage, the morphology of LAST particles was studied via scanning electron microscopy (SEM) in situ, between room temperature and 575oC. The LAST material included in this study was stable below 550oC. The inclusion phase, which was antimony-rich, has a lower thermal stability than the PbTe-rich matrix. The SEM finding was also consistent with a thermogravimetrtic analysis.

  7. Parallel contact detection algorithm for transient solid dynamics simulations using PRONTO3D

    SciTech Connect (OSTI)

    Attaway, S.W.; Hendrickson, B.A.; Plimpton, S.J. [and others

    1996-09-01T23:59:59.000Z

    An efficient, scalable, parallel algorithm for treating material surface contacts in solid mechanics finite element programs has been implemented in a modular way for MIMD parallel computers. The serial contact detection algorithm that was developed previously for the transient dynamics finite element code PRONTO3D has been extended for use in parallel computation by devising a dynamic (adaptive) processor load balancing scheme.

  8. A Dynamic Model for Phase Transformations in 3D Samples of Shape Memory Alloys

    E-Print Network [OSTI]

    Melnik, Roderick

    A Dynamic Model for Phase Transformations in 3D Samples of Shape Memory Alloys D.R. Mahapatra and R Introduction Modelling of dynamics of phase transformations (PT) in Shape Memory Al- loys (SMAs) under which assist the researchers in designing new materials and devices by harnessing the shape memory

  9. 3D Form Display with Shape Memory Alloy Masashi Nakatani, Hiroyuki Kajimoto, Dairoku Sekiguchi,

    E-Print Network [OSTI]

    Tachi, Susumu

    3D Form Display with Shape Memory Alloy Masashi Nakatani, Hiroyuki Kajimoto, Dairoku Sekiguchi-form Shape Memory Alloy (SMA) as a pin- rod actuator. The prototype has a 4×4 pin-rod matrix, with a 120[mm-form Shape Memory Alloy (SMA), material that can be stretched or deformed from its original shape but would

  10. Rheology of weakly wetted granular materials - a comparison of experimental and numerical data

    E-Print Network [OSTI]

    Ruediger Schwarze; Anton Gladkyy; Fabian Uhlig; Stefan Luding

    2014-09-12T23:59:59.000Z

    Shear cell simulations and experiments of weakly wetted particles (a few volume percent liquid binders) are compared, with the goal to understand their flow rheology. Application examples are cores for metal casting by core shooting made of sand and liquid binding materials. The experiments are carried out with a Couette-like rotating viscometer. The weakly wetted granular materials are made of quartz sand and small amounts of Newtonian liquids. For comparison, experiments on dry sand are also performed with a modified configuration of the viscometer. The numerical model involves spherical, monodisperse particles with contact forces and a simple liquid bridge model for individual capillary bridges between two particles. Different liquid content and properties lead to different flow rheology when measuring the shear stress-strain relations. In the experiments of the weakly wetted granular material, the apparent shear viscosity $\\eta_g$ scales inversely proportional to the inertial number $I$, for all shear rates. On the contrary, in the dry case, an intermediate scaling regime inversely quadratic in $I$ is observed for moderate shear rates. In the simulations, both scaling regimes are found for dry and wet granular material as well.

  11. Determination of the positions and orientations of concentrated rod-like colloids from 3D microscopy data

    E-Print Network [OSTI]

    T. H. Besseling; M. Hermes; A. Kuijk; B. de Nijs; T. -S. Deng; M. Dijkstra; A. Imhof; A. van Blaaderen

    2014-06-19T23:59:59.000Z

    Confocal microscopy in combination with real-space particle tracking has proven to be a powerful tool in scientific fields such as soft matter physics, materials science and cell biology. However, 3D tracking of anisotropic particles in concentrated phases remains not as optimized compared to algorithms for spherical particles. To address this problem, we developed a new particle-fitting algorithm that can extract the positions and orientations of fluorescent rod-like particles from three dimensional confocal microscopy data stacks, even when the fluorescent signals of the particles overlap considerably. We demonstrate that our algorithm correctly identifies all five coordinates of uniaxial particles in both a concentrated disordered phase and a liquid-crystalline smectic-B phase. Apart from confocal microscopy images, we also demonstrate that the algorithm can be used to identify nanorods in 3D electron tomography reconstructions. Lastly, we determined the accuracy of the algorithm using both simulated and experimental confocal microscopy data-stacks of diffusing silica rods in a dilute suspension. This novel particle-fitting algorithm allows for the study of structure and dynamics in both dilute and dense liquid-crystalline phases (such as nematic, smectic and crystalline phases) as well as the study of the glass transition of rod-like particles in three dimensions on the single particle level.

  12. SHORT PROGRAMS Materials By Design

    E-Print Network [OSTI]

    Entekhabi, Dara

    techniques including 3D printing, self-assembly, microfluidics and other technologies. We will distribute and analyze material samples designed based on multiscale simulations and manufactured using 3D printing

  13. An experimental investigation of damage-dependent material damping of laminated composites

    E-Print Network [OSTI]

    Smith, Scott Andrew

    1988-01-01T23:59:59.000Z

    , unidirectional composite materials was performed by Schultz and Tsai [11]. They studied the free and forced vibrations of cantilevered beams made of glass-fiber-reinforced epoxy. The testing configuration consisted of a double cantilevered beam, excited... vibrating beam. The bandwidth technique is used by transforming the response into the frequency domain, and measuring the difference in frequency on either side of a resonant frequency peak. Schultz and Tsai [12] also developed a mathematical model...

  14. A Patterned 3D Silicon Anode Fabricated by Electrodeposition on a Virus-Structured Current Collector

    SciTech Connect (OSTI)

    Chen, X L; Gerasopoulos, K; Guo, J C; Brown, A; Wang, Chunsheng; Ghodssi, Reza; Culver, J N

    2011-01-01T23:59:59.000Z

    Electrochemical methods were developed for the deposition of nanosilicon onto a 3D virus-structured nickel current collector. This nickel current collector is composed of self-assembled nanowire-like rods of genetically modified tobacco mosaic virus (TMV1cys), chemically coated in nickel to create a complex high surface area conductive substrate. The electrochemically depo­sited 3D silicon anodes demonstrate outstanding rate performance, cycling stability, and rate capability. Electrodeposition thus provides a unique means of fabricating silicon anode materials on complex substrates at low cost.

  15. 3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal...

    Open Energy Info (EERE)

    Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field, Indonesia Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: 3-D...

  16. 3-D Combustion Simulation Strategy Status, Future Potential,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Simulation Strategy Status, Future Potential, and Application Issues 3-D Combustion Simulation Strategy Status, Future Potential, and Application Issues 2004 Diesel...

  17. automated 3d correlative: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bosch, Frdric 8 Bridging the Gap: Automated Steady Scaffoldings for 3D Printing Jrmie Dumas Computer Technologies and Information Sciences Websites Summary:...

  18. Making 3D Printed Christmas Ornaments | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This Contributor Santa's sleigh becomes "Intelligent Machine" this Christmas Using 3D Printing to Redesign Santa's Sleigh A Sneak Peek Into Santa's Smarter Sleigh Subscribe to...

  19. RELAP5-3D V. 4.X.X

    Energy Science and Technology Software Center (OSTI)

    000191MLTPL01 NON-NRC FUNDED RELAP5-3D VERSION 4.x.x SOFTWARE REACTOR EXCURSION AND LEAK ANALYSIS PACKAGE - THREE DIMENSIONAL   

  20. Further Analysis of 3D Magnetotelluric Measurements Over the...

    Open Energy Info (EERE)

    Coso Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Further Analysis of 3D Magnetotelluric Measurements Over the Coso...

  1. Novel 3-D Printed Inverters for Electric Vehicles Can Improve...

    Energy Savers [EERE]

    density of the prototype. In addition to the improvements to the inverter itself, 3-D printing uses less energy compared to conventional manufacturing, making the manufacturing...

  2. Low-temperature hot corrosion of turbine materials exposed to the effluent from an experimental PFBC

    SciTech Connect (OSTI)

    McCarron, R.L.; Bropst, R.P.

    1984-06-01T23:59:59.000Z

    The General Electric Company, under contract to the Department of Energy, is conducting a long-term materials test at the G.E. Malta Pressurized Fluidized-Bed Combustor (PFBC) test facility. The primary objective of the test program is to determine the corrosion resistance of candidate gas turbine vane and blade base alloys and protective coating systems in the effluent from a pressurized fluidized bed coal combustor for extended periods of time up to 10,000 hours. The rig consists of a coal/dolomite feed system, combustor, three stages of cyclone cleanup, and two material test sections. Heat is extracted by an in-bed water-cooled heat exchanger. The first low-velocity test section (LVTS) contains 180 pin specimens, 60 of which are air cooled. The second high-velocity test section (HVTS) consists of 24 airfoils arranged in 4 cascades. Results discussed here are based upon specimens exposed in the low velocity test section to hot combustion gases at temperatures of 788-816 C uncooled and 593-704 C using air cooled hollow pins. Base alloys, coatings, and claddings selected for exposure in the test are listed and discussed. 1 figure, 3 tables.

  3. Recent advances in modeling discontinuities in anisotropic and heterogeneous materials in eddy current NDE

    SciTech Connect (OSTI)

    Aldrin, John C. [Computational Tools, Gurnee, IL 60031 (United States); Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H. [Victor Technologies LLC, Bloomington, IN 47401 (United States)

    2011-06-23T23:59:59.000Z

    Recent advances are presented to model discontinuities in random anisotropies that arise in certain materials, such as titanium alloys. A numerical model is developed to provide a full anisotropic representation of each crystalline in a gridded region of the material. Several simulated and experimental demonstrations are presented highlighting the effect of grain noise on eddy current measurements. Agreement between VIC-3D(c) model calculations and experimental data in titanium alloy specimens with known flaws is demonstrated.

  4. Solid Silicone Elastomer Material(DC745U)-Historical Overview and New Experimental Results

    SciTech Connect (OSTI)

    Ortiz-Acosta, Denisse [Los Alamos National Laboratory

    2012-08-08T23:59:59.000Z

    DC745U is a silicone elastomer used in several weapon systems. DC745U is manufactured by Dow Corning and its formulation is proprietary. Risk changes without notification to the customer. {sup 1}H and {sup 29}Si{l_brace}{sup 1}H{r_brace} NMR have previously determined that DC745U contains {approx} 98.5% dimethyl siloxane, {approx}1.5% methyl-phenyl siloxane, and a small amount (<1%) of vinyl siloxane repeat units that are converted to crosslinking sites. The polymer is filled with {approx} 38 wt.% of a mixture of fumed silica and quartz. Some conclusions are: (1) DMA shows that crystallization does have an effect on the mechanical properties of DC745U; (2) DMA shows that the crystallization is time and temperature dependent; (3) Mechanical tests show that DC745U undergo a crystalline transition at temperatures below -50 C; (4) Rate and temperature does not have an effect above crystalline transition; (5) Crystalline transition occurs faster at colder temperatures; (6) The material remains responsive and recovers after warming it to temperature above -40 C; (7) We were able to review all previous historical data on DC745U; (8) Identified specific gaps in materials understanding; (9) Developed design of experiments and testing methods to address gaps associated with post-curing and low temperature mechanical behavior; (10) Resolved questions of post-cure and alleviated concerns associated with low temperature mechanical behavior with soak time and temperature; and (11) This work is relevant to mission-critical programs and for supporting programmatic work for weapon research.

  5. Interactive 3D Gene Expression Viewer Victor E. Gerth*

    E-Print Network [OSTI]

    Vize, Peter D.

    Interactive 3D Gene Expression Viewer Victor E. Gerth* University of Calgary, Department. The Interactive Gene Expression viewer provides a way to view spatial relationships between different gene expression patterns and anatomic features. Web based 3D enabled technologies such as the Interactive Gene

  6. Anatomic measurement accuracy: CT parameters and 3D rendering effects

    E-Print Network [OSTI]

    Vorperian, Houri K.

    Anatomic measurement accuracy: CT parameters and 3D rendering effects Brian J Whyms a, E Michael of Neuroscience #12;INTRODUCTION · Measurements from 3D-CT rendering are used in research and clinical management-CT rendering techniques on measurements #12;METHODS Scanned: · 3 human mandibles · a phantom object Phantom

  7. An Improved Vertex Caching Scheme for 3D Mesh Rendering

    E-Print Network [OSTI]

    Lin, Gang

    An Improved Vertex Caching Scheme for 3D Mesh Rendering Gang Lin and Thomas P.-Y. Yu Abstract to the graphics pipeline during rendering. To make effective use of the cache and facilitate rendering, it is key effective algorithm for generating a sequence for efficient rendering of 3D polygonal meshes based on greedy

  8. PREASYMPTOTIC CHARGE OSCILLATIONS AROUND 3d IMPURITIES IN ALUMINIUM

    E-Print Network [OSTI]

    Boyer, Edmond

    on aluminium based transi- tion metal alloys can be explained in the LSF approxi- mation of the Anderson modelL-87 PREASYMPTOTIC CHARGE OSCILLATIONS AROUND 3d IMPURITIES IN ALUMINIUM V. ZLATI0106 and G. GRÜNER modèle d'Anderson la perturbation de densité électronique autour de certaines impuretés 3d dans l'aluminium

  9. 3D FFT for FPGAs Ben Humphries Martin C. Herbordt

    E-Print Network [OSTI]

    Herbordt, Martin

    computations such as those used in Molecular Dynamics simulations. On FPGAs, however, the 3D FFT was thought Dynamics simulations (MD). Somewhat sur- prisingly, although MD on FPGAs has been widely studied, we3D FFT for FPGAs Ben Humphries Martin C. Herbordt Department of Electrical and Computer

  10. Collaborative 3D Visualization on Large Screen Displays

    E-Print Network [OSTI]

    Barbosa, Alberto

    reality (VR) system designed to support collaborative visualization of 3D environments, applied in collaborative work. This paper presents a system that uses remotely located wall sized displays, to offer immersive, interactive collaborative visualization and review of 3D CAD models for engineering applications

  11. BIOLOGICALLY MOTIVATED 3D FACE RECOGNITION Albert Ali Salah

    E-Print Network [OSTI]

    BIOLOGICALLY MOTIVATED 3D FACE RECOGNITION by Albert Ali Salah B.S, in Computer Engineering, Bogazi of Doctor of Philosophy Graduate Program in Bogazi¸ci University 2007 #12;ii BIOLOGICALLY MOTIVATED 3D FACE. Hayim Molinas. #12;iv ACKNOWLEDGEMENTS With gratitude to my PhD advisor Lale Akarun for her boundless

  12. 3D Wavelet-Based Filter and Method

    DOE Patents [OSTI]

    Moss, William C. (San Mateo, CA); Haase, Sebastian (San Francisco, CA); Sedat, John W. (San Francisco, CA)

    2008-08-12T23:59:59.000Z

    A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

  13. CREATING 3D ANIMATED HUMAN BEHAVIORS FOR VIRTUAL WORLDS

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    i CREATING 3D ANIMATED HUMAN BEHAVIORS FOR VIRTUAL WORLDS Jan M. Allbeck A DISSERTATION in Computer, and a scholar. #12;iv ABSTRACT CREATING 3D ANIMATED HUMAN BEHAVIORS FOR VIRTUAL WORLDS Jan M. Allbeck Norman I. Badler Creating virtual scenarios that simulate a substantial human population with typical and varied

  14. Chopper: Partitioning models into 3D-printable parts

    E-Print Network [OSTI]

    Luo, Linjie

    3D printing technology is rapidly maturing and becoming ubiquitous. One of the remaining obstacles to wide-scale adoption is that the object to be printed must fit into the working volume of the 3D printer. We propose a ...

  15. MPSalsa 3D Simulations of Chemically Reacting Flows

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Many important scientific and engineering applications require a detailed analysis of complex systems with coupled fluid flow, thermal energy transfer, mass transfer and nonequilibrium chemical reactions. Currently, computer simulations of these complex reacting flow problems are limited to idealized systems in one or two spatial dimensions when coupled with a detailed, fundamental chemistry model. The goal of our research is to develop, analyze and implement advanced MP numerical algorithms that will allow high resolution 3D simulations with an equal emphasis on fluid flow and chemical kinetics modeling. In our research, we focus on the development of new, fully coupled, implicit solution strategies that are based on robust MP iterative solution methods (copied from http://www.cs.sandia.gov/CRF/MPSalsa/). These simulations are needed for scientific and technical areas such as: combustion research for transportation, atmospheric chemistry modeling for pollution studies, chemically reacting flow models for analysis and control of manufacturing processes, surface catalytic reactors for methane to methanol conversion and chemical vapor deposition (CVD) process modeling for production of advanced semiconductor materials (http://www.cs.sandia.gov/CRF/MPSalsa/).

    This project website provides six QuickTime videos of these simulations, along with a small image gallery and slideshow animations. A list of related publications and conference presentations is also made available.

  16. FSU Office of Research Program in Interdisciplinary Computing (PIC) What is 3D printing?

    E-Print Network [OSTI]

    Ronquist, Fredrik

    (PIC) What is 3D printing? 3D printing is a process of making. 3D printing is distinct from traditional machining techniques, which mostly organs, meat, circuit boards and batteries. 3D printing impacts nearly every

  17. Emerging Technologies in the Built Environment: Geographic Information Science (GIS), 3D Printing, and Additive Manufacturing

    SciTech Connect (OSTI)

    New, Joshua Ryan [ORNL

    2014-01-01T23:59:59.000Z

    Abstract 1: Geographic information systems emerged as a computer application in the late 1960s, led in part by projects at ORNL. The concept of a GIS has shifted through time in response to new applications and new technologies, and is now part of a much larger world of geospatial technology. This presentation discusses the relationship of GIS and estimating hourly and seasonal energy consumption profiles in the building sector at spatial scales down to the individual parcel. The method combines annual building energy simulations for city-specific prototypical buildings and commonly available geospatial data in a GIS framework. Abstract 2: This presentation focuses on 3D printing technologies and how they have rapidly evolved over the past couple of years. At a basic level, 3D printing produces physical models quickly and easily from 3D CAD, BIM (Building Information Models), and other digital data. Many AEC firms have adopted 3D printing as part of commercial building design development and project delivery. This presentation includes an overview of 3D printing, discusses its current use in building design, and talks about its future in relation to the HVAC industry. Abstract 3: This presentation discusses additive manufacturing and how it is revolutionizing the design of commercial and residential facilities. Additive manufacturing utilizes a broad range of direct manufacturing technologies, including electron beam melting, ultrasonic, extrusion, and laser metal deposition for rapid prototyping. While there is some overlap with the 3D printing talk, this presentation focuses on the materials aspect of additive manufacturing and also some of the more advanced technologies involved with rapid prototyping. These technologies include design of carbon fiber composites, lightweight metals processing, transient field processing, and more.

  18. Real time 3D and heterogeneous data fusion

    SciTech Connect (OSTI)

    Little, C.Q.; Small, D.E.

    1998-03-01T23:59:59.000Z

    This project visualizes characterization data in a 3D setting, in real time. Real time in this sense means collecting the data and presenting it before it delays the user, and processing faster than the acquisition systems so no bottlenecks occur. The goals have been to build a volumetric viewer to display 3D data, demonstrate projecting other data, such as images, onto the 3D data, and display both the 3D and projected images as fast as the data became available. The authors have examined several ways to display 3D surface data. The most effective was generating polygonal surface meshes. They have created surface maps form a continuous stream of 3D range data, fused image data onto the geometry, and displayed the data with a standard 3D rendering package. In parallel with this, they have developed a method to project real-time images onto the surface created. A key component is mapping the data on the correct surfaces, which requires a-priori positional information along with accurate calibration of the camera and lens system.

  19. Increase in the energy density of the pinch plasma in 3D implosion of quasi-spherical wire arrays

    SciTech Connect (OSTI)

    Aleksandrov, V. V., E-mail: alexvv@triniti.ru [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Gasilov, V. A. [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Grabovski, E. V.; Gritsuk, A. N., E-mail: griar@triniti.ru; Laukhin, Ya. N.; Mitrofanov, K. N.; Oleinik, G. M. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Ol’khovskaya, O. G. [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Sasorov, P. V.; Smirnov, V. P.; Frolov, I. N. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Shevel’ko, A. P. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2014-12-15T23:59:59.000Z

    Results are presented from experimental studies of the characteristics of the soft X-ray (SXR) source formed in the implosion of quasi-spherical arrays made of tungsten wires and metalized kapron fibers. The experiments were carried out at the Angara-5-1 facility at currents of up to 3 MA. Analysis of the spatial distribution of hard X-ray emission with photon energies above 20 keV in the pinch images taken during the implosion of quasi-spherical tungsten wire arrays (QTWAs) showed that a compact quasi-spherical plasma object symmetric with respect to the array axis formed in the central region of the array. Using a diffraction grazing incidence spectrograph, spectra of SXR emission with wavelengths of 20–400 Å from the central, axial, and peripheral regions of the emission source were measured with spatial resolutions along the array radius and height in the implosion of QTWAs. It is shown that the emission spectra of the SXR sources formed under the implosion of quasi-spherical and cylindrical tungsten wire arrays at currents of up to 3 MA have a maximum in the wavelength range of 50–150 Å. It is found that, during the implosion of a QTWA with a profiled linear mass, a redistribution of energy in the emission spectrum takes place, which indicates that, during 3D implosion, the energy of longitudinal motion of the array material additionally contributes to the radiation energy. It is also found that, at close masses of the arrays and close values of the current in the range of 2.4{sup ?3} MA, the average energy density in the emission source formed during the implosion of a quasi-spherical wire array is larger by a factor of 7 than in the source formed during the implosion of a cylindrical wire array. The experimental data were compared with results of 3D simulations of plasma dynamics and radiation generation during the implosion of quasi-spherical wire arrays with a profiled mass by using the MARPLE-3D radiative magnetohydrodynamic code, developed at the Keldysh Institute of Applied Mathematics, Russian Academy of Sciences.

  20. Suitability for 3D Printed Parts for Laboratory Use

    SciTech Connect (OSTI)

    Zwicker, Andrew P. [PPPL; Bloom, Josh [PPPL; Albertson, Robert [PPPL; Gershman, Sophia [PPPL

    2014-08-01T23:59:59.000Z

    3D printing has become popular for a variety of users, from industrial to the home hobbyist, to scientists and engineers interested in producing their own laboratory equipment. In order to determine the suitability of 3D printed parts for our plasma physics laboratory, we measured the accuracy, strength, vacuum compatibility, and electrical properties of pieces printed in plastic. The flexibility of rapidly creating custom parts has led to the 3D printer becoming an invaluable resource in our laboratory and is equally suitable for producing equipment for advanced undergraduate laboratories.

  1. Micro-CT for the quantification of 3D voids within damaged structures

    SciTech Connect (OSTI)

    Patterson, Brian M [Los Alamos National Laboratory; Hamilton, Christopher E [Los Alamos National Laboratory; Cerreta, Ellen K [Los Alamos National Laboratory; Dennis - Koller, Darcie [Los Alamos National Laboratory; Bronkhorst, C. A. [Los Alamos National Laboratory; Hansen, B. L. [Los Alamos National Laboratory

    2011-01-26T23:59:59.000Z

    Micro X-ray Computed Tomography (MXCT) is widely used in the materials community to examine the internal structure of materials for voids and cracks due to damage or casting, or other defects. Most research in this area focuses on the qualitative aspect of the image, simply answering; Are there voids present? Here we present an ongoing study of the quantified incipient spall voids in Cu with different grain sizes, using a gas gun with various velocities. Data analysis packages for MXCT are just now becoming able to dimensionally measure and produce statistics on the voids-present. In order to make the size of the features in the 3D image quantifiable, the question, how many radiographs are required to render the object dimensionally accurate in 3D, must be answered. A series of data sets has been coUected, varying the number of radiographs collected in order to determine the appropriate number required.

  2. Interfacing 2D and 3D Topological Insulators: Bi(111) Bilayer on Bi2Te3 Toru Hirahara,1,* Gustav Bihlmayer,2

    E-Print Network [OSTI]

    Hasegawa, Shuji

    Interfacing 2D and 3D Topological Insulators: Bi(111) Bilayer on Bi2Te3 Toru Hirahara,1,* Gustav Topological insulators, realized in materials with strong spin-orbit interaction, are gaining increasing-dimensional (1D) edge states compared to the 2D surface states of 3D topological insulators, only a few works

  3. Stress-induced Effects Caused by 3D IC TSV Packaging in Advanced Semiconductor Device Performance

    SciTech Connect (OSTI)

    Sukharev, V.; Kteyan, A.; Choy, J.-H.; Hovsepyan, H.; Markosian, A. [Mentor Graphics Corporation, 46871 Bayside Parkway, Fremont, CA 94538 (United States); Zschech, E.; Huebner, R. [Fraunhofer Institute for Non-Destructive Testing, Maria-Reiche-Strasse 2, 01109 Dresden (Germany)

    2011-11-10T23:59:59.000Z

    Potential challenges with managing mechanical stress and the consequent effects on device performance for advanced 3D through-silicon-via (TSV) based technologies are outlined. The paper addresses the growing need in a simulation-based design verification flow capable to analyze a design of 3D IC stacks and to determine across-die out-of-spec variations in device electrical characteristics caused by the layout and through-silicon-via (TSV)/package-induced mechanical stress. The limited characterization/measurement capabilities for 3D IC stacks and a strict ''good die'' requirement make this type of analysis critical for the achievement of an acceptable level of functional and parametric yield and reliability. The paper focuses on the development of a design-for-manufacturability (DFM) type of methodology for managing mechanical stresses during a sequence of designs of 3D TSV-based dies, stacks and packages. A set of physics-based compact models for a multi-scale simulation to assess the mechanical stress across the device layers in silicon chips stacked and packaged with the 3D TSV technology is proposed. A calibration technique based on fitting to measured stress components and electrical characteristics of the test-chip devices is presented. A strategy for generation of a simulation feeding data and respective materials characterization approach are proposed, with the goal to generate a database for multi-scale material parameters of wafer-level and package-level structures. For model validation, high-resolution strain measurements in Si channels of the test-chip devices are needed. At the nanoscale, the transmission electron microscopy (TEM) is the only technique available for sub-10 nm strain measurements so far.

  4. Nondestructive volumetric 3-D chemical mapping of nickel-sulfur compounds at the nanoscale

    SciTech Connect (OSTI)

    Harris W. M.; Chu Y.; Nelson, G.J.; Kiss, A.M.; Izzo Jr, J.R.; Liu, Y.; Liu, M.; Wang, S.; Chiu W.K.S.

    2012-04-04T23:59:59.000Z

    Nano-structures of nickel (Ni) and nickel subsulfide (Ni{sub 3}S{sub 2}) materials were studied and mapped in 3D with high-resolution x-ray nanotomography combined with full field XANES spectroscopy. This method for characterizing these phases in complex microstructures is an important new analytical imaging technique, applicable to a wide range of nanoscale and mesoscale electrochemical systems.

  5. Molecular Predictors of 3D Morphogenesis by Breast Cancer Cell Lines in 3D Culture

    SciTech Connect (OSTI)

    Han, Ju; Chang, Hang; Giricz, Orsi; Lee, Genee; Baehner, Frederick; Gray, Joe; Bissell, Mina; Kenny, Paraic; Parvin, Bahram

    2010-02-01T23:59:59.000Z

    Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associations with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPAR? has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPAR? has been validated through two supporting biological assays.

  6. 3D-Printed Car by Local Motors- The Strati

    Broader source: Energy.gov [DOE]

    A timelapse video of the production process behind The Strati - the 3D-printed car by Local Motors, which manufactured with Oak Ridge National Laboratory (ORNL) and delivered at the International Manufacturing Technology Show (IMTS) in September of 2014.

  7. 3D Representations for Software Visualization Andrian Marcus

    E-Print Network [OSTI]

    research from software analysis, information visualization, human-computer interaction, and cognitive, texture, abstraction mechanism, and by supporting new manipulation techniques and user interfaces.2 [Information Interfaces and Presentation] User Interfaces Keywords: Software visualization, 3D visualization

  8. 3?D Surface Topography Boundary Conditions in Seismic Wave Modelling

    E-Print Network [OSTI]

    Hestholm, Stig

    2001-01-01T23:59:59.000Z

    New alternative formulations of exact boundary conditions for arbitrary three{dimensional (3?D) free surface topographies on seismic media have been derived. They are shown to be equivalent with previously published ...

  9. A fast 3D full-wave solver for nanophotonics

    E-Print Network [OSTI]

    Zhang, Lei, Ph. D. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.

    2007-01-01T23:59:59.000Z

    Conventional fast integral equation solvers seem to be ideal approaches for simulating 3-D nanophotonic devices, as these devices are considered to be open structures, generating fields in both an interior channel and in ...

  10. 3D/4D geospatial visualization using Makai Voyager

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    3D/4D geospatial visualization using Makai Voyager John C. Anderson Makai Ocean Engineering, Inc-based, geospatially-enabled software that can fuse and visualize large, multi-variable data sets that change in space

  11. Topobo : a 3-D constructive assembly system with kinetic memory

    E-Print Network [OSTI]

    Raffle, Hayes Solos, 1974-

    2004-01-01T23:59:59.000Z

    We introduce Topobo, a 3-D constructive assembly system em- bedded with kinetic memory, the ability to record and playback physical motion. Unique among modeling systems is Topobo's coincident physical input and output ...

  12. Content-oriented 3D reconstruction from image streams

    E-Print Network [OSTI]

    Knoblauch, Daniel

    2011-01-01T23:59:59.000Z

    the automatisation of SaM from image sequences and videosby the input images to improve 3D reconstructions in SaMMo- tion (SaM). Structure and Motion from image sequences or

  13. aperture radar 3d: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    study was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a...

  14. accuracy 3d quantum: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    study was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a...

  15. Towards an Intelligent Storyboarding Tool for 3D Arnav Jhala

    E-Print Network [OSTI]

    Young, R. Michael

    cinematography. 1. OVERVIEW Storyboarding tools enable authors/designers of cinematic narratives in games such as The Rule of Thirds in building cinematography systems for 3D virtual environments. The trend in recent

  16. 3D-2D ASYMPTOTIC ANALYSIS FOR INHOMOGENEOUS THIN FILMS

    E-Print Network [OSTI]

    3D-2D ASYMPTOTIC ANALYSIS FOR INHOMOGENEOUS THIN FILMS plate models, periodic pr* *o- files, and within the context of optimal design for thin films 5. Third application - Optimal design of a thin film 19 6. Final Remarks

  17. 2013 Santa Sleigh 3D Printing Winner | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineers Pick Winner of 2013 Santa Sleigh 3D Printing Design Contest Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share...

  18. Fitting of Constrained Models to Poor 3D Data 

    E-Print Network [OSTI]

    Robertson, Craig; Fisher, Robert B.; Werghi, Naoufel; Ashbrook, Anthony

    2000-01-01T23:59:59.000Z

    In this work we have addressed the question of whether it is possible to extract parametric models of features from poor quality 3D data. In doing this we have examined the applicability of an evolutionary strategy to the ...

  19. 3-D Seismic Methods for Shallow Imaging Beneath Pavement

    E-Print Network [OSTI]

    Miller, Brian

    2013-05-31T23:59:59.000Z

    The research presented in this dissertation focuses on survey design and acquisition of near-surface 3D seismic reflection and surface wave data on pavement. Increased efficiency for mapping simple subsurface interfaces through a combined use...

  20. Building a database of 3D scenes from user annotations

    E-Print Network [OSTI]

    Russell, Bryan C.

    In this paper, we wish to build a high quality database of images depicting scenes, along with their real-world three-dimensional (3D) coordinates. Such a database is useful for a variety of applications, including training ...

  1. Automatic 3D facial expression analysis in videos

    E-Print Network [OSTI]

    Chang, Y; Vieira, M; Turk, M; Velho, L

    2005-01-01T23:59:59.000Z

    with the background in videos [26] are important topics forSystem for Real-Time 3D Video. IEEE Int. Workshop onExpression Analysis in Videos Ya Chang 1 , Marcelo Vieira

  2. 3D Object Digitization: Topology Preserving Reconstruction Peer Stelldinger

    E-Print Network [OSTI]

    Latecki, Longin Jan

    is the 3D generalization of #12;the 2D Gauss digitization (see [4]) which has been used by Gauss to compute 2. There are 14 different cases of canonical configurations. In dense digitiza- tions of r

  3. 3D Module Placement for Congestion and Power Noise Reduction

    E-Print Network [OSTI]

    Lim, Sung Kyu

    3D Module Placement for Congestion and Power Noise Reduction Jacob R. Minz School of ECE Georgia that copies are not made or distributed for profit or commercial advantage and that copies bear this notice

  4. Review: 3D Printing: Social and Cultural Trajectories Symposium -3D Printing Industry http://3dprintingindustry.com/2013/12/11/review-3d-printing-social-cultural-trajectories-symposium/[12/12/2013 11:25:00 AM

    E-Print Network [OSTI]

    Review: 3D Printing: Social and Cultural Trajectories Symposium - 3D Printing Industry http://3dprintingindustry.com/2013/12/11/review-3d-printing-social-cultural-trajectories-symposium/[12/12/2013 11:25:00 AM] Review: 3D Printing: Social and Cultural Trajectories Symposium BY ANGELA DALY & DARCY ALLEN ON WED

  5. Printing out Particle Detectors with 3D-Printers, a Potentially Transformational Advance for HEP Instrumentation

    E-Print Network [OSTI]

    Hohlmann, M

    2013-01-01T23:59:59.000Z

    This white paper suggests posing a "grand challenge" to the HEP instrumentation community, i.e. the aggressive development of additive manufacturing, also known as 3D-printing, for the production of particle detectors in collaboration with industry. This notion is an outcome of discussions within the instrumentation frontier group during the 2013 APS-DPF Snowmass summer study conducted by the U.S. HEP community. Improvements of current industrial 3D-printing capabilities by one to two orders of magnitude in terms of printing resolution, speed, and object size together with developing the ability to print composite materials could enable the production of any desired 3D detector structure directly from a digital model. Current industrial 3D-printing capabilities are briefly reviewed and contrasted with capabilities desired for printing detectors for particle physics, with micro-pattern gaseous detectors used as a first example. A significant impact on industrial technology could be expected if HEP were to part...

  6. Printing out Particle Detectors with 3D-Printers, a Potentially Transformational Advance for HEP Instrumentation

    E-Print Network [OSTI]

    M. Hohlmann

    2013-09-05T23:59:59.000Z

    This white paper suggests posing a "grand challenge" to the HEP instrumentation community, i.e. the aggressive development of additive manufacturing, also known as 3D-printing, for the production of particle detectors in collaboration with industry. This notion is an outcome of discussions within the instrumentation frontier group during the 2013 APS-DPF Snowmass summer study conducted by the U.S. HEP community. Improvements of current industrial 3D-printing capabilities by one to two orders of magnitude in terms of printing resolution, speed, and object size together with developing the ability to print composite materials could enable the production of any desired 3D detector structure directly from a digital model. Current industrial 3D-printing capabilities are briefly reviewed and contrasted with capabilities desired for printing detectors for particle physics, with micro-pattern gaseous detectors used as a first example. A significant impact on industrial technology could be expected if HEP were to partner with industry in taking on such a challenge.

  7. Toward single cell traction microscopy within 3D collagen matrices

    SciTech Connect (OSTI)

    Hall, Matthew S. [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Long, Rong [Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8 (Canada); Feng, Xinzeng [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Huang, YuLing [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Hui, Chung-Yuen [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Wu, Mingming, E-mail: mw272@cornell.edu [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States)

    2013-10-01T23:59:59.000Z

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

  8. Development and experimental validation of a calculation scheme for nuclear heating evaluation in the core of the OSIRIS material testing reactor

    SciTech Connect (OSTI)

    Malouch, F. [Saclay Center CEA, DEN/DANS/DM2S/SERMA, F-91191 Gif-sur-Yvette Cedex (France)

    2011-07-01T23:59:59.000Z

    The control of the temperature in material samples irradiated in a material testing reactor requires the knowledge of the nuclear heating caused by the energy deposition by neutrons and photons interacting in the irradiation device structures. Thus, a neutron-photonic three-dimensional calculation scheme has been developed to evaluate the nuclear heating in experimental devices irradiated in the core of the OSIRIS MTR reactor (CEA/Saclay Center). The aim is to obtain a predictive tool for the nuclear heating estimation in irradiation devices. This calculation scheme is mainly based on the TRIPOLI-4 three-dimensional continuous-energy Monte Carlo transport code, developed by CEA (Saclay Center). An experimental validation has been carried out on the basis of nuclear heating measurements performed in the OSIRIS core. After an overview of the experimental devices irradiated in the OSIRIS reactor, we present the calculation scheme and the first results of the experimental validation. (authors)

  9. Pos3D: Um pos-processador generico para modelos 3D de elementos finitos MARCELO TILIO M. CARVALHO1

    E-Print Network [OSTI]

    Pos3D: Um p´os-processador gen´erico para modelos 3D de elementos finitos MARCELO TILIO M. CARVALHO interpretac¸~ao e visualizac¸~ao dos resultados. Um dos m´etodos num´ericos mais utilizado neste tipo de´os-processador deve ser gen´erico, o que im- plica em ser independente do programa utilizado na an´alise num

  10. Pos3D: Um p osprocessador gen erico para modelos 3D de elementos finitos MARCELO TILIO M. CARVALHO 1

    E-Print Network [OSTI]

    Pos3D: Um pâ?? os­processador genâ?? erico para modelos 3D de elementos finitos MARCELO TILIO Mâ??�sico) e interpretacâ?ºâ?ao e visualizacâ?ºâ?ao dos resultados. Um dos mâ??etodos numâ??ericos mais utilizado nesteâ??os­processador deve ser genâ??erico, o que im­ plica em ser independente do programa utilizado na anâ??alise num

  11. 2D?3D polycatenated and 3D?3D interpenetrated metal–organic frameworks constructed from thiophene-2,5-dicarboxylate and rigid bis(imidazole) ligands

    SciTech Connect (OSTI)

    Erer, Hakan [Department of Chemistry, Faculty of Arts and Sciences, Eski?ehir Osmangazi University, 26480 Eski?ehir (Turkey); Ye?ilel, Okan Zafer, E-mail: yesilel@ogu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Eski?ehir Osmangazi University, 26480 Eski?ehir (Turkey); Ar?c?, Mürsel [Department of Chemistry, Faculty of Arts and Sciences, Eski?ehir Osmangazi University, 26480 Eski?ehir (Turkey); Keskin, Seda [Department of Chemical and Biological Engineering, Koç University, ?stanbul (Turkey); Büyükgüngör, Orhan [Department of Physics, Faculty of Arts and Sciences, Ondokuz May?s University, 55139 Samsun (Turkey)

    2014-02-15T23:59:59.000Z

    Hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metal–organic frameworks, namely, [Zn(µ-tdc)(H{sub 2}O)(µ-dib)]{sub n} (1), [Cd(µ-tdc)(H{sub 2}O)(µ-dib)]{sub n} (2), and ([Cd{sub 2}(µ{sub 3}-tdc){sub 2}(µ-dimb){sub 2}]·(H{sub 2}O)){sub n}(3). These MOFs were characterized by FT-IR spectroscopy, elemental, thermal (TG, DTA, DTG and DSC), and single-crystal X-ray diffraction analyses. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D?3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. Moreover, these coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. - Graphical abstract: In this study, hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metal–organic frameworks. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D?3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. These coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. Display Omitted - Highlights: • Complexes 1 and 2 display polycatenated 2D+2D?3D framework. • Complex 3 exhibits a new 4-fold interpenetrating 3D framework. • Complex 1 adsorbs the highest amount of H{sub 2} at 100 bar and 298 K. • Complexes display blue fluorescent emission bands.

  12. A PVM Executive Program for Use with RELAP5-3D

    SciTech Connect (OSTI)

    Weaver, Walter Leslie; Tomlinson, E. T.; Aumiller, D. L.

    2002-04-01T23:59:59.000Z

    A PVM executive program has been developed for use with the RELAP5-3D computer program. The PVM executive allows RELAP5-3D to be coupled with any number of other computer programs to perform integrated analyses of nuclear power reactor systems and related experimental facilities. The executive program manages all phases of a coupled computation. It starts up and configures a virtual machine, spawns all of the coupled processes, coordinates the time step size between the coupled codes, manages the production of printed and plotable output, and shuts the virtual machine down at the end of the computation. The executive program also monitors that status of the coupled computation, repeating time steps as needed and terminating a coupled computation gracefully if one of the coupled processes is terminated by the computational node on which it is executing.

  13. Advanced 3D Sensing and Visualization System for Unattended Monitoring

    SciTech Connect (OSTI)

    Carlson, J.J.; Little, C.Q.; Nelson, C.L.

    1999-01-01T23:59:59.000Z

    The purpose of this project was to create a reliable, 3D sensing and visualization system for unattended monitoring. The system provides benefits for several of Sandia's initiatives including nonproliferation, treaty verification, national security and critical infrastructure surety. The robust qualities of the system make it suitable for both interior and exterior monitoring applications. The 3D sensing system combines two existing sensor technologies in a new way to continuously maintain accurate 3D models of both static and dynamic components of monitored areas (e.g., portions of buildings, roads, and secured perimeters in addition to real-time estimates of the shape, location, and motion of humans and moving objects). A key strength of this system is the ability to monitor simultaneous activities on a continuous basis, such as several humans working independently within a controlled workspace, while also detecting unauthorized entry into the workspace. Data from the sensing system is used to identi~ activities or conditions that can signi~ potential surety (safety, security, and reliability) threats. The system could alert a security operator of potential threats or could be used to cue other detection, inspection or warning systems. An interactive, Web-based, 3D visualization capability was also developed using the Virtual Reality Modeling Language (VRML). The intex%ace allows remote, interactive inspection of a monitored area (via the Internet or Satellite Links) using a 3D computer model of the area that is rendered from actual sensor data.

  14. NON PARAMETRIC CELL NUCLEI SEGMENTATION BASED ON A TRACKING OVER DEPTH FROM 3D FLUORESCENCE CONFOCAL IMAGES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , Gustavo Leone1,2 1 Human Cancer Genetics Program, 2 Department of Molecular Genetics, 3 Computer Science And Engineering, 4 Biomedical Informatics, The Ohio State University, Columbus, Ohio ABSTRACT 3D cell nuclei projection cri- terion. Experimental results on real data demonstrate the effi- cacy of the proposed method

  15. ALE3D Simulations of Gap Closure and Surface Ignition for Cookoff Modeling

    SciTech Connect (OSTI)

    Howard, W M; McClelland, M A; Nichols, A L

    2006-06-22T23:59:59.000Z

    We are developing ALE3D models to describe the thermal, chemical and mechanical behavior during the heating, ignition and explosive phases of various cookoff phenomena. The candidate models and numerical strategies are being evaluated using benchmark cookoff experiments. ALE3D is a three-dimensional computer code capable of solving the model equations in a coupled fashion through all the phases of the cookoff in a single calculation. For the cookoff experiments, we are interested in representing behavior on widely varying timescales. We have used an implicit hydrodynamics option during the heating phase and an explicit solution method during the explosive phase. To complicate the modeling problem, high heat fluxes cause rapid temperature increases in boundary layers and lead to the formation of gaps between energetic and structural materials and ignition on surfaces. The initially solid energetic and structural materials react to produce gases, which fill the gaps. These materials can also melt and flow. Since an implicit solution method is used, simple no-strength materials models can no longer be used for liquids and gases. In this paper, we discuss and demonstrate choices of materials models for solid/liquid/gas mixtures to be used in conjunction with the implicit solution method. In addition, results are given for mesh movement strategies applied to the opening, closing, and surface ignition within gaps.

  16. Comp. by: PG2689 Stage : Revises ChapterID: 0001575172 Date:17/8/12 Time:07:32:15 Filepath:d:/womat-filecopy/0001575172.3D3

    E-Print Network [OSTI]

    Leonardi, Paul

    :d:/womat-filecopy/0001575155.3D4 Since the dawn of the industrial revolution, scholars and other public commentators have made:d:/womat-filecopy/0001575172.3D3 Materiality and Organizing Social Interaction in a Technological World Edited By Paul M:d:/womat-filecopy/0001575155.3D3 1 The Challenge of Materiality: Origins, Scope, and Prospects Jannis Kallinikos, Paul M

  17. Testbeam and Laboratory Characterization of CMS 3D Pixel Sensors

    E-Print Network [OSTI]

    M. Bubna; E. Alagoz; A. Krzywda; O. Koybasi; K. Arndt; D. Bortoletto; I. Shipsey; G. Bolla; A. Kok; T. -E. Hansen; T. A. Hansen; G. U. Jensen; J. M. Brom; M. Boscardin; J. Chramowicz; J. Cumalat; G. F. Dalla Betta; M. Dinardo; A. Godshalk; M. Jones; M. D. Krohn; A. Kumar; C. M. Lei; L. Moroni; L. Perera; M. Povoli; A. Prosser; R. Rivera; A. Solano; M. M. Obertino; S. Kwan; L. Uplegger; C. D. Via; L. Vigani; S. Wagner

    2014-04-30T23:59:59.000Z

    The pixel detector is the innermost tracking device in CMS, reconstructing interaction vertices and charged particle trajectories. The sensors located in the innermost layers of the pixel detector must be upgraded for the ten-fold increase in luminosity expected with the High- Luminosity LHC (HL-LHC) phase. As a possible replacement for planar sensors, 3D silicon technology is under consideration due to its good performance after high radiation fluence. In this paper, we report on pre- and post- irradiation measurements for CMS 3D pixel sensors with different electrode configurations. The effects of irradiation on electrical properties, charge collection efficiency, and position resolution of 3D sensors are discussed. Measurements of various test structures for monitoring the fabrication process and studying the bulk and surface properties, such as MOS capacitors, planar and gate-controlled diodes are also presented.

  18. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | NationalMaterials

  19. STELLOPT Modeling of the 3D Diagnostic Response in ITER

    SciTech Connect (OSTI)

    Lazerson, Samuel A

    2013-05-07T23:59:59.000Z

    The ITER three dimensional diagnostic response to an n=3 resonant magnetic perturbation is modeled using the STELLOPT code. The in-vessel coils apply a resonant magnetic perturbation (RMP) fi eld which generates a 4 cm edge displacement from axisymmetry as modeled by the VMEC 3D equilibrium code. Forward modeling of flux loop and magnetic probe response with the DIAGNO code indicates up to 20 % changes in measured plasma signals. Simulated LIDAR measurements of electron temperature indicate 2 cm shifts on the low field side of the plasma. This suggests that the ITER diagnostic will be able to diagnose the 3D structure of the equilibria.

  20. From 1D Chain to 3D Network: Tuning Hybrid II-VI Nanostructures and Their Optical Properties

    E-Print Network [OSTI]

    Li, Jing

    and synthesized a family of novel organic-inorganic hybrid nanocomposites based on II-VI semiconductorsFrom 1D Chain to 3D Network: Tuning Hybrid II-VI Nanostructures and Their Optical Properties of these nanocomposite materials have been characterized by single crystal and/or powder X-ray diffraction methods. [Zn

  1. Kinetic modelling of a surrogate diesel fuel applied to 3D auto-ignition in HCCI engines

    E-Print Network [OSTI]

    Bounaceur, Roda; Fournet, René; Battin-Leclerc, Frédérique; Jay, S; Da Cruz, A Pires

    2007-01-01T23:59:59.000Z

    The prediction of auto-ignition delay times in HCCI engines has risen interest on detailed chemical models. This paper described a validated kinetic mechanism for the oxidation of a model Diesel fuel (n-decane and ?-methylnaphthalene). The 3D model for the description of low and high temperature auto-ignition in engines is presented. The behavior of the model fuel is compared with that of n-heptane. Simulations show that the 3D model coupled with the kinetic mechanism can reproduce experimental HCCI and Diesel engine results and that the correct modeling of auto-ignition in the cool flame region is essential in HCCI conditions.

  2. Evaluation of PC-ISO for customized, 3D printed, gynecologic 192Ir HDR brachytherapy applicators

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    15) The precision of 3D printers has been closely evaluatedmaterial substrates for 3D printers. It is not approved pertheir treatment. While 3D printers with the capability to

  3. School of Art & Design 3D Printing of Relief Forms onto Ceramic Tiles

    E-Print Network [OSTI]

    Evans, Paul

    School of Art & Design 3D Printing of Relief Forms onto Ceramic Tiles Lead: Lharne Shaw 3D printing tile production. It will also assess the feasibility of introducing a 3D slip printing system into both

  4. Full waveform inversion of a 3-D source inside an artificial rock

    E-Print Network [OSTI]

    To, A C; Glaser, Steven D

    2005-01-01T23:59:59.000Z

    of a 3-D Source Inside an Artificial Rock Albert C. To andof a 3-D source inside an artificial rock plate inof a 3-D source inside an artificial rock plate is

  5. Generic Programming in 3D Ralf Hinze a

    E-Print Network [OSTI]

    Löh, Andres

    Generic Programming in 3D Ralf Hinze a , Andres L¨oh b aInstitut f¨ur Informatik III, Universit mechanism is not restricted to equality: parsers, pretty-printers and several other functions are derivable: Haskell's pretty-printer, for instance, displays pairs and lists using a special mix-fix notation. If we

  6. ELECTROMOTION 2009 3D Analytical Calculation of Forces between

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Co or NdFeB, the designers can use magnets owning a really rigid magnetization. They are the magnets whichELECTROMOTION 2009 1 3D Analytical Calculation of Forces between Linear Halbach-Type Permanent Magnet Arrays H. Allag1,2 , J-P. Yonnet1 and M. E. H. Latreche2 1- Laboratoire de Génie Electrique de

  7. Electromagnetic Waves Propagation in 3D Plasma Configurations

    E-Print Network [OSTI]

    Electromagnetic Waves Propagation in 3D Plasma Configurations Pavel Popovich, W. Anthony Cooper in a plasma strongly depends on the frequency, therefore the tools used for wave propagation studies are very that will allow for the calculation of the fields and energy deposition of a low-frequency wave propagating

  8. STUDY AND DEVELOPMENT OF MECHANICAL 3D STANDARD PARTS LIBRARY

    E-Print Network [OSTI]

    Wu Yang-dong; Xie Qing-sheng; Qi Guo-ning; Lu Yu-jun

    technology included variant design, tabular layouts of article characteristics and parametric cad system, the method and key technology to construct parametric mechanical 3D standard parts library was introduced. Engineer could build mechanical standard part through this system automatically and improve the

  9. Extra Dimensions: 3D and Time in PDF Documentation

    SciTech Connect (OSTI)

    Graf, Norman A.; /SLAC

    2011-11-10T23:59:59.000Z

    High energy physics is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide audience. In this talk, we present examples of HEP applications which take advantage of this functionality. We demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input. Using this technique, higher dimensional data, such as LEGO plots or time-dependent information can be included in PDF files. In principle, a complete event display, with full interactivity, can be incorporated into a PDF file. This would allow the end user not only to customize the view and representation of the data, but to access the underlying data itself.

  10. 3D Scanning for Biometric Identification and Verification

    E-Print Network [OSTI]

    McShea, Daniel W.

    June 2010 3D Scanning for Biometric Identification and Verification Project Leads Anselmo Lastra example the subject's face could be rapidly scanned while his or her smart-card ID is being examined, and the system could then match the scan with data on the ID); (b) identification at a secure site or even

  11. Colloidal Inks for Directed Assembly of 3-D Periodic Structures

    E-Print Network [OSTI]

    Lewis, Jennifer

    during assembly, which simultaneously facilitated bonding and shape retention of the deposited elements the desired 3-D periodicity, places the most stringent demands on ink design. Direct-write techniques- controlled viscoelastic response; that is, they must be able to flow through a deposition nozzle

  12. S-duality in 3D gravity with torsion

    SciTech Connect (OSTI)

    Mielke, Eckehard W. [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 Mexico D.F. (Mexico)]. E-mail: ekke@xanum.uam.mx; Maggiolo, Ali A. Rincon [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 Mexico D.F. (Mexico)

    2007-02-15T23:59:59.000Z

    The deformation of the connection in three spacetime dimensions by the kinematically equivalent coframe is shown to induce a duality between the (Lorentz-) rotational and translational field momenta, for which the coupling to the deformation parameter is inverted. This new kind of strong/weak duality, pertinent to 3D, is instrumental for studying exact solutions of the 3D Poincare gauge field equations and the particle content of propagating modes on a background of constant curvature. For a topological Chern-Simons model of gravity, the propagating modes 'living' on an Anti-de Sitter (AdS) background correspond to real massive particles. Yang-Mills type generalizations and new cubic Lagrangians are found and completely classified in 3D. AdS or black hole type solutions with constant axial torsion emerge, also for these higher-order Lagrangians with new 'exotic' torsion-curvature couplings. Their pattern complies with our S-duality, with new repercussions for the field redefinition of the metric in 3D quantum gravity and the cosmological constant problem.

  13. Ris-R-1376(EN) 3D Background

    E-Print Network [OSTI]

    , Roskilde, Denmark November 2002 #12;Abstract 3D rotor computations for the Greek Geovilogiki (GEO) 44 meter rotor equipped with 19 meters blades are performed. The lift and drag polars are extracted at five on the drag values are observed. ISBN 87-550-3141-2 ISBN 87-550-3142-0(internet) ISSN 0106-2840 Pitney Bowes

  14. INTERACTION WITH 3D IMAGE DATA THROUGH VOLUME RENDERED VIEWS.

    E-Print Network [OSTI]

    Pelizzari, Charles A.

    , since the 3D image dataset is operated on directly and not transformed into a simple 3 #12; binary weighted compositing with gradient and depth shading. The algorithm is highly optimized for rapid rendering large aggregate computimg power present in many hospitals and laboratories. Mapping from the rendered

  15. 3D-2D ASYMPTOTIC ANALYSIS FOR MICROMAGNETIC THIN FILMS

    E-Print Network [OSTI]

    3D-2D ASYMPTOTIC ANALYSIS FOR MICROMAGNETIC THIN FILMS Classification: 35E99, 35M10, 49J45, 74K35. Keywords: -limit, thin films, micromagnetics, relaxation; 1 1. Introduction In recent years the understanding of thin film behavior has been helped

  16. ECG Gated Tomographic reconstruction for 3-D Rotational Coronary Angiography

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    imaging techniques to improve both the safety and the efficacy of coronary angiography interventions the ground for a platform dedicated to the planning and execution of percutaneous coronary inter- ventionsECG Gated Tomographic reconstruction for 3-D Rotational Coronary Angiography Yining HU, Lizhe XIE

  17. TCAUP FabLab 3D PRINTING ORDER FORM

    E-Print Network [OSTI]

    Kamat, Vineet R.

    TCAUP FabLab 3D PRINTING ORDER FORM: UNIQ NAME: Zcorp 400/310 10"x 8"x 8" ABS 8"x 8"x 12" or 10"x://www.taubmancollege.umich.edu/digital_tech/digital_fablab/ * ZCorp members below .125" are printed at student's own risk and expense. (reasonable .125"breakage

  18. 3D Measurements in Images using CAD Models George Vosselman

    E-Print Network [OSTI]

    Vosselman, George

    is therefore subject of research at many institutes. Whereas efforts to fully automate the process of building the alignment. 1 Introduction Future geographical information systems will contain 3D and highly structured extraction show good progress [2, 5], it is clear that under many circumstances automation is extremely

  19. Propagation Beam Consideration for 3D THz Computed Tomography

    E-Print Network [OSTI]

    Boyer, Edmond

    Propagation Beam Consideration for 3D THz Computed Tomography B. Recur, 1, J.P. Guillet, 2 I. Manek, "Refraction losses in terahertz computed tomography," Opt. Commun. 283, 2050­2055 (2010). 8. S. Nadar, H of the beam propagation is developed according to the physical properties of THz waves used in THz computed

  20. 3D Quantum Gravity and Effective Noncommutative Quantum Field Theory

    SciTech Connect (OSTI)

    Freidel, Laurent; Livine, Etera R. [Perimeter Institute, 31 Caroline Street, North Waterloo, Ontario N2L 2Y5, Canada, and Laboratoire de Physique, ENS Lyon, CNRS UMR 5672, 46 Allee d'Italie, 69364 Lyon Cedex 07 (France)

    2006-06-09T23:59:59.000Z

    We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a {kappa} deformation of the Poincare group.

  1. Scatterplot3d an R package for Visualizing Multivariate Data

    E-Print Network [OSTI]

    Gotelli, Nicholas J.

    of multivariate data in a three dimensional space. R itself is"A Language and Environment for Statistical Comput Data. Journal of Statistical Software 8(11), 1­20. Abstract Scatterplot3d is an R package for the visualization of multivariate data in a three dimensional space. R is a "language for data analysis and graphics

  2. 3D Duo Binary Turbo Decoder Hardware Implementation

    E-Print Network [OSTI]

    Timo Lehngik-emden; Matthias Alles; Norbert Wehn

    Abstract: Each digital communication system needs channel coding to provide a certain quality of service. With the introducation of advanced channel codes like turbo codes and LDPC codes, error correcting near theoretical shannon limit became possible. Many applications require a low error floor in addition. The classical turbo code cannot meet this demand. Increasing the number of components codes, non-binary component codes or code concatenation are solutions for this problem, but come with a large complexity increase. In 2007 a new class of turbo codes, the 3D turbo code, was introduced by Berrou. The 3D turbo code provides a very good convergence and a large minimum distance at a low complexity. To the best of our knowledge this paper presents the first hardware implementation of a 3D turbo decoder. In addition we compare the implementation complexity of the 3D turbo decoder with the 8 and 16-state duo binary turbo decoder on FPGA and in 65nm ASIC technology.

  3. 8, 42674308, 2008 3-D retrieval of cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 8, 4267­4308, 2008 3-D retrieval of cloud particle profiles T. Zinner et al. Title Page.0 License. Atmospheric Chemistry and Physics Discussions Remote sensing of cloud sides of deep convection: towards a three-dimensional retrieval of cloud particle size profiles T. Zinner 1,2 , A. Marshak 1 , S

  4. Key experimental information on intermediate-range atomic structures in amorphous Ge2Sb2Te5 phase change material

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    .1063/1.3657139 Nature of phase transitions in crystalline and amorphous GeTe-Sb2Te3 phase change materials J. Chem. Phys on intermediate-range atomic structures in amorphous Ge2Sb2Te5 phase change material Shinya Hosokawa,1,2,a) Wolf change material Shinya Hosokawa, Wolf-Christian Pilgrim, Astrid Höhle, Daniel Szubrin, Nathalie Boudet

  5. RELAP5-3D Developer Guidelines and Programming Practices

    SciTech Connect (OSTI)

    Dr. George L Mesina

    2014-03-01T23:59:59.000Z

    Our ultimate goal is to create and maintain RELAP5-3D as the best software tool available to analyze nuclear power plants. This begins with writing excellent programming and requires thorough testing. This document covers development of RELAP5-3D software, the behavior of the RELAP5-3D program that must be maintained, and code testing. RELAP5-3D must perform in a manner consistent with previous code versions with backward compatibility for the sake of the users. Thus file operations, code termination, input and output must remain consistent in form and content while adding appropriate new files, input and output as new features are developed. As computer hardware, operating systems, and other software change, RELAP5-3D must adapt and maintain performance. The code must be thoroughly tested to ensure that it continues to perform robustly on the supported platforms. The coding must be written in a consistent manner that makes the program easy to read to reduce the time and cost of development, maintenance and error resolution. The programming guidelines presented her are intended to institutionalize a consistent way of writing FORTRAN code for the RELAP5-3D computer program that will minimize errors and rework. A common format and organization of program units creates a unifying look and feel to the code. This in turn increases readability and reduces time required for maintenance, development and debugging. It also aids new programmers in reading and understanding the program. Therefore, when undertaking development of the RELAP5-3D computer program, the programmer must write computer code that follows these guidelines. This set of programming guidelines creates a framework of good programming practices, such as initialization, structured programming, and vector-friendly coding. It sets out formatting rules for lines of code, such as indentation, capitalization, spacing, etc. It creates limits on program units, such as subprograms, functions, and modules. It establishes documentation guidance on internal comments. The guidelines apply to both existing and new subprograms. They are written for both FORTRAN 77 and FORTRAN 95. The guidelines are not so rigorous as to inhibit a programmer’s unique style, but do restrict the variations in acceptable coding to create sufficient commonality that new readers will find the coding in each new subroutine familiar. It is recognized that this is a “living” document and must be updated as languages, compilers, and computer hardware and software evolve.

  6. SU-E-T-04: 3D Printed Patient-Specific Surface Mould Applicators for Brachytherapy Treatment of Superficial Lesions

    SciTech Connect (OSTI)

    Cumming, I; Lasso, A; Rankin, A; Fichtinger, G [Laboratory for Percutaneous Surgery, School of Computing, Queen's University, Kingston, Ontario (Canada); Joshi, C P; Falkson, C; Schreiner, L John [CCSEO, Kingston General Hospital and Department of Oncology, Queen's University, Kingston, Ontario (Canada)

    2014-06-01T23:59:59.000Z

    Purpose: Evaluate the feasibility of constructing 3D-printed patient-specific surface mould applicators for HDR brachytherapy treatment of superficial lesions. Methods: We propose using computer-aided design software to create 3D printed surface mould applicators for brachytherapy. A mould generation module was developed in the open-source 3D Slicer ( http://www.slicer.org ) medical image analysis platform. The system extracts the skin surface from CT images, and generates smooth catheter paths over the region of interest based on user-defined start and end points at a specified stand-off distance from the skin surface. The catheter paths are radially extended to create catheter channels that are sufficiently wide to ensure smooth insertion of catheters for a safe source travel. An outer mould surface is generated to encompass the channels. The mould is also equipped with fiducial markers to ensure its reproducible placement. A surface mould applicator with eight parallel catheter channels of 4mm diameters was fabricated for the nose region of a head phantom; flexible plastic catheters of 2mm diameter were threaded through these channels maintaining 10mm catheter separations and a 5mm stand-off distance from the skin surface. The apparatus yielded 3mm thickness of mould material between channels and the skin. The mould design was exported as a stereolithography file to a Dimension SST1200es 3D printer and printed using ABS Plus plastic material. Results: The applicator closely matched its design and was found to be sufficiently rigid without deformation during repeated application on the head phantom. Catheters were easily threaded into channels carved along catheter paths. Further tests are required to evaluate feasibility of channel diameters smaller than 4mm. Conclusion: Construction of 3D-printed mould applicators show promise for use in patient specific brachytherapy of superficial lesions. Further evaluation of 3D printing techniques and materials is required for constructing sufficiently thin, rigid and durable surface moulds suitable for clinical deployment.

  7. Design of 3D eye-safe middle range vibrometer

    SciTech Connect (OSTI)

    Polulyakh, Valeriy [Advanced Data Security, 1933 O'Toole Way, San Jose, CA 95131 (United States); Poutivski, Iouri [Terimber Corporation, 2456 Homewood Drive, San Jose, CA 95128, USA and Facebook Inc, 1601 Willow Road, Menlo Park, CA 94025 (United States)

    2014-05-27T23:59:59.000Z

    Laser Doppler Vibrometer and Range Meter (3D-MRV) is designed for middle range distances [1–100 meters]. 3D-MRV combines more than one laser in one device for a simultaneous real time measuring the distance and movement of the targets. The first laser has a short pulse (t?30psec) and low energy (E?200nJ) for distance measurement and the second one is a CW (continuous wave) single frequency laser for the velocity measurement with output power (P?30mW). Both lasers perform on the eye-safe wavelength 1.5 ?m. 3D-MRV uses the same mono-static optical transmitting and receiving channel for both lasers including an output telescope and a scanning angular system. 3D-MRV has an optical polarization switch to combine linear polarized laser beams from two lasers into one optical channel. The laser beams from both lasers by turns illuminate the target and the scattered laser radiation is collected by the telescope on a photo detector. The electrical signal from photo detector is used for measuring the distance to the target and its movement. For distance measurement the time of flight method is employed. For targets movement the optical heterodyne method is employed. The received CW laser radiation is mixed on a photo detector with the frequency-shifted laser radiation that is taken from CW laser and passed through an acousto-optic cell. The electrical signal from a photo detector on the difference frequency and phase has information about movement of the scattered targets. 3D-MVR may be used for the real time picturing of vibration of the extensive targets like bridges or aircrafts.

  8. A fast algorithm for gamma evaluation in 3D

    SciTech Connect (OSTI)

    Wendling, Markus; Zijp, Lambert J.; McDermott, Leah N.; Smit, Ewoud J.; Sonke, Jan-Jakob; Mijnheer, Ben J.; Herk, Marcel van [Department of Radiation Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2007-05-15T23:59:59.000Z

    The {gamma}-evaluation method is a tool by which dose distributions can be compared in a quantitative manner combining dose-difference and distance-to-agreement criteria. Since its introduction, the {gamma} evaluation has been used in many studies and is on the verge of becoming the preferred dose distribution comparison method, particularly for intensity-modulated radiation therapy (IMRT) verification. One major disadvantage, however, is its long computation time, which especially applies to the comparison of three-dimensional (3D) dose distributions. We present a fast algorithm for a full 3D {gamma} evaluation at high resolution. Both the reference and evaluated dose distributions are first resampled on the same grid. For each point of the reference dose distribution, the algorithm searches for the best point of agreement according to the {gamma} method in the evaluated dose distribution, which can be done at a subvoxel resolution. Speed, computer memory efficiency, and high spatial resolution are achieved by searching around each reference point with increasing distance in a sphere, which has a radius of a chosen maximum search distance and is interpolated 'on-the-fly' at a chosen sample step size. The smaller the sample step size and the larger the differences between the dose distributions, the longer the {gamma} evaluation takes. With decreasing sample step size, statistical measures of the 3D {gamma} distribution converge. Two clinical examples were investigated using 3% of the prescribed dose as dose-difference and 0.3 cm as distance-to-agreement criteria. For 0.2 cm grid spacing, the change in {gamma} indices was negligible below a sample step size of 0.02 cm. Comparing the full 3D {gamma} evaluation and slice-by-slice 2D {gamma} evaluations ('2.5D') for these clinical examples, the {gamma} indices improved by searching in full 3D space, with the average {gamma} index decreasing by at least 8%.

  9. Effect of rotating electric field on 3D complex (dusty) plasma

    SciTech Connect (OSTI)

    Woerner, L.; Nosenko, V.; Ivlev, A. V.; Zhdanov, S. K.; Thomas, H. M.; Morfill, G. E. [Max-Planck-Institut fuer extraterrestrische Physik, D-85741 Garching (Germany); Kroll, M.; Schablinski, J.; Block, D. [Christian-Albrechts Universitaet zu Kiel, D-24118 Kiel (Germany)

    2011-06-15T23:59:59.000Z

    The effect of rotating electric field on 3D particle clusters suspended in rf plasma was studied experimentally. Spheroidal clusters were suspended inside a glass box mounted on the lower horizontal rf electrode, with gravity partially balanced by thermophoretic force. Clusters rotated in the horizontal plane, in response to rotating electric field that was created inside the box using conducting coating on its inner surfaces (''rotating wall'' technique). Cluster rotation was always in the direction of applied field and had a shear in the vertical direction. The angular speed of rotation was 10{sup 4}-10{sup 7} times lower than applied frequency. The experiment is compared to a recent theory.

  10. An Algorithm for Computing Customized 3D Printed Implants with Curvature Constrained Channels for Enhancing

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    An Algorithm for Computing Customized 3D Printed Implants with Curvature Constrained Channels results in 3D printing and steerable needle motion planning to create customized implants containing

  11. Development of 3D Simulation Training and Testing for Home Energy...

    Energy Savers [EERE]

    Development of 3D Simulation Training and Testing for Home Energy Score Assessor Candidates Development of 3D Simulation Training and Testing for Home Energy Score Assessor...

  12. Realtime Constraint-Based Cinematography for Complex Interactive 3D Worlds

    E-Print Network [OSTI]

    Lester, James C.

    Realtime Constraint-Based Cinematography for Complex Interactive 3D Worlds William H. Bares, creates cinematic goals for a constraint- based realtime 3D virtual cinematography plan- ner

  13. The Future of Manufacturing Takes Shape: 3D Printed Car on Display...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lead, Advanced Manufacturing Office Additive manufacturing - often referred to as 3D printing - is a revolutionary way to design and build products. Until now, 3D printing has...

  14. Parallel 3-D S{sub N} performance for DANTSYS/MPI on the Cray T3D

    SciTech Connect (OSTI)

    Baker, R.S.; Alcouffe, R.E. [Los Alamos National Lab., NM (United States). Transport Methods Group

    1997-05-01T23:59:59.000Z

    A data parallel version of the 3-D transport solver in DANTSYS has been in use on the SIMD CM-200`s at LANL since 1994. This version typically obtains grind times of 150--200 nanoseconds on a 2,048 PE CM-200. The authors have now implemented a new message passing parallel version of DANTSYS, referred to as DANTSYS/MPI, on the 512 PE Cray T3D at Los Alamos. By taking advantage of the SPMD architecture of the Cray T3D, as well as its low latency communications network, they have managed to achieve grind times of less than 10 nanoseconds on real problems. DANTSYS/MPI is fully accelerated using DSA on both the inner and outer iterations. This paper describes the implementation of DANTSYS/MPI on the Cray T3D, and presents two simple performance models for the transport sweep which accurately predict the grind time as a function of the number of PE`s and problem size, or scalability.

  15. IMPROVEMENTS TO THE TIME STEPPING ALGORITHM OF RELAP5-3D

    SciTech Connect (OSTI)

    Cumberland, R.; Mesina, G.

    2009-01-01T23:59:59.000Z

    The RELAP5-3D time step method is used to perform thermo-hydraulic and neutronic simulations of nuclear reactors and other devices. It discretizes time and space by numerically solving several differential equations. Previously, time step size was controlled by halving or doubling the size of a previous time step. This process caused the code to run slower than it potentially could. In this research project, the RELAP5-3D time step method was modifi ed to allow a new method of changing time steps to improve execution speed and to control error. The new RELAP5-3D time step method being studied involves making the time step proportional to the material courant limit (MCL), while insuring that the time step does not increase by more than a factor of two between advancements. As before, if a step fails or mass error is excessive, the time step is cut in half. To examine performance of the new method, a measure of run time and a measure of error were plotted against a changing MCL proportionality constant (m) in seven test cases. The removal of the upper time step limit produced a small increase in error, but a large decrease in execution time. The best value of m was found to be 0.9. The new algorithm is capable of producing a signifi cant increase in execution speed, with a relatively small increase in mass error. The improvements made are now under consideration for inclusion as a special option in the RELAP5-3D production code.

  16. 3-D MAPPING TECHNOLOGIES FOR HIGH LEVEL WASTE TANKS

    SciTech Connect (OSTI)

    Marzolf, A.; Folsom, M.

    2010-08-31T23:59:59.000Z

    This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame time-of-flight data (3D image) collected with a single laser pulse, high frame rates, direct calculation of range, blur-free images without motion distortion, no need for precision scanning mechanisms, ability to combine 3D flash LIDAR with 2D cameras for 2D texture over 3D depth, and no moving parts. The major disadvantage of the 3D flash LIDAR camera is the cost of approximately $150,000, not including the software development time and repackaging of the camera for deployment in the waste tanks.

  17. NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT

    SciTech Connect (OSTI)

    Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

    2004-05-06T23:59:59.000Z

    Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas and natural gas liquids production on a remote part of the Uintah & Ouray Reservation. Much of the natural gas and natural gas liquids are being produced from the Wingate Formation, which to our knowledge has never produced commercially anywhere. Another large percentage of the natural gas is being produced from the Entrada Formation which has not previously produced in this part of the Uinta Basin. In all, at least nine geologic formations are contributing hydrocarbons to these wells. This survey has clearly established the fact that high-quality data can be obtained in this area, despite the known obstacles.

  18. Development and characterization of 3D, nano-confined multicellular constructs for advanced biohybrid devices.

    SciTech Connect (OSTI)

    Kaehr, Bryan James

    2011-09-01T23:59:59.000Z

    This is the final report for the President Harry S. Truman Fellowship in National Security Science and Engineering (LDRD project 130813) awarded to Dr. Bryan Kaehr from 2008-2011. Biological chemistries, cells, and integrated systems (e.g., organisms, ecologies, etc.) offer important lessons for the design of synthetic strategies and materials. The desire to both understand and ultimately improve upon biological processes has been a driving force for considerable scientific efforts worldwide. However, to impart the useful properties of biological systems into modern devices and materials requires new ideas and technologies. The research herein addresses aspects of these issues through the development of (1) a rapid-prototyping methodology to build 3D bio-interfaces and catalytic architectures, (2) a quantitative method to measure cell/material mechanical interactions in situ and at the microscale, and (3) a breakthrough approach to generate functional biocomposites from bacteria and cultured cells.

  19. Conversion and improvement of the Rutherford Laboratory's magnetostatic computer code GFUN3D to the NMFECC CDC 7600

    SciTech Connect (OSTI)

    Tucker, T.C.

    1980-06-01T23:59:59.000Z

    The implementation of a version of the Rutherford Laboratory's magnetostatic computer code GFUN3D on the CDC 7600 at the National Magnetic Fusion Energy Computer Center is reported. A new iteration technique that greatly increases the probability of convergence and reduces computation time by about 30% for calculations with nonlinear, ferromagnetic materials is included. The use of GFUN3D on the NMFE network is discussed, and suggestions for future work are presented. Appendix A consists of revisions to the GFUN3D User Guide (published by Rutherford Laboratory( that are necessary to use this version. Appendix B contains input and output for some sample calculations. Appendix C is a detailed discussion of the old and new iteration techniques.

  20. Program for upgrading nuclear materials protection, control, and accounting at all facilities within the All-Russian Institute of Experimental Physics (VNIIEF)

    SciTech Connect (OSTI)

    Yuferev, V.; Zhikharev, S.; Yakimov, Y. [All-Russian Inst. of Experimental Physics, Moscow (Russian Federation)] [and others

    1998-12-31T23:59:59.000Z

    As part of the Department of Energy-Russian program for strengthening nuclear material protection, control, and accounting (MPC and A), plans have now been formulated to install an integrated MPC and A system at all facilities containing large quantities of weapons-usable nuclear material within the All-Russian Institute of Experimental Physics (VNIIEF, Arzamas-16) complex. In addition to storage facilities, the complex houses a number of critical facilities used to conduct nuclear physics research and facilities for developing procedures for disassembly of nuclear weapons.

  1. Computerized fluid movement mapping and 3-D visualization

    SciTech Connect (OSTI)

    Al-Awami, A.A.; Poore, J.W. [Saudi Aramco, Dhahran (Saudi Arabia); Sizer, J.P.

    1995-11-01T23:59:59.000Z

    Most of the fieldwide fluid movement monitoring techniques under utilize available computer resources. This paper discusses an approach reservoir management engineers use to monitor fluid movement in reservoirs with a multitude of wells. This approach allows the engineer to maintain up-to-date fluid movement studies and incorporate the latest information from data acquisition programs into the day to day decision-making process. The approach uses several in-house database applications and makes extensive use of commercially available software products to generate and visualize cross-sections, maps, and 3-d models. This paper reviews the computerized procedures to create cross-sections that display the current fluid contacts overlaying the lithology. It also reviews the mapping procedures nd presents examples of water encroachment maps by layer at specific time periods. 3-D geologic modeling software greatly enhances the visualization of the reservoir. This software can also be used to interpret and model fluid movement, given the appropriate engineering constraints.

  2. Bootstrapping Mixed Correlators in the 3D Ising Model

    E-Print Network [OSTI]

    Filip Kos; David Poland; David Simmons-Duffin

    2014-06-18T23:59:59.000Z

    We study the conformal bootstrap for systems of correlators involving non-identical operators. The constraints of crossing symmetry and unitarity for such mixed correlators can be phrased in the language of semidefinite programming. We apply this formalism to the simplest system of mixed correlators in 3D CFTs with a $\\mathbb{Z}_2$ global symmetry. For the leading $\\mathbb{Z}_2$-odd operator $\\sigma$ and $\\mathbb{Z}_2$-even operator $\\epsilon$, we obtain numerical constraints on the allowed dimensions $(\\Delta_\\sigma, \\Delta_\\epsilon)$ assuming that $\\sigma$ and $\\epsilon$ are the only relevant scalars in the theory. These constraints yield a small closed region in $(\\Delta_\\sigma, \\Delta_\\epsilon)$ space compatible with the known values in the 3D Ising CFT.

  3. 3-D laser patterning process utilizing horizontal and vertical patterning

    DOE Patents [OSTI]

    Malba, Vincent (Livermore, CA); Bernhardt, Anthony F. (Berkeley, CA)

    2000-01-01T23:59:59.000Z

    A process which vastly improves the 3-D patterning capability of laser pantography (computer controlled laser direct-write patterning). The process uses commercially available electrodeposited photoresist (EDPR) to pattern 3-D surfaces. The EDPR covers the surface of a metal layer conformally, coating the vertical as well as horizontal surfaces. A laser pantograph then patterns the EDPR, which is subsequently developed in a standard, commercially available developer, leaving patterned trench areas in the EDPR. The metal layer thereunder is now exposed in the trench areas and masked in others, and thereafter can be etched to form the desired pattern (subtractive process), or can be plated with metal (additive process), followed by a resist stripping, and removal of the remaining field metal (additive process). This improved laser pantograph process is simpler, faster, move manufacturable, and requires no micro-machining.

  4. Fast Freehand Acquisition of 3D Objects and their Visualization

    E-Print Network [OSTI]

    Peters, Gabriele

    -world objects in a large number of fields of applications, such as the entertainment industry, design], and the application of structured light [3]. Image-based methods are, e.g., stereo vi- sion or multi-camera techniques://www.inf.fh-dortmund.de/personen/professoren/peters/ Abstract. In many applications 3d models of real-world objects are re- quired. We introduce a tool which

  5. Mapping the 3-D Dark Matter potential with weak shear

    E-Print Network [OSTI]

    D. J. Bacon; A. N. Taylor

    2002-12-11T23:59:59.000Z

    We investigate the practical implementation of Taylor's (2002) 3-dimensional gravitational potential reconstruction method using weak gravitational lensing, together with the requisite reconstruction of the lensing potential. This methodology calculates the 3-D gravitational potential given a knowledge of shear estimates and redshifts for a set of galaxies. We analytically estimate the noise expected in the reconstructed gravitational field, taking into account the uncertainties associated with a finite survey, photometric redshift uncertainty, redshift-space distortions, and multiple scattering events. In order to implement this approach for future data analysis, we simulate the lensing distortion fields due to various mass distributions. We create catalogues of galaxies sampling this distortion in three dimensions, with realistic spatial distribution and intrinsic ellipticity for both ground-based and space-based surveys. Using the resulting catalogues of galaxy position and shear, we demonstrate that it is possible to reconstruct the lensing and gravitational potentials with our method. For example, we demonstrate that a typical ground-based shear survey with redshift limit z=1 and photometric redshifts with error Delta z=0.05 is directly able to measure the 3-D gravitational potential for mass concentrations >10^14 M_\\odot between 0.13-D lensing potential to measure mass and position of clusters in 3-D, and to detect clusters behind clusters.

  6. Electric field in 3D gravity with torsion

    E-Print Network [OSTI]

    M. Blagojevi?; B. Cvetkovi?

    2008-09-01T23:59:59.000Z

    It is shown that in static and spherically symmetric configurations of the system of Maxwell field coupled to 3D gravity with torsion, at least one of the Maxwell field components has to vanish. Restricting our attention to the electric sector of the theory, we find an interesting exact solution, corresponding to the azimuthal electric field. Its geometric structure is to a large extent influenced by the values of two different central charges, associated to the asymptotic AdS structure of spacetime.

  7. Electric field in 3D gravity with torsion

    SciTech Connect (OSTI)

    Blagojevic, M.; Cvetkovic, B. [Institute of Physics, P.O. Box 57, 11001 Belgrade (Serbia)

    2008-08-15T23:59:59.000Z

    It is shown that in static and spherically symmetric configurations of the system of Maxwell field coupled to 3D gravity with torsion, at least one of the Maxwell field components has to vanish. Restricting our attention to the electric sector of the theory, we find an interesting exact solution, corresponding to the azimuthal electric field. Its geometric structure is to a large extent influenced by the values of two different central charges, associated to the asymptotic AdS structure of spacetime.

  8. 3D, Flash, Induced Current Readout for Silicon Sensors

    SciTech Connect (OSTI)

    Parker, Sherwood I.

    2014-06-07T23:59:59.000Z

    A new method for silicon microstrip and pixel detector readout using (1) 65 nm-technology current amplifers which can, for the first time with silicon microstrop and pixel detectors, have response times far shorter than the charge collection time (2) 3D trench electrodes large enough to subtend a reasonable solid angle at most track locations and so have adequate sensitivity over a substantial volume of pixel, (3) induced signals in addition to, or in place of, collected charge

  9. Multimessengers from 3D Core-Collapse Supernovae

    E-Print Network [OSTI]

    Yakunin, Konstantin N; Mezzacappa, Anthony; Messer, O E Bronson; Lentz, Eric J; Bruenn, Stephen W; Hix, W Rafael; Harris, J Austin

    2015-01-01T23:59:59.000Z

    We present gravitational wave and neutrino signatures obtained in our first principle 3D core-collapse supernova simulation of 15M non-rotating progenitor with Chimera code. Observations of neutrinos emitted by the forming neutron star, and gravitational waves, which are produced by hydrodynamic instabilities is the only way to get direct information about the supernova engine. Both GW and neutrino signals show different phases of supernova evolution.

  10. 3D Object Digitization: Topology Preserving Reconstruction Peer Stelldinger

    E-Print Network [OSTI]

    Hamburg,.Universität

    for reconstructing the object from the set of included sampling points is the 3D generalization of #12;the 2D Gauss digitization (see [4]) which has been used by Gauss to compute the area of discs. 3 Digital Reconstruction of r-Regular Sets 1 2 3 4 5 6 7 8 9 10 11 12 13 14 8a 8b Figure 2. There are 14 different cases of canonical

  11. Eliciting a human understandable model of ice adhesion strength for rotor blade leading edge materials from uncertain experimental data

    E-Print Network [OSTI]

    Granada, Universidad de

    Eliciting a human understandable model of ice adhesion strength for rotor blade leading edge: Genetic Fuzzy Systems Fuzzy rule-based classifiers Vague data Isotropic materials Ice-phobic materials Shear adhesion strength a b s t r a c t The published ice adhesion performance data of novel ``ice

  12. A coarse-grained model with implicit salt for RNAs: Predicting 3D structure, stability and salt effect

    SciTech Connect (OSTI)

    Shi, Ya-Zhou; Wang, Feng-Hua; Wu, Yuan-Yan; Tan, Zhi-Jie, E-mail: zjtan@whu.edu.cn [Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2014-09-14T23:59:59.000Z

    To bridge the gap between the sequences and 3-dimensional (3D) structures of RNAs, some computational models have been proposed for predicting RNA 3D structures. However, the existed models seldom consider the conditions departing from the room/body temperature and high salt (1M NaCl), and thus generally hardly predict the thermodynamics and salt effect. In this study, we propose a coarse-grained model with implicit salt for RNAs to predict 3D structures, stability, and salt effect. Combined with Monte Carlo simulated annealing algorithm and a coarse-grained force field, the model folds 46 tested RNAs (?45 nt) including pseudoknots into their native-like structures from their sequences, with an overall mean RMSD of 3.5 Å and an overall minimum RMSD of 1.9 Å from the experimental structures. For 30 RNA hairpins, the present model also gives the reliable predictions for the stability and salt effect with the mean deviation ? 1.0 °C of melting temperatures, as compared with the extensive experimental data. In addition, the model could provide the ensemble of possible 3D structures for a short RNA at a given temperature/salt condition.

  13. Labeling 3D scenes for Personal Assistant Robots

    E-Print Network [OSTI]

    Koppula, Hema Swetha; Joachims, Thorsten; Saxena, Ashutosh

    2011-01-01T23:59:59.000Z

    Inexpensive RGB-D cameras that give an RGB image together with depth data have become widely available. We use this data to build 3D point clouds of a full scene. In this paper, we address the task of labeling objects in this 3D point cloud of a complete indoor scene such as an office. We propose a graphical model that captures various features and contextual relations, including the local visual appearance and shape cues, object co-occurrence relationships and geometric relationships. With a large number of object classes and relations, the model's parsimony becomes important and we address that by using multiple types of edge potentials. The model admits efficient approximate inference, and we train it using a maximum-margin learning approach. In our experiments over a total of 52 3D scenes of homes and offices (composed from about 550 views, having 2495 segments labeled with 27 object classes), we get a performance of 84.06% in labeling 17 object classes for offices, and 73.38% in labeling 17 object classe...

  14. Particle trajectories and acceleration during 3D fan reconnection

    E-Print Network [OSTI]

    S. Dalla; P. K. Browning

    2008-11-07T23:59:59.000Z

    Context. The primary energy release in solar flares is almost certainly due to magnetic reconnection, making this a strong candidate as a mechanism for particle acceleration. While particle acceleration in 2D geometries has been widely studied, investigations in 3D are a recent development. Two main classes of reconnection regimes at a 3D magnetic null point have been identified: fan and spine reconnection Aims. Here we investigate particle trajectories and acceleration during reconnection at a 3D null point, using a test particle numerical code, and compare the efficiency of the fan and spine regimes in generating an energetic particle population. Methods. We calculated the time evolution of the energy spectra. We discuss the geometry of particle escape from the two configurations and characterise the trapped and escaped populations. Results. We find that fan reconnection is less efficent than spine reconnection in providing seed particles to the region of strong electric field where acceleration is possible. The establishment of a steady-state spectrum requires approximately double the time in fan reconnection. The steady-state energy spectrum at intermediate energies (protons 1 keV to 0.1 MeV) is comparable in the fan and spine regimes. While in spine reconnection particle escape takes place in two symmetric jets along the spine, in fan reconnection no jets are produced and particles escape in the fan plane, in a ribbon-like structure.

  15. Spheree: A 3D Perspective-Corrected Interactive Spherical Scalable Display Ferreira, F.q

    E-Print Network [OSTI]

    British Columbia, University of

    models can be exported or printed on a 3D printer. Other related 3D displays include: 1. pCubee [StavnessSpheree: A 3D Perspective-Corrected Interactive Spherical Scalable Display Ferreira, F.q , Cabral & U of British Columbia (a) (b) (c) (d) Figure 1: (a) A snowglobe; (b) a fish-tank animation; (c) a 3D

  16. 3D Graph Visualization with the Oculus Rift Virtual Graph Reality

    E-Print Network [OSTI]

    Wismath, Stephen

    reality environment such as a CAVE, or · printed as a physical model with a 3D printer. Early studies3D Graph Visualization with the Oculus Rift Virtual Graph Reality Farshad Barahimi, Stephen Wismath regarding three- dimensional (3D) representations of graphs. However, the actual usefulness of such 3D

  17. Construction of suitable weak solutions for the 3D incompressible NSEs

    E-Print Network [OSTI]

    Guermond, Jean-Luc

    Construction of suitable weak solutions for the 3D incompressible NSEs Jean-Luc Guermond Department-Luc Guermond Construction of suitable weak solutions for the 3D NSEs #12;Outline 1 BASIC FACTS ABOUT THE 3D NSE Jean-Luc Guermond Construction of suitable weak solutions for the 3D NSEs #12;Outline 1 BASIC FACTS

  18. Stereo Matching and 3D Visualization for Gamma-Ray Cargo Inspection Zhigang Zhu*ab

    E-Print Network [OSTI]

    Zhu, Zhigang

    Stereo Matching and 3D Visualization for Gamma-Ray Cargo Inspection Zhigang Zhu*ab , Yu-Chi Hubc visualization issues are studied for a linear pushbroom stereo model built for 3D gamma-ray (or x-ray) cargo results are presented for real gamma-ray images of a 3D cargo container and the objects inside. The 3D

  19. Rubrique : Tectonique Modlisation gomtrique 3D des granites Stphaniens du massif du Pelvoux (Alpes, France).

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Rubrique : Tectonique Modélisation géométrique 3D des granites Stéphaniens du massif du Pelvoux (Alpes, France). 3D geometrical modelling of Stephanian granite from the Pelvoux massif (French Alps, granite, modélisation 3D, Carbonifère. Key words : Alps, Granite, 3D modelling, Carbonifere

  20. 3 July 2003 HIRES3D -ITC Research Seminar -Robert Hack 1 HIGH RESOLUTION REMOTE SENSING

    E-Print Network [OSTI]

    Hack, Robert

    3 July 2003 HIRES3D - ITC Research Seminar - Robert Hack 1 HIRES3D HIGH RESOLUTION REMOTE SENSING FOR 3D GROUND MODELING AND CLASSIFICATION ITC Research Seminar, 3 July 2003 Robert Hack International Institute for Geoinformation Sciences and Earth Observation (ITC) #12;3 July 2003 HIRES3D - ITC Research

  1. InvenTcl: A Fast Prototyping Environment for 3D Graphics and Multimedia Applications

    E-Print Network [OSTI]

    British Columbia, University of

    InvenTcl: A Fast Prototyping Environment for 3D Graphics and Multimedia Applications Sidney Fels1- sion of Open Inventor, a 3D graphics toolkit. To create InvenTcl, the Open Inventor toolkit is \\wrapped, easy prototyping of 3D graphics and animation, low bandwidth communication of 3D scenes and animations

  2. Fuzzy Control for Enforcing Energy Efficiency in High-Performance 3D Systems

    E-Print Network [OSTI]

    Coskun, Ayse

    to remove the heat from 3D ICs. 3D systems are also prone to large thermal variations; e.g., cores located and DVFS-based thermal management in 3D multicore systems [28], [8], [27]. However, as power densities micro- channels (or pin-fin structures) between the tiers of a 3D stack using a pump to remove the heat

  3. Stereoscopic Media Editing based on 3D Cinematography Principles Chun-Wei Liu1

    E-Print Network [OSTI]

    Ouhyoung, Ming

    Stereoscopic Media Editing based on 3D Cinematography Principles Chun-Wei Liu1 Tz-Huan Huang1 Ming, especially for stereoscopic media captured by consumers. This paper in- troduces 3D cinematography principles in stereoscopic media processing. 2 Principles and applications 3D cinematography principles. 3D filmmakers have

  4. ILLUSTRATING MATHEMATICS USING 3D PRINTERS OLIVER KNILL AND ELIZABETH SLAVKOVSKY

    E-Print Network [OSTI]

    Knill, Oliver

    3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology that with relatively little effort. 2. 3D printing The industry of rapid prototyping and 3D printing in particular em

  5. ILLUSTRATING MATHEMATICS USING 3D PRINTERS OLIVER KNILL AND ELIZABETH SLAVKOVSKY

    E-Print Network [OSTI]

    Knill, Oliver

    printing technology can help to visualize proofs in mathematics. This talk aims to illustrate how 3D Greece, models allows to make mathematics more accessible. The new 3D printing technology makes unmatched. 3D printers allow us to do that with relative little effort. 2. 3D printing The industry of rapid

  6. 3D tomodosimetry using long scintillating fibers: A feasibility study

    SciTech Connect (OSTI)

    Goulet, Mathieu; Archambault, Louis; Beaulieu, Luc; Gingras, Luc [Département de Physique, de Génie Physique et d’Optique et Centre de Recherche sur le cancer, Université Laval, Québec, Québec G1V 0A6, Canada, and Département de Radio-Oncologie and CRCHU de Quebec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada)] [Département de Physique, de Génie Physique et d’Optique et Centre de Recherche sur le cancer, Université Laval, Québec, Québec G1V 0A6, Canada, and Département de Radio-Oncologie and CRCHU de Quebec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada)

    2013-10-15T23:59:59.000Z

    Purpose: 3D dosimetry is recognized as an ideal for patient-specific quality assurance (QA) of highly conformal radiotherapy treatments. However, existing 3D dosimeters are not straightforward to implement in the clinic, as their read-out procedure is often tedious and their accuracy, precision, and/or sample size exhibit limitations. The purpose of this work is to develop a 3D dosimeter based on the concept of tomodosimetry inside concentric cylindrical planes using long scintillating fibers for the QA of modern radiotherapy techniques such as intensity-modulated radiation therapy (IMRT) or intensity-modulated arc therapy (IMAT).Methods: Using a model-based simulation, scintillating fibers were modeled on three concentric cylindrical planes of radii 2.5, 5.0, and 7.5 cm, inside a 10 cm radius water-equivalent cylinder phantom. The phantom was set to rotate around its central axis, made parallel to the linac gantry axis of rotation. Light acquisitions were simulated using the calculated dose from the treatment planning software and reconstructed in each cylindrical plane at a resolution of 1 mm{sup 2} using a total-variation minimization iterative reconstruction algorithm. The 3D dose was then interpolated from the reconstructed cylindrical plane doses at a resolution of 1 mm{sup 3}. Different scintillating fiber patterns were compared by varying the angle of each fiber in its cylindrical plane and introducing a light-tight cut in each fiber. The precision of the reconstructed cylindrical dose distribution was evaluated using a Poisson modeling of the acquired light signals and the accuracy of the interpolated 3D dose was evaluated using an IMRT clinical plan for a prostate case.Results: Straight scintillating fiber patterns with light-tight cuts were the most accurate in cylindrical dose reconstruction, showing less than 0.5 mm distance-to-agreement in dose gradients and a mean local dose difference of less than 0.2% in the high dose region for a 10 × 10 cm{sup 2} field. The precision attained with this fiber configuration was less than 0.9% in the high dose, low gradient region of an IMRT segment for light acquisitions of 0.1 MU over a 360 degree rotation of the cylinder phantom. 3D dose interpolation for the IMRT clinical plan yielded an overall dose difference with the reference input of less than 1%, except in high dose gradients.Conclusions: Using long scintillating fibers inside rotating, concentric cylindrical planes, the authors demonstrate that their tomodosimetry method has the potential for high resolution, precise, and accurate 3D dosimetry. Moreover, because of its water-equivalence and rotational symmetry, this design should find interesting application for both treatment QA and machine commissioning.

  7. Trial operation of material protection, control, and accountability systems at two active nuclear material handling sites within the All-Russian Institute of Experimental Physics (VNIIEF)

    SciTech Connect (OSTI)

    Skripka, G.; Vatulin, V.; Yuferev, V. [VNIIEF, Sarov (Russian Federation)] [and others

    1997-11-01T23:59:59.000Z

    This paper discusses Russian Federal Nuclear Center (RFNC)-VNIIEF activities in the area of nuclear material protection, control, and accounting (MPC and A) procedures enhancement. The goal of such activities is the development of an automated systems for MPC and A at two of the active VNIIEF research sites: a research (reactor) site and a nuclear material production facility. The activities for MPC and A system enhancement at both sites are performed in the framework of a VNIIEF-Los Alamos National Laboratory contract with participation from Sandia National Laboratories, Lawrence Livermore National Laboratory, Brookhaven National Laboratory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and PANTEX Plant in accordance with Russian programs supported by MinAtom. The American specialists took part in searching for possible improvement of technical solutions, ordering equipment, and delivering and testing the equipment that was provided by the Americans.

  8. Digital Material Fabrication Using Mask-Image-Projection-based Stereolithography

    E-Print Network [OSTI]

    Chen, Yong

    on its PolyJet Matrix Technology, these three-dimensional (3D) printers are capable of manufacturing is motivated by the recent 3D printer development especially by the digital material fabrication in which two

  9. Streamlining of the RELAP5-3D Code

    SciTech Connect (OSTI)

    Mesina, George L; Hykes, Joshua; Guillen, Donna Post

    2007-11-01T23:59:59.000Z

    RELAP5-3D is widely used by the nuclear community to simulate general thermal hydraulic systems and has proven to be so versatile that the spectrum of transient two-phase problems that can be analyzed has increased substantially over time. To accommodate the many new types of problems that are analyzed by RELAP5-3D, both the physics and numerical methods of the code have been continuously improved. In the area of computational methods and mathematical techniques, many upgrades and improvements have been made decrease code run time and increase solution accuracy. These include vectorization, parallelization, use of improved equation solvers for thermal hydraulics and neutron kinetics, and incorporation of improved library utilities. In the area of applied nuclear engineering, expanded capabilities include boron and level tracking models, radiation/conduction enclosure model, feedwater heater and compressor components, fluids and corresponding correlations for modeling Generation IV reactor designs, and coupling to computational fluid dynamics solvers. Ongoing and proposed future developments include improvements to the two-phase pump model, conversion to FORTRAN 90, and coupling to more computer programs. This paper summarizes the general improvements made to RELAP5-3D, with an emphasis on streamlining the code infrastructure for improved maintenance and development. With all these past, present and planned developments, it is necessary to modify the code infrastructure to incorporate modifications in a consistent and maintainable manner. Modifying a complex code such as RELAP5-3D to incorporate new models, upgrade numerics, and optimize existing code becomes more difficult as the code grows larger. The difficulty of this as well as the chance of introducing errors is significantly reduced when the code is structured. To streamline the code into a structured program, a commercial restructuring tool, FOR_STRUCT, was applied to the RELAP5-3D source files. The methodology employed follows Dijkstra's structured programming paradigm, which is based on splitting programs into sub-sections, each with single points of entry and exit and in which control is passed downward through the structure with no unconditional branches to higher levels. GO TO commands are typically avoided, since they alter the flow and control of a program’s execution by allowing a jump from one place in the routine to another. The restructuring of RELAP5-3D subroutines is complicated by several issues. The first is use of code other than standard FORTRAN77. The second is restructuring limitations of FOR_STRUCT. The third is existence of pre-compiler directives and the complication of nested directives. Techniques were developed to overcome all these difficulties and more and these are reported. By implementing these developments, all subroutines of RELAP were restructured. Measures of code improvement relative to maintenance and development are presented.

  10. Uncertainty Analysis of RELAP5-3D

    SciTech Connect (OSTI)

    Alexandra E Gertman; Dr. George L Mesina

    2012-07-01T23:59:59.000Z

    As world-wide energy consumption continues to increase, so does the demand for the use of alternative energy sources, such as Nuclear Energy. Nuclear Power Plants currently supply over 370 gigawatts of electricity, and more than 60 new nuclear reactors have been commissioned by 15 different countries. The primary concern for Nuclear Power Plant operation and lisencing has been safety. The safety of the operation of Nuclear Power Plants is no simple matter- it involves the training of operators, design of the reactor, as well as equipment and design upgrades throughout the lifetime of the reactor, etc. To safely design, operate, and understand nuclear power plants, industry and government alike have relied upon the use of best-estimate simulation codes, which allow for an accurate model of any given plant to be created with well-defined margins of safety. The most widely used of these best-estimate simulation codes in the Nuclear Power industry is RELAP5-3D. Our project focused on improving the modeling capabilities of RELAP5-3D by developing uncertainty estimates for its calculations. This work involved analyzing high, medium, and low ranked phenomena from an INL PIRT on a small break Loss-Of-Coolant Accident as wall as an analysis of a large break Loss-Of- Coolant Accident. Statistical analyses were performed using correlation coefficients. To perform the studies, computer programs were written that modify a template RELAP5 input deck to produce one deck for each combination of key input parameters. Python scripting enabled the running of the generated input files with RELAP5-3D on INL’s massively parallel cluster system. Data from the studies was collected and analyzed with SAS. A summary of the results of our studies are presented.

  11. TOWARDSAUTOMATICMODELING OF 3D CULTURAL HERITAGE M. Andreetto, R. Bemardini, G.M. Cortelazzo,L. Lucchese

    E-Print Network [OSTI]

    Abu-Mostafa, Yaser S.

    by means of the "3D printing" devices used in mechanical rapid prototyping. Another one is that 3D objects

  12. Convergence of Ginzburg-Landau functionals in 3-d superconductivity

    E-Print Network [OSTI]

    Sisto Baldo; Robert L. Jerrard; Giandomenico Orlandi; Mete Soner

    2011-02-23T23:59:59.000Z

    In this paper we consider the asymptotic behavior of the Ginzburg- Landau model for superconductivity in 3-d, in various energy regimes. We rigorously derive, through an analysis via {\\Gamma}-convergence, a reduced model for the vortex density, and we deduce a curvature equation for the vortex lines. In a companion paper, we describe further applications to superconductivity and superfluidity, such as general expressions for the first critical magnetic field H_{c1}, and the critical angular velocity of rotating Bose-Einstein condensates.

  13. Customizing mesoscale self-assembly with 3D printing

    E-Print Network [OSTI]

    M. Poty; G. Lumay; N. Vandewalle

    2013-10-17T23:59:59.000Z

    Self-assembly due to capillary forces is a common method for generating 2D mesoscale structures from identical floating particles at the liquid-air interface. Designing building blocks to obtain a desired mesoscopic structure is a scientific challenge. We show herein that it is possible to shape the particles with a low cost 3D printer, for composing specific mesoscopic structures. Our method is based on the creation of capillary multipoles inducing either attractive or repulsive forces. Since capillary interactions can be downscaled, our method opens new ways to low cost microfabrication.

  14. A non-conforming 3D spherical harmonic transport solver

    SciTech Connect (OSTI)

    Van Criekingen, S. [Commissariat a l'Energie Atomique CEA-Saclay, DEN/DM2S/SERMA/LENR Bat 470, 91191 Gif-sur-Yvette, Cedex (France)

    2006-07-01T23:59:59.000Z

    A new 3D transport solver for the time-independent Boltzmann transport equation has been developed. This solver is based on the second-order even-parity form of the transport equation. The angular discretization is performed through the expansion of the angular neutron flux in spherical harmonics (PN method). The novelty of this solver is the use of non-conforming finite elements for the spatial discretization. Such elements lead to a discontinuous flux approximation. This interface continuity requirement relaxation property is shared with mixed-dual formulations such as the ones based on Raviart-Thomas finite elements. Encouraging numerical results are presented. (authors)

  15. Mesh component design and software integration within SUMAA3d.

    SciTech Connect (OSTI)

    Freitag, L.

    1999-01-13T23:59:59.000Z

    The requirements of distributed-memory applications that use mesh management software tools are diverse, and building software that meets these requirements represents a considerable challenge. In this paper we discuss design requirements for a general, component approach for mesh management for use within the context of solving PDE applications on parallel computers. We describe recent efforts with the SUMAA3d package motivated by a component-based approach and show how these efforts have considerably improved both the flexibility and the usability of this software.

  16. Helmholtz Theorem for Differential Forms in 3-D Euclidean Space

    E-Print Network [OSTI]

    Jose G. Vargas

    2014-04-20T23:59:59.000Z

    There are significant differences between Helmholtz and Hodge's decomposition theorems, but both share a common flavor. This paper is a first step to bring them together. We here produce Helmholtz theorems for differential 1-forms and 2-forms in 3-D Euclidean space. We emphasize their common structure in order to facilitate the understanding of another paper, soon to be made public, where a Helmholtz theorem for arbitrary differential forms in arbitrary Euclidean space is presented and which allows one to connect (actually to derive from it) an improvement of Hodge's decomposition theorem.

  17. Virtual reality 3D headset based on DMD light modulators

    SciTech Connect (OSTI)

    Bernacki, Bruce E.; Evans, Allan; Tang, Edward

    2014-06-13T23:59:59.000Z

    We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micro-mirror devices (DMD). Our approach leverages silicon micro mirrors offering 720p resolution displays in a small form-factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high resolution and low power consumption. Applications include night driving, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design is described in which light from the DMD is imaged to infinity and the user’s own eye lens forms a real image on the user’s retina.

  18. 3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK

    SciTech Connect (OSTI)

    Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D

    2006-08-24T23:59:59.000Z

    3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.

  19. Hanford Site - 100-HR-3-D | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAMGeneralGuiding Documents and LinkslDeepSelectsBC-5FR-3D

  20. 3D Printing a Classic | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 2010 ARRA Newsletters201416-17, 2015 ways to3D Printing a

  1. 3D Site Response using NLSSI | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2UraniumEnergyDepartment ofEnergyDryers;31,000 Homes Weatherized3D Site

  2. SciTech Connect: "3d printing"

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurvesSpeedingScientificofRussellTenney, Craig M" NameYang,van3d

  3. 3D Tracking at the Nanoscale | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, 2014Energy,FNeedDepartmentD3D Tracking

  4. 3D Visualization of Water Transport in Ferns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment ofAugustDecember8th Meeting of:2:1 Crack3D

  5. A 3D approach to equilibrium, stability and transport studies in RFX-mod improved regimes

    SciTech Connect (OSTI)

    Terranova, D. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Bonfiglio, D. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Boozer, A. H. [Columbia University; Cooper, W Anthony [CRPP/EPFL, Association Euratom-Suisse, Lausanne, Switzerland; Gobbin, M. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Hirshman, Steven Paul [ORNL; Lorenzini, R. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Marrelli, L. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Martines, E. [RFX, Padova, Italy; Momo, B. [RFX, Padova, Italy; Pomphrey, N. [Princeton Plasma Physics Laboratory (PPPL); Predebon, I. [RFX, Padova, Italy; Sanchez, Raul [ORNL; Spizzo, G. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Agnostini, M. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Alfier, A. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Apolloni, L. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Auriemma, F. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Baruzzo, M. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Bolzonella, T. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Bonomo, F. [Consorzio RFX, Italy; Brombin, M. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Canton, A. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Cappello, S. [Association Euratom ENEA Fusion, Consorzio RFX, Padua; Carraro, L. [Association Euratom ENEA Fusion, Consorzio RFX, Padua

    2010-01-01T23:59:59.000Z

    The full three-dimensional (3D) approach is now becoming an important issue for all magnetic confinement configurations. It is a necessary condition for the stellarator but also the tokamak and the reversed field pinch (RFP) now cannot be completely described in an axisymmetric framework. For the RFP the observation of self-sustained helical configurations with improved plasma performances require a better description in order to assess a new view on this configuration. In this new framework plasma configuration studies for RFX-mod have been considered both with tools developed for the RFP as well as considering codes originally developed for the stellarator and adapted to the RFP. These helical states are reached through a transition to a very low/reversed shear configuration leading to internal electron transport barriers. These states are interrupted by MHD reconnection events and the large T(e) gradients at the barriers indicate that both current and pressure driven modes are to be considered. Furthermore the typically flat T(e) profiles in the helical core have raised the issue of the role of electrostatic and electromagnetic turbulence in these reduced chaos regions, so that a stability analysis in the correct 3D geometry is required to address an optimization of the plasma setup. In this view the VMEC code proved to be an effective way to obtain helical equilibria to be studied in terms of stability and transport with a suite of well tested codes. In this work, the equilibrium reconstruction technique as well as the experimental evidence of 3D effects and their first interpretation in terms of stability and transport are presented using both RFP and stellarator tools.

  6. Experimental Studies of Ilmenite as a Weighting Material in Oil-based Drilling Fluids for HPHT Operations

    E-Print Network [OSTI]

    Xiao, Jie

    2013-12-06T23:59:59.000Z

    Ilmenite (FeTiO_(3)), with a mean particle size of 30 - 45 µm, was first introduced into the oil industry as weighting material in 1976. However, its use was limited mainly because of its abrasiveness to drilling equipment. Recently, a superfine...

  7. Clinical Outcome of Patients Treated With 3D Conformal Radiation Therapy (3D-CRT) for Prostate Cancer on RTOG 9406

    SciTech Connect (OSTI)

    Michalski, Jeff, E-mail: michalski@wustl.edu [Radiation Oncology, Washington University Medical School, St. Louis, Missouri (United States); Image-guided Therapy Center, St. Louis, Missouri (United States); Winter, Kathryn [Department of Statistics, Radiation Therapy Oncology Group, Philadelphia, Pennsylvania (United States); Roach, Mack [Radiation Oncology, University of California-San Francisco, San Francisco, California (United States); Markoe, Arnold [University of Miami, Miami, Florida (United States); Sandler, Howard M. [University of Michigan, Ann Arbor, Michigan (United States); Cedars-Sinai Medical Center, Los Angeles, California (United States); Ryu, Janice [Radiation Oncology, University of California-Davis, Davis, California (United States); Radiation Oncology Associates, Sacramento, California (United States); Parliament, Matthew [Radiation Oncology, University of Alberta, Edmonton, Alberta (Canada); Purdy, James A. [Radiation Oncology, University of California-Davis, Davis, California (United States); Image-guided Therapy Center, St. Louis, Missouri (United States); Valicenti, Richard K. [Radiation Oncology, University of California-Davis, Davis, California (United States); Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Cox, James D. [Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-07-01T23:59:59.000Z

    Purpose: Report of clinical cancer control outcomes on Radiation Therapy Oncology Group (RTOG) 9406, a three-dimensional conformal radiation therapy (3D-CRT) dose escalation trial for localized adenocarcinoma of the prostate. Methods and Materials: RTOG 9406 is a Phase I/II multi-institutional dose escalation study of 3D-CRT for men with localized prostate cancer. Patients were registered on five sequential dose levels: 68.4 Gy, 73.8 Gy, 79.2 Gy, 74 Gy, and 78 Gy with 1.8 Gy/day (levels I-III) or 2.0 Gy/day (levels IV and V). Neoadjuvant hormone therapy (NHT) from 2 to 6 months was allowed. Protocol-specific, American Society for Therapeutic Radiation Oncology (ASTRO), and Phoenix biochemical failure definitions are reported. Results: Thirty-four institutions enrolled 1,084 patients and 1,051 patients are analyzable. Median follow-up for levels I, II, III, IV, and V was 11.7, 10.4, 11.8, 10.4, and 9.2 years, respectively. Thirty-six percent of patients received NHT. The 5-year overall survival was 90%, 87%, 88%, 89%, and 88% for dose levels I-V, respectively. The 5-year clinical disease-free survival (excluding protocol prostate-specific antigen definition) for levels I-V is 84%, 78%, 81%, 82%, and 82%, respectively. By ASTRO definition, the 5-year disease-free survivals were 57%, 59%, 52%, 64% and 75% (low risk); 46%, 52%, 54%, 56%, and 63% (intermediate risk); and 50%, 34%, 46%, 34%, and 61% (high risk) for levels I-V, respectively. By the Phoenix definition, the 5-year disease-free survivals were 68%, 73%, 67%, 84%, and 80% (low risk); 70%, 62%, 70%, 74%, and 69% (intermediate risk); and 42%, 62%, 68%, 54%, and 67% (high risk) for levels I-V, respectively. Conclusion: Dose-escalated 3D-CRT yields favorable outcomes for localized prostate cancer. This multi-institutional experience allows comparison to other experiences with modern radiation therapy.

  8. Image Appraisal for 2D and 3D Electromagnetic Inversion

    SciTech Connect (OSTI)

    Alumbaugh, D.L.; Newman, G.A.

    1999-01-28T23:59:59.000Z

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

  9. KAM theory and the 3D Euler equation

    E-Print Network [OSTI]

    Boris Khesin; Sergei Kuksin; Daniel Peralta-Salas

    2014-07-22T23:59:59.000Z

    We prove that the dynamical system defined by the hydrodynamical Euler equation on any closed Riemannian 3-manifold $M$ is not mixing in the $C^k$ topology ($k > 4$ and non-integer) for any prescribed value of helicity and sufficiently large values of energy. This can be regarded as a 3D version of Nadirashvili's and Shnirelman's theorems showing the existence of wandering solutions for the 2D Euler equation. Moreover, we obtain an obstruction for the mixing under the Euler flow of $C^k$-neighborhoods of divergence-free vectorfields on $M$. On the way we construct a family of functionals on the space of divergence-free $C^1$ vectorfields on the manifold, which are integrals of motion of the 3D Euler equation. Given a vectorfield these functionals measure the part of the manifold foliated by ergodic invariant tori of fixed isotopy types. We use the KAM theory to establish some continuity properties of these functionals in the $C^k$-topology. This allows one to get a lower bound for the $C^k$-distance between a divergence-free vectorfield (in particular, a steady solution) and a trajectory of the Euler flow.

  10. AUTOMATED, HIGHLY ACCURATE VERIFICATION OF RELAP5-3D

    SciTech Connect (OSTI)

    George L Mesina; David Aumiller; Francis Buschman

    2014-07-01T23:59:59.000Z

    Computer programs that analyze light water reactor safety solve complex systems of governing, closure and special process equations to model the underlying physics. In addition, these programs incorporate many other features and are quite large. RELAP5-3D[1] has over 300,000 lines of coding for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. Verification ensures that a program is built right by checking that it meets its design specifications. Recently, there has been an increased importance on the development of automated verification processes that compare coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions[2]. For the first time, the ability exists to ensure that the data transfer operations associated with timestep advancement/repeating and writing/reading a solution to a file have no unintended consequences. To ensure that the code performs as intended over its extensive list of applications, an automated and highly accurate verification method has been modified and applied to RELAP5-3D. Furthermore, mathematical analysis of the adequacy of the checks used in the comparisons is provided.

  11. Realizacao domestica e escolar de foto e video 3D

    E-Print Network [OSTI]

    Jose J. Lunazzi

    2012-12-19T23:59:59.000Z

    English: Industry does not give attention to the small domestic or professional market of digital technologies for 3D images. What was done on the XX century by using photographic film is not know available to the common people, though the facilities are even better. Some technique developed in Brasil twenty years ago and the use of conventional domestic photo or video cameras allows fot making pictures and films at home by using digital conversions for editing, and two-color goggles. The anaglyphic technique, the same NASA employs to show Mars images to the public, is not employed in Brazil yet. We must analize the reasons for that. Portugues: A industria nao tem dado atencao ao mercado domestico ou profissional de pequena escala nas novas tecnologias digitais para imagem 3D. O que foi feito ao longo do seculo XX usando filme fotografico nao esta hoje ao alcance das pessoas, sendo que a facilidade de uso e muito maior. Tecnicas desenvolvidas no Brasil ha mais de vinte anos, e o uso de simples cameras convencionais de fotografia e video permitem realizar fotos e filmes caseiros por meio de conversoes digitais na edicao e o uso de oculos bicolor. A tecnica anagifica, a mesma que a NASA usa para mostrar ao publico as imagens de Marte, por exemplo, nao teve espaco no Brasil ainda. Devemos analisar os motivos que podem estar influenciando e os caminhos para mudar isso.

  12. Experimental and theoretical study of the 3d 2 Dlevel lifetimes of 40

    E-Print Network [OSTI]

    Blatt, Rainer

    excitation to the D5/2 state or incoherent shelving in the D3/2 state, and subsequent free, unperturbed1/2-P3/2; see Fig. 1 after electron shelving in the D states or by observing uv fluorescence after driving transitions from the D states to the P states. Shelving in this context means that the electron

  13. Validation of the BISON 3D Fuel Performance Code: Temperature Comparisons for Concentrically and Eccentrically Located Fuel Pellets

    SciTech Connect (OSTI)

    J. D. Hales; D. M. Perez; R. L. Williamson; S. R. Novascone; B. W. Spencer

    2013-03-01T23:59:59.000Z

    BISON is a modern finite-element based nuclear fuel performance code that has been under development at the Idaho National Laboratory (USA) since 2009. The code is applicable to both steady and transient fuel behaviour and is used to analyse either 2D axisymmetric or 3D geometries. BISON has been applied to a variety of fuel forms including LWR fuel rods, TRISO-coated fuel particles, and metallic fuel in both rod and plate geometries. Code validation is currently in progress, principally by comparison to instrumented LWR fuel rods. Halden IFA experiments constitute a large percentage of the current BISON validation base. The validation emphasis here is centreline temperatures at the beginning of fuel life, with comparisons made to seven rods from the IFA-431 and 432 assemblies. The principal focus is IFA-431 Rod 4, which included concentric and eccentrically located fuel pellets. This experiment provides an opportunity to explore 3D thermomechanical behaviour and assess the 3D simulation capabilities of BISON. Analysis results agree with experimental results showing lower fuel centreline temperatures for eccentric fuel with the peak temperature shifted from the centreline. The comparison confirms with modern 3D analysis tools that the measured temperature difference between concentric and eccentric pellets is not an artefact and provides a quantitative explanation for the difference.

  14. Extending ALE3D, an Arbitrarily Connected hexahedral 3D Code, to Very Large Problem Size (U)

    SciTech Connect (OSTI)

    Nichols, A L

    2010-12-15T23:59:59.000Z

    As the number of compute units increases on the ASC computers, the prospect of running previously unimaginably large problems is becoming a reality. In an arbitrarily connected 3D finite element code, like ALE3D, one must provide a unique identification number for every node, element, face, and edge. This is required for a number of reasons, including defining the global connectivity array required for domain decomposition, identifying appropriate communication patterns after domain decomposition, and determining the appropriate load locations for implicit solvers, for example. In most codes, the unique identification number is defined as a 32-bit integer. Thus the maximum value available is 231, or roughly 2.1 billion. For a 3D geometry consisting of arbitrarily connected hexahedral elements, there are approximately 3 faces for every element, and 3 edges for every node. Since the nodes and faces need id numbers, using 32-bit integers puts a hard limit on the number of elements in a problem at roughly 700 million. The first solution to this problem would be to replace 32-bit signed integers with 32-bit unsigned integers. This would increase the maximum size of a problem by a factor of 2. This provides some head room, but almost certainly not one that will last long. Another solution would be to replace all 32-bit int declarations with 64-bit long long declarations. (long is either a 32-bit or a 64-bit integer, depending on the OS). The problem with this approach is that there are only a few arrays that actually need to extended size, and thus this would increase the size of the problem unnecessarily. In a future computing environment where CPUs are abundant but memory relatively scarce, this is probably the wrong approach. Based on these considerations, we have chosen to replace only the global identifiers with the appropriate 64-bit integer. The problem with this approach is finding all the places where data that is specified as a 32-bit integer needs to be replaced with the 64-bit integer. that need to be replaced. In the rest of this paper we describe the techniques used to facilitate this transformation, issues raised, and issues still to be addressed. This poster will describe the reasons, methods, issues associated with extending the ALE3D code to run problems larger than 700 million elements.

  15. ALE3D Simulation and Measurement of Violence in a Fast Cookoff Experiment with LX-10

    SciTech Connect (OSTI)

    McClelland, M A; Maienschein, J L; Howard, W M; deHaven, M R

    2006-11-22T23:59:59.000Z

    We performed a computational and experimental analysis of fast cookoff of LX-10 (94.7% HMX, 5.3% Viton A) confined in a 2 kbar steel tube with reinforced end caps. A Scaled-Thermal-Explosion-eXperiment (STEX) was completed in which three radiant heaters were used to heat the vessel until ignition, resulting in a moderately violent explosion after 20.4 minutes. Thermocouple measurements showed tube temperatures as high as 340 C at ignition and LX-10 surface temperatures as high as 279 C, which is near the melting point of HMX. Three micro-power radar systems were used to measure mean fragment velocities of 840 m/s. Photonics Doppler Velocimeters (PDVs) showed a rapid acceleration of fragments over 80 {micro}s. A one-dimensional ALE3D cookoff model at the vessel midplane was used to simulate the heating, thermal expansion, LX-10 decomposition composition, and closing of the gap between the HE (High Explosive) and vessel wall. Although the ALE3D simulation terminated before ignition, the model provided a good representation of heat transfer through the case and across the dynamic gap to the explosive.

  16. Mechanism-based Representative Volume Elements (RVEs) for Predicting Property Degradations in Multiphase Materials

    SciTech Connect (OSTI)

    Xu, Wei; Sun, Xin; Li, Dongsheng; Ryu, Seun; Khaleel, Mohammad A.

    2013-02-01T23:59:59.000Z

    Quantitative understanding of the evolving thermal-mechanical properties of a multi-phase material hinges upon the availability of quantitative statistically representative microstructure descriptions. Questions then arise as to whether a two-dimensional (2D) or a three-dimensional (3D) representative volume element (RVE) should be considered as the statistically representative microstructure. Although 3D models are more representative than 2D models in general, they are usually computationally expensive and difficult to be reconstructed. In this paper, we evaluate the accuracy of a 2D RVE in predicting the property degradations induced by different degradation mechanisms with the multiphase solid oxide fuel cell (SOFC) anode material as an example. Both 2D and 3D microstructure RVEs of the anodes are adopted to quantify the effects of two different degradation mechanisms: humidity-induced electrochemical degradation and phosphorus poisoning induced structural degradation. The predictions of the 2D model are then compared with the available experimental measurements and the results from the 3D model. It is found that the 2D model, limited by its inability of reproducing the realistic electrical percolation, is unable to accurately predict the degradation of thermo-electrical properties. On the other hand, for the phosphorus poisoning induced structural degradation, both 2D and 3D microstructures yield similar results, indicating that the 2D model is capable of providing computationally efficient yet accurate results for studying the structural degradation within the anodes.

  17. Interactive initialization of 2D/3D rigid registration

    SciTech Connect (OSTI)

    Gong, Ren Hui; Güler, Özgür [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC 20010 (United States)] [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC 20010 (United States); Kürklüoglu, Mustafa [Department of Cardiac Surgery, Children's National Medical Center, Washington, DC 20010 (United States)] [Department of Cardiac Surgery, Children's National Medical Center, Washington, DC 20010 (United States); Lovejoy, John [Department of Orthopaedic Surgery and Sports Medicine, Children's National Medical Center, Washington, DC 20010 (United States)] [Department of Orthopaedic Surgery and Sports Medicine, Children's National Medical Center, Washington, DC 20010 (United States); Yaniv, Ziv, E-mail: ZYaniv@childrensnational.org [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC 20010 and Departments of Pediatrics and Radiology, George Washington University, Washington, DC 20037 (United States)] [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC 20010 and Departments of Pediatrics and Radiology, George Washington University, Washington, DC 20037 (United States)

    2013-12-15T23:59:59.000Z

    Purpose: Registration is one of the key technical components in an image-guided navigation system. A large number of 2D/3D registration algorithms have been previously proposed, but have not been able to transition into clinical practice. The authors identify the primary reason for the lack of adoption with the prerequisite for a sufficiently accurate initial transformation, mean target registration error of about 10 mm or less. In this paper, the authors present two interactive initialization approaches that provide the desired accuracy for x-ray/MR and x-ray/CT registration in the operating room setting. Methods: The authors have developed two interactive registration methods based on visual alignment of a preoperative image, MR, or CT to intraoperative x-rays. In the first approach, the operator uses a gesture based interface to align a volume rendering of the preoperative image to multiple x-rays. The second approach uses a tracked tool available as part of a navigation system. Preoperatively, a virtual replica of the tool is positioned next to the anatomical structures visible in the volumetric data. Intraoperatively, the physical tool is positioned in a similar manner and subsequently used to align a volume rendering to the x-ray images using an augmented reality (AR) approach. Both methods were assessed using three publicly available reference data sets for 2D/3D registration evaluation. Results: In the authors' experiments, the authors show that for x-ray/MR registration, the gesture based method resulted in a mean target registration error (mTRE) of 9.3 ± 5.0 mm with an average interaction time of 146.3 ± 73.0 s, and the AR-based method had mTREs of 7.2 ± 3.2 mm with interaction times of 44 ± 32 s. For x-ray/CT registration, the gesture based method resulted in a mTRE of 7.4 ± 5.0 mm with an average interaction time of 132.1 ± 66.4 s, and the AR-based method had mTREs of 8.3 ± 5.0 mm with interaction times of 58 ± 52 s. Conclusions: Based on the authors' evaluation, the authors conclude that the registration approaches are sufficiently accurate for initializing 2D/3D registration in the OR setting, both when a tracking system is not in use (gesture based approach), and when a tracking system is already in use (AR based approach)

  18. RELAP5-3D Restart and Backup Verification Testing

    SciTech Connect (OSTI)

    Dr. George L Mesina

    2013-09-01T23:59:59.000Z

    Existing testing methodology for RELAP5-3D employs a set of test cases collected over two decades to test a variety of code features and run on a Linux or Windows platform. However, this set has numerous deficiencies in terms of code coverage, detail of comparison, running time, and testing fidelity of RELAP5-3D restart and backup capabilities. The test suite covers less than three quarters of the lines of code in the relap directory and just over half those in the environmental library. Even in terms of code features, many are not covered. Moreover, the test set runs many problems long past the point necessary to test the relevant features. It requires standard problems to run to completion. This is unnecessary for features can be tested in a short-running problem. For example, many trips and controls can be tested in the first few time steps, as can a number of fluid flow options. The testing system is also inaccurate. For the past decade, the diffem script has been the primary tool for checking that printouts from two different RELAP5-3D executables agree. This tool compares two output files to verify that all characters are the same except for those relating to date, time and a few other excluded items. The variable values printed on the output file are accurate to no more than eight decimal places. Therefore, calculations with errors in decimal places beyond those printed remain undetected. Finally, fidelity of restart is not tested except in the PVM sub-suite and backup is not specifically tested at all. When a restart is made from any midway point of the base-case transient, the restart must produce the same values. When a backup condition occurs, the code repeats advancements with the same time step. A perfect backup can be tested by forcing RELAP5 to perform a backup by falsely setting a backup condition flag at a user-specified-time. Comparison of the calculations of that run and those produced by the same input w/o the spurious condition should be identical. Backup testing is more difficult the other kinds of testing described above because it requires additional coding to implement. The testing system constructed and described in this document resolves all of these issues. A matrix of test features and short-running cases that exercise them is presented. A small information file that contains sufficient data to verify calculations to the last decimal place and bit is produced. This testing system is used to test base cases (called null testing) as well as restart and backup cases. The programming that implements these new capabilities is presented.

  19. Experimental Liver Embolization with Four Different Spherical Embolic Materials: Impact on Inflammatory Tissue and Foreign Body Reaction

    SciTech Connect (OSTI)

    Stampfl, Ulrike; Stampfl, Sibylle; Bellemann, Nadine; Sommer, Christof-Matthias; Lopez-Benitez, Ruben; Thierjung, Heidi; Radeleff, Boris [University of Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Berger, Irina [University of Heidelberg, Department of Pathology (Germany); Richter, Goetz M., E-mail: goetz_richter@med.uni-heidelberg.d [University of Heidelberg, Department of Diagnostic and Interventional Radiology (Germany)

    2009-03-15T23:59:59.000Z

    We sought to describe and compare material specific inflammatory and foreign body reactions after porcine liver embolization with spherical embolic agents. In 40 animals, superselective liver embolization was performed with four different spherical embolic agents of various sizes: 40-120 {mu}m (Embozene, Embosphere), and 100-300 {mu}m, 500-700 {mu}m, and 700-900 {mu}m (Embozene, Embosphere, Bead Block, and Contour SE, respectively). After 4 or 12 weeks, inflammatory reactions were evaluated microscopically according to the Banff 97 classification. For investigation of foreign body reactions, a newly designed giant cell score was applied. Banff 97 and giant cell scores closely correlated. At 4 weeks, small Embosphere particles (100-300 {mu}m) had a significantly higher Banff 97 score than Embozene, Bead Block, and Contour SE of the corresponding size. After 12 weeks, the calculated differences were not statistically significant. Comparison between the 4-week results and the 12-week results revealed a statistically higher Banff 97 score for Embosphere 100-300 {mu}m after 4 weeks than after 12 weeks (P = 0.02). The overall foreign body reaction was pronounced after embolization with smaller particles, especially in small Embosphere particles. Giant cell numbers with Embosphere 100-300 {mu}m were statistically higher compared with the other materials of corresponding size (P < 0.0001). Inflammatory and giant cell reactions after embolization procedures depend on the embolic material. The overall inflammatory reaction was low. However, marked inflammation was associated with small Embosphere particles at 4 weeks, a finding that might be caused by the allogeneic overcoat. Correspondingly, giant cells indicating a foreign body reaction were more frequently associated with small particle sizes, especially after embolization with small Embosphere particles.

  20. Excess Foundry Sand Characterization and Experimental Investigation in Controlled Low-Strength Material and Hot-Mixing Asphalt

    SciTech Connect (OSTI)

    Paul J. Tikalsky, Hussain U. Bahia, An Deng and Thomas Snyder

    2004-10-15T23:59:59.000Z

    This report provides technical data regarding the reuse of excess foundry sand. The report addresses three topics: a statistically sound evaluation of the characterization of foundry sand, a laboratory investigation to qualify excess foundry sand as a major component in controlled low-strength material (CLSM), and the identification of the best methods for using foundry sand as a replacement for natural aggregates for construction purposes, specifically in asphalt paving materials. The survival analysis statistical technique was used to characterize foundry sand over a full spectrum of general chemical parameters, metallic elements, and organic compounds regarding bulk analysis and leachate characterization. Not limited to characterization and environmental impact, foundry sand was evaluated by factor analyses, which contributes to proper selection of factor and maximization of the reuse marketplace for foundry sand. Regarding the integration of foundry sand into CLSM, excavatable CLSM and structural CLSM containing different types of excess foundry sands were investigated through laboratory experiments. Foundry sand was approved to constitute a major component in CLSM. Regarding the integration of foundry sand into asphalt paving materials, the optimum asphalt content was determined for each mixture, as well as the bulk density, maximum density, asphalt absorption, and air voids at Nini, Ndes, and Nmax. It was found that foundry sands can be used as an aggregate in hot-mix asphalt production, but each sand should be evaluated individually. Foundry sands tend to lower the strength of mixtures and also may make them more susceptible to moisture damage. Finally, traditional anti-stripping additives may decrease the moisture sensitivity of a mixture containing foundry sand, but not to the level allowed by most highway agencies.

  1. Excess Foundry Sand Characterization and Experimental Investigation in Controlled Low-Strength Material and Hot-Mixing Asphalt

    SciTech Connect (OSTI)

    Pauul J. Tikalsky

    2004-10-31T23:59:59.000Z

    This report provides technical data regarding the reuse of excess foundry sand. The report addresses three topics: (1) a statistically sound evaluation of the characterization of foundry sand, (2) a laboratory investigation to qualify excess foundry sand as a major component in controlled low-strength material (CLSM), and (3) the identification of the best methods for using foundry sand as a replacement for natural aggregates for construction purposes, specifically in asphalt paving materials. The survival analysis statistical technique was used to characterize foundry sand over a full spectrum of general chemical parameters, metallic elements, and organic compounds regarding bulk analysis and leachate characterization. Not limited to characterization and environmental impact, foundry sand was evaluated by factor analyses, which contributes to proper selection of factor and maximization of the reuse marketplace for foundry sand. Regarding the integration of foundry sand into CLSM, excavatable CLSM and structural CLSM containing different types of excess foundry sands were investigated through laboratory experiments. Foundry sand was approved to constitute a major component in CLSM. Regarding the integration of foundry sand into asphalt paving materials, the optimum asphalt content was determined for each mixture, as well as the bulk density, maximum density, asphalt absorption, and air voids at N{sub ini}, N{sub des}, and N{sub max}. It was found that foundry sands can be used as an aggregate in hot-mix asphalt production, but each sand should be evaluated individually. Foundry sands tend to lower the strength of mixtures and also may make them more susceptible to moisture damage. Finally, traditional anti-stripping additives may decrease the moisture sensitivity of a mixture containing foundry sand, but not to the level allowed by most highway agencies.

  2. Fast 3D Surface Extraction 2 pages (including abstract)

    SciTech Connect (OSTI)

    Sewell, Christopher Meyer [Los Alamos National Laboratory; Patchett, John M. [Los Alamos National Laboratory; Ahrens, James P. [Los Alamos National Laboratory

    2012-06-05T23:59:59.000Z

    Ocean scientists searching for isosurfaces and/or thresholds of interest in high resolution 3D datasets required a tedious and time-consuming interactive exploration experience. PISTON research and development activities are enabling ocean scientists to rapidly and interactively explore isosurfaces and thresholds in their large data sets using a simple slider with real time calculation and visualization of these features. Ocean Scientists can now visualize more features in less time, helping them gain a better understanding of the high resolution data sets they work with on a daily basis. Isosurface timings (512{sup 3} grid): VTK 7.7 s, Parallel VTK (48-core) 1.3 s, PISTON OpenMP (48-core) 0.2 s, PISTON CUDA (Quadro 6000) 0.1 s.

  3. Superconductivity from D3/D7: Holographic Pion Superfluid

    E-Print Network [OSTI]

    Pallab Basu; Jianyang He; Anindya Mukherjee; Hsien-Hang Shieh

    2008-10-22T23:59:59.000Z

    We show that a D3/D7 system (at zero quark mass limit) at finite isospin chemical potential goes through a superconductor (superfluid) like phase transition. This is similar to a flavored superfluid phase studied in QCD literature, where mesonic operators condensate. We have studied the frequency dependent conductivity of the condensate and found a delta function pole in the zero frequency limit. This is an example of superconductivity in a string theory context. Consequently we have found a superfluid/supercurrent type solution and studied the associated phase diagram. The superconducting transition changes from second order to first order at a critical superfluid velocity. We have studied various properties of the superconducting system like superfluid density, energy gap, second sound etc. We investigate the possibility of the isospin chemical potential modifying the embedding of the flavor branes by checking whether the transverse scalars also condense at low temperature. This however does not seem to be the case.

  4. 3-D Simulations of Ergospheric Disk Driven Poynting Jets

    E-Print Network [OSTI]

    Brian Punsly

    2007-04-05T23:59:59.000Z

    This Letter reports on 3-dimensional simulations of Kerr black hole magnetospheres that obey the general relativistic equations of perfect magnetohydrodynamics (MHD). In particular, we study powerful Poynting flux dominated jets that are driven from dense gas in the equatorial plane in the ergosphere. The physics of which has been previously studied in the simplified limit of an ergopsheric disk. For high spin black holes, $a/M > 0.95$, the ergospheric disk is prominent in the 3-D simulations and is responsible for greatly enhanced Poynting flux emission. Any large scale poloidal magnetic flux that is trapped in the equatorial region leads to an enormous release of electromagnetic energy that dwarfs the jet energy produced by magnetic flux threading the event horizon. The implication is that magnetic flux threading the equatorial plane of the ergosphere is a likely prerequisite for the central engine of powerful FRII quasars.

  5. Modeling the GFR with RELAP5-3D

    SciTech Connect (OSTI)

    Cliff B. Davis; Theron D. Marshall; K. D. Weaver

    2005-09-01T23:59:59.000Z

    Significant improvements have been made to the RELAP5-3D computer code for analysis of the Gas Fast Reactor (GFR). These improvements consisted of adding carbon dioxide as a working fluid, improving the turbine component, developing a compressor model, and adding the Gnielinski heat transfer correlation. The code improvements were validated, generally through comparisons with independent design calculations. A model of the power conversion unit of the GFR was developed. The model of the power conversion unit was coupled to a reactor model to develop a complete model of the GFR system. The RELAP5 model of the GFR was used to simulate two transients, one initiated by a reactor trip and the other initiated by a loss of load.

  6. Exploration 3-D Seismic Field Test/Native Tribes Initiative

    SciTech Connect (OSTI)

    Carroll, Herbert B.; Chen, K.C.; Guo, Genliang; Johnson, W.I.; Reeves,T.K.; Sharma,Bijon

    1999-04-27T23:59:59.000Z

    To determine current acquisition procedures and costs and to further the goals of the President's Initiative for Native Tribes, a seismic-survey project is to be conducted on Osage tribal lands. The goals of the program are to demonstrate the capabilities, costs, and effectiveness of 3-D seismic work in a small-operator setting and to determine the economics of such a survey. For these purposes, typical small-scale independent-operator practices are being followed and a shallow target chose in an area with a high concentration of independent operators. The results will be analyzed in detail to determine if there are improvements and/or innovations which can be easily introduced in field-acquisition procedures, in processing, or in data manipulation and interpretation to further reduce operating costs and to make the system still more active to the small-scale operator.

  7. 3D Model of the Neal Hot Springs Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

  8. 3D Model of the San Emidio Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    James E. Faulds

    The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30º eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.

  9. Tuneable quantum interference in a 3D integrated circuit

    E-Print Network [OSTI]

    Zachary Chaboyer; Thomas Meany; L. G. Helt; Michael J. Withford; M. J. Steel

    2014-09-26T23:59:59.000Z

    Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract a Fisher information approaching a theoretical maximum, demonstrating the capability of the device for quantum enhanced phase measurements.

  10. 3D Model of the Neal Hot Springs Geothermal Area

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31T23:59:59.000Z

    The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

  11. 3D Model of the San Emidio Geothermal Area

    SciTech Connect (OSTI)

    James E. Faulds

    2013-12-31T23:59:59.000Z

    The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30º eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.

  12. Automating the determination of 3D protein structure

    SciTech Connect (OSTI)

    Rayl, K.D.

    1993-12-31T23:59:59.000Z

    The creation of an automated method for determining 3D protein structure would be invaluable to the field of biology and presents an interesting challenge to computer science. Unfortunately, given the current level of protein knowledge, a completely automated solution method is not yet feasible, therefore, our group has decided to integrate existing databases and theories to create a software system that assists X-ray crystallographers in specifying a particular protein structure. By breaking the problem of determining overall protein structure into small subproblems, we hope to come closer to solving a novel structure by solving each component. By generating necessary information for structure determination, this method provides the first step toward designing a program to determine protein conformation automatically.

  13. Measurements of the Solid-body Rotation of Anisotropic Particles in 3D Turbulence

    E-Print Network [OSTI]

    Marcus, Guy G; Kramel, Stefan; Ni, Rui; Voth, Greg A

    2014-01-01T23:59:59.000Z

    We introduce a new method to measure Lagrangian vorticity and the rotational dynamics of anisotropic particles in a turbulent fluid flow. We use 3D printing technology to fabricate crosses (two perpendicular rods) and jacks (three mutually perpendicular rods). Time-resolved measurements of their orientation and solid-body rotation rate are obtained from stereoscopic video images of their motion in a turbulent flow between oscillating grids with $R_\\lambda$=$91$. The advected particles have a largest dimension of 6 times the Kolmogorov length, making them a good approximation to anisotropic tracer particles. Crosses rotate like disks and jacks rotate like spheres, so these measurements, combined with previous measurements of tracer rods, allow experimental study of ellipsoids across the full range of aspect ratios. The measured mean square tumbling rate, $\\langle \\dot{p}_i \\dot{p}_i \\rangle$, confirms previous direct numerical simulations that indicate that disks tumble much more rapidly than rods. Measurement...

  14. The JLAB 3D program at 12 GeV (TMDs + GPDs)

    SciTech Connect (OSTI)

    Pisano, Silvia [Lab. Naz. Frascati, Frascati, Italy

    2015-01-01T23:59:59.000Z

    The Jefferson Lab CEBAF accelerator is undergoing an upgrade that will increase the beam energy up to 12 GeV. The three experimental Halls operating in the 6-GeV era are upgrading their detectors to adapt their performances to the new available kinematics, and a new Hall (D) is being built. The investigation of the three-dimensional nucleon structure both in the coordinate and in the momentum space represents an essential part of the 12-GeV physics program, and several proposals aiming at the extraction of related observables have been already approved in Hall A, B and C. In this proceedings, the focus of the JLab 3D program will be described, and a selection of proposals will be discussed.

  15. 3-D Printed Electrically and Optically Paced Skeletal Muscle Based Biological Machines Caroline Cvetkovic, Bioengineering

    E-Print Network [OSTI]

    Kilian, Kristopher A.

    3-D Printed Electrically and Optically Paced Skeletal Muscle Based Biological Machines Caroline Research Aims and Goals · To use 3D printing technologies to fabricate the structure of the biological

  16. Local Motors Begins Their Six Day Quest to 3D Print the 'Strati...

    Broader source: Energy.gov (indexed) [DOE]

    Local Motors Begins Their Six Day Quest to 3D Print the 'Strati' Car Live at IMTS Local Motors Begins Their Six Day Quest to 3D Print the 'Strati' Car Live at IMTS An article...

  17. asymmetric 3d in-vitro: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D...

  18. anion-templated 3d heterobimetallic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D...

  19. Programmers Manual for the PVM Coupling Interface in RELAP5-3D

    SciTech Connect (OSTI)

    Walter L Weaver III

    2005-03-01T23:59:59.000Z

    This report describes the implementation of the PVM API in the RELAP5-3D© computer code. The information in the report is intended for programmers wanting to correct or extend RELAP5-3D©.

  20. Simultaneous Detection and Registration for Ileo-Cecal Valve Detection in 3D CT Colonography

    E-Print Network [OSTI]

    Barbu, Adrian

    Simultaneous Detection and Registration for Ileo-Cecal Valve Detection in 3D CT Colonography Le Lu1-Cecal Valve (ICV) detection in both clean and tagged 3D CT colonography scans. Our final ICV detection system

  1. Design and analysis of a concrete modular housing system constructed with 3D panels

    E-Print Network [OSTI]

    Sarcia, Sam Rhea, 1982-

    2004-01-01T23:59:59.000Z

    An innovative modular house system design utilizing an alternative concrete residential building system called 3D panels is presented along with an overview of 3D panels as well as relevant methods and markets. The proposed ...

  2. Impact of 3D printing on global supply chains by 2020

    E-Print Network [OSTI]

    Bhasin, Varun

    2014-01-01T23:59:59.000Z

    This thesis aims to quantitatively estimate the potential impact of 3D Printing on global supply chains. Industrial adoption of 3D Printing has been increasing gradually from prototyping to manufacturing of low volume ...

  3. ModelCraft: Capturing Freehand Annotations and Edits on Physical 3D Models

    E-Print Network [OSTI]

    Keinan, Alon

    of affordable new desktop fabrication techniques such as 3D printing and laser cutting, physical models are used cur- rent 3D printing technology. ACM CLASSIFICATION: H5.2 [Information interfaces and presentation

  4. THINKING LIKE ARCHIMEDES WITH A 3D PRINTER OLIVER KNILL AND ELIZABETH SLAVKOVSKY

    E-Print Network [OSTI]

    Knill, Oliver

    , where 3D printing is becoming popular and affordable. 1. Introduction Archimedes, whose 2300th birthday education, 3D printing, Rapid prototyping, Greek mathematics. 1 #12;2 OLIVER KNILL AND ELIZABETH SLAVKOVSKY

  5. 3D microstructure modeling of compressed fiber-based Gerd Gaiselmanna,

    E-Print Network [OSTI]

    Schmidt, Volker

    consideration of compression conditions as found in fuel cells. Given the input of a 3D microstructure of some compression states, an optimal vector field is estimated by simulated annealing. The model is applied to 3D im

  6. NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration

    E-Print Network [OSTI]

    Bentz, Dale P.

    NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration and Microstructure Development Modeling Package. Version 3.0 Dale P. Bentz #12;NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration

  7. 3D Cobra, Renewable Energy, and Green Button at the National...

    Energy Savers [EERE]

    3D Cobra, Renewable Energy, and Green Button at the National Maker Faire 3D Cobra, Renewable Energy, and Green Button at the National Maker Faire June 12, 2015 - 9:15am Addthis The...

  8. CAD Tools for Creating Space-filing 3D Escher Tiles

    E-Print Network [OSTI]

    Howison, Mark

    2010-01-01T23:59:59.000Z

    Space-filing 3D Escher Tiles Mark Howison 1 and Carlo H.decorative solids that tile 3-space in a regular, isohedralrepresentations of 3D tiles, including a Java implementation

  9. Evaluation of PC-ISO for customized, 3D printed, gynecologic 192Ir HDR brachytherapy applicators

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    2015 253 Cunha et al. : PC-ISO for 3D printed brachytherapy1, 2015 Evaluation of PC-ISO for customized, 3D printed,attenuation properties of PC-ISO, a commercially available,

  10. A New Porcine Sponge Material for Temporary Embolization: An Experimental Short-Term Pilot Study in Swine

    SciTech Connect (OSTI)

    Louail, B.; Sapoval, M. [Hopital Europeen Georges Pompidou, Department of Cardiovascular Radiology (France)], E-mail: marc.sapoval@egp.aphp.fr; Bonneau, M. [Centre de Recherche en Imagerie Interventionnelle APHP- INRA (France); Wasseff, M. [Hopital Lariboisiere, Department of Pathology (France); Senechal, Q.; Gaux, J-C. [Hopital Europeen Georges Pompidou, Department of Cardiovascular Radiology (France)

    2006-10-15T23:59:59.000Z

    Purpose. To evaluate the safety and efficacy of a porcine-derived gelfoam, Curaspon, for the temporary occlusion of the visceral arteries. Methods. Curaspon was used for the selective embolization of segmentary hepatic, unilateral polar renal, and single lumbar arteries of 10 pigs under general anesthesia. Sequential angiographic checks were carried out and the pigs killed between 3 days and 2 weeks later. Macroscopic and microscopic studies using standard techniques were used to evaluate the immediate efficacy of embolization, duration of and completeness of recanalization on angiography, macroscopic appearance of target-organ ischemia, and microscopic analysis of inflammatory reaction. Results. Immediate arterial occlusion was obtained in all cases. Renal arteries showed a total recanalization in 63% of cases on day 7 and 100% on day 14. Total hepatic recanalization was obtained in 100% of animals on day 7. All lumbar arteries were recanalized on day 14. Microscopic analysis in the kidney revealed a mild inflammatory reaction and a progressive lysis of the Curaspon (87% of samples at day 3 showed a persistence of Curaspon and 5% at day 14). In some cases, localized and partial destruction of the arterial wall was visualized. In the liver the same patterns were observed but resolved more completely and more rapidly. Conclusions. Curaspon is an efficient material for the temporary occlusion of visceral and parietal arteries in pigs. However, arterial aneurysms were observed and a relationship of these with the material cannot be excluded.

  11. Does DOF Separation on Elastic Devices Improve User 3D Steering Task Performance?

    E-Print Network [OSTI]

    Casiez, Géry

    Does DOF Separation on Elastic Devices Improve User 3D Steering Task Performance? G´ery CasiezHaptic in a 3D steering task. Unlike other devices intended to interact in 3D with one end-effector, the Digi the manipulation of a stylus or thimble, and the SpaceMouse [2] is an elastic device to rate control objects in 3D

  12. The roughness of stylolites: Implications of 3D high resolution topography measurements

    E-Print Network [OSTI]

    Boyer, Edmond

    diagenesis and metamorphism that develop after their initiation. In this Letter we show the first 3D high

  13. Direct-Write Assembly of 3D Hydrogel Scaffolds for Guided Cell Growth

    E-Print Network [OSTI]

    Lewis, Jennifer

    reservoir-induced coagulation to enable 3D printing,[14] we report the creation of hydrogel inks that can

  14. Final report: high resolution lensless 3D imaging of nanostructures with coherent x-rays

    SciTech Connect (OSTI)

    Jacobsen, Chris

    2014-12-07T23:59:59.000Z

    Final report on the project "High resolution lensless 3D imaging of nanostructures with coherent x-rays"

  15. A Desktop 3D Printer in Safety-Critical Java Trur Biskopst Strm

    E-Print Network [OSTI]

    Schoeberl, Martin

    A Desktop 3D Printer in Safety-Critical Java Tórur Biskopstø Strøm Department of Informatics according to the specification. In this paper we present a 3D printer and its safety-critical Java level 1 evaluate the specification by implementing a RepRap 3D desktop printer as a use case. A RepRap is a desktop

  16. Spheree: A 3D Perspective-Corrected Interactive Spherical Scalable Display Ferreira, F.q

    E-Print Network [OSTI]

    British Columbia, University of

    in their applications or even print them with a 3D printer. Thus, Spheree plays a key role in realizing a completeSpheree: A 3D Perspective-Corrected Interactive Spherical Scalable Display Ferreira, F.q , Cabral to support head-coupled rendering to provide parallax-based 3D depth cues. Spheree is relatively compact

  17. Construction of suitable weak solutions for the 3D incompressible NSEs

    E-Print Network [OSTI]

    Guermond, Jean-Luc

    Construction of suitable weak solutions for the 3D incompressible NSEs Jean-Luc Guermond Department Univ. October 24, 2008 Jean-Luc Guermond Construction of suitable weak solutions for the 3D NSEs #12;Outline 1 BASIC FACTS ABOUT THE 3D NSE Jean-Luc Guermond Construction of suitable weak solutions for the 3

  18. Planning Curvature and Torsion Constrained Ribbons in 3D with Application to Intracavitary Brachytherapy

    E-Print Network [OSTI]

    Abbeel, Pieter

    multiple smooth channels through a 3D printed structure for a healthcare applica- tion and is relevant 3D printed implants to temporarily insert high-dose radioactive sources to reach and cover tumors] demonstrated that 3D printing can be used to design customized implants that conform to the patient anatomy

  19. ROBOPuppet: Low-Cost, 3D Printed Miniatures for Teleoperating Full-Size Robots

    E-Print Network [OSTI]

    Hauser, Kris

    ROBOPuppet: Low-Cost, 3D Printed Miniatures for Teleoperating Full-Size Robots Anna Eilering of the robot links, which are then 3D printed and assembled. This procedure is generalizable to variety to target robot. smaller scale suitable for desktop use. The puppet is a 3D- printed miniature of the target

  20. Build-to-Last: Strength to Weight 3D Printed Objects Andrei Sharf2

    E-Print Network [OSTI]

    Sharf, Andrei

    Build-to-Last: Strength to Weight 3D Printed Objects Lin Lu1 Andrei Sharf2 Haisen Zhao1 Yuan Wei1-right). The 3D printed hollowed solid is built-to-last using our interior structure (right). Abstract stress. Thus, our system allows to build-to-last 3D printed objects with large control over

  1. Planning Locally Optimal, Curvature-Constrained Trajectories in 3D using Sequential Convex Optimization

    E-Print Network [OSTI]

    Abbeel, Pieter

    , bevel-tip medical needles, planning curvature-constrained channels in 3D printed implants for targeted for perturbations. Our ap- proach can also be used for designing optimized channel layouts within 3D printed is the design of multiple bounded curvature channels in intracavitary 3D printed im- plants through which

  2. Custom 3D-Printed Rollers for Frieze Pattern Cookies Robert Hanson

    E-Print Network [OSTI]

    Custom 3D-Printed Rollers for Frieze Pattern Cookies Robert Hanson Towson University, Emeritus a method for converting images of repeating patterns, e.g., Roman friezes or Escher tessellations, into 3D-printed the world of mathematics and the art of cooking. Fractal cookies based on stretching and folding [1] and 3D-printed

  3. A Series of Tubes: Adding Interactivity to 3D Prints Using Internal Pipes

    E-Print Network [OSTI]

    Zakhor, Avideh

    A Series of Tubes: Adding Interactivity to 3D Prints Using Internal Pipes Valkyrie Savage valkyrie flexibility and potential. Author Keywords Fabrication; 3D Printing; Interactive Objects; Design Tools ACM. Recently, human-computer interaction researchers have be- gun to explore adding interaction to 3D printed

  4. Topological Reconstruction of Complex 3D Buildings and Automatic Extraction of Levels of Detail

    E-Print Network [OSTI]

    Boyer, Edmond

    and outdoor topology of a detailed 3D building model from its geometry and to extract different levelsTopological Reconstruction of Complex 3D Buildings and Automatic Extraction of Levels of Detail A is needed for most of the applications using 3D building models after the architects design it. While

  5. Fast 3D Brain Segmentation Using Dual-Front Active Contours with Optional User-Interaction

    E-Print Network [OSTI]

    Cohen, Laurent

    Fast 3D Brain Segmentation Using Dual-Front Active Contours with Optional User-Interaction Hua Li1 attributes of 3D brain segmentation algorithms in- clude robustness, accuracy, computational efficiency result. We propose a novel 3D brain cortex segmentation procedure utilizing dual- front active contours

  6. USING OF NON-EXPENSIVE 3D SCANNING INSTRUMENTS FOR CULTURAL HERITAGE DOCUMENTATION

    E-Print Network [OSTI]

    Stockman, George

    of Monuments Research (Faculty of Nuclear Physics and Physical Engineering), new methods of 3D objects documentation are tested on school level. There are two types of 3D scanners under development: the first type of Monuments Research (Faculty of Nuclear Physics and Physical Engineering), new methods of 3D objects

  7. ORIGINAL PAPER Impact of 3-D topography on surface radiation budget over

    E-Print Network [OSTI]

    Liou, K. N.

    ORIGINAL PAPER Impact of 3-D topography on surface radiation budget over the Tibetan Plateau Wei: 29 September 2012 # Springer-Verlag 2012 Abstract The 3-D complex topography effect on the sur- face on the basis of "exact" 3-D Monte Carlo photon tracing sim- ulations, which use 90 m topography data

  8. Interweaving 3D Network with Double Helical Tubes Filled by 1D Coordination Polymer Chains

    E-Print Network [OSTI]

    Gao, Song

    Interweaving 3D Network with Double Helical Tubes Filled by 1D Coordination Polymer Chains E Yang- tecture interpenetrated by three types of coordination polymer motifs. Two independent {[Cu2(mellitate)(4,4-bpy)(H2O)2]2- } 3D polymers incorporating helical substructures were interwoven into a 3D network

  9. Using a Randomized Path Planner to Generate 3D Task Demonstrations of Robot Operations

    E-Print Network [OSTI]

    Kabanza, Froduald

    Using a Randomized Path Planner to Generate 3D Task Demonstrations of Robot Operations Khaled for generating 3D tasks demonstrations involving a teleoperated robot arm on the International Space Station (ISS 3D animations that show how to perform a given task with the SSRMS. The current ATDG prototype

  10. A System for 3D Error Visualization and Assessment of Digital Elevation Models

    E-Print Network [OSTI]

    Gousie, Michael B.

    A System for 3D Error Visualization and Assessment of Digital Elevation Models Michael B. Gousie that displays a DEM and possible errors in 3D, along with its associated contour or sparse data and detail. The cutting tool is semi-transparent so that the profile is seen in the context of the 3D surface

  11. Reconstructing Plants in 3D from a Single Image using Analysis-by-Synthesis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Reconstructing Plants in 3D from a Single Image using Analysis-by-Synthesis J´er^ome Gu´enard1 G from images. However, due to high complexity of plant topology, dedicated methods for generating 3D plant models must be devised. We propose to generate a 3D model of a plant, using an analysis

  12. 3D WEB GRAPHICS WITHOUT PLUGINS USING VML A Master Project

    E-Print Network [OSTI]

    Pollett, Chris

    , allows viewing 3D graphics on the web without plugins. This style sheet saves the users time and energy3D WEB GRAPHICS WITHOUT PLUGINS USING VML A Master Project Presented to The faculty, a plugin is required to view 3D graphics in the most common web browsers, Internet Explorer and Netscape

  13. Testprint gemaakt met een zelfgemaakte 3D printer (Reprap) in het "advanced prototyping for design" project

    E-Print Network [OSTI]

    " project Lamp ontworpen en gemaakt tijdens het "lightstyle" project 3D print van een sieraad, gebaseerd op! #12;3D prints gemaakt in gips bij Bouwkunde CT scan van middeleeuws glas om een digitale reproductie, modeling, data massaging, 3D printing. · Objet trouvé Prototyping in verschillende domeinen en hoe domein

  14. Forensic Retrieval of Striations on Fired Bullets by using 3D Geometric Data

    E-Print Network [OSTI]

    Tokyo, University of

    Forensic Retrieval of Striations on Fired Bullets by using 3D Geometric Data Atsuhiko Banno-based approaches, we can utilize 3D geometric data of tool marks that are free from lighting condition propose a two-stage comparison method focused on 3D geometric. At first, we have aligned global shapes

  15. 3D Cinematography Principles and Their Applications to Stereoscopic Media Processing

    E-Print Network [OSTI]

    Ouhyoung, Ming

    3D Cinematography Principles and Their Applications to Stereoscopic Media Processing Chun-Wei Liu Taiwan University Taipei, Taiwan cyy@csie.ntu.edu.tw ABSTRACT This paper introduces 3D cinematography show that by incorporating 3D cinematography prin- ciples, the proposed methods yield more comfortable

  16. Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities

    E-Print Network [OSTI]

    Barrash, Warren

    Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping August 2013; accepted 7 September 2013; published 13 November 2013. [1] 3-D Hydraulic tomography (3-D HT (primarily hydraulic conductivity, K) is estimated by joint inversion of head change data from multiple

  17. Directed cell growth and alignment on protein-patterned 3D hydrogels with stereolithography

    E-Print Network [OSTI]

    Bashir, Rashid

    - assisted, three-dimensional (3D) printing system used for creating complex structures from July 2012) The stereolithography apparatus (SLA) is a computer-assisted, three-dimensional (3D-use parts and preoperative surgical plans (Barker et al. 1994, Winder and Bibb 2005). The SLA and other 3D

  18. Production of 3D Structures in Printing Veronika Chovancova*, Alexandra Pekarovicova* and Paul D. Fleming III*

    E-Print Network [OSTI]

    Fleming, Paul D. "Dan"

    Production of 3D Structures in Printing Veronika Chovancova*, Alexandra Pekarovicova* and Paul D from our laboratory show a modified formula of hot melt ink that can be used in 3D thermal wax printing. Fleming III* Keywords: 3D Structure, Hot Melt, Blowing Agents, Calorimetry Abstract The ability to form

  19. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 1 A Rigorous and Efficient Analysis of 3D Printed

    E-Print Network [OSTI]

    Aksun, M. Irsadi

    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 1 A Rigorous and Efficient Analysis of 3D Printed of structures with multiple vertical strips running in multilayer environment. Index Terms-- Multilayered 3D is developed to accurately simulate 3D structures in multilayer environment [1], and to simultaneously simulate

  20. Department of Mechanical Engineering Spring 2013 3D Printed Medical Device

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical Engineering Spring 2013 3D Printed Medical Device Overview This project aimed to develop a 3D-printed everting structure for use in conjunction with current endosurgical/concept and that our main form of manufacturing revolved around 3D-printing, which allowed us to quickly make

  1. Manipulating complex network structures in virtual reality and 3D printing of the results

    E-Print Network [OSTI]

    Verschure, Paul

    Manipulating complex network structures in virtual reality and 3D printing of the results Alberto the results at any time for direct 3D printing. 1. INTRODUCTION Although its first appearance on the market can be tracked up to three decades ago, stereolithography (also known as 3D printing) has become

  2. Hot Melt Inks for 3D Printing Veronika Chovancova*, Alexandra Pekarovicova* and Paul D. Fleming III

    E-Print Network [OSTI]

    Fleming, Paul D. "Dan"

    Hot Melt Inks for 3D Printing Veronika Chovancova*, Alexandra Pekarovicova* and Paul D. Fleming III for 3D printing comprises different waxes, tackifier and plasticizer resins, rheology modifiers, and UV rheological (or flow) behavior. 1 3D printing, direct ink-jet printing, and related approaches such as hot

  3. Cost-effective Printing of 3D Objects with Skin-Frame Structures Weiming Wang,

    E-Print Network [OSTI]

    Deng, Jiansong

    ; Keywords: 3D printing, fabrication, frame structure, sparsity op- timization Corresponding author: yangzw@ustc.edu.cn (Zhouwang Yang) 1 Introduction Additive manufacturing (3D printing) enables fabrication of physi- cal techniques of 3D printing has received considerable attention for assisting users to generate desired

  4. Make It Stand: Balancing Shapes for 3D Fabrication Romain Prvost1

    E-Print Network [OSTI]

    Lévy, Bruno

    modeling Keywords: Static equilibrium, structural stability, 3D printing, optimization, interactive shape intended, stable pose. With the advent of 3D printing technologies, it becomes very simple to produce in a computer this is of no consequence: the laws of physics do not apply. However, fabrication through 3D

  5. Printed Optics: 3D Printing of Embedded Optical Elements for Interactive Devices

    E-Print Network [OSTI]

    Poupyrev, Ivan

    Printed Optics: 3D Printing of Embedded Optical Elements for Interactive Devices Karl D.D. Willis1 d Figure 1: Custom optical elements are fabricated with 3D printing and embedded in interactive), and embedded optoelectronics (d). ABSTRACT We present an approach to 3D printing custom optical ele- ments

  6. Tracking @stemxcomet: Teaching Programming to Blind Students via 3D Printing, Crisis Management, and Twitter

    E-Print Network [OSTI]

    Kane, Shaun K.

    r Tracking @stemxcomet: Teaching Programming to Blind Students via 3D Printing, Crisis Management such as 3D printing offer an opportunity for students to write programs that produce tactile objects and suggests future directions for integrating data analysis and 3D printing into programming instruction

  7. Customization and 3D Printing: A Challenging Playground for Software Product Lines

    E-Print Network [OSTI]

    Boyer, Edmond

    Customization and 3D Printing: A Challenging Playground for Software Product Lines Mathieu Acher firstname.lastname@irisa.fr ABSTRACT 3D printing is gaining more and more momentum to build customized. We provide hints that SPL-alike techniques are practically used in 3D printing and thus relevant

  8. Bridging the Gap: Automated Steady Scaffoldings for 3D Printing Jrmie Dumas

    E-Print Network [OSTI]

    Lévy, Bruno

    Bridging the Gap: Automated Steady Scaffoldings for 3D Printing Jérémie Dumas Université de Figure 1: The upper leg of the Poppy robot (www.poppy-project.org) cannot be 3D printed on low cost FDM usage. Abstract Fused Filament Fabrication (FFF) is the process of 3D printing ob- jects from melted

  9. SCALING-UP OF NEW GENERATION OF 3D FLEXIBLE ORGANIC SOLAR CELLS

    E-Print Network [OSTI]

    Kassegne, Samuel Kinde

    SCALING-UP OF NEW GENERATION OF 3D FLEXIBLE ORGANIC SOLAR CELLS _______________ A Thesis Presented Generation of 3D Flexible Organic Solar Cell _____________________________________________ Samuel Kinde Engineering San Diego State University, 2012 Scaling-up of New Generation of 3D Flexible Organic Solar Cells

  10. 3-D Point Cloud Generation from Rigid and Flexible Stereo Vision Systems

    E-Print Network [OSTI]

    Kochersberger, Kevin

    3-D Point Cloud Generation from Rigid and Flexible Stereo Vision Systems Nathaniel J. Short Thesis Calibration, Terrain Mapping Copyright 2009 #12;3-D Point Cloud Generation from Rigid and Flexible Stereo of tools have been developed to generate 3-D point clouds from rigid and flexible stereo systems, along

  11. Temperature distributions in the laser-heated diamond anvil cell from 3-D numerical modeling

    SciTech Connect (OSTI)

    Rainey, E. S. G.; Kavner, A. [Department of Earth and Space Sciences, University of California, Los Angeles, California 90095 (United States); Hernlund, J. W. [Department of Earth and Planetary Science, University of California, Berkeley, California 94720 (United States); Earth-Life Science Institute, Megoro, Tokyo 152-8551 (Japan)

    2013-11-28T23:59:59.000Z

    We present TempDAC, a 3-D numerical model for calculating the steady-state temperature distribution for continuous wave laser-heated experiments in the diamond anvil cell. TempDAC solves the steady heat conduction equation in three dimensions over the sample chamber, gasket, and diamond anvils and includes material-, temperature-, and direction-dependent thermal conductivity, while allowing for flexible sample geometries, laser beam intensity profile, and laser absorption properties. The model has been validated against an axisymmetric analytic solution for the temperature distribution within a laser-heated sample. Example calculations illustrate the importance of considering heat flow in three dimensions for the laser-heated diamond anvil cell. In particular, we show that a “flat top” input laser beam profile does not lead to a more uniform temperature distribution or flatter temperature gradients than a wide Gaussian laser beam.

  12. Sandia National Laboratories: 3-D laser projection system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    laser projection system Sandia Participated in AMII to Support American-Made Wind-Turbine Blades On December 3, 2014, in Computational Modeling & Simulation, Energy, Materials...

  13. Min-wuk Lee 1 A fixedA fixed--point 3D graphics library withpoint 3D graphics library with

    E-Print Network [OSTI]

    Yoo, Hoi-Jun

    Outline Introduction Motivation MobileGL: Mobile 3D graphics library Energy-efficient CPU cache Energy-optimization for mobile 3D graphics Software system : High speed graphics library (MobileGL) Hardware system : Energy-cost target High speed graphics library Energy-efficient CPU cache system High quality target High speed

  14. Ranking on Cross Domain Manifold forRanking on Cross-Domain Manifold for Sketch-based 3D model Retrieval

    E-Print Network [OSTI]

    Ohbuchi, Ryutarou

    printers,... ­ User generated. T i bl 3D h· Trimble 3D warehouse... 3D model retrieval is essential scanners, 3D printers,... ­ User generated. T i bl 3D h· Trimble 3D warehouse... 3D model retrievalRanking on Cross Domain Manifold forRanking on Cross-Domain Manifold for Sketch-based 3D model

  15. 3D Model of the Tuscarora Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern portion of the model are tilted 5-30 degrees toward the Independence Mountains fault zone. Fault blocks in the western portion of the model are tilted toward steeply east-dipping normal faults. These opposing fault block dips define a shallow extensional anticline. Geothermal production is from 4 closely-spaced wells, that exploit a west-dipping, NNE-striking fault zone near the axial part of the accommodation zone.

  16. 3D Model of the Tuscarora Geothermal Area

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31T23:59:59.000Z

    The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern portion of the model are tilted 5-30 degrees toward the Independence Mountains fault zone. Fault blocks in the western portion of the model are tilted toward steeply east-dipping normal faults. These opposing fault block dips define a shallow extensional anticline. Geothermal production is from 4 closely-spaced wells, that exploit a west-dipping, NNE-striking fault zone near the axial part of the accommodation zone.

  17. Classical conditioning in an immersive 3D interactive

    E-Print Network [OSTI]

    Verschure, Paul

    . #12;Results: EDR Electrodermal response recorded from one subject exposed to the experimental -Psychophysiological data recorded from the glove (EDR) must be cleaned to remove artifacts and analyzed #12;Future

  18. The 3D Geometry of Dark Matter Halos

    E-Print Network [OSTI]

    J. -F. Becquaert; F. Combes

    1997-04-10T23:59:59.000Z

    The thickness of the neutral hydrogen layer, coupled with the rotation curve, traces the outer dark matter potential. We estimate the amplitude of the flaring in spiral galaxies from a 3D model of the HI gas. Warps in particular are explicitly parametrized in the form of an harmonical density wave. Applying our method to the galaxy NGC 891, the only model that could fit the observations, and in particular the HI at large height above the plane, includes a strong warp with a line of node almost coinciding with the line of sight. This high-Z HI is not observed at the most extreme velocity channels, those corresponding to high rotational velocities. This is accounted for by the model, since orbits in the tilted planes are not circular, but elongated, with their minor axis in the galaxy plane. Their velocity on the major axis (i.e. at their maximal height above the plane) is then 30% less than in the plane. We finally connect the modelled vertical outer gaseous distribution to the dark matter through hydrodynamical and gravitational equations. Under the assumption of isotropy of the gaseous velocity dispersion, we conclude on a very flattened halo geometry for the galaxy NGC 891 ($q \\approx 0.2$), while a vertical velocity dispersion smaller that the radial one would lead to a less flattened Dark Matter Halo ($q \\approx 0.4-0.5$). Both results however suggests that dark matter is dissipative or has been strongly influenced by the gas dynamics.

  19. 3-D Finite Element Analyses of the Egan Cavern Field

    SciTech Connect (OSTI)

    Klamerus, E.W.; Ehgartner, B.L.

    1999-02-01T23:59:59.000Z

    Three-dimensional finite element analyses were performed for the two gas-filled storage caverns at the Egan field, Jennings dome, Louisiana. The effects of cavern enlargement on surface subsidence, storage loss, and cavern stability were investigated. The finite element model simulated the leaching of caverns to 6 and 8 billion cubic feet (BCF) and examined their performance at various operating conditions. Operating pressures varied from 0.15 psi/ft to 0.9 psi/ft at the bottom of the lowest cemented casing. The analysis also examined the stability of the web or pillar of salt between the caverns under differential pressure loadings. The 50-year simulations were performed using JAC3D, a three dimensional finite element analysis code for nonlinear quasistatic solids. A damage criterion based on onset of dilatancy was used to evaluate cavern instability. Dilation results from the development of microfractures in salt and, hence, potential increases in permeability onset occurs well before large scale failure. The analyses predicted stable caverns throughout the 50-year period for the range of pressures investigated. Some localized salt damage was predicted near the bottom walls of the caverns if the caverns are operated at minimum pressure for long periods of time. Volumetric cavern closures over time due to creep were moderate to excessive depending on the salt creep properties and operating pressures. However, subsidence above the cavern field was small and should pose no problem, to surface facilities.

  20. Solution accelerators for large scale 3D electromagnetic inverse problems

    SciTech Connect (OSTI)

    Newman, Gregory A.; Boggs, Paul T.

    2004-04-05T23:59:59.000Z

    We provide a framework for preconditioning nonlinear 3D electromagnetic inverse scattering problems using nonlinear conjugate gradient (NLCG) and limited memory (LM) quasi-Newton methods. Key to our approach is the use of an approximate adjoint method that allows for an economical approximation of the Hessian that is updated at each inversion iteration. Using this approximate Hessian as a preconditoner, we show that the preconditioned NLCG iteration converges significantly faster than the non-preconditioned iteration, as well as converging to a data misfit level below that observed for the non-preconditioned method. Similar conclusions are also observed for the LM iteration; preconditioned with the approximate Hessian, the LM iteration converges faster than the non-preconditioned version. At this time, however, we see little difference between the convergence performance of the preconditioned LM scheme and the preconditioned NLCG scheme. A possible reason for this outcome is the behavior of the line search within the LM iteration. It was anticipated that, near convergence, a step size of one would be approached, but what was observed, instead, were step lengths that were nowhere near one. We provide some insights into the reasons for this behavior and suggest further research that may improve the performance of the LM methods.

  1. Airport Viz - a 3D Tool to Enhance Security Operations

    SciTech Connect (OSTI)

    Koch, Daniel B [ORNL

    2006-01-01T23:59:59.000Z

    In the summer of 2000, the National Safe Skies Alliance (NSSA) awarded a project to the Applied Visualization Center (AVC) at the University of Tennessee, Knoxville (UTK) to develop a 3D computer tool to assist the Federal Aviation Administration security group, now the Transportation Security Administration (TSA), in evaluating new equipment and procedures to improve airport checkpoint security. A preliminary tool was demonstrated at the 2001 International Aviation Security Technology Symposium. Since then, the AVC went on to construct numerous detection equipment models as well as models of several airports. Airport Viz has been distributed by the NSSA to a number of airports around the country which are able to incorporate their own CAD models into the software due to its unique open architecture. It provides a checkpoint design and passenger flow simulation function, a layout design and simulation tool for checked baggage and cargo screening, and a means to assist in the vulnerability assessment of airport access points for pedestrians and vehicles.

  2. GPU-accelerated denoising of 3D magnetic resonance images

    SciTech Connect (OSTI)

    Howison, Mark; Wes Bethel, E.

    2014-05-29T23:59:59.000Z

    The raw computational power of GPU accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. In practice, applying these filtering operations requires setting multiple parameters. This study was designed to provide better guidance to practitioners for choosing the most appropriate parameters by answering two questions: what parameters yield the best denoising results in practice? And what tuning is necessary to achieve optimal performance on a modern GPU? To answer the first question, we use two different metrics, mean squared error (MSE) and mean structural similarity (MSSIM), to compare denoising quality against a reference image. Surprisingly, the best improvement in structural similarity with the bilateral filter is achieved with a small stencil size that lies within the range of real-time execution on an NVIDIA Tesla M2050 GPU. Moreover, inappropriate choices for parameters, especially scaling parameters, can yield very poor denoising performance. To answer the second question, we perform an autotuning study to empirically determine optimal memory tiling on the GPU. The variation in these results suggests that such tuning is an essential step in achieving real-time performance. These results have important implications for the real-time application of denoising to MR images in clinical settings that require fast turn-around times.

  3. Algorithms and Automated Material Handling Systems Design for Stacking 3D Irregular Stone Pieces 

    E-Print Network [OSTI]

    Ko, Ming-Cheng

    2011-10-21T23:59:59.000Z

    one is based on the approximated weight of the stone. An automatic real-time stacking system including pneumatic devices, sensors, relays, a conveyor, a programmable logic controller, a robotic arm, and a vision system was developed for this study...

  4. Algorithms and Automated Material Handling Systems Design for Stacking 3D Irregular Stone Pieces

    E-Print Network [OSTI]

    Ko, Ming-Cheng

    2011-10-21T23:59:59.000Z

    , but also minimizes the irregular boundary in the unused container, and thus 6 helps for further application. In addition, the authors also make a comparison with Jakobs [11], whose heuristic and genetic algorithm does not consider placing...

  5. 3D Object Representations for Fine-Grained Categorization: Supplementary Material

    E-Print Network [OSTI]

    Li, Fei-Fei

    Planck Institute for Informatics 1. car-197 and BMW-10 class lists In Tab. 1 we give the classes and number of images in each class for BMW-10. In Tab. 2 we do the same for car- 197. A coarse category equal size. Class Num. Images BMW 3 Series Sedan 2007 53 BMW 3 Series Sedan 2009 53 BMW 3 Series Sedan

  6. Novel 3d-4f Magnetic Intermetallic Materials by Design | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register / Vol. 77, No. 23807 1

  7. Polymer Solar Cells: New Materials, 3D Morphology, and Tandem Devices |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysicsPits |Regulations PolicyStories

  8. Experimental Design for a Macrofoam-Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials

    SciTech Connect (OSTI)

    Piepel, Gregory F.; Hutchison, Janine R.

    2014-12-05T23:59:59.000Z

    This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam-swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (culture and polymerase chain reaction) will be used. Only one previous study has investigated how the false negative rate depends on test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gaps in the available information on the performance of macrofoam-swab sampling at low concentrations.

  9. Experimental Design for a Macrofoam Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials

    SciTech Connect (OSTI)

    Piepel, Gregory F.; Hutchison, Janine R.

    2014-04-16T23:59:59.000Z

    This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (plating/counting and polymerase chain reaction) will be used. Only one previous study has investigated false negative as a function of affecting test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gaps in the available information on the performance of macrofoam swab sampling at low concentrations.

  10. Classifying Supersymmetric Solutions in 3D Maximal Supergravity

    E-Print Network [OSTI]

    Jan de Boer; Daniel R. Mayerson; Masaki Shigemori

    2014-11-18T23:59:59.000Z

    String theory contains various extended objects. Among those, objects of codimension two (such as the D7-brane) are particularly interesting. Codimension two objects carry non-Abelian charges which are elements of a discrete U-duality group and they may not admit a simple space-time description, in which case they are known as exotic branes. A complete classification of consistent codimension two objects in string theory is missing, even if we demand that they preserve some supersymmetry. As a step toward such a classification, we study the supersymmetric solutions of 3D maximal supergravity, which can be regarded as approximate description of the geometry near codimension two objects. We present a complete classification of the types of supersymmetric solutions that exist in this theory. We found that this problem reduces to that of classifying nilpotent orbits associated with the U-duality group, for which various mathematical results are known. We show that the only allowed supersymmetric configurations are 1/2, 1/4, 1/8, and 1/16 BPS, and determine the nilpotent orbits that they correspond to. One example of 1/16 BPS configurations is a generalization of the MSW system, where momentum runs along the intersection of seven M5-branes. On the other hand, it turns out exceedingly difficult to translate this classification into a simple criterion for supersymmetry in terms of the non-Abelian (monodromy) charges of the objects. For example, it can happen that a supersymmetric solution exists locally but cannot be extended all the way to the location of the object. To illustrate the various issues that arise in constructing supersymmetric solutions, we present a number of explicit examples.

  11. THREE DIMENSIONAL INTEGRATED CHARACTERIZATION AND ARCHIVING SYSTEM (3D-ICAS)

    SciTech Connect (OSTI)

    George Jarvis

    2001-06-18T23:59:59.000Z

    The overall objective of this project is to develop an integrated system that remotely characterizes, maps, and archives measurement data of hazardous decontamination and decommissioning (D&D) areas. The system will generate a detailed 3-dimensional topography of the area as well as real-time quantitative measurements of volatile organics and radionuclides. The system will analyze substrate materials consisting of concrete, asbestos, and transite. The system will permanently archive the data measurements for regulatory and data integrity documentation. Exposure limits, rest breaks, and donning and removal of protective garments generate waste in the form of contaminated protective garments and equipment. Survey times are increased and handling and transporting potentially hazardous materials incur additional costs. Off-site laboratory analysis is expensive and time-consuming, often necessitating delay of further activities until results are received. The Three Dimensional Integrated Characterization and Archiving System (3D-ICAS) has been developed to alleviate some of these problems. 3D-ICAS provides a flexible system for physical, chemical and nuclear measurements reduces costs and improves data quality. Operationally, 3D-ICAS performs real-time determinations of hazardous and toxic contamination. A prototype demonstration unit is available for use in early 2000. The tasks in this Phase included: (1) Mobility Platforms: Integrate hardware onto mobility platforms, upgrade surface sensors, develop unit operations and protocol. (2) System Developments: Evaluate metals detection capability using x-ray fluorescence technology. (3) IWOS Upgrades: Upgrade the IWOS software and hardware for compatibility with mobility platform. The system was modified, tested and debugged during 1999 and 2000. The 3D-ICAS was shipped on 11 May 2001 to FIU-HCET for demonstration and validation of the design modifications. These modifications included simplifying the design from a two-vehicle system to a single mobile platform, integration of the XRF sensor for enhanced substrate analysis and upgrading of the IWOS operating system. Several of the system's power supplies were accidentally damaged upon power on because FIU wired 3 phase AC power to the system instead of the requested single phase. Repairs were made in the field to the damaged power supplies but 3 of 5 days time were lost to complete the repairs. Once the repairs were made CyTerra was able to demonstrate the CLR mapping and the movement of the sensor probe to selected locations on the test wall. The XRF sensor was also demonstrated on a stainless steel substrate. A surrogate solution was determined to be below the detection threshold. The radionuclide and GCMS sensors were not demonstrated due to either failed power supply or lack of time remaining in the schedule. The GCMS failure was partially the result of the debugging activities that took place during the week for assessing electrical damage. Specifically, GCMS electronic modules, which control the heating of two of gas transfer elements, may have been damaged during field debugging that was required. Given the financial constraints of the program, CyTerra Corporation decided to return the equipment to Waltham facilities for further assessment. We believe the principles of operation were shown, however a complete demonstration did not occur due to these difficulties.

  12. Physical Reproduction of Materials with Specified Subsurface Scattering Milos Hasan1

    E-Print Network [OSTI]

    Disney Research Figure 1: Left: photographs of slabs fabricated using a multi-material 3D printer. We use fabricated using a multi-material 3D printer. We demon- strate reproductions that have scattering properties, many manufacturing processes are automated and under algorithmic control. 3D printers, milling machines

  13. Frontiers of Fusion Materials Science

    E-Print Network [OSTI]

    migration Radiation damage accumulation kinetics · 1 D vs. 3D diffusion processes · ionization Insulators · Optical Materials *asterisk denotes Fusion Materials Task Group #12;Fusion Materials Sciences R Displacement cascades Quantification of displacement damage source term · Is the concept of a liquid valid

  14. RELAP5-3D Results for Phase I (Exercise 2) of the OECD/NEA MHTGR-350 MW Benchmark

    SciTech Connect (OSTI)

    Gerhard Strydom

    2012-06-01T23:59:59.000Z

    The coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been initiated at the Idaho National Laboratory (INL) to provide a fully coupled prismatic Very High Temperature Reactor (VHTR) system modeling capability as part of the NGNP methods development program. The PHISICS code consists of three modules: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. As part of the verification and validation activities, steady state results have been obtained for Exercise 2 of Phase I of the newly-defined OECD/NEA MHTGR-350 MW Benchmark. This exercise requires participants to calculate a steady-state solution for an End of Equilibrium Cycle 350 MW Modular High Temperature Reactor (MHTGR), using the provided geometry, material, and coolant bypass flow description. The paper provides an overview of the MHTGR Benchmark and presents typical steady state results (e.g. solid and gas temperatures, thermal conductivities) for Phase I Exercise 2. Preliminary results are also provided for the early test phase of Exercise 3 using a two-group cross-section library and the Relap5-3D model developed for Exercise 2.

  15. The Dynamics of Neutrino-Driven Supernova Explosions after Shock Revival in 2D and 3D

    E-Print Network [OSTI]

    Müller, Bernhard

    2015-01-01T23:59:59.000Z

    We study the growth of the explosion energy after shock revival in neutrino-driven explosions in two and three dimensions (2D/3D) using multi-group neutrino hydrodynamics simulations of an $11.2 M_\\odot$ star. The 3D model shows a faster and steadier growth of the explosion energy and already shows signs of subsiding accretion after one second. By contrast, the growth of the explosion energy in 2D is unsteady, and accretion lasts for several seconds as confirmed by additional long-time simulations of stars of similar masses. Appreciable explosion energies can still be reached, albeit at the expense of rather high neutron star masses. In 2D, the binding energy at the gain radius is larger because the strong excitation of downward-propagating $g$-modes removes energy from the freshly accreted material in the downflows. Consequently, the mass outflow rate is considerably lower in 2D than in 3D. This is only partially compensated by additional heating by outward-propagating acoustic waves in 2D. Moreover, the mas...

  16. Krylov Techniques for 3D Problems in Transport Theory

    SciTech Connect (OSTI)

    Ruben Panta Pazos [Department of Mathematics, UNISC - Universidade de Santa Cruz do Sul Av. Independencia, 2293 Bairro Universitario (Brazil)

    2006-07-01T23:59:59.000Z

    When solving integral-differential equations by means of numerical methods one has to deal with large systems of linear equations, such as happens in transport theory [10]. Many iterative techniques are now used in Transport Theory in order to solve problems of 2D and 3D dimensions. In this paper, we choose two problems to solve the following transport equation, [Equation] where x: represents the spatial variable, {mu}: the cosine of the angle, {psi}: the angular flux, h(x, {mu}): is the collision frequency, k(x, {mu}, {mu}'): the scattering kernel, q(x, {mu}): the source. The aim of this work is the straightforward application of the Krylov spaces technique [2] to the governing equation or to its discretizations derived of the discrete ordinates method (choosing a finite number of directions and then approximating the integral term by means of a proper sum). The equation (1) can be written in functional form as [Equation] with {psi} in the Hilbert space L{sup 2} ([0,a] x [-1,1])., and q is the source function. The operator derived from a discrete ordinates scheme that approximates the operator [Equation] generates the following subspace [Equation] i.e. the subspace generated by the iterations of order 0, 1, 2,..., m-1 of the source function q. Two methods are specially outstanding, the Lanczos method to solve the problem given by equation (2) with certain boundary conditions, and the conjugate gradient method to solve the same problem with identical boundary conditions. We discuss and accelerate the basic iterative method [8]. An important conclusion is the generation of these methods to solve linear systems in Hilbert spaces, if verify the convergence conditions, which are outlined in this work. The first problem is a cubic domain with two regions, one with a source near the vertex at the origin and the shield region. In this case, the Cartesian planes (specifically 0

  17. [12.7.20044:01pm] [101114] [Page No. 101] {Eserial}4393-van-Pelt/3d/vanPelt-tx08.3d Van Pelt

    E-Print Network [OSTI]

    Stryker, Michael

    . Prog Brain Res.147:103-114. Corrections indicated in red. #12;[12.7.2004­4:01pm] [101­114] [Page No[12.7.2004­4:01pm] [101­114] [Page No. 101] {Eserial}4393-van-Pelt/3d/vanPelt-tx08.3d Van Pelt U N Research, Vol. 147 ISSN 0079-6123 Copyright ß 2005 Elsevier BV. All rights reserved CHAPTER 8 Molecular

  18. A simple backprojection algorithm for 3D in vivo EPID dosimetry of IMRT treatments

    SciTech Connect (OSTI)

    Wendling, Markus; McDermott, Leah N.; Mans, Anton; Sonke, Jan-Jakob; Herk, Marcel van; Mijnheer, Ben J. [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2009-07-15T23:59:59.000Z

    Treatment plans are usually designed, optimized, and evaluated based on the total 3D dose distribution, motivating a total 3D dose verification. The purpose of this study was to develop a 2D transmission-dosimetry method using an electronic portal imaging device (EPID) into a simple 3D method that provides 3D dose information. In the new method, the dose is reconstructed within the patient volume in multiple planes parallel to the EPID for each gantry angle. By summing the 3D dose grids of all beams, the 3D dose distribution for the total treatment fraction is obtained. The algorithm uses patient contours from the planning CT scan but does not include tissue inhomogeneity corrections. The 3D EPID dosimetry method was tested for IMRT fractions of a prostate, a rectum, and a head-and-neck cancer patient. Planned and in vivo-measured dose distributions were within 2% at the dose prescription point. Within the 50% isodose surface of the prescribed dose, at least 97% of points were in agreement, evaluated with a 3D {gamma} method with criteria of 3% of the prescribed dose and 0.3 cm. Full 3D dose reconstruction on a 0.1x0.1x0.1 cm{sup 3} grid and 3D {gamma} evaluation took less than 15 min for one fraction on a standard PC. The method allows in vivo determination of 3D dose-volume parameters that are common in clinical practice. The authors conclude that their EPID dosimetry method is an accurate and fast tool for in vivo dose verification of IMRT plans in 3D. Their approach is independent of the treatment planning system and provides a practical safety net for radiotherapy.

  19. Development of an embedded 3D graphics processor

    E-Print Network [OSTI]

    Murray, Brian

    2002-01-01T23:59:59.000Z

    academic endeavors. vn TABLE OF CONTENTS CHAPTER Page I INTRODUCTION . BACKGROUND A. Introduction B. Rssterization 1. DDA C. Color D. Depth E. Lighting F. Texture Mapping G. Geometric Transformation H. The Pipeline . . I. Conclusion SYSTEM... DEFINITION A. Introduction . . B. General Pipeline C. Experimentation D. Instruction Format E. Object Primitives . 1. Vertex 2. Light 3. Texture . . 4. Control F. Conclusion FUNCTIONAL UNIT DESIGN AND CHARACTERIZATION . A. Introduction . . B. Pre...

  20. Next Generation Lunch: Revealing the World’s First 3D Printed Car (text version)

    Broader source: Energy.gov [DOE]

    Below is the text version for the Next Generation Lunch: Revealing the World’s First 3D Printed Car Video.

  1. Engineering Magnetic Anisotropy in Nanostructured 3d and 4f Ferromagnets

    E-Print Network [OSTI]

    Hsu, Chin-Jui

    2012-01-01T23:59:59.000Z

    Magnetic 3d transition and 4f rare earth elements are being studied for use in various applications including magentocaloric refrigeration [

  2. algorithm imf-osem 3d: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partial similarities Andrzejak, Artur 45 Finite-difference migration of 3-D seismic data with a parallel algorithm CiteSeer Summary: INTRODUCTION Imaging within complex...

  3. MT3D: a 3 dimensional magnetotelluric modeling program (user's guide and documentation for Rev. 1)

    SciTech Connect (OSTI)

    Nutter, C.; Wannamaker, P.E.

    1980-11-01T23:59:59.000Z

    MT3D.REV1 is a non-interactive computer program written in FORTRAN to do 3-dimensional magnetotelluric modeling. A 3-D volume integral equation has been adapted to simulate the MT response of a 3D body in the earth. An integro-difference scheme has been incorporated to increase the accuracy. This is a user's guide for MT3D.REV1 on the University of Utah Research Institute's (UURI) PRIME 400 computer operating under PRIMOS IV, Rev. 17.

  4. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS [6] C. C.ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS Integrating DataON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS Fig. 1. 3D

  5. An integrated approach to offshore wind energy assessment: Great Lakes 3D Wind Experiment. Part I. Calibration and testing RJ Barthelmie1, SC Pryor1, CM Smith1, P Crippa1, H Wang1, R. Krishnamurthy2, R. Calhoun2, D Valyou3, P Marzocca3, D Matthiesen4, N.

    E-Print Network [OSTI]

    Polly, David

    An integrated approach to offshore wind energy assessment: Great Lakes 3D Wind Experiment. Part I Government or any agency thereof." Introduction An experiment to test wind and turbulence measurement strategies was conducted at a northern Indiana wind farm in May 2012. The experimental design focused

  6. Stack and cell modelling with SOFC3D: a computer program for the 3D simulations of

    E-Print Network [OSTI]

    Herbin, Raphaèle

    (geometry of the cell, electrolyte materials, temperature in the channels) are varied. Numerical simulation is also used to obtain an optimum for some geometry parameters such as cathode thickness or rib width channels. The unknowns of the mathematical model are the temperature T at any point of the solid

  7. Characterization of 3d topological insulators by 2d invariants

    E-Print Network [OSTI]

    Rahul Roy

    2010-04-20T23:59:59.000Z

    The prediction of non-trivial topological phases in Bloch insulators in three dimensions has recently been experimentally verified. Here, I provide a picture for obtaining the $Z_{2}$ invariants for a three dimensional topological insulator by deforming suitable 2d planes in momentum space and by using a formula for the 2d $Z_{2}$ invariant based on the Chern number. The physical interpretation of this formula is also clarified through the connection between this formulation of the $Z_{2}$ invariant and the quantization of spin Hall conductance in two dimensions.

  8. Inter-layer Vias and TESH Interconnection Network for 3-D Heterogeneous Sensor System on a Chip

    E-Print Network [OSTI]

    Chapman, Glenn H.

    3D Heterogeneous system on a chip Unattended Ground Sensor Technologies and Applications VII, edited

  9. For additional information, please e-mail ctsc_noveltech@med.cornell.edu REQUEST FOR CTSC 3D PRINTING APPLICATIONS

    E-Print Network [OSTI]

    Chen, Tsuhan

    for commercialization 3D Printing Novel Technology Award $10,000 (direct costs) with use of the New CTSC 3D Printing with 3D printing technology in order to rapidly develop novel biomedical products with application) and importance of funding to feasibility of the project Research Plan (use of the CTSC 3D Printing Core Facility

  10. Quantum walks in synthetic gauge fields with 3D integrated photonics

    E-Print Network [OSTI]

    Octavi Boada; Leonardo Novo; Fabio Sciarrino; Yasser Omar

    2015-03-24T23:59:59.000Z

    There is great interest in designing photonic devices capable of disorder-resistant transport and information processing. In this work we propose to exploit 3D integrated photonic circuits for the realization of 2D discrete-time quantum walks in a background synthetic gauge field, for both the single and many walker case. The gauge fields are generated by introducing the appropriate phase shifts between waveguides. Polarization-independent phase shifts lead to an Abelian or magnetic field, a case we describe in detail. We characterize the single-particle Abelian quantum walk, finding that in the presence of disorder the magnetic field enhances transport due to the presence of topologically protected chiral edge states which do not localize. Polarization-dependent phase shifts lead to effective non-Abelian gauge fields, which could be adopted to realize of Rashba-like quantum walks with spin-orbit coupling. Our work introduces a flexible platform for the experimental study of multi-particle quantum walks in the presence of synthetic gauge fields, which paves the way towards topologically robust transport of many-body states of photons.

  11. State-of-the-Art 3-D Assessment of Elements Degrading TBR of

    E-Print Network [OSTI]

    accurate modeling of complex devices by integrating CAD geometry directly with 3-D MCNP code. · To point presentation of blanket geometry with high fidelity in 3-D TBR results. #12;6 Stepwise Approach ­ Build CAD of Fusion Energy August 27- 31, 2012 Nashville, TN, USA #12;2 ARIES Designs (1988 ­ 2012) #12;3 ARIES

  12. Measurements from 3D-CT renderings are used in research and clinical management

    E-Print Network [OSTI]

    Vorperian, Houri K.

    Measurements from 3D-CT renderings are used in research and clinical management: · Characterization for the prism]) RENDERING TECHNIQUES USED in ANALYZE 10.0: - Volume Render - (2) Volumes of Interest 1) VOI-Auto & 2) VOI-Manual TOTAL 3D-CT MODELS: 3 mandibles X 18 CT series X 3 rendering techniques = 162 mandible

  13. Pencil-Like Sketch Rendering of 3D Scenes Using Trajectory Planning and Dynamic Tracking

    E-Print Network [OSTI]

    Kara, Levent Burak

    Pencil-Like Sketch Rendering of 3D Scenes Using Trajectory Planning and Dynamic Tracking Günay non-photorealistic rendering method to render 3D scenes in the form of pencil-like sketches. This work then produces the rendered sketch, whose characteristics can be adjusted with a set of trajectory and tracking

  14. 220 Index MTL ANNUAL RESEARCH REPORT 2014 3D printing 53

    E-Print Network [OSTI]

    Reif, Rafael

    220 Index MTL ANNUAL RESEARCH REPORT 2014 Index Symbols 3D 33 3D printing 53 Integrated circuits 13 Electrospinning 58 Electrospray 60 Electrostatic speakers 49 Endoscopy 132 Energy 79, 87 Efficiency 16 Energy Frontier Research Center for Excitonics 117, 210 Energy harvesting 85 Englund, Dirk R. vi, 117, 180 Erbium

  15. Fast multipole method applied to 3D frequency domain elastodynamics 1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Fast multipole method applied to 3D frequency domain elastodynamics 1 J.A. Sanz a , M. Bonnet b,, J and implementation of a fast multipole- accelerated BEM for 3-D elastodynamics in the frequency domain, based is never explicitly formed. The truncation parameter in the multipole expansion is adjusted to the level

  16. IEEE TRANSACTIONS ON ROBOTICS 1 Needle Steering in 3D via Rapid Replanning

    E-Print Network [OSTI]

    Alterovitz, Ron

    Plan Execute Control PredictionActual Model Generate Multiple Plans Fig. 1. Closed-loop needle steeringIEEE TRANSACTIONS ON ROBOTICS 1 Needle Steering in 3D via Rapid Replanning Sachin Patil Member steering system capable of automatically reaching targets in 3D environments while avoiding obstacles

  17. Feedback Control for Steering Needles Through 3D Deformable Tissue Using Helical Paths

    E-Print Network [OSTI]

    O'Brien, James F.

    Feedback Control for Steering Needles Through 3D Deformable Tissue Using Helical Paths Kris Hauser controller that steers a needle along 3D helical paths, and varies the helix radius to correct a model predictive control framework that chooses a needle twist rate such that the predicted helical

  18. Generalized 3-D Tolerance Analysis of Mechanical Assemblies with Small Kinematic Adjustments

    E-Print Network [OSTI]

    ) for tolerance analysis of 3-D mechanical assemblies is presented. Vector assembly models are used, based on 3-D. Tolerance analysis procedures are formulated for both open and closed loop assembly models. The method generalizes assembly variation models to include small kinematic adjustments between mating parts. Open vector

  19. Model for the prediction of 3D surface topography in 5-axis milling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Model for the prediction of 3D surface topography in 5-axis milling Sylvain Lavernhe LURPA - ENS surface topography obtained in 5-axis milling in function of the machining conditions. For this purpose to a feed rate prediction model. Thanks to the simulation model of 3D surface topography, the influence

  20. SHELL THEORIES ARISING AS LOW ENERGY -LIMIT OF 3D NONLINEAR ELASTICITY

    E-Print Network [OSTI]

    Lewicka, Marta

    SHELL THEORIES ARISING AS LOW ENERGY -LIMIT OF 3D NONLINEAR ELASTICITY MARTA LEWICKA, MARIA to minimizers of suitable lower dimensional limit energies. In this paper we discuss shell theories arising of -limit) of the 3d nonlinear elasticity for thin shells around an arbitrary smooth 2d surface