National Library of Energy BETA

Sample records for material research society

  1. Jia named Materials Research Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jia named Materials Research Society Fellow March 6, 2014 Quanxi Jia of the Center for Integrated Nanotechnologies (MPA-CINT) is a 2014 Fellow of the Materials Research Society (MRS). The MRS Fellow program recognizes outstanding members whose sustained and distinguished contributions to the advancement of materials research are internationally recognized. The number of new fellows selected annually is capped at 0.2 percent of the current total MRS membership. Achievements The MRS recognized Jia

  2. Jia named Materials Research Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jia named Materials Research Society Fellow Jia named Materials Research Society Fellow The MRS Fellow program recognizes outstanding members whose sustained and distinguished contributions to the advancement of materials research are internationally recognized. March 6, 2014 Quanxi Jia Quanxi Jia The MRS recognized Jia for "pioneering contributions to the development of high-temperature superconducting-coated conductors and for advancing the processing and application of multifunctional

  3. Hoagland selected as a new Materials Research Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hoagland selected as Materials Research Society Fellow Hoagland selected as a new Materials Research Society Fellow Hoagland has made notable contributions in both experimental and computational materials research. July 9, 2013 Richard G. Hoagland Richard G. Hoagland The Materials Research Society (MRS) is an organization of materials researchers that promotes the advancement of interdisciplinary materials research to improve the quality of life. Richard G. Hoagland of the Laboratory's Materials

  4. Hoagland selected as a new Materials Research Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contributions in both experimental and computational materials research. July 9, 2013 Richard G. Hoagland Richard G. Hoagland The Materials Research Society (MRS) is an...

  5. Research Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hoagland selected as a new Materials Research Society Fellow July 9, 2013 Richard G. Hoagland of the Laboratory's Materials Science in Radiation and Dynamic Extremes group has been...

  6. Research Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hoagland selected as a new Materials Research Society Fellow July 9, 2013 Richard G. Hoagland of the Laboratory's Materials Science in Radiation and Dynamic Extremes group has been honored with the rank of Fellow by the Materials Research Society (MRS). Hoagland is cited for "outstanding contributions in fracture mechanics and atomistic modeling of dislocation mechanisms of deformation and fracture of metals, ceramics and nanolayered composites." Achievements Hoagland received a

  7. New materials for batteries and fuel cells. Materials Research Society symposium proceedings, Volume 575

    SciTech Connect (OSTI)

    Doughty, D.H.; Nazar, L.F.; Arakawa, Masayasu; Brack, H.P.; Naoi, Katsuhiko

    2000-07-01

    This proceedings volume is organized into seven sections that reflect the materials systems and issues of electrochemical materials R and D in batteries, fuel cells, and capacitors. The first three parts are largely devoted to lithium ion rechargeable battery materials since that electrochemical system has received much of the attention from the scientific community. Part 1 discusses cathodes for lithium ion rechargeable batteries as well as various other battery systems. Part 2 deals with electrolytes and cell stability, and Part 3 discusses anode developments, focusing on carbon and metal oxides. Part 4 focuses on another rechargeable system that has received substantial interest, nickel/metal hydride battery materials. The next two parts discuss fuel cells--Part 5 deals with Proton Exchange Membrane (PEM) fuel cells, and Part 6 discusses oxide materials for solid oxide fuel cells. The former has the benefit of operating around room temperature, whereas the latter has the benefit of operating with a more diverse (non-hydrogen) fuel source. Part 7 presents developments in electrochemical capacitors, termed Supercapacitors. These devices are receiving renewed interest and have shown substantial improvements in the past few years. In all, the results presented at this symposium gave a deeper understanding of the relationship between synthesis, properties, and performance of power source materials. Papers are processed separately for inclusion on the data base.

  8. Zelenay wins Electrochemical Society's Research Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins Electrochemical Society's Research Award December 11, 2012 Piotr Zelenay of LANL's Sensors and Electrochemical Devices group has won the 2012 Research Award presented by the Energy Technology Division of The Electrochemical Society. The award recognizes Zelenay's "outstanding and original contributions to the science and technology of energy-related research areas that include scientific and technological aspects of fossil fuels and alternative energy sources, energy management and

  9. Los Alamos researcher named as American Chemical Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researcher named American Chemical Society Fellow Los Alamos researcher named as American Chemical Society Fellow Kristin Omberg named for her contributions to national security as ...

  10. Materials and society -- Impacts and responsibilities

    SciTech Connect (OSTI)

    Westwood, A.R.C.

    1995-11-01

    The needs of today`s advanced societies have moved well beyond the requirements for food and shelter, etc., and now are focused on such concerns as international peace and domestic security, affordable health care, the swift and secure transmission of information, the conservation of resources, and a clean environment. Progress in materials science and engineering is impacting each of these concerns. This paper will present some examples of how this is occurring, and then comment on ethical dilemmas that can arise as a consequence of technological advances. The need for engineers to participate more fully in the development of public policies that help resolve such dilemmas, and so promote the benefits of advancing technology to society, will be discussed.

  11. Zelenay wins Electrochemical Society's Research Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The award includes a monetary prize and membership in the Electrochemical Society's Energy Technology Division. It will be presented at the society's spring meeting in...

  12. Researchers Speak at American Chemical Society Meeting | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Speak at American Chemical Society Meeting Click to email this to a friend (Opens in new ... Researchers Speak at American Chemical Society Meeting Vin Smentkowski 2013.04.05 With ...

  13. International Research Network for Low Carbon Societies (LCS...

    Open Energy Info (EERE)

    and recommendations." References Retrieved from "http:en.openei.orgwindex.php?titleInternationalResearchNetworkforLowCarbonSocieties(LCS-RNet)&oldid764934" ...

  14. Radiation Research Society 2005 Annual Meeting, Denver, Colorado

    SciTech Connect (OSTI)

    Robert Ullrich, PhD

    2005-10-04

    Abstracts and proceedings of the 2005 Annual Meeting of the Radiation Research Society held in Denver, Colorado on October 16-19, 2005.

  15. Materials Science Research | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Research For photovoltaics and other energy applications, NREL's primary research in materials science includes the following core competencies. A photo of laser light rays...

  16. Research | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Four Research Thrusts organizational chart of four research thrusts (A click on the org chart image will lead to a pdf version that includes hotlinks for the e-mail addresses for leaders.) CMI has more than 30 projects focused in four areas. Project titles are available in a table, which can be sorted by project leader, location of project leader, project title or project number. CMI research is conducted at partner institutions, including national laboratories, universities and

  17. Research on Estrogen and Behavior Is a 'Hot Topic' at the 2011 Society for Neuroscience Meeting

    ScienceCinema (OSTI)

    Anat Biegon

    2013-07-19

    The Society for Neuroscience has selected recent research on estrogen and its effect on behavior conducted at BNL for its "hot topics" book distributed to reporters attending the society's 2011 meeting in Washington, D.C., November 12-16.

  18. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Materials Engineering Research Facility exterior 1 of 11 Materials Engineering Research Facility exterior With the Materials Engineering Research Facility's state-of-the-art labs and equipment, Argonne researchers can safely scale up materials from the research bench for commercial testing. Photo courtesy Argonne National Laboratory. Materials Engineering Research Facility exterior 1 of 11 Materials Engineering Research Facility exterior With the Materials

  19. NERSC, LBL Researchers Share Materials Science Advances at APS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC, LBL Researchers Highlight Materials Science at APS NERSC, LBL Researchers Share Materials Science Advances at APS March 3, 2014 APSlogo NERSC and Lawrence Berkeley National Laboratory (LBL) are well represented this week at the American Physical Society (APS) March meeting. Some 10,000 physicists, scientists, and students are expected to attend this year's meeting, which takes place March 3-7 in Denver, CO. Physicists and students will report on groundbreaking research from industry,

  20. NREL Research Fellow Howard Branz Named Fellow of American Physical Society

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - News Releases | NREL Research Fellow Howard Branz Named Fellow of American Physical Society Society cites Branz's seminal work on thin-film solar cells and nanostructures January 14, 2013 A solar energy scientist at the U.S. Department of Energy's National Renewable Energy Laboratory who has done pioneering and breakthrough work on thin films and nanostructures, has been elected a fellow of the American Physical Society (APS). NREL Research Fellow Howard Branz was elected an APS fellow for

  1. EMei Semiconductor Materials Plant Research Institute | Open...

    Open Energy Info (EERE)

    EMei Semiconductor Materials Plant Research Institute Jump to: navigation, search Name: EMei Semiconductor Materials Plant & Research Institute Place: Emei, Sichuan Province, China...

  2. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics...

  3. Sandia National Laboratories: Research: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Research Materials Processing Sandia research staff understand, characterize, model, and ultimately control materials fabrication technologies that are critical to component development and production. Plasma Spray

  4. Princeton, Max Planck Society launch new research center for plasma physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab Princeton, Max Planck Society launch new research center for plasma physics By John Greenwald March 30, 2012 Tweet Widget Google Plus One Share on Facebook (From left to right) Princeton University Professor of Astrophysical Sciences James Stone, Princeton University President Shirley M. Tilghman, Princeton University Dean for Research A. J. Stewart Smith, Max Planck Society President Peter Gruss, and Consul General of the Federal Republic of Germany in New

  5. 2010 Membranes: Materials & Processes Gordon Research Conference

    SciTech Connect (OSTI)

    Jerry Lin

    2010-07-30

    The GRC series on Membranes: Materials and Processes have gained significant international recognition, attracting leading experts on membranes and other related areas from around the world. It is now known for being an interdisciplinary and synergistic meeting. The next summer's edition will keep with the past tradition and include new, exciting aspects of material science, chemistry, chemical engineering, computer simulation with participants from academia, industry and national laboratories. This edition will focus on cutting edge topics of membranes for addressing several grand challenges facing our society, in particular, energy, water, health and more generally sustainability. During the technical program, we want to discuss new membrane structure and characterization techniques, the role of advanced membranes and membrane-based processes in sustainability/environment (including carbon dioxide capture), membranes in water processes, and membranes for biological and life support applications. As usual, the informal nature of the meeting, excellent quality of the oral presentations and posters, and ample opportunity to meet many outstanding colleagues make this an excellent conference for established scientists as well as for students. A Gordon Research Seminar (GRS) on the weekend prior to the GRC meeting will provide young researchers an opportunity to present their work and network with outstanding experts. It will also be a right warm-up for the conference participants to join and enjoy the main conference.

  6. 2012 American Vacuum Society Symposium and Exhibition | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARPA-E Summit Technology Showcase 2012 ARPA-E Summit Technology Showcase March 1, 2012 - 5:19pm Addthis Turning Bacteria into Fuel 1 of 12 Turning Bacteria into Fuel Willem Vermaas, a Professor at Arizona State University, explains to ARPA-E Director Arun Majumdar how ASU researchers grow fuel from fatty acids harvested from photosynthetic bacteria. This special bacteria is used for solar powered, highly efficient production of biofuels. Image: Energy Department Image | Photo by Quentin Kruger

  7. Sandia National Laboratories: Research: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Materials Science Creating materials for energy applications and defense needs Aries Applying innovative characterization and diagnostic techniques Hongyou Fan Development of new materials to support national

  8. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and Manufacturing R&D Program. The MERF is enabling the development of manufacturing processes for producing advanced battery materials in sufficient quantity for industrial testing. The research conducted in this program is known as process scale-up. Scale-up R&D involves taking a laboratory-developed material and developing

  9. Hydrogen Materials Advanced Research Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... materials to store hydrogen onboard vehicles, leading to more reliable, economic hydrogen-fuel-cell vehicles. "Hydrogen, as a transportation fuel, has great potential to ...

  10. Hydrogen Materials Advanced Research Consortium

    Broader source: Energy.gov [DOE]

    An overview of the organization and scientific activities of the Hydrogen Materials—Advanced Research Consortium (HyMARC).

  11. Research Staff | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manager Email | 303-384-6608 Research Team Kirstin Alberi | Email Dan Beaton | Email David Bobela | Email Brian Fluegel | Email Aaron Holder | Email Stephan Lany | Email...

  12. Crosscutting Research | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crosscutting Research diagram for focus area four, crosscutting research (A click on the org chart image will lead to a pdf version that includes hotlinks for the e-mail addresses of the leaders.) The Ames Laboratory offers more information about the rapid assessment project in this news release and video

  13. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C.

  14. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C.

  15. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    One of Ritchie's latest materials research projects is contributing to the evolution of jet engine performance, and hence has industry players heavily interested and invested. ...

  16. Fusion materials science and technology research opportunities...

    Office of Scientific and Technical Information (OSTI)

    the ITER era Citation Details In-Document Search Title: Fusion materials science and technology research opportunities now and during the ITER era Several high-priority...

  17. Sandia National Laboratories: Research: Materials Science: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Facilities Center for Integrated Nanotechnologies (CINT) CINT Ion Beam Laboratory Ion Beam Laboratory MESA High Performance Computing Processing and Environmental Technology Laboratory Processing and Environmental

  18. FA 4: Crosscutting Research | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4: Crosscutting Research Focus Area 4 - Lograsso, Schwegler CMI Org Chart with Hotlinks: Focus Area 4 File: Read more about CMI Org Chart with Hotlinks: Focus Area 4 CMI Org Chart with Hotlinks: Research Overview File: Read more about CMI Org Chart with Hotlinks: Research Overview CMI org chart for FA4 File: Read more about CMI org chart for FA4 CMI org chart for research with hotlinks (pdf) File: Read more about CMI org chart for research with hotlinks (pdf) Critical Materials Institute

  19. Research | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research CEEM is one of 46 Energy Frontier Research Centers funded by the Department of Energy to address the energy challenge through technological advancements. The Center was launched in August 2009 and focuses on fundamental research in the three key areas of photovoltaics, thermoelectrics, and solid-state lighting. These technologies are strongly inter-related, not only through the materials they employ and physical principles upon which they operate, but also in the synergies resulting

  20. Borup wins Electrochemical Society Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Borup wins Electrochemical Society Award January 26, 2015 Rod Borup of Materials Synthesis and Integrated Devices (MPA-11) has won the 2015 Research Award presented annually by the Energy Technology Division of the Electrochemical Society (ECS). The society recognized him for "his seminal contributions to the fundamental understanding of the durability of polymer electrolyte fuel cells." Borup's achievements Borup and his team are focused on improving the polymer electrolyte membrane

  1. Borup wins Electrochemical Society Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Borup wins Electrochemical Society Award Borup wins Electrochemical Society Award Rod Borup has won the 2015 Research Award presented annually by the Energy Technology Division of the Electrochemical Society. January 26, 2015 Rod Borup Rod Borup Borup and his team are focused on improving the polymer electrolyte membrane (PEM) fuel cell, which converts hydrogen to electricity for power, but emits only water. Rod Borup of Materials Synthesis and Integrated Devices (MPA-11) has won the 2015

  2. Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the first Los Alamos researcher to be named a Fellow of the American Chemical Society (ACS).The ACS created the Fellows program to "recognize members of ACS for outstanding...

  3. Materials for Better Li-based Storage Systems for a "Green Energy Society"

    ScienceCinema (OSTI)

    Jean-Marie Tarascon

    2010-01-08

    Li-ion batteries are strongly considered for powering the upcoming generations of HEVs and PHEVs, but there are still the issues of safety and costs in terms of materials resources and abundances, synthesis, and recycling processes. Notions of materials having minimum footprint in nature, made via eco-efficient processes, must be integrated in our new research towards the next generation of sustainable and "greener" Li-ion batteries. In this July 13, 2009 talk sponsored by Berkeley Lab's Environental Energy Technologies Division, Jean-Marie Tarascon, a professor at the University of Picardie (Amiens), discuss Eco-efficient synthesis via hydrothermal/solvothermal processes using latent bases as well as structure directing templates or other bio-related approaches of LiFePO4 nanopowders.

  4. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of ...

  5. Overview of Research on Thermoelectric Materials and Devices...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research on Thermoelectric Materials and Devices in China Overview of Research on Thermoelectric Materials and Devices in China An overview presentation of R&D projects on ...

  6. Tritium Related Material Research -Irradiation Effect on Isotropic...

    Office of Environmental Management (EM)

    Related Material Research -Irradiation Effect on Isotropic Graphite Utilizing Heavy Ion-Irradiation- Tritium Related Material Research -Irradiation Effect on Isotropic Graphite...

  7. Sandia National Laboratories: Research: Materials Science: About Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research About Materials Science Xunhu Dai Sandia excels in innovative fundamental materials science research - developing and integrating the theoretical insights, computational simulation tools and deliberate

  8. Sandia Energy - American Physical Society Names Four Sandians...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News News & Events Research & Capabilities Systems Analysis Materials Science American Physical Society Names Four Sandians as Fellows Previous Next American Physical...

  9. Sandia National Laboratories: Research: Materials Science: Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Image Gallery

  10. Sandia National Laboratories: Research: Materials Science: Video Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Video Gallery

  11. NREL: Photovoltaics Research - Materials Applications and Performance Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Staff The staff members who research photovoltaic (PV) technologies at NREL make up the Materials & Chemical Science and Technology (MCST) directorate. Select a group below to find more information about the scientists specializing in each area of PV research: Materials Applications and Performance research staff Materials Science research staff Chemistry and Nanoscience research staff MCST Research Operations staff Printable Version Photovoltaics Research Home Polycrystalline Thin

  12. 2010 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CV Subban, Q Zhou, A Hu, TE Moylan, FT Wagner and FJ DiSalvo Journal of the American Chemical Society, 132(49), pp 17531-17536, 2010 DOI: 10.1021ja1074163 Pt-Decorated PdCo@PdC...

  13. Argonne's Materials Engineering Research Facility - Joint Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Research August 8, 2012, Videos Argonne's Materials Engineering Research Facility Argonne's Materials Engineering Research Facility (MERF) enables the development of manufacturing processes for producing advanced battery materials in sufficient quantity for industrial testing. The research conducted in this program is known as process scale-up

  14. Critical Materials Institute Gains Ten Industrial and Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Institute Gains Ten Industrial and Research Affiliates April 12, 2016 ... The Critical Materials Institute, a U.S. Department of Energy Innovation Hub led by the ...

  15. Research Update: The materials genome initiative: Data sharing...

    Office of Scientific and Technical Information (OSTI)

    materials genome initiative: Data sharing and the impact of collaborative ab initio databases Citation Details In-Document Search Title: Research Update: The materials genome ...

  16. International Center for Materials Research ICMR | Open Energy...

    Open Energy Info (EERE)

    Name: International Center for Materials Research (ICMR) Place: Kawasaki-shi, Kanagawa, Japan Zip: 210-0855 Product: International Center for Materials Reseach is a Japanese...

  17. Big, Deep, and Smart Data in Energy Materials Research: Atomic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big, Deep, and Smart Data in Energy Materials Research: Atomic View on Materials Functionalities Event Sponsor: Computing, Environment, and Life Sciences Seminar Start Date: Sep 22...

  18. Critical Materials Research in DOE Video (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the "Critical Materials Research in DOE" video presented at the Critical Materials Workshop, held on April 3, 2012 in Arlington, Virginia.

  19. New Research Projects > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Coates Research Initiative - Abrua Research Initiative - Schlom New Research Projects Transport Dynamics and Carbonation Tolerance in Solution Processable Ionomers: Enabling a...

  20. Meet CMI Researcher Corby Anderson | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corby Anderson Image of Corby Anderson, researcher at Critical Materials Institute CMI researcher Dr. Corby Anderson has more than 34 years of global experience in industrial...

  1. Instructional Materials | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigate wind turbine design factors like height, ... Download Wind Materials Here | Wind Energy Kit Overview ... of energy, such as methane gas or transportation fuels. ...

  2. Nanoscale Material Properties | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Symposium and Exhibition Focuses on Materials, Surfaces and Interfaces IMG0475 Innovation 247: We're Always Open a57-v-zero-liquid-discharge Reverse Osmosis (RO)...

  3. Novel Materials for Energy Research | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel Materials for Energy Research Novel Materials for Energy Research The Ames Laboratory is home to the Materials Preparation Center (MPC). The MPC is a DOE Basic Energy Sciences specialized research center. It is one of the premier materials laboratories in the world for the synthesis and processing of rare earth metals and compounds, metallics alloys, complex intermetallics and inorganic compounds in both single crystalline and polycrystalline form. Established in October 1981, the MPC

  4. Scenes from Argonne's Materials Engineering Research Facility | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Scenes from Argonne's Materials Engineering Research Facility Share Description B-roll for the Materials Engineering Research Facility Topic Energy Energy usage Energy storage Batteries Lithium-air batteries Lithium-ion batteries Programs Chemical sciences & engineering Electrochemical energy storage Materials science

  5. Vehicle Technologies Office: Exploratory Battery Materials Research...

    Broader source: Energy.gov (indexed) [DOE]

    for future battery chemistries. They research a number of areas that contribute to this body of knowledge: Advanced cell chemistries that promise higher energy density than...

  6. 2009 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sols Morgan Stefik, Surbhi Mahajan, Hiroaki Sai, Thomas H. Epps III, Frank S. Bates, Sol M. Gruner, Francis J. DiSalvo and Ulrich Wiesner Chemistry of Materials Vol.21, p....

  7. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photo), are now studying can withstand temperatures that would melt current state-of-the-art engine material, alloy-based nickel. The heat-resistant properties of advanced ceramics...

  8. Acknowledgement > Authorship Tools > Research > The Energy Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    order for the research that we fund to be properly attributable to the Office of Basic Energy Sciences in general, and an EFRC specifically, that support needs to be explicitly ...

  9. Critical Materials Institute Gains Ten Industrial and Research Affiliates |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Critical Materials Institute Gains Ten Industrial and Research Affiliates Critical Materials Institute Gains Ten Industrial and Research Affiliates April 12, 2016 - 10:32am Addthis News release from the Ames Laboratory, April 11, 2016. The Critical Materials Institute, a U.S. Department of Energy Innovation Hub led by the Ames Laboratory, has gained ten new affiliates to its research program, seeking ways to eliminate and reduce reliance on rare-earth metals and other

  10. Tritium Related Material Research -Irradiation Effect on Isotropic Graphite

    Office of Environmental Management (EM)

    Utilizing Heavy Ion-Irradiation- | Department of Energy Related Material Research -Irradiation Effect on Isotropic Graphite Utilizing Heavy Ion-Irradiation- Tritium Related Material Research -Irradiation Effect on Isotropic Graphite Utilizing Heavy Ion-Irradiation- Presentation from the 34th Tritium Focus Group Meeting held in Idaho Falls, Idaho on September 23-25, 2014. PDF icon Tritium Related Material Research -Irradiation Effect on Isotropic Graphite Utilizing Heavy Ion-Irradiation- More

  11. Meet CMI Researcher Eric Peterson | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Peterson CMI focus area leader Eric Peterson CMI researcher Eric Peterson leads Focus Area 3, Improving Reuse and Recycling, for the Critical Materials Institute. At Idaho National...

  12. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micronanofabricated environments for synthetic biology C. Patrick Collier and Michael L. Simpson Nanofabrication Research Laboratory, Center for Nanophase Materials Sciences Oak...

  13. Materials and Molecular Research Division: Annual report, 1986

    SciTech Connect (OSTI)

    Phillips, N.E.; Muller, R.H.; Peterson, C.V.

    1987-07-01

    Research activities are reported under the following headings: materials sciences, chemical sciences, nuclear sciences, fossil energy, energy storage systems, and work for others. (DLC)

  14. Agustin Mihi and Paul V. Braun Materials Research Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agustin Mihi and Paul V. Braun Materials Research Laboratory, University of Illinois at Urbana-Champaign Transfer of Preformed 3D Photonic Crystals onto Dye Sensitized Solar Cells...

  15. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation ... dispersion, and, further, that advanced lattice dynamics simulations ...

  16. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. Weitering, Nature Materials 7, 539 (2008). The research was sponsored by the National Human Genome Research Institute, National Institutes of Health Grant R01HG002647 (CZ), NSF...

  17. Vehicle Technologies Office: Long-Term Lightweight Materials Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Magnesium and Carbon Fiber) | Department of Energy Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber) Vehicle Technologies Office: Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber) In the long term, advanced materials such as magnesium and carbon fiber reinforced composites could reduce the weight of some components by 50-75 percent. Magnesium Even though magnesium (Mg) can reduce component weight by more than 60 percent, its use is currently limited

  18. Vehicle Technologies Office: Short-Term Lightweight Materials Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Advanced High-Strength Steel and Aluminum) | Department of Energy Short-Term Lightweight Materials Research (Advanced High-Strength Steel and Aluminum) Vehicle Technologies Office: Short-Term Lightweight Materials Research (Advanced High-Strength Steel and Aluminum) In the short term, replacing heavy steel components with materials such as high-strength steel, aluminum, or glass fiber-reinforced polymer composites can decrease component weight by 10-60 percent. Advanced High-Strength Steel

  19. Meet CMI Researcher Ryan Ott | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ryan Ott CMI researcher Ryan Ott leads the CMI project on rapid assessment methodologies. This includes using 3d printing for discovering new materials, which he describes in this CMI Success Story and this video on The Ames Laboratory's YouTube channel. He's also The Ames Laboratory's lead researcher on a project to help improve the processing techniques to reclaim rare-earth materials. The project harnesses fundamental materials science to help address possible shortages in rare earths, which

  20. Chief Research Scientist | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    329 2.234 2.368 2.495 2.558 2.454 2000-2016 All Grades - Reformulated Areas 2.329 2.234 2.368 2.495 2.558 2.454 2000-2016 Regular 2.206 2.111 2.249 2.376 2.439 2.333 2000-2016 Reformulated Areas 2.206 2.111 2.249 2.376 2.439 2.333 2000-2016 Midgrade 2.521 2.427 2.556 2.688 2.750 2.648 2000-2016 Reformulated Areas 2.521 2.427 2.556 2.688 2.750 2.648 2000-2016 Premium 2.873 2.777 2.896 3.016 3.080 2.983 2000-2016 Reformulated Areas 2.873 2.777 2.896 3.016 3.080 2.983 2000

    Chief Research

  1. 2004 research briefs :Materials and Process Sciences Center.

    SciTech Connect (OSTI)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  2. Meet CMI Researcher Theresa Windus | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theresa Windus Image of Theresa Windus, researcher at Critical Materials Institute CMI researcher Theresa Windus joined Iowa State University as a full professor and an associate researcher with DOE's Ames Laboratory in August of 2006. She develops new methods and algorithms for high performance computational chemistry as well as applying those techniques to both basic and applied research. Her current interests are rare earth and heavy element chemistry, catalysis, aerosol formation, cellulose

  3. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Achievement: The material of choice for spintronics device today is FeMgOFe tunnel ... by modi?cation of the interface is an important topic in spintronics research. ...

  4. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative, experimental-based

  5. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative,

  6. Materials and Molecular Research Division annual report 1980

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    Progress made in the following research areas is reported: materials sciences (metallurgy and ceramics, solid state physics, materials chemistry); chemical sciences (fundamental interactions, processes and techniques); nuclear sciences; fossil energy; advanced isotope separation technology; energy storage; magnetic fusion energy; and nuclear waste management.

  7. Researchers examine behavior of amorphous materials under high strain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Behavior of amorphous materials under high strain Researchers examine behavior of amorphous materials under high strain The findings offer a new way to monitor the onset of plastic deformation and mechanical properties of materials. February 10, 2016 Shown is simulation of a reversible avalanche in an amorphous solid under a periodic shear. Darker regions indicate where particles have been displaced more. The motion is exactly repeated during the next drive cycle. Above a critical strain, the

  8. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  9. Meet CMI Researcher Anja Mudring | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anja Mudring CMI researcher Anja Mudring CMI researcher Anja Mudring is a materials chemist who is harmessing the promising qualities of ionic liquids, salts in a liquid state, to optimize processes for critical materials. "Ionic liquids have a lot of useful qualities, but most useful for materials processing is that ionic liquids are made up of two parts: the cation and the anion. We can play around with the chemical identities of each of those components and that opens the doors to huge

  10. Scattering Society of America

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Majewski named Fellow of the Neutron Scattering Society of America May 9, 2016 The Neutron Scattering Society of America (NSSA) has honored Jaroslaw (Jarek) Majewski of the Center for Integrated Nanotechnologies (MPA-CINT) with the title of Fellow. The Society recognized Majewski for "contributions to our understanding of weakly organized two-dimensional systems, including surfactant molecules found in biological systems. Majewski's achievements Majewski received a doctorate in Materials

  11. American Physical Society Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Physical Society Fellows American Physical Society (APS) Fellowships recognize those who have made advances in knowledge through original research or have made significant and innovative contributions in the application of physics to science and technology. Each year, no more than one-half of one percent of APS's current membership is recognized by their peers for election to the status of Fellow. The hundred-year-old society numbers tens of thousands of physicists worldwide. Name Year

  12. NREL: Photovoltaics Research - Polycrystalline Thin-Film Materials and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Devices R&D Polycrystalline Thin-Film Materials and Devices R&D NREL has significant and long-term capabilities in both cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS) thin-film PV research and device development. Currently, NREL has separate groups performing research in CdTe and CIGS technologies; each group consists of about 10 researchers, postdocs, and students. CdTe Research CdTe-based thin-film solar cell modules currently represent one of the

  13. Metrology and Characterization Challenges for Emerging Research Materials and Devices

    SciTech Connect (OSTI)

    Garner, C. Michael; Herr, Dan; Obeng, Yaw

    2011-11-10

    The International Technology Roadmap for Semiconductors (ITRS) Emerging Research Materials (ERM) and Emerging Research Devices (ERD) Technology Workgroups have identified materials and devices that could enable continued increases in the density and performance of future integrated circuit (IC) technologies and the challenges that must be overcome; however, this will require significant advances in metrology and characterization to enable progress. New memory devices and beyond CMOS logic devices operate with new state variables (e.g., spin, redox state, etc.) and metrology and characterization techniques are needed to verify their switching mechanisms and scalability, and enable improvement of operation of these devices. Similarly, new materials and processes are needed to enable these new devices. Additionally, characterization is needed to verify that the materials and their interfaces have been fabricated with required quality and performance.

  14. Materials and Components Technology Division research summary, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base.

  15. Meet CMI Researcher David Reed | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Reed CMI researcher David Reed is the principal investigator for the CMI project bioleaching for recovery of recycled rare earth elements. CMI Researcher David Reed is the PI for project 3.2.5 Bioleaching for Recovery of Recycled REE. The objective of this project is to develop and deploy a biological strategy for recovery of rare earth elements from recyclable materials. His collaborators include Vicki Thompson, Dayna Daubaras, and Debra Bruhn at Idaho National Laboratory and Yongqin Jiao

  16. Browse Societies by Language -- E-print Network Societies by...

    Office of Scientific and Technical Information (OSTI)

    Molecular Biology -- Biostatistiikan seura ry Finnish Society of Biostatistics -- Brain Research Society of Finland (BRSF) TOP - A B C D E F G H I J K L M N O P Q R S T U V W ...

  17. Development of an Extreme Environment Materials Research Facility at Princeton

    SciTech Connect (OSTI)

    Cohen, A B; Tully, C G; Austin, R; Calaprice, F; McDonald, K; Ascione, G; Baker, G; Davidson, R; Dudek, L; Grisham, L; Kugel, H; Pagdon, K; Stevenson, T; Woolley, R

    2010-11-17

    The need for a fundamental understanding of material response to a neutron and/or high heat flux environment can yield development of improved materials and operations with existing materials. Such understanding has numerous applications in fields such as nuclear power (for the current fleet and future fission and fusion reactors), aerospace, and other research fields (e.g., high-intensity proton accelerator facilities for high energy physics research). A proposal has been advanced to develop a facility for testing various materials under extreme heat and neutron exposure conditions at Princeton. The Extreme Environment Materials Research Facility comprises an environmentally controlled chamber (48 m^3) capable of high vacuum conditions, with extreme flux beams and probe beams accessing a central, large volume target. The facility will have the capability to expose large surface areas (1 m^2) to 14 MeV neutrons at a fluence in excess of 10^13 n/s. Depending on the operating mode. Additionally beam line power on the order of 15-75 MW/m2 for durations of 1-15 seconds are planned... The multi-second duration of exposure can be repeated every 2-10 minutes for periods of 10-12 hours. The facility will be housed in the test cell that held the Tokamak Fusion Test Reactor (TFTR), which has the desired radiation and safety controls as well as the necessary loading and assembly infrastructure. The facility will allow testing of various materials to their physical limit of thermal endurance and allow for exploring the interplay between radiation-induced embrittlement, swelling and deformation of materials, and the fatigue and fracturing that occur in response to thermal shocks. The combination of high neutron energies and intense fluences will enable accelerated time scale studies. The results will make contributions for refining predictive failure modes (modeling) in extreme environments, as well as providing a technical platform for the development of new alloys, new materials, and the investigation of repair mechanisms. Effects on materials will be analyzed with in situ beam probes and instrumentation as the target is exposed to radiation, thermal fluxes and other stresses. Photon and monochromatic neutron fluxes, produced using a variable-energy (4-45 MeV) electron linac and the highly asymmetric electron-positron collisions technique used in high-energy physics research, can provide non-destructive, deep-penetrating structural analysis of materials while they are undergoing testing. The same beam lines will also be able to generate neutrons from photonuclear interactions using existing Bremsstrahlung and positrons on target quasi-monochromatic gamma rays. Other diagnostics will include infrared cameras, residual gas analyzer (RGA), and thermocouples; additional diagnostic capability will be added.

  18. Industrial Materials and Inspection Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Materials and Inspection Technologies Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Industrial Materials and Inspection Technologies Waseem Faidi 2013.06.12 Hi, I am Waseem Faidi and I lead the Inspection and Metrology Lab at GE Global Research in developing novel inspection and process monitoring solutions

  19. Nuclear Materials Research and Technology/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Levitation Results in High-Purity Plutonium Metal 4 Researchers Prepare and Characterize First Transuranic Crown Ether Complex 6 "Excess" Nuclear Materials Hold Keys to Medicine, Research, Space Power 8 LANL Develops TRU Waste Mobile Analysis Methods for RCRA-Listed Metals 10 Recent Publications 11 Secretary Richardson Dedicates ARIES 12 NewsMakers 3rd quarter 1998 N u c l e a r M a t e r i a l s R e s e a r c h a n d T e c h n o l o g y Magnetic Levitation Results in

  20. NREL: Photovoltaics Research - III-V Multijunction Materials and Devices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R&D III-V Multijunction Materials and Devices R&D NREL has a strong research capability in III-V multijunction photovoltaic (PV) cells. The inverted metamorphic multijunction (IMM) technology, which is fundamentally a new technology path with breakthrough performance and cost advantages, is a particular focus. We invented and first demonstrated the IMM solar cell and introduced it to the PV industry. Our scientists earlier invented and demonstrated the first-ever multijunction PV

  1. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Jennifer Lewis RG4 Leader Jennifer Lewis Jennifer Lewis, Hansjörg Wyss Professor of Biologically Inspired Engineering Harvard University Jennifer A. Lewis joined the faculty of the School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering at Harvard University in 2013. Prior to her appointment at Harvard, she served as the Director of the Frederick Seitz Materials Research Laboratory and the Hans Thurnauer Professor of

  2. Meet CMI Researcher Ed Jones | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ed Jones CMI focus area deputy leader Ed Jones CMI researcher Ed Jones has been at Lawrence Livermore National Laboratory (LLNL) for 22 years, where his work has centered on the analysis, engineering, reliability and performance of energy, environmental, and national asset systems, including infrastructure and materials. He has developed extensive capabilities in the application of probabilistic methods and models to complex performance problems. Recent innovations have been applied to carbon

  3. Sodium fast reactor fuels and materials : research needs.

    SciTech Connect (OSTI)

    Denman, Matthew R.; Porter, Douglas; Wright, Art; Lambert, John; Hayes, Steven; Natesan, Ken; Ott, Larry J.; Garner, Frank; Walters, Leon; Yacout, Abdellatif

    2011-09-01

    An expert panel was assembled to identify gaps in fuels and materials research prior to licensing sodium cooled fast reactor (SFR) design. The expert panel considered both metal and oxide fuels, various cladding and duct materials, structural materials, fuel performance codes, fabrication capability and records, and transient behavior of fuel types. A methodology was developed to rate the relative importance of phenomena and properties both as to importance to a regulatory body and the maturity of the technology base. The technology base for fuels and cladding was divided into three regimes: information of high maturity under conservative operating conditions, information of low maturity under more aggressive operating conditions, and future design expectations where meager data exist.

  4. Basic Science Research to Support the Nuclear Materials Focus Area

    SciTech Connect (OSTI)

    Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

    2002-02-26

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

  5. Basic science research to support the nuclear material focus area

    SciTech Connect (OSTI)

    Boak, J. M.; Eller, P. Gary; Chipman, N. A.; Castle, P. M.

    2002-01-01

    The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

  6. American Physical Society awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    awards fellowships to Los Alamos scientists December 18, 2012 American Physical Society Awards Fellowships to Los Alamos Scientists LOS ALAMOS, NEW MEXICO, December 18, 2012-Ten scientists at Los Alamos National Laboratory are being inducted into the ranks of fellowship in the American Physical Society (APS) for 2012. The criterion for election as an APS Fellow is exceptional contributions to the physics enterprise; such as performing outstanding physics research, important applications of

  7. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect (OSTI)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for managing the R&D program elements; (2) Developing a specific work package for the R&D activities to be performed during each government fiscal year; (3) Reporting the status and progress of the work based on committed deliverables and milestones; (4) Developing collaboration in areas of materials R&D of benefit to the NGNP with countries that are a part of the Generation IV International Forum; and (5) Ensuring that the R&D work performed in support of the materials program is in conformance with established Quality Assurance and procurement requirements. The objective of the NGNP Materials R&D Program is to provide the essential materials R&D needed to support the design and licensing of the reactor and balance of plant, excluding the hydrogen plant. The materials R&D program is being initiated prior to the design effort to ensure that materials R&D activities are initiated early enough to support the design process and support the Project Integrator. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge; thus, new materials and approaches may be required.

  8. Postdoctoral Research Fellow Center for Nanophase Materials Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & transport properties of the materials, which in turn can be used to engineer better solid electrolyte materials 2. Automation & Data Analytics * Designing a new material for...

  9. Opportunities for Materials Science and Biological Research at the OPAL Research Reactor

    SciTech Connect (OSTI)

    Kennedy, S. J.

    2008-03-17

    Neutron scattering techniques have evolved over more than 1/2 century into a powerful set of tools for determination of atomic and molecular structures. Modern facilities offer the possibility to determine complex structures over length scales from {approx}0.1 nm to {approx}500 nm. They can also provide information on atomic and molecular dynamics, on magnetic interactions and on the location and behaviour of hydrogen in a variety of materials. The OPAL Research Reactor is a 20 megawatt pool type reactor using low enriched uranium fuel, and cooled by water. OPAL is a multipurpose neutron factory with modern facilities for neutron beam research, radioisotope production and irradiation services. The neutron beam facility has been designed to compete with the best beam facilities in the world. After six years in construction, the reactor and neutron beam facilities are now being commissioned, and we will commence scientific experiments later this year. The presentation will include an outline of the strengths of neutron scattering and a description of the OPAL research reactor, with particular emphasis on it's scientific infrastructure. It will also provide an overview of the opportunities for research in materials science and biology that will be possible at OPAL, and mechanisms for accessing the facilities. The discussion will emphasize how researchers from around the world can utilize these exciting new facilities.

  10. 2013 Annual DOE-NE Materials Research Coordination Meeting | Department of

    Energy Savers [EERE]

    Energy Annual DOE-NE Materials Research Coordination Meeting 2013 Annual DOE-NE Materials Research Coordination Meeting The Reactor Materials element of the Nuclear Energy Enabling Technologies (NEET) program conducted its FY 2013 coordination meeting as a series of four web-conferences to act as a forum for the nuclear materials research community. The purpose of this meeting was to report on current and planned nuclear materials research, identify new areas of collaboration and promote

  11. 2015 ANNUAL DOE-NE MATERIALS RESEARCH MEETING | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ANNUAL DOE-NE MATERIALS RESEARCH MEETING 2015 ANNUAL DOE-NE MATERIALS RESEARCH MEETING The Reactor Materials element of the Nuclear Energy Enabling Technologies (NEET) program conducted its FY 2015 coordination meeting as a series of two web-conferences to act as a forum for the nuclear materials research community. The purpose of this meeting was to report on current and planned nuclear materials research, identify new areas of collaboration and promote greater coordination among the various

  12. Research > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research In This Section Analytical Resources Batteries & Fuel Cells Complex Oxides Theory & Computation Research Highlights Publications Authorship Tools Young Investigator Program New Research Projects Research Analytical Resources Batteries & Fuel Cells Complex Oxides Theory & Computation Research Highlights Publications Authorship Tools Young Investigator Program New Research Projects

  13. Researchers Devise New Stress Test for Irradiated Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    How do you tell if materials are stressed-out? Conventional stress tests for irradiated materials require a significant amount of material, but a new nano-size technique can test the strength of materials using an infinitesimal amount. Learn more.

  14. Low Cost Carbon Fiber Research in the LM Materials Program Overview...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research in the LM Materials Program Overview Low Cost Carbon Fiber Research in the LM ... More Documents & Publications Low Cost Carbon Fiber Overview FY 2009 Progress Report for ...

  15. HyMARC: Hydrogen Materials-Advanced Research Consortium | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy HyMARC: Hydrogen Materials-Advanced Research Consortium HyMARC: Hydrogen Materials-Advanced Research Consortium The Hydrogen Materials-Advanced Research Consortium (HyMARC), composed of Sandia National Laboratories, Lawrence Livermore National Laboratory, and Lawrence Berkeley National Laboratory, has been formed with the objective of addressing the scientific gaps blocking the advancement of solid-state storage materials. Illustration of the research consortia model showing a

  16. Meet CMI Researcher Tom Lograsso | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researcher Thomas Lograsso leads Focus Area 2, Developing Substitutes. He started this role in May 2014. Previously he led Focus Area 4, Crosscutting Research while serving as...

  17. Pushing Super Materials to the Limit | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    way in which the material behaves under these processing conditions, as well as how the material might perform in an industrial application, such as a jet engine or a gas turbine. ...

  18. Researchers measure how specific atoms move in dielectric materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    how atoms move in dielectric materials in order to store that charge," says Tedi-Marie Usher, a Ph.D. candidate in materials science and engineering at NC State and lead...

  19. CMI Education and Outreach in 2013 | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in 2013: Hardin Valley Academy in Knoxville, Tennessee, December: CMI Director Alex King talked to sophomores Materials Research Society, Dec. 2: Karl Gschneidner, chief...

  20. Materials and Molecular Research Division annual report 1983

    SciTech Connect (OSTI)

    Searcy, A.W.; Muller, R.H.; Peterson, C.V.

    1984-07-01

    Progress is reported in the following fields: materials sciences (metallurgy and ceramics, solid-state physics, materials chemistry), chemical sciences (fundamental interactions, processes and techniques), actinide chemistry, fossil energy, electrochemical energy storage systems, superconducting magnets, semiconductor materials and devices, and work for others. (DLC)

  1. Crooker named Optical Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crooker named Optical Society Fellow Crooker named Optical Society Fellow The society recognized Crooker for "the development and application of magneto-optical spectroscopies to colloidal quantum dots and to electron spin transport and noise in semiconductors." January 23, 2014 Scott Crooker Scott Crooker Crooker's research focuses on the development of ultra-sensitive optical techniques to measure the static and dynamic properties of electron spins and magnetization in semiconductor

  2. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect (OSTI)

    J. K. Wright; R. N. Wright

    2008-04-01

    The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have concluded, however, that with adequate engineered cooling of the vessel, the A508/533 steels are also acceptable.

  3. Overview of DOE-NE Structural Materials Research, Materials Challenges and Operating Conditions

    SciTech Connect (OSTI)

    Maloy, Stuart A.; Busby, Jeremy T.

    2012-06-12

    This presentation summarized materials conditions for application of nanomaterials to reactor components. Material performance is essential to reactor performance, economics, and safety. A modern reactor design utilizes many different materials and material systems to achieve safe and reliable performance. Material performance in these harsh environments is very complex and many different forms of degradation may occur (often together in synergistic fashions). New materials science techniques may also help understand degradation modes and develop new manufacturing and fabrication techniques.

  4. NREL: Photovoltaics Research - New Materials, Devices, and Processes for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Concepts New Materials, Devices, and Processes for Advanced Concepts Computational Science and Theory We can use high-performance computing tools in modeling and simulation studies of semiconductor and other solar materials. We also determine the performance of solar devices. Theoretical studies can help us understand underlying physical principles or predict useful chemical compositions and crystalline structures. Scientific Computing Experimental Materials Science Solid-State

  5. NREL: Solar Research - Materials and Chemical Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials and Chemical Science and Technology The Materials and Chemical Science & Technology (MCST) directorate's capabilities span fundamental and applied R&D for renewable energy and energy efficiency. Key program areas include solar energy conversion for electricity and fuels, materials discovery and development for renewable energy technologies, hydrogen production and storage, and fuel cells. The MCST directorate-led by Associate Laboratory Director William Tumas-includes the

  6. Browse Societies by Language -- E-print Network Societies by...

    Office of Scientific and Technical Information (OSTI)

    for Artificial Intelligence -- Chinese Ceramic Society -- Chinese Chemical Society (CCS) -- Chinese Chemical Society (Taiwan) -- Chinese Environmental Mutagen Society (CEMS) -- ...

  7. Browse Societies by Language -- E-print Network Societies by...

    Office of Scientific and Technical Information (OSTI)

    ... of Engineering Societies (JFES) -- Japan Foundry Engineering Society -- Japan Health Physics Society (JHPS) -- Japan Heterocerists' Society -- Japan Institute of Energy -- ...

  8. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AL 35487 (USA) 2-Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA) 3-Department of Chemistry, University of Kentucky,...

  9. Meet CMI Researcher Patrice Turchi | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prototyping of Rare Earth-Based Alloys from ab initio Electronic Structure and Thermodynamics." That is about the development of a Materials Design Simulator (MDS) for guiding...

  10. Meet CMI Researcher Lynn Boatner | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Battelle Distinguished Inventor, is currently the Director of the ORNL Center for Radiation Detection Materials and Systems, and he leads the Synthesis and Properties of...

  11. FY 2014 Annual Progress Report - Propulsion Materials Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Fusion welding, which requires very high temperature to melt the materials being ... directly adjacent to heat-sensitive parts such ... at elevated temperature with pressure assistance. ...

  12. Meet CMI Researcher Brian Sales | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contributions in the areas of materials for nuclear waste storage, the solid-state generation of electrical power directly from heat, and the lossless transport of...

  13. Material gain: Research a step toward more efficient solar panels |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Lithium Ion Batteries (Technical Report) | SciTech Connect Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries Citation Details In-Document Search Title: Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries Authors: Dunn, Jennifer B. ; James, Christine ; Gaines, L G ; Gallagher, Kevin Publication Date: 2014-09-30 OSTI Identifier: 1172039 Report Number(s): ANL/ESD-14/10 108520 DOE Contract

  14. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 4-Department of Physics and Department of Electrical Engineering and Computer...

  15. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 2-Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 3-Physics Department,...

  16. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a diverse collection of leading journals, such as Nano Letters, Advanced Materials, and ACS Nano. They have also built capabilities for nanofiber synthesis and characterization at...

  17. FY 2008 Progress Report for Lightweighting Materials- 12. Materials Crosscutting Research and Development

    Broader source: Energy.gov [DOE]

    Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies to reduce automobile weight without compromising other attributes.

  18. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry.

  19. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jose M. Romo-Herrera CNMS User, Institute for Scientific and Technological Research of San Luis Potosi (IPICYT), Bobby G. Sumpter (CNMS Staff), David A. Cullen (Arizona State...

  20. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    meet various research needs. The chemical or physical exfoliation of graphite is a straightforward method to produce graphene with minimal synthesis effort, since it takes...

  1. Meet CMI Researcher Bob Fox | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research in the areas of supercritical fluid chemistry, metal complexation reactions, nanomaterials, alternative fuels, laser surface cleaning, and laser spectroscopy. Dr. ...

  2. Meet CMI Researcher Paul Canfield | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physicist in Ames Laboratory and a Distinguished Professor of Physics, holding the Robert Allen Wright Professorship. Dr. Canfield's research is centered on the design, discovery,...

  3. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxidative stress, indicating that the fullerenes can be absorbed into living tissue. This led CNMS researchers to investigate the potential impact of buckyballs if they...

  4. Meet CMI Researcher Vitalij Pecharsky | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    metallurgy of rare earths. The course offered at Iowa State University is available as a distance education course for researchers and industry representatives. It is offered...

  5. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in multiferroic BiFeO3, only 2-3 nm wide and distinct from the surrounding insulating material.1 Conductivity was completely unexpected since domain walls present only a subtle...

  6. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rouleau,3 Karren L. More,5 G. Tayhas R. Palmore,2 and Robert H. Hurt2 1-Dept Chemistry, Brown University 2-School of Engineering, Brown University 3-Center for Nanophase Materials...

  7. Management of Biological Materials in Wastewater from Research & Development Facilities

    SciTech Connect (OSTI)

    Raney, Elizabeth A.; Moon, Thomas W.; Ballinger, Marcel Y.

    2011-04-01

    PNNL has developed and instituted a systematic approach to managing work with biological material that begins in the project planning phase and carries through implementation to waste disposal. This paper describes two major processes used at PNNL to analyze and mitigate the hazards associated with working with biological materials and evaluate them for disposal to the sewer, ground, or surface water in a manner that protects human health and the environment. The first of these processes is the Biological Work Permit which is used to identify requirements for handling, storing, and working with biological materials and the second is the Sewer Approval process which is used to evaluate discharges of wastewaters containing biological materials to assure they meet industrial wastewater permits and other environmental regulations and requirements.

  8. NREL: Photovoltaics Research - Materials Applications and Performance Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Applications & Performance Staff The materials applications & performance staff members at the National Renewable Energy Laboratory work within one of four groups: the High Efficiency Crystalline PV Group, the Electro-Optical Characterization Group, the Cell & Module Characterization Group, and the Reliability & Systems Engineering Group. Access the staff members' background, areas of expertise, and contact information below. Greg Wilson Director High Efficiency

  9. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Harry Atwater Associate Director Harry Atwater Harry Atwater, Howard Hughes Professor and Professor of Applied Physics and Materials Science; Director, Joint Center for Articificial Photosynthesis California Institute of Technology Professor Harry Atwater is the Howard Hughes Professor of Applied Physics and Materials Science at the California Institute of Technology. Professor Atwater currently serves as Director of the Joint Center for Artificial Photosynthesis. He

  10. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  11. Meet CMI Researcher Patrick Zhang | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patrick Zhang CMI Researcher Patrick Zhang is at the Florida Industrial and Phosphate Research Institute (FIPR). In March 2015, he offered the first CMI Webinar: Critical Elements in Phosphate Ore: Recovery of Rare Earths and Uranium from Florida Phosphate Ore Processing. A recording of the webinar is available

  12. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  13. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials/Condensed Matter Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied

  14. Surface Analysis Techniques on Ceramic Materials | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Analysis Techniques on Ceramic Materials Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Surface Analysis Techniques on Ceramic Materials Kristen Brosnan 2012.01.09 My colleague and fellow Edison's Desk blogger Vincent Smentkowski published a great overview of time of flight secondary ion mass spectroscopy

  15. Hydrogen Materials Advanced Research Consortium (HyMARC)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen M aterials A dvanced Research C onsor6um Sponsor: D OE-EEREFuel C ell T echnologies O ffice Consor6um D irector: D r. M ark D . A llendorf Partner L aboratories: Sandia N ...

  16. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a whole new family of previously unknown electronic properties. Credit Published in Nano Letters, DOI: 10.1021nl203349b. Research at Oak Ridge National Laboratory's Center for...

  17. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNMS RESEARCH Synthesis and Directed Growth of Single-Crystal TCNQ-Cu Organic Nanowires K. Xiao, J. Tao, and Z. Liu (CNMS Postdocs); I. N. Ivanov, A.A. Puretzky, Z. Pan, and D.B....

  18. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nanoscale system components that can be directly imaged. In this work Nature Genetics, 40(4), 466-470 (2008), in collaboration with a researcher at the University of...

  19. Colorado School of Mines Researchers Win Patent | Critical Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News News releases CMI in the news News archive CMI social media Colorado School of Mines Researchers Win Patent The Coloroado School of Mines 2013 highlights include news that...

  20. Meet CMI Researcher Parans Paranthaman | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parans Paranthaman Image of Parans Paranthaman, CMI researcher at Oak Ridge National Laboratory Parans Paranthaman at Oak Ridge National Laboratory is a CMI researcher focused on additive manufacturing of permanent magnets, lithium separation from geothermal brine and lithium and sodium ion battery development. In February 2016, the AAAS inducted Paranthaman as an AAAS Fellow for chemistry. AAAS Fellows are recognized for meritorious efforts to advance science or its applications. In 2015,

  1. Materials and Molecular Research Division annual report 1982

    SciTech Connect (OSTI)

    Not Available

    1983-05-01

    This report is divided into: materials sciences, chemical sciences, nuclear sciences, fossil energy, advanced isotope separation technology (AISI), energy storage, magnetic fusion energy (MFE), nuclear waste management, and work for others (WFO). Separate abstracts have been prepared for all except AIST, MFE, and WFO. (DLC)

  2. Materials and Molecular Research Division. Annual report 1981

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    Progress is reported in the areas of materials sciences, chemical sciences, nuclear sciences, fossil energy, advanced (laser) isotope separation technology, energy storage, superconducting magnets, and nuclear waste management. Work for others included phase equilibria for coal gasification products and ..beta..-alumina electrolytes for storage batteries. (DLC)

  3. Los Alamos researchers uncover new origins of radiation-tolerant materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers uncover new origins of radiation-tolerant materials Los Alamos researchers uncover new origins of radiation-tolerant materials A new report this week in the journal Nature Communications provides new insight into what, exactly, makes some complex materials radiation tolerant. November 1, 2015 Los Alamos National Laboratory scientists are exploring how certain materials fall apart under irradiation, while others retain their stable. Both nuclear fuels and nuclear waste storage could

  4. Sandian Named Fellow of the Society for Industrial and Applied...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Named Fellow of the Society for Industrial and Applied Mathematics - Sandia Energy Energy ... Sandian Named Fellow of the Society for Industrial and Applied Mathematics HomeResearch & ...

  5. Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97

    SciTech Connect (OSTI)

    Newkirk, L.

    1997-12-01

    This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

  6. Sandians Published in American Chemical Society's Environmental...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Published in American Chemical Society's Environmental Science & Technology - Sandia ... ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ...

  7. Basic research needs and opportunities on interfaces in solar materials

    SciTech Connect (OSTI)

    Czanderna, A.W.; Gottschall, R.J.

    1981-04-01

    The workshop on research needs and recommended research programs on interfaces in solar energy conversion devices was held June 30-July 3, 1980. The papers deal mainly with solid-solid, solid-liquid, and solid-gas interfaces, sometimes involving multilayer solid-solid interfaces. They deal mainly with instrumental techniques of studying these interfaces so they can be optimized, so they can be fabricated with quality control and so changes with time can be forecast. The latter is required because a long lifetime (20 yrs is suggested) is necessary for economic reasons. Fifteen papers have been entered individually into EDB and ERA. (LTN)

  8. FY 2009 Progress Report for Lightweighting Materials- 12. Materials Crosscutting Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability.

  9. Materials Project - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration Materials Physics and Applications Division Lead Antoinette Taylor Toni Taylor November 2009 Los Alamos National Laboratory Fellow Six Los Alamos scientists have been designated 2009 Los Alamos National Laboratory Fellows in recognition of sustained, outstanding scientific contributions and exceptional promise for continued professional achievement. The title of Fellow is bestowed on only about 2 percent of the Laboratory's current technical staff. The new Fellows

  10. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Nate Lewis Pricipal Investigator Nate Lewis Nate Lewis, George L. Argyros Professor of Chemistry California Institute of Technology Dr. Nathan Lewis, the George L. Argyros Professor of Chemistry, has been on the faculty at the California Institute of Technology since 1988 and has served as Professor since 1991. He has also served as the Principal Investigator of the Beckman Institute Molecular Materials Resource Center at Caltech since 1992, and is the Scientific Director

  11. Anaerobic biodegradation of BTEX in aquifer material. Environmental research brief

    SciTech Connect (OSTI)

    Borden, R.C.; Hunt, M.J.; Shafer, M.B.; Barlaz, M.A.

    1997-08-01

    Laboratory and field experiments were conducted in two petroleum-contaminated aquifers to examine the anaerobic biodegradation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) under ambient conditions. Aquifer material was collected from locations at the source, mid-plume and end-plume at both sites, incubated under ambient conditions, and monitored for disappearance of the test compounds. In the mid-plume location at the second site, in-situ column experiments were also conducted for comparison with the laboratory microscosm and field-scale results. In the end-plume microcosms, biodegradation was variable with extensive biodegradation in some microcosms and little or no biodegradation in others.

  12. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Ralph G. Nuzzo Director Ralph G. Nuzzo Ralph G. Nuzzo, G. L. Clark Professor of Chemistry; Director, LMI-EFRC; Visiting Associate in Applied Physics and Materials Science, Caltech University of Illinois at Urbana-Champaign and California Institute of Technology Ralph G. Nuzzo is the Director of the LMI-EFRC, appointed in 2015. He is the G. L. Clark Professor of Chemistry at the University of Illinois at Urbana-Champaign, a faculty he joined in 1991 and where he also holds

  13. Materials Research for Smart Grid Applications Steven J Bossart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research for Smart Grid Applications Steven J Bossart Ryan Egidi U.S. Department of Energy National Energy Technology Laboratory Our nation is transitioning to a Smart Grid which can sense and more optimally control the transmission, distribution, and delivery of electric power. The control of the electric power system is becoming more challenging with the addition of distributed renewable power sources, energy storage systems, electric vehicle charging, building and home energy management

  14. American Society of Mechanical Engineers/Savannah River National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ASME/SRNL) Materials and Components for Hydrogen Infrastructure Codes and Standards Workshop and the DOE Hydrogen Pipeline Working Group Workshop Agenda | Department of Energy Agenda American Society of Mechanical Engineers/Savannah River National Laboratory (ASME/SRNL) Materials and Components for Hydrogen Infrastructure Codes and Standards Workshop and the DOE Hydrogen Pipeline Working Group Workshop Agenda Sponsored by SRNL, ASME, and DOE held at the Center for Hydrogen Research, Aiken,

  15. Analytical SuperSTEM for extraterrestrial materials research

    SciTech Connect (OSTI)

    Bradley, J P; Dai, Z R

    2009-09-08

    Electron-beam studies of extraterrestrial materials with significantly improved spatial resolution, energy resolution and sensitivity are enabled using a 300 keV SuperSTEM scanning transmission electron microscope with a monochromator and two spherical aberration correctors. The improved technical capabilities enable analyses previously not possible. Mineral structures can be directly imaged and analyzed with single-atomic-column resolution, liquids and implanted gases can be detected, and UV-VIS optical properties can be measured. Detection limits for minor/trace elements in thin (<100 nm thick) specimens are improved such that quantitative measurements of some extend to the sub-500 ppm level. Electron energy-loss spectroscopy (EELS) can be carried out with 0.10-0.20 eV energy resolution and atomic-scale spatial resolution such that variations in oxidation state from one atomic column to another can be detected. Petrographic mapping is extended down to the atomic scale using energy-dispersive x-ray spectroscopy (EDS) and energy-filtered transmission electron microscopy (EFTEM) imaging. Technical capabilities and examples of the applications of SuperSTEM to extraterrestrial materials are presented, including the UV spectral properties and organic carbon K-edge fine structure of carbonaceous matter in interplanetary dust particles (IDPs), x-ray elemental maps showing the nanometer-scale distribution of carbon within GEMS (glass with embedded metal and sulfides), the first detection and quantification of trace Ti in GEMS using EDS, and detection of molecular H{sub 2}O in vesicles and implanted H{sub 2} and He in irradiated mineral and glass grains.

  16. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility

    SciTech Connect (OSTI)

    P. Calderoni; P. Sharpe; M. Shimada

    2009-09-01

    The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

  17. Chemistry and Materials Science progress report, first half FY 1992. Weapons-Supporting Research and Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This report contains sections on: Fundamentals of the physics and processing of metals; interfaces, adhesion, and bonding; energetic materials; plutonium research; synchrotron radiation-based materials science; atomistic approach to the interaction of surfaces with the environment: actinide studies; properties of carbon fibers; buried layer formation using ion implantation; active coherent control of chemical reaction dynamics; inorganic and organic aerogels; synthesis and characterization of melamine-formaldehyde aerogels; structural transformation and precursor phenomena in advanced materials; magnetic ultrathin films, surfaces, and overlayers; ductile-phase toughening of refractory-metal intermetallics; particle-solid interactions; electronic structure evolution of metal clusters; and nanoscale lithography induced chemically or physically by modified scanned probe microscopy.

  18. Sorbents and Carbon-Based Materials for Hydrogen Storage Research and Development

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's research and development on sorbents and carbon-based materials for hydrogen storage targets breakthrough concepts for storing hydrogen in high-surface-area sorbents...

  19. 2016 Cornell Center for Materials Research Symposium > Local Events > The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Materials Center at Cornell 2016 Cornell Center for Materials Research Symposium May 25th, 2016 8:30am - 6:00pm Location: 120 Physical Sciences Building By Bill Steele New electron microscopy techniques can probe structural, physical and chemical properties of materials with spatial resolution ranging from atomic to macroscopic length scales, with impact across a broad range of disciplines in the physical and the life sciences, and with commercial applications. The 2016 Cornell Center

  20. Approved reference and testing materials for use in Nuclear Waste Management Research and Development Programs

    SciTech Connect (OSTI)

    Mellinger, G.B.; Daniel, J.L.

    1984-12-01

    This document, addressed to members of the waste management research and development community summarizes reference and testing materials available from the Nuclear Waste Materials Characterization Center (MCC). These materials are furnished under the MCC's charter to distribute reference materials essential for quantitative evaluation of nuclear waste package materials under development in the US. Reference materials with known behavior in various standard waste management related tests are needed to ensure that individual testing programs are correctly performing those tests. Approved testing materials are provided to assist the projects in assembling materials data base of defensible accuracy and precision. This is the second issue of this publication. Eight new Approved Testing Materials are listed, and Spent Fuel is included as a separate section of Standard Materials because of its increasing importance as a potential repository storage form. A summary of current characterization information is provided for each material listed. Future issues will provide updates of the characterization status of the materials presented in this issue, and information about new standard materials as they are acquired. 7 references, 1 figure, 19 tables.

  1. Research Highlights > Research > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Highlights In This Section The Structural Evolution and Diffusion During the Chemical Transformation from Cobalt to Cobalt Phosphide Nanoparticles Joint Density-Functional Theory of Electrochemistry Double-band Electrode Channel Flow DEMS Cell Sulfur@Carbon Cathodes for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single Crystal Nanostructures for Batteries & PVs High Performance Alkaline Fuel Cell Membranes Improving Fuel

  2. The High Temperature Materials Laboratory: A research and user facility at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed; the former on full cost recovery basis.

  3. The High Temperature Materials Laboratory: A research and user facility at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy & image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed; the former on full cost recovery basis.

  4. Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials. Final Technical Summary

    SciTech Connect (OSTI)

    Mullins, Michael; Rogers, Tony; King, Julia; Keith, Jason; Cornilsen, Bahne; Allen, Jeffrey; Gilbert, Ryan; Holles, Joseph

    2010-09-28

    The core projects for this DOE-sponsored Center at Michigan Tech have focused on several of the materials problems identified by the NAS. These include: new electrode materials, enhanced PEM materials, lighter and more effective bipolar plates, and improvement of the carbon used as a current carrier. This project involved fundamental and applied research in the development and testing of lightweight and nanostructured materials to be used in fuel cell applications and for chemical synthesis. The advent of new classes of materials engineered at the nanometer level can produce materials that are lightweight and have unique physical and chemical properties. The grant was used to obtain and improve the equipment infrastructure to support this research and also served to fund seven research projects. These included: 1. Development of lightweight, thermally conductive bipolar plates for improved thermal management in fuel cells; 2. Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts for fuel cells; 3. Development of hybrid inorganic/organic polymer nanocomposites with improved ionic and electronic properties; 4. Development of oriented polymeric materials for membrane applications; 5. Preparation of a graphitic carbon foam current collectors; 6. The development of lightweight carbon electrodes using graphitic carbon foams for battery and fuel cell applications; and 7. Movement of water in fuel cell electrodes.

  5. Browse Societies by Language -- E-print Network Societies by...

    Office of Scientific and Technical Information (OSTI)

    ... l'Atlantique (AGS) -- Atlantic Society of Fish and Wildlife Biologists (ASFWB) -- Audio ... Biophysics (ASB) -- Australian Society for Fish Biology (ASFB) -- Australian Society for ...

  6. Energetic materials research and development activities at Sandia National Laboratories supported under DP-10 programs

    SciTech Connect (OSTI)

    Ratzel, A.C. III

    1998-09-01

    This report provides summary descriptions of Energetic Materials (EM) Research and Development activities performed at Sandia National Laboratories and funded through the Department of Energy DP-10 Program Office in FY97 and FY98. The work falls under three major focus areas: EM Chemistry, EM Characterization, and EM Phenomenological Model Development. The research supports the Sandia component mission and also Sandia's overall role as safety steward for the DOE Nuclear Weapons Complex.

  7. Browse Societies by Language -- E-print Network Societies by...

    Office of Scientific and Technical Information (OSTI)

    ... en - Weefselkweek Netherlands Society for Plant Biotechnology and Tissue Culture (NVPW) -- Nederlandse Vereniging voor Radiologie Radiological Society of the ...

  8. American Physical Society Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physical Society Awards American Physical Society (APS) is one of the most important professional societies for gauging the quality of R&D done at the Laboratory. The APS sponsors a number of awards including the John Dawson Award of Excellence in Plasma Physics, James Clerk Maxwell Prize for Plasma Physics, as well as Dinstinguised Lectuerer and Doctoral Dissertation prizes. Name Year Name of Award and Citation Yu-hsin Chen 2012 Marshall N. Rosenbluth Outstanding Doctoral Thesis For

  9. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015

    SciTech Connect (OSTI)

    Wiffen, F. W.; Katoh, Yutai; Melton, Stephanie G.

    2015-12-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.

  10. Brookhaven Essay Contest – Science and Society

    Broader source: Energy.gov [DOE]

    The Science and Society Essay Contest aims to challenge high school students to question and deliberate the purposes and social implications of scientific research. All high school students (9th...

  11. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1993 and research proposal for FY 1994

    SciTech Connect (OSTI)

    Birnbaum, H.K.

    1993-03-01

    The materials research laboratory program is about 30% of total Materials Science and Engineering effort on the Univ. of Illinois campus. Coordinated efforts are being carried out in areas of structural ceramics, grain boundaries, field responsive polymeric and organic materials, molecular structure of solid-liquid interfaces and its relation to corrosion, and x-ray scattering science.

  12. Ion beam processing of advanced electronic materials

    SciTech Connect (OSTI)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  13. 1995 Federal Research and Development Program in Materials Science and Technology

    SciTech Connect (OSTI)

    1995-12-01

    The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly a century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The materials R&D program also supports the Administration's specific technological objectives, emphasizing development of affordable, high-performance commercial and military aircraft; ultra-fuel-efficient, low-emissions automobiles that are also safe and comfortable; powerful yet inexpensive electronic systems; environmentally safe products and processes; and a durable building and transportation infrastructure.

  14. Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96

    SciTech Connect (OSTI)

    Chase, L.

    1997-03-01

    This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

  15. Fusion Materials Science and Technology Research Needs: Now and During the ITER era

    SciTech Connect (OSTI)

    Wirth, Brian D.; Kurtz, Richard J.; Snead, Lance L.

    2013-09-30

    The plasma facing components, first wall and blanket systems of future tokamak-based fusion power plants arguably represent the single greatest materials engineering challenge of all time. Indeed, the United States National Academy of Engineering has recently ranked the quest for fusion as one of the top grand challenges for engineering in the 21st Century. These challenges are even more pronounced by the lack of experimental testing facilities that replicate the extreme operating environment involving simultaneous high heat and particle fluxes, large time varying stresses, corrosive chemical environments, and large fluxes of 14-MeV peaked fusion neutrons. This paper will review, and attempt to prioritize, the materials research and development challenges facing fusion nuclear science and technology into the ITER era and beyond to DEMO. In particular, the presentation will highlight the materials degradation mechanisms we anticipate to occur in the fusion environment, the temperature- displacement goals for fusion materials and plasma facing components and the near and long-term materials challenges required for both ITER, a fusion nuclear science facility and longer term ultimately DEMO.

  16. American Chemical Society Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selected as American Chemical Society Fellows August 7, 2014 Chamberlin and Porterfield named ACS Fellows LOS ALAMOS, N.M., Aug. 7, 2014-Rebecca Chamberlin and Donivan Porterfield, both of Los Alamos National Laboratory's Actinide Analytical Chemistry group, have been selected as a 2014 Fellows of the American Chemical Society (ACS). Rebecca Chamberlin An inorganic chemist and radiochemist, Chamberlin is currently the co-principal investigator for development of novel microreactor-based systems

  17. American Physical Society

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos scientists honored by American Physical Society November 12, 2015 LOS ALAMOS, N.M., Nov. 12, 2015-Ten Los Alamos National Laboratory scientists are new Fellows of the American Physical Society. Tariq Aslam, Steven Batha, Eric Bauer, Hou-Tong Chen, Diego Alejandro Dalvit, Dinh Nguyen, Alan Perelson, Filip Ronning, Alexander Saunders and Glen Wurden were named this week by the national organization. "We're extremely pleased that the technical accomplishments of our talented staff

  18. Browse Societies by Language -- E-print Network Societies by...

    Office of Scientific and Technical Information (OSTI)

    ... Plant Taxonomic Society of Korea -- Polska Akademia Nauk Polish Academy of Sciences (PAN) -- Polskie Towarzystwo Akustyczne Polish Acoustical Society (PTAPSA) -- Polskie ...

  19. Materials research at selected Japanese laboratories. Based on a 1992 visit: Overview, summary of highlights, notes on laboratories and topics

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    I visited Japan from June 29 to August 1, 1992. The purpose of this visit was to assess the status of materials science research at selected governmental, university and industrial laboratories and to established acquaintances with Japanese researchers. The areas of research covered by these visits included ceramics, oxide superconductors, intermetallics alloys, superhard materials and diamond films, high-temperature materials and properties, mechanical properties, fracture, creep, fatigue, defects, materials for nuclear reactor applications and irradiation effects, high pressure synthesis, self-propagating high temperature synthesis, microanalysis, magnetic properties and magnetic facilities, and surface science.

  20. Ultra High p-doping Material Research for GaN Based Light Emitters

    SciTech Connect (OSTI)

    Vladimir Dmitriev

    2007-06-30

    The main goal of the Project is to investigate doping mechanisms in p-type GaN and AlGaN and controllably fabricate ultra high doped p-GaN materials and epitaxial structures. Highly doped p-type GaN-based materials with low electrical resistivity and abrupt doping profiles are of great importance for efficient light emitters for solid state lighting (SSL) applications. Cost-effective hydride vapor phase epitaxial (HVPE) technology was proposed to investigate and develop p-GaN materials for SSL. High p-type doping is required to improve (i) carrier injection efficiency in light emitting p-n junctions that will result in increasing of light emitting efficiency, (ii) current spreading in light emitting structures that will improve external quantum efficiency, and (iii) parameters of Ohmic contacts to reduce operating voltage and tolerate higher forward currents needed for the high output power operation of light emitters. Highly doped p-type GaN layers and AlGaN/GaN heterostructures with low electrical resistivity will lead to novel device and contact metallization designs for high-power high efficiency GaN-based light emitters. Overall, highly doped p-GaN is a key element to develop light emitting devices for the DOE SSL program. The project was focused on material research for highly doped p-type GaN materials and device structures for applications in high performance light emitters for general illumination P-GaN and p-AlGaN layers and multi-layer structures were grown by HVPE and investigated in terms of surface morphology and structure, doping concentrations and profiles, optical, electrical, and structural properties. Tasks of the project were successfully accomplished. Highly doped GaN materials with p-type conductivity were fabricated. As-grown GaN layers had concentration N{sub a}-N{sub d} as high as 3 x 10{sup 19} cm{sup -3}. Mechanisms of doping were investigated and results of material studies were reported at several International conferences providing better understanding of p-type GaN formation for Solid State Lighting community. Grown p-type GaN layers were used as substrates for blue and green InGaN-based LEDs made by HVPE technology at TDI. These results proved proposed technical approach and facilitate fabrication of highly conductive p-GaN materials by low-cost HVPE technology for solid state lighting applications. TDI has started the commercialization of p-GaN epitaxial materials.

  1. Very High Temperature Reactor (VHTR) Survey of Materials Research and Development Needs to Support Early Deployment

    SciTech Connect (OSTI)

    Eric Shaber; G. Baccaglini; S. Ball; T. Burchell; B. Corwin; T. Fewell; M. Labar; P. MacDonald; P. Rittenhouse; Russ Vollam; F. Southworth

    2003-01-01

    The VHTR reference concept is a helium-cooled, graphite moderated, thermal neutron spectrum reactor with an outlet temperature of 1000 C or higher. It is expected that the VHTR will be purchased in the future as either an electricity producing plant with a direct cycle gas turbine or a hydrogen producing (or other process heat application) plant. The process heat version of the VHTR will require that an intermediate heat exchanger (IHX) and primary gas circulator be located in an adjoining power conversion vessel. A third VHTR mission - actinide burning - can be accomplished with either the hydrogen-production or gas turbine designs. The first ''demonstration'' VHTR will produce both electricity and hydrogen using the IHX to transfer the heat to either a hydrogen production plant or the gas turbine. The plant size, reactor thermal power, and core configuration will be designed to assure passive decay heat removal without fuel damage during accidents. The fuel cycle will be a once-through very high burnup low-enriched uranium fuel cycle. The purpose of this report is to identify the materials research and development needs for the VHTR. To do this, we focused on the plant design described in Section 2, which is similar to the GT-MHR plant design (850 C core outlet temperature). For system or component designs that present significant material challenges (or far greater expense) there may be some viable design alternatives or options that can reduce development needs or allow use of available (cheaper) materials. Nevertheless, we were not able to assess those alternatives in the time allotted for this report and, to move forward with this material research and development assessment, the authors of this report felt that it was necessary to use a GT-MHR type design as the baseline design.

  2. Crooker named Optical Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Society (OSA). The Society selected 71 new Fellows based on their overall impact on optics, as gauged through specific scientific, engineering and technological contributions,...

  3. Moore named an American Statistical Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moore named an American Statistical Society Fellow Moore named an American Statistical Society Fellow The ASA inducted Leslie (Lisa) Moore as a Fellow at the 2014 Joint Statistical Meetings. October 8, 2014 Leslie (Lisa) Moore Leslie (Lisa) Moore ASA cited Moore for "seminal and creative research on the design of computer experiments; for statistical collaboration on a wide range of problems of scientific and national importance; and for mentoring statisticians and statistical

  4. NREL: Awards and Honors - Scientific and Technical Society Honors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kazmerski 1981 Peter Mark Memorial Research Award - Dr. Lawrence Kazmerski American Welding Society 2002 William Spraragen Memorial Certificate Award - R. D. Smith, for best...

  5. Science and Society Colloquium

    ScienceCinema (OSTI)

    None

    2011-04-25

    Mr. Randi will give an update of his lecture to the American Physical Society on the occasion of his award of the 1989 Forum Prize. The citation said: "for his unique defense of Science and the scientific method in many disciplines, including physics, against pseudoscience, frauds and charlatans. His use of scientific techniques has contributed to refuting suspicious and fraudulent claims of paranormal results. He has contributed significantly to public understanding of important issues where science and society interact". He is a professional magician and author of many books. He worked with John Maddox, the Editor of Nature to investigate the claims of "water with memory".

  6. Research Meetings > Events > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Meetings In This Section Local Events Partnership Events Seminars Research Meetings Research Meetings Weekly Research Meeting - presentations by emc2 researchers This section is currently empty, but check back soon! Home » Events » Research Meetings

  7. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Access to Hopper Phase II (Cray XE6) If you are a current NERSC user, you are enabled to use Hopper Phase II. Use your SSH client to connect to Hopper II:...

  8. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    SciTech Connect (OSTI)

    J. K. Wright

    2010-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for application in heat exchangers and core internals for the NGNP. The primary candidates are Inconel 617, Haynes 230, Incoloy 800H and Hastelloy XR. Based on the technical maturity, availability in required product forms, experience base, and high temperature mechanical properties all of the vendor pre-conceptual design studies have specified Alloy 617 as the material of choice for heat exchangers. Also a draft code case for Alloy 617 was developed previously. Although action was suspended before the code case was accepted by ASME, this draft code case provides a significant head start for achieving codification of the material. Similarly, Alloy 800H is the material of choice for control rod sleeves. In addition to the above listed considerations, Alloy 800H is already listed in the nuclear section of the ASME Code; although the maximum use temperature and time need to be increased.

  9. Next Generation Nuclear Plant Intermediate Heat Exchanger Materials Research and Development Plan (PLN-2804)

    SciTech Connect (OSTI)

    J. K. Wright

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for application in heat exchangers and core internals for the NGNP. The primary candidates are Inconel 617, Haynes 230, Incoloy 800H and Hastelloy XR. Based on the technical maturity, availability in required product forms, experience base, and high temperature mechanical properties all of the vendor pre-conceptual design studies have specified Alloy 617 as the material of choice for heat exchangers. Also a draft code case for Alloy 617 was developed previously. Although action was suspended before the code case was accepted by ASME, this draft code case provides a significant head start for achieving codification of the material. Similarly, Alloy 800H is the material of choice for control rod sleeves. In addition to the above listed considerations, Alloy 800H is already listed in the nuclear section of the ASME Code; although the maximum use temperature and time need to be increased.

  10. Jefferson Lab Physicist Wins American Physical Society Award | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Physicist Wins American Physical Society Award Jefferson Lab Physicist Wins American Physical Society Award April 19, 2002 Keith Baker, from Jefferson Lab in Newport News, Va., was recently awarded the American Physical Society's 2002 Edward A. Bouchet Award for innovative research. Baker, a JLab experimental physicist is also a professor at Hampton University (Hampton, Va.). The APS award recognizes Baker for his contribution to nuclear and particle physics research, his development of

  11. Los Alamos physicist honored by American Physical Society

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physicist honored by American Physical Society Los Alamos physicist honored by American Physical Society George Kyrala is among a team honored with the American Physical Society's 2012 John Dawson Award for Excellence in Plasma Physics Research. August 29, 2012 George Kyrala George Kyrala Contact Communications Office (505) 667-7000 LOS ALAMOS, NEW MEXICO, August 29, 2012-Los Alamos National Laboratory physicist George Kyrala, along with researchers from Lawrence Livermore National Laboratory

  12. Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981

    SciTech Connect (OSTI)

    Bradley, R.A.

    1981-12-01

    This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  13. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program, April 1, 1991--March 31, 1993

    SciTech Connect (OSTI)

    Carlson, P.T.

    1993-05-01

    Objective of DOE`s Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications, with focus on longer-term needs. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. Scope of the program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. Research conducted on the Program is divided among the following areas: (1) ceramics, (2) new alloys, (3) corrosion research, and (4) program development and technology transfer. This bibliography covers the period of April 1, 1992, through March 31, 1993, and is a supplement to previous bibliographies in this series. The publications listed are limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles.

  14. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program, April 1, 1991--March 31, 1993

    SciTech Connect (OSTI)

    Carlson, P.T.

    1993-01-01

    Objective of DOE's Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications, with focus on longer-term needs. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. Scope of the program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. Research conducted on the Program is divided among the following areas: (1) ceramics, (2) new alloys, (3) corrosion research, and (4) program development and technology transfer. This bibliography covers the period of April 1, 1992, through March 31, 1993, and is a supplement to previous bibliographies in this series. The publications listed are limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles.

  15. Fossil Energy Advanced Research and Technology Development Materials Program. Semiannual progress report for the period ending September 30, 1992

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  16. Inverse Design: Playing "Jeopardy" in Materials Science (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Alex Zunger; Tumas, Bill; CID Staff

    2011-05-01

    'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.

  17. Inverse Design: Playing "Jeopardy" in Materials Science (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Alex Zunger (former Director, Center for Inverse Design); Tumas, Bill (Director, Center for Inverse Design); CID Staff

    2011-11-02

    'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.

  18. Supercritical Water Reactor (SCWR) - Survey of Materials Research and Development Needs to Assess Viability

    SciTech Connect (OSTI)

    Philip E. MacDonald

    2003-09-01

    Supercritical water-cooled reactors (SCWRs) are among the most promising advanced nuclear systems because of their high thermal efficiency [i.e., about 45% vs. 33% of current light water reactors (LWRs)] and considerable plant simplification. SCWRs achieve this with superior thermodynamic conditions (i.e., high operating pressure and temperature), and by reducing the containment volume and eliminating the need for recirculation and jet pumps, pressurizer, steam generators, steam separators and dryers. The reference SCWR design in the U.S. is a direct cycle, thermal spectrum, light-water-cooled and moderated reactor with an operating pressure of 25 MPa and inlet/outlet coolant temperature of 280/500 °C. The inlet flow splits, partly to a down-comer and partly to a plenum at the top of the reactor pressure vessel to flow downward through the core in special water rods to the inlet plenum. This strategy is employed to provide good moderation at the top of the core, where the coolant density is only about 15-20% that of liquid water. The SCWR uses a power conversion cycle similar to that used in supercritical fossil-fired plants: high- intermediate- and low-pressure turbines are employed with one moisture-separator re-heater and up to eight feedwater heaters. The reference power is 3575 MWt, the net electric power is 1600 MWe and the thermal efficiency is 44.8%. The fuel is low-enriched uranium oxide fuel and the plant is designed primarily for base load operation. The purpose of this report is to survey existing materials for fossil, fission and fusion applications and identify the materials research and development needed to establish the SCWR viabilitya with regard to possible materials of construction. The two most significant materials related factors in going from the current LWR designs to the SCWR are the increase in outlet coolant temperature from 300 to 500 °C and the possible compatibility issues associated with the supercritical water environment. • Reactor pressure vessel • Pumps and piping

  19. FY 2008 Progress Report for Lightweighting Materials- 8. Polymer Composites Research and Development

    Broader source: Energy.gov [DOE]

    Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies to reduce automobile weight without compromising other attributes.

  20. Browse Societies by Language -- E-print Network Societies by...

    Office of Scientific and Technical Information (OSTI)

    ... Kernenergie nergie Nuclaire Suisse -- Schweizer Licht Gesellschaft Swiss Lighting Society (SLG) -- Schweizerische Akademie der Naturwissenschaften Acadmie suisse ...

  1. Browse Societies by Language -- E-print Network Societies by...

    Office of Scientific and Technical Information (OSTI)

    ... de Ingeniera Sanitaria y Ambiental Inter-American Association of Sanitary ... Carcinognese e Teratognese Ambiental Brazilian Society of Environmental ...

  2. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect (OSTI)

    J. K. Wright; R. N. Wright

    2010-07-01

    The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

  3. Thin Film Materials and Processing Techniques for a Next Generation Photovoltaic Device: Cooperative Research and Development Final Report, CRADA Number CRD-12-470

    SciTech Connect (OSTI)

    van Hest, M.

    2013-08-01

    This research extends thin film materials and processes relevant to the development and production of a next generation photovoltaic device.

  4. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Los Alamos researchers uncover new properties in nanocomposite oxide ceramics for reactor fuel, fast-ion conductors In a nanocomposite, the size of each of these grains is on the ...

  5. 2012 BIOINSPIRED MATERIALS GORDON RESEARCH CONFERENCE, JUNE 24-29, 2012

    SciTech Connect (OSTI)

    Chilkoti, Ashutosh

    2013-06-29

    The emerging, interdisciplinary field of Bioinspired Materials focuses on developing a fundamental understanding of the synthesis, directed self-assembly and hierarchical organization of natural occurring materials, and uses this understanding to engineer new bioinspired artificial materials for diverse applications. The inaugural 2012 Gordon Conference on Bioinspired Materials seeks to capture the excitement of this burgeoning field by a cutting-edge scientific program and roster of distinguished invited speakers and discussion leaders who will address the key issues in the field. The Conference will feature a wide range of topics, such as materials and devices from DNA, reprogramming the genetic code for design of new materials, peptide, protein and carbohydrate based materials, biomimetic systems, complexity in self-assembly, and biomedical applications of bioinspired materials.

  6. Paul V. Braun and John A. Rogers Materials Research Laboratory, University of Illinois at Urbana-Champaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    V. Braun and John A. Rogers Materials Research Laboratory, University of Illinois at Urbana-Champaign Three-Dimensionally Architectured Optoelectronics Achievement: We have developed an approach for three- dimensional template-directed epitaxy of high- performance III-V semiconductor materials. We have demonstrated optoelectronic functionality by fabricating a 3D photonic crystal LED, the rst- ever electrically driven emission from a 3D photonic crystal device. We also demonstrate that the LED

  7. Texas Solar Energy Society | Open Energy Information

    Open Energy Info (EERE)

    Society Jump to: navigation, search Logo: Texas Solar Energy Society Name: Texas Solar Energy Society Address: P. O. Box 1447 Place: Austin, Texas Zip: 78767 Region: Texas Area...

  8. Lienert named American Welding Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lienert Named American Welding Society Fellow Lienert named American Welding Society Fellow Lienert was inducted into the American Welding Society's 2012 Class of Fellows during...

  9. First-Of-Its-Kind Search Engine Will Speed Materials Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scientists have also already successfully applied this tool for prediction and discovery of materials used for clean energy technologies, including lithium ion batteries, hydrogen ...

  10. FY 2009 Progress Report for Lightweighting Materials- 8. Polymer Composites Research and Development

    Broader source: Energy.gov [DOE]

    The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability.

  11. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Burns, Peter (Director, Materials Science of Actinides); MSA Staff

    2011-11-03

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  12. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Burns, Peter; MSA Staff

    2011-05-01

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  13. Highlights Template > Authorship Tools > Research > The Energy Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center at Cornell Authorship Tools In This Section Acknowledgement Highlights Template Research Highlights promote emc2 achievements. To download a .ZIP file of the research highlight template click here. Then unzip the downloaded file for powerpoint template.

  14. Browse Societies by Language -- E-print Network Societies by...

    Office of Scientific and Technical Information (OSTI)

    des Sciences, des Lettres et des Arts Tunisian Academy of the Sciences, ... de Psilogie Quebec Society of Psychology -- Socit Qubcoise pour l'tude ...

  15. Browse Societies by Language -- E-print Network Societies by...

    Office of Scientific and Technical Information (OSTI)

    If you wish to view societies in another language, please select from the following options. Chinese Dutch English French German Italian Japanese Nordic Spanish and Portuguese ...

  16. Henry Kostalik > Researcher - 3M > Center Alumni > The Energy Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center at Cornell Henry Kostalik Researcher - 3M hak27@cornell.edu Originally a member of the Coates Group, Henry received his PhD from Cornell in 2011. He is now working as a Sr. Research Specialist at 3M Corporate Research Laboratory

  17. Calendar of Research Meetings > News + Events > The Energy Materials Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Cornell News + Events In This Section EMC2 News Upcoming Events Calendar of Research Meetings Archived News RSS & Calender Feeds 2013-2014 Research Meetings To download a pdf listing of upcoming Center Research Meetings and Seminars click here

  18. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2014

    SciTech Connect (OSTI)

    Wiffen, Frederick W.; Noe, Susan P.; Snead, Lance Lewis

    2014-10-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the ORNL fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing DOE Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger U.S. and international fusion materials communities, and with the international fusion design and technology communities.

  19. Collaborative Research. Fundamental Science of Low Temperature Plasma-Biological Material Interactions

    SciTech Connect (OSTI)

    Graves, David Barry; Oehrlein, Gottlieb

    2014-09-01

    Low temperature plasma (LTP) treatment of biological tissue is a promising path toward sterilization of bacteria due to its versatility and ability to operate under well-controlled and relatively mild conditions. The present collaborative research of an interdisciplinary team of investigators at University of Maryland, College Park (UMD), and University of California, Berkeley (UCB) focused on establishing our knowledge based with regard to low temperature plasma-induced chemical modifications in biomolecules that result in inactivation due to various plasma species, including ions, reactive radicals, and UV/VUV photons. The overall goals of the project were to identify and quantify the mechanisms by which low and atmospheric pressure plasma deactivates endotoxic biomolecules. Additionally, we wanted to understand the mechanism by which atmospheric pressure plasmas (APP) modify surfaces and how these modifications depend on the interaction of APP with the environment. Various low pressure plasma sources, a vacuum beam system and several atmospheric pressure plasma sources were used to accomplish this. In our work we elucidated for the first time the role of ions, VUV photons and radicals in biological deactivation of representative biomolecules, both in a UHV beam system and an inductively coupled, low pressure plasma system, and established the associated atomistic biomolecule changes. While we showed that both ions and VUV photons can be very efficient in deactivation of biomolecules, significant etching and/or deep modification (~200 nm) accompanied these biological effects. One of the most important findings in this work is the significant radical-induced deactivation and surface modification can occur with minimal etching. However, if radical fluxes and corresponding etch rates are relatively high, for example at atmospheric pressure, endotoxic biomolecule film inactivation may require near-complete removal of the film. These findings motivated further work at atmospheric pressure using several types of low temperature plasma sources, for which radical induced interactions generally dominate due to short mean free paths of ions and VUV photons. For these conditions we demonstrated the importance of environmental interactions when atmospheric pressure plasma sources are used to modify biomolecules. This is evident from both gas phase characterization data and in-situ surface characterization of treated biomolecules. Environmental interactions can produce unexpected outcomes due to the complexity of reactions of reactive species with the atmosphere which determines the composition of reactive fluxes and atomistic changes of biomolecules. Overall, this work clarified a richer spectrum of scientific opportunities and challenges for the field of low temperature plasma-biomolecule surface interactions than initially anticipated, in particular for plasma sources operating at atmospheric pressure. The insights produced in this work, e.g. demonstration of the importance of environmental interactions, are generally important for applications of APP to materials modifications. Thus one major contributions of this research has been the establishment of methodologies to more systematically study the interaction of plasma with bio-molecules. In particular, our studies of atmospheric pressure plasma sources using very well-defined experimental conditions enabled to combine atomistic surface modifications of biomolecules with changes in their biological function. The clarification of the role of ions, VUV photons and radicals in deactivation of biomolecules during low pressure and atmospheric pressure plasma-biomolecule interaction has broad implications, e.g. for the emerging field of plasma medicine. The development of methods to detect the effects of plasma treatment on immune-active biomolecules will be helpful in many future studies.

  20. Undergraduate Research at the Center for Energy Efficient Materials (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    SciTech Connect (OSTI)

    Bowers, John; CEEM Staff

    2011-05-01

    'Undergraduate Research at the Center for Energy Efficient Materials (CEEM)' was submitted by CEEM to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEEM, an EFRC directed by John Bowers at the University of California, Santa Barbara is a partnership of scientists from four institutions: UC, Santa Barbara (lead), UC, Santa Cruz, Los Alamos National Laboratory, and National Renewable Energy Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Energy Efficient Materials is 'to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.' Research topics are: solar photovoltaic, photonic, solid state lighting, optics, thermoelectric, bio-inspired, electrical energy storage, batteries, battery electrodes, novel materials synthesis, and scalable processing.

  1. Undergraduate Research at the Center for Energy Efficient Materials (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    ScienceCinema (OSTI)

    Bowers, John (Director, Center for Energy Efficient Materials ); CEEM Staff

    2011-11-02

    'Undergraduate Research at the Center for Energy Efficient Materials (CEEM)' was submitted by CEEM to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEEM, an EFRC directed by John Bowers at the University of California, Santa Barbara is a partnership of scientists from four institutions: UC, Santa Barbara (lead), UC, Santa Cruz, Los Alamos National Laboratory, and National Renewable Energy Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Energy Efficient Materials is 'to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.' Research topics are: solar photovoltaic, photonic, solid state lighting, optics, thermoelectric, bio-inspired, electrical energy storage, batteries, battery electrodes, novel materials synthesis, and scalable processing.

  2. Advanced process research and development to enhance metals and materials recycling.

    SciTech Connect (OSTI)

    Daniels, E. J.

    1997-12-05

    Innovative, cost-effective technologies that have a positive life-cycle environmental impact and yield marketable products are needed to meet the challenges of the recycling industry. Four materials-recovery technologies that are being developed at Argonne National Laboratory in cooperation with industrial partners are described in this paper: (1) dezincing of galvanized steel scrap; (2) material recovery from auto-shredder residue; (3) high-value-plastics recovery from obsolete appliances; and (4) aluminum salt cake recycling. These technologies are expected to be applicable to the production of low-cost, high-quality raw materials from a wide range of waste streams.

  3. Critical materials research needed to secure U.S. manufacturing, officials say

    Broader source: Energy.gov [DOE]

    Energy Department officials said yesterday that developing alternatives to critical materials, like rare earth metals used in solar panels and wind turbines, is crucial to American manufacturing stability and can help the United States circumvent global market pressures.

  4. Preliminary Investigation of Zircaloy-4 as a Research Reactor Cladding Material

    SciTech Connect (OSTI)

    Brian K Castle

    2012-05-01

    As part of a scoping study for the ATR fuel conversion project, an initial comparison of the material properties of Zircaloy-4 and Aluminum-6061 (T6 and O-temper) is performed to provide a preliminary evaluation of Zircaloy-4 for possible inclusion as a candidate cladding material for ATR fuel elements. The current fuel design for the ATR uses Aluminum 6061 (T6 and O temper) as a cladding and structural material in the fuel element and to date, no fuel failures have been reported. Based on this successful and longstanding operating history, Zircaloy-4 properties will be evaluated against the material properties for aluminum-6061. The preliminary investigation will focus on a comparison of density, oxidation rates, water chemistry requirements, mechanical properties, thermal properties, and neutronic properties.

  5. Low Cost Carbon Fiber Research in the LM Materials Program Overview |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2_warren.pdf More Documents & Publications Low Cost Carbon Fiber Overview FY 2009 Progress Report for Lightweighting Materials - 7. Low-Cost Carbon Fiber

  6. Anderson-Cook named American Society for Quality Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fellow of the American Society for Quality, or ASQ. Anderson-Cook, who works in the Statistical Sciences Group at LANL, was recognized for research in quality in the areas of...

  7. Survey and analysis of materials research and development at selected federal laboratories

    SciTech Connect (OSTI)

    Reed, J.E.; Fink, C.R.

    1984-04-01

    This document presents the results of an effort to transfer existing, but relatively unknown, materials R and D from selected federal laboratories to industry. More specifically, recent materials-related work at seven federal laboratories potentially applicable to improving process energy efficiency and overall productiviy in six energy-intensive manufacturing industries was evaluated, catalogued, and distributed to industry representatives to gauge their reaction. Laboratories surveyed include: Air Force Wright Aeronautical Laboratories Material Laboratory (AFWAL). Pacific Northwest Laboratory (PNL), National Aeronautics and Space Administration Marshall Flight Center (NASA Marshall), Oak Ridge National Laboratory (ORNL), Brookhaven National Laboratory (BNL), Idaho National Engineering Laboratory (INEL), and Jet Propulsion Laboratory (JPL). Industries included in the effort are: aluminum, cement, paper and allied products, petroleum, steel and textiles.

  8. Xu named Mineralogical Society of America Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    geochemistry, petrology and promotion of their uses in other sciences, industry and the arts. It encourages fundamental research in natural materials, supports the teaching of...

  9. Thomas selected as American Chemical Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas selected as ACS Fellow Thomas selected as American Chemical Society Fellow Kimberly Thomas has become the first Los Alamos researcher to be named a Fellow. August 16, 2011 Kimberly Thomas Kimberly Thomas Contact James Rickman Communications Office (505) 665-9203 Email Scientist is first from LANL to receive prestigious honor LOS ALAMOS, New Mexico, August 16, 2011-Kimberly Thomas, director of Los Alamos National Laboratory's Science and Technology Base Programs Office, has become the

  10. Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix materials

    SciTech Connect (OSTI)

    Not Available

    1993-09-30

    The pages that follow contain summaries of the nine R&TD Program Element Plans for Fiscal Year 1993 that were completed in the Spring of 1993. The nine program elements are aggregated into three program clusters as follows: Design Sciences and Advanced Computation; Advanced Manufacturing Technologies and Capabilities; and Advanced Materials Sciences and Technology.

  11. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect (OSTI)

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  12. Basic research needs and opportunities on interfaces in solar materials: an executive summary

    SciTech Connect (OSTI)

    Gottschall, R.J.; Czanderna, A.W.

    1981-10-01

    The executive summary is taken verbatim from the published proceedings of a workshop sponsored by the Division of Materials Sciences of the U.S. Department of Energy, in Denver, Colorado, July 1980. The 248-page proceedings documents the consensus of the principal discussions and conclusions. The executive summary refers to details in specific chapters.

  13. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  14. John A. Rogers and Ralph G. Nuzzo Materials Research Laboratory, University of Illinois at Urbana-Champaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. Rogers and Ralph G. Nuzzo Materials Research Laboratory, University of Illinois at Urbana-Champaign Luminescent Waveguide Concentrator Photovoltaics Achievement: We have developed composite luminescent concentrator photovoltaic system that embeds large scale, interconnected arrays of microscale silicon solar cells in thin matrix layers loaded with luminescent dopants. We have efficiently launched wavelength-downconverted photons that waveguide into the sides and bottom surfaces of the sparse

  15. B. Y. Ahn, D. J. Lorang, E. B. Duoss and J. A. Lewis Materials Research Laboratory, UIUC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B. Y. Ahn, D. J. Lorang, E. B. Duoss and J. A. Lewis Materials Research Laboratory, UIUC Transparent conductive oxide microelectrodes  Transparent conducting oxide (TCO) electrodes are finding increasing application in photovoltaics, displays, and other optoelectronic devices.  Sn-doped indium oxide (ITO)-based sol-gel ink was developed for patterning planar, spanning, and three- dimensional TCO microelectrode arrays.  Direct-write assembly is a robust printing approach for creating 1D

  16. Functional Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functional Materials Researchers in NETL's Functional Materials Development competency work to discover and develop advanced functional materials and component processing technologies to meet technology performance requirements and enable scale-up for proof-of-concept studies. Research includes separations materials and electrochemical and magnetic materials, specifically: Separations Materials Synthesis, purification, and basic characterization of organic substances, including polymers and

  17. Energy Department Completes Salt Coolant Material Transfer to Czech Republic for Advanced Reactor Research

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy recently joined with the U.S. Embassy in Prague and the Czech Republic’s Ministry of Industry and Trade to complete the transfer of 75 kilograms of fluoride salt from the Department’s Oak Ridge National Laboratory to the Czech Nuclear Research Institute Řež.

  18. NREL: Photovoltaics Research - Silicon Materials and Devices R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Silicon Materials and Devices R&D R&D 100 Awards Since 2010, we have won three R&D 100 Awards. Flash Quantum Efficiency (Flash QE) System for Solar Cells Innovalight Silicon Ink Process Low-Cost Black Silicon Etching Process Graphic of three layers. The bottom layer, called inexpensive substrate, is white. Middle dark blue layer is called the seed. Top light blue layer has the text epi c-Si absorber. Schematic diagram of the film crystal silicon solar cell. A high-quality crystal

  19. Materials Research Project to Support Code Changes for GEN IV: A DOE/ASME Cooperative Effort

    SciTech Connect (OSTI)

    Ramirez, James; Erler, Bryan A.; Jetter, Robert

    2006-07-01

    For the last four years as reported in ICONE 13 Paper 13-50638, the ASME Board of Nuclear Codes and Standards (BNCS) has been leading an effort to identify code changes necessary to support the future nuclear plants of the world. In that paper the authors identified the results of meetings with NSSS suppliers, government regulators, engineers/constructors, and owner operators to ascertain the status of their future designs and what modifications are necessary so the right rules and materials are in ASME Nuclear Codes and Standards. (authors)

  20. Fusion Materials Science and Technology Research Opportunities now and during the ITER Era

    SciTech Connect (OSTI)

    Zinkle, Steven J.; Blanchard, James; Callis, Richard W.; Kessel, Charles E.; Kurtz, Richard J.; Lee, Peter J.; Mccarthy, Kathryn; Morley, Neil; Najmabadi, Farrokh; Nygren, Richard; Tynan, George R.; Whyte, Dennis G.; Willms, Scott; Wirth, Brian D.

    2014-03-13

    Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: 1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the single-effects concept exploration stage, Technology Readiness Levels >3), 2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and 3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

  1. Fusion materials science and technology research opportunities now and during the ITER era

    SciTech Connect (OSTI)

    S.J. Zinkle; J.P. Planchard; R.W. Callis; C.E. Kessel; P.J. Lee; K.A. McCarty; Various Others

    2014-10-01

    Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: (1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the singleeffects concept exploration stage, technology readiness levels >3), (2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and (3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

  2. Young Investigator Program > Research > The Energy Materials Center at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cornell Young Investigator Program In This Section YIA1 - Chen YIA2 - Rodríguez-Calero YIA3 - Rodriguez-López YIA4 - Hernández-Burgos YIA5 - Khurana YIA6 - Potash Young Investigator Program This program is designed to encourage Center postdocs and students to submit collaborative proposals for new research projects that advance the Center's overall programmatic goal of advancing the science of energy conversion and storage by understanding and exploiting fundamental properties of active

  3. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Research thorium test foil A thorium test foil ...

  4. Staff > Researchers, Postdocs & Graduates > The Energy Materials Center at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cornell Researchers, Postdocs & Graduates Page 1 of 2 ⇐ Previous | Next ⇒ List Image Peter Beaucage Graduate Student - Wiesner Group pab275@cornell.edu List Image Jessica Burton Graduate Student - Schlom Group jmb738@cornell.edu List Image Catherine DeBlase Graduate Student - Dichtel Group crd93@cornell.edu List Image Apostolos Enotiadis Postdoc - Giannelis Group ae176@cornell.edu List Image Deniz Gunceler Graduate Student - Arias Group dg544@cornell.edu List Image Jiangang He

  5. YIA1 - Chen > Young Investigator Program > Research > The Energy Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center at Cornell Using a microfluidic device to synthesize bimetallic nanoparticle catalysts with desired phase and size: An improvement of the nanoparticle-KCl matrix method With efforts from Hao Chen (DiSalvo), Deli Wang (Abruña) and Joshua Tokuda (Pollack), this research is looking to improve the nanoparticle-KCl matrix method. A great effort at emc2 has been focused on synthesizing bimetallic nanoparticle (Np) catalysts for oxygen reduction reactions. Recently, we developed a Np-KCl

  6. Staff > Researchers, Postdocs & Graduates > The Energy Materials Center at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cornell Researchers, Postdocs & Graduates Page 2 of 2 ⇐ Previous | Next ⇒ List Image Benjamin Richards Member - Hanrath Group btr22@cornell.edu List Image Gabriel Rodriguez-Calero Postdoc - Abruña Group gr235@cornell.edu List Image Ritu Sahore Graduate Student - Giannelis Group rs758@cornell.edu List Image Katharine Silberstein Graduate Student - Abruña group kes272@cornell.edu List Image Eva Smith Graduate Student - Fennie Group ehs73@cornell.edu List Image Mukul Tikekar Graduate

  7. Basic Research Needs for Materials Under Extreme Environments. Report of the Basic Energy Sciences Workshop on Materials Under Extreme Environments, June 11-13, 2007

    SciTech Connect (OSTI)

    Wadsworth, J.; Crabtree, G. W.; Hemley, R. J.; Falcone, R.; Robertson, I.; Stringer, J.; Tortorelli, P.; Gray, G. T.; Nicol, M.; Lehr, J.; Tozer, S. W.; Diaz de la Rubia, T.; Fitzsimmons, T.; Vetrano, J. S.; Ashton, C. L.; Kitts, S.; Landson, C.; Campbell, B.; Gruzalski, G.; Stevens, D.

    2008-02-01

    To evaluate the potential for developing revolutionary new materials that will meet demanding future energy requirements that expose materials to environmental extremes.

  8. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Research Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Research thorium test foil A thorium test foil target for proof-of-concept actinium-225 production In addition to our routine isotope products, the LANL Isotope Program is focused on developing the next suite of isotopes and services to meet the Nation's emerging needs. The LANL Isotope Program's R&D strategy is focused on four main areas (see

  9. research

    National Nuclear Security Administration (NNSA)

    care data.

    Hydrothermal Processing to Convert Wet Biomass into Biofuels

    The ability to make useful fuels out of biological materials like plants...

  10. American Solar Energy Society | Open Energy Information

    Open Energy Info (EERE)

    American Solar Energy Society Name: American Solar Energy Society Address: 2400 Central Ave Place: Boulder, Colorado Zip: 80301 Region: Rockies Area Website: www.ases.org...

  11. Lienert named American Welding Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lienert named American Welding Society Fellow November 29, 2012 Thomas J. Lienert of the Lab's Metallurgy group was inducted into the American Welding Society's 2012 Class of...

  12. Amana Society Service Co | Open Energy Information

    Open Energy Info (EERE)

    Amana Society Service Co Jump to: navigation, search Name: Amana Society Service Co Place: Iowa Phone Number: (319) 622-3052 Website: www.amanasociety.comservices. Outage Hotline:...

  13. Colorado Renewable Energy Society | Open Energy Information

    Open Energy Info (EERE)

    Colorado Renewable Energy Society Name: Colorado Renewable Energy Society Address: PO Box 933 Place: Golden, Colorado Zip: 80402 Region: Rockies Area Website: www.cres-energy.org...

  14. Lab captures five Society for Technical Communication awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab captures five Society for Technical Communication awards Lab captures five Society for Technical Communication awards Reducing Global Threats through Innovative Science and Technology rendered as a deck of playing cards, earned a Distinguished Technical Communication award. March 8, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience,

  15. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter...

  16. Research

    SciTech Connect (OSTI)

    1999-10-01

    Subjects covered in this section are: (1) PCAST panel promotes energy research cooperation; (2) Letter issued by ANS urges funding balance in FFTF restart consideration and (3) FESAC panel releases report on priorities and balance.

  17. The Biocurator Society (GSC8 Meeting)

    ScienceCinema (OSTI)

    Gaudet, Pascal [Northwestern University

    2011-04-28

    The Genomic Standards Consortium was formed in September 2005. It is an international, open-membership working body which promotes standardization in the description of genomes and the exchange and integration of genomic data. The 2009 meeting was an activity of a five-year funding "Research Coordination Network" from the National Science Foundation and was organized held at the DOE Joint Genome Institute with organizational support provided by the JGI and by the University of California - San Diego. Pascal Gaudet of Northwestern University talks about "The Biocurator Society" at the Genomic Standards Consortium's 8th meeting at the DOE JGI in Walnut Creek, Calif. on Sept. 11, 2009

  18. Materials Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Characterization Researchers in the Materials Characterization Research competency conduct studies of both natural and engineered materials from the micropore (nanometers) to macropore (meters) scale. Research includes, but is not limited to, thermal, chemical, mechanical, and structural (nano to macro) interactions and processes with regard to natural and engineered materials. The primary research investigation tools include SEM, XRD, micro XRD, core logging, medical CT, industrial

  19. 2008 DOE Theory Focus Session on Hydrogen Storage Materials | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 8 DOE Theory Focus Session on Hydrogen Storage Materials 2008 DOE Theory Focus Session on Hydrogen Storage Materials The U.S. Department of Energy, through the Office of Science (Basic Energy Sciences) and the Office of Energy Efficiency and Renewable Energy (Fuel Cell Technologies) held a second Theory Focus Session on Hydrogen Storage Materials on March 24, 2008 in San Francisco, California, in conjunction with the 2008 Spring Materials Research Society Meeting. The meeting provided

  20. LOCA simulation in the national research universal reactor program: postirradiation examination results for the third materials experiment (MT-3)

    SciTech Connect (OSTI)

    Rausch, W.N.

    1984-04-01

    A series of in-reactor experiments were conducted using full-length 32-rod pressurized water reactor (PWR) fuel bundles as part of the Loss-of-Coolant Accident (LOCA) Simulation Program. The third materials experiment (MT-3) was the sixth in the series of thermal-hydraulic and materials deformation/rutpure experiments conducted in the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada. The main objective of the experiment was to evaluate ballooning and rupture during active two-phase cooling in the temperature range from 1400 to 1500/sup 0/F (1030 to 1090 K). The 12 test rods in the center of the 32-rod bundle were initially pressurized to 550 psi (3.8 MPa) to insure rupture in the correct temperature range. All 12 of the rods ruptured, with an average peak bundle strain of approx. 55%. The UKAEA also funded destructive postirradiation examination (PIE) of several of the ruptured rods from the MT-3 experiment. This report describes the work performed and presents the PIE results. Information obtained during the PIE included cladding thickness measurements metallography, and particle size analysis of the cracked and broken fuel pellets.

  1. Energy in Today's Global Society

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Energy is an abstract concept that is very familiar to students from personal experiences with household appliances, transportation, and their own bodies. However, the nature of energy, energy transformations, and energy conservation are poorly understood, even by most adults. The geopolitical and environmental issues associated with energy and its consumption in today’s global society are important for every citizen to appreciate in order to make informed decisions about the future. Without a deep understanding that energy is finite and that energy transformations are what give modern society its high standard of living, students today will not be prepared to make the tough personal and political decisions that await us as fossil fuel resources dwindle.

  2. American Society of Mechanical Engineers/Savannah River National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ASME/SRNL) Materials and Components for Hydrogen Infrastructure Codes and Standards Workshop and the DOE Hydrogen Pipeline Working Group Meeting Attendee List | Department of Energy Meeting Attendee List American Society of Mechanical Engineers/Savannah River National Laboratory (ASME/SRNL) Materials and Components for Hydrogen Infrastructure Codes and Standards Workshop and the DOE Hydrogen Pipeline Working Group Meeting Attendee List Sponsored by SRNL, ASME, and DOE held at the Center for

  3. American Society of Mechanical Engineers/Savannah River National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ASME/SRNL) Materials and Components for Hydrogen Infrastructure Codes and Standards Workshop and the DOE Hydrogen Pipeline Working Group Workshop Summary | Department of Energy Summary American Society of Mechanical Engineers/Savannah River National Laboratory (ASME/SRNL) Materials and Components for Hydrogen Infrastructure Codes and Standards Workshop and the DOE Hydrogen Pipeline Working Group Workshop Summary The Pipeline Working Group (PWG) workshop served as a detailed review of the

  4. Structural Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Materials Structural Materials Development enables advanced technologies through the discovery, development, and demonstration of cost-effective advanced structural materials for use in extreme environments (high-temperature, high-stress, erosive, and corrosive environments, including the performance of materials in contact with molten slags and salts). Research includes materials design and discovery, materials processing and manufacturing, and service-life prediction of materials

  5. 229th Electrochemical Society (ECS) Meeting (San Diego, CA) - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    229th Electrochemical Society (ECS) Meeting (San Diego, CA) 229th Electrochemical Society (ECS) Meeting (San Diego, CA) Sun, May 29, 2016 12:00pm 12:00 Thu, Jun 2, 2016 1:00pm 13:00 San Diego, CA USA Joel A. Haber, "Development of Solar Fuels Photoanodes through Combinatorial Integration of Ni-La-Co-Ce Oxide and Ni-Fe-Co-Ce Oxide Catalysts on BiVO4" The development of an efficient photoanode remains the primary materials challenge in the establishment of a scalable technology for solar

  6. Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Thackeray, Michael; CEES Staff

    2011-05-01

    'Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries' was submitted by the Center for Electrical Energy Storage (CEES) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEES, an EFRC directed by Michael Thackery at Argonne National Laboratory is a partnership of scientists from three institutions: ANL (lead), Northwestern University, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Electrical Energy Storage is 'to acquire a fundamental understanding of interfacial phenomena controlling electrochemical processes that will enable dramatic improvements in the properties and performance of energy storage devices, notable Li ion batteries.' Research topics are: electrical energy storage, batteries, battery electrodes, electrolytes, adaptive materials, interfacial characterization, matter by design; novel materials synthesis, charge transport, and defect tolerant materials.

  7. Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Thackeray, Michael (Director, Center for Electrical Energy Storage); CEES Staff

    2011-11-02

    'Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries' was submitted by the Center for Electrical Energy Storage (CEES) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEES, an EFRC directed by Michael Thackery at Argonne National Laboratory is a partnership of scientists from three institutions: ANL (lead), Northwestern University, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Electrical Energy Storage is 'to acquire a fundamental understanding of interfacial phenomena controlling electrochemical processes that will enable dramatic improvements in the properties and performance of energy storage devices, notable Li ion batteries.' Research topics are: electrical energy storage, batteries, battery electrodes, electrolytes, adaptive materials, interfacial characterization, matter by design; novel materials synthesis, charge transport, and defect tolerant materials.

  8. W&M Student Elected to Represent American Physical Society's Graduate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Student Forum | Jefferson Lab W&M Student Elected to Represent American Physical Society's Graduate Student Forum W&M Student Elected to Represent American Physical Society's Graduate Student Forum V Gray Valerie Gray, a graduate student at The College of William and Mary and a researcher at the Department of Energy's Thomas Jefferson National Accelerator Facility, was chosen this year by American Physical Society members as chair-elect for the APS Forum on Graduate Student Affairs.

  9. Materials Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Videos Materials

  10. Early Career. Harnessing nanotechnology for fusion plasma-material interface research in an in-situ particle-surface interaction facility

    SciTech Connect (OSTI)

    Allain, Jean Paul

    2014-08-08

    This project consisted of fundamental and applied research of advanced in-situ particle-beam interactions with surfaces/interfaces to discover novel materials able to tolerate intense conditions at the plasma-material interface (PMI) in future fusion burning plasma devices. The project established a novel facility that is capable of not only characterizing new fusion nanomaterials but, more importantly probing and manipulating materials at the nanoscale while performing subsequent single-effect in-situ testing of their performance under simulated environments in fusion PMI.

  11. Chinese Renewable Energy Society CRES formerly Chinese Solar...

    Open Energy Info (EERE)

    Renewable Energy Society CRES formerly Chinese Solar Energy Society Jump to: navigation, search Name: Chinese Renewable Energy Society (CRES) (formerly Chinese Solar Energy...

  12. Identification of Catalysts and Materials for a High-Energy Density Biochemical Fuel Cell: Cooperative Research and Development Final Report, CRADA Number CRD-09-345

    SciTech Connect (OSTI)

    Ghirardi, M.; Svedruzic, D.

    2013-07-01

    The proposed research attempted to identify novel biochemical catalysts, catalyst support materials, high-efficiency electron transfer agents between catalyst active sites and electrodes, and solid-phase electrolytes in order to maximize the current density of biochemical fuel cells that utilize various alcohols as substrates.

  13. Materials Discovery | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Images of red and yellow particles NREL's research in materials discovery serves as a foundation for technological progress in renewable energies. Our experimental activities in inorganic solid-state materials innovation span a broad range of technological readiness levels-from basic science through applied research to device development-relying on a high-throughput combinatorial materials science approach, followed by traditional targeted experiments. In addition, our researchers work

  14. Lienert named American Welding Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lienert Named American Welding Society Fellow Lienert named American Welding Society Fellow Lienert was inducted into the American Welding Society's 2012 Class of Fellows during the recent FABTECH meeting in Las Vegas, Nevada. November 29, 2012 Thomas J. Lienert Thomas J. Lienert Thomas J. Lienert has served the welding community and industry with great distinction as an individual who contributed significantly to the knowledge, science, and application of welding. Thomas J. Lienert of the Lab's

  15. Quantitative Characterization of Nanostructured Materials

    SciTech Connect (OSTI)

    Dr. Frank Bridges, University of California-Santa Cruz

    2010-08-05

    The two-and-a-half day symposium on the "Quantitative Characterization of Nanostructured Materials" will be the first comprehensive meeting on this topic held under the auspices of a major U.S. professional society. Spring MRS Meetings provide a natural venue for this symposium as they attract a broad audience of researchers that represents a cross-section of the state-of-the-art regarding synthesis, structure-property relations, and applications of nanostructured materials. Close interactions among the experts in local structure measurements and materials researchers will help both to identify measurement needs pertinent to ??real-world? materials problems and to familiarize the materials research community with the state-of-the-art local structure measurement techniques. We have chosen invited speakers that reflect the multidisciplinary and international nature of this topic and the need to continually nurture productive interfaces among university, government and industrial laboratories. The intent of the symposium is to provide an interdisciplinary forum for discussion and exchange of ideas on the recent progress in quantitative characterization of structural order in nanomaterials using different experimental techniques and theory. The symposium is expected to facilitate discussions on optimal approaches for determining atomic structure at the nanoscale using combined inputs from multiple measurement techniques.

  16. Industry-Government-University Cooperative Research Program for the Development of Structural Materials from Sulfate-Rich FGD Scrubber Sludge

    SciTech Connect (OSTI)

    V. M. Malhotra; Y. P. Chugh

    2003-08-31

    The main aim of our project was to develop technology, which converts flue gas desulfurization (FGD) sulfate-rich scrubber sludge into value-added decorative materials. Specifically, we were to establish technology for fabricating cost effective but marketable materials, like countertops and decorative tiles from the sludge. In addition, we were to explore the feasibility of forming siding material from the sludge. At the end of the project, we were to establish the potential of our products by generating 64 countertop pieces and 64 tiles of various colors. In pursuit of our above-mentioned goals, we conducted Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) measurements of the binders and co-processed binders to identify their curing behavior. Using our 6-inch x 6-inch and 4-inch x 4-inch high pressure and high temperature hardened stainless steel dies, we developed procedures to fabricate countertop and decorative tile materials. The composites, fabricated from sulfate-rich scrubber sludge, were subjected to mechanical tests using a three-point bending machine and a dynamic mechanical analyzer (DMA). We compared our material's mechanical performance against commercially obtained countertops. We successfully established the procedures for the development of countertop and tile composites from scrubber sludge by mounting our materials on commercial boards. We fabricated more than 64 pieces of countertop material in at least 11 different colors having different patterns. In addition, more than 100 tiles in six different colors were fabricated. We also developed procedures by which the fabrication waste, up to 30-weight %, could be recycled in the manufacturing of our countertops and decorative tiles. Our experimental results indicated that our countertops had mechanical strength, which was comparable to high-end commercial countertop materials and contained substantially larger inorganic content than the commercial products. Our moisture sensitivity test suggested that our materials were non-water wettable and did not disintegrate on submerging the product in water for at least two months. Countertop polishing techniques were also established.

  17. Cardiovascular and Interventional Radiological Society of Europe...

    Office of Scientific and Technical Information (OSTI)

    Springer Science+Business Media New York and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE); http:www.springer-ny.com; Country of ...

  18. Materials Issues in Advanced Nuclear Systems: Executive Summary of DOE Basic Research Needs Workshop, "Basic Research Needs for Advanced Nuclear Energy Systems"

    SciTech Connect (OSTI)

    Roberto, James B; Diaz de la Rubia, Tomas

    2007-01-01

    This article is reproduced from excerpts from the Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, U.S. Department of Energy, October 2006, www.sc.doe.gov/bes/reports/files/ANES_rpt.pdf.

  19. Postdoctoral Society of Argonne Bylaws | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Society of Argonne Bylaws Bylaws of the Postdoctoral Society of Argonne. PDF icon psa_bylaws_ratified_20120425.pdf

  20. Science for Society Workshop Summary Report

    SciTech Connect (OSTI)

    Wolfe, Amy K; Bjornstad, David J; Lenhardt, W Christopher; Shumpert, Barry L; Wang, Stephanie

    2012-02-01

    Science for Society, a workshop held at the Oak Ridge National Laboratory (ORNL) on September 27, 20111, explored ways to move Laboratory science toward use. It sought actionable recommendations. Thus the workshop focused on: (1) current practices that promote and inhibit the translation of science into use, (2) principles that could lead to improving ORNL's translational knowledge and technology transfer efforts, and (3) specific recommendations for making these principles operational. This highly interactive workshop struck a positive chord with participants, a group of 26 ORNL staff members from diverse arenas of science and technology (S and T), technology transfer, and external laboratory relations, who represented all levels of science, technology, and management. Recognizing that the transformation of fundamental principles into operational practices often follows a jagged path, the workshop sought to identify key choices that could lead to a smoother journey along this path, as well as choices that created roadblocks and bottlenecks. The workshop emphasized a portion of this pathway, largely excluding the marketplace. Participants noted that research translation includes linkages between fundamental and applied research and development (R and D), and is not restricted to uptake by manufacturers, consumers, or end users. Three crosscutting ideas encapsulate workshop participants observations: (1) ORNL should take more action to usher the translation of its S and T products toward use, so as to make a positive national and global impact and to enhance its own competitiveness in the future; (2) ORNL (and external entities such as DOE and Congress) conveys inconsistent messages with regard to the importance of research translation and application, which (a) creates confusion, (b) poses disincentives to pursue research translation, (c) imposes barriers that inhibit cross-fertilization and collaboration, and (d) diminishes the effectiveness of both the science mission and the translation of that science for use; and (3) ORNL should design its commitments and actions for helping move science from the Laboratory toward use to align with one another and should integrate them into its institutional culture in such a way as to elevate research translation and application to coequal status with scientific excellence. Participants made several actionable recommendations for enhancing research translation at ORNL, some of which were particular to specific S and T domains. Among the recommendations that participants agreed apply Lab-wide are to: align metrics and incentives with research translation goals; manage risks and conflicts of interest instead of avoiding them; and create programs (e.g., entrepreneurial leave) that promote interactions between key ORNL staff and industry in ways that complement careers at ORNL.

  1. Borup wins Electrochemical Society Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for power, but emits only water. Their work is important for hydrogen-powered fuel cell electric vehicles. "Over the past decade Rod has led a team of researchers at...

  2. The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Allen, Todd; CMSNF Staff

    2011-05-01

    'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.

  3. The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Allen, Todd (Director, Center for Material Science of Nuclear Fuel); CMSNF Staff

    2011-11-02

    'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.

  4. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research January 5-6, 2011 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  5. Management options for implementing a basic and applied research program responsive to CS technology base needs. Task VIII. Review existing CS materials R and D programs

    SciTech Connect (OSTI)

    Not Available

    1980-02-28

    Possibilities for setting up a basic and applied research program that would be responsive to the Conservation and Solar energy base needs are considered with emphasis on the area of materials research. Several organizational arrangements for the implementation of this basic and applied research program are described and analyzed. The key functions of the system such as resources allocation, and program coordination and management follow from two fundamental characteristics: assignment of lead responsibility (CS and the Office of Energy Research, ER); and nature of the organizational chain-of-command. Three options are categorized in terms of these two characteristics and discussed in detail. The first option retains lead responsibility in ER, with CS personnel exercising sign-off authority and filling the coordination role. Option 2 places lead responsibility with CS program office management, and utilizes the existing chain-of-command, but adds a Basic and Applied Research Division to each program office. Option 3 also places lead responsibility with CS, but within a new Office of Basic and Applied Research, which would include a Research Coordinator to manage interactions with ER, and Research Managers for each CS program area. (MCW)

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Decade and Counting Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Long CN, SA McFarlane, A Del Genio, P Minnis, TP Ackerman, J Mather, J Comstock, GG Mace, M Jensen, and C Jakob. 2013. "ARM research in the equatorial western Pacific - a decade and counting." Bulletin of the American Meteorological Society, 94(5),

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development and Recent Evaluation of the MT_CKD Model of Continuum Absorption Download a printable PDF Submitter: Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Mlawer EJ, VH Payne, J Moncet, JS Delamere, MJ Alvarado, and DD Tobin. 2012. "Development and recent evaluation of the MT_CKD model of continuum absorption." Philosophical Transactions of The Royal Society A, 370, doi:

  8. 2016 SHIELDS Workshop: Shielding Society from Space Weather

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April » 2016 SHIELDS Workshop 2016 SHIELDS Workshop: Shielding Society from Space Weather WHEN: Apr 04, 2016 8:00 AM - Apr 08, 2016 5:00 PM WHERE: Drury Plaza Hotel, Santa Fe, NM CONTACT: Gian Luca Delzanno (505) 667-2604 CATEGORY: Science TYPE: Workshop INTERNAL: Calendar Login Event Description Space weather is an emerging research area within space science that is rapidly gaining importance and public recognition because of its technological and societal impact. A recent report from the

  9. Princeton, Max Planck Society launch new research center for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Smith delivered a statement from William Brinkman, director of the DOE's Office of Science, who was unable to attend. Brinkman noted that the DOE "welcomes the creation of this new ...

  10. Society of Women Engineers Offers Support | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supporting Women in Engineering From School to Career Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Supporting Women in Engineering From School to Career Christine Surrette 2016.02.26 "Surround yourself with the dreamers and the doers, the believers and thinkers, but most of all, surround yourself with those who

  11. Materials Compatibility and Lubricants Research on CFC-refrigerant substitutes. Quarterly MCLR Program technical progress report, July 1--September 30, 1995

    SciTech Connect (OSTI)

    Szymurski, S.R.; Hourahan, G.C.; Godwin, D.S.; Amrane, K.

    1995-10-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC and HCFC refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. This report summarizes the research conducted during the third quarter of calendar year 1995 on the following projects: Thermophysical properties of HCFC alternatives; Compatibility of manufacturing process fluids with HFC refrigerants and ester lubricants; Compatibility of motor materials used in air-conditioning for retrofits with alternative refrigerants and lubricants; Compatibility of lubricant additives with HFC refrigerants and synthetic lubricants; Products of motor burnouts; Accelerated test methods for predicting the life of motor materials exposed to refrigerant-lubricant mixtures; Investigation of flushing and clean-out methods; Investigation into the fractionation of refrigerant blends; Lean flammability limits as a fundamental refrigerant property; Effect of selected contaminants in AC and R equipment; Study of foaming characteristics; Study of lubricant circulation in systems; Evaluation of HFC-245ca for commercial use in low pressure chillers; Infrared analysis of refrigerant mixtures; Refrigerant database; Refrigerant toxicity survey; Thermophysical properties of HFC-32, HFC-123, HCFC-124 and HFC-125; Thermophysical properties of HFC-143a and HFC-152a; Theoretical evaluations of R-22 alternative fluids; Chemical and thermal stability of refrigerant-lubricant mixtures with metals; Miscibility of lubricants with refrigerants; Viscosity, solubility and density measurements of refrigerant-lubricant mixtures; Electrohydrodynamic enhancement of pool and in-tube boiling of alternative refrigerants; Accelerated screening methods; and more.

  12. Final Technical Report for the Energy Frontier Research Center Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST)

    SciTech Connect (OSTI)

    Vanden Bout, David A.

    2015-09-14

    Our EFRC was founded with the vision of creating a broadly collaborative and synergistic program that would lead to major breakthroughs in the molecular-level understanding of the critical interfacial charge separation and charge transfer (CST) processes that underpin the function of candidate materials for organic photovoltaic (OPV) and electrical-energy-storage (EES) applications. Research in these energy contexts shares an imposing challenge: How can we understand charge separation and transfer mechanisms in the presence of immense materials complexity that spans multiple length scales? To address this challenge, our 50-member Center undertook a total of 28 coordinated research projects aimed at unraveling the CST mechanisms that occur at interfaces in these nanostructured materials. This rigorous multi-year study of CST interfaces has greatly illuminated our understanding of early-timescale processes (e.g., exciton generation and dissociation dynamics at OPV heterojunctions; control of Li+-ion charging kinetics by surface chemistry) occurring in the immediate vicinity of interfaces. Program outcomes included: training of 72 graduate student and postdoctoral energy researchers at 5 institutions and spanning 7 academic disciplines in science and engineering; publication of 94 peer-reviewed journal articles; and dissemination of research outcomes via 340 conference, poster and other presentations. Major scientific outcomes included: implementation of a hierarchical strategy for understanding the electronic communication mechanisms and ultimate fate of charge carriers in bulk heterojunction OPV materials; systematic investigation of ion-coupled electron transfer processes in model Li-ion battery electrode/electrolyte systems; and the development and implementation of 14 unique technologies and instrumentation capabilities to aid in probing sub-ensemble charge separation and transfer mechanisms.

  13. The Department of Energy`s Rocky Flats Plant: A guide to record series useful for health related research. Volume 4: Production and materials handling

    SciTech Connect (OSTI)

    1995-08-01

    This is the fourth in a series of seven volumes which constitute a guide to records of the Rocky Flats Plant useful for conducting health-related research. The primary purpose of Volume 4 is to describe record series pertaining to production and materials handling activities at the Department of Energy`s (DOE) Rocky Flats Plant, now named the Rocky Flats Environmental Technology Site, near Denver, Colorado. History Associates Incorporated (HAI) prepared this guide as part of its work as the support services contractor for DOE`s Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI`s role in the project, provides a history of production and materials handling practices at Rocky Flats, and identifies organizations contributing to production and materials handling policies and activities. Other topics include the scope and arrangement of the guide and the organization to contact for access to these records.

  14. Research & Development of Materials/Processing Methods for Continuous Fiber Ceramic Composites (CFCC) Phase 2 Final Report.

    SciTech Connect (OSTI)

    Szweda, A.

    2001-01-01

    The Department of Energy's Continuous Fiber Ceramic Composites (CFCC) Initiative that begun in 1992 has led the way for Industry, Academia, and Government to carry out a 10 year R&D plan to develop CFCCs for these industrial applications. In Phase II of this program, Dow Corning has led a team of OEM's, composite fabricators, and Government Laboratories to develop polymer derived CFCC materials and processes for selected industrial applications. During this phase, Dow Corning carried extensive process development and representative component demonstration activities on gas turbine components, chemical pump components and heat treatment furnace components.

  15. Postdoctoral Society of Argonne | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Society of Argonne: psargonne@anl.gov Connect with Us LinkedIn Group-current, future and past Postdocs Argonne Postdoctoral Alumni LinkedIn Group Facebook Page Postdoc...

  16. Fellows of Professional Societies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cyrus Adams (NE) L. Walter Deitrich (NE) Hussein Khalil (NE) Leo G. LeSage (NE) Elmer Lewis (NE) David C. Wade (NE) American Physical Society Krishna Shenai (ES) American...

  17. Hobart named American Chemical Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hobart named American Chemical Society Fellow August 21, 2013 David Hobart, long-time Chemistry Division employee and current affiliate in the National Security Education Center (NSEC), has been elected to Fellow of the American Chemical Society (ACS). The ACS honored him for his significant contributions to f-element science. The f-elements are those that have electrons in their f orbitals (lanthanides and the actinides). The ACS noted that Hobart contributed the reduction potential for the

  18. Taylor Elected to Royal Society of London

    Office of Scientific and Technical Information (OSTI)

    SLAC, 28 May 1997 Taylor Elected to Royal Society of London Richard Taylor, physics professor at the Stanford Linear Accelerator Center and 1990 Nobel Prize winner, was recently elected a Fellow of the Royal Society of London, an independent scientific academy founded in 1660 by Christopher Wren, Robert Boyle and Robert Moray. Each year forty new Fellows are elected by merit, not field, and membership is limited to those who are citizens of the Great Britain or the British Commonwealth. Up to

  19. Center for Materials at Irradiation and Mechanical Extremes at LANL (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Michael Nastasi; CMIME Staff

    2011-05-01

    'Center for Materials at Irradiation and Mechanical Extremes (CMIME) at LANL' was submitted by CMIME to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMIME, an EFRC directed by Michael Nastasi at Los Alamos National Laboratory is a partnership of scientists from four institutions: LANL (lead), Carnegia Mellon University, the University of Illinois at Urbana Champaign, and the Massachusetts Institute of Technology. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  20. Center for Materials at Irradiation and Mechanical Extremes at LANL (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Michael Nastasi (Director, Center for Materials at Irradiation and Mechanical Extremes); CMIME Staff

    2011-11-03

    'Center for Materials at Irradiation and Mechanical Extremes (CMIME) at LANL' was submitted by CMIME to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMIME, an EFRC directed by Michael Nastasi at Los Alamos National Laboratory is a partnership of scientists from four institutions: LANL (lead), Carnegia Mellon University, the University of Illinois at Urbana Champaign, and the Massachusetts Institute of Technology. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  1. Research and Development of a New Silica-Alumina Based Cementitious Material Largely Using Coal Refuse for Mine Backfill, Mine Sealing and Waste Disposal Stabilization

    SciTech Connect (OSTI)

    Henghu Sun; Yuan Yao

    2012-06-29

    Coal refuse and coal combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. To activate coal refuse is one practical solution to recycle this huge amount of solid waste as substitute for Ordinary Portland Cement (OPC). The central goal of this project is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to Ordinary Portland Cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economic benefit as a construction and building material.

  2. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Andreani, C.; Anderson, I. S.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C. -K.; Senesi, R.

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10⁻⁶ to 10²more » MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.« less

  3. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    SciTech Connect (OSTI)

    Andreani, C.; Anderson, I. S.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C. -K.; Senesi, R.

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10⁻⁶ to 10² MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.

  4. Research on polycrystalline thin-film submodules based on CuInSe{sub 2} materials. Annual subcontract report, 1 November 1991--31 December 1992

    SciTech Connect (OSTI)

    Arya, R.; Fogleboch, J.; Lommasson, T.; Podlesny, R.; Russell, L.; Skibo, S.; Wiedeman, S.; Rothwarf, A.; Birkmire, R. [Solarex Corp., Newtown, PA (United States). Thin Film Div.

    1993-09-01

    This report describes a 3-year, cost-shared research program at Solarex to develop all pertinent processes and technologies required to achieve the goal of 12% CIS submodule (with areas > 900 cm{sup 2}). The work is focused on four tasks: (1) window layers, contacts, substrate; (2) CIS absorber layer; (3) device structure; and (4) submodule design and encapsulation. Each task addresses (1) basic material improvements, (2) fabrication and characterization of CIS solar cells, and (3) scale up of processes to large-area substrates.

  5. Propulsion materials

    SciTech Connect (OSTI)

    Wall, Edward J.; Sullivan, Rogelio A.; Gibbs, Jerry L.

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regime Dependence of Cloud Water Variability Observed at the ARM Sites PI Contact: Ahlgrimm, M., European Centre for Medium-Range Weather Forecasts Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Ahlgrimm M and RM Forbes. 2016. "Regime dependence of cloud condensate variability observed at the Atmospheric Radiation Measurement sites." Quarterly Journal Royal Meteorological Society, ,

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Different Strokes for Different Folks-Not Any More, Say Scientists at the UK Met Office Submitter: Morcrette, C., Met Office Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Morcrette CJ, EJ O'Connor, and JC Petch. 2012. "Evaluation of two cloud parametrization schemes using ARM and Cloud-Net observations." Quarterly Journal Royal Meteorological Society, 138(665), doi:10.1002/qj.969. Errors

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Finer Mesh to Improve Cloud Representation in Climate Models? Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Boutle IA, SJ Abel, PG Hill, and CJ Morcrette. 2013. "Spatial variability of liquid cloud and rain: observations and microphysical effects." Quarterly Journal Royal Meteorological Society, , doi:10.1002/qj.2140. Different sizes of water droplets as well as varying water

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Comes the Thunder: Precursors to Local Rainfall in the West African Monsoon Download a printable PDF Submitter: Roeder, L. R., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Dione C, M Lothon, D Badiane, B Campistron, F Couvreau, F Guichard, and S Sall. 2013. "Phenomenology of Sahelian convection observed in Niamey during the early monsoon." Quarterly Journal Royal Meteorological Society, , . ACCEPTED.

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterizing Mixed-Phase Clouds from the Ground: a Status Report Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Shupe, MD, JS Daniel, G De Boer, EW Eloranta, P Kollias, E Luke, CN Long, DD Turner, and J Verlinde. 2008. "A focus on mixed-phase clouds: The status of ground-ba sed observational methods." Bulletin of the American Meteorological Society,

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single-Scattering Properties of Aggregates of Plates Download a printable PDF Submitter: Um, J., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Um J and GM McFarquhar. 2009. "Single-scattering properties of aggregates of plates." Quarterly Journal Royal Meteorological Society, 135(639), 10.1002/qj.378. Aggregates of plates imaged by Cloud

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Snow Particle Observations in Arctic Clouds Download a printable PDF Submitter: Morrison, H. C., NCAR Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Morrison H, P Zuidema, GM McFarquhar, A Bansemer, and AJ Heymsfield. 2011. "Microphysical observations in shallow mixed-phase and deep frontal Arctic cloud systems." Quarterly Journal Royal Meteorological Society, 137(659), doi:10.1002/qj.840. Fitted size distribution intercept

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at the Full Spectrum for Water Vapor Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Mlawer EJ, VH Payne, J Moncet, JS Delamere, MJ Alvarado, and DD Tobin. 2012. "Development and recent evaluation of the MT_CKD model of continuum absorption." Philosophical Transactions of The Royal Society A, 370, doi:

  14. US NRC-Sponsored Research on Stress Corrosion Cracking Susceptibility of Dry Storage Canister Materials in Marine Environments - 13344

    SciTech Connect (OSTI)

    Oberson, Greg; Dunn, Darrell; Mintz, Todd; He, Xihua; Pabalan, Roberto; Miller, Larry

    2013-07-01

    At a number of locations in the U.S., spent nuclear fuel (SNF) is maintained at independent spent fuel storage installations (ISFSIs). These ISFSIs, which include operating and decommissioned reactor sites, Department of Energy facilities in Idaho, and others, are licensed by the U.S. Nuclear Regulatory Commission (NRC) under Title 10 of the Code of Federal Regulations, Part 72. The SNF is stored in dry cask storage systems, which most commonly consist of a welded austenitic stainless steel canister within a larger concrete vault or overpack vented to the external atmosphere to allow airflow for cooling. Some ISFSIs are located in marine environments where there may be high concentrations of airborne chloride salts. If salts were to deposit on the canisters via the external vents, a chloride-rich brine could form by deliquescence. Austenitic stainless steels are susceptible to chloride-induced stress corrosion cracking (SCC), particularly in the presence of residual tensile stresses from welding or other fabrication processes. SCC could allow helium to leak out of a canister if the wall is breached or otherwise compromise its structural integrity. There is currently limited understanding of the conditions that will affect the SCC susceptibility of austenitic stainless steel exposed to marine salts. NRC previously conducted a scoping study of this phenomenon, reported in NUREG/CR-7030 in 2010. Given apparent conservatisms and limitations in this study, NRC has sponsored a follow-on research program to more systematically investigate various factors that may affect SCC including temperature, humidity, salt concentration, and stress level. The activities within this research program include: (1) measurement of relative humidity (RH) for deliquescence of sea salt, (2) SCC testing within the range of natural absolute humidity, (3) SCC testing at elevated temperatures, (4) SCC testing at high humidity conditions, and (5) SCC testing with various applied stresses. Results to date indicate that the deliquescence RH for sea salt is close to that of MgCl{sub 2} pure salt. SCC is observed between 35 and 80 deg. C when the ambient (RH) is close to or higher than this level, even for a low surface salt concentration. (authors)

  15. Royal Agricultural and Horticultural Society of South Australia...

    Open Energy Info (EERE)

    Agricultural and Horticultural Society of South Australia Jump to: navigation, search Name: Royal Agricultural and Horticultural Society of South Australia Place: South Australia,...

  16. San Diego Renewable Energy Society | Open Energy Information

    Open Energy Info (EERE)

    Society Jump to: navigation, search Name: San Diego Renewable Energy Society Address: P.O. Box 23490 Place: San Diego, California Zip: 92123 Region: Southern CA Area Website:...

  17. American Nuclear Society MEMORANDUM OF EX PARTE COMMUNICATION...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Society MEMORANDUM OF EX PARTE COMMUNICATION American Nuclear Society MEMORANDUM ... COMMUNICATION WITH THE DEPARTMENT OF ENERGY MEMORANDUM OF EX PARTE COMMUNICATION WITH ...

  18. FCTO Announces Plenary Talk at American Society of Mechanical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FCTO Announces Plenary Talk at American Society of Mechanical Engineers Energy Sustainability and Fuel Cell Technology Conference FCTO Announces Plenary Talk at American Society of ...

  19. American Society of Heating, Refrigeration, and Air Condition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Society of Heating, Refrigeration, and Air Condition Engineers (ASHRAE) 2016 Annual Conference American Society of Heating, Refrigeration, and Air Condition Engineers ...

  20. American Society of Mechanical Engineers/Savannah River National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary American Society of Mechanical EngineersSavannah River National Laboratory (ASME... More Documents & Publications American Society of Mechanical EngineersSavannah River ...

  1. American Society of Mechanical Engineers/Savannah River National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda American Society of Mechanical EngineersSavannah River National Laboratory (ASME... More Documents & Publications American Society of Mechanical EngineersSavannah River ...

  2. American Society of Mechanical Engineers/Savannah River National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting Attendee List American Society of Mechanical EngineersSavannah River National ... More Documents & Publications American Society of Mechanical EngineersSavannah River ...

  3. Society of Automotive Engineers World Congress | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Society of Automotive Engineers World Congress Society of Automotive Engineers World Congress April 6, 2006 - 10:12am Addthis Remarks Prepared for Energy Secretary Samuel Bodman ...

  4. U.S. Department of Energy and Illuminating Engineering Society...

    Energy Savers [EERE]

    Illuminating Engineering Society of North America Partner to Advance Industry Lighting Standards U.S. Department of Energy and Illuminating Engineering Society of North America...

  5. Los Alamos scientists selected as American Chemical Society Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Chemical Society Fellows Los Alamos scientists selected as American Chemical Society Fellows Rebecca Chamberlin and Donivan Porterfield have been selected as a 2014 ...

  6. Los Alamos scientist wins American Chemical Society award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kiplinger wins American Chemical Society award Los Alamos scientist wins American Chemical Society award Jaqueline L. Kiplinger has been selected as the 2015 recipient of the F. ...

  7. Scientist Named an American Chemical Society Fellow - News Releases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientist Named an American Chemical Society Fellow September 1, 2010 Helena Chum Dr. Helena Chum was named a 2010 Fellow by the American Chemical Society. Dr. Helena Chum, ...

  8. International Solar Energy Society ISES | Open Energy Information

    Open Energy Info (EERE)

    Society ISES Jump to: navigation, search Name: International Solar Energy Society (ISES) Place: Freiburg, Germany Product: ISES is a non-governmental organization accredited by the...

  9. American Solar Energy Society ASES | Open Energy Information

    Open Energy Info (EERE)

    Energy Society ASES Jump to: navigation, search Name: American Solar Energy Society (ASES) Place: Boulder, Colorado Zip: 80301 Sector: Solar Product: Dedicated to advancing the use...

  10. 2016 American Society of Heating, Refrigerating, and Air-Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2016 American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Winter Conference 2016 American Society of Heating, Refrigerating, and Air-Conditioning...

  11. Society of American Military Engineers (SAME) Small Business...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Society of American Military Engineers (SAME) Small Business Conference Society of American Military Engineers (SAME) Small Business Conference November 4, 2015 9:00AM EST to...

  12. LEDSGP/about/African Climate and Development Society | Open Energy...

    Open Energy Info (EERE)

    LEDSGPaboutAfrican Climate and Development Society < LEDSGP | about(Redirected from African Climate and Development Society) Redirect page Jump to: navigation, search...

  13. Amana Society Service Co (Iowa) EIA Revenue and Sales - January...

    Open Energy Info (EERE)

    Amana Society Service Co (Iowa) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Amana Society Service Co...

  14. Amana Society Service Co (Iowa) EIA Revenue and Sales - November...

    Open Energy Info (EERE)

    Amana Society Service Co (Iowa) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Amana Society Service Co...

  15. Amana Society Service Co (Iowa) EIA Revenue and Sales - February...

    Open Energy Info (EERE)

    Amana Society Service Co (Iowa) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Amana Society Service Co...

  16. Amana Society Service Co (Iowa) EIA Revenue and Sales - October...

    Open Energy Info (EERE)

    Amana Society Service Co (Iowa) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Amana Society Service Co...

  17. Amana Society Service Co (Iowa) EIA Revenue and Sales - December...

    Open Energy Info (EERE)

    Amana Society Service Co (Iowa) EIA Revenue and Sales - December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Amana Society Service Co...

  18. R. Bruce van Dover > ProfessorMaterials Science and Engineering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Topical Group on Magnetism and Its Applications, a unit of the American Physical Society. Research Prof. van Dover's research is currently focused on exploring the properties of...

  19. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter from DOE Associate Directors Workshop Invitation Letter from DOE ASCR Program Manager Yukiko Sekine Last edited: 2016-04-29 11:34:54

  20. NREL Scientist Selected for Major Award by the American Chemical Society

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientist Selected for Major Award by the American Chemical Society For more information contact: e:mail: Public Affairs Golden, Colo., Aug. 26, 1999 — A research fellow at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will receive a major award for his extensive contributions to the advancement of surface chemistry. The 160,000-member American Chemical Society selected Dr. Alvin Czanderna for the Arthur W. Adamson Award for Distinguished Service in the Advancement

  1. Geological Society of America selects Los Alamos scientist Claudia Mora as

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    president elect Geological Society of America selects Mora as president elect Geological Society of America selects Los Alamos scientist Claudia Mora as president elect Mora is a stable-isotope geochemist whose research spans the traditional fields of geology, soil science and climate science. July 9, 2015 Claudia Mora Claudia Mora Contact Los Alamos National Laboratory Nancy Ambrosiano Communications Office (505) 667-0471 Email "This is a really great testament to Claudia's impact and

  2. Development of Research Infrastructure in Nevada for the Exploitation of Hyperspectral Image Data to Address Proliferation and Detection of Chemical and Biological Materials.

    SciTech Connect (OSTI)

    James V. Taranik

    2007-12-31

    This research was to exploit hyperspectral reflectance imaging technology for the detection and mapping variability (clutter) of the natural background against which gases in the atmosphere are imaged. The natural background consists of landscape surface cover composed of consolidated rocks, unconsolidated rock weathering products, soils, coatings on rock materials, vegetation, water, materials constructed by humans, and mixtures of the above. Human made gases in the atmosphere may indicate industrial processes important to detecting non-nuclear chemical and biological proliferation. Our research was to exploit the Visible and Near-Infrared (NIR) and the Short-wave Infrared (SWIR) portions of the electromagnetic spectrum to determine the properties of solid materials on the earths surface that could influence the detection of gases in the Long-Wave Infrared (LWIR). We used some new experimental hyperspectral imaging technologies to collect data over the Non-Proliferation Test and Evaluation Center (NPTEC) located on the Nevada Test Site (NTS). The SpecTIR HyperSpecTIR (HST) and Specim Dual hyperspectral sensors were used to understand the variability in the imaged background (clutter), that detected, measured, identified and mapped with operational commercial hyperspectral techniques. The HST sensors were determined to be more experimental than operational because of problems with radiometric and atmospheric data correction. However the SpecTIR Dual system, developed by Specim in Finland, eventually was found to provide cost-effective hyperspectral image data collection and it was possible to correct the Dual systems data for specific areas. Batch processing of long flightlines was still complex, and if comparison to laboratory spectra was desired, the Dual system data still had to be processed using the empirical line method. This research determined that 5-meter spatial resolution was adequate for mapping natural background variations. Furthermore, this research determined that spectral resolution of 10um was adequate, but a signal to noise above 300:1 was desirable for hyperspectral sensors with this spectral resolution. Finally, we acquired a hyperspectral thermal dataset (SEBASS) at 3m spatial resolution over our study area in Beatty, Nevada that can be co-registered with the hyperspectral reflectance, LIDAR and digital Orthophoto data sets. This data set will enable us to quantify how measurements in the reflected infrared can be used to make inferences about the response of materials in the thermal infrared, the topic of our follow-on NA-22 investigation ending in 2008. These data provide the basis for our investigations proposed for the NA-22 2008 Broad Area Announcement. Beginning in June 2008, SpecTIR Corporation and Aerospace Corporation plan to fly the SpecTIR Dual and SEBASS in a stabilized mount in a twin Otter aircraft. This research provides the foundation for using reflected and emitted hyperspectral measurements together for mapping geologic and soil materials in arid to semi-arid regions.

  3. FY 2009 Progress Report for Lightweighting Materials - 12. Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2009 Progress Report for Lightweighting Materials - 12. Materials Crosscutting Research and Development The primary Lightweight Materials activity goal is to validate a ...

  4. Materials Project: A Materials Genome Approach

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ceder, Gerbrand [MIT; Persson, Kristin [LBNL

    Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, this project has computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The computations predicted several new battery materials which were made and tested in the lab and are now being patented. By computing properties of all known materials, the Materials Project aims to remove guesswork from materials design in a variety of applications. Experimental research can be targeted to the most promising compounds from computational data sets. Researchers will be able to data-mine scientific trends in materials properties. By providing materials researchers with the information they need to design better, the Materials Project aims to accelerate innovation in materials research.[copied from http://materialsproject.org/about] You will be asked to register to be granted free, full access.

  5. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Fusion Energy Sciences August 3-4, 2010 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors [not available] NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion

  6. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for High Energy Physics November 12-13, 2009 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  7. Hobart named American Chemical Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hobart named ACS Fellow Hobart named American Chemical Society Fellow The ACS Fellows program began in 2008 to recognize and honor members for outstanding achievements in and contributions to science, the profession, and ACS. August 21, 2013 David Hobart displays Md, the symbol for Mendelevium, the ninth transuranium element of the actinide series, named after Dimitri Mendeleev, who is honored as the "father" of the periodic table. David Hobart displays Md, the symbol for Mendelevium,

  8. CRC materials science and engineering handbook. Third edition

    SciTech Connect (OSTI)

    Shackelford, J.F.; Alexander, W.

    1999-01-01

    This definitive reference is organized in an easy-to-follow format based on materials properties. It features new and existing data verified through major professional societies in the materials fields, such as ASM International and the American Ceramic Society. The third edition has been significantly expanded, most notably by the addition of new tabular material for a wide range of nonferrous alloys and various materials. The contents include: Structure of materials; Composition of materials; Phase diagram sources; Thermodynamic and kinetic data; Thermal properties of materials; Mechanical properties of materials; Electrical properties of materials; Optical properties of materials; Chemical properties of materials.

  9. Czanderna Receives Research Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Czanderna Receives Research Award For more information contact: e:mail: Public Affairs Golden, Colo., May 5, 1999 — A scientist at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) was recognized for his contributions to the science and technology of energy-related research. The Energy Technology Division (ETD) of The Electrochemical Society selected Dr. Al Czanderna for its Fourth Research Award in recognition of his outstanding solar research. During his 21-year

  10. A MATERIAL WORLD Tailoring Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WINTER* 2000-2001 A MATERIAL WORLD Tailoring Materials for the Future A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 2, NO. 4 ALSO: New Materials for Microsystems Predictive Modeling Meets the Challenge S A N D I A T E C H N O L O G Y ON THE COVER: Bonnie Mckenzie operates a dual beam Focused Ion Beam/Scanning Electron Microscope (FIB/SEM). The image on the computer screen shows a cross section of a radiation-hardened device. The cross section was rendered with the FIB/SEM and allowed the

  11. Solar Energy Education. Reader, Part I. Energy, Society, and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reader, Part I. Energy, Society, and the Sun Citation Details In-Document Search Title: Solar Energy Education. Reader, Part I. Energy, Society, and the Sun You are accessing a ...

  12. Society of Hispanic Professional Engineers - Career Fair | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Society of Hispanic Professional Engineers - Career Fair Society of Hispanic Professional Engineers - Career Fair November 13, 2015 8:00AM EST to November 14, 2015 5:00PM EST...

  13. Idaho State Historical Society Website | Open Energy Information

    Open Energy Info (EERE)

    Society Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho State Historical Society Website Abstract This is the website for the Idaho State...

  14. Amana Society Service Co (Iowa) EIA Revenue and Sales - July...

    Open Energy Info (EERE)

    Amana Society Service Co (Iowa) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Amana Society Service Co for...

  15. Amana Society Service Co (Iowa) EIA Revenue and Sales - June...

    Open Energy Info (EERE)

    Amana Society Service Co (Iowa) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Amana Society Service Co for...

  16. Amana Society Service Co (Iowa) EIA Revenue and Sales - March...

    Open Energy Info (EERE)

    Amana Society Service Co (Iowa) EIA Revenue and Sales - March 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Amana Society Service Co for...

  17. Amana Society Service Co (Iowa) EIA Revenue and Sales - April...

    Open Energy Info (EERE)

    Amana Society Service Co (Iowa) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Amana Society Service Co for...

  18. K-25 demolition project receives American Nuclear Society award |

    Energy Savers [EERE]

    Department of Energy demolition project receives American Nuclear Society award K-25 demolition project receives American Nuclear Society award May 27, 2014 - 12:00pm Addthis The American Nuclear Society will recognize the K-25 demolition project at its summer meeting in June. The American Nuclear Society will recognize the K-25 demolition project at its summer meeting in June. Oak Ridge, Tenn. - The successful demolition of a former gaseous diffusion facility has been honored by the

  19. Majewski named Fellow of the Neutron Scattering Society of America

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Majewski named Fellow of the Neutron Scattering Society of America Majewski named Fellow of the Neutron Scattering Society of America The Society recognized Majewski for "contributions to our understanding of weakly organized two-dimensional systems, including surfactant molecules found in biological systems." May 9, 2016 Jaroslaw (Jarek) Majewski Jaroslaw (Jarek) Majewski Communications Office (505) 667-7000 The American Physical Society named him as Fellow for his contributions to

  20. Material Transfer Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Transfer Agreements Material Transfer Agreements Enables the transfer of tangible consumable research materials between two organizations, when the recipient intends to use the material for research purposes Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Overview The ability to exchange materials freely and without delay is an important part of a healthy scientific laboratory. Los Alamos National

  1. Accelerating Advanced Material Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Research in the Information Age Accelerating Advanced Material Development NERSC Science Gateway a 'Google of Material Properties' October 31, 2011 Linda Vu, lvu@lbl.gov, +1 510 495 2402 Kristin Persson is one of the founding scientists behind the Materials Project, a computational tool aimed at taking the guesswork out of new materials discoveries, especially those aimed at energy applications like batteries. (Roy Kaltschmidt, LBNL) New materials are crucial to building a clean energy

  2. Research Approach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Approach Research Approach NETL's onsite research approach is based on integrating simulation tools with targeted experimental validation at real-life conditions in the lab and in the field. Simulation tools increase confidence in designs, thereby reducing the risk associated with incorporating multiple innovative technologies, realizing scale-up, and predicting the behavior and properties of real materials. The scientific underpinnings encoded into these models also ensure that

  3. Energy Materials Network Workshop

    Broader source: Energy.gov [DOE]

    The Energy Materials Network (EMN) is a national lab-led initiative that aims to dramatically decrease the time-to-market for advanced materials innovations critical to many clean energy technologies. Through targeted consortia offering accessible suites of advanced research and development capabilities, EMN is accelerating materials development to address U.S. manufacturers' most pressing materials challenges.

  4. weapons material | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    material

  5. Metal Hydride Storage Materials

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office's (FCTO's) metal hydride storage materials research focuses on improving the volumetric and gravimetric capacities, hydrogen adsorption/desorption kinetics, cycle life, and reaction thermodynamics of potential material candidates.

  6. SC e-journals, Materials Science

    Office of Scientific and Technical Information (OSTI)

    Materials Science Acta Materialia Advanced Composite Materials Advanced Energy Materials Advanced Engineering Materials Advanced Functional Materials Advanced Materials Advanced Powder Technology Advances in Materials Science and Engineering - OAJ Annual Review of Materials Research Applied Composite Materials Applied Mathematical Modelling Applied Mathematics & Computation Applied Physics A Applied Physics B Applied Surface Science Archives of Computational Materials Science and Surface

  7. Physics and Chemistry of Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Physics and Chemistry of Materials Developing new science and technologies needed for ... Fundamental and applied theoretical research on the physics and chemistry of materials The ...

  8. Final Report of “Collaborative research: Fundamental science of low temperature plasma-biological material interactions” (Award# DE-SC0005105)

    SciTech Connect (OSTI)

    Oehrlein, Gottlieb S.; Seog, Joonil; Graves, David; Chu, J. -W.

    2014-09-24

    Low temperature plasma (LTP) treatment of biological tissue is a promising path toward sterilization of bacteria due to its versatility and ability to operate under well-controlled and relatively mild conditions. The present collaborative research of an interdisciplinary team of investigators at University of Maryland, College Park (UMD), and University of California, Berkeley (UCB) focused on establishing our knowledge on low temperature plasma-induced chemical modifications in biomolecules that result in inactivation due to various plasma species, including ions, reactive radicals, and UV/VUV photons. The overall goals of the project were to identify the mechanisms by which low and atmospheric pressure plasma (APP) deactivates endotoxic biomolecules. Additionally, we wanted to understand how deactivation processes depend on the interaction of APP with the environment. Various low pressure plasma sources, a vacuum beam system and several atmospheric pressure plasma sources were used to accomplish these objectives. In our work we elucidated for the first time the role of ions, VUV photons and radicals in biological deactivation of model endotoxic biomolecules, both in a UHV beam system and an inductively coupled, low pressure plasma system, and established the associated atomistic modifications in biomolecules. While we showed that both ions and VUV photons can be very efficient in deactivation of biomolecules, significant etching and/or deep modification (~200 nm) were accompanied by these biological effects. One of the most important findings in this work is that the significant deactivation and surface modification can occur with minimal etching using radical species. However, if radical fluxes and corresponding etch rates are relatively high, for example, at atmospheric pressure, inactivation of endotoxic biomolecule film may require near-complete removal of the film. These findings motivated further work at atmospheric pressure using several types of low temperature plasma sources with modified geometry where radical induced interactions generally dominate due to short mean free paths of ions and VUV photons. In these conditions we demonstrated the importance of environmental interactions of plasma species when APP sources are used to modify biomolecules. This is evident from both gas phase characterization data and in-situ surface characterization of treated biomolecules. Environmental interactions can produce unexpected outcomes due to the complex reactions of reactive species with the atmosphere which determine the composition of reactive fluxes and atomistic changes in biomolecules. Overall, this work elucidated a richer spectrum of scientific opportunities and challenges for the field of low temperature plasma-biomolecule surface interactions than initially anticipated, in particular, for plasma sources operating at atmospheric pressure. The insights produced in this work, e.g. demonstration of the importance of environmental interactions, are generally important for applications of APP to materials modifications. Thus one major contributions of this research has been the establishment of methodologies to study the interaction of plasma with bio-molecules in a systemic and rigorous manner. In particular, our studies of atmospheric pressure plasma sources using very well-defined experimental conditions enabled us to correlate atomistic surface modifications of biomolecules with changes in their biological function. The clarification of the role of ions, VUV photons and radicals in deactivation of biomolecules during low pressure and atmospheric pressure plasma-biomolecule interaction has broad implications, e.g. for the emerging field of plasma medicine. The development of methods to detect the effects of plasma treatment on immune-active biomolecules will lay a fundamental foundation to enhance our understanding of the effect of plasma on biological systems. be helpful in many future studies.

  9. UNCLASSIFIED Institute for Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties. In this talk, I will discuss our recent research in the area of nanoscale materials modeling, using various atomistic simulation techniques, aimed at uncovering the...

  10. Sandia National Laboratories: Research: Research Foundations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Foundations Bioscience Computing and Information Science Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Research Foundations Leadership in innovation Integrating unique resources and technical excellence to benefit our nation. Certain research areas are considered key to the success of Sandia's national security programs. These areas - known as research foundations - underpin Sandia's innovations

  11. EM Laboratory Meteorologist to Lead American Meteorological Society

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – In a first for DOE, a Department-affiliated meteorologist has been named president-elect of the American Meteorological Society (AMS).

  12. Native American Fish and Wildlife Society Pacific Region Conference

    Broader source: Energy.gov [DOE]

    The Native American Fish and Wildlife Society is hosting a two-day conference featuring tribal roundtables on harvest methods, forest service, and more.

  13. Society of American Indian Government Employees Annual National Training Program

    Broader source: Energy.gov [DOE]

    Event includes plenary session, American Indian law classes, Native American youth workshops, cultural presentations, and a veterans program. Sponsored by the Society of American Indian Government...

  14. Postdoctoral Society Members and Board | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Society Members and Board PSA Officers Joshua Bergerson, ES (President) Marvin Cummings, XSD (Vice President) Rebecca Tissot, CSE (Secretary) Jessica Linville, ES (Liaison Officer)...

  15. Society of Indian Electric Vehicle Manufacturers | Open Energy...

    Open Energy Info (EERE)

    Indian Electric Vehicle Manufacturers Jump to: navigation, search Name: Society of Indian Electric Vehicle Manufacturers Place: New Delhi, Delhi (NCT), India Sector: Vehicles...

  16. Amana Society Service Co (Iowa) EIA Revenue and Sales - March...

    Open Energy Info (EERE)

    March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Amana Society Service Co for March 2008. Monthly Electric Utility Sales and Revenue...

  17. Amana Society Service Co (Iowa) EIA Revenue and Sales - January...

    Open Energy Info (EERE)

    January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Amana Society Service Co for January 2009. Monthly Electric Utility Sales and...

  18. Amana Society Service Co (Iowa) EIA Revenue and Sales - February...

    Open Energy Info (EERE)

    February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Amana Society Service Co for February 2009. Monthly Electric Utility Sales and...

  19. Amana Society Service Co (Iowa) EIA Revenue and Sales - September...

    Open Energy Info (EERE)

    September 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Amana Society Service Co for September 2008. Monthly Electric Utility Sales and...

  20. Amana Society Service Co (Iowa) EIA Revenue and Sales - August...

    Open Energy Info (EERE)

    August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Amana Society Service Co for August 2008. Monthly Electric Utility Sales and Revenue...

  1. Low Carbon Society (LCS) Database | Open Energy Information

    Open Energy Info (EERE)

    (LCS) Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Carbon Society (LCS) Database AgencyCompany Organization: LCS-RNet Sector: Energy, Land Focus Area:...

  2. Low Carbon Society Vision 2050: India | Open Energy Information

    Open Energy Info (EERE)

    Vision 2050: India Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Carbon Society Vision 2050: India AgencyCompany Organization: National Institute for...

  3. Low-Carbon Society Development: Towards 2025 in Bangladesh |...

    Open Energy Info (EERE)

    2025 in Bangladesh Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low-Carbon Society Development: Towards 2025 in Bangladesh AgencyCompany Organization: Kyoto...

  4. High Temperature Materials Laboratory (HTML) - PSD Directorate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Collaborative Materials Research The High Temperature Materials Laboratory (HTML) User Program is on hiatus due to federal budget reductions. However, research projects...

  5. UC Center for Information Technology Research in the Interest...

    Open Energy Info (EERE)

    Center for Information Technology Research in the Interest of Society (CITRIS) Place: Berkeley, California Zip: 94720 Region: Bay Area Website: www.citris-uc.org Coordinates:...

  6. Announcing the American Indian Research and Education Initiative...

    Broader source: Energy.gov (indexed) [DOE]

    Science and Engineering Society to bring science, technology, engineering, and mathematics researching and education funding to American Indian students at our Nation's...

  7. Material Transfer Agreements (MTA) | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract Research Material Transfer Agreements (MTA) Materials Transfer Agreements (MTAs) are used to transfer materials, biological or non-biological, between institutions from...

  8. International Society for Optical Engineering (SPIE) Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Nuclear Safeguards Challenge: Detect/deter undeclared nuclear materials and activities. Solution: Build capacity of the International Atomic Energy Agency and Member States to implement and meet safeguards obligations. The Office of International Nuclear Safeguards develops and supports the policies, concepts, technologies, expertise, and international safeguards infrastructure necessary to strengthen and sustain the international safeguards system as it evolves to meet new

  9. American Society of Heating, Refrigeration, and Air Condition Engineers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ASHRAE) 2016 Annual Conference | Department of Energy American Society of Heating, Refrigeration, and Air Condition Engineers (ASHRAE) 2016 Annual Conference American Society of Heating, Refrigeration, and Air Condition Engineers (ASHRAE) 2016 Annual Conference June 25, 2016 9:00AM EDT to June 29

  10. NREL Develops High Speed Scanner to Monitor Fuel Cell Material Defects (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel cell scanner could provide effective in-line quality control in a high-volume manufacturing facility. NREL scientists have developed and built a high-throughput, high-resolution, in-line fuel cell scanner to monitor quality and detect critical defects in polymer electrolyte membrane fuel cell (PEMFC) materials. The fuel cell scanner uses a visible light diffuse reflectance imaging technique to gener- ate high-resolution images of PEMFC materials as they are transported along a roll-to-roll

  11. Research Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Capabilities Research Capabilities These capabilities are our science and engineering at work for the national security interest in areas from global climate to cyber security, from nonproliferation to new materials, from clean energy, to supercomputing. thumbnail of Bioscience At Los Alamos, scientists and engineers are working to unlock many of the mechanisms found in nature to improve humanity's ability to battle diseases, create new forms of environmentally friendly and abundant

  12. Magnetic Materials | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Internal Magnetic Materials The Magnetic Material Group (MMG) is part of the X-ray Science Division (XSD) at the Advanced Photon Source (APS). Our research focuses on the...

  13. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials and Process Research Division. He was also manager of the Materials and Process Research Department and the Materials Reliability Department. He spent one year in...

  14. Researching NDE, Additive Manufacturing |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    History » Historical Resources » Researching DOE Records Researching DOE Records Researching DOE Records The Department of Energy (DOE) welcomes researchers interested in documenting the Department's history. Significant portions of DOE's records, including declassified materials on the nuclear weapons program, are open to the public. Other materials can be accessed through Freedom of Information Act requests. The Department of Energy, nonetheless, is a complex and diverse agency, and finding

  15. Sorbent Storage Materials

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office's sorbent storage materials research focuses on increasing the dihydrogen binding energies and improving the hydrogen volumetric capacity by optimizing the material's pore size, pore volume, and surface area, as well as investigating effects of material densification.

  16. High Performance Alkaline Fuel Cell Membranes > Research Highlights >

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research > The Energy Materials Center at Cornell

  17. Materials Discovery across Technological Readiness Levels | Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science | NREL Materials Discovery across Technological Readiness Levels Materials discovery is important across technology readiness levels: basic science, applied research, and device development. Over the past several years, NREL has worked at each of these levels, demonstrating our competence in a broad range of materials discovery problems. Basic Science An image of a triangular diagram with tantalum-cobalt-tin at the top vertex, tantalum at the lower left vertex, and cobalt at the

  18. Lienert named American Welding Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lidija Sekaric About Us Dr. Lidija Sekaric - Solar Energy Technologies Office Director Photo of Lidija Sekaric. Dr. Lidija Sekaric is the director of the Solar Energy Technologies Office within the Office of Energy Efficiency and Renewable Energy (EERE), where she helps manage and balance the portfolio of research, development, demonstration, and deployment programs in achieving our national SunShot goals. Before she joined the SunShot team, she served as a senior advisor in the Office of the

  19. Evaluation of Alternate Materials for Coated Particle Fuels for the Gas-Cooled Fast Reactor. Laboratory Directed Research and Development Program FY 2006 Final Report

    SciTech Connect (OSTI)

    Paul A. Demkowicz; Karen Wright; Jian Gan; David Petti; Todd Allen; Jake Blanchard

    2006-09-01

    Candidate ceramic materials were studied to determine their suitability as Gas-Cooled Fast Reactor particle fuel coatings. The ceramics examined in this work were: TiC, TiN, ZrC, ZrN, AlN, and SiC. The studies focused on (i) chemical reactivity of the ceramics with fission products palladium and rhodium, (ii) the thermomechanical stresses that develop in the fuel coatings from a variety of causes during burnup, and (iii) the radiation resiliency of the materials. The chemical reactivity of TiC, TiN, ZrC, and ZrN with Pd and Rh were all found to be much lower than that of SiC. A number of important chemical behaviors were observed at the ceramic-metal interfaces, including the formation of specific intermetallic phases and a variation in reaction rates for the different ceramics investigated. Based on the data collected in this work, the nitride ceramics (TiN and ZrN) exhibit chemical behavior that is characterized by lower reaction rates with Pd and Rh than the carbides TiC and ZrC. The thermomechanical stresses in spherical fuel particle ceramic coatings were modeled using finite element analysis, and included contributions from differential thermal expansion, fission gas pressure, fuel kernel swelling, and thermal creep. In general the tangential stresses in the coatings during full reactor operation are tensile, with ZrC showing the lowest values among TiC, ZrC, and SiC (TiN and ZrN were excluded from the comprehensive calculations due to a lack of available materials data). The work has highlighted the fact that thermal creep plays a critical role in the development of the stress state of the coatings by relaxing many of the stresses at high temperatures. To perform ion irradiations of sample materials, an irradiation beamline and high-temperature sample irradiation stage was constructed at the University of Wisconsins 1.7MV Tandem Accelerator Facility. This facility is now capable of irradiating of materials to high dose while controlling sample temperature up to 800C.

  20. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issues submit Material Misfits How well nanocomposite materials align at their interfaces determines what properties they have, opening broad new avenues of materials-science...

  1. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    SciTech Connect (OSTI)

    Stovall, Therese K; Biswas, Kaushik; Song, Bo; Zhang, Sisi

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and fire safety. A related issue is the degree to which new standards are adopted and enforced. In the U.S., standards are developed using a consensus process, and local government agencies are free to implement these standards or to ignore them. For example, some U.S. states are still using 2003 versions of the building efficiency standards. There is also a great variation in the degree to which the locally adopted standards are enforced in different U.S. cities and states. With a more central process in China, these issues are different, but possible impacts of variable enforcement efficacy may also exist. Therefore, current building codes in China will be compared to the current state of building fire-safety and energy-efficiency codes in the U.S. and areas for possible improvements in both countries will be explored. In particular, the focus of the applications in China will be on green buildings. The terminology of 'green buildings' has different meanings to different audiences. The U.S. research is interested in both new, green buildings, and on retrofitting existing inefficient buildings. An initial effort will be made to clarify the scope of the pertinent wall insulation systems for these applications.

  2. Research Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Techniques Research Techniques Print Coming Soon

  3. Research at Los Alamos

    SciTech Connect (OSTI)

    Bradley, Paul Andrew

    2015-09-14

    Recruiting presentation at Texas A&M student chapter American Nuclear Society/Society of Physics Students.

  4. The Wildlife Society 22nd Annual Conference

    Broader source: Energy.gov [DOE]

    The Wildlife Society’s 22nd Annual Conference will be held Oct. 17–21, 2015, in Winnipeg, Canada. Bioenergy Technologies Office (BETO) Sustainability Manager Kristen Johnson will be speaking on how partnerships with key stakeholders lead to the research, development, and demonstration of technologies that produce advanced bioenergy and bioproducts from lignocellulosic and algal biomass. Several activities supported by BETO provide insights into how habitat and wildlife can be considered when designing bioenergy systems. Strong public and private collaboration can help meet simultaneous goals of expanding the bioeconomy while also incorporating the needs of wildlife, reducing greenhouse gas emissions, and providing other environmental and socio-economic benefits.

  5. Collaborative Research. Damage and Burst Dynamics in Failure of Complex Geomaterials. A Statistical Physics Approach to Understanding the Complex Emergent Dynamics in Near Mean-Field Geological Materials

    SciTech Connect (OSTI)

    Rundle, John B.; Klein, William

    2015-09-29

    We have carried out research to determine the dynamics of failure in complex geomaterials, specifically focusing on the role of defects, damage and asperities in the catastrophic failure processes (now popularly termed “Black Swan events”). We have examined fracture branching and flow processes using models for invasion percolation, focusing particularly on the dynamics of bursts in the branching process. We have achieved a fundamental understanding of the dynamics of nucleation in complex geomaterials, specifically in the presence of inhomogeneous structures.

  6. Science and society-M.Curie/N.Bohr

    ScienceCinema (OSTI)

    None

    2011-04-25

    Ugo Amaldi introduit le conférencier du soir, Pierre Radvanyi; le thème de cette conférence est: Marie Curie, Niels Bohr and Science Society- Problems of their time

  7. Aqua Society GmbH | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Aqua Society GmbH Place: Herten, North Rhine-Westphalia, Germany Zip: 45699 Product: Germany-based, waste heat to energy technology designer and...

  8. Los Alamos Scientist Wins American Chemical Society Award | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientist Wins American Chemical Society Award Tuesday, August 12, 2014 - 11:24am NNSA ... ACS National Award Recipients is in the August 11 issue of Chemical & Engineering News. ...

  9. The Bioelectromagnetic Society Thirteenth Annual Meeting 1991: Program and abstracts

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    This volume contains author abstracts representing oral and poster presentations made at the Thirteenth Annual Meeting of The Bioelectromagnetic Society held in Salt Lake City, Utah June 23--27, 1991.

  10. Society Hill, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Society Hill is a census-designated place in Middlesex County, New Jersey.1 References ...

  11. Native American Fish and Wildlife Society Pacific Region Conference...

    Broader source: Energy.gov (indexed) [DOE]

    Montana Kwa-Taq-Nuk Casino Resort 49708 US-93 Polson, MT 59860 The Native American Fish and Wildlife Society is hosting a two-day conference featuring tribal roundtables on...

  12. Computational Modeling for the American Chemical Society | GE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Modeling for the American Chemical Society Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new...

  13. Scientific Societies, E-print Network -- Energy, science, and...

    Office of Scientific and Technical Information (OSTI)

    Chinese Dutch English French German Italian Japanese Nordic Russian SpanishPortuguese Other View list of all societies. Choose desired language(s) andor discipline(s) and select ...

  14. FCTO Announces Plenary Talk at American Society of Mechanical Engineers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sustainability and Fuel Cell Technology Conference | Department of Energy FCTO Announces Plenary Talk at American Society of Mechanical Engineers Energy Sustainability and Fuel Cell Technology Conference FCTO Announces Plenary Talk at American Society of Mechanical Engineers Energy Sustainability and Fuel Cell Technology Conference March 21, 2014 - 2:00pm Addthis The Fuel Cell Technologies Office announces a plenary talk by Dr. Sunita Satyapal, Director, Fuel Cell Technologies Office

  15. Cardiovascular and Interventional Radiological Society of Europe Guidelines

    Office of Scientific and Technical Information (OSTI)

    on Endovascular Treatment in Aortoiliac Arterial Disease (Journal Article) | SciTech Connect Cardiovascular and Interventional Radiological Society of Europe Guidelines on Endovascular Treatment in Aortoiliac Arterial Disease Citation Details In-Document Search Title: Cardiovascular and Interventional Radiological Society of Europe Guidelines on Endovascular Treatment in Aortoiliac Arterial Disease PurposeThese guidelines are intended for use in assessing the standard for technical success

  16. Postdoctoral Society Members and Board | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postdoctoral Society Members and Board Postdoctoral Society Members and Board PSA Officers Lee Solomon, NST (President) Noah Van Dam, ES (Vice President) Fatih Sen, NST (Secretary) Giovanni Ramirez, ES (Co-Secretary/Postdoc Symposium Coordinator) Alex Rettie, MSD (Liaison Officer) Muge Acik, NST (Deputy Liaison Officer) Board Members Jeremy Love, HEP Andrew Senesi, XSD Giovanni Ramirez Gonzalez, ES Vinu Vikraman, HEP Alumni Benjamin Kay, PHY Catherine Deibel, PHY Chithra Kumaran Nair, NE

  17. Ten Los Alamos scientists honored by American Physical Society

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists honored by American Physical Society Ten Los Alamos scientists honored by American Physical Society Tariq Aslam, Steven Batha, Eric Bauer, Hou-Tong Chen, Diego Alejandro Dalvit, Dinh Nguyen, Alan Perelson, Filip Ronning, Alexander Saunders and Glen Wurden were named this week by the national organization. November 12, 2015 Tariq Aslam, Steven Batha, Eric Bauer, Hou-Tong Chen, Diego Alejandro Dalvit, Dinh Nguyen, Alan Perelson, Filip Ronning, Alexander Saunders and Glen Wurden Tariq

  18. Optical Materials, Adhesive and Encapsulant, III-V, and Optical Characterization Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-07-216

    SciTech Connect (OSTI)

    Kempe, M.

    2012-11-01

    SolFocus is currently developing solar technology for utility scale application using Winston collector based concentrating photovoltaics (CPV). Part of that technology development includes small mirror dishes and front surface reflectors, and bonding the separate parts to the assembly. Mirror panels must meet rigid optical specifications in terms of radius of curvature, slope errors and specularity. The reflective surfaces must demonstrate long term durability and maintain high reflectivity. Some bonded surfaces must maintain adhesion and transparency under high concentrations and high temperatures. Others will experience moderate temperatures and do not require transparency. NREL researchers have developed methods and tools that address these related areas.

  19. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Electronic & Magnetic Materials & Devices NanoBio Interfaces Nanofabrication & Devices Nanophotonics Theory & Modeling X-Ray Microscopy Electron Microscopy Center Related...

  20. Coutts Earns Prestigious Research Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coutts Earns Prestigious Research Award For more information contact: e:mail: Public Affairs Golden, Colo., July 8, 1999 — A research fellow at the U.S. Department of Energy's National Renewable Energy Laboratory was selected recently for a major award from the American Vacuum Society (AVS). Dr. Timothy J. Coutts won the 1999 John A. Thornton Memorial Award because of his "...innovative research, teaching and technical leadership in optimizing and applying thin-film photovoltaics (solar

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China's Aerosol Malady Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Qiu Y, Q Wang, and F Hu. 2012. "Shouxian aerosol radiative properties measured by DOE AMF and compared with CERES-MODIS." Advanced Materials Research, 518-523(2), doi:10.4028/www.scientific.net/AMR.518-523.1973. Tiananmen tower enveloped by heavy fog and haze in January 2013. Many of

  2. Sandia National Laboratories: Research: Research Foundations: Geoscience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geoscience Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Geoscience Geoscience photo The Geoscience Research Foundation performs recognized world-class earth and atmospheric sciences research and development to support Sandia's national security missions. Why our work matters Knowledge of the Earth's subsurface properties, structure and

  3. Reflections on the Origins and Evolution of Genetic Toxicology and the Environmental Mutagen Society

    SciTech Connect (OSTI)

    Wassom, John S.; Malling, Heinrich V.; Sankaranarayanan, K.; Lu, Po-Yung

    2010-01-01

    This article traces the development of the field of mutagenesis and its metamorphosis into the research area we now call genetic toxicology. In 1969 this transitional event led to the founding of the Environmental Mutagen Society (EMS). The charter of this new Society was to encourage interest in and study of mutagens in the human environment, particularly as these may be of concern to public health. As the mutagenesis field unfolded and expanded, the lexicon changed and new wording appeared to better describe this evolving area of research. The term genetic toxicology was coined and became an important subspecialty of the broad area of toxicology. Genetic toxicology is now set for a thorough reappraisal of its methods, goals, and priorities to meet the challenges of the 21st Century. To better understand these challenges, we have revisited the primary goal that the EMS founders had in mind for the Society s main mission and objective, namely, the quantitative assessment of genetic (hereditary) risks to human populations exposed to environmental agents. We also have reflected upon some of the seminal events over the last 40 years that have influenced the advancement of the genetic toxicology discipline and the extent to which the Society s major goal and allied objectives have been achieved. Additionally, we have provided suggestions on how EMS can further advance the science of genetic toxicology in the postgenome era. Chronicling all events and publications that influenced the development of the mutagenesis and genetic toxicology research area for this article was not possible, but some key happenings that contributed to the field s development have been reviewed. Events that led to the origin of EMS are also presented in celebration of the Society s 40th anniversary. Any historical accounting will have perceived deficiencies. Key people, publications, or events that some readers may feel have had significant impact on development of the subject under review may have been overlooked and left out. We are sure that such will be the case with the appraisal given in this article. However, any oversight or failure to make proper acknowledgment of individuals, events, or the citation of relevant references is unintentional.

  4. Tailored Porous Materials

    SciTech Connect (OSTI)

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  5. Research on the Hydrogen Passivation of Defects and Impurities in Si Relevant to Crystalline Si Solar Cell Materials: Final Report, 16 February 2000 -- 15 April 2003

    SciTech Connect (OSTI)

    Stavola, M.

    2003-09-01

    The goal of this experimental research program is to increase the understanding, at a microscopic level, of hydrogenation processes and passivation mechanisms for crystalline-Si photovoltaics. In our experiments, vibrational spectroscopy was used to study the properties of the interstitial H2 molecule in Si and the transition-metal-hydrogen complexes in Si. The interstitial H2 molecule is formed readily in Si when hydrogen is introduced. Our studies establish that interstitial H2 in Si behaves as a nearly free rotator, solving puzzles about the behavior of this defect that have persisted since the discovery of its vibrational spectrum. The transition metals are common impurities in Si that decrease the minority-carrier lifetime and degrade the efficiencies of solar cells. Therefore, the possibility that transition-metal impurities in Si might be passivated by hydrogen has long been of interest. Our studies of transition-metal-H complexes in Si help to establish the structural and electrical properties of a family of Pt-H complexes in Si, and have made the Pt-H complexes a model system for understanding the interaction of hydrogen with transition-metal impurities in Si.

  6. Critical Materials Workshop

    Broader source: Energy.gov [DOE]

    AMO hosted a public workshop on Tuesday, April 3, 2012 in Arlington, VA to provide background information on critical materials assessment, the current research within DOE related to critical...

  7. 2010 Critical Materials Strategy

    Broader source: Energy.gov [DOE]

    This report examines the role of rare earth metals and other materials in the clean energy economy. It was prepared by the U.S. Department of Energy (DOE) based on data collected and research performed during 2010.

  8. Japan-NIES Low-Carbon Society Scenarios 2050 | Open Energy Information

    Open Energy Info (EERE)

    NIES Low-Carbon Society Scenarios 2050 Jump to: navigation, search Name Japan-NIES Low-Carbon Society Scenarios 2050 AgencyCompany Organization National Institute for...

  9. China-NIES Low-Carbon Society Scenarios 2050 | Open Energy Information

    Open Energy Info (EERE)

    NIES Low-Carbon Society Scenarios 2050 Jump to: navigation, search Name China-NIES Low-Carbon Society Scenarios 2050 AgencyCompany Organization National Institute for...

  10. Thailand-NIES Low-Carbon Society Scenarios 2050 | Open Energy...

    Open Energy Info (EERE)

    NIES Low-Carbon Society Scenarios 2050 Jump to: navigation, search Name Thailand-NIES Low-Carbon Society Scenarios 2050 AgencyCompany Organization National Institute for...

  11. Malaysia-NIES Low-Carbon Society Scenarios 2050 | Open Energy...

    Open Energy Info (EERE)

    NIES Low-Carbon Society Scenarios 2050 Jump to: navigation, search Name Malaysia-NIES Low-Carbon Society Scenarios 2050 AgencyCompany Organization National Institute for...

  12. Vietnam-NIES Low-Carbon Society Scenarios 2050 | Open Energy...

    Open Energy Info (EERE)

    NIES Low-Carbon Society Scenarios 2050 Jump to: navigation, search Name Vietnam-NIES Low-Carbon Society Scenarios 2050 AgencyCompany Organization National Institute for...

  13. India-NIES Low-Carbon Society Scenarios 2050 | Open Energy Information

    Open Energy Info (EERE)

    NIES Low-Carbon Society Scenarios 2050 Jump to: navigation, search Name India-NIES Low-Carbon Society Scenarios 2050 AgencyCompany Organization National Institute for...

  14. Bangladesh-NIES Low-Carbon Society Scenarios 2050 | Open Energy...

    Open Energy Info (EERE)

    NIES Low-Carbon Society Scenarios 2050 Jump to: navigation, search Name Bangladesh-NIES Low-Carbon Society Scenarios 2050 AgencyCompany Organization National Institute for...

  15. Indonesia-NIES Low-Carbon Society Scenarios 2050 | Open Energy...

    Open Energy Info (EERE)

    NIES Low-Carbon Society Scenarios 2050 Jump to: navigation, search Name Indonesia-NIES Low-Carbon Society Scenarios 2050 AgencyCompany Organization National Institute for...

  16. ARM - Research Highlights Summaries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govPublicationsResearch Highlights Summaries Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Research Highlights Summaries Research Highlights Summaries are a collection of selected Research Highlights that are condensed and formatted into

  17. Sandia National Laboratories: Research: Bioscience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing and Information Science Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research ...

  18. NREL: Photovoltaics Research -Kent Terwilliger

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for: Troubleshooting and repairing environmental test chambers. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

  19. NREL: Photovoltaics Research - Greg Perrin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    maintenance, and repair; machining and other lab support. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

  20. Research Highlights | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Highlights All Highlights Division of Chemical and Biological Sciences Highlights Division of Materials Science and Engineering Highlights

  1. Research Projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Projects Bioinspired Materials Complex Hydrides - A new Frontier of Future Energy Applications Complex States, Emergent Phenomena, & Superconductivity in Intermetallic &...

  2. Center for Nanoscale Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. www.anl.gov CENTER FOR NANOSCALE MATERIALS A premier user facility providing expertise, instruments, and infrastructure for interdisciplinary nanoscience and nanotechnology research. The Center for Nanoscale Materials (CNM) is a premier user facility operating as one of the five centers built across the nation as part of the U.S. Department of Energy's (DOE's) Nanoscale Science Research Center program

  3. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation...

  4. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos ...

  5. Materials in the news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Materials in the news Discover more about the wide-ranging scope of materials research at Los Alamos National Laboratory. Contact Us ADEPS Communications Email Scientists Aditya Mohite, left, and Wanyi Nie are perfecting a crystal production technique to improve perovskite crystal production for solar cells Scientists Aditya Mohite, left, and Wanyi Nie are perfecting a crystal production technique to improve perovskite crystal production for solar cells Read more... Materials science at Los

  6. Kutscher Elected Future Chair of American Solar Energy Society

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kutscher Elected Future Chair of American Solar Energy Society For more information contact: e:mail: Public Affairs Golden, Colo., Jan. 14, 1998 — Dr. Chuck Kutscher of the National Renewable Energy Laboratory (NREL) was elected future chair of the American Solar Energy Society. Starting this month, he will serve as vice-chair/chair-elect for two years and then serve a two-year term as chair beginning January 2000. "I'm excited to have the opportunity to be chair at the turn of the

  7. American Nuclear Society Annual Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Nuclear Society Annual Meeting American Nuclear Society Annual Meeting June 25, 2007 - 2:08pm Addthis Remarks Prepared for U.S. Secretary of Energy Samuel W. Bodman Thank you, Art. It's a pleasure to be back in Boston today. My family and I lived here for nearly 40 years, and I always appreciate the opportunity to return to this great city. I had the good fortune to attend graduate school right across the river at MIT, where I studied chemical engineering. I entered MIT at a pivotal

  8. James E. Watson, Jr.: Named to the Health Physics Society

    SciTech Connect (OSTI)

    Strom, Daniel J.; Stansbury, Paul S.

    2010-11-18

    At its 2010 Annual Meeting, the Health Physics Society named James E. Watson, Jr. to its Honor Roll of distinguished members. This citation summarizes Professor Jim Watson's life and professional career at the University of North Carolina at Chapel Hill, where he led the Radiological Hygiene program in the School of Public Health for nearly 3 decades. He was President of the Health Physics Society during the 1985-1986 term. He did pioneering work in radiation dose reconstruction for epidemiology as part of the U.S. Department of Energy Health and Mortality Studies.

  9. Materials Science | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science National Renewable Energy Laboratory (NREL) researchers develop and support others in developing materials for use in concentrating solar power (CSP). These materials include higher-reflectivity mirrors, better thermal-absorbing receivers, and more corrosion-resistant materials. Researchers also test the durability of these materials. NREL researchers are working to under-stand the fundamental corrosion mechanisms of materials when exposed to high-temperature fluids. Learn more

  10. NREL: Wind Research - Offshore Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Turbine Research Photo of a European offshore wind farm. Photo by Siemens For more than eight years, NREL has worked with the U.S. Department of Energy (DOE) to become an international leader in offshore wind energy research. NREL's offshore wind turbine research capabilities focus on critical areas that reflect the long-term needs of the industry and DOE. National Wind Technology Center (NWTC) researchers are perpetually exploring new wind and water power concepts, materials, and

  11. Renné to Lead International Renewable Energy Society - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renie Boyle About Us Renie Boyle - Public Affairs Specialist, National Energy Technology Laboratory Renie Boyle Most Recent A Heart of Gold? Try Platinum December 1 Top 10 Things You Didn't Know About the National Energy Technology Laboratory June 13 Lab Breakthrough: How Energy Department Research Saves Lives August 28 NREL

    Renné to Lead International Renewable Energy Society January 12, 2010 Dr. David Renné, principal project leader for analysis at the U.S. Department of Energy's

  12. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  13. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:www.nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  14. Kristin Persson Lawrence Berkeley National Laboratory A Google for Materials?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kristin Persson Lawrence Berkeley National Laboratory A Google for Materials? security visualization infrastructure transportation health communication Engineered Materials Enable Society consumption How are New Materials Invented? "Edison Style" When looking for a light bulb filament, Edison tried about 3,000 materials ... And he didn't find the best one ...! Materials Design: Hollywood Style Need to replace this video? Teflon Titanium Velcro 1930 1940 1950 1960 1970 1980 1990 2000

  15. Latest News | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News News releases CMI in the news News archive CMI social media Latest News News about CMI: Critical Materials Institute gains ten industrial and research affiliates, April 11, 2016 On energy.gov: Critical Materials Institute Gains Ten Industrial and Research Affiliates How true is conventional wisdon about price volatility of tech metals?, Feb. 11, 2016 Need rare-earths know-how? The Critical Materials Institute offers lower-cost access to experts and research, Dec. 1, 2015 Get schooled in

  16. Materials Sciences and Engineering (MSE) Division Homepage |...

    Office of Science (SC) Website

    MSE Home About Research Areas Reports and Activities Science Highlights Principal ... Materials Chemistry Biomolecular Materials Synthesis and Processing Science Scattering and ...

  17. NREL: Energy Sciences - Chemical and Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the U.S. Department of Energy (DOE) National Photovoltaic Program and DOE Basic Energy Sciences Program. Materials Science. The Materials Science Group's research...

  18. Electronic & Magnetic Materials & Devices | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    laser spectroscopy, molecular beam epitaxy, and novel approaches for hybrid, organic and nanoparticle materials synthesis. Research activities include: Low-dimensional materials...

  19. Critical Materials:

    Energy Savers [EERE]

    Facilities » Critical Materials Hub Critical Materials Hub Green light reflection from a low-oxygen environment 3D printer laser deposition of metal powder alloys. Photo courtesy of The Critical Materials Institute, Ames Laboratory Green light reflection from a low-oxygen environment 3D printer laser deposition of metal powder alloys. Photo courtesy of The Critical Materials Institute, Ames Laboratory Critical materials, including some rare earth elements that possess unique magnetic,

  20. Berkeley Lab - Materials Sciences Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How to Train Your Bacterium Peidong Yang, a chemist with Berkeley Lab's Materials Sciences Division, and his researchers are using the bacterium Moorella thermoacetica to perform...

  1. Nanotwinned Materials for Energy Technologies | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotwinned Materials for Energy Technologies Research Personnel Updates Publications Imperfections at Boundaries Key to Understanding Nanostructured Materials Read More...

  2. Cold Facts staff tour JLab's cryogenic, SRF facilities (Cryogenic Society

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of America, Cold Facts) | Jefferson Lab Cold Facts staff tour JLab's cryogenic, SRF facilities (Cryogenic Society of America, Cold Facts) External Link: http://www.cryogenicsociety.org/csa_highlights/cold_facts_tours_jlab_cryogenics_... By jlab_admin on Sat, 2012-05-05

  3. Careers | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Careers The Critical Materials Institute at the The Ames Laboratory, a Department of Energy national laboratory affiliated with Iowa State University, offers a variety of career opportunities. These include: Postdoctoral Research Associate Also, The Ames Laboratory participates in federal programs that help develop the research workforce. These include the following programs with the U.S. Department of Energy: Graduate Student Research Program (new in 2014) Science Undergraduate Laboratory

  4. Light-Material Interactions in Energy Conversion - Energy Frontier...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the National Academy of Sciences Award for Initiative in Research, and the Adolph Lomb Medal from the Optical Society of America. He is a Fellow of APS, OSA, SPIE, and IEEE....

  5. Crosscutting Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crosscutting Research Crosscutting Research Crosscutting Research The Crosscutting Research program serves as a bridge between basic and applied research by fostering the development of innovative systems for improving availability, efficiency, and environmental performance of fossil energy systems with carbon capture and storage. This crosscutting effort is implemented through the research and development of sensors, controls, and advanced materials. This program area also develops computation,

  6. FY 2008 Progress Report for Lightweighting Materials - 8. Polymer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8. Polymer Composites Research and Development FY 2008 Progress Report for Lightweighting Materials - 8. Polymer Composites Research and Development Lightweighting Materials ...

  7. Materials-Based Hydrogen Storage | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Materials-based research is currently being pursued on metal hydride, chemical hydrogen ... Chemical hydrogen storage materials research focuses on improving volumetric and ...

  8. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and thin film solar cells, to explore non-vacuum ink-based approaches to solar cell production, as well as large-scale and low-cost deposition and processing of thin film CdTe material.

  9. Iowa lab gets critical materials research center

    Broader source: Energy.gov [DOE]

    The DOE hub is set to be the largest R&D effort toward alleviating the global shortage of rare earth metals.

  10. 2012 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 10.1021nl301642g Interconversion of Inverse Opals of Electrically Conducting Doped Titanium Oxides and Nitrides CV Subban, IC Smith, FJ DiSalvo Small, 8(18), pp 2824-2832, 2012 ...

  11. 2013 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano-structured ternary niobium titanium nitrides as durable non-carbon supports for ... Mesoporous titanium nitride supported Pt nanoparticles as high performance catalysts for ...

  12. Deposition > Complex Oxides > Research > The Energy Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Nanoparticles Nanostructured Systems Deposition Deposition Veeco GEN10 MBE system dedicated to the growth of oxide heterostructures being installed in Duffield Lab at...

  13. 2011 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Publications The rechargeable aluminum-ion battery N Jayaprakash, SK Das and LA Archer Chemical Communications, 47, pp 12610-12612, 2011 DOI: 10.1039C1CC15779E Atomic-resolution...

  14. Analytical Resources > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Differential Electrochemical Mass Spectroscopy (DEMS) Electron Microscopy X-Ray Diffraction Analytical Resources Differential Electrochemical Mass Spectroscopy (DEMS) Electron...

  15. Challenges and Opportunities in Thermoelectric Materials Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Bottom-Up Approach forThermoelectric Nanocomposites, plus NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics Inorganic-Organic Hybrid ...

  16. 2014 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Theoretical Studies of Carbonyl-Based Organic Molecules for Energy Storage Applications: The Heteroatom and Substituent Effect K Hernndez-Burgos, SE Burkhardt, GG ...

  17. 2015 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films CR DeBlase, K Hernndez-Burgos, KE Silberstein, GG Rodrguez-Calero, RP Bisbey, HD Abrua, ...

  18. Papers by CMI Researchers | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Anisotropy Energies for (Fe1-xCox)2B, J. of Phy.: Conds. Matter, 2015, 27, 266002, doi:10.10880953-89842726266002 B. S. Pujari, P. Larson, V. P. Antropov, and K. D. ...

  19. Nanoparticles > Complex Oxides > Research > The Energy Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoparticles The nanoparticle synthesis efforts at EMC2 mostly take place in the Frank DiSalvo group, and focus on preparing useful fuel cell electrocatalysts in nanoparticle...

  20. Meet the CMI Researchers | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory, biogeochemistry Karl Gschneidner, Ames Laboratory, video, retirement Stephen Harrison, Simbol Scott Herbst, Idaho National Laboratory Ed Jones, Lawrence...