National Library of Energy BETA

Sample records for material protection control

  1. Material Protection, Control, & Accounting | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Nonproliferation Nuclear and Radiological Material Security Material Protection, Control, & Accounting Material Protection, Control, & Accounting NNSA implements material...

  2. Material Protection, Accounting and Control

    Energy Savers [EERE]

    Overview and Advanced Instrumentation Development Michael Miller, Ph.D. National Technical Director Los Alamos National Laboratory Instrumentation and Control Review Meeting September 17, 2014 LA-UR-14-27347 2 Introduction September 17, 2014 n Preventing, deterring, and detecting misuse of nuclear materials and associated fuel cycle technologies is of paramount concern to both national and global security. Success in this area is critical for the existing and future nuclear energy enterprise.

  3. Material Protection, Control, and Accounting Program | National...

    National Nuclear Security Administration (NNSA)

    Engaged in ongoing nuclear security best practices dialogues with both China and Russia. Material Consolidation and Conversion Worked with Russia to consolidate weapons-usable ...

  4. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  5. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:www.nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  6. weapons material protection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    material protection

  7. Integrated safeguards & security for material protection, accounting, and control.

    SciTech Connect (OSTI)

    Duran, Felicia Angelica; Cipiti, Benjamin B.

    2009-10-01

    Traditional safeguards and security design for fuel cycle facilities is done separately and after the facility design is near completion. This can result in higher costs due to retrofits and redundant use of data. Future facilities will incorporate safeguards and security early in the design process and integrate the systems to make better use of plant data and strengthen both systems. The purpose of this project was to evaluate the integration of materials control and accounting (MC&A) measurements with physical security design for a nuclear reprocessing plant. Locations throughout the plant where data overlap occurs or where MC&A data could be a benefit were identified. This mapping is presented along with the methodology for including the additional data in existing probabilistic assessments to evaluate safeguards and security systems designs.

  8. Material protection, control and accounting cooperation at the Urals Electrochemical Integrated Plant (UEIP), Novouralsk, Russia

    SciTech Connect (OSTI)

    McAllister, S., LLNL

    1998-07-15

    The Urals Electrochemical Integrated Plant is one of the Russian Ministry of Atomic Energy`s nuclear material production sites participating in the US Department of Energy`s Material Protection, Control and Accounting (MPC&A) Program. The Urals Electrochemical Integrated Plant is Russia`s largest uranium enrichment facility and blends tons of high-enriched uranium into low enriched uranium each year as part of the US high-enriched uranium purchase. The Electrochemical Integrated Plant and six participating national laboratories are cooperating to implement a series of enhancements to the nuclear material protection, control, and accountability systems at the site This paper outlines the overall objectives of the MPC&A program at Urals Electrochemical Integrated Plant and the work completed as of the date of the presentation.

  9. Material protection control and accounting program activities at the electrochemical plant

    SciTech Connect (OSTI)

    McAllister, S.

    1997-11-14

    The Electrochemical Plant (ECP) is the one of the Russian Federation`s four uranium enrichment plants and one of three sites in Russia blending high enriched uranium (HEU) into commercial grade low enriched uranium. ECP is located approximately 200 km east of Krasnoyarsk in the closed city of Zelenogorsk (formerly Krasnoyarsk- 45). DOE`s MPC&A program first met with ECP in September of 1996. The six national laboratories participating in DOE`s Material Protection Control and Accounting program are cooperating with ECP to enhance the capabilities of the physical protection, access control, and nuclear material control and accounting systems. The MPC&A work at ECP is expected to be completed during fiscal year 2001.

  10. Material protection control and accounting program activities at the Urals electrochemical integrated plant

    SciTech Connect (OSTI)

    McAllister, S.

    1997-11-14

    The Urals Electrochemical Integrated Plant (UEIP) is the Russian Federation`s largest uranium enrichment plant and one of three sites in Russia blending high enriched uranium (HEU) into commercial grade low enriched uranium. UEIP is located approximately 70 km north of Yekaterinburg in the closed city of Novouralsk (formerly Sverdlovsk- 44). DOE`s MPC&A program first met with UEIP in June of 1996, however because of some contractual issues the work did not start until September of 1997. The six national laboratories participating in DOE`s Material Protection Control and Accounting program are cooperating with UEIP to enhance the capabilities of the physical protection, access control, and nuclear material control and accounting systems. The MPC&A work at UEIP is expected to be completed during fiscal year 2001.

  11. Coordination Between the HEU Transparency Program and the Material Protection, Control and Accountability Program

    SciTech Connect (OSTI)

    Glaser, J.; Hernandez, J.; Dougherty, D.; Bieniawski, A.; Cahalane, P.; Mastal, E.

    2000-06-30

    DOE sponsored programs such as Material Protection Control and Accountability (MPC&A) and implementation of the Highly-Enriched Uranium (HEU) Transparency Program send US personnel into Russian nuclear facilities and receive Russian representatives from these programs. While there is overlap in the Russian nuclear facilities visited by these two programs, there had not been any formal mechanism to share information between them. Recently, an MPC&A/HEU Working Group was developed to facilitate the sharing of appropriate information and to address concerns expressed by Minatom and Russian facility personnel such as US visit scheduling conflicts. This paper discusses the goals of the Working Group and ways it has helped to allow the programs to work more efficiently with the Russian facilities.

  12. Material for radioactive protection

    DOE Patents [OSTI]

    Taylor, R.S.; Boyer, N.W.

    A boron containing burn resistant, low-level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source is described. The material is basically composed of borax in the range of 25 to 50%, coal tar in the range of 25 to 37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.

  13. Cooperative efforts of the materials protection control and accounting program at the electrochemical plant (Krasnoyarsk-45) in Russia-011

    SciTech Connect (OSTI)

    Moore, L.

    1998-07-22

    The USDOE Material Protection Control and Accountability Program (MPC&A) has established a Project Team with the goal of providing the Russian Electrochemical Plant (ECP) with equipment and training to enable ECP to evaluate, develop, and implement a comprehensive plan and systems for physical protection, material controls, and accountancy upgrades. The MPC&A project will provide for improvements such as risk assessments, access control upgrades, computerized MC&A, communications systems upgrades, building perimeter surveillance and intrusion detection upgrades, vault upgrades, metal and nuclear material detection upgrades, along with mass measurement and non- destructive analysis (NDA) instrumentation. This paper outlines the overall objectives of the MPC&A project at the Electrochemical Plant.

  14. Department of Energy Nuclear Material Protection, Control, and Accounting Program at the Mangyshlak Atomic Energy Complex, Aktau, Republic of Kazakhstan

    SciTech Connect (OSTI)

    Case, R.; Berry, R.B.; Eras, A.

    1998-08-01

    As part of the Cooperative Threat Reduction Nuclear Material Protection, Control, and Accounting (MPC and A) Program, the US Department of Energy and Mangyshlak Atomic Energy Complex (MAEC), Aktau, Republic of Kazakstan have cooperated to enhance existing MAEC MPC and A features at the BN-350 liquid-metal fast-breeder reactor. This paper describes the methodology of the enhancement activities and provides representative examples of the MPC and A augmentation implemented at the MAEC.

  15. United States-Russian laboratory-to-laboratory cooperation on protection, control, and accounting for naval nuclear materials

    SciTech Connect (OSTI)

    Sukhoruchkin, V.; Yurasov, N.; Goncharenko, Y.; Mullen, M.; McConnell, D.

    1996-12-31

    In March 1995, the Russian Navy contacted safeguards experts at the Kurchatov Institute (KI) and proposed the initiation of work to enhance nuclear materials protection, control, and accounting (MPC and A) at Russian Navy facilities. Because of KI`s successful experience in laboratory-to-laboratory MPC and A cooperation with US Department of Energy Laboratories, the possibility of US participation in the work with the Russian Navy was explored. Several months later, approval was received from the US Government and the Russian Navy to proceed with this work on a laboratory-to-laboratory basis through Kurchatov Institute. As a first step in the cooperation, a planning meeting occurred at KI in September, 1995. Representatives from the US Department of Energy (DOE), the US Department of Defense (DOD), the Russian Navy, and KI discussed several areas for near-term cooperative work, including a vulnerability assessment workshop and a planning study to identify and prioritize near-term MPC and A enhancements that might be implemented at Russian facilities which store or handle unirradiated highly enriched uranium fuel for naval propulsion applications. In subsequent meetings, these early proposals have been further refined and extended. This MPC and A cooperation will now include enhanced protection and control features for storage facilities and refueling service ships, computerized accounting systems for naval fuel, methods and equipment for rapid inventories, improved security of fresh fuel during truck transportation, and training. This paper describes the current status and future plans for MPC and A cooperation for naval nuclear materials.

  16. Protections: Sediment Control = Contaminant Retention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sediment Control Protections: Sediment Control Contaminant Retention LANL maintains hundreds of wells, stream sampling stations and stormwater control structures to protect...

  17. Environmental Protection: Controlling the Present

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection community-environmentassetsimagesiconearthday.jpg Environmental Protection: Controlling the Present The Laboratory is committed to increasing sustainable practices...

  18. Protective coatings for sensitive materials

    DOE Patents [OSTI]

    Egert, Charles M.

    1997-01-01

    An enhanced protective coating to prevent interaction between constituents of the environment and devices that can be damaged by those constituents. This coating is provided by applying a synergistic combination of diffusion barrier and physical barrier materials. These materials can be, for example, in the form of a plurality of layers of a diffusion barrier and a physical barrier, with these barrier layers being alternated. Further protection in certain instances is provided by including at least one layer of a getter material to actually react with one or more of the deleterious constituents. The coating is illustrated by using alternating layers of an organic coating (such as Parylene-C.TM.) as the diffusion barrier, and a metal coating (such as aluminum) as the physical barrier. For best results there needs to be more than one of at least one of the constituent layers.

  19. Protective coatings for sensitive materials

    DOE Patents [OSTI]

    Egert, C.M.

    1997-08-05

    An enhanced protective coating is disclosed to prevent interaction between constituents of the environment and devices that can be damaged by those constituents. This coating is provided by applying a synergistic combination of diffusion barrier and physical barrier materials. These materials can be, for example, in the form of a plurality of layers of a diffusion barrier and a physical barrier, with these barrier layers being alternated. Further protection in certain instances is provided by including at least one layer of a getter material to actually react with one or more of the deleterious constituents. The coating is illustrated by using alternating layers of an organic coating (such as Parylene-C{trademark}) as the diffusion barrier, and a metal coating (such as aluminum) as the physical barrier. For best results there needs to be more than one of at least one of the constituent layers. 4 figs.

  20. Protections: Sediment Control = Contaminant Retention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL maintains hundreds of wells, stream sampling stations and stormwater control ... Protection 2: Trap and Remove Sediment Stormwater Controls The Individual Permit for ...

  1. MATERIAL CONTROL ACCOUNTING INMM

    SciTech Connect (OSTI)

    Hasty, T.

    2009-06-14

    Since 1996, the Mining and Chemical Combine (MCC - formerly known as K-26), and the United States Department of Energy (DOE) have been cooperating under the cooperative Nuclear Material Protection, Control and Accounting (MPC&A) Program between the Russian Federation and the U.S. Governments. Since MCC continues to operate a reactor for steam and electricity production for the site and city of Zheleznogorsk which results in production of the weapons grade plutonium, one of the goals of the MPC&A program is to support implementation of an expanded comprehensive nuclear material control and accounting (MC&A) program. To date MCC has completed upgrades identified in the initial gap analysis and documented in the site MC&A Plan and is implementing additional upgrades identified during an update to the gap analysis. The scope of these upgrades includes implementation of MCC organization structure relating to MC&A, establishing material balance area structure for special nuclear materials (SNM) storage and bulk processing areas, and material control functions including SNM portal monitors at target locations. Material accounting function upgrades include enhancements in the conduct of physical inventories, limit of error inventory difference procedure enhancements, implementation of basic computerized accounting system for four SNM storage areas, implementation of measurement equipment for improved accountability reporting, and both new and revised site-level MC&A procedures. This paper will discuss the implementation of MC&A upgrades at MCC based on the requirements established in the comprehensive MC&A plan developed by the Mining and Chemical Combine as part of the MPC&A Program.

  2. Protections: Sediment Control = Contaminant Retention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sediment Control Protections: Sediment Control = Contaminant Retention LANL maintains hundreds of wells, stream sampling stations and stormwater control structures to protect waters. August 1, 2013 Los Alamos Canyon weir Los Alamos Canyon weir thumbnail of Protection #2: Trap and Remove Sediment Sediment behind LA Canyon weir is sampled and excavated regularly. As of 2012, no sediment required disposal as hazardous or radioactive waste. RELATED IMAGES

  3. Classified Matter Protection and Control

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-26

    Provides detailed requirements to supplement DOE O 471.2, which establishes policy for the protection and control of classified and unclassified information. Does not cancel other directives.

  4. Environmental Protection: Controlling the Present

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection /environment/_assets/images/icon_earthday.jpg Environmental Protection: Controlling the Present The Laboratory is committed to increasing sustainable practices and complying with environmental regulations. What We Monitor & Why» Cultural Preservation» Taking Care of our Trails» Obeying Environmental Laws» Protecting Wildlife» Feature Stories» TOP STORIES - highlights of our science, people, technologies close Los Alamos National Laboratory begins pumping tests on chromium

  5. Flash protection controller

    DOE Patents [OSTI]

    Galbraith, Lee K.

    1981-01-01

    A controller provides a high voltage to maintain an electro-optic shutter in a transparent condition until a flash of light which would be harmful to personnel is sensed by a phototransistor. The controller then shorts the shutter to ground to minimize light transmission to the user and maintains light transmission at the pre-flash level for a predetermined time to allow the flash to subside. A log converter and differential trigger circuit keep the controller from being triggered by other light flashes which are not dangerous.

  6. Flash protection controller

    DOE Patents [OSTI]

    Galbraith, L.K.

    1979-12-07

    A controller provides a high voltage to maintain an electro-optic shutter in a transparent condition until a flash of light which would be harmful to personnel is sensed by a phototransistor. The controller then shorts the shutter to ground to minimize light transmission to the user and maintains light transmission at the pre-flash level for a predetermined time to allow the flash to subside. A log converter and differential trigger circuit keep the controller from being triggered by other light flashes which are not dangerous.

  7. material protection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    material protection Material Management and Minimization The Office of Material Management and Minimization (M3) presents an integrated approach to addressing the persistent threat posed by nuclear materials through a full cycle of materials management and minimization efforts. Consistent with the President's highly enriched uranium (HEU) and... Nonproliferation Working in close collaboration with DOE laboratories, DNN develops and tests new technologies to advance U.S. capabilities to monitor

  8. Corrosion protective coating for metallic materials

    DOE Patents [OSTI]

    Buchheit, R.G.; Martinez, M.A.

    1998-05-26

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides is disclosed. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds. 1 fig.

  9. Corrosion protective coating for metallic materials

    DOE Patents [OSTI]

    Buchheit, Rudolph G.; Martinez, Michael A.

    1998-01-01

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds.

  10. Material Protection, Accounting and Control

    Energy Savers [EERE]

    ... accuracy and precision of Pu analysis by gamma spectroscopy n Close gap between NDA and DA methods (<0.1% vs 1%) n Reduce reliance on sampling and mass spectrometry ...

  11. Sacrificial Protective Coating Materials That Can Be Regenerated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sacrificial Protective Coating Materials That Can Be Regenerated In-Situ to Enable High-Performance Membranes Sacrificial Protective Coating Materials That Can Be Regenerated ...

  12. California Environmental Protection Agency Water Resources Control...

    Open Energy Info (EERE)

    Water Resources Control Board Jump to: navigation, search Name: California Environmental Protection Agency Water Resources Control Board Place: Sacramento, California Coordinates:...

  13. Manual for Classified Matter Protection and Control

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-01-09

    Provides detailed requirements for the protection and control of classified matter which supplement DOE O 471.2A. Cancels DOE M 471.2-1 dated 09/26/1995.

  14. Protection of Unclassified Controlled Nuclear Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-04-24

    To establish Department of Energy (DOE) policy and procedures for the protection of Unclassified Controlled Nuclear Information (UNCI). Canceled by DOE O 471.1 of 9-25-1995.

  15. Protection of Unclassified Controlled Nuclear Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1988-02-03

    To establish Department of Energy (DOE) policy and procedures for the protection of Unclassified Controlled Nuclear Information (UCNI). This directive does not cancel another directive. Chg 1 dated 4-24-92.

  16. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    The manual establishes a program for the control and accountability of nuclear materials within the Department of Energy. Chg 1, dated 8-14-06. Canceled by DOE O 474.2.

  17. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    The manual establishes a program for the control and accountability of nuclear materials within the Department of Energy. Cancels: DOE M 474.1-1B DOE M 474.1-2A

  18. Measurement Control Workshop Instructional Materials

    SciTech Connect (OSTI)

    Gibbs, Philip; Crawford, Cary; McGinnis, Brent

    2014-04-01

    A workshop to teach the essential elements of an effective nuclear materials control and accountability (MC&A) programs are outlined, along with the modes of Instruction, and the roles and responsibilities of participants in the workshop.

  19. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27

    This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6. Admin Chg 1, 8-3-11.

  20. Office of Weapons Material Protection | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Weapons Material Protection The Office of Weapons Material Protection (OWMP) enhances the security of Russia's nuclear material at 37 sites, including 11 Russian Navy fuel storage sites, 7 Rosatom weapons sites and 19 Rosatom civilian sites. These sites include weapons design laboratories, uranium enrichment facilities, and material processing/storage sites located in closed cities. In some cases, these industrial sites are the size of small cities and contain hundreds of

  1. Classified Matter Protection and Control Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-04-17

    This Manual supplements DOE O 471.2A, Information Security Program, and provides detailed requirements for the protection and control of classified matter. Cancels DOE M 471.2-1B except Chapter III paragraphs 1 and 2, and Chapter IV.

  2. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27

    The Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability (MC&A) program within the U.S. Department of Energy (DOE), including the National Nuclear Security Administration (NNSA), and for DOE owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission (NRC). Admin Chg 3, dated 5-15-15 supersedes Admin Chg 2.

  3. Insider Threat - Material Control and Accountability Mitigation

    SciTech Connect (OSTI)

    Powell, Danny H; Elwood Jr, Robert H; Roche, Charles T

    2011-01-01

    The technical objectives of nuclear safeguards are (1) the timely detection of diversion of significant quantities of nuclear material from peaceful uses to the manufacture of nuclear weapons or other nuclear explosive devices or for purposes unknown and (2) the deterrence of such diversion by the risk of early detection. The safeguards and security program must address both outsider threats and insider threats. Outsider threats are primarily addressed by the physical protection system. Insider threats can be any level of personnel at the site including passive or active insiders that could attempt protracted or abrupt diversion. This could occur by an individual acting alone or by collusion between an individual with material control and accountability (MC&A) responsibilities and another individual who has responsibility or control within both the physical protection and the MC&A systems. The insider threat is one that must be understood and incorporated into the safeguards posture. There have been more than 18 documented cases of theft or loss of plutonium or highly enriched uranium. The insider has access, authority, and knowledge, as well as a set of attributes, that make him/her difficult to detect. An integrated safeguards program is designed as a defense-in-depth system that seeks to prevent the unauthorized removal of nuclear material, to provide early detection of any unauthorized attempt to remove nuclear material, and to rapidly respond to any attempted removal of nuclear material. The program is also designed to support protection against sabotage, espionage, unauthorized access, compromise, and other hostile acts that may cause unacceptable adverse impacts on national security, program continuity, the health and safety of employees, the public, or the environment. Nuclear MC&A play an essential role in the capabilities of an integrated safeguards system to deter and detect theft or diversion of nuclear material. An integrated safeguards system with compensating mitigation can decrease the risk of an insider performing a malicious act without detection.

  4. Nuclear Material Control and Accountability

    Energy Savers [EERE]

    DOE-STD-1194-2011 JUNE 2011 ──────────────── CHANGE NOTICE NO.2 DECEMBER 2012 ──────────────── CHANGE NOTICE NO.3 OCTOBER 2013 DOE STANDARD NUCLEAR MATERIALS CONTROL AND ACCOUNTABILITY U.S. Department of Energy AREA SANS Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ATTACHMENT 1 Change Notice No. 3 DOE -STD-1194-2011 October 2013 Nuclear Materials Control and Accountability

  5. Nuclear Materials Control and Accountability

    Energy Savers [EERE]

    NOT MEASUREMENT SENSITIVE DOE-STD-1194-2011 JUNE 2011 ──────────────── CHANGE NOTICE NO.2 DECEMBER 2012 DOE STANDARD NUCLEAR MATERIALS CONTROL AND ACCOUNTABILITY U.S. Department of Energy AREA SANS Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ATTACHMENT 1 Change Notice No. 2 DOE -STD-1194-2011 December 2012 Nuclear Materials Control and Accountability Table of Changes Page/Section Change Page 19/Section

  6. Los Alamos identifies internal material control issue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    material control issue Los Alamos identifies internal material control issue The error relates to internal inventory and accounting that documents movement of sensitive...

  7. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27

    This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6, Admin Chg 1, 8-26-05. Admin Chg 2, dated 11-19-12, cancels DOE M 474.2 Admin Chg 1. Admin Chg 3, dated 5-15-15, cancels Admin Chg 2.

  8. Manual for Protection and Control of Safeguards and Security Interests

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-04-10

    This Manual provides detailed requirements to supplement DOE O 5632.1C, which establishes policy for the protection and control of special nuclear material, Vital Equipment, classified matter, Departmental property and facilities, and unclassifed irradiated reactor fuel in transit. Chapter XI canceled by DOE O 470.1. Chapter III, paragraphs 1, 2, and 4 through 9 canceled by DOE O 471.2. DOE M 473.1-1 cancels the rest of this directive.

  9. Classified Matter Protection and Control Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-01-06

    Provides detailed requirements for the protection and control of classified matter which supplement DOE O 471.2A. Extended until 5-11-06 by DOE N 251.63, dated 5-11-05. This manual has been canceled by DOE M 471.2-1C except Chapter III paragraphs 1 and 2, and Chapter IV. Chapter IV was canceled by DOE O 471.4, Incidents of Security Concern, dated 3/17/2004. Cancels DOE M 471.2-1A.

  10. Classified Matter Protection and Control Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-14

    This Manual supplements DOE O 471.2A, Information Security Program, dated 3-27-97, and provides detailed requirements for the protection and control of classified matter. Cancels DOE M 471.2-1B, dated 1-6-99, except Chapter III paragraphs 1 and 2 and Chapter IV. DOE M 471.2-1B Chapter IV was canceled by DOE O 471.4, Incidents of Security Concern, dated 3-17-04. Change 1, dated 7-14-2004, modifies requirements in Chapter II, paragraph 8c. Extended until 5-11-06 by DOE N 251.63, dated 5-11-05.

  11. 10 CFR Part 1017 - Identification and Protection of Unclassified Controlled

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Information | Department of Energy Part 1017 - Identification and Protection of Unclassified Controlled Nuclear Information 10 CFR Part 1017 - Identification and Protection of Unclassified Controlled Nuclear Information 10 CFR Part 1017, Identification and Protection of Unclassified Controlled Nuclear Information - Establishes the Government-wide policies and procedures for implementing the requirements of section 148 of the Atomic Energy Act of 1954 concerning identifying and

  12. Operating Experience Level 3, Losing Control: Material Handling...

    Energy Savers [EERE]

    Losing Control: Material Handling Dangers Operating Experience Level 3, Losing Control: Material Handling Dangers October 23, 2014 OE-3 2014-05: Losing Control: Material Handling...

  13. CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Are Under Way, but Challenges Remain | Department of Energy CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure Control Systems Are Under Way, but Challenges Remain CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure Control Systems Are Under Way, but Challenges Remain GAO is making recommendations to the Department of Homeland Security (DHS) to develop a strategy for coordinating control systems security efforts and to enhance information sharing with relevant

  14. Protection of Use Control Vulnerabilities and Designs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-14

    The order establishes the policy, process and procedures for control of sensitive use control information in nuclear weapon data (NWD) categories Sigma 14 and Sigma 15 to ensure that dissemination of the information must be restricted to individuals with valid need to know. Supersedes DOE M 452.4-1A

  15. Protection of Use Control Vulnerabilities and Designs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-01

    This Manual establishes a general process and provides direction for controlling access and dissemination of Sigma 14 and 15 Weapon Data at the Department of Energy (DOE). It supplements DOE O 452.4, SECURITY AND CONTROL OF NUCLEAR EXPLOSIVES AND NUCLEAR WEAPONS, which establishes DOE requirements and responsibilities to prevent the deliberate unauthorized use of U.S. nuclear explosives and U.S. nuclear weapons. Canceled by DOE M 452.4-1A. Does not cancel other directives.

  16. Identification and Protection of Unclassified Controlled Nuclear Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-03-01

    The Order provides requirements and responsibilities for identifying and protecting the unauthorized dissemination of Unclassified Controlled Nuclear Information. Supersedes DOE O 471.1A and DOE M 471.1-1.

  17. INSPECTION REPORT Alleged Nuclear Material Control

    Broader source: Energy.gov (indexed) [DOE]

    Alleged Nuclear Material Control and Accountability Weaknesses at the Department of Energy's Portsmouth Project INS-O-15-04 May 2015 U.S. Department of Energy Office of Inspector...

  18. Protection of Use Control Vulnerabilities and Design

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-03-11

    This manual establishes a general process and provides direction for controlling access to and disseminating Sigma 14 and 15 nuclear weapon data (NWD) at the Department of Energy (DOE). It supplements DOE O 452.4A, Security and Control of Nuclear Explosives and Nuclear Weapons, dated 12-17-01, which establishes DOE requirements and responsibilities to prevent the deliberate unauthorized use of U.S. nuclear explosives and nuclear weapons. Cancels DOE M 452.4-1. Canceled by DOE O 452.7, 5-14-2010

  19. Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-08-11

    DOE O 474.1 prescribes Department of Energy (DOE) requirements for nuclear material control and accountability (MC&A) for DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities which are exempt from licensing by the Nuclear Regulatory Commission (NRC). Cancels DOE 5633.3B

  20. Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-02-12

    The order prescribes DOE minimum requirements and procedures for control and accountability of nuclear materials at DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities which are exempt from licensing by the Nuclear Regulatory Commission {NRC). Cancels DOE O 5633.3. Canceled by DOE O 5633.3B.

  1. Downhole material injector for lost circulation control

    DOE Patents [OSTI]

    Glowka, D.A.

    1991-01-01

    This invention is comprised of an apparatus and method for simultaneously and separately emplacing two streams of different materials through a drillstring in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drillstring at the desired downhole location and harden only after mixing for control of a lost circulation zone.

  2. Downhole material injector for lost circulation control

    DOE Patents [OSTI]

    Glowka, D.A.

    1994-09-06

    Apparatus and method are disclosed for simultaneously and separately emplacing two streams of different materials through a drill string in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drill string at the desired downhole location and harden only after mixing for control of a lost circulation zone. 6 figs.

  3. Downhole material injector for lost circulation control

    DOE Patents [OSTI]

    Glowka, David A.

    1994-01-01

    Apparatus and method for simultaneously and separately emplacing two streams of different materials through a drillstring in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drillstring at the desired downhole location and harden only after mixing for control of a lost circulation zone.

  4. Identification and Protection of Unclassified Controlled Nuclear Information Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-30

    This Manual provides detailed requirements to supplement DOE O 471.1A, Identification and Protection of Unclassified Controlled Nuclear Information. Change 1, dated 10/23/01, was added to the Manual to clarify when and how encryption requirements for Unclassified Controlled Nuclear Information may be waived. Canceled by DOE O 471.1B.

  5. The nuclear materials control technology briefing book

    SciTech Connect (OSTI)

    Hartwell, J.K.; Fernandez, S.J.

    1992-03-01

    As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

  6. Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-09-07

    To prescribe the Department of Energy (DOE) minimum requirements and procedures for control and accountability of nuclear materials at DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities which are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE O 5633.2A and DOE O 5633.3A. Canceled by DOE O 474.1

  7. Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    To prescribe Department of Energy (DOE) requirements, including those for the National Nuclear Security Administration (NNSA), for nuclear material control and accountability (MC&A) for DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission (NRC). DOE N 251.60, dated 11-19-04, extends this directive until 11-19-05. Cancels DOE O 474.1.

  8. Office of Weapons Material Protection | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... Material Management and Minimization Nonproliferation Proliferation Detection Material ...

  9. Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project

    SciTech Connect (OSTI)

    Reynolds, T. D.; Easterling, S. D.

    2010-10-01

    This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

  10. Sacrificial Protective Coating Materials That Can Be Regenerated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Among the various manufacturing processes employed across all U.S. industries, the process of ... A protective coating (yellow) on the polymer membrane will provide chemical and ...

  11. Material Control & Accountability for Department Of Energy (DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Material Control & Accountability for Department Of Energy (DOE) Tritium Facilities Material Control & Accountability for Department Of Energy (DOE) Tritium Facilities Presentation ...

  12. Identification and Protection of Unclassified Controlled Nuclear Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-30

    The Order provides requirements and responsibilities for identifying and protecting the unauthorized dissemination of Unclassified Controlled Nuclear Information. Extended until 7-7-06 by DOE N 251.64, dated 7-7-05. Cancels DOE O 471.1. Canceled by DOE O 471.1B dated 3-1-10.

  13. Independent Specific Administrative Controls Review, Office of River Protection- December 2010

    Broader source: Energy.gov [DOE]

    Specific Administrative Controls Review with the Office of Environmental Management at the Office of River Protection

  14. Advanced Control and Protection system Design Methods for Modular HTGRs

    SciTech Connect (OSTI)

    Ball, Sydney J; Wilson Jr, Thomas L; Wood, Richard Thomas

    2012-06-01

    The project supported the Nuclear Regulatory Commission (NRC) in identifying and evaluating the regulatory implications concerning the control and protection systems proposed for use in the Department of Energy's (DOE) Next-Generation Nuclear Plant (NGNP). The NGNP, using modular high-temperature gas-cooled reactor (HTGR) technology, is to provide commercial industries with electricity and high-temperature process heat for industrial processes such as hydrogen production. Process heat temperatures range from 700 to 950 C, and for the upper range of these operation temperatures, the modular HTGR is sometimes referred to as the Very High Temperature Reactor or VHTR. Initial NGNP designs are for operation in the lower temperature range. The defining safety characteristic of the modular HTGR is that its primary defense against serious accidents is to be achieved through its inherent properties of the fuel and core. Because of its strong negative temperature coefficient of reactivity and the capability of the fuel to withstand high temperatures, fast-acting active safety systems or prompt operator actions should not be required to prevent significant fuel failure and fission product release. The plant is designed such that its inherent features should provide adequate protection despite operational errors or equipment failure. Figure 1 shows an example modular HTGR layout (prismatic core version), where its inlet coolant enters the reactor vessel at the bottom, traversing up the sides to the top plenum, down-flow through an annular core, and exiting from the lower plenum (hot duct). This research provided NRC staff with (a) insights and knowledge about the control and protection systems for the NGNP and VHTR, (b) information on the technologies/approaches under consideration for use in the reactor and process heat applications, (c) guidelines for the design of highly integrated control rooms, (d) consideration for modeling of control and protection system designs for VHTR, and (e) input for developing the bases for possible new regulatory guidance to assist in the review of an NGNP license application. This NRC project also evaluated reactor and process heat application plant simulation models employed in the protection and control system designs for various plant operational modes and accidents, including providing information about the models themselves, and the appropriateness of the application of the models for control and protection system studies. A companion project for the NRC focused on the potential for new instrumentation that would be unique to modular HTGRs, as compared to light-water reactors (LWRs), due to both the higher temperature ranges and the inherent safety features.

  15. Protection and Control of Safeguards and Security Interests

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-07-15

    To establish policy, responsibilities, and authorities for the protection and control of safeguards and security interests. Cancels DOE O 5632.1B, DOE O 5632.2A, DOE O 5632.5, DOE O 5632.6, DOE O 5632.9A, DOE O 5632.11, DOE O 5635.1A, DOE O 5635.2B, DOE O 5635.3. Canceled by DOE O 473.1

  16. Material Control & Accountability for Department Of Energy (DOE) Tritium

    Energy Savers [EERE]

    Material Balance Report Material Balance Report Form supports nuclear material control and accountability. PDF icon Material Balance Report More Documents & Publications DOE/NRC F 742 PHYSICAL INVENTORY LISTING DOE/NRC F 740M Facilities | Department of Energy

    Material Control & Accountability for Department Of Energy (DOE) Tritium Facilities Material Control & Accountability for Department Of Energy (DOE) Tritium Facilities Presentation from the 35th Tritium Focus Group

  17. Nuclear Material Control and Accountability System Effectiveness Tool (MSET)

    SciTech Connect (OSTI)

    Powell, Danny H; Elwood Jr, Robert H; Roche, Charles T; Campbell, Billy J; Hammond, Glenn A; Meppen, Bruce W; Brown, Richard F

    2011-01-01

    A nuclear material control and accountability (MC&A) system effectiveness tool (MSET) has been developed in the United States for use in evaluating material protection, control, and accountability (MPC&A) systems in nuclear facilities. The project was commissioned by the National Nuclear Security Administration's Office of International Material Protection and Cooperation. MSET was developed by personnel with experience spanning more than six decades in both the U.S. and international nuclear programs and with experience in probabilistic risk assessment (PRA) in the nuclear power industry. MSET offers significant potential benefits for improving nuclear safeguards and security in any nation with a nuclear program. MSET provides a design basis for developing an MC&A system at a nuclear facility that functions to protect against insider theft or diversion of nuclear materials. MSET analyzes the system and identifies several risk importance factors that show where sustainability is essential for optimal performance and where performance degradation has the greatest impact on total system risk. MSET contains five major components: (1) A functional model that shows how to design, build, implement, and operate a robust nuclear MC&A system (2) A fault tree of the operating MC&A system that adapts PRA methodology to analyze system effectiveness and give a relative risk of failure assessment of the system (3) A questionnaire used to document the facility's current MPC&A system (provides data to evaluate the quality of the system and the level of performance of each basic task performed throughout the material balance area [MBA]) (4) A formal process of applying expert judgment to convert the facility questionnaire data into numeric values representing the performance level of each basic event for use in the fault tree risk assessment calculations (5) PRA software that performs the fault tree risk assessment calculations and produces risk importance factor reports on the facility's MC&A (software widely used in the aerospace, chemical, and nuclear power industries) MSET was peer reviewed in 2007 and validated in 2008 by benchmark testing at the Idaho National Laboratory in the United States. The MSET documents were translated into Russian and provided to Rosatom in July of 2008, and MSET is currently being evaluated for potential application in Russian Nuclear Facilities.

  18. Manual for Control And Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-08-11

    DOE M 474.1-1 prescribes Department of Energy (DOE) requirements and procedures for nuclear material control and accountability (MC&A). This Manual supplements DOE O 474.1, Control and Accountability of Nuclear Materials.

  19. Sacrificial Protective Coating Materials That Can Be Regenerated In-Situ to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enable High-Performance Membranes | Department of Energy Sacrificial Protective Coating Materials That Can Be Regenerated In-Situ to Enable High-Performance Membranes Sacrificial Protective Coating Materials That Can Be Regenerated In-Situ to Enable High-Performance Membranes Teledyne Scientific and Imaging - Thousand Oaks, CA A highly durable membrane coating will be developed, optimized, and tested for the pulp and paper industry's black liquor-to-fuel concentration process By eliminating

  20. Materials Control and Accountability Program Manager | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Materials Control and Accountability Program Manager Amy Whitworth Amy Whitworth July 2009 Fellow by the Institute of Nuclear Materials Management NNSA Materials Control and Accountability Program Manager Amy Whitworth was awarded the prestigious title of Fellow by the Institute of Nuclear Materials Management during its recent annual meeting in Tucson, Ariz. Fellows must be nominated by their peers, recommended by the INMM Fellows Committee and approved by the INMM

  1. Control and Accountability of Nuclear Materials: Responsibilities and Authorities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-09-23

    The order prescribes the Department of Energy (DOE) policies, responsibilities, and authorities for control and accountability of nuclear materials. Cancels DOE O 5633.2.

  2. State Systems of Accounting for and Control of Nuclear Material...

    National Nuclear Security Administration (NNSA)

    State Systems of Accounting for and Control of Nuclear Material | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  3. Audit of Internal Controls Over Special Nuclear Materials, IG...

    Energy Savers [EERE]

    0388 "Audit of Internal Controls Over Special Nuclear Materials" This report is not available electronically. However, copies may be obtained by calling the Office of Inspector...

  4. February 16 PSERC Webinar: Protection and Control of Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Center (PSERC) is offering a free public webinar presenting the challenges of the protection of converter interfaced generation and associate circuits and components. ...

  5. Coherent behavior in Heavy Fermion materials; Understanding and controlling

    Office of Scientific and Technical Information (OSTI)

    competing interactions in complex oxide heterostructures (Technical Report) | SciTech Connect Coherent behavior in Heavy Fermion materials; Understanding and controlling competing interactions in complex oxide heterostructures Citation Details In-Document Search Title: Coherent behavior in Heavy Fermion materials; Understanding and controlling competing interactions in complex oxide heterostructures Authors: Yarotski, Dmitry Anatolievitch [1] ; Sandberg, Richard L. [1] + Show Author

  6. Material-controlled dynamic vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1996-10-08

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  7. Material-controlled dynamic vacuum insulation

    DOE Patents [OSTI]

    Benson, David K.; Potter, Thomas F.

    1996-10-08

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  8. ADMINISTRATIVE CHANGE TO DOE O 474.2, NUCLEAR MATERIAL CONTROL AND ACCOUNTABILITY

    National Nuclear Security Administration (NNSA)

    DOE O 474.2 Chg 1 8-3-11 ADMINISTRATIVE CHANGE TO DOE O 474.2, NUCLEAR MATERIAL CONTROL AND ACCOUNTABILITY LOCATION OF CHANGES: Page Paragraph Changed To 11 6.b. DOE O 470.4A, Safeguards and Security Program, dated 5-25-07 DOE O 470.4B, Safeguards and Security Program, dated 7-21-11 11 6.c. DOE M 470.4-1 Chg 2, Safeguards and Security Program Planning and Management, dated 10-20-11 deleted 11 6.d. DOE M 470.4-2A, Physical Protection, dated 6-29-11 DOE O 473.3, Protection Program Operations,

  9. Process of making porous ceramic materials with controlled porosity

    DOE Patents [OSTI]

    Anderson, Marc A.; Ku, Qunyin

    1993-01-01

    A method of making metal oxide ceramic material is disclosed by which the porosity of the resulting material can be selectively controlled by manipulating the sol used to make the material. The method can be used to make a variety of metal oxide ceramic bodies, including membranes, but also pellets, plugs or other bodies. It has also been found that viscous sol materials can readily be shaped by extrusion into shapes typical of catalytic or adsorbent bodies used in industry, to facilitate the application of such materials for catalytic and adsorbent applications.

  10. Manual for Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-06-13

    The manual prescribes requirements and assign responsibilities for nuclear material control and accountability. Cancels DOE M 474.1-1A. Canceled by DOE M 470.4-6.

  11. Control and Accountability of Nuclear Materials Responsibilities and Authorities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1988-01-29

    The order prescribe the Department of Energy (DOE) policies, responsibilities, and authorities for control and accountability of nuclear materials. Cancels DOE O 5630.1. Canceled by DOE O 5633.2A.

  12. Manual for Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-22

    The manual prescribes requirements and procedures for nuclear material control and accountability (MC&A). Cancels DOE M 474.1-1. Canceled by DOE M 474.1-1B.

  13. Protective coatings for materials in coal gasification plants. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The bibliography contains citations concerning the development and use of protective coatings in coal gasification plants. The citations emphasize materials selection and problems associated with erosion and wear on internal surfaces. Refractory materials for corrosion and erosion protection, high temperature corrosion, and sulfidization corrosion are also included. (Contains 250 citations and includes a subject term index and title list.)

  14. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOE Patents [OSTI]

    Richter, Tomas

    1998-01-01

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell.

  15. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOE Patents [OSTI]

    Richter, T.

    1998-06-16

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell. 5 figs.

  16. COLLOQUIUM: Controlling the Production and Performance of Materials at the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mesoscale: The Matter-Radiation Interactions in Extremes (MaRIE) Capability | Princeton Plasma Physics Lab January 27, 2016, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Controlling the Production and Performance of Materials at the Mesoscale: The Matter-Radiation Interactions in Extremes (MaRIE) Capability Dr. Cris Barnes Los Alamos National Laboratory The Matter-Radiation Interactions in Extremes (MaRIE) project will provide capability that will address the control of performance

  17. Nuclear Material Control and Accountability (NMC&A) for the Savannah...

    Office of Environmental Management (EM)

    Material Control and Accountability (NMC&A) for the Savannah River Site Tritium Facilities Nuclear Material Control and Accountability (NMC&A) for the Savannah River Site Tritium...

  18. Monolayers of MoS{sub 2} as an oxidation protective nanocoating material

    SciTech Connect (OSTI)

    Sen, H. Sener; Sahin, H.; Peeters, F. M.; Durgun, E.

    2014-08-28

    First-principle calculations are employed to investigate the interaction of oxygen with ideal and defective MoS{sub 2} monolayers. Our calculations show that while oxygen atoms are strongly bound on top of sulfur atoms, the oxygen molecule only weakly interacts with the surface. The penetration of oxygen atoms and molecules through a defect-free MoS{sub 2} monolayer is prevented by a very high diffusion barrier indicating that MoS{sub 2} can serve as a protective layer for oxidation. The analysis is extended to WS{sub 2} and similar coating characteristics are obtained. Our calculations indicate that ideal and continuous MoS{sub 2} and WS{sub 2} monolayers can improve the oxidation and corrosion-resistance of the covered surface and can be considered as an efficient nanocoating material.

  19. DOE G 441.1-XX Control and Release of Property with Residual Radioactive Material

    Office of Environmental Management (EM)

    April 4, 2002 FROM: STEPHEN M. SMITH, DEPUTY DIRECTOR OFFICE OF CORPORATE SOLUTIONS, ME-80 TO: DIRECTIVES POINTS OF CONTACT SUBJECT: DRAFT DOE G 441.1-XX, CONTROL AND RELEASE OF PROPERTY WITH RESIDUAL RADIOACTIVE MATERIAL for use with DOE 5400.5, Radiation Protection of the Public and the Environment This is to notify you that the subject draft Guide has been posted in the "Draft" section of the Explorit system for simultaneous use and coordination. The Guide provides DOE's guidance

  20. Insider Threat - Material Control and Accountability Mitigation (Presentation)

    SciTech Connect (OSTI)

    Powell, Danny H; Elwood Jr, Robert H

    2011-01-01

    Why is the insider a concern? There are many documented cases of nuclear material available for sale - there are more insider diversions than outsider attacks and more than 18 documented cases of theft or loss of plutonium or highly enriched uranium. Insider attributes are: have access, has authority, possesses knowledge, works with absence of timeline, can test system, and may act alone or support a team. Material control and accountability (MC&A) is an essential part of an integrated safeguards system. Objectives of MC&A are: (1) Ongoing confirmation of the presence of special nuclear material (SNM) in assigned locations; (2) Prompt investigation of anomalies that may indicate a loss of SNM; (3) Timely and localized detection of loss, diversion, or theft of a goal quantity; (4) Rapid assessment and response to detection alarms; and (5) Timely generation of information to aid in the recovery of SNM in the event of an actual loss, diversion, or theft from the purview of the MC&A system. Control and accountability of material, equipment, and data are essential to minimizing insider threats.

  1. 1982 UCC-ND/GAT environmental protection seminar: proceedings

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    This environmental protection seminar was divided into seven sessions: (1) general environmental protection, (2) air and water pollution control, (3) spill control and countermeasures, (4) toxic materials control, (5) hazardous materials control, (6) environmental protection projects, and (7) cost benefit analysis. Separate abstracts have been prepared for the 41 papers presented therein. (ACR)

  2. A new neutron absorber material for criticality control

    SciTech Connect (OSTI)

    Wells, Alan H.

    2007-07-01

    A new neutron absorber material based on a nickel metal matrix composite has been developed for applications such as the Transport, Aging, and Disposal (TAD) canister for the Yucca Mountain Project. This new material offers superior corrosion resistance to withstand the more demanding geochemical environments found in a 300,000 year to a million year repository. The lifetime of the TAD canister is currently limited to 10,000 years, reflecting the focus of current regulations embodied in 10 CFR 63. The use of DOE-owned nickel stocks from decommissioned enrichment facilities could reduce the cost compared to stainless steel/boron alloy. The metal matrix composite allows the inclusion of more than one neutron absorber compound, so that the exact composition may be adjusted as needed. The new neutron absorber material may also be used for supplementary criticality control of stored or transported PWR spent fuel by forming it into cylindrical pellets that can be inserted into a surrogate control rod. (authors)

  3. Hexapartite safeguards project team 3: material accounting and control questionnaire

    SciTech Connect (OSTI)

    Swindle, D.W. Jr.

    1981-06-16

    Information provided in this report reflects the current design and operating procedures for the GCEP. However, since the installation is currently under construction, facility design and operating procedures discussed in this report are subject to change. Where applicable, the responses are based on material control and accounting practices of the Portsmouth Gaseous Diffusion Plant's (GDP) operating contractor (Goodyear Atomic Corporation). These practices meet US Department of Energy (DOE) standards and are assumed to be the reference practices for the GCEP. This report covers data collection and record keeping actions of the operator.

  4. Ongoing NRC Efforts on Regulatory Approaches for Control of Solid Materials

    SciTech Connect (OSTI)

    Huffert, A. M.

    2002-02-28

    Specific requirements for the release of solid materials with small or no amounts of radioactivity are not currently contained in 10 CFR Part 20, which constitutes the U.S. Nuclear Regulatory Commission's (NRC's) regulations that set standards for protection of the public against radiation. NRC has approached these matters on a case-by-case basis, in the absence of a national standard for the release of solid materials. Currently, NRC is examining its approach for the control of solid material, including the development of a technical information base for decision-making purposes. As part of this process, NRC has sponsored a National Academy of Sciences (NAS) study to review technical bases, policies, and precedents for controlling the release of solid materials, and to recommend whether NRC should continue its existing approach, establish a national standard by rulemaking, or consider other alternatives. This paper explains the status of NRC's technical basis and the next steps in NRC's decision-making process, as they relate to the NAS study.

  5. Controlled Chemistry Helium High Temperature Materials Test Loop

    SciTech Connect (OSTI)

    Richard N. WRight

    2005-08-01

    A system to test aging and environmental effects in flowing helium with impurity content representative of the Next Generation Nuclear Plant (NGNP) has been designed and assembled. The system will be used to expose microstructure analysis coupons and mechanical test specimens for up to 5,000 hours in helium containing potentially oxidizing or carburizing impurities controlled to parts per million levels. Impurity levels in the flowing helium are controlled through a feedback mechanism based on gas chromatography measurements of the gas chemistry at the inlet and exit from a high temperature retort containing the test materials. Initial testing will focus on determining the nature and extent of combined aging and environmental effects on microstructure and elevated temperature mechanical properties of alloys proposed for structural applications in the NGNP, including Inconel 617 and Haynes 230.

  6. Office of Material Consolidation & Civilian Sites | National...

    National Nuclear Security Administration (NNSA)

    Manages cooperative efforts with the Russian Federation to enhance the security of proliferation-attractive nuclear material by supporting material protection, control, and ...

  7. material consolidation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    of Material Consolidation and Civilian Sites (MCCS) is responsible for three key nuclear nonproliferation initiatives.Material Protection, Control, and Accounting (MPC&A) Upgrades:...

  8. Workshop materials from the 2nd international training course on physical protection of nuclear facilities and materials, Module 13

    SciTech Connect (OSTI)

    Martin, F. P.

    1980-04-01

    This course is intended for representatives of countries where nuclear power is being developed and whose responsibilities include the preparation of regulation and the design and evaluation of physical protection systems. This is the second of two volumes; the first volume is SAND-79-1090. (DLC)

  9. The efficacy of post porosity plasma protection against vacuum-ultraviolet damage in porous low-k materials

    SciTech Connect (OSTI)

    Lionti, K.; Volksen, W.; Darnon, M.; Magbitang, T.; Dubois, G.

    2015-03-21

    As of today, plasma damage remains as one of the main challenges to the reliable integration of porous low-k materials into microelectronic devices at the most aggressive node. One promising strategy to limit damage of porous low-k materials during plasma processing is an approach we refer to as post porosity plasma protection (P4). In this approach, the pores of the low-k material are filled with a sacrificial agent prior to any plasma treatment, greatly minimizing the total damage by limiting the physical interactions between plasma species and the low-k material. Interestingly, the contribution of the individual plasma species to the total plasma damage is not fully understood. In this study, we investigated the specific damaging effect of vacuum-ultraviolet (v-UV) photons on a highly porous, k = 2.0 low-k material and we assessed the P4 protective effect against them. It was found that the impact of the v-UV radiation varied depending upon the v-UV emission lines of the plasma. More importantly, we successfully demonstrated that the P4 process provides excellent protection against v-UV damage.

  10. Device for controlling the pouring of molten materials

    DOE Patents [OSTI]

    Moore, A.F.; Duncan, A.L.

    1994-02-15

    A device is described for controlling the pouring of a molten material from a crucible or other container. The device includes an annular retainer ring for mounting in the drain opening in the bottom of a conventional crucible, the retainer ring defining a opening there through. The device also includes a plug member having an annular forward end portion for force-fit reception in the opening of the retainer ring to selectively seal the opening and for being selectively forced through the opening. The plug member has a rear end portion for being positioned within the crucible, the rear end portion including stop means for prohibiting the rear end portion from passing through the opening in the retainer ring when the forward end portion is selectively forced through the opening. The plug member defines at least one, and preferably a plurality of flutes, each extending from a point rearward the annular forward end portion of the plug member, and forward the stop means, to a point rearward of the stop means. The flutes permit fluid communication between the interior and exterior of the crucible when the forward end portion of the plug member is forced through the opening in the retaining ring such that the molten material is allowed to flow from the crucible. 5 figures.

  11. Device for controlling the pouring of molten materials

    DOE Patents [OSTI]

    Moore, Alan F. (Knoxville, TN); Duncan, Alfred L. (Clinton, TN)

    1994-01-01

    A device for controlling the pouring of a molten material from a crucible or other container. The device (10) includes an annular retainer ring (12) for mounting in the drain opening in the bottom of a conventional crucible (16), the retainer ring defining a opening (14) therethrough. The device (10) also includes a plug member (22) having an annular forward end portion (24) for force-fit reception in the opening (14) of the retainer ring (12) to selectively seal the opening (14) and for being selectively forced through the opening (14). The plug member (22) has a rear end portion (26) for being positioned within the crucible (16), the rear end portion (26) including stop means for prohibiting the rear end portion from passing through the opening (14) in the retainer ring (12) when the forward end portion (24) is selectively forced through the opening. The plug member (22) defines at least one, and preferably a plurality of flutes (32), each extending from a point rearward the annular forward end portion (24) of the plug member (22), and forward the stop means, to a point rearward of the stop means. The flutes (32) permit fluid communication between the interior and exterior of the crucible (16) when the forward end portion (24) of the plug member (22) is forced through the opening (14) in the retaining ring (12) such that the molten material is allowed to flow from the crucible (16).

  12. Summary report on transportation of nuclear fuel materials in Japan : transportation infrastructure, threats identified in open literature, and physical protection regulations.

    SciTech Connect (OSTI)

    Cochran, John Russell; Ouchi, Yuichiro; Furaus, James Phillip; Marincel, Michelle K.

    2008-03-01

    This report summarizes the results of three detailed studies of the physical protection systems for the protection of nuclear materials transport in Japan, with an emphasis on the transportation of mixed oxide fuel materials1. The Japanese infrastructure for transporting nuclear fuel materials is addressed in the first section. The second section of this report presents a summary of baseline data from the open literature on the threats of sabotage and theft during the transport of nuclear fuel materials in Japan. The third section summarizes a review of current International Atomic Energy Agency, Japanese and United States guidelines and regulations concerning the physical protection for the transportation of nuclear fuel materials.

  13. Material Control and Accounting Design Considerations for High-Temperature Gas Reactors

    SciTech Connect (OSTI)

    Trond Bjornard; John Hockert

    2011-08-01

    The subject of this report is domestic safeguards and security by design (2SBD) for high-temperature gas reactors, focusing on material control and accountability (MC&A). The motivation for the report is to provide 2SBD support to the Next Generation Nuclear Plant (NGNP) project, which was launched by Congress in 2005. This introductory section will provide some background on the NGNP project and an overview of the 2SBD concept. The remaining chapters focus specifically on design aspects of the candidate high-temperature gas reactors (HTGRs) relevant to MC&A, Nuclear Regulatory Commission (NRC) requirements, and proposed MC&A approaches for the two major HTGR reactor types: pebble bed and prismatic. Of the prismatic type, two candidates are under consideration: (1) GA's GT-MHR (Gas Turbine-Modular Helium Reactor), and (2) the Modular High-Temperature Reactor (M-HTR), a derivative of Areva's Antares reactor. The future of the pebble-bed modular reactor (PBMR) for NGNP is uncertain, as the PBMR consortium partners (Westinghouse, PBMR [Pty] and The Shaw Group) were unable to agree on the path forward for NGNP during 2010. However, during the technology assessment of the conceptual design phase (Phase 1) of the NGNP project, AREVA provided design information and technology assessment of their pebble bed fueled plant design called the HTR-Module concept. AREVA does not intend to pursue this design for NGNP, preferring instead a modular reactor based on the prismatic Antares concept. Since MC&A relevant design information is available for both pebble concepts, the pebble-bed HTGRs considered in this report are: (1) Westinghouse PBMR; and (2) AREVA HTR-Module. The DOE Office of Nuclear Energy (DOE-NE) sponsors the Fuel Cycle Research and Development program (FCR&D), which contains an element specifically focused on the domestic (or state) aspects of SBD. This Material Protection, Control and Accountancy Technology (MPACT) program supports the present work summarized in this report, namely the development of guidance to support the consideration of MC&A in the design of both pebble-bed and prismatic-fueled HTGRs. The objective is to identify and incorporate design features into the facility design that will cost effectively aid in making MC&A more effective and efficient, with minimum impact on operations. The theft of nuclear material is addressed through both MC&A and physical protection, while the threat of sabotage is addressed principally through physical protection.

  14. 20th International Training Course (ITC-20) on the physical protection of nuclear facilities and materials evaluation report.

    SciTech Connect (OSTI)

    Ramirez, Amanda Ann

    2008-09-01

    The goal of this evaluation report is to provide the information necessary to improve the effectiveness of the ITC provided to the International Atomic Energy Agency Member States. This report examines ITC-20 training content, delivery methods, scheduling, and logistics. Ultimately, this report evaluates whether the course provides the knowledge and skills necessary to meet the participants needs in the protection of nuclear materials and facilities.

  15. GAO-04-354, CRITICAL INFRASTRUCTURE PROTECTION: Challenges and Efforts to Secure Control Systems

    Energy Savers [EERE]

    Report to Congressional Requesters United States General Accounting Office GAO March 2004 CRITICAL INFRASTRUCTURE PROTECTION Challenges and Efforts to Secure Control Systems GAO-04-354 www.gao.gov/cgi-bin/getrpt?GAO-04-354. To view the full product, including the scope and methodology, click on the link above. For more information, contact Robert F. Dacey at (202) 512-3317 or daceyr@gao.gov. Highlights of GAO-04-354, a report to congressional requesters March 2004 CRITICAL INFRASTRUCTURE

  16. GAO-07-1036, CRITICAL INFRASTRUCTURE PROTECTION: Multiple Efforts to Secure Control Systems Are Under Way, but Challenges Remain

    Energy Savers [EERE]

    Congressional Requesters CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure Control Systems Are Under Way, but Challenges Remain September 2007 GAO-07-1036 What GAO Found United States Government Accountability Office Why GAO Did This Study Highlights Accountability Integrity Reliability September 2007 CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure Control Systems Are Under Way, but Challenges Remain Highlights of GAO-07-1036, a report to congressional requesters

  17. Barcode Automation (BCAuto) for Los Alamos Material Control and Accountability System

    SciTech Connect (OSTI)

    Martinez, Benny J; Chang, Hee Jin

    2012-06-04

    The plutonium facility is actively processing material on a daily basis at LANL (4000-5000 transactions/month): (1) Physical operations, material transformations, material mixing, splitting, etc.; and (2) Electronic manipulations resulting primarily from updated NDA measurements. Improvements in efficiency and effectiveness are essential due to impacts of recent Voluntary Separation Program and the need to meet mission requirements with fewer personnel. New storage requirements (DOE M 441.1-1, Nuclear Material Packaging Manual) to protect worker safety require tracking of material and its corresponding container over long periods of time. Material at Risk tracking is essential to protect public safety and to ensure continuous operations to meet national security mission needs.

  18. Operating Experience Level 3, Losing Control: Material Handling Dangers

    Broader source: Energy.gov [DOE]

    This Operating Experience Level 3 (OE-3) document provides information about the dangers inherent in material handling and the role hazard analysis, work planning, and walkdowns can play in preventing injuries during heavy equipment moves. More than 200 material handling events reported to the Occurrence Reporting and Processing System (ORPS) from January 1, 2010, through August 31, 2014.

  19. WSRC-TR-97-0100 Controlled Low Strength Materials (CLSM), Reported...

    Office of Scientific and Technical Information (OSTI)

    ... CHAPTER 5 - MIX PROPORTIONING CONTROLLED LOW STRENGTH MATERIALS 229R-9 Heavyweight and Mass Concrete" (ACI 211)" has . Other additives such as zeolite been used; however, much work ...

  20. protective forces | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    protective forces Design Basis Threat NNSA has taken aggressive action to improve the security of its nuclear weapons material (often referred to as special nuclear material, or SNM) and nuclear weapons in its custody. One major challenge has been, and remains, ensuring that SNM is well protected, while at the same time,... Information Security Information security deals with requirements for the protection and control of information and matter required to be classified or controlled by

  1. DEVELOPMENT OF BURN TEST SPECIFICATIONS FOR FIRE PROTECTION MATERIALS IN RAM PACKAGES

    SciTech Connect (OSTI)

    Gupta, N.

    2010-03-03

    The regulations in 10 CFR 71 require that the radioactive material (RAM) packages must be able to withstand specific fire conditions given in 10 CFR 71.73 during Hypothetical Accident Conditions (HAC). This requirement is normally satisfied by extensive testing of full scale test specimens under required test conditions. Since fire test planning and execution is expensive and only provides a single snapshot into a package performance, every effort is made to minimize testing and supplement tests with results from computational thermal models. However, the accuracy of such thermal models depends heavily on the thermal properties of the fire insulating materials that are rarely available at the regulatory fire temperatures. To the best of authors knowledge no test standards exist that could be used to test the insulating materials and derive their thermal properties for the RAM package design. This paper presents a review of the existing industry fire testing standards and proposes testing methods that could serve as a standardized specification for testing fire insulating materials for use in RAM packages.

  2. CADMIUM-RARE EARTH BORATE GLASS AS REACTOR CONTROL MATERIAL

    DOE Patents [OSTI]

    Ploetz, G.L.; Ray, W.E.

    1958-11-01

    A reactor control rod fabricated from a cadmiumrare earth-borate glass is presented. The rare earth component of this glass is selected from among those rare earths having large neutron capture cross sections, such as samarium, gadolinium or europium. Partlcles of this glass are then dispersed in a metal matrix by standard powder metallurgy techniques.

  3. Activated barrier for protection of special nuclear materials in vital areas

    SciTech Connect (OSTI)

    Timm, R.E.; Miranda, J.E.; Reigle, D.L.; Valente, A.D.

    1984-07-15

    The Argonne National Laboratory and Sandia National Laboratory have recently installed an activated barrier, the Access Denial System (ADS) for the upgrade of safeguards of special nuclear materials. The technology of this system was developed in the late 70's by Sandia National Laboratory-Albuquerque. The installation was the first for the Department of Energy. Subsequently, two additional installations have been completed. The Access Denial System, combined with physical restraints, provide the system delay. The principal advantages of the activated barrier are: (1) it provides an order of magnitude improvement in delay over that of a fixed barrier, (2) it can be added to existing vital areas with a minimum of renovations, (3) existing operations are minimally impacted, and (4) health and safety risks are virtually nonexistent. Hardening of the vital areas using the ADS was accomplished in a cost-effective manner. 3 references, 1 figure, 1 table.

  4. Understanding and controlling low-temperature aging of nanocrystalline materials.

    SciTech Connect (OSTI)

    Battaile, Corbett Chandler; Boyce, Brad Lee; Brons, Justin G.; Foiles, Stephen Martin; Hattar, Khalid Mikhiel; Holm, Elizabeth Ann; Padilla, Henry A.,; Sharon, John Anthony; Thompson, Gregory B.

    2013-10-01

    Nanocrystalline copper lms were created by both repetitive high-energy pulsed power, to produce material without internal nanotwins; and pulsed laser deposition, to produce nan- otwins. Samples of these lms were indented at ambient (298K) and cryogenic temperatures by immersion in liquid nitrogen (77K) and helium (4K). The indented samples were sectioned through the indented regions and imaged in a scanning electron microscope. Extensive grain growth was observed in the lms that contained nanotwins and were indented cryogenically. The lms that either lacked twins, or were indented under ambient conditions, were found to exhibit no substantial grain growth by visual inspection. Precession transmission elec- tron microscopy was used to con rm these ndings quantitatively, and show that 3 and 7 boundaries proliferate during grain growth, implying that these interface types play a key role in governing the extensive grain growth observed here. Molecular dynamics sim- ulations of the motion of individual grain boundaries demonstrate that speci c classes of boundaries - notably 3 and 7 - exhibit anti- or a-thermal migration, meaning that their mobilities either increase or do not change signi cantly with decreasing temperature. An in-situ cryogenic indentation capability was developed and implemented in a transmission electron microscope. Preliminary results do not show extensive cryogenic grain growth in indented copper lms. This discrepancy could arise from the signi cant di erences in con g- uration and loading of the specimen between the two approaches, and further research and development of this capability is needed.

  5. Controlling terahertz waves with meta-materials and photonic bandgap structures

    SciTech Connect (OSTI)

    Shchegolkov, Dmitry; Azad, Abul; O' Hara, John F; Moody, Nathan A; Simakov, Evgenya I

    2010-12-07

    We will describe research conducted at Los Alamos National Laboratory towards developing components for controlling terahertz waves. We employ meta-materials and, particularly, meta-films, as very compact absorbers for controlling quasioptical beams. We believe that dielectric photonic bandgap structures could replace ordinary metal waveguide devices at THz, since metal structures become extremely lossy in this frequency range.

  6. Corrosion protection

    DOE Patents [OSTI]

    Brown, Donald W.; Wagh, Arun S.

    2003-05-27

    There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.

  7. An arc control and protection system for the JET lower hybrid antenna based on an imaging system

    SciTech Connect (OSTI)

    Figueiredo, J.

    2014-11-15

    Arcs are the potentially most dangerous events related to Lower Hybrid (LH) antenna operation. If left uncontrolled they can produce damage and cause plasma disruption by impurity influx. To address this issue an arc real time control and protection imaging system for the Joint European Torus (JET) LH antenna has been implemented. The LH system is one of the additional heating systems at JET. It comprises 24 microwave generators (klystrons, operating at 3.7 GHz) providing up to 5 MW of heating and current drive to the JET plasma. This is done through an antenna composed of an array of waveguides facing the plasma. The protection system presented here is based primarily on an imaging arc detection and real time control system. It has adapted the ITER like wall hotspot protection system using an identical CCD camera and real time image processing unit. A filter has been installed to avoid saturation and spurious system triggers caused by ionization light. The antenna is divided in 24 Regions Of Interest (ROIs) each one corresponding to one klystron. If an arc precursor is detected in a ROI, power is reduced locally with subsequent potential damage and plasma disruption avoided. The power is subsequently reinstated if, during a defined interval of time, arcing is confirmed not to be present by image analysis. This system was successfully commissioned during the restart phase and beginning of the 2013 scientific campaign. Since its installation and commissioning, arcs and related phenomena have been prevented. In this contribution we briefly describe the camera, image processing, and real time control systems. Most importantly, we demonstrate that an LH antenna arc protection system based on CCD camera imaging systems works. Examples of both controlled and uncontrolled LH arc events and their consequences are shown.

  8. Federal Automated Information System of Nuclear Material Control and Accounting: Uniform System of Reporting Documents

    SciTech Connect (OSTI)

    Pitel, M V; Kasumova, L; Babcock, R A; Heinberg, C

    2003-06-12

    One of the fundamental regulations of the Russian State System for Nuclear Material Accounting and Control (SSAC), ''Basic Nuclear Material Control and Accounting Rules,'' directed that a uniform report system be developed to support the operation of the SSAC. According to the ''Regulation on State Nuclear Material Control and Accounting,'' adopted by the Russian Federation Government, Minatom of Russia is response for the development and adoption of report forms, as well as the reporting procedure and schedule. The report forms are being developed in tandem with the creation of an automated national nuclear material control and accounting system, the Federal Information System (FIS). The forms are in different stages of development and implementation. The first report forms (the Summarized Inventory Listing (SIL), Summarized Inventory Change Report (SICR) and federal and agency registers of nuclear material) have already been created and implemented. The second set of reports (nuclear material movement reports and the special anomaly report) is currently in development. A third set of reports (reports on import/export operations, and foreign nuclear material temporarily located in the Russian Federation) is still in the conceptual stage. To facilitate the development of a unified document system, the FIS must establish a uniform philosophy for the reporting system and determine the requirements for each reporting level, adhering to the following principles: completeness--the unified report system provides the entire range of information that the FIS requires to perform SSAC tasks; requisite level of detail; hierarchical structure--each report is based on the information provided in a lower-level report and is the source of information for reports at the next highest level; consistency checking--reports can be checked against other reports. A similar philosophy should eliminate redundancy in the different reports, support a uniform approach to the contents of previously developed and new reports within the FIS, as well as identify the main priorities for the direction of the FIS.

  9. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Access to Hopper Phase II (Cray XE6) If you are a current NERSC user, you are enabled to use Hopper Phase II. Use your SSH client to connect to Hopper II:...

  10. Control Systems Security Center Comparison Study of Industrial Control System Standards against the Control Systems Protection Framework Cyber-Security Requirements

    SciTech Connect (OSTI)

    Robert P. Evans

    2005-09-01

    Cyber security standards, guidelines, and best practices for control systems are critical requirements that have been delineated and formally recognized by industry and government entities. Cyber security standards provide a common language within the industrial control system community, both national and international, to facilitate understanding of security awareness issues but, ultimately, they are intended to strengthen cyber security for control systems. This study and the preliminary findings outlined in this report are an initial attempt by the Control Systems Security Center (CSSC) Standard Awareness Team to better understand how existing and emerging industry standards, guidelines, and best practices address cyber security for industrial control systems. The Standard Awareness Team comprised subject matter experts in control systems and cyber security technologies and standards from several Department of Energy (DOE) National Laboratories, including Argonne National Laboratory, Idaho National Laboratory, Pacific Northwest National Laboratory, and Sandia National Laboratories. This study was conducted in two parts: a standard identification effort and a comparison analysis effort. During the standard identification effort, the Standard Awareness Team conducted a comprehensive open-source survey of existing control systems security standards, regulations, and guidelines in several of the critical infrastructure (CI) sectors, including the telecommunication, water, chemical, energy (electric power, petroleum and oil, natural gas), and transportation--rail sectors and sub-sectors. During the comparison analysis effort, the team compared the requirements contained in selected, identified, industry standards with the cyber security requirements in ''Cyber Security Protection Framework'', Version 0.9 (hereafter referred to as the ''Framework''). For each of the seven sector/sub-sectors listed above, one standard was selected from the list of standards identified in the identification effort. The requirements in these seven standards were then compared against the requirements given in the Framework. This comparison identified gaps (requirements not covered) in both the individual industry standards and in the Framework. In addition to the sector-specific standards reviewed, the team compared the requirements in the cross-sector Instrumentation, Systems, and Automation Society (ISA) Technical Reports (TR) 99 -1 and -2 to the Framework requirements. The Framework defines a set of security classes separated into families as functional requirements for control system security. Each standard reviewed was compared to this template of requirements to determine if the standard requirements closely or partially matched these Framework requirements. An analysis of each class of requirements pertaining to each standard reviewed can be found in the comparison results section of this report. Refer to Appendix A, ''Synopsis of Comparison Results'', for a complete graphical representation of the study's findings at a glance. Some of the requirements listed in the Framework are covered by many of the standards, while other requirements are addressed by only a few of the standards. In some cases, the scope of the requirements listed in the standard for a particular industry greatly exceeds the requirements given in the Framework. These additional families of requirements, identified by the various standards bodies, could potentially be added to the Framework. These findings are, in part, due to the maturity both of the security standards themselves and of the different industries current focus on security. In addition, there are differences in how communication and control is used in different industries and the consequences of disruptions via security breaches to each particular industry that could affect how security requirements are prioritized. The differences in the requirements listed in the Framework and in the various industry standards are due, in part, to differences in the level and purpose of the standards. While the requirements in the Framework are fairly specific, many of the industry standard requirements are more general in nature. Additionally, the Framework requirements, derived from the ''Common Criteria for Information Technology Security Evaluation'', are component-based, while most of the industry standards are system-based. The findings of this study will allow the CSSC Framework Team and the standards organizations responsible for the reviewed standards to quickly grasp the relationship between their requirements and the Framework, as well as the relationship between their standard and other industry sectors. This will help identify areas for future work in developing improved security standards.

  11. Protecting Accelerator Control Systems in the Face of Sophisticated Cyber Attacks

    SciTech Connect (OSTI)

    Hartman, Steven M

    2012-01-01

    Cyber security for industrial control systems has received significant attention in the past two years. The news coverage of the Stuxnet attack, believed to be targeted at the control system for a uranium enrichment plant, brought the issue to the attention of news media and policy makers. This has led to increased scrutiny of control systems for critical infrastructure such as power generation and distribution, and industrial systems such as chemical plants and petroleum refineries. The past two years have also seen targeted network attacks aimed at corporate and government entities including US Department of Energy National Laboratories. Both of these developments have potential repercussions for the control systems of particle accelerators. The need to balance risks from potential attacks with the operational needs of an accelerator present a unique challenge for the system architecture and access model.

  12. Developing standard performance testing procedures for material control and accounting components at a site

    SciTech Connect (OSTI)

    Scherer, Carolynn P; Bushlya, Anatoly V; Efimenko, Vladimir F; Ilyanstev, Anatoly; Regoushevsky, Victor I

    2010-01-01

    The condition of a nuclear material control and accountability system (MC&A) and its individual components, as with any system combining technical elements and documentation, may be characterized through an aggregate of values for the various parameters that determine the system's ability to perform. The MC&A system's status may be functioning effectively, marginally or not functioning based on a summary of the values of the individual parameters. This work included a review of the following subsystems, MC&A and Detecting Material Losses, and their respective elements for the material control and accountability system: (a) Elements of the MC&A Subsystem - Information subsystem (Accountancy/Inventory), Measurement subsystem, Nuclear Material Access subsystem, including tamper-indicating device (TID) program, and Automated Information-gathering subsystem; (b) Elements for Detecting Nuclear Material Loses Subsystem - Inventory Differences, Shipper/receiver Differences, Confirmatory Measurements and differences with accounting data, and TID or Seal Violations. In order to detect the absence or loss of nuclear material there must be appropriate interactions among the elements and their respective subsystems from the list above. Additionally this work includes a review of regulatory requirements for the MC&A system component characteristics and criteria that support the evaluation of the performance of the listed components. The listed components had performance testing algorithms and procedures developed that took into consideration the regulatory criteria. The developed MC&A performance-testing procedures were the basis for a Guide for MC&A Performance Testing at the material balance areas (MBAs) of State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering (SSC RF-IPPE).

  13. Extension of DOE O 471.1, Identification and Protection of Unclassified Controlled Nuclear Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-09-02

    Extends DOE O 471.1 until 9-25-00. The planned revisions for the Order include abolishing the preliminary review determination by a Reviewing Official and the "May contain UCNI" stamp. Additionally, a "Controlled by Originator" caveat is being added to the UCNI marking when programmatic requirements place special dissemination or reproduction limitations on the matter containing UCNI.

  14. Production of an English/Russian glossary of terminology for nuclear materials control and accounting

    SciTech Connect (OSTI)

    Schachowskoj, S.; Smith, H.A. Jr.

    1995-05-01

    The program plans for Former Soviet Union National Nuclear Materials Control and Accounting (MC and A) Systems Enhancements call for the development of an English/Russian Glossary of MC and A terminology. This glossary was envisioned as an outgrowth of the many interactions, training sessions, and other talking and writing exercises that would transpire in the course of carrying out these programs. This report summarizes the status of the production of this glossary, the most recent copy of which is attached to this report. The glossary contains over 950 terms and acronyms associated with nuclear material control and accounting for safeguards and nonproliferation. This document is organized as follows: English/Russian glossary of terms and acronyms; Russian/English glossary of terms and acronyms; English/Russian glossary of acronyms; and Russian/English glossary of acronyms.

  15. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    This Manual establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Chg 1, dated 3/7/06. Cancels: DOE M 473.1-1 and DOE M 471.2-1B

  16. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    Establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Cancels: DOE M 473.1-1 and DOE M 471.2-1B.

  17. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-07-23

    This Manual establishes requirements for the physical protection of interests under the U.S. Department of Energys (DOEs) purview ranging from facilities, buildings, Government property, and employees to national security interests such as classified information, special nuclear material (SNM), and nuclear weapons. Cancels Section A of DOE M 470.4-2 Chg 1. Canceled by DOE O 473.3.

  18. A novel technique to control high temperature materials degradation in fossil plants

    SciTech Connect (OSTI)

    Gonzalez-Rodriguez, J.G.; Porcayo-Calderon, J.; Martinez-Villafane, A.

    1995-11-01

    High temperature corrosion of superheater (SH) and, specially, reheater (RH) is strongly dependent on metal temperature. In this work, a way to continuously monitor the metal temperature of SH or RH, elements developed by the Instituto de Investigaciones Electricas (IIE) is described and the effects of operating parameters on metal temperature are evaluated. Also, the effects the steam-generator design and metal temperature on the corrosion rates have been investigated. In some steam generators, corrosion rates were reduced from 0.7 to 0.2 mm/y by changing the tube material and reducing the metal temperature. Also, the effect of metal temperature on the residual life of a 347H tube in a 158MW steam generator is evaluated. It is concluded that metal temperature is the most important parameter in controlling the high-temperature materials behavior in boiler environments.

  19. Radiation Protection | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Protection Radiation Protection Regulations: The Federal Regulation governing the use of radioactive materials at Ames Laboratory is 10 CFR 835. To implement this...

  20. Culmination of the Four-Year Effort: Office of International Material

    National Nuclear Security Administration (NNSA)

    Protection and Control | National Nuclear Security Administration Culmination of the Four-Year Effort: Office of International Material Protection and Control Thursday, December 12, 2013 - 4:35pm This week, NNSA is highlighting its nonproliferation programs that have supported efforts to secure vulnerable nuclear material around the world. In support of President Obama's Four Year Effort, the Office of International Material Protection and Control (IMPC) works with partner countries to

  1. Advanced international training course on state systems of accounting for and control of nuclear materials

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    This report incorporates all lectures and presentations at the Advanced International Training Course on State Systems of Accounting for and Control of Nuclear Material held April 27 through May 12, 1981 at Santa Fe and Los Alamos, New Mexico, and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards. Major emphasis for the 1981 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory, the Battelle Pacific Northwest Laboratory, and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at both the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, Richland, Washington.

  2. Taking Steps to Protect Against the Insider Threat

    SciTech Connect (OSTI)

    Pope, Noah Gale; Williams, Martha; Lewis, Joel; Pham, Thomas

    2015-10-16

    Research reactors are required (in accordance with the Safeguards Agreement between the State and the IAEA) to maintain a system of nuclear material accounting and control for reporting quantities of nuclear material received, shipped, and held on inventory. Enhancements to the existing accounting and control system can be made at little additional cost to the facility, and these enhancements can make nuclear material accounting and control useful for nuclear security. In particular, nuclear material accounting and control measures can be useful in protecting against an insider who is intent on unauthorized removal or misuse of nuclear material or misuse of equipment. An enhanced nuclear material accounting and control system that responds to nuclear security is described in NSS-25G, Use of Nuclear Material Accounting and Control for Nuclear Security Purposes at Facilities, which is scheduled for distribution by the IAEA Department of Nuclear Security later this year. Accounting and control measures that respond to the insider threat are also described in NSS-33, Establishing a System for Control of Nuclear Material for Nuclear Security Purposes at a Facility During Storage, Use and Movement, and in NSS-41, Preventive and Protective Measures against Insider Threats (originally issued as NSS-08), which are available in draft form. This paper describes enhancements to existing material control and accounting systems that are specific to research reactors, and shows how they are important to nuclear security and protecting against an insider.

  3. Follow-up Inspection on Material Control and Accountability at Los Alamos National Laboratory, INS-O-13-04

    Energy Savers [EERE]

    Follow-up Inspection on Material Control and Accountability at Los Alamos National Laboratory INS-O-13-04 July 2013 Department of Energy Washington, DC 20585 July 18, 2013 MEMORANDUM FOR THE ACTING MANAGER, LOS ALAMOS FIELD OFFICE, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: Sandra D. Bruce Assistant Inspector General for Inspections Office of Inspector General SUBJECT: INFORMATION: Inspection Report on "Follow-up Inspection on Material Control and Accountability at Los Alamos National

  4. Memo for Sam Callahan- Recommendation for change to DOE O 474.2, Nuclear Material Control and Accountability

    Broader source: Energy.gov [DOE]

    The Tritium Focus Group (TFG) recommends that DOE Order 474.2, Nuclear Material Control and Accountability, dated June 27, 2011, be revised to eliminate deuterium from Table B "Other Accountable Nuclear Materials" of Attachment-2 during the five year revision to the Order.

  5. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, Robert E.; Ramsey, David R.; Stampfer, Joseph F.; Macdonald, John M.

    1998-01-01

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material.

  6. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

    1998-03-31

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

  7. Evaluation and Control of Radiation Dose to the Embryo/Fetus Guide for Use with Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-04-29

    This Guide provides an acceptable methodology for establishing and operating a program to control fetal exposure to ionizing radiation and evaluate the resultant dose that will comply with U.S. Department of Energy (DOE) requirements specified in Title 10 of the Code of Federal Regulations (CFR), Part 835, Occupational Radiation Protection (DOE 1998), hereinafter referred to as 10 CFR 835.

  8. Process For Controlling Flow Rate Of Viscous Materials Including Use Of Nozzle With Changeable Openings

    DOE Patents [OSTI]

    Ellingson, William A. (Naperville, IL); Forster, George A. (Westmont, IL)

    1999-11-02

    Apparatus and a method for controlling the flow rate of viscous materials through a nozzle includes an apertured main body and an apertured end cap coupled together and having an elongated, linear flow channel extending the length thereof. An end of the main body is disposed within the end cap and includes a plurality of elongated slots concentrically disposed about and aligned with the flow channel. A generally flat cam plate having a center aperture is disposed between the main body and end cap and is rotatable about the flow channel. A plurality of flow control vane assemblies are concentrically disposed about the flow channel and are coupled to the cam plate. Each vane assembly includes a vane element disposed adjacent the end of the flow channel. Rotation of the cam plate in a first direction causes a corresponding rotation of each of the vane elements for positioning the individual vane elements over the aperture in the end cap blocking flow through the flow channel, while rotation in an opposite direction removes the vane elements from the aperture and positions them about the flow channel in a nested configuration in the full open position, with a continuous range of vane element positions available between the full open and closed positions.

  9. Model Fire Protection Program

    Broader source: Energy.gov [DOE]

    To facilitate conformance with its fire safety directives and the implementation of a comprehensive fire protection program, DOE has developed a number of "model" program documents. These include a comprehensive model fire protection program, model fire hazards analyses and assessments, fire protection system inspection and testing procedures, and related material.

  10. DOE O 474.2 Nuclear Material Control and Accountability; DOE O 473.3 Protection Program Operations

    Broader source: Energy.gov [DOE]

    On June 27, 2011, the Department issued a Contractor Requirements Document (CRD) to the above listed Directives.

  11. Audit Report on Management Controls over the Use of Service Contracts at the Office of River Protection

    SciTech Connect (OSTI)

    None

    2009-04-01

    The Department of Energy's (Department) Office of River Protection (ORP) is responsible for the storage, treatment, and disposal of over 53 million gallons of highly radioactive waste from over 40 years of plutonium production at the Hanford Site. Because of the diversity, complexity, and large scope of its mission, coupled with its small staff, ORP told us that it has found it necessary to engage in service contracts to obtain consulting services, technical expertise, and support staff. Federal policy generally permits contractors to perform a wide range of support service activities, including, in most situations, the drafting of Government documents subject to the review and approval of Federal employees. Federal policy issued by the Office of Management and Budget, however, prohibits contractors from drafting agency responses to Congressional inquiries and reports issued by the Office of Inspector General and Government Accountability Office (GAO) because they are so closely related to the public interest and provide the appearance of private influence. To provide a majority of its needed services, ORP issued a Blanket Purchase Agreement to Project Assistance Corporation (PAC) in 2003. Through the Blanket Purchase Agreement, ORP acquired services in the areas of project management, risk assessment, program assessment, quality assurance, safety, cost and schedule estimating, budgeting and finance, and engineering. PAC has, in turn, subcontracted with various other firms to obtain some of the services needed by ORP. From 2005 to 2008, the total annual cost for the contract with PAC had grown from $4.7 million to $9.2 million. Because of the extent of the services provided and growing costs of the contract, we conducted this review to determine whether ORP appropriately administered its contract with the Project Assistance Corporation. Our review disclosed that, in some instances, ORP had not appropriately administered all work performed under the PAC contract. Specifically, ORP allowed PAC employees to perform work that was inherently governmental and created situations where a potential conflict of interest occurred. Specifically: (1) ORP assigned PAC employees responsibility for providing information and responses to Congressional inquiries and reports issued by the GAO and the Department of Energy's Office of Inspector General (OIG); and (2) PAC employees were also allowed to perform functions that created potential conflicts of interest. ORP permitted PAC employees, for example, to develop statements of work and approve funding of work to be performed under PAC's own contract. We concluded that these problems occurred, at least in part, because ORP had not established controls necessary to effectively administer the PAC contract. Federal procurement regulations recommended that agencies provide additional management controls over contractors whose work has the potential to influence the action of government officials. ORP, however, had not implemented the controls specifically recommended in Federal policy guidance for administering contracts, including: (1) Performing conflict of interest reviews; and (2) Separating contractor and Department employees either physically or organizationally. By not effectively administering its contract with PAC, ORP increased the risk that decisions based on work performed by the contractor may not have been made in the best interests of the Department. For example, ORP increased the risk that approved work would be unnecessary or too costly. As we also recently noted in our report on 'Management Challenges at the Department of Energy' (DOE/IG-0808, December 2008), contract administration issues such as those discussed in this report remain a significant vulnerability. Continued efforts to improve this area are vitally important since the risk that contractors receive payments for unallowable costs could also increase as the Department expands its contracting activities under the American Recovery and Reinvestment Act. To its credit, however, ORP has recognized that there are weakn

  12. New 'knobs' can dial in control of materials > EMC2 News > The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Typical complex electronic materials are "transition metal oxides," where the metal is usually a lighter element such as copper, manganese, titanium or nickel. In this study, Shen ...

  13. Methods and apparatus for removal and control of material in laser drilling of a borehole

    SciTech Connect (OSTI)

    Rinzler, Charles C; Zediker, Mark S; Faircloth, Brian O; Moxley, Joel F

    2014-01-28

    The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.

  14. Nuclear Material Control and Accountability (NMC&A) for the Savannah River

    Office of Environmental Management (EM)

    Liability Nuclear Liability 1. Price-Anderson Act (PAA) GC-52 provides legal advice to DOE regarding issues arising under the PAA, which governs nuclear liability in the United States and establishes a system of financial protection for persons who may be liable for and persons who may be injured by a nuclear incident. GC-52 is also responsible for developing regulations implementing any amendments to the PAA. As necessary, GC-52 attorneys coordinate with other US and international agencies.

  15. Method for morphological control and encapsulation of materials for electronics and energy applications

    DOE Patents [OSTI]

    Ivanov, Ilia N.; Simpson, John T.

    2013-06-11

    An electronic device comprises a drawn glass tube having opposing ends, a semiconductive material disposed inside of the drawn glass tube, and a first electrode and a second electrode disposed at the opposing ends of the drawn glass tube. A method of making an electrical device comprises disposing a semiconductive material inside of a glass tube, and drawing the glass tube with the semiconductive material disposed therein to form a drawn glass tube. The method of making an electrical device also comprises disposing a first electrode and a second electrode on the opposing ends of the drawn glass tube to form an electric device.

  16. WSRC-TR-97-0100 Controlled Low Strength Materials (CLSM), Reported...

    Office of Scientific and Technical Information (OSTI)

    ... A constant supply of CLSM will help keep the material flowing and make it flow greater ... result in lower density CLSM when compared to mixtures with high aggregate contents. ...

  17. Control method and system for use when growing thin-films on semiconductor-based materials

    DOE Patents [OSTI]

    McKee, Rodney A.; Walker, Frederick J.

    2001-01-01

    A process and system for use during the growth of a thin film upon the surface of a substrate by exposing the substrate surface to vaporized material in a high vacuum (HV) facility involves the directing of an electron beam generally toward the surface of the substrate as the substrate is exposed to vaporized material so that electrons are diffracted from the substrate surface by the beam and the monitoring of the pattern of electrons diffracted from the substrate surface as vaporized material settles upon the substrate surface. When the monitored pattern achieves a condition indicative of the desired condition of the thin film being grown upon the substrate, the exposure of the substrate to the vaporized materials is shut off or otherwise adjusted. To facilitate the adjustment of the crystallographic orientation of the film relative to the electron beam, the system includes a mechanism for altering the orientation of the surface of the substrate relative to the electron beam.

  18. Strain-based control of crystal anisotropy for perovskite oxides on semiconductor-based material

    DOE Patents [OSTI]

    McKee, Rodney Allen; Walker, Frederick Joseph

    2000-01-01

    A crystalline structure and a semiconductor device includes a substrate of a semiconductor-based material and a thin film of an anisotropic crystalline material epitaxially arranged upon the surface of the substrate so that the thin film couples to the underlying substrate and so that the geometries of substantially all of the unit cells of the thin film are arranged in a predisposed orientation relative to the substrate surface. The predisposition of the geometries of the unit cells of the thin film is responsible for a predisposed orientation of a directional-dependent quality, such as the dipole moment, of the unit cells. The predisposed orientation of the unit cell geometries are influenced by either a stressed or strained condition of the lattice at the interface between the thin film material and the substrate surface.

  19. Radiation dose assessment methodology and preliminary dose estimates to support US Department of Energy radiation control criteria for regulated treatment and disposal of hazardous wastes and materials

    SciTech Connect (OSTI)

    Aaberg, R.L.; Baker, D.A.; Rhoads, K.; Jarvis, M.F.; Kennedy, W.E. Jr.

    1995-07-01

    This report provides unit dose to concentration levels that may be used to develop control criteria for radionuclide activity in hazardous waste; if implemented, these criteria would be developed to provide an adequate level of public and worker health protection, for wastes regulated under U.S, Environmental Protection Agency (EPA) requirements (as derived from the Resource Conservation and Recovery Act [RCRA] and/or the Toxic Substances Control Act [TSCA]). Thus, DOE and the US Nuclear Regulatory Commission can fulfill their obligation to protect the public from radiation by ensuring that such wastes are appropriately managed, while simultaneously reducing the current level of dual regulation. In terms of health protection, dual regulation of very small quantities of radionuclides provides no benefit.

  20. CONTROL ROD

    DOE Patents [OSTI]

    Zinn, W.H.; Ross, H.V.

    1958-11-18

    A control rod is described for a nuclear reactor. In certaln reactor designs it becomes desirable to use a control rod having great width but relatively llttle thickness. This patent is addressed to such a need. The neutron absorbing material is inserted in a triangular tube, leaving volds between the circular insert and the corners of the triangular tube. The material is positioned within the tube by the use of dummy spacers to achleve the desired absorption pattern, then the ends of the tubes are sealed with suitable plugs. The tubes may be welded or soldered together to form two flat surfaces of any desired width, and covered with sheetmetal to protect the tubes from damage. This design provides a control member that will not distort under the action of outside forces or be ruptured by gases generated within the jacketed control member.

  1. Controlling the Electrostatic Discharge Ignition Sensitivity of Composite Energetic Materials Using Carbon Nanotube Additives

    SciTech Connect (OSTI)

    Kade H. Poper; Eric S. Collins; Michelle L. Pantoya; Michael Daniels

    2014-10-01

    Powder energetic materials are highly sensitive to electrostatic discharge (ESD) ignition. This study shows that small concentrations of carbon nanotubes (CNT) added to the highly reactive mixture of aluminum and copper oxide (Al + CuO) significantly reduces ESD ignition sensitivity. CNT act as a conduit for electric energy, bypassing energy buildup and desensitizing the mixture to ESD ignition. The lowest CNT concentration needed to desensitize ignition is 3.8 vol.% corresponding to percolation corresponding to an electrical conductivity of 0.04 S/cm. Conversely, added CNT increased Al + CuO thermal ignition sensitivity to a hot wire igniter.

  2. Protection Program Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2016-03-23

    The Order establishes requirements for the management and operation of the DOE Federal Protective Forces (FPF), Contractor Protective Forces (CPF), and the Physical Security of property and personnel under the cognizance of DOE. Supersedes DOE O 473.3. NOTE: Safeguards and Security Alarm Management and Control Systems, of DOE O 473.3, is retained as Attachment 3, Annex 1.

  3. Protection of UCNI | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UCNI Protection of UCNI What are the rules for protecting an UCNI document or material when a person is using it? Any person with routine access to a document or material ...

  4. Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same

    DOE Patents [OSTI]

    Boardman, Richard D.; Carrington, Robert A.

    2010-05-04

    Pollution control substances may be formed from the combustion of oil shale, which may produce a kerogen-based pyrolysis gas and shale sorbent, each of which may be used to reduce, absorb, or adsorb pollutants in pollution producing combustion processes, pyrolysis processes, or other reaction processes. Pyrolysis gases produced during the combustion or gasification of oil shale may also be used as a combustion gas or may be processed or otherwise refined to produce synthetic gases and fuels.

  5. International training course on implementation of state systems of accounting for and control of nuclear materials: proceedings

    SciTech Connect (OSTI)

    Not Available

    1986-06-01

    This report incorporates all lectures and presentations at the International Training Course on Implementation of State Systems of Accounting for and Control of Nuclear Materials held June 3 through June 21, 1985, at Santa Fe and Los Alamos, New Mexico, and San Clemente, California. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the Course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards requirements. Major emphasis for the 1985 course was placed on safeguards methods used at item-control facilities, particularly nuclear power generating stations and test reactors. An introduction to safeguards methods used at bulk handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants, was also included. The course was conducted by the University of California's Los Alamos National Laboratory and the Southern California Edison Company. Tours and demonstrations were arranged at the Los Alamos National Laboratory, Los Alamos, New Mexico, and the San Onofre Nuclear Generating Station, San Clemente, California.

  6. Radiological Control Manual

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  7. protective force

    National Nuclear Security Administration (NNSA)

    ntex%20-%20protective%20force%20-%20edited.jpg" alt"successfully completed a recent assessment by the U.S. Department " >

    Members of Pantex's Protective Force on...

  8. Protections: Sampling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protections: Sampling Protections: Sampling Protection #3: Sampling for known and unexpected contaminants August 1, 2013 Monitoring stormwater in Los Alamos Canyon Monitoring stormwater in Los Alamos Canyon The Environmental Sampling Board, a key piece of the Strategy, ensures that LANL collects relevant and appropriate data to answer questions about the protection of human and environmental health, and to satisfy regulatory requirements. LANL must demonstrate the data are technically justified

  9. Materials Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Videos Materials

  10. Promoting economic incentives for environmental protection in the Surface Mining Control and Reclamation Act of 1977: an analysis of the design and implementation of reclamation performance bonds

    SciTech Connect (OSTI)

    Webber, B.S.; Webber, D.J.

    1985-04-01

    This article examines the bonding system designed by the Surface Mining Control and Reclamation Act of 1977 (SMCRA) and some alternatives developed by several states in their regulatory programs. As well, it evaluates the systems for their potential to provide economic incentives for coal operators to engage in environmentally sound mining techniques throughout the duration of the mining activities. The first section of this article briefly reviews the SMCRA. The second section outlines the specific reclamation bonding provisions of the act. The third section analyzes economic incentives and their application to coal mining, and the fourth section more particularly evaluates the reclamation bonding provisions of the act as market based incentives. Finally, the article assesses the design of reclamation bonds and suggests modifications intended to provide greater incentives for coal producers to protect the environment. 132 references.

  11. International training course on implementation of state systems of accounting for and control of nuclear materials: proceedings

    SciTech Connect (OSTI)

    Not Available

    1984-06-01

    This report incorporates all lectures and presentations at the International Training Course on Implementation of State Systems of Accounting for and Control of Nuclear Materials held October 17 through November 4, 1983, at Santa Fe and Los Alamos, New Mexico and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a State system of nuclear materials accountability and control that satisfies both national and international safeguards requirements. Major emphasis for the 1983 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, the Battelle Pacific Northwest Laboratory, Westinghouse Fast Flux Test Facility Visitor Center, and Washington Public Power System nuclear reactor facilities in Richland, Washington. Individual presentations were indexed for inclusion in the Energy Data Base.

  12. Protective link for superconducting coil

    DOE Patents [OSTI]

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  13. Notices ENVIRONMENTAL PROTECTION AGENCY

    Energy Savers [EERE]

    076 Federal Register / Vol. 77, No. 250 / Monday, December 31, 2012 / Notices ENVIRONMENTAL PROTECTION AGENCY [ER-FRL-9006-8] Notice of Intent: Designation of an Expanded Ocean Dredged Material Disposal Site (ODMDS) off Charleston, South Carolina AGENCY: U.S. Environmental Protection Agency (EPA) Region 4. ACTION: Notice of Intent to prepare an Environmental Assessment (EA) for the designation of an expanded ODMDS off Charleston, South Carolina. Purpose: EPA has the authority to designate ODMDSs

  14. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials

    SciTech Connect (OSTI)

    Beale, Andrew M.; Gao, Feng; Lezcano-Gonzalez, Ines; Peden, Charles HF; Szanyi, Janos

    2015-10-05

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade a renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3 SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptional high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ~5 years that lead to the introduction of these catalysts into practical application. The review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetics studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that are still need to be addressed in automotive exhaust control catalysis. Funding A.M.B. and I.L.G. would like to thank EPSRC for funding. F.G., C.H.F.P. and J.Sz. gratefully acknowledge financial support from the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program.

  15. material recovery

    National Nuclear Security Administration (NNSA)

    dispose of dangerous nuclear and radiological material, and detect and control the proliferation of related WMD technology and expertise.

  16. Nonproliferation and arms control assessment of weapons-usable fissile material storage and excess plutonium disposition alternatives

    SciTech Connect (OSTI)

    1997-01-01

    This report has been prepared by the Department of Energy`s Office of Arms Control and Nonproliferation (DOE-NN) with support from the Office of Fissile Materials Disposition (DOE-MD). Its purpose is to analyze the nonproliferation and arms reduction implications of the alternatives for storage of plutonium and HEU, and disposition of excess plutonium, to aid policymakers and the public in making final decisions. While this assessment describes the benefits and risks associated with each option, it does not attempt to rank order the options or choose which ones are best. It does, however, identify steps which could maximize the benefits and mitigate any vulnerabilities of the various alternatives under consideration.

  17. Protecting Wildlife

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protecting Wildlife Protecting Wildlife We monitor and protect the wildlife and their habitats on Laboratory property. February 2, 2015 Mule deer on LANL property LANL has been home to mule deer since its creation in 1942 and has seasonally been home to elk since their reintroduction to New Mexico in the 1960s. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Protecting our wildlife Since the early 1940s, LANL's

  18. Protections: Sampling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection 3: Sampling for known and unexpected contaminants August 1, 2013 Monitoring stormwater in Los Alamos Canyon Monitoring stormwater in Los Alamos Canyon The Environmental ...

  19. Excess Foundry Sand Characterization and Experimental Investigation in Controlled Low-Strength Material and Hot-Mixing Asphalt

    SciTech Connect (OSTI)

    Tikalsky, Paul J.; Bahia, Hussain U.; Deng, An; Snyder, Thomas

    2004-10-15

    This report provides technical data regarding the reuse of excess foundry sand. The report addresses three topics: a statistically sound evaluation of the characterization of foundry sand, a laboratory investigation to qualify excess foundry sand as a major component in controlled low-strength material (CLSM), and the identification of the best methods for using foundry sand as a replacement for natural aggregates for construction purposes, specifically in asphalt paving materials. The survival analysis statistical technique was used to characterize foundry sand over a full spectrum of general chemical parameters, metallic elements, and organic compounds regarding bulk analysis and leachate characterization. Not limited to characterization and environmental impact, foundry sand was evaluated by factor analyses, which contributes to proper selection of factor and maximization of the reuse marketplace for foundry sand. Regarding the integration of foundry sand into CLSM, excavatable CLSM and structural CLSM containing different types of excess foundry sands were investigated through laboratory experiments. Foundry sand was approved to constitute a major component in CLSM. Regarding the integration of foundry sand into asphalt paving materials, the optimum asphalt content was determined for each mixture, as well as the bulk density, maximum density, asphalt absorption, and air voids at Nini, Ndes, and Nmax. It was found that foundry sands can be used as an aggregate in hot-mix asphalt production, but each sand should be evaluated individually. Foundry sands tend to lower the strength of mixtures and also may make them more susceptible to moisture damage. Finally, traditional anti-stripping additives may decrease the moisture sensitivity of a mixture containing foundry sand, but not to the level allowed by most highway agencies.

  20. Excess Foundry Sand Characterization and Experimental Investigation in Controlled Low-Strength Material and Hot-Mixing Asphalt

    SciTech Connect (OSTI)

    Pauul J. Tikalsky

    2004-10-31

    This report provides technical data regarding the reuse of excess foundry sand. The report addresses three topics: (1) a statistically sound evaluation of the characterization of foundry sand, (2) a laboratory investigation to qualify excess foundry sand as a major component in controlled low-strength material (CLSM), and (3) the identification of the best methods for using foundry sand as a replacement for natural aggregates for construction purposes, specifically in asphalt paving materials. The survival analysis statistical technique was used to characterize foundry sand over a full spectrum of general chemical parameters, metallic elements, and organic compounds regarding bulk analysis and leachate characterization. Not limited to characterization and environmental impact, foundry sand was evaluated by factor analyses, which contributes to proper selection of factor and maximization of the reuse marketplace for foundry sand. Regarding the integration of foundry sand into CLSM, excavatable CLSM and structural CLSM containing different types of excess foundry sands were investigated through laboratory experiments. Foundry sand was approved to constitute a major component in CLSM. Regarding the integration of foundry sand into asphalt paving materials, the optimum asphalt content was determined for each mixture, as well as the bulk density, maximum density, asphalt absorption, and air voids at N{sub ini}, N{sub des}, and N{sub max}. It was found that foundry sands can be used as an aggregate in hot-mix asphalt production, but each sand should be evaluated individually. Foundry sands tend to lower the strength of mixtures and also may make them more susceptible to moisture damage. Finally, traditional anti-stripping additives may decrease the moisture sensitivity of a mixture containing foundry sand, but not to the level allowed by most highway agencies.

  1. Fire Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-05

    This Standard was developed to provide acceptable methods and approaches for meeting DOE fire protection program and design requirements and to address special or unique fire protection issues at DOE facilities that are not comprehensively or adequately addressed in national consensus standards or other design criteria.

  2. Procurement and Materials Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Washington River Protection Solutions | Hanford.gov | Energy.gov Procurement and Materials Management Small Business Resources Small ... There are no upcoming events in the system. ...

  3. Fire Protection Training

    Broader source: Energy.gov [DOE]

    Fire Protection Training courses developed that provide needed information and a method to train fire departments and other emergency responders who may be called upon to respond to accidents involving radioactive materials along DOE transportation corridors and routes and to assist emergency responders located at or near a Department of Energy (DOE) site radiological transportation route.

  4. California Environmental Protection Agency Department of Toxic...

    Open Energy Info (EERE)

    Department of Toxic Substances Control Jump to: navigation, search Name: California Environmental Protection Agency Department of Toxic Substances Control Place: Sacramento,...

  5. CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multiple Efforts to Secure Control Systems Are Under Way, but Challenges Remain CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure Control Systems Are Under Way, but ...

  6. Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication, Environmental Protection Agency Number ID4890008952

    SciTech Connect (OSTI)

    Holzemer, Michael J.; Hart, Edward

    2015-04-01

    Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication for the Idaho National Laboratory Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Partial Permit, PER-116. This Permit Reapplication is required by the PER-116 Permit Conditions I.G. and I.H., and must be submitted to the Idaho Department of Environmental Quality in accordance with IDAPA 58.01.05.012 [40 CFR §§ 270.10 and 270.13 through 270.29].

  7. Protective Force

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    Establishes requirements for management and operation of the DOE Protective Force (PF), establishes requirements for firearms operations and defines the firearms courses of fire. Cancels: DOE M 473.2-1A DOE M 473.2-2

  8. Protective Force

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-03-07

    The manual establishes requirements for management and operation of the DOE Protective Force, establishes requirements for firearms operations and defines the firearms courses of fire. Chg 1 dated 3/7/06. DOE M 470.4-3A cancels DOE M 470.4-3, Chg 1, Protective Force, dated 3-7-06, Attachment 2, Contractor Requirement Document (CRD) only (except for Section C). Chg 1, dated 3-7-06, cancels DOE M 470.4-3

  9. Materials Physics | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics A photo of laser light rays going in various directions atop a corrugated metal substrate In materials physics, NREL focuses on realizing materials that transcend the present constraints of photovoltaic (PV) and solid-state lighting technologies. Through materials growth and characterization, coupled with theoretical modeling, we seek to understand and control fundamental electronic and optical processes in semiconductors. Capabilities Optimizing New Materials An illustration showing

  10. Metallic sheathing for protection of steel in seawater

    SciTech Connect (OSTI)

    Kirk, W.W.

    1987-09-01

    A review of 37 years of experience with metallic sheathing to protect the splash and tidal zones of structural steel in seawater is presented. Variations in the corrosivity of the environment from zone to zone on a vertical structure and the interdependence among them are discussed. Corrosion-resistant alloys for sheathing include Monel (NiCu) Alloy 400, copper-nickel alloys, and stainless steel. The advantages and disadvantages of these noble alloys are compared with those of other protective materials such as paint coatings, concrete, polymers, and steel itself. Adequate protection of hot risers is critical and quite easily provided through proper design and sheathing attachment. The use of 90:10 copper-nickel Alloy C70600 is gaining visibility with progressive technology to provide biofouling control as well as corrosion protection.

  11. Degradation Mechanisms and Development of Protective Coatings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon cspreviewmeeting042413gomez.pdf More Documents & Publications Degradation Mechanisms and Development of Protective Coatings for TES and HTF Containment Materials - F13 ...

  12. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    DOE Patents [OSTI]

    Pinson, P.A.

    1998-02-24

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated barrier material, preferably in the form of a flexible sheet, and one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention. 3 figs.

  13. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    DOE Patents [OSTI]

    Pinson, Paul A.

    1998-01-01

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated in barrier material, preferably in the form of a flexible sheet, one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention.

  14. Termination of Safeguards for Accountable Nuclear Materials at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Michael Holzemer; Alan Carvo

    2012-04-01

    Termination of safeguards ends requirements of Nuclear Material Control and Accountability (MC&A) and thereby removes the safeguards basis for applying physical protection requirements for theft and diversion of nuclear material, providing termination requirements are met as described. Department of Energy (DOE) M 470.4 6 (Nuclear Material Control and Accountability [8/26/05]) stipulates: 1. Section A, Chapter I (1)( q) (1): Safeguards can be terminated on nuclear materials provided the following conditions are met: (a) 'If the material is special nuclear material (SNM) or protected as SNM, it must be attractiveness level E and have a measured value.' (b) 'The material has been determined by DOE line management to be of no programmatic value to DOE.' (c) 'The material is transferred to the control of a waste management organization where the material is accounted for and protected in accordance with waste management regulations. The material must not be collocated with other accountable nuclear materials.' Requirements for safeguards termination depend on the safeguards attractiveness levels of the material. For attractiveness level E, approval has been granted from the DOE Idaho Operations Office (DOE ID) to Battelle Energy Alliance, LLC (BEA) Safeguards and Security (S&S). In some cases, it may be necessary to dispose of nuclear materials of attractiveness level D or higher. Termination of safeguards for such materials must be approved by the Departmental Element (this is the DOE Headquarters Office of Nuclear Energy) after consultation with the Office of Security.

  15. Nevada Test Site Radiation Protection Program - Revision 1

    SciTech Connect (OSTI)

    Radiological Control Managers' Council

    2008-06-01

    Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection,' establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration off-site projects. This NTS RPP promulgates the radiation protection standards, limits, and program requirements for occupational exposure to ionizing radiation resulting from NNSA/NSO activities at the NTS and other operational areas as stated in 10 CFR 835.1(a). NNSA/NSO activities (including design, construction, operation, and decommissioning) within the scope of this RPP may result in occupational exposures to radiation or radioactive material. Therefore, a system of control is implemented through specific references to the site-specific NV/YMP RCM. This system of control is intended to ensure that the following criteria are met: (1) occupational exposures are maintained as low as reasonably achievable (ALARA), (2) DOE's limiting values are not exceeded, (3) employees are aware of and are prepared to cope with emergency conditions, and (4) employees are not inadvertently exposed to radiation or radioactive material.

  16. Radiation Protection and Safety Training | Environmental Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection Curriculum Radiation Protection and Safety Training (3 hrs) Instructors: John Seaman and Neil Miller Course Description: The objective of this course is to provide students with an introduction to the fundamentals of ionizing radiation protection and safety. The course curriculum combines radiation safety and protection topics derived from the International Atomic Energy Agency (IAEA) Standard Syllabus, and radiological protection and control programs as administered by the NRC

  17. Voluntary Protection Program Onsite Review, Hanford Mission Support...

    Energy Savers [EERE]

    Review, Mission Support Alliance, Llc, Volpentest Hazardous Materials Management and Emergency Response (Hammer), Federal Training Center - September 2014 Voluntary Protection...

  18. Microscope collision protection apparatus

    DOE Patents [OSTI]

    DeNure, Charles R. (Pocatello, ID)

    2001-10-23

    A microscope collision protection apparatus for a remote control microscope which protects the optical and associated components from damage in the event of an uncontrolled collision with a specimen, regardless of the specimen size or shape. In a preferred embodiment, the apparatus includes a counterbalanced slide for mounting the microscope's optical components. This slide replaces the rigid mounts on conventional upright microscopes with a precision ball bearing slide. As the specimen contacts an optical component, the contacting force will move the slide and the optical components mounted thereon. This movement will protect the optical and associated components from damage as the movement causes a limit switch to be actuated, thereby stopping all motors responsible for the collision.

  19. Radiological Protection for DOE Activities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-29

    Establishes radiological protection program requirements that, combined with 10 CFR 835 and its associated implementation guidance, form the basis for a comprehensive program for protection of individuals from the hazards of ionizing radiation in controlled areas. Extended by DOE N 441.3. Cancels DOE 5480.11, DOE 5480.15, DOE N 5400.13, DOE N 5480.11; please note: the DOE radiological control manual (DOE/EH-0256T)

  20. Posting and Labeling for Radiological Control Guide for use with Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-05-24

    This Guide provides an acceptable methodology for establishing and operating a radiological hazard posting and labeling program that will comply with U.S. Department of Energy (DOE) requirements specified in Title 10 of the Code of Federal Regulations (CFR), Part 835, Occupational Radiation Protection Canceled by DOE G 441.1-1B.

  1. Rack Protection Monitor

    SciTech Connect (OSTI)

    Orr, Stanley G.

    1998-10-21

    A hardwired, fail-safe rack protection monitor utilizes electromechanical relays to respond to the detection by condition sensors of abnormal or alarm conditions (such as smoke, temperature, wind or water) that might adversely affect or damage equipment being protected. When the monitor is reset, the monitor is in a detection mode with first and second alarm relay coils energized. If one of the condition sensors detects an abnormal condition, the first alarm relay coil will be de-energized, but the second alarm relay coil will remain energized. This results in both a visual and an audible alarm being activated. If a second alarm condition is detected by another one of the condition sensors while the first condition sensor is still detecting the first alarm condition, both the first alarm relay coil and the second alarm relay coil will be de-energized. With both the first and second alarm relay coils de-energized, both a visual and an audible alarm will be activated. In addition, power to the protected equipment will be terminated and an alarm signal will be transmitted to an alarm central control. The monitor can be housed in a separate enclosure so as to provide an interface between a power supply for the protected equipment and the protected equipment.

  2. Rack protection monitor

    DOE Patents [OSTI]

    Orr, Stanley G. (Wheaton, IL)

    2000-01-01

    A hardwired, fail-safe rack protection monitor utilizes electromechanical relays to respond to the detection by condition sensors of abnormal or alarm conditions (such as smoke, temperature, wind or water) that might adversely affect or damage equipment being protected. When the monitor is reset, the monitor is in a detection mode with first and second alarm relay coils energized. If one of the condition sensors detects an abnormal condition, the first alarm relay coil will be de-energized, but the second alarm relay coil will remain energized. This results in both a visual and an audible alarm being activated. If a second alarm condition is detected by another one of the condition sensors while the first condition sensor is still detecting the first alarm condition, both the first alarm relay coil and the second alarm relay coil will be de-energized. With both the first and second alarm relay coils de-energized, both a visual and an audible alarm will be activated. In addition, power to the protected equipment will be terminated and an alarm signal will be transmitted to an alarm central control. The monitor can be housed in a separate enclosure so as to provide an interface between a power supply for the protected equipment and the protected equipment.

  3. US-Russian Cooperation in Upgrading MC&A System at Rosatom Facilities: Measurement of Nuclear Materials

    SciTech Connect (OSTI)

    Powell, Danny H; Jensen, Bruce A

    2011-01-01

    Improve protection of weapons-usable nuclear material from theft or diversion through the development and support of a nationwide sustainable and effective Material Control and Accountability (MC&A) program based on material measurement. The material protection, control, and accountability (MPC&A) cooperation has yielded significant results in implementing MC&A measurements at Russian nuclear facilities: (1) Establishment of MEM WG and MEMS SP; (2) Infrastructure for development, certification, and distribution of RMs; and (3) Coordination on development and implementation of MMs.

  4. Guide to Critical Infrastructure Protection Cyber Vulnerability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wireless System Considerations When Implementing NERC Critical Infrastructure Protection Standards New No-Cost ANTFARM Tool Maps Control System Networks to Help Implement Cyber ...

  5. One million curies of radioactive material recovered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radioactive material recovered One million curies of radioactive material recovered The accomplishment represents a major milestone in protecting our nation and the world from...

  6. Radiological Control Manual. Revision 0, January 1993

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  7. Nuclear Material Packaging

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-03-07

    The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. Supersedes DOE M 441.1-1, dated 3-7-08.

  8. Nuclear Material Packaging Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-03-07

    The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. Does not cancel/supersede other directives. Certified 11-18-10.

  9. Waters LANL Protects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waters LANL Protects Waters LANL Protects LANL watersheds source in the Jemez Mountains and end at the Rio Grande.

  10. LANL installs additional protective measures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab completes additional protections LANL installs additional protective measures Work crews completed additional flood and erosion-control measures this week to reduce the environmental effects of any flash floods following the Las Conchas Fire. July 20, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  11. Use of impure inert gases in the controlled heating and cooling of mixed conducting metal oxide materials

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA); Bernhart, John Charles (Fleetwood, PA)

    2012-08-21

    Method for processing an article comprising mixed conducting metal oxide material. The method comprises contacting the article with an oxygen-containing gas and either reducing the temperature of the oxygen-containing gas during a cooling period or increasing the temperature of the oxygen-containing gas during a heating period; during the cooling period, reducing the oxygen activity in the oxygen-containing gas during at least a portion of the cooling period and increasing the rate at which the temperature of the oxygen-containing gas is reduced during at least a portion of the cooling period; and during the heating period, increasing the oxygen activity in the oxygen-containing gas during at least a portion of the heating period and decreasing the rate at which the temperature of the oxygen-containing gas is increased during at least a portion of the heating period.

  12. An In-situ materials analysis particle probe (MAPP) diagnostic to study particle density control and hydrogenic fuel retention in NSTX

    SciTech Connect (OSTI)

    Allain, Jean-Paul

    2014-09-05

    A new materials analysis particle probe (MAPP) was designed, constructed and tested to develop understanding of particle control and hydrogenic fuel retention in lithium-based plasma-facing surfaces in NSTX. The novel feature of MAPP is an in-situ tool to probe the divertor NSTX floor during LLD and lithium-coating shots with subsequent transport to a post-exposure in-vacuo surface analysis chamber to measure D retention. In addition, the implications of a lithiated graphite-dominated plasma-surface environment in NSTX on LLD performance, operation and ultimately hydrogenic pumping and particle control capability are investigated in this proposal. MAPP will be an invaluable tool for erosion/redeposition simulation code validation.

  13. Hearing protection for miners

    SciTech Connect (OSTI)

    Schulz, T.

    2008-10-15

    A NIOSH analysis showed that at age 50 approximately 90% of coal miners have a hearing impairment, yet noise included hearing loss is 100% preventable. The article discusses requirements of the MSHA regulations, 30 CFR Part 62 - occupational noise exposure (2000) and a 2008-MSHA document describing technologically achievable and promising controls for several types of mining machinery. Hearing protection is still required for exposure to greater than 90 dBA. These are now commercially available ways to determine how much attenuation an individual gets from a given hearing protector, known as 'fit testing'. 3 refs., 1 fig., 1 tab., 1 photo.

  14. ALTERNATE MATERIALS IN DESIGN OF RADIOACTIVE MATERIAL PACKAGES

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2010-07-09

    This paper presents a summary of design and testing of material and composites for use in radioactive material packages. These materials provide thermal protection and provide structural integrity and energy absorption to the package during normal and hypothetical accident condition events as required by Title 10 Part 71 of the Code of Federal Regulations. Testing of packages comprising these materials is summarized.

  15. 1993 Radiation Protection Workshop: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    The 1993 DOE Radiation Protection Workshop was conducted from April 13 through 15, 1993 in Las Vegas, Nevada. Over 400 Department of Energy Headquarters and Field personnel and contractors from the DOE radiological protection community attended the Workshop. Forty-nine papers were presented in eleven separate sessions: Radiological Control Manual Implementation, New Approaches to Instrumentation and Calibration, Radiological Training Programs and Initiatives, External Dosimetry, Internal Dosimetry, Radiation Exposure Reporting and Recordkeeping, Air Sampling and Monitoring Issues, Decontamination and Decommissioning of Sites, Contamination Monitoring and Control, ALARA/Radiological Engineering, and Current and Future Health Physics Research. Individual papers are indexed separately on the database.

  16. Geologic mapping for groundwater resource protection and assessment

    SciTech Connect (OSTI)

    Shafer, J.M. . Earth Sciences and Resources Inst.); Berg, R.C. )

    1993-03-01

    Groundwater is a vital natural resource in the US and around the world. In order to manage and protect this often threatened resource one must better understand its occurrence, extent, and susceptibility to contamination. Geologic mapping is a fundamental approach to developing more detailed and accurate assessments of groundwater resources. The stratigraphy and lithology of earth materials provide the framework for groundwater systems, whether they are deep confined aquifers or shallow, water table environments. These same earth materials control, in large part, the rates of migration of water and contaminants into and through groundwater systems thus establishing the potential yields of the systems and their vulnerability to contamination. Geologic mapping is used to delineate and display the vertical sequencing of earth materials either in cross-section or over lateral areas as in the stack-unit geologic map. These geologic maps, along with supportive hydrogeologic information, are used to identify the three-dimensional positioning and continuity of aquifer and non-aquifer earth materials. For example, detailed stack-unit mapping to a depth of 30 meters has been completed for a portion of a northern Illinois county. Groundwater contamination potentials were assigned to various vertical sequences of materials. Where aquifers are unconfined, groundwater contamination potentials are greatest. Conversely, other considerations being equal, the thicker the confining unit, the lower the contamination potential. This information is invaluable for land use decision-making; water supply assessment, development, and management; and environmental protection planning.

  17. Protections = Defenses in Depth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protections: Cleanup Cleanup 101 Corrective Measures Process Protection 1: Remove the Source Example Cleanup: Removal of Polychlorinated Biphenyls from Hillside 140 Environmental ...

  18. Model Fire Protection Program

    Broader source: Energy.gov [DOE]

    This program demonstrates acceptable methods and examples to assist each DOE site in meeting the fire protection objectives provided in DOE Order 5480.7A, "Fire Protection."

  19. ORISE: Protecting Human Subjects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protecting Human Subjects Protecting Human Subjects The U.S. Department of Energy (DOE) Human Subjects Research Program exists to ensure that all research conducted at DOE...

  20. Office of Physical Protection

    Broader source: Energy.gov [DOE]

    The Office of Physical Protection is comprised of a team of security specialists engaged in providing Headquarters-wide physical protection.

  1. weapons material | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    material

  2. Voluntary Protection Program Onsite Review, Mission Support Alliance...

    Office of Environmental Management (EM)

    Llc, Volpentest Hazardous Materials Management and Emergency Response (Hammer), Federal Training Center - September 2014 Voluntary Protection Program Onsite Review, Mission Support...

  3. Materials for the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forward-looking themes complement one another and build upon our established scientific strengths. Controlled Functionality Accurate description of materials often involves the...

  4. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-11-19

    These changes are intended to correct typographical and pagination errors, delete a canceled reference and clarify the intent of four metrics in Attachment 3.

  5. Anode protection system for shutdown of solid oxide fuel cell system

    DOE Patents [OSTI]

    Li, Bob X; Grieves, Malcolm J; Kelly, Sean M

    2014-12-30

    An Anode Protection Systems for a SOFC system, having a Reductant Supply and safety subsystem, a SOFC anode protection subsystem, and a Post Combustion and slip stream control subsystem. The Reductant Supply and safety subsystem includes means for generating a reducing gas or vapor to prevent re-oxidation of the Ni in the anode layer during the course of shut down of the SOFC stack. The underlying ammonia or hydrogen based material used to generate a reducing gas or vapor to prevent the re-oxidation of the Ni can be in either a solid or liquid stored inside a portable container. The SOFC anode protection subsystem provides an internal pressure of 0.2 to 10 kPa to prevent air from entering into the SOFC system. The Post Combustion and slip stream control subsystem provides a catalyst converter configured to treat any residual reducing gas in the slip stream gas exiting from SOFC stack.

  6. ELECTRICAL PROTECTIVE DEVICE

    DOE Patents [OSTI]

    Baker, W.R.

    1958-05-01

    A protective system for high-energy resonant cavities is described. It is particularly directed to the discharging of resonant cavities for preventing energy back flow through associated equipment as a result of faults. The invention in general provides means defining a spark gap communicating with the interior of a cavity or waveguide adapted for high-power energization or an evacuated chamber containing an electrode having a large power differential from the wall or other electrode. A control or trigger circuit is connected between a power supply energizing the cavity and the spark gap whereby reverse current flow in the power supply circuit instantaneously triggers the spark gap to initiate discharge within the cavity, whereupon cavity energy discharges across the gap, or with an electrode present the electrode discharges to one of the spark gap elements.

  7. 10 V.S.A. Chapter 49 Protection of Navigable Waters and Shorelands...

    Open Energy Info (EERE)

    to create rules to protect the states waters from pollution, protect spawning grounds, fish, and aquatic life, control building sites, placement of structures and land uses,...

  8. material removal | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    monitor nonproliferation and arms control treaty and agreement Nuclear Material Removal Once weapons-usable nuclear material is no longer required, the Office of Nuclear Material...

  9. Implementing New Methods of Laser Marking of Items in the Nuclear Material Control and Accountability System at SSC RF-IPPE: An Automated Laser Marking System

    SciTech Connect (OSTI)

    Regoushevsky, V I; Tambovtsev, S D; Dvukhsherstnov, V G; Efimenko, V F; Ilyantsev, A I; Russ III, G P

    2009-05-18

    For over ten years SSC RF-IPPE, together with the US DOE National Laboratories, has been working on implementing automated control and accountability methods for nuclear materials and other items. Initial efforts to use adhesive bar codes or ones printed (painted) onto metal revealed that these methods were inconvenient and lacked durability under operational conditions. For NM disk applications in critical stands, there is the additional requirement that labels not affect the neutron characteristics of the critical assembly. This is particularly true for the many stainless-steel clad disks containing highly enriched uranium (HEU) and plutonium that are used at SSC RF-IPPE for modeling nuclear power reactors. In search of an alternate method for labeling these disks, we tested several technological options, including laser marking and two-dimensional codes. As a result, the method of laser coloring was chosen in combination with Data Matrix ECC200 symbology. To implement laser marking procedures for the HEU disks and meet all the nuclear material (NM) handling standards and rules, IPPE staff, with U.S. technical and financial support, implemented an automated laser marking system; there are also specially developed procedures for NM movements during laser marking. For the laser marking station, a Zenith 10F system by Telesis Technologies (10 watt Ytterbium Fiber Laser and Merlin software) is used. The presentation includes a flowchart for the automated system and a list of specially developed procedures with comments. Among other things, approaches are discussed for human-factor considerations. To date, markings have been applied to numerous steel-clad HEU disks, and the work continues. In the future this method is expected to be applied to other MC&A items.

  10. Identifying and Protecting Official Use Only Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-04-09

    To establish a program within the Department of Energy (DOE), including the National Nuclear Security Administration (NNSA), to identify certain unclassified controlled information as Official Use Only (OUO) and to identify, mark, and protect documents containing such information.

  11. English/Russian and Russian/English glossary of physical protection terms

    SciTech Connect (OSTI)

    Soo Hoo, M.S.

    1995-07-01

    This glossary was prepared in fulfillment of the Glossary Preparation Task identified in the Program Plan for providing Assistance to the Russian Federation in Nuclear Material Control and Accounting and Physical Protection. The Program Plan is part of the Cooperative Threat Reduction Program as provided for under House Resolution (H.R.) 3807 (Title II, as referenced under Public Law (P.L.) 102-229. The terms in this glossary were derived from physical protection training material prepared at Sandia. The training material, and thus refinements to the glossary, has undergone years of development in presentation to both domestic and international audiences. Also, Russian Colleagues and interpreters have reviewed the translations for accuracy.

  12. Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)

    SciTech Connect (OSTI)

    Estrella, R.

    1994-10-01

    Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

  13. Making, Measuring, and Modeling Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making, Measuring, and Modeling Materials Making, Measuring, and Modeling Materials M4 facility aims to accelerate the transition from observation to control of materials providing unique synthesis and characterization tools to advance the frontiers of materials design and discovery. CONTACT Cris W. Barnes (505) 665-5687 Email Predicting and Controlling Materials' Performance MaRIE's Making, Measuring, and Modeling Materials (M4) Facility aims to accelerate the transition from observation to

  14. Protection Program Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-10-14

    This Order establishes requirements for the management and operation of the Department of Energy (DOE) Federal Protective Forces (FPF), Contractor Protective Forces (CPF), and the Physical Security of property and personnel under the cognizance of DOE.

  15. Protective Force Program Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-30

    Provides detailed requirements to supplement DOE O 473.2, Protective Force Program, which establishes the requirements and responsibilities for management and operation of the Department of Energy (DOE) Protective Force (PF) Program. Does not cancel other directives.

  16. Voluntary Protection Program Announcement

    Broader source: Energy.gov [DOE]

    Secretary O'Leary formally announced a new initiative, "The Department of Energy Voluntary Protection Program (DOEVPP)," which is designed to recognize contractor sites that are providing excellent safety and health protection to their employees.

  17. Fire Protection Program Metrics

    Broader source: Energy.gov [DOE]

    Presenter: Perry E. D ’Antonio, P.E., Acting Sr. Manager, Fire Protection - Sandia National Laboratories

  18. ORISE: Human Subjects Protection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human Subjects Protection The Oak Ridge Institute for Science and Education (ORISE) performs technical assessments to assist U.S. Department of Energy (DOE) laboratories involved in human subjects research projects. Under DOE Order and Policy 443.1A, Protection of Human Subjects, and 10 CFR 745, DOE employees and contractors are expected to protect the rights and welfare of human research subjects. In support of the DOE Office of Science and the Human Subjects Protection Program (HSPP), ORISE

  19. Controlled Unclassified Information

    Energy Savers [EERE]

    3-1 Chapter 13 Controlled Unclassified Information This chapter describes the security procedures adopted by DOE HQ to implement the requirements of the following DOE regulations and directives: 10 CFR Part 1017, Identification and Protection of Unclassified Controlled Nuclear Information DOE Order 471.1B, Identification and Protection of Unclassified Controlled Nuclear Information DOE Order 471.3, Identifying and Protecting Official Use Only Information DOE Manual 471.3-1, Manual for

  20. Corium protection assembly

    DOE Patents [OSTI]

    Gou, Perng-Fei; Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A corium protection assembly includes a perforated base grid disposed below a pressure vessel containing a nuclear reactor core and spaced vertically above a containment vessel floor to define a sump therebetween. A plurality of layers of protective blocks are disposed on the grid for protecting the containment vessel floor from the corium.

  1. Fundamentals of health physics for the radiation-protection officer

    SciTech Connect (OSTI)

    Murphy, B.L.; Traub, R.J.; Gilchrist, R.L.; Mann, J.C.; Munson, L.H.; Carbaugh, E.H.; Baer, J.L.

    1983-03-01

    The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs. (ACR)

  2. Security Framework for Control System Data Classification and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Framework for Control System Data Classification and Protection Security Framework for Control System Data Classification and Protection This document presents a data ...

  3. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issues submit Material Misfits How well nanocomposite materials align at their interfaces determines what properties they have, opening broad new avenues of materials-science...

  4. Fire Protection Program Manual

    SciTech Connect (OSTI)

    Sharry, J A

    2012-05-18

    This manual documents the Lawrence Livermore National Laboratory (LLNL) Fire Protection Program. Department of Energy (DOE) Orders 420.1B, Facility Safety, requires LLNL to have a comprehensive and effective fire protection program that protects LLNL personnel and property, the public and the environment. The manual provides LLNL and its facilities with general information and guidance for meeting DOE 420.1B requirements. The recommended readers for this manual are: fire protection officers, fire protection engineers, fire fighters, facility managers, directorage assurance managers, facility coordinators, and ES and H team members.

  5. Control And Data Acquisition System Of Tokamak KTM

    SciTech Connect (OSTI)

    Baystrukov, K. I.; Pavlov, V. M.; Sharnin, A. V.; Obhodskij, A. V.; Merkulov, S. V.; Golobokov, Y. N.; Mezentsev, A. A.; Ovchinnikov, A. V.; Tazhibaeva, I. L.

    2008-04-07

    The preliminary results of control and data acquisition system (CODAS) development for Kazakhstan tokamak for material testing (KTM) [1] are presented. The KTM CODAS is completely new system optimized for KTM facility and its regimes of operation. Its development is carrying out in Tomsk Polytechnic University by Russian specialists. The first KTM launching under the control of CODAS is planed on 2008 year. The base functionality of CODAS is presented, including short description of its subsystems, such as control system of conditioning process, plasma control system, digital control system of power supplies, protection and timing system, data acquisition system.

  6. Protective Forces | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Protective Forces NNSA has some of the best trained and best equipped forces protecting its nuclear weapons and material. Since the events of September 11, 2001, NNSA has hired additional armed security police officers. It has also shifted towards a paramilitary, "tactical response force" that utilizes a robust mix of offensive and defensive qualified officers who are well-trained in small team and weapons tactics. It has improved its training capabilities by expanding training ranges

  7. Hierarchical hollow microsphere and flower-like indium oxide: Controllable synthesis and application as H{sub 2}S cataluminescence sensing materials

    SciTech Connect (OSTI)

    Cai, Pingyang; Bai, Wei; Zhang, Lichun; Song, Hongjie; Su, Yingying; Lv, Yi

    2012-09-15

    Graphical abstract: Hierarchical hollow microsphere and flower-like In{sub 2}O{sub 3} were controllable fabricated through a novel and simple hydrothermal process, and the former showed superior cataluminescence sensing performance to H{sub 2}S. Highlights: ► In{sub 2}O{sub 3} hierarchical hollow sphere were prepared via a hydrothermal route. ► The growth process of In{sub 2}O{sub 3} hierarchical hollow sphere has been investigated. ► The sensor based on prepared In{sub 2}O{sub 3} shows good sensing performance to H{sub 2}S. -- Abstract: In the present work, In{sub 2}O{sub 3} hierarchical hollow microsphere and flower-like microstructure were achieved controllably by a hydrothermal process in the sodium dodecyl sulfate (SDS)-N,N-dimethyl-formamide (DMF) system. XRD, SEM, HRTEM and N{sub 2} adsorption measurements were used to characterize the as-prepared indium oxide materials and the possible mechanism for the microstructures formation was briefly discussed. The cataluminescence gas sensor based on the as-prepared In{sub 2}O{sub 3} was utilized to detect H{sub 2}S concentrations in flowing air. Comparative gas sensing results revealed that the sensor based on hierarchical hollow microsphere exhibited much higher sensing sensitivity in detecting H{sub 2}S gas than the sensor based on flower-like microstructure. The present gas sensor had a fast response time of 5 s and a recovery time of less than 25 s, furthermore, the cataluminescence intensity vs. H{sub 2}S concentration was linear in range of 2–20 μg mL{sup −1} with a detection limit of 0.5 μg mL{sup −1}. The present highly sensitive, fast-responding, and low-cost In{sub 2}O{sub 3}-based gas sensor for H{sub 2}S would have many practical applications.

  8. Final Report - Recovery Act - Development and application of processing and process control for nano-composite materials for lithium ion batteries

    SciTech Connect (OSTI)

    Daniel, Claus; Armstrong, Beth L; Maxey, L Curt; Sabau, Adrian S; Wang, Hsin; Hagans, Patrick; Babinec, Sue

    2013-08-01

    Oak Ridge National Laboratory and A123 Systems, Inc. collaborated on this project to develop a better understanding, quality control procedures, and safety testing for A123 System s nanocomposite separator (NCS) technology which is a cell based patented technology and separator. NCS demonstrated excellent performance. x3450 prismatic cells were shown to survive >8000 cycles (1C/2C rate) at room temperature with greater than 80% capacity retention with only NCS present as an alternative to conventional polyolefin. However, for a successful commercialization, the coating conditions required to provide consistent and reliable product had not been optimized and QC techniques for being able to remove defective material before incorporation into a cell had not been developed. The work outlined in this report addresses these latter two points. First, experiments were conducted to understand temperature profiles during the different drying stages of the NCS coating when applied to both anode and cathode. One of the more interesting discoveries of this study was the observation of the large temperature decrease experienced by the wet coating between the end of the infrared (IR) drying stage and the beginning of the exposure to the convection drying oven. This is not a desirable situation as the temperature gradient could have a deleterious effect on coating quality. Based on this and other experimental data a radiative transfer model was developed for IR heating that also included a mass transfer module for drying. This will prove invaluable for battery coating optimization especially where IR drying is being employed. A stress model was also developed that predicts that under certain drying conditions tensile stresses are formed in the coating which could lead to cracking that is sometimes observed after drying is complete. Prediction of under what conditions these stresses form is vital to improving coating quality. In addition to understanding the drying process other parameters such as slurry quality and equipment optimization were examined. Removal of particles and gels by filtering, control of viscosity by %solids and mixing adjustments, removal of trapped gas in the slurry and modification of coater speed and slot die gap were all found to be important for producing uniform and flaw-free coatings. Second, an in-line Hi-Pot testing method has been developed specifically for NCS that will enable detection of coating flaws that could lead to soft or hard electrical shorts within the cell. In this way flawed material can be rejected before incorporation into the cell thus greatly reducing the amount of scrap that is generated. Improved battery safety is an extremely important benefit of NCS. Evaluation of battery safety is usually accomplished by conducting a variety of tests including nail penetration, hot box, over charge, etc. For these tests entire batteries must be built but the resultant temperature and voltage responses reveal little about the breakdown mechanism. In this report is described a pinch test which is used to evaluate NCS quality at various stages including coated anode and cathode as well as assembled cell. Coupled with post-microscopic examination of the damaged pinch point test data can assist in the coating optimization from an improved end-use standpoint. As a result of this work two invention disclosures, one for optimizing drying methodology and the other for an in-line system for flaw detection, have been filed. In addition, 2 papers are being written for submission to peer-reviewed journals.

  9. Functional Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functional Materials Researchers in NETL's Functional Materials Development competency work to discover and develop advanced functional materials and component processing technologies to meet technology performance requirements and enable scale-up for proof-of-concept studies. Research includes separations materials and electrochemical and magnetic materials, specifically: Separations Materials Synthesis, purification, and basic characterization of organic substances, including polymers and

  10. Respiratory Protection Program

    Broader source: Energy.gov [DOE]

    This page is supported by the Respiratory Protection Program Administrators Group. The Respiratory Protection Program Administrators Group is a volunteer organization co-sponsored by the DOE Office of Worker Safety and Health Policy and the Energy Facility Contractors Group (EFCOG) to provide a forum for DOE and DOE contractor personnel to identify respiratory protection issues of concern to the DOE and pursue solutions to issues identified.

  11. Structural Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Materials Structural Materials Development enables advanced technologies through the discovery, development, and demonstration of cost-effective advanced structural materials for use in extreme environments (high-temperature, high-stress, erosive, and corrosive environments, including the performance of materials in contact with molten slags and salts). Research includes materials design and discovery, materials processing and manufacturing, and service-life prediction of materials

  12. Optoelectronic devices incorporating fluoropolymer compositions for protection

    DOE Patents [OSTI]

    Chen, Xuming; Chum, Pak-Wing S.; Howard, Kevin E.; Lopez, Leonardo C.; Sumner, William C.; Wu, Shaofu

    2015-12-22

    The fluoropolymer compositions of the present invention generally incorporate ingredients comprising one or more fluoropolymers, an ultraviolet light protection component (hereinafter UV protection component), and optionally one or more additional ingredients if desired. The UV protection component includes a combination of at least one hindered tertiary amine (HTA) compound having a certain structure and a weight average molecular weight of at least 1000. This tertiary amine is used in combination with at least one organic, UV light absorbing compound (UVLA compound) having a weight average molecular weight greater than 500. When the HTA compound and the UVLA compound are selected according to principles of the present invention, the UV protection component provides fluoropolymer compositions with significantly improved weatherability characteristics for protecting underlying materials, features, structures, components, and/or the like. In particular, fluoropolymer compositions incorporating the UV protection component of the present invention have unexpectedly improved ability to resist blackening, coloration, or other de gradation that may be caused by UV exposure. As a consequence, devices protected by these compositions would be expected to have dramatically improved service life. The compositions have a wide range of uses but are particularly useful for forming protective layers in optoelectronic devices.

  13. Asset Protection Analysis Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-08-21

    The Guide provides examples of the application of as set protection analysis to several common problems. Canceled by DOE N 251.80.

  14. Protecting your personal information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015-Jan. 2016 all issues All Issues submit Protecting your personal information Quantum cryptography keeps data secure from cyber thieves October 1, 2014 Mass-producible...

  15. Physical Protection Program Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-12-23

    Supplements DOE O 473.1, by establishing requirements for the physical protection of safeguards and security interests. Cancels: DOE M 5632.1C-1

  16. ORISE: Human Subjects Protection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human Subjects Protection The Oak Ridge Institute for Science and Education (ORISE) performs technical assessments to assist U.S. Department of Energy (DOE) laboratories involved...

  17. Protective Actions and Reentry

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume defines appropriate protective actions and reentry of a site following an emergency. Canceled by DOE G 151.1-4.

  18. Material Balance Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Material Balance Report Material Balance Report Form supports nuclear material control and accountability. PDF icon Material Balance Report More Documents & Publications DOE/NRC F 742 PHYSICAL INVENTORY LISTING DOE/NRC F 740M

  19. Geothermal materials development at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Kukacka, L.E.

    1997-06-01

    As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R and D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O and M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R and D, most of which is performed as cost-shared efforts with US geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

  20. Control the Present

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control the Present Image of water sampling trip embarking downstream from Otowi Bridge onto the Rio Grande with text overlay of 'How does LANL minimize the impacts from ongoing activities?' Control the Present Home Integrating Environmental Stewardship Something in the air? Protections: Sediment Protections: Sampling

  1. Submerged combustion melting processes for producing glass and similar materials, and systems for carrying out such processes

    SciTech Connect (OSTI)

    Charbonneau, Mark William

    2015-08-04

    Processes of controlling submerged combustion melters, and systems for carrying out the methods. One process includes feeding vitrifiable material into a melter vessel, the melter vessel including a fluid-cooled refractory panel in its floor, ceiling, and/or sidewall, and heating the vitrifiable material with a burner directing combustion products into the melting zone under a level of the molten material in the zone. Burners impart turbulence to the molten material in the melting zone. The fluid-cooled refractory panel is cooled, forming a modified panel having a frozen or highly viscous material layer on a surface of the panel facing the molten material, and a sensor senses temperature of the modified panel using a protected thermocouple positioned in the modified panel shielded from direct contact with turbulent molten material. Processes include controlling the melter using the temperature of the modified panel. Other processes and systems are presented.

  2. Protection of Human Subjects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-12-20

    The order establishes Department of Energy (DOE) procedures and responsibilities for implementing the policy and requirements set forth in 10 Code of Federal Regulations (CFR) Part 745, Protection of Human Subjects; and in DOE P 443.1A, Protection of Human Subjects, dated 12-20-07. Cancels DOE O 443.1. Canceled by DOE O 443.1B.

  3. Protection of Human Subjects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-05-15

    To establish DOE procedures and responsibilities for implementing the policy and requirements set forth in 10 CFR Part 745, Protection of Human Subjects, ad in DOE P 443.1, Policy on the Protection of Human Subjects. Cancels DOE O 1300.3. Canceled by DOE O 443.1A.

  4. Protective Force Program Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-12-20

    Provides detailed requirements to supplement DOE O 473.2, PROTECTIVE FORCE PROGRAM, which establishes the requirements and responsibilities for management and operation of the Department of Energy (DOE) Protective Force (PF) Program. Change 1 revised pages in Chapters IV and VI on 12/20/2001.

  5. Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-01-15

    To implement sound stewardship practices that are protective of the air, water, land, and other natural and cultural resources impacted by the Department of Energy (DOE) operations and by which DOE cost effectively meets or exceeds compliance with applicable environmental; public health; and resource protection laws, regulations, and DOE requirements. Cancels DOE 5400.1 and DOE N 450.4.

  6. Notice of Intent to Develop a Page Change for Department of Energy Order 474.2 Chg 3, Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2016-01-07

    The change will be limited in scope to correct language requiring the Office of Nuclear Materials Integration (ONMI) to be an approver for termination of safeguards for all sites.

  7. Protection of microelectronic devices during packaging

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Conley, William R.

    2002-01-01

    The present invention relates to a method of protecting a microelectronic device during device packaging, including the steps of applying a water-insoluble, protective coating to a sensitive area on the device; performing at least one packaging step; and then substantially removing the protective coating, preferably by dry plasma etching. The sensitive area can include a released MEMS element. The microelectronic device can be disposed on a wafer. The protective coating can be a vacuum vapor-deposited parylene polymer, silicon nitride, metal (e.g. aluminum or tungsten), a vapor deposited organic material, cynoacrylate, a carbon film, a self-assembled monolayered material, perfluoropolyether, hexamethyldisilazane, or perfluorodecanoic carboxylic acid, silicon dioxide, silicate glass, or combinations thereof. The present invention also relates to a method of packaging a microelectronic device, including: providing a microelectronic device having a sensitive area; applying a water-insoluble, protective coating to the sensitive area; providing a package; attaching the device to the package; electrically interconnecting the device to the package; and substantially removing the protective coating from the sensitive area.

  8. Building Materials Property Table

    SciTech Connect (OSTI)

    2010-04-16

    This information sheet describes a table of some of the key technical properties of many of the most common building materials taken from ASHRAE Fundamentals - 2001, Moisture Control in Buildings, CMHC, NRC/IRC, IEA Annex 24, and manufacturer data.

  9. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter...

  10. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation...

  11. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos ...

  12. Voluntary Protection Program Onsite Review, Mission Support Alliance, Llc,

    Energy Savers [EERE]

    Volpentest Hazardous Materials Management and Emergency Response (Hammer), Federal Training Center - September 2014 | Department of Energy Mission Support Alliance, Llc, Volpentest Hazardous Materials Management and Emergency Response (Hammer), Federal Training Center - September 2014 Voluntary Protection Program Onsite Review, Mission Support Alliance, Llc, Volpentest Hazardous Materials Management and Emergency Response (Hammer), Federal Training Center - September 2014 September 2014

  13. Consent Order, Washington River Protection Solutions, LLC- NCO-2011-01

    Broader source: Energy.gov [DOE]

    Issued to Washington River Protection Solutions, LLC related to deficiencies in the corrective action management program, radiation control program, and sealed radioactive source accountability and control program

  14. Nanostructured Materials for Improved Photovoltaics

    SciTech Connect (OSTI)

    Morgan, Sarah E.; Cannon, Gordon C.; Heinhorst, Sabine; Rawlins, James W.

    2004-07-18

    This research addresses the fundamental issues of cell morphology and phase dimensions that determine conversion efficiency in polymeric organic photovoltaic devices. The approach will help explain the relationships between morphological control, domain size, and power conversion efficiency in OPV devices, with the goal of providing direction for development of OPV systems with greater efficiency. The program addresses the DOE Office of Energy Efficiency and Renewable Energy goals of providing economically sustainable clean energy technologies to reduce dependence on foreign oil. This research focused on synthesis, fabrication and analysis of both active and protective layers for improved organic and inorganic hybrid PV (PhotoVoltaic) materials. A systematic study of phase size, shape, and distance was conducted to determine the effects of morphology in each process. Four classes of nanostructured materials were studied: 1) functional block copolymers (AB, acceptor-donor blocks) that self-assemble into matched domain sizes 2) synthetic core-shell particles with separate acceptor and donor layers 3) bacterial micro-compartment (BMC) proteins as self-assembling shells for core-shell nanoparticle constructs and 4) polyhedral oligomeric silsesquioxane (POSS) nanostructured chemicals for enhanced efficiency and durability.

  15. Fire protection design criteria

    SciTech Connect (OSTI)

    1997-03-01

    This Standard provides supplemental fire protection guidance applicable to the design and construction of DOE facilities and site features (such as water distribution systems) that are also provided for fire protection. It is intended to be used in conjunction with the applicable building code, national Fire Protection Association Codes and Standards, and any other applicable DOE construction criteria. This Standard, along with other delineated criteria, constitutes the basic criteria for satisfying DOE fire and life safety objectives for the design and construction or renovation of DOE facilities.

  16. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  17. Critical Materials:

    Energy Savers [EERE]

    Facilities » Critical Materials Hub Critical Materials Hub Green light reflection from a low-oxygen environment 3D printer laser deposition of metal powder alloys. Photo courtesy of The Critical Materials Institute, Ames Laboratory Green light reflection from a low-oxygen environment 3D printer laser deposition of metal powder alloys. Photo courtesy of The Critical Materials Institute, Ames Laboratory Critical materials, including some rare earth elements that possess unique magnetic,

  18. Federal Protective Force

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-07-15

    This Manual establishes requirements for the management and operation of the Department of Energy (DOE) Federal protective forces (FPFs). Cancels DOE M 470.4-3, Chg 1. Canceled by DOE O 473.3.

  19. Physical Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-12-23

    Establishes Department of Energy management objectives, requirements and responsibilities for the physical protection of safeguards and security interests. Cancels DOE 5632.1C. Canceled by DOE O 470.4.

  20. Protection of Human Subjects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-12-20

    The Policy is to establish DOE-specific principles for the protection of human subjects involved in DOE research. Cancels DOE P 443.1. Canceled by DOE O 443.1B

  1. Protection of Human Subjects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-05-15

    The purpose of this Policy is to establish DOE-specific policy for the protection of human subjects involved in DOE research. Canceled by DOE P 443.1A.

  2. CALUTRON PROTECTIVE CIRCUIT

    DOE Patents [OSTI]

    Schmidt, F.H.

    1959-05-26

    A switch and relay circuit is described for protection of calutrons. By means of this arrangement no arc can be established in the arc chamber unless cooling water flow is established. (T.R.H.)

  3. Protective Force Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-02-13

    To prescribe Department of Energy policy, responsibilities, and requirements for the management and operation of the Protective Force Program. Chg 1 dated 2-13-95. Cancels DOE O 5632.7 and DOE O 5632.8.

  4. Fire Protection Database

    Broader source: Energy.gov [DOE]

    DOE O 231.1, Environment, Safety, And Health Reporting, requires the submission of an Annual Fire Protection Summary. The previous process used to collect the required data utilizes a Microsoft...

  5. Environmental Protection, Safety, and Health Protection Program for DOE Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1980-05-05

    This order establishes the Environmental Protection, Safety, and Health Protection Program for Department of Energy (DOE) operations. Cancels Interim Management Directive No. 5001, Safety, Health And Environmental Protection dated 9-29-77.

  6. General Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1990-06-29

    To establish environmental protection program requirements, authorities, and responsibilities for Department of Energy (DOE) Operations for assuring compliance with applicable Federal, State and local environmental protection laws and regulations, Executive Orders, and internal Department policies. Cancels DOE O 5480.1A. Para. 2b, 4b, and 4c of Chap. II and para. 2d and 3b of Chap. III canceled by DOE O 231.1.

  7. Voluntary Protection Program- Basics

    Broader source: Energy.gov [DOE]

    The Department of Energy Voluntary Protection Program (DOE-VPP) promotes safety and health excellence through cooperative efforts among labor, management, and government at the Department of Energy (DOE) contractor sites. DOE has also formed partnerships with other Federal agencies and the private sector for both advancing and sharing its Voluntary Protection Program (VPP) experiences and preparing for program challenges in the next century. The safety and health of contractor and federal employees are a high priority for the Department.

  8. Protecting Against Nuclear Threats

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protecting Against Nuclear Threats Protecting Against Nuclear Threats Los Alamos' mission is to solve national security challenges through scientific excellence. April 12, 2012 Los Alamos researchers use a magnetic field detector to screen carry-on liquids at airports Los Alamos researchers use a magnetic field detector to screen carry-on liquids at airports: MagViz project leader Michelle Espy demonstrates the MagViz liquid detection and analysis system in the Albuquerque International Sunport.

  9. Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-04

    The objective is to implement sound stewardship practices that are protective of the air, water, land, and other natural and cultural resources impacted by DOE operations, and meet or exceed compliance with applicable environmental, public health, and resource protection requirements cost effectively. The revision provides specific expectations for implementation of Executive Order 13423, Strengthening Federal Environment, Energy, and Transportation Management. Cancels DOE O 450.1. Canceled by DOE O 436.1.

  10. Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-01-15

    To implement sound stewardship practices that are protective of the air, water, land, and other natural and cultural resources impacted by the Department of Energy (DOE) operations and by which DOE cost effectively meets or exceeds compliance with applicable environmental; public health; and resource protection laws, regulations, and DOE requirements. Chg 1, dated 1-24-05; Chg 2, dated 12-7-05; Admin Chg 1, dated 1-3-07. Cancels DOE 5400.1 and DOE N 450.4.

  11. Voluntary Protection Program Onsite Review, Washington River Protection

    Energy Savers [EERE]

    Solutions, LLC, Hanford - Feb 2014 | Department of Energy Washington River Protection Solutions, LLC, Hanford - Feb 2014 Voluntary Protection Program Onsite Review, Washington River Protection Solutions, LLC, Hanford - Feb 2014 February 13, 2014 Evaluation to determine whether Washington River Protection Solutions, LLC, Hanford is performing at a level deserving DOE-VPP Star recognition. PDF icon Voluntary Protection Program Onsite Review, Washington River Protection Solutions, LLC, Hanford

  12. Evaluation of MC&A Effectiveness and Its Contribution to the Safeguarding Of Nuclear Material with Assurance Assessments

    SciTech Connect (OSTI)

    Schlegel, Steven C.

    2007-07-10

    Safeguards and Security within the DOE complex has struggled with integrating MC&A and Physical Security together in a single model. Attempts were made to incorporate MC&A elements that provide detection into vulnerability assessments. While this approach has met with some success, it does not fully address the different contributions that each make to nuclear material protection. Protection measures that rely on the lack of alarms to imply all nuclear material is still present, in the correct location, and intended use are limited due to their passive nature. A highly effective system may provide confidence that all nuclear material is still present, but it does not provide assurance that it is there. MC&A, through active measures that confirm or verify the actual presence of nuclear material, provides assurance that all of the nuclear material is controlled and accounted for. This paper presents a model that combines the detection and assessment functions from vulnerability assessments with assurance activities provided by MC&A to provide an integrated model that can be used for evaluation of current systems, evaluation of system changes, and monitoring assurance in real time based upon operational activities. 1.0 OVERVIEW Material control and accounting (MC&A) and physical security provide complementary measures that can effectively protect nuclear material against the threats of theft, diversion, and sabotage. Tools have been introduced to evaluate and quantify the effectiveness of different protective measures and schemes, but the ability to fully model the contribution of MC&A to protection effectiveness has been limited. This is due, in part, by not fully recognizing that the two areas contribute differently, but not independently, to protection effectiveness. Physical protection provides detection, assessment, interruption, neutralization, and deterrence against a threat. Except for deterrence, mathematical models have been developed to quantify the contributions of the other elements to obtain an effectiveness value. MC&A helps contribute to this model by providing some detection capabilities and providing assessment under some circumstances to ensure all of the nuclear material is still present as documented. A strong program provides great confidence that nuclear material remains in the location and amounts documented in the nuclear material accounting system. Physical protection is not perfect, however, necessitating MC&A contribution.

  13. CONTROL ROD

    DOE Patents [OSTI]

    Walker, D.E.; Matras, S.

    1963-04-30

    This patent shows a method of making a fuel or control rod for a nuclear reactor. Fuel or control material is placed within a tube and plugs of porous metal wool are inserted at both ends. The metal wool is then compacted and the tube compressed around it as by swaging, thereby making the plugs liquid- impervious but gas-pervious. (AEC)

  14. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors Last edited: 2016-04-29 11:35:05

  15. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O.; Ruka, Roswell J.

    1986-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  16. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O.; Ruka, Roswell J.; Zymboly, Gregory E.

    1985-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  17. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O.; Ruka, Roswell J.

    1987-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  18. Electric vehicle drive train with contactor protection

    DOE Patents [OSTI]

    Konrad, Charles E.; Benson, Ralph A.

    1994-01-01

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

  19. Electric vehicle drive train with contactor protection

    DOE Patents [OSTI]

    Konrad, C.E.; Benson, R.A.

    1994-11-29

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

  20. Materials Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Characterization Researchers in the Materials Characterization Research competency conduct studies of both natural and engineered materials from the micropore (nanometers) to macropore (meters) scale. Research includes, but is not limited to, thermal, chemical, mechanical, and structural (nano to macro) interactions and processes with regard to natural and engineered materials. The primary research investigation tools include SEM, XRD, micro XRD, core logging, medical CT, industrial

  1. Protection of the Groundwater Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection of the Groundwater Resource Protection of the Groundwater Resource Monitoring wells act as sentinels between suspected LANL contamination and the water supply. August 1,...

  2. Microsoft PowerPoint - NRC Nuclear Export Controls Implementing the NSG Trigger List_Gary Langlie [Compatibility Mode]

    National Nuclear Security Administration (NNSA)

    U.S. NRC Nuclear Export Controls: Implementing the NSG Trigger List Gary R. Langlie Licensing Officer Office of International Programs May 11-14, 2015 NRC's Mission 2 License and regulate the Nation's civilian use of byproduct, source, and special nuclear materials to ensure adequate protection of public health and safety, promote the common defense and security, and protect the environment. Legal Basis * Atomic Energy Act of 1954, as amended * Nuclear Non-Proliferation Act of 1978 * Treaties,

  3. Identifying and Protecting Official Use Only Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-04-09

    The order establishes a program within DOE and NNSA to identify certain unclassified controlled information as Official Use Only (OUO) and to identify, mark, and protect documents containing such information. Chg 1 dated 1-12-11, supersedes DOE O 471.3.

  4. Office of River Protection (ORP) and Washingotn River Protection Solutions,

    Energy Savers [EERE]

    LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project | Department of Energy River Protection (ORP) and Washingotn River Protection Solutions, LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project Office of River Protection (ORP) and Washingotn River Protection Solutions, LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project The Mission of the Office of River Protection is to safely retrieve and treat Hanford's tank waste and close the Tank

  5. Integrated Global Nuclear Materials Management Preliminary Concepts

    SciTech Connect (OSTI)

    Jones, E; Dreicer, M

    2006-06-19

    The world is at a turning point, moving away from the Cold War nuclear legacy towards a future global nuclear enterprise; and this presents a transformational challenge for nuclear materials management. Achieving safety and security during this transition is complicated by the diversified spectrum of threat 'players' that has greatly impacted nonproliferation, counterterrorism, and homeland security requirements. Rogue states and non-state actors no longer need self-contained national nuclear expertise, materials, and equipment due to availability from various sources in the nuclear market, thereby reducing the time, effort and cost for acquiring a nuclear weapon (i.e., manifestations of latency). The terrorist threat has changed the nature of military and national security requirements to protect these materials. An Integrated Global Nuclear Materials Management (IGNMM) approach would address the existing legacy nuclear materials and the evolution towards a nuclear energy future, while strengthening a regime to prevent nuclear weapon proliferation. In this paper, some preliminary concepts and studies of IGNMM will be presented. A systematic analysis of nuclear materials, activities, and controls can lead to a tractable, integrated global nuclear materials management architecture that can help remediate the past and manage the future. A systems approach is best suited to achieve multi-dimensional and interdependent solutions, including comprehensive, end-to-end capabilities; coordinated diverse elements for enhanced functionality with economy; and translation of goals/objectives or standards into locally optimized solutions. A risk-informed basis is excellent for evaluating system alternatives and performances, and it is especially appropriate for the security arena. Risk management strategies--such as defense-in-depth, diversity, and control quality--help to weave together various technologies and practices into a strong and robust security fabric. Effective policy, science/technology, and intelligence elements are all crucial and must be harmonized. It is envisioned that integrated solutions will include reducing and securing nuclear/radiological materials at their source; improved monitoring and tracking; and enhancing detection, interdiction, and response. An active architecture, artfully combined of many synergistic elements, would support national actions and international collaboration in nuclear materials management, and it would help navigate a transition toward global nuclear sustainability.

  6. Nanocomposite Materials for Lithium Ion Batteries

    SciTech Connect (OSTI)

    2011-05-31

    Fact sheet describing development and application of processing and process control for nanocomposite materials for lithium ion batteries

  7. Office of River Protection - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of River Protection Office of River Protection Office of River Protection Office of River Protection Email Email Page | Print Print Page |Text Increase Font Size Decrease...

  8. Contractor Protective Force

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-11-05

    This Manual establishes requirements for the management and operation of the U.S. Department of Energy contractor protective forces. Cancels: DOE M 470.4-3 Chg 1, CRD (Attachment 2) only, except for Section C. Canceled by DOE O 473.3.

  9. Protective Force Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-30

    Establishes policy, requirements, responsibilities, and authorities, for the management and operation of the Department of Energy (DOE) Protective Force (PF) Program. Extended until 7-7-06 by DOE N 251.64, dated 7-7-05 Cancels: DOE 5632.7A

  10. Armored garment for protecting

    DOE Patents [OSTI]

    Purvis, James W.; Jones, II, Jack F.; Whinery, Larry D.; Brazfield, Richard; Lawrie, Catherine; Lawrie, David; Preece, Dale S.

    2009-08-11

    A lightweight, armored protective garment for protecting an arm or leg from blast superheated gases, blast overpressure shock, shrapnel, and spall from a explosive device, such as a Rocket Propelled Grenade (RPG) or a roadside Improvised Explosive Device (IED). The garment has a ballistic sleeve made of a ballistic fabric, such as an aramid fiber (e.g., KEVLAR.RTM.) cloth, that prevents thermal burns from the blast superheated gases, while providing some protection from fragments. Additionally, the garment has two or more rigid armor inserts that cover the upper and lower arm and protect against high-velocity projectiles, shrapnel and spall. The rigid inserts can be made of multiple plies of a carbon/epoxy composite laminate. The combination of 6 layers of KEVLAR.RTM. fabric and 28 plies of carbon/epoxy laminate inserts (with the inserts being sandwiched in-between the KEVLAR.RTM. layers), can meet the level IIIA fragmentation minimum V.sub.50 requirements for the US Interceptor Outer Tactical Vest.

  11. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, G.A.; Elder, M.G.; Kemme, J.E.

    1984-03-20

    The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

  12. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A.; Elder, Michael G.; Kemme, Joseph E.

    1985-01-01

    An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

  13. Sacrificial Protective Coating Materials that can be Regenerated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... temperature and chemistry >2x increase in flux Complete flux recovery from dead end to crossflow mode Composition A Composition B Pure Polymer t 30 min t 24 hours

  14. Saccrifical Protective Coating Materials that can be Regenerated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... with environmental stability (pH 13-14, Temperature >80C), achieved April 30, 2015: Demonstrate black liquor treatment process for >3 days with <20% drop in total flux ...

  15. Methods of synthesizing thermoelectric materials

    DOE Patents [OSTI]

    Ren, Zhifeng; Chen, Shuo; Liu, Wei-Shu; Wang, Hengzhi; Wang, Hui; Yu, Bo; Chen, Gang

    2016-04-05

    Methods for synthesis of thermoelectric materials are disclosed. In some embodiments, a method of fabricating a thermoelectric material includes generating a plurality of nanoparticles from a starting material comprising one or more chalcogens and one or more transition metals; and consolidating the nanoparticles under elevated pressure and temperature, wherein the nanoparticles are heated and cooled at a controlled rate.

  16. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F.; Kross, Brian J.

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  17. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F.; Kross, Brian J.

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  18. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  19. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  20. River Protection Project (RPP) Environmental Program Plan

    SciTech Connect (OSTI)

    POWELL, P.A.

    2000-03-29

    This Environmental Program Plan was developed in support of the Integrated Environment, Safety, and Health Management System Plan (ISMS) (RPP-MP-003), which establishes a single, defined environmental, safety, and health management system that integrates requirements into the work planning and execution processes to protect workers, the public, and the environment. The ISMS also provides mechanisms for increasing worker involvement in work planning, including hazard and environmental impact identification, analysis, and control; work execution; and feedback/improvement processes. The ISMS plan consists of six core functions. Each section of this plan describes the activities of the River Protection Project (RPP) (formerly known as the Tank Waste Remediation System) Environmental organization according to the following core functions: Establish Environmental Policy; Define the Scope of Work; Identify Hazards, Environmental Impacts, and Requirements; Analyze Hazards and Environmental Impacts and Implement Controls; Perform Work within Controls; and Provide Feedback and Continuous Improvement.

  1. River Protection Project (RPP) Level 0 Logic

    SciTech Connect (OSTI)

    SEEMAN, S.E.

    2000-01-20

    The following modifications were made to the River Protection Project Level-0 logic in going from Rev. I to Rev. 2. The first change was the change to the heading at the top of the drawing: ''TWRS Program Logic'' to ''River Protection Project Mission Logic''. Note that purely format changes (e.g., fonts, location of boxes, date format, addition of numbers to ''ghost'' boxes) are not discussed. However, the major format change was to show DOE-BNFL Inc. Interface Control Documents (ICDs) on the logic.

  2. DOE standard: Radiological control

    SciTech Connect (OSTI)

    Not Available

    1999-07-01

    The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

  3. Fluidized wall for protecting fusion chamber walls

    DOE Patents [OSTI]

    Maniscalco, James A.; Meier, Wayne R.

    1982-01-01

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithium-ceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  4. Department of Energy- Voluntary Protection Program Contract Transition Process

    Broader source: Energy.gov [DOE]

    The purpose of the Department of Energy (DOE) Voluntary Protection Program (VPP) is to recognize and promote excellence in contractor occupational health and safety programs. These programs, composed of management systems for preventing and controlling occupational hazards, not only ensure that DOE Orders are met, but go beyond requirements to provide the best feasible health and safety protection at the site

  5. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research January 5-6, 2011 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  6. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter from DOE Associate Directors Workshop Invitation Letter from DOE ASCR Program Manager Yukiko Sekine Last edited: 2016-04-29 11:34:54

  7. Degradation Mechanisms and Development of Protective Coatings for TES and

    Broader source: Energy.gov (indexed) [DOE]

    HTF Containment Materials | Department of Energy gomez.pdf More Documents & Publications Degradation Mechanisms and Development of Protective Coatings for TES and HTF Containment Materials - F13 Q1 Corrosion in Very High-Temperature Molten Salt for Next Generation CSP Systems Direct s-CO2 Reciever Development

  8. Cermet materials

    DOE Patents [OSTI]

    Kong, Peter C.

    2008-12-23

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  9. Composite material

    DOE Patents [OSTI]

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  10. Materials Discovery | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Images of red and yellow particles NREL's research in materials discovery serves as a foundation for technological progress in renewable energies. Our experimental activities in inorganic solid-state materials innovation span a broad range of technological readiness levels-from basic science through applied research to device development-relying on a high-throughput combinatorial materials science approach, followed by traditional targeted experiments. In addition, our researchers work

  11. Pollinator Protection Initiative

    Broader source: Energy.gov [DOE]

    DOE’s pollinator protection initiative is based on the Presidential Memorandum, Creating a Federal Strategy to Promote the Health of Honey Bees and Other Pollinators, which established an inter-agency Pollinator Health Task Force to develop a national strategy to promote the health of bees, butterflies, other pollinating insects, and birds and bats. The Task Force, which included a DOE representative, issued the National Strategy to Promote the Health of Honey Bees and Other Pollinators in May 2015.

  12. Design and Manufacture of Energy Absorbing Materials

    SciTech Connect (OSTI)

    Duoss, Eric

    2014-05-28

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  13. Design and Manufacture of Energy Absorbing Materials

    ScienceCinema (OSTI)

    Duoss, Eric

    2014-05-30

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  14. Overdischarge protection in high-temperature cells and batteries

    DOE Patents [OSTI]

    Redey, Laszlo

    1990-01-01

    Overdischarge indication and protection is provided in a lithium alloy - metal sulfide, secondary electrochemical cell and batteries of such cells through use of a low lithium activity phase that ordinarily is not matched with positive electrode material. Low lithium activity phases such as Li.sub.0.1 Al.sub.0.9 and LiAlSi in correspondence with positive electrode material cause a downward gradient in cell voltage as an indication of overdischarge prior to damage to the cell. Moreover, the low lithium activity phase contributes lithium into the electrolyte and provides a lithium shuttling current as overdischarge protection after all of the positive electrode material is discharged.

  15. Radiation Protection of the Public and the Environment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-02-11

    The order establishes requirements to protect the public and the environment against undue risk from radiation associated with radiological activities conducted under the control of DOE pursuant to the Atomic Energy Act of 1954, as amended.

  16. Protection of lithographic components from particle contamination

    DOE Patents [OSTI]

    Klebanoff, Leonard E.; Rader, Daniel J.

    2000-01-01

    A system that employs thermophoresis to protect lithographic surfaces from particle deposition and operates in an environment where the pressure is substantially constant and can be sub-atmospheric. The system (thermophoretic pellicle) comprises an enclosure that surrounds a lithographic component whose surface is being protected from particle deposition. The enclosure is provided with means for introducing a flow of gas into the chamber and at least one aperture that provides for access to the lithographic surface for the entry and exit of a beam of radiation, for example, and further controls gas flow into a surrounding low pressure environment such that a higher pressure is maintained within the enclosure and over the surface being protected. The lithographic component can be heated or, alternatively the walls of the enclosure can be cooled to establish a temperature gradient between the surface of the lithographic component and the walls of the enclosure, thereby enabling the thermophoretic force that resists particle deposition.

  17. Environmental Protection, Safety, and Health Protection Program for DOE Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1981-08-13

    This Order establishes the Environmental Protection, Safety. and Health Protection Program for Department of Energy (DOE) operations. Cancels DOE 5480.1, dated 5-5-1980, its chapters are not canceled. Canceled by DOE O 5480.1B

  18. Nuclear Controls | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    About Our Programs Nonproliferation Nonproliferation and Arms Control Nuclear Controls Challenge: Detectdeter illicit transfers of nucleardual-use materials, technology, ...

  19. Complex Materials

    ScienceCinema (OSTI)

    Cooper, Valentino

    2014-05-23

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  20. material removal

    National Nuclear Security Administration (NNSA)

    %2A en Nuclear Material Removal http:nnsa.energy.govaboutusourprogramsdnnm3remove

    Page...

  1. material removal

    National Nuclear Security Administration (NNSA)

    %2A en Nuclear Material Removal http:www.nnsa.energy.govaboutusourprogramsdnnm3remove

    Pag...

  2. Propulsion materials

    SciTech Connect (OSTI)

    Wall, Edward J.; Sullivan, Rogelio A.; Gibbs, Jerry L.

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  3. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Fusion Energy Sciences August 3-4, 2010 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors [not available] NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion

  4. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for High Energy Physics November 12-13, 2009 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  5. Advanced Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Manufacturing Office NOTICE OF INTENT: Clean Energy Manufacturing Innovation Institute for Reducing Energy of Materials And Decreasing Emissions in M NOTICE OF INTENT: Clean Energy Manufacturing Innovation Institute for Reducing Energy of Materials And Decreasing Emissions in M The Energy Department intends to issue a Funding Opportunity Announcement for approximately $70 million entitled "Clean Energy Manufacturing Innovation Institute for Reducing EMbodied-energy And Decreasing

  6. Meeting Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Meeting Materials Meeting Materials Here you will find various items to be used before and during the requirements review. The following documents are included: Case study worksheet to be filled in by meeting participants Sample of a completed case study from a Nuclear Physics requirements workshop held in 2011 A graph of NERSC and HEP usage as a function of time A powerpoint template you can use at the requirements review Downloads CaseStudyTemplate.docx | unknown Case Study Worksheet -

  7. Fire Protection Account Request Form

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fire Protection System Account Request Form To obtain a user id and password to access the Fire Protection system, please complete the form, save the file and email it to...

  8. Protection of the Groundwater Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection of the Groundwater Resource Protection of the Groundwater Resource Monitoring wells act as sentinels between suspected LANL contamination and the water supply. August 1, 2013 Where to place a sentinel well Where

  9. "Protecting Public Health through Biosecurity"

    SciTech Connect (OSTI)

    Seiders, Barbara AB; Campbell, James R.

    2006-03-04

    "Protecting Public Health through Biosecurity" is an article writen for the Tri-City Herald newspaper special Progress Edition.

  10. Environmental Protection Agency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ulllicu 3idica Environmental Protection Agency riivirrjlriiiciliar rVruillivitlr~ Systems Laboratory P.O. Box 93478 Las Vegas NV 89193-3478 ctr\/ O",, +-05, " 63 -EOE/DP/00539-061 May 1989 Research and Development . GEPA Off-Site Environmental Monitoring Report Radiation Monitoring Around United. States Nuclear Test Areas, Calendar Year 1988 EPA-600/4-891019 DOE/DP/00539-061 May 1989 Off-Site Environmental Monitoring Report Radiation Monitoring Around United'States Nuclear Test Areas,

  11. OFFICE OF RIVER PROTECTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-6-60 Richland, Washington 99352 SEP 3 0 2013 13 -CPM-0262 Mr. Charles A. Simpson, Contracts Manager Washington River Protection Solutions LLC 2440 Stevens Center Place Richland, Washington 99354 Mr. Simpson: CONTRACT NO. DE-AC27-08RVI4800 - TRANSMITTAL OF CONTRACT MODIFICATION 231 The purpose of this letter is to transmit the fully-executed Contract Modification 23 1. This modification revises the contract price for the base contract period and updates Section J, Attachment J.4, Performance

  12. Notices ENVIRONMENTAL PROTECTION AGENCY

    Energy Savers [EERE]

    41 Federal Register / Vol. 80, No. 243 / Friday, December 18, 2015 / Notices ENVIRONMENTAL PROTECTION AGENCY [ER-FRL-9024-5] Environmental Impact Statements; Notice of Availability Responsible Agency: Office of Federal Activities, General Information (202) 564-7146 or http://www2.epa.gov/nepa. Weekly receipt of Environmental Impact Statements Filed 12/07/2015 Through 12/11/2015 Pursuant to 40 CFR 1506.9. Notice Section 309(a) of the Clean Air Act requires that EPA make public its comments on

  13. Environmental Protection Agency

    Office of Legacy Management (LM)

    Protection Agency . . Book, 4 Project Rulison Off-Site Surveillance Operation for the Flaring Period - October 26 - November 3, 1970 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. P r e l i m i n a r y Report March 1 0 , 1 9 7 1 PROJECT RULISON OFF-SITE ' SURVEILLANCE FOR THE E'LARING OPERATION OF OCTOBER 26 - November 3, 1970 S o u t h w e s t e r n R a d i o l o g i c a l H e a l t h Laboratqry

  14. RHIC prefire protection masks

    SciTech Connect (OSTI)

    Drees, A.; Biscardi, C.; Curcio, T.; Gassner, D.; DeSanto, L.; Fu, W.; Liaw, C. J.; Montag, C.; Thieberger, P.; Yip, K.

    2015-01-07

    The protection of the RHIC experimental detectors from damage due to beam hitting close upstream elements in cases of abort kicker prefires requires some dedicated precautionary measures with two general options: to bring the beam close to a limiting aperture (i.e. the beam pipe wall), as far upstream of the detector components as possible or, alternatively, to bring a limiting aperture close to the circulating beam. Spontaneous and random prefires of abort kicker modules (Pulse Forming Network, PFN) have a history as long as RHIC is being operated. The abort system consist of 5 kickers in per ring, each of them equipped with its own dedicated PFN.

  15. Environmental Protection Division (ENV)

    National Nuclear Security Administration (NNSA)

    e~Alamos NATIONAL LABORATORY - - l :il . l! IIJ - - Environmental Protection Division (ENV) Environmental Stewardship (ENV-ES) P.O. Box 1663, Mail Stop J978 Los Alamos, New Mexico 87545 (505) 665-8855/FAX: (505) 667-0731 Mr. George Rael Assistant Manager for Enviromnental Operations National Nuclear Security Administration Los Alamos Site Office, MS A316 Date : October 28, 2010 Refer To: ENV-ES: 10-211 SUBJECT: 2008 SITE-WIDE ENVIRONMENTAL IMP ACT STATEMENT MITIGATION ACTION PLAN ANNUAL REPORT

  16. A MATERIAL WORLD Tailoring Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WINTER* 2000-2001 A MATERIAL WORLD Tailoring Materials for the Future A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 2, NO. 4 ALSO: New Materials for Microsystems Predictive Modeling Meets the Challenge S A N D I A T E C H N O L O G Y ON THE COVER: Bonnie Mckenzie operates a dual beam Focused Ion Beam/Scanning Electron Microscope (FIB/SEM). The image on the computer screen shows a cross section of a radiation-hardened device. The cross section was rendered with the FIB/SEM and allowed the

  17. NV/YMP radiological control manual, Revision 2

    SciTech Connect (OSTI)

    Gile, A.L.

    1996-11-01

    The Nevada Test Site (NTS) and the adjacent Yucca Mountain Project (YMP) are located in Nye County, Nevada. The NTS has been the primary location for testing nuclear explosives in the continental US since 1951. Current activities include operating low-level radioactive and mixed waste disposal facilities for US defense-generated waste, assembly/disassembly of special experiments, surface cleanup and site characterization of contaminated land areas, and non-nuclear test operations such as controlled spills of hazardous materials at the hazardous Materials (HAZMAT) Spill Center (HSC). Currently, the major potential for occupational radiation exposure is associated with the burial of low-level nuclear waste and the handling of radioactive sources. Planned future remediation of contaminated land areas may also result in radiological exposures. The NV/YMP Radiological Control Manual, Revision 2, represents DOE-accepted guidelines and best practices for implementing Nevada Test Site and Yucca Mountain Project Radiation Protection Programs in accordance with the requirements of Title 10 Code of Federal Regulations Part 835, Occupational Radiation Protection. These programs provide protection for approximately 3,000 employees and visitors annually and include coverage for the on-site activities for both personnel and the environment. The personnel protection effort includes a DOE Laboratory Accreditation Program accredited dosimetry and personnel bioassay programs including in-vivo counting, routine workplace air sampling, personnel monitoring, and programmatic and job-specific As Low as Reasonably Achievable considerations.

  18. Protection of Human Research Subjects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-03-17

    The Order establishes DOE-specific policy and principles for the protection of human subjects involved in DOE research, and DOE procedures and responsibilities for implementing the policy and requirements set forth in Title 45 Code of Federal Regulations (CFR) Part 46, Protection of Human Subjects, and 10 CFR Part 745, Protection of Human Subjects. Supersedes DOE O 443.1B.

  19. Shipping container for fissile material

    DOE Patents [OSTI]

    Crowder, H.E.

    1984-12-17

    The present invention is directed to a shipping container for the interstate transportation of enriched uranium materials. The shipping container is comprised of a rigid, high-strength, cylindrical-shaped outer vessel lined with thermal insulation. Disposed inside the thermal insulation and spaced apart from the inner walls of the outer vessel is a rigid, high-strength, cylindrical inner vessel impervious to liquid and gaseous substances and having the inner surfaces coated with a layer of cadmium to prevent nuclear criticality. The cadmium is, in turn, lined with a protective shield of high-density urethane for corrosion and wear protection. 2 figs.

  20. Hardfacing material

    DOE Patents [OSTI]

    Branagan, Daniel J. (Iona, ID)

    2012-01-17

    A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  1. Method of fabrication of anchored nanostructure materials

    DOE Patents [OSTI]

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-11-26

    Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.

  2. Training Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Materials Training Materials The following tutorials are produced by NERSC staff and are intended to provide basic instruction on NERSC systems. Sort by: Default | Name | Date (low-high) | Date (high-low) | Source | Category Introduction to Hybrid OpenMP/MPI Programming June 24, 2004 | Author(s): Helen He | Download File: hybridTalk.pdf | pdf | 1005 KB sample managed list Using OpenMP October 20, 2010 | Author(s): Helen He | Introduction to MPI January 11, 2010 | Author(s): Richard

  3. Reference Material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials There are a variety of reference materials the NSSAB utilizes and have been made available on its website. Documents Fact Sheets - links to Department of Energy Nevada Field Office webpage Public Reading Room NTA Public Reading Facility Open Monday through Friday, 7:30 am to 4:30 pm (except holidays) 755C East Flamingo Road Las Vegas, Nevada 89119 Phone (702) 794-5106 http://www.nv.doe.gov/library/testingarchive.aspx DOE Electronic Database Also available to the public is an

  4. Materials comprising polydienes and hydrophilic polymers and related methods

    DOE Patents [OSTI]

    Mays, Jimmy W.; Deng, Suxiang; Mauritz, Kenneth A.; Hassan, Mohammad K.; Gido, Samuel P.

    2011-11-22

    Materials prepared from polydienes, such as poly(cyclohexadiene), and hydrophilic polymers, such as poly(alkylene oxide), are described. Methods of making the materials and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization are also provided. The materials can be crosslinked and sulfonated, and can include copolymers and polymer blends.

  5. Best Demonstrated Available Technology (BDAT) for pollution control and waste treatment. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The bibliography contains citations concerning the most advanced equipment and processes for pollution control and waste treatment according to the guidelines set by the Environmental Protection Agency (EPA). Citations discuss biological, thermal, physical, and chemical prosesses for the technology innovation, economic productivity, and environmental protection. Standards and regulations for gaseous, liquid, and solid pollution are included. Also discussed are water pollution control, food and pharmaceutical wastes, effluent treatment, and materials recovery. (Contains a minimum of 184 citations and includes a subject term index and title list.)

  6. Diagnostics for machine protection of DEMO

    SciTech Connect (OSTI)

    Felton, R.

    2014-08-21

    DEMO aims to (i) integrate, demonstrate and validate all relevant technology necessary to convert fusion energy to electrical energy and (ii) that the machine and its operations are economically and environmentally acceptable. To maintain the efficiency and availability of the machine, there are several physics and combined physics/technology issues as well as the engineering issues. Machine Protection (also known as Protection of Investment) addresses both the risks to plant (to avoid costly repair or replacement) and the risks to normal operating time (to avoid loss of productivity and the return on investment). The plasma-related Machine Protection issues involve measurement and control of plasma stability, plasma purity, and plasma-wall interactions. Machine Protection aims to avoid hitting catastrophic limits by using early warning alarm systems, and controlled termination or avoidance, involving coordinated actions of the magnets, gas and auxiliary heating or current-drive systems. This article outlines the key processes, some of which are used in present-day tokamaks and some of which are new specifically for DEMO (e.g. First wall and divertor power handling) and reveals the need to research and develop new science and technology for Machine Protections in DEMO's high radiation and thermal fields. This work was funded by the RCUK Energy Programme under grant EP/I501045 and the European Communities under the contract of Association between EURATOM and CCFE and conducted partly under EFDA PPPT (WP13-DAS04). The views and opinions expressed herein do not necessarily reflect those of the European Commission.

  7. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A.; Moore, Troy K.

    1988-01-01

    An apparatus for thermally protecting heat sensitive components of tools. The apparatus comprises a Dewar for holding the heat sensitive components. The Dewar has spaced-apart inside and outside walls, an open top end and a bottom end. An insulating plug is located in the top end. The inside wall has portions defining an inside wall aperture located at the bottom of the Dewar and the outside wall has portions defining an outside wall aperture located at the bottom of the Dewar. A bottom connector has inside and outside components. The inside component sealably engages the inside wall aperture and the outside component sealably engages the outside wall aperture. The inside component is operatively connected to the heat sensitive components and to the outside component. The connections can be made with optical fibers or with electrically conducting wires.

  8. Economical wind protection - underground

    SciTech Connect (OSTI)

    Kiesling, E.W.

    1980-01-01

    Earth-sheltered buildings inherently posess near-absolute occupant protection from severe winds. They should sustain no structural damage and only minimal facial damage. Assuming that the lower-hazard risk attendant to this type of construction results in reduced insurance-premium rates, the owner accrues economic benefits from the time of construction. Improvements to aboveground buildings, in contrast, may not yield early economic benefits in spite of a favorable benefit-to-cost ratio. This, in addition to sensitivity to initial costs, traditionalism in residential construction, and lack of professional input to design, impede the widespread use of underground improvements and the subsequent economic losses from severe winds. Going underground could reverse the trend. 7 references.

  9. Method for smoothing the surface of a protective coating

    DOE Patents [OSTI]

    Sangeeta, D.; Johnson, Curtis Alan; Nelson, Warren Arthur

    2001-01-01

    A method for smoothing the surface of a ceramic-based protective coating which exhibits roughness is disclosed. The method includes the steps of applying a ceramic-based slurry or gel coating to the protective coating surface; heating the slurry/gel coating to remove volatile material; and then further heating the slurry/gel coating to cure the coating and bond it to the underlying protective coating. The slurry/gel coating is often based on yttria-stabilized zirconia, and precursors of an oxide matrix. Related articles of manufacture are also described.

  10. Surface protected lithium-metal-oxide electrodes

    DOE Patents [OSTI]

    Thackeray, Michael M.; Kang, Sun-Ho

    2016-04-05

    A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.

  11. Protection Program Operations - DOE Directives, Delegations,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.3, Protection Program Operations by jcronin Functional areas: Physical Protection, Protective Force, Safeguards, Security, and Emergency Management The Order establishes...

  12. Voluntary Protection Program Onsite Review, Washington River...

    Energy Savers [EERE]

    Washington River Protection Solutions, LLC, Hanford - Feb 2014 Voluntary Protection Program Onsite Review, Washington River Protection Solutions, LLC, Hanford - Feb 2014 February...

  13. Material Control & Accountability | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    for their MC&A programs; Supports standardized implementation of effective and efficient MC&A programs that are tailored to a well-characterized risk; Facilitates ...

  14. Chemistry Controls Material's Nanostructure | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration Chemist, Sandia National Laboratories Jerilyn Timlin Jerilyn Timlin October 2009 National Institutes of Health (NIH) New Innovator Award Jerilyn Timlin, a chemist at Sandia National Laboratories, has been presented by the National Institutes of Health (NIH) with a New Innovator Award, one of 55 such awards granted by the NIH this year. The award encourages researchers to explore bold ideas that have the potential to catapult fields forward and speed the translation of research

  15. Chemistry Controls Material's Nanostructure | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cadmium, sulfur and selenium will form selectively into shapes that look like either tadpoles or drumsticks depending on the relative reactivity of the selenium and sulfur...

  16. Materials at LANL

    SciTech Connect (OSTI)

    Taylor, Antoinette J

    2010-01-01

    Exploring the physics, chemistry, and metallurgy of materials has been a primary focus of Los Alamos National Laboratory since its inception. In the early 1940s, very little was known or understood about plutonium, uranium, or their alloys. In addition, several new ionic, polymeric, and energetic materials with unique properties were needed in the development of nuclear weapons. As the Laboratory has evolved, and as missions in threat reduction, defense, energy, and meeting other emerging national challenges have been added, the role of materials science has expanded with the need for continued improvement in our understanding of the structure and properties of materials and in our ability to synthesize and process materials with unique characteristics. Materials science and engineering continues to be central to this Laboratory's success, and the materials capability truly spans the entire laboratory - touching upon numerous divisions and directorates and estimated to include >1/3 of the lab's technical staff. In 2006, Los Alamos and LANS LLC began to redefine our future, building upon the laboratory's established strengths and promoted by strongly interdependent science, technology and engineering capabilities. Eight Grand Challenges for Science were set forth as a technical framework for bridging across capabilities. Two of these grand challenges, Fundamental Understanding of Materials and Superconductivity and Actinide Science. were clearly materials-centric and were led out of our organizations. The complexity of these scientific thrusts was fleshed out through workshops involving cross-disciplinary teams. These teams refined the grand challenge concepts into actionable descriptions to be used as guidance for decisions like our LDRD strategic investment strategies and as the organizing basis for our external review process. In 2008, the Laboratory published 'Building the Future of Los Alamos. The Premier National Security Science Laboratory,' LA-UR-08-1541. This document introduced three strategic thrusts that crosscut the Grand Challenges and define future laboratory directions and facilities: (1) Information Science and Technology enabl ing integrative and predictive science; (2) Experimental science focused on materials for the future; and (3) Fundamental forensic science for nuclear, biological, and chemical threats. The next step for the Materials Capability was to develop a strategic plan for the second thrust, Materials for the Future. within the context of a capabilities-based Laboratory. This work has involved extending our 2006-2007 Grand Challenge workshops, integrating materials fundamental challenges into the MaRIE definition, and capitalizing on the emerging materials-centric national security missions. Strategic planning workshops with broad leadership and staff participation continued to hone our scientific directions and reinforce our strength through interdependence. By the Fall of 2008, these workshops promoted our primary strength as the delivery of Predictive Performance in applications where Extreme Environments dominate and where the discovery of Emergent Phenomena is a critical. These planning efforts were put into action through the development of our FY10 LDRD Strategic Investment Plan where the Materials Category was defined to incorporate three central thrusts: Prediction and Control of Performance, Extreme Environments and Emergent Phenomena. As with all strategic planning, much of the benefit is in the dialogue and cross-fertilization of ideas that occurs during the process. By winter of 2008/09, there was much agreement on the evolving focus for the Materials Strategy, but there was some lingering doubt over Prediction and Control of Performance as one of the three central thrusts, because it overarches all we do and is, truly, the end goal for materials science and engineering. Therefore, we elevated this thrust within the overarching vision/mission and introduce the concept of Defects and Interfaces as a central thrust that had previously been implied but not clearly articulated.

  17. One million curies of radioactive material recovered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radioactive material recovered One million curies of radioactive material recovered The accomplishment represents a major milestone in protecting our nation and the world from material that could be used in "dirty bombs" by terrorists. December 22, 2014 Rick Day of Los Alamos National Laboratory's International Threat Reduction group and the Off-Site Source Recovery Project (OSRP) holds a non-radioactive training mockup of what a typical cobalt-60 source might look like. The source is

  18. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ID 412- 11/16/2012 - Page 1 Log No 2012-263 Reference Materials * Transporting Radioactive Waste to the Nevada National Security Site fact sheet (ww.nv.energy.gov/library/factsheets/DOENV_990.pdf) - Generators contract with commercial carriers - U.S. Department of Transportation regulations require carriers to select routes which minimize radiological risk * Drivers Route and Shipment Information Questionnaire completed by drivers to document routes taken to the NNSS upon entry into Nevada -

  19. Sandia National Laboratories: Research: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Research Materials Processing Sandia research staff understand, characterize, model, and ultimately control materials fabrication technologies that are critical to component development and production. Plasma Spray

  20. What waters does LANL protect?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    does LANL protect? Google Earth Tour: Waters around LANL Jemez Mountains Headwaters Watersheds The Rio Grande Buckman Direct Diversion Project Groundwater in the Regional Aquifer...

  1. EO 13158: Marine Protected Areas

    Broader source: Energy.gov [DOE]

    This Executive Order will help protect the significant natural and cultural resources within the marine environment for the benefit of present and future generations by strengthening and expanding...

  2. Los Alamos Lab: Radiation Protection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Occupational Radiation Protection (10 CFR 835) and enforced under the Price Anderson Amendments Act. We have over 250 knowledgeable professionals, who provide a full...

  3. CEBAF - environmental protection program plan

    SciTech Connect (OSTI)

    1995-10-01

    An important objective in the successful operation of the Continuous Electron Beam Accelerator Facility (CEBAF) is to ensure protection of the public and the environment. To meet this objective, the Southeastern Universities Research Association, Inc., (SURA) is committed to working with the US Department of Energy (DOE) to develop, implement, and manage a sound and workable environmental protection program at CEBAF. This environmental protection plan includes information on environmental monitoring, long-range monitoring, groundwater protection, waste minimization, and pollution prevention awareness program plan.

  4. ORISE: Protecting Human Subjects Website

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protecting Human Subjects Website Institutions that engage in human subjects research are required by federal policy to establish an institutional review board (IRB) to ensure that...

  5. What waters does LANL protect?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What waters does LANL protect? What waters does LANL protect? Rainfall in the Jemez Mountains flows to the Valles Caldera and eastward onto Laboratory lands. August 1, 2013 Reflection in the Valles Caldera RELATED IMAGES http://farm8.staticflickr.com/7252/7599998130_b7aef738b9_t.jpg Enlarge http://farm9.staticflickr.com/8421/7600000986_ebf8889fc7_t.jpg Enlarge Clean the Past: Water Protection What waters does LANL protect? Google Earth Tour: Waters around LANL Jemez Mountains Headwaters

  6. EPA's groundwater protection strategy

    SciTech Connect (OSTI)

    Smith, J. )

    1992-06-01

    What the EPA, working jointly with the states, hopes to accomplish over the next ten years in order to integrate and coordinate all the groundwater programs within the agency is discussed. Although many other EPA programs such as Superfund, Clean Air Act, and Wetlands Management are often highlighted in the media, EPA does not down rate the importance of groundwater protection. Indeed as a resource, it is one of the most important commodities. Groundwater is the basis for life in this country. Recharge rates are no where near what the withdrawal rates are in many areas of the country. Twenty-five percent of all the potable water comes from groundwater. Groundwater supplies 50 percent of the needs for all the US population. If you include strictly rural areas, it supplies 95 percent of all the use. Something that most people who are not groundwater hydrologists would not think about is the fact that groundwater is a recharge mechanism that provides over 30 percent of the flow in streams and major rivers.

  7. Evaluations in support of regulatory and research decisions by the U. S. Environmental Protection Agency for the control of toxic hazards from hazardous wastes, glyphosate, dalapon, and synthetic fuels

    SciTech Connect (OSTI)

    Scofield, R.

    1984-01-01

    This report includes toxicological and regulatory evaluations performed in support of U.S. EPA regulation of toxic materials and hazardous wastes. The first section of the report describes evaluations which support: (a) the regulation of small-volume generators of hazardous wastes, (b) the regulation of hazardous wastes from pesticide manufacturing, and (c) the disposal of the herbicide, silvex. The second section describes the environmental fate, transport, and effect of glyphosate and dalapon. The third section deals with synthetic fuels, including evaluations of synfuel-product toxicity, uncontrolled air emissions, and particular focus on the toxicity of products from several indirect coal liquefaction processes including methanol synthesis, Fischer-Tropsch, Mobil M-Gasoline, and Lurgi gasification technologies. Three direct coal liquefaction processes were examined for product toxicity and air emissions: Solvent Refined Coal (I and II) and the Exxon Donor Solvent Process. Also described in the third section is an evaluation of environmental and health hazards associated with the use of synthetic fuels from indirect coal liquefaction, direct coal liquefaction, and shale oil. Finally, the fourth section discusses some problems associated with performing, on a contractual basis, scientific and technical evaluations in support of U.S. EPA regulatory and research decisions.

  8. Method of sintering ceramic materials

    DOE Patents [OSTI]

    Holcombe, C.E.; Dykes, N.L.

    1992-11-17

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density. 2 figs.

  9. Method of sintering ceramic materials

    DOE Patents [OSTI]

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  10. Voluntary Protection programs Participants' Association - Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protection Programs Participants' Association (VPPPA) Presentations: Star Track Voluntary Protection Programs Participants' Association (VPPPA) Presentation: Wellness Programs

  11. Beijing Hualianda Environmental Protection Energy Technology...

    Open Energy Info (EERE)

    Hualianda Environmental Protection Energy Technology Development Co Ltd Jump to: navigation, search Name: Beijing Hualianda Environmental Protection Energy Technology Development...

  12. Shanxi Taiyuan Zihuan Environmental Protection Technology | Open...

    Open Energy Info (EERE)

    Taiyuan Zihuan Environmental Protection Technology Jump to: navigation, search Name: Shanxi Taiyuan Zihuan Environmental Protection Technology Place: Taiyuan City, Shaanxi...

  13. 2009 Voluntary Protection Programs Participants' Association...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentaton: Employee Led Safety Committees 2009 Voluntary Protection Programs Participants' Association (VPPPA) Presentaton: Employee Led Safety Committees 2009 Voluntary Protection ...

  14. System and method for quench protection of a superconductor

    DOE Patents [OSTI]

    Huang, Xianrui; Sivasubramaniam, Kiruba Haran; Bray, James William; Ryan, David Thomas

    2008-03-11

    A system and method for protecting a superconductor from a quench condition. A quench protection system is provided to protect the superconductor from damage due to a quench condition. The quench protection system comprises a voltage detector operable to detect voltage across the superconductor. The system also comprises a frequency filter coupled to the voltage detector. The frequency filter is operable to couple voltage signals to a control circuit that are representative of a rise in superconductor voltage caused by a quench condition and to block voltage signals that are not. The system is operable to detect whether a quench condition exists in the superconductor based on the voltage signal received via the frequency filter and to initiate a protective action in response.

  15. Headquarters Facilities Master Security Plan- Chapter 13, Controlled Unclassified Information

    Broader source: Energy.gov [DOE]

    2016 Headquarters Facilities Master Security Plan - Chapter 13, Controlled Unclassified Information Describes DOE Headquarters procedures for protecting Controlled Unclassified Information (CUI).

  16. Distributed Intelligence Architecture for Real-Time Control,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Intelligence Architecture for Real-Time Control, Protection and Instrumentation Systems Architecture of complex, high-speed, Real-Time Instrumentation, Acquisition, Control ...

  17. Combined group ECC protection and subgroup parity protection

    DOE Patents [OSTI]

    Gara, Alan G.; Chen, Dong; Heidelberger, Philip; Ohmacht, Martin

    2013-06-18

    A method and system are disclosed for providing combined error code protection and subgroup parity protection for a given group of n bits. The method comprises the steps of identifying a number, m, of redundant bits for said error protection; and constructing a matrix P, wherein multiplying said given group of n bits with P produces m redundant error correction code (ECC) protection bits, and two columns of P provide parity protection for subgroups of said given group of n bits. In the preferred embodiment of the invention, the matrix P is constructed by generating permutations of m bit wide vectors with three or more, but an odd number of, elements with value one and the other elements with value zero; and assigning said vectors to rows of the matrix P.

  18. Combined group ECC protection and subgroup parity protection

    DOE Patents [OSTI]

    Gara, Alan; Cheng, Dong; Heidelberger, Philip; Ohmacht, Martin

    2016-02-02

    A method and system are disclosed for providing combined error code protection and subgroup parity protection for a given group of n bits. The method comprises the steps of identifying a number, m, of redundant bits for said error protection; and constructing a matrix P, wherein multiplying said given group of n bits with P produces m redundant error correction code (ECC) protection bits, and two columns of P provide parity protection for subgroups of said given group of n bits. In the preferred embodiment of the invention, the matrix P is constructed by generating permutations of m bit wide vectors with three or more, but an odd number of, elements with value one and the other elements with value zero; and assigning said vectors to rows of the matrix P.

  19. Casting materials

    DOE Patents [OSTI]

    Chaudhry, Anil R.; Dzugan, Robert; Harrington, Richard M.; Neece, Faurice D.; Singh, Nipendra P.

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  20. Alloy materials

    DOE Patents [OSTI]

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  1. Construction material

    DOE Patents [OSTI]

    Wagh, Arun S. (Orland Park, IL); Antink, Allison L. (Bolingbrook, IL)

    2008-07-22

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  2. Environmental protection in the Beatrice field development

    SciTech Connect (OSTI)

    Hay, J.T.C.; Hay, H.D.; Debnam, G.F.

    1982-01-01

    The development of the Beatrice field in the inner Moray Firth area of the UK North Sea has presented problems in the area of environmental protection. Because the field lies only 12 miles from a totally unspoiled coastline of very great scenic beauty and environmental quality, it was necessary, before field development approval could be obtained, to convince central government, local authorities, and various nature preservation bodies that an environmental protection plan could be developed. The plan, which covered the offshore field, pipeline and onshore terminal, consisted essentially of 3 main elements: (1) an environmental impact analysis was commissioned; (2) a plan was drawn up to deal with the prevention and control of spillages; and (3) a series of technical discussions took place with local and central government authorities.

  3. Criteria for Packaging and Storing Uranium-233-Bearing Materials

    Office of Environmental Management (EM)

    ... MBA Material Balance Area MC&A Materials Control and Accountability NDA Non-destructive ... of contents through non-destructive assay (NDA) measurements, and any other information ...

  4. Chemical and biological warfare: Protection, decontamination, and disposal. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1997-11-01

    The bibliography contains citations concerning the means to defend against chemical and biological agents used in military operations, and to eliminate the effects of such agents on personnel, equipment, and grounds. Protection is accomplished through protective clothing and masks, and in buildings and shelters through filtration. Elimination of effects includes decontamination and removal of the agents from clothing, equipment, buildings, grounds, and water, using chemical deactivation, incineration, and controlled disposal of material in injection wells and ocean dumping. Other Published Searches in this series cover chemical warfare detection; defoliants; general studies; biochemistry and therapy; and biology, chemistry, and toxicology associated with chemical warfare agents.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Chemical and biological warfare: Protection, decontamination, and disposal. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The bibliography contains citations concerning the means to defend against chemical and biological agents used in military operations, and to eliminate the effects of such agents on personnel, equipment, and grounds. Protection is accomplished through protective clothing and masks, and in buildings and shelters through filtration. Elimination of effects includes decontamination and removal of the agents from clothing, equipment, buildings, grounds, and water, using chemical deactivation, incineration, and controlled disposal of material in injection wells and ocean dumping. Other Published Searches in this series cover chemical warfare detection; defoliants; general studies; biochemistry and therapy; and biology, chemistry, and toxicology associated with chemical warfare agents. (Contains 250 citations and includes a subject term index and title list.)

  6. REACTOR CONTROL

    DOE Patents [OSTI]

    Ruano, W.J.

    1957-12-10

    This patent relates to nuclear reactors of the type which utilize elongited rod type fuel elements immersed in a liquid moderator and shows a design whereby control of the chain reaction is obtained by varying the amount of moderator or reflector material. A central tank for containing liquid moderator and fuel elements immersed therein is disposed within a surrounding outer tank providing an annular space between the two tanks. This annular space is filled with liquid moderator which functions as a reflector to reflect neutrons back into the central reactor tank to increase the reproduction ratio. Means are provided for circulating and cooling the moderator material in both tanks and additional means are provided for controlling separately the volume of moderator in each tank, which latter means may be operated automatically by a neutron density monitoring device. The patent also shows an arrangement for controlling the chain reaction by injecting and varying an amount of poisoning material in the moderator used in the reflector portion of the reactor.

  7. Adaptive protection algorithm and system

    DOE Patents [OSTI]

    Hedrick, Paul (Pittsburgh, PA) [Pittsburgh, PA; Toms, Helen L. (Irwin, PA) [Irwin, PA; Miller, Roger M. (Mars, PA) [Mars, PA

    2009-04-28

    An adaptive protection algorithm and system for protecting electrical distribution systems traces the flow of power through a distribution system, assigns a value (or rank) to each circuit breaker in the system and then determines the appropriate trip set points based on the assigned rank.

  8. Corrosion protection for silver reflectors

    DOE Patents [OSTI]

    Arendt, Paul N.; Scott, Marion L.

    1991-12-31

    A method of protecting silver reflectors from damage caused by contact with gaseous substances which are often present in the atmosphere and a silver reflector which is so protected. The inventive method comprises at least partially coating a reflector with a metal oxide such as aluminum oxide to a thickness of 15 .ANG. or less.

  9. Acid soluble, pepsin resistant platelet aggregating material

    DOE Patents [OSTI]

    Schneider, Morris D. (Knoxville, TN)

    1982-08-31

    Acid soluble, pepsin resistant, platelet aggregating material isolated from equine arterial tissue by extraction with dilute aqueous acid, method of isolation and use to control bleeding.

  10. Materials Creation and Directed Transformations | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    character and nature of electrochemical reactions within electrode materials? Research Context While the electrochemical reactions are thermodynamically controlled, the pathway of...

  11. DOE Fire Protection Handbook, Volume I

    SciTech Connect (OSTI)

    1996-08-01

    The Department of Energy (DOE) Fire Protection Program is delineated in a number of source documents including; the Code of Federal Regulations (CFR), DOE Policy Statements and Orders, DOE and national consensus standards (such as those promulgated by the National Fire Protection Association), and supplementary guidance, This Handbook is intended to bring together in one location as much of this material as possible to facilitate understanding and ease of use. The applicability of any of these directives to individual Maintenance and Operating Contractors or to given facilities and operations is governed by existing contracts. Questions regarding applicability should be directed to the DOE Authority Having Jurisdiction for fire safety. The information provided within includes copies of those DOE directives that are directly applicable to the implementation of a comprehensive fire protection program. They are delineated in the Table of Contents. The items marked with an asterisk (*) are included on the disks in WordPerfect 5.1 format, with the filename noted below. The items marked with double asterisks are provided as hard copies as well as on the disk. For those using MAC disks, the files are in Wordperfect 2.1 for MAC.

  12. Temporary coatings for protection of microelectronic devices during packaging

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Conley, William R.

    2005-01-18

    The present invention relates to a method of protecting a microelectronic device during device packaging, including the steps of applying a water-insoluble, temporary protective coating to a sensitive area on the device; performing at least one packaging step; and then substantially removing the protective coating, preferably by dry plasma etching. The sensitive area can include a released MEMS element. The microelectronic device can be disposed on a wafer. The protective coating can be a vacuum vapor-deposited parylene polymer, silicon nitride, metal (e.g. aluminum or tungsten), a vapor deposited organic material, cynoacrylate, a carbon film, a self-assembled monolayered material, perfluoropolyether, hexamethyldisilazane, or perfluorodecanoic carboxylic acid, silicon dioxide, silicate glass, or combinations thereof. The present invention also relates to a method of packaging a microelectronic device, including: providing a microelectronic device having a sensitive area; applying a water-insoluble, protective coating to the sensitive area; providing a package; attaching the device to the package; electrically interconnecting the device to the package; and substantially removing the protective coating from the sensitive area.

  13. TANK VAPOR CHEMICALS OF POTENTIAL CONCERN & EXISTING DIRECT READING INSTRUMENTION & PERSONAL PROTECTIVE EQUIPMENT CONSIDERATIONS

    SciTech Connect (OSTI)

    BUTLER, N.K.

    2004-11-01

    This document takes the newly released Industrial Hygiene Chemical Vapor Technical Basis (RPP-22491) and evaluates the chemicals of potential concern (COPC) identified for selected implementation actions by the industrial hygiene organization. This document is not intended as a hazard analysis with recommended controls for all tank farm activities. Not all of the chemicals listed are present in all tanks; therefore, hazard analyses can and should be tailored as appropriate. Detection of each chemical by current industrial hygiene non-specific instrumentation in use at the tank farms is evaluated. Information gaps are identified and recommendations are made to resolve these needs. Of the 52 COPC, 34 can be detected with existing instrumentation. Three additional chemicals could be detected with a photoionization detector (PID) equipped with a different lamp. Discussion with specific instrument manufacturers is warranted. Consideration should be given to having the SapphIRe XL customized for tank farm applications. Other instruments, sampling or modeling techniques should be evaluated to estimate concentrations of chemicals not detected by direct reading instruments. In addition, relative instrument response needs to be factored in to action levels used for direct reading instruments. These action levels should be correlated to exposures to the COPC and corresponding occupational exposure limits (OELs). The minimum respiratory protection for each of the COPC is evaluated against current options. Recommendations are made for respiratory protection based on each chemical. Until exposures are sufficiently quantified and analyzed, the current use of supplied air respiratory protection is appropriate and protective for the COPC. Use of supplied air respiratory protection should be evaluated once a detailed exposure assessment for the COPC is completed. The established tank farm OELs should be documented in the TFC-PLN-34. For chemicals without an established tank farm OEL, consideration should be given to adopting protective limits from NIOSH, AIHA, or developing OELs. Protective gloves and suits are evaluated for each chemical for which information is available. Information gaps are identified for some of the compounds and materials. Recommendations are made for resolving these needs. Based on available information, Silver Shield{reg_sign} gloves are promising for tank farm applications. However, permeation testing documentation is needed for the COPC and mixtures for Silver Shield{reg_sign} gloves to evaluate their protectiveness. North Safety Products is expected to provide the requested documentation. Multiple Tychem{reg_sign} products are available. There is overlap between chemicals and effective materials. Further hazard evaluation to determine actual hazards and permeation testing documentation is required to assess the efficacy of a single Tychem{reg_sign} product for tank farm applications. All of this chemical specific data is combined into a spreadsheet that will assist the industrial hygienist in the selection of monitoring instruments, respiratory protection selection and protective clothing for performing work at a specific tank(s).

  14. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and thin film solar cells, to explore non-vacuum ink-based approaches to solar cell production, as well as large-scale and low-cost deposition and processing of thin film CdTe material.

  15. Quantum & Energy Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum & Energy Materials Quantum & Energy Materials The CNM's Quantum and Energy Materials (QEM)* group seeks to take control of materials at the atomic and molecular scale to better understand and utilize their behavior and properties. By doing so, we aim to pave the way for breakthroughs in new energy conversion and power-efficient energy technologies. QEM research is comprised of several key areas including low-dimensional materials such as graphene and heterostructures formed by

  16. Environmental impact of APC residues from municipal solid waste incineration: Reuse assessment based on soil and surface water protection criteria

    SciTech Connect (OSTI)

    Quina, Margarida J.; Bordado, Joao C.M.; Quinta-Ferreira, Rosa M.

    2011-09-15

    Highlights: > The Dutch Building Material Decree (BMD) was used to APC residues from MSWI. > BMD is a straightforward tool to calculate expectable loads to the environment of common pollutants. > Chloride load to the environment lead to classification of building material not allowed. > At least a pre-treatment (e.g. washing) is required in order to remove soluble salts. > The stabilization with phosphates or silicates eliminate the problem of heavy metals. - Abstract: Waste management and environmental protection are mandatory requirements of modern society. In our study, air pollution control (APC) residues from municipal solid waste incinerators (MSWI) were considered as a mixture of fly ash and fine particulate solids collected in scrubbers and fabric filters. These are hazardous wastes and require treatment before landfill. Although there are a number of treatment options, it is highly recommended to find practical applications rather than just dump them in landfill sites. In general, for using a construction material, beyond technical specifications also soil and surface water criteria may be used to ensure environmental protection. The Dutch Building Materials Decree (BMD) is a valuable tool in this respect and it was used to investigate which properties do not meet the threshold criteria so that APC residues can be further used as secondary building material. To this end, some scenarios were evaluated by considering release of inorganic species from unmoulded and moulded applications. The main conclusion is that the high amount of soluble salts makes the APC residues a building material prohibited in any of the conditions tested. In case of moulding materials, the limits of heavy metals are complied, and their use in Category 1 would be allowed. However, also in this case, the soluble salts lead to the classification of 'building material not allowed'. The treatments with phosphates or silicates are able to solve the problem of heavy metals, but difficulties with the soluble salts are still observed. This analysis suggests that for APC residues to comply with soil and surface water protection criteria to be further used as building material at least a pre-treating for removing soluble salts is absolutely required.

  17. SLUDGE TREATMENT PROJECT KOP CONCEPTUAL DESIGN CONTROL DECISION REPORT

    SciTech Connect (OSTI)

    CARRO CA

    2010-03-09

    This control decision addresses the Knock-Out Pot (KOP) Disposition KOP Processing System (KPS) conceptual design. The KPS functions to (1) retrieve KOP material from canisters, (2) remove particles less than 600 {micro}m in size and low density materials from the KOP material, (3) load the KOP material into Multi-Canister Overpack (MCO) baskets, and (4) stage the MCO baskets for subsequent loading into MCOs. Hazard and accident analyses of the KPS conceptual design have been performed to incorporate safety into the design process. The hazard analysis is documented in PRC-STP-00098, Knock-Out Pot Disposition Project Conceptual Design Hazard Analysis. The accident analysis is documented in PRC-STP-CN-N-00167, Knock-Out Pot Disposition Sub-Project Canister Over Lift Accident Analysis. Based on the results of these analyses, and analyses performed in support of MCO transportation and MCO processing and storage activities at the Cold Vacuum Drying Facility (CVDF) and Canister Storage Building (CSB), control decision meetings were held to determine the controls required to protect onsite and offsite receptors and facility workers. At the conceptual design stage, these controls are primarily defined by their safety functions. Safety significant structures, systems, and components (SSCs) that could provide the identified safety functions have been selected for the conceptual design. It is anticipated that some safety SSCs identified herein will be reclassified based on hazard and accident analyses performed in support of preliminary and detailed design.

  18. Critical Materials Workshop

    Broader source: Energy.gov [DOE]

    Presentations during the Critical Materials Workshop held on April 3, 2012 overviewing critical materials strategies

  19. Model Fire Protection Assessment Guide

    Broader source: Energy.gov [DOE]

    This Assessment guide covers the implementation of the DOE's responsibility of assuring that DOE and the DOE Contractors have established Fire Protection Programs that are at the level required for the area being assessed.

  20. CRAD, NNSA- Fire Protection (FP)

    Office of Energy Efficiency and Renewable Energy (EERE)

    CRAD for Fire Protection (FR). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs.

  1. CRAD, NNSA- Radiation Protection (RP)

    Broader source: Energy.gov [DOE]

    CRAD for Radiation Protection (RP). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs.

  2. Physical Protection of Classified Matter

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1988-02-03

    The order establishes policy and objectives for physical protection of classified matter. This directive does not cancel another directive. Chg 1, 7-30-93. Canceled by 5632.1C.

  3. Materials Frontiers to Empower Quantum Computing

    SciTech Connect (OSTI)

    Taylor, Antoinette Jane; Sarrao, John Louis; Richardson, Christopher

    2015-06-11

    This is an exciting time at the nexus of quantum computing and materials research. The materials frontiers described in this report represent a significant advance in electronic materials and our understanding of the interactions between the local material and a manufactured quantum state. Simultaneously, directed efforts to solve materials issues related to quantum computing provide an opportunity to control and probe the fundamental arrangement of matter that will impact all electronic materials. An opportunity exists to extend our understanding of materials functionality from electronic-grade to quantum-grade by achieving a predictive understanding of noise and decoherence in qubits and their origins in materials defects and environmental coupling. Realizing this vision systematically and predictively will be transformative for quantum computing and will represent a qualitative step forward in materials prediction and control.

  4. ORISE: Protecting Human Subjects Website

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protecting Human Subjects Website Institutions that engage in human subjects research are required by federal policy to establish an institutional review board (IRB) to ensure that risks to human subjects in research are minimal and to provide protection with respect to the rights and welfare of research subjects. The Oak Ridge Institute for Science and Education (ORISE) administers the Oak Ridge Sitewide Institutional Review Board (ORSIRB) and manages the ORISE Human Subjects website. The

  5. Critical Materials Institute

    ScienceCinema (OSTI)

    Alex King

    2013-06-05

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  6. Overdischarge protection in high-temperature cells and batteries

    DOE Patents [OSTI]

    Redey, L.

    1990-06-19

    Overdischarge indication and protection is provided in a lithium alloy metal sulfide, secondary electrochemical cell and batteries of such cells through use of a low lithium activity phase that ordinarily is not matched with positive electrode material. Low lithium activity phases such as Li[sub 0.1]Al[sub 0.9] and LiAlSi in correspondence with positive electrode material cause a downward gradient in cell voltage as an indication of overdischarge prior to damage to the cell. Moreover, the low lithium activity phase contributes lithium into the electrolyte and provides a lithium shuttling current as overdischarge protection after all of the positive electrode material is discharged. 8 figs.

  7. Base drive and overlap protection circuit

    DOE Patents [OSTI]

    Gritter, David J.

    1983-01-01

    An inverter (34) which provides power to an A. C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A. C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A. C. machine is optimized. The control circuit includes a microcomputer and memory element which receive various parametric inputs and calculate optimized machine control data signals therefrom. The control data is asynchronously loaded into the inverter through an intermediate buffer (38). A base drive and overlap protection circuit is included to insure that both transistors of a complimentary pair are not conducting at the same time. In its preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack (32) and a three-phase induction motor (18).

  8. Protective circuit for thyristor controlled systems and thyristor converter embodying such protective circuit

    DOE Patents [OSTI]

    Downhower, Jr., Francis H. (Alden, NY); Finlayson, Paul T. (Depew, NY)

    1984-04-10

    A snubber circuit coupled across each thyristor to be gated in a chain of thyristors determines the critical output of a NOR LATCH whenever one snubber circuit could not be charged and discharged under normal gating conditions because of a short failure.

  9. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  10. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  11. Tech Transfer Webinar: Energy Absorbing Materials

    SciTech Connect (OSTI)

    Duoss, Eric

    2014-06-17

    A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  12. Tech Transfer Webinar: Energy Absorbing Materials

    ScienceCinema (OSTI)

    Duoss, Eric

    2014-07-15

    A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  13. Protection Program Operations (11-18-10)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-11-18

    This new Order will combine the current requirements of DOE Manuals 470.4-2A, Physical Protection; M 470.4-3A, Protective Force; and 470.4-8, Federal Protective Force, into a single consolidated, streamlined Order.

  14. Identification and Protection of Unclassified Controlled Nuclear Information Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-30

    The Manual provides detailed requirements to supplement the Order. Extended by DOE N 251.58, dated 07/06/2004, until 06/30/2005. Canceled by: DOE O 471.B. Does not cancel other directives.

  15. Protective sheath for a continuous measurement thermocouple

    DOE Patents [OSTI]

    Phillippi, R. Michael

    1991-01-01

    Disclosed is a protective thermocouple sheath of a magnesia graphite refractory material for use in continuous temperature measurements of molten metal in a metallurgical ladle and having a basic slag layer thereon. The sheath includes an elongated torpedo-shaped sheath body formed of a refractory composition and having an interior borehole extending axially therethrough and adapted to receive a thermocouple. The sheath body includes a lower end which is closed about the borehole and forms a narrow, tapered tip. The sheath body also includes a first body portion integral with the tapered tip and having a relatively constant cross section and providing a thin wall around the borehole. The sheath body also includes a second body portion having a relatively constant cross section larger than the cross section of the first body portion and providing a thicker wall around the borehole. The borehole terminates in an open end at the second body portion. The tapered tip is adapted to penetrate the slag layer and the thicker second body portion and its magnesia constituent material are adapted to withstand chemical attack thereon from the slag layer. The graphite constituent improves thermal conductivity of the refractory material and, thus, enhances the thermal responsiveness of the device.

  16. Protective sheath for a continuous measurement thermocouple

    DOE Patents [OSTI]

    Phillippi, R.M.

    1991-12-03

    Disclosed is a protective thermocouple sheath of a magnesia graphite refractory material for use in continuous temperature measurements of molten metal in a metallurgical ladle and having a basic slag layer thereon. The sheath includes an elongated torpedo-shaped sheath body formed of a refractory composition and having an interior borehole extending axially therethrough and adapted to receive a thermocouple. The sheath body includes a lower end which is closed about the borehole and forms a narrow, tapered tip. The sheath body also includes a first body portion integral with the tapered tip and having a relatively constant cross section and providing a thin wall around the borehole. The sheath body also includes a second body portion having a relatively constant cross section larger than the cross section of the first body portion and providing a thicker wall around the borehole. The borehole terminates in an open end at the second body portion. The tapered tip is adapted to penetrate the slag layer and the thicker second body portion and its magnesia constituent material are adapted to withstand chemical attack thereon from the slag layer. The graphite constituent improves thermal conductivity of the refractory material and, thus, enhances the thermal responsiveness of the device. 4 figures.

  17. Geopolymer resin materials, geopolymer materials, and materials produced thereby

    DOE Patents [OSTI]

    Seo, Dong-Kyun; Medpelli, Dinesh; Ladd, Danielle; Mesgar, Milad

    2016-03-29

    A product formed from a first material including a geopolymer resin material, a geopolymer resin, or a combination thereof by contacting the first material with a fluid and removing at least some of the fluid to yield a product. The first material may be formed by heating and/or aging an initial geopolymer resin material to yield the first material before contacting the first material with the fluid. In some cases, contacting the first material with the fluid breaks up or disintegrates the first material (e.g., in response to contact with the fluid and in the absence of external mechanical stress), thereby forming particles having an external dimension in a range between 1 nm and 2 cm.

  18. PROTECT: Enhanced Technology to Protect Against Chemical and Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Terrorism - Energy Innovation Portal Energy Analysis Energy Analysis Find More Like This Return to Search PROTECT: Enhanced Technology to Protect Against Chemical and Biological Terrorism Argonne National Laboratory Contact ANL About This Technology <p class="Default" style="margin: 4pt 0in 2pt; line-height: 8.05pt;"> <i><span style="color: windowtext; font-family: &quot;Franklin Gothic Medium&quot;,&quot;sans-serif&quot;; font-size:

  19. Materials Project: A Materials Genome Approach

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ceder, Gerbrand [MIT; Persson, Kristin [LBNL

    Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, this project has computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The computations predicted several new battery materials which were made and tested in the lab and are now being patented. By computing properties of all known materials, the Materials Project aims to remove guesswork from materials design in a variety of applications. Experimental research can be targeted to the most promising compounds from computational data sets. Researchers will be able to data-mine scientific trends in materials properties. By providing materials researchers with the information they need to design better, the Materials Project aims to accelerate innovation in materials research.[copied from http://materialsproject.org/about] You will be asked to register to be granted free, full access.

  20. Silicon nitride protective coatings for silvered glass mirrors

    DOE Patents [OSTI]

    Tracy, C. Edwin; Benson, David K.

    1988-01-01

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  1. Silicon nitride protective coatings for silvered glass mirrors

    DOE Patents [OSTI]

    Tracy, C.E.; Benson, D.K.

    1984-07-20

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate prior to metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  2. Fire Protection Program Publications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These include a comprehensive model fire protection program, model fire hazards analyses and assessments, fire protection system inspection and testing procedures, and related ...

  3. 10 CFR 835- Occupational Radiation Protection

    Broader source: Energy.gov [DOE]

    The rules in this part establish radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of DOE activities.

  4. Sinosteel Tiancheng Environmental Protection Science and Technology...

    Open Energy Info (EERE)

    Environmental Protection Science and Technology Co Ltd Jump to: navigation, search Name: Sinosteel Tiancheng Environmental Protection Science and Technology Co Ltd Place: Wuhan,...

  5. Hitec Power Protection | Open Energy Information

    Open Energy Info (EERE)

    search Name: Hitec Power Protection Place: Almelo, Netherlands Zip: 7602 Product: UPS flywheel systems. References: Hitec Power Protection1 This article is a stub. You can help...

  6. Environmental Protection Agency: Handbook for Developing Watershed...

    Open Energy Info (EERE)

    Environmental Protection Agency: Handbook for Developing Watershed Plans to Restore and Protect Our Waters Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  7. California Environmental Protection Agency | Open Energy Information

    Open Energy Info (EERE)

    Agency Jump to: navigation, search Logo: California Environmental Protection Agency Name: California Environmental Protection Agency Address: 1001 I Street, PO Box 2815 Place:...

  8. Protection #2: Trap and Remove Sediment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trap and Remove Sediment Protection 2: Trap and Remove Sediment The 3 Protections Defense in Depth August 1, 2013 Sediment behind LA Canyon weir is sampled and excavated...

  9. Voluntary Protection Program Onsite Review, Bechtel National...

    Office of Environmental Management (EM)

    Review, Waste Treatment Project - May 2006 Voluntary Protection Program Onsite Review, Waste Treatment Plant Construction Project - June 2010 Voluntary Protection Program Onsite...

  10. Nationwide: National Fire Protection Association Provides Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Fire Protection Association Provides Training to First Responders on EVsPEVs Nationwide: National Fire Protection Association Provides Training to First Responders on...

  11. Nationwide: National Fire Protection Association Provides Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nationwide: National Fire Protection Association Provides Training to First Responders on EVsPEVs Nationwide: National Fire Protection Association Provides Training to First...

  12. Shanghai Green Environmental Protection Energy Company Ltd |...

    Open Energy Info (EERE)

    Green Environmental Protection Energy Company Ltd Jump to: navigation, search Name: Shanghai Green Environmental Protection Energy Company Ltd Place: Shanghai, Shanghai...

  13. Archaeological Resources Protection Act | Open Energy Information

    Open Energy Info (EERE)

    Resources Protection Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Archaeological Resources Protection ActLegal...

  14. Archaeological Resources Protection Act | Open Energy Information

    Open Energy Info (EERE)

    Resource Protection Act) Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Archaeological Resources Protection ActLegal...

  15. Nanocomposite protective coatings for battery anodes (Patent...

    Office of Scientific and Technical Information (OSTI)

    Nanocomposite protective coatings for battery anodes Title: Nanocomposite protective ... USDOE Country of Publication: United States Language: English Subject: 25 ENERGY STORAGE

  16. Physical Protection - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2A, Physical Protection by jcronin Functional areas: Security, This Manual establishes requirements for the physical protection of interests under the U.S. Department of Energys...

  17. Lithium-ion batteries with intrinsic pulse overcharge protection

    DOE Patents [OSTI]

    Chen, Zonghai; Amine, Khalil

    2013-02-05

    The present invention relates in general to the field of lithium rechargeable batteries, and more particularly relates to the positive electrode design of lithium-ion batteries with improved high-rate pulse overcharge protection. Thus the present invention provides electrochemical devices containing a cathode comprising at least one primary positive material and at least one secondary positive material; an anode; and a non-aqueous electrolyte comprising a redox shuttle additive; wherein the redox potential of the redox shuttle additive is greater than the redox potential of the primary positive material; the redox potential of the redox shuttle additive is lower than the redox potential of the secondary positive material; and the redox shuttle additive is stable at least up to the redox potential of the secondary positive material.

  18. LANSCE | Materials Test Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Office Contact Administrative nav background Materials Test Station dotline ... Materials Test Station: the Preferred Alternative When completed, the Materials Test ...

  19. A Google for Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kristin Persson A Google for Materials February 4, 2014 Kirstin Persson, Berkeley Lab Downloads Persson-Materials-NUG2014.pdf | Adobe Acrobat PDF file A Google For Materials? -...

  20. Radiation Protection of the Public and the Environment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-02-11

    The order establishes requirements to protect the public and the environment against undue risk from radiation associated with radiological activities conducted under the control of DOE pursuant to the Atomic Energy Act of 1954, as amended. Canceled by DOE O 458.1, Admin Chg 2.

  1. Radiation Protection of the Public and the Environment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-06

    The order establishes requirements to protect the public and the environment against undue risk from radiation associated with radiological activities conducted under the control of DOE pursuant to the Atomic Energy Act of 1954, as amended. Cancels DOE 5400.5 in its entirety.

  2. Durability of Metallic Interconnects and Protective Coatings

    SciTech Connect (OSTI)

    Yang, Zhenguo; Stevenson, Jeffry W.

    2009-12-15

    To build up a useful voltage, a number of solid oxide fuel cells (SOFCs) are electrically connected into series in a stack via interconnects, which are placed between adjacent cells. In addition to functioning as a bi-polar electrical connector, the interconnect also acts as a separator plate that separates the fuel at the anode side of one cell from the air at the cathode side on an adjacent cell. During SOFC operation at the high temperatures, the interconnects are thus simultaneously exposed to the oxidizing air at one side and a reducing fuel that can be either hydrogen or hydrocarbon at the other. Besides, they are in contact with adjacent components, such as electrodes or electrical contacts, seals, etc. With steady reduction in SOFC operating temperatures into the low or intermediate range 600-850oC, oxidation resistant alloys are often used to construct interconnects. However, the metallic interconnects may degrade via interactions at their interfaces with surrounding environments or adjacent components, potentially affecting the stability and performance of interconnects and the SOFC stacks. Thus protection layers are applied to metallic interconnects that also intend to mitigate or prevent chromium migration into cells and the cell poisoning. This chapter provides a comprehensive review of materials for metallic interconnects, their degradation and coating protection.

  3. UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    e'-ä\r., a"àT#j UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 6 14,15 ROSS AVENUE, SUITE 1200 DALLAS, TX 752A2-n33 JA¡t 5 20ll cERTrrmD rytAlr- RETIIRN RECETPT REOITESIEn COPY Edward Ziemianski Acting Manager U.S. Department of Energy Carlsbad Field Offïce P.O. Box 3090 Carlsbad, NM 88221 RE: United States Environmental Protection Agency (EPA) Region 6 Response to the Waste Isolation Pilot Plant OVPP) Approval Request to Use Panel 8 to Store and Land Dispose Polychlorinated

  4. Protection #1: Remove the Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remove the Source Protection #1: Remove the Source The 3 Protections = Defense in Depth August 1, 2013 Waste being removed from MDA-B inside a metal building Excavation of waste from MDA-B thumbnail of Removing the source means excavating contaminants, sorting these by waste type, and transporting to a disposal area in which contaminants are contained. RELATED IMAGES http://farm8.staticflickr.com/7388/9571274521_679fe1e34a_t.jpg Enlarge http://farm4.staticflickr.com/3726/9571272211_6873a5717f

  5. Advanced protective coatings for gas turbine blading

    SciTech Connect (OSTI)

    Czech, N.; Stamm, W.

    1998-07-01

    The new gas turbines now being marketed are characterized by outputs and efficiencies which were unthinkable just a few years ago. A key factor for achieving efficiency is the highest possible turbine inlet temperature, currently approx. 1,400 C. In such a machine, it is the turbine blades which are subjected to the greatest thermal and mechanical stresses. They are also subjected to extreme chemical stress in the form of oxidation, which in the following is understood as the corrosive action due almost exclusively to the temperature of the turbine blade surface and (to a much lesser degree) the pressure and oxygen content of the hot gas. In many cases, this is compounded by hot corrosion, which results in accelerated oxidation due to impurities in the fuel and air. In terms of physics, this demanding challenge requires the use of cooling techniques which push the envelope of feasibility. In terms of materials engineering, an innovative multifaceted solution is called for. In more concrete terms, this means a combination of convection, impingement and film cooling of blades made of the strongest high-temperature alloy materials and coated with one or possibly multiple coatings. The base material ensures the blade's mechanical integrity while the coating(s) provide(s) protection against the oxidizing and corrosive attack, as well as the thermal stresses which cannot be sufficiently mitigated by cooling. The superiority of single crystal materials over polycrystalline or directionally solidified nickel-base superalloys is illustrated. The coating is a third-generation NiCoCrAIY VPS (vacuum plasma spray) coating. In the paper, the authors discuss the current status of coating developments for large, stationary gas turbines and present solutions for achieving important development objectives.

  6. Interactive Simulation of Nuclear Materials Safeguards and Security

    Energy Science and Technology Software Center (OSTI)

    1994-03-14

    THIEF is an interactive computer simulation or computer game of the safeguards and security (S&S) systems of a nuclear facility. The user is placed in the role of a non-violent insider attempting to remove special nuclear material from the facility. All portions of the S&S system that are relevant to the non-violent insider threat are included. The computer operates the S&S systems and attempts to detect the loss of the nuclear material. Both the physicalmore » protection system and the materials control and accounting system are modeled. The description of the facility and its S&S systems are defined by the user with the aid of an input module. All aspects of the facility description are provided by the user. The program has a custom graphical user interface to facilitate its use by people with limited computer experience. The custom interface also allows it to run on relatively small computer systems.« less

  7. Encapsulants for protecting MEMS devices during post-packaging release etch

    DOE Patents [OSTI]

    Peterson, Kenneth A.

    2005-10-18

    The present invention relates to methods to protect a MEMS or microsensor device through one or more release or activation steps in a "package first, release later" manufacturing scheme: This method of fabrication permits wirebonds, other interconnects, packaging materials, lines, bond pads, and other structures on the die to be protected from physical, chemical, or electrical damage during the release etch(es) or other packaging steps. Metallic structures (e.g., gold, aluminum, copper) on the device are also protected from galvanic attack because they are protected from contact with HF or HCL-bearing solutions.

  8. 2009 Voluntary Protection Programs Participants' Association (VPPPA)

    Energy Savers [EERE]

    Presentations: Star Track | Department of Energy Presentations: Star Track 2009 Voluntary Protection Programs Participants' Association (VPPPA) Presentations: Star Track 2009 Voluntary Protection Programs Participants' Association (VPPPA) Presentations: Star Track PDF icon 2009 Voluntary Protection Programs Participants' Association (VPPPA) Presentations: Star Track More Documents & Publications 2009 Voluntary Protection Programs Participants' Association (VPPPA) Presentation: How to

  9. Voluntary Protection Programs Participants' Association (VPPPA)

    Energy Savers [EERE]

    Presentation: KCSO VPP Process | Department of Energy Programs Participants' Association (VPPPA) Presentation: KCSO VPP Process Voluntary Protection Programs Participants' Association (VPPPA) Presentation: KCSO VPP Process Voluntary Protection Programs Participants' Association (VPPPA) Presentation: KCSO VPP Process PDF icon Voluntary Protection Programs Participants' Association (VPPPA) Presentation: KCSO VPP Process More Documents & Publications 2009 Voluntary Protection Programs

  10. Whistleblower Protection and Nondisclosure Agreements | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Whistleblower Protection and Nondisclosure Agreements Whistleblower Protection and Nondisclosure Agreements Important Notice Concerning Nondisclosure Acknowledgments or Agreements (NDAs) with the Department of Energy: Whistleblower Protection Enhancement Act of 2012 Required Statement Regarding Nondisclosure Agreements: Pursuant to the Whistleblower Protection Enhancement Act of 2012, the following statement applies to every nondisclosure policy, form, or agreement of the Government

  11. Hanford Site Voluntary Protection Program - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site Voluntary Protection Program Hanford Site Voluntary Protection Program Hanford Site Voluntary Protection Program VPP Home VPP Hanford Site Champions Committee Getting Started Maintaining STAR VPP Communications VPP Conferences Hanford Site Voluntary Protection Program Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size 2013 VPPPA Outreach Award Winners VPP Committee Business Case (PDF)

  12. protective force | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Home protective force Pantex Protective Force hailed as "well prepared, well trained" Members of Pantex's Protective Force on the firing range. The Protective Force successfully completed a recent assessment by the U.S. Department of Energy's Office of Enterprise Assessments. The Pantex Plant recently hosted the U.S. Department of Energy's Office of Enterprise Assessments,...

  13. Composite material dosimeters

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  14. Remedial action plan and site design for stabilization of the inactive Uranium Mill Tailing site Maybell, Colorado. Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The U.S. Environmental Protection Agency (EPA) has established health and environmental regulations to correct and prevent ground water contamination resulting from former uranium processing activities at inactive uranium processing sites (40 CFR Part 192 (1993)) (52 FR 36000 (1978)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC {section} 7901 et seq.), the U.S. Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has decided that each assessment will include information on hydrogeologic site characterization. The water resources protection strategy that describes the proposed action compliance with the EPA ground water protection standards is presented in Attachment 4, Water Resources Protection Strategy. Site characterization activities discussed in this section include the following: (1) Definition of the hydrogeologic characteristics of the environment, including hydrostratigraphy, aquifer parameters, areas of aquifer recharge and discharge, potentiometric surfaces, and ground water velocities. (2) Definition of background ground water quality and comparison with proposed EPA ground water protection standards. (3) Evaluation of the physical and chemical characteristics of the contaminant source and/or residual radioactive materials. (4) Definition of existing ground water contamination by comparison with the EPA ground water protection standards. (5) Description of the geochemical processes that affect the migration of the source contaminants at the processing site. (6) Description of water resource use, including availability, current and future use and value, and alternate water supplies.

  15. Emergency Operating Records Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-10-23

    To establish the policy, responsibilities, and requirements for a Departmental Emergency Operating Records Protection Program to safeguard that core or records deemed necessary to assure continuity of essential Governmental activities during and following disaster and attack-related emergency conditions. Cancels DOE 5500.7A. Chanceled by DOE O 151.1 of 9-25-1995.

  16. Method for forming materials

    DOE Patents [OSTI]

    Tolle, Charles R.; Clark, Denis E.; Smartt, Herschel B.; Miller, Karen S.

    2009-10-06

    A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

  17. Fire Protection Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fire Protection Program Fire Protection Program Fire Protection Overview The Department of Energy (DOE) Fire Protection Program is multi-faceted. It includes published fire safety directives (Orders, standards, and guidance documents), a range of oversight activities, an annual fire protection program summary. DOE also sponsors fire safety conferences, various training initiatives, and a spectrum of technical assistance activities. This page is intended to bring together in one location as much

  18. Protection #2: Trap and Remove Sediment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trap and Remove Sediment Protection #2: Trap and Remove Sediment The 3 Protections = Defense in Depth August 1, 2013 Sediment behind LA Canyon weir is sampled and excavated regularly. As of 2012, no sediment required disposal as hazardous or radioactive waste. Sediment behind LA Canyon weir is sampled and excavated regularly. As of 2012, no sediment required disposal as hazardous or radioactive waste. The 3 Protections Protection #1: Remove the source of contamination Protection #2: Stabilize,

  19. Boron nitride nanosheets as oxygen-atom corrosion protective coatings

    SciTech Connect (OSTI)

    Yi, Min; Shen, Zhigang; Zhao, Xiaohu; Liang, Shuaishuai; Liu, Lei

    2014-04-07

    The research of two-dimensional nanomaterials for anticorrosion applications is just recently burgeoning. Herein, we demonstrate the boron nitride nanosheets (BNNSs) coatings for protecting polymer from oxygen-atom corrosion. High-quality BNNSs, which are produced by an effective fluid dynamics method with multiple exfoliation mechanisms, can be assembled into coatings with controlled thickness by vacuum filtration. After exposed in atom oxygen, the naked polymer is severely corroded with remarkable mass loss, while the BNNSs-coated polymer remains intact. Barrier and bonding effects of the BNNSs are responsible for the coating's protective performance. These preliminary yet reproducible results pave a way for resisting oxygen-atom corrosion.

  20. Commercial Building Motor Protection Response Report

    SciTech Connect (OSTI)

    James, Daniel P.; Kueck, John

    2015-06-17

    When voltages recover, motors may immediately reenergize and reaccelerate, or delay for a few minutes, or stay stalled. The estimated motor response is given for both the voltage sag magnitude and voltage sag duration. These response estimates are based on experience and available test data. Good data is available for voltage sag response for many components such as relays and contactors, but little data is available for both voltage sag and recovery response. The tables in Appendix A include data from recent voltage sag and recovery tests performed by SCE and BPA on air conditioners and energy management systems. The response of the motor can vary greatly depending on the type of protection and control. The time duration for the voltage sag consists of those times that are of interest for bulk power system modelers.

  1. The Application of materials attractiveness in a graded approach to nuclear materials security

    SciTech Connect (OSTI)

    Ebbinghaus, B.; Bathke, C.; Dalton, D.; Murphy, J.

    2013-07-01

    The threat from terrorist groups has recently received greater attention. In this paper, material quantity and material attractiveness are addressed through the lens of a minimum security strategy needed to prevent the construction of a nuclear explosive device (NED) by an adversary. Nuclear materials are placed into specific security categories (3 or 4 categories) , which define a number of security requirements to protect the material. Materials attractiveness can be divided into four attractiveness levels, High, Medium, Low, and Very Low that correspond to the utility of the material to the adversary and to a minimum security strategy that is necessary to adequately protect the nuclear material. We propose a graded approach to materials attractiveness that recognizes for instance substantial differences in attractiveness between pure reactor-grade Pu oxide (High attractiveness) and fresh MOX fuel (Low attractiveness). In either case, an adversary's acquisition of a Category I quantity of plutonium would be a major incident, but the acquisition of Pu oxide by the adversary would be substantially worse than the acquisition of fresh MOX fuel because of the substantial differences in the time and complexity required of the adversary to process the material and fashion it into a NED.

  2. Voluntary Protection Program Onsite Review, Volpentest HAMMER Training

    Energy Savers [EERE]

    Center January 2011 | Department of Energy Volpentest HAMMER Training Center January 2011 Voluntary Protection Program Onsite Review, Volpentest HAMMER Training Center January 2011 January 2011 Evaluation to determine whether Volpentest Hazardous Materials Management and Emergency Response Training Center is continuing to perform at a level deserving DOE-VPP Star recognition. The Team conducted its review during January 24-27, 2011 to determine whether Mission Support Alliance, LLC is

  3. International Training Course on Physical Protection (ITC-25) Report.

    SciTech Connect (OSTI)

    Overholt, Michelle Jungst

    2015-06-01

    The goal of this evaluation repor t is to provide the informa tion necessary to improve the effectiveness of the ITC provided to the In ternational Atomic Energy Agency Member States. This report examines ITC-25 training content, delivery me thods, scheduling, and logistics. Ultimately, this report evaluates whether the course pr ovides the knowledge and skills necessary to meet the students' needs in the protection of nuclear materials and facilities.

  4. Human subjects research handbook: Protecting human research subjects. Second edition

    SciTech Connect (OSTI)

    1996-01-30

    This handbook serves as a guide to understanding and implementing the Federal regulations and US DOE Orders established to protect human research subjects. Material in this handbook is directed towards new and continuing institutional review board (IRB) members, researchers, institutional administrators, DOE officials, and others who may be involved or interested in human subjects research. It offers comprehensive overview of the various requirements, procedures, and issues relating to human subject research today.

  5. The Critical Materials Institute | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Critical Materials Institute Director Alex King, Operations Manager Cynthia Feller, Jenni Brockpahler and Melinda Thach. Photo left to right: CMI Director Alex King, Operations Manager Cynthia Feller, Jenni Brockpahler and Melinda Thach. Not pictured: Carol Bergman. CMI staff phone 515-296-4500, e-mail CMIdirector@ameslab.gov The Critical Materials Institute focuses on technologies that make better use of materials and eliminate the need for materials that are subject to supply disruptions.

  6. Materials Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST Materials Science and Technology Providing world-leading, innovative, and agile materials science and technology solutions for national security missions. MST is metallurgy. The Materials Science and Technology Division provides scientific and technical leadership in materials science and technology for Los Alamos National Laboratory. READ MORE MST is engineered materials. The Materials Science and Technology Division provides scientific and technical leadership in materials science and

  7. Structurally efficient inflatable protective device

    DOE Patents [OSTI]

    Nelsen, J.M.; Whinery, L.D.; Gwinn, K.W.; McBride, D.D.; Luna, D.A.; Holder, J.P.; Bliton, R.J.

    1996-01-09

    An apparatus and method are disclosed for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion`s ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion`s ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored. 22 figs.

  8. Structurally efficient inflatable protective device

    DOE Patents [OSTI]

    Nelsen, J.M.; Whinery, L.D.; Gwinn, K.W.; McBride, D.D.; Luna, D.A.; Holder, J.P.; Bliton, R.J.

    1997-03-04

    An apparatus and method are disclosed for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion`s ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion`s ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored. 22 figs.

  9. Structurally efficient inflatable protective device

    DOE Patents [OSTI]

    Nelsen, James M.; Whinery, Larry D.; Gwinn, Kenneth W.; McBride, Donald D.; Luna, Daniel A.; Holder, Joseph P.; Bliton, Richard J.

    1997-01-01

    An apparatus and method for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion's ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion's ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored.

  10. Structurally efficient inflatable protective device

    DOE Patents [OSTI]

    Nelsen, James M.; Whinery, Larry D.; Gwinn, Kenneth W.; McBride, Donald D.; Luna, Daniel A.; Holder, Joseph P.; Bliton, Richard J.

    1996-01-01

    An apparatus and method for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion's ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being Joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion's ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored.

  11. Structurally efficient inflatable protective device

    DOE Patents [OSTI]

    Nelsen, James M.; Whinery, Larry D.; Gwinn, Kenneth W.; McBride, Donald D.; Luna, Daniel A.; Holder, Joseph P.; Bliton, Richard J.

    1996-01-01

    An apparatus and method for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion's ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion's ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored.

  12. Fast breeder reactor protection system

    DOE Patents [OSTI]

    van Erp, J.B.

    1973-10-01

    Reactor protection is provided for a liquid-metal-fast breeder reactor core by measuring the coolant outflow temperature from each of the subassemblies of the core. The outputs of the temperature sensors from a subassembly region of the core containing a plurality of subassemblies are combined in a logic circuit which develops a scram alarm if a predetermined number of the sensors indicate an over temperature condition. The coolant outflow from a single subassembly can be mixed with the coolant outflow from adjacent subassemblies prior to the temperature sensing to increase the sensitivity of the protection system to a single subassembly failure. Coherence between the sensors can be required to discriminate against noise signals. (Official Gazette)

  13. DPC materials and corrosion environments.

    SciTech Connect (OSTI)

    Ilgen, Anastasia Gennadyevna; Bryan, Charles R.; Teich-McGoldrick, Stephanie; Hardin, Ernest; Clarity, J.

    2014-10-01

    After an exposition of the materials used in DPCs and the factors controlling material corrosion in disposal environments, a survey is given of the corrosion rates, mechanisms, and products for commonly used stainless steels. Research needs are then identified for predicting stability of DPC materials in disposal environments. Stainless steel corrosion rates may be low enough to sustain DPC basket structural integrity for performance periods of as long as 10,000 years, especially in reducing conditions. Uncertainties include basket component design, disposal environment conditions, and the in-package chemical environment including any localized effects from radiolysis. Prospective disposal overpack materials exist for most disposal environments, including both corrosion allowance and corrosion resistant materials. Whereas the behavior of corrosion allowance materials is understood for a wide range of corrosion environments, demonstrating corrosion resistance could be more technically challenging and require environment-specific testing. A preliminary screening of the existing inventory of DPCs and other types of canisters is described, according to the type of closure, whether they can be readily transported, and what types of materials are used in basket construction.

  14. Protection of Human Research Subjects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-12-09

    The order establishes Department of Energy (DOE) procedures and responsibilities for implementing the policy and requirements set forth in Title 10 Code of Federal Regulations (CFR) Part 745, Protection of Human Subjects, 45 CFR Part 46, and the Secretarial Policy Memorandum on Military or Intelligence-Related Human Subject Research, December 9, 2009. Supersedes DOE O 443.1A and DOE P 443.1A.

  15. UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 10 AND THE STATE OF WASHINGTON DEPARTMENT OF ECOLOGY IN THE MATTER OF: ) ) The U.S. Department of Energy, ) HANFORD FEDERAL FACILITY Richland Operations Office, ) AGREEMENT AND CONSENT ORDER Richland, Washington ) ) EPA Docket Number: 1089-03-04-120 Respondent ) Ecology Docket Number: 89-54 Based on the information available to the Parties on the effective date of this HANFORD FEDERAL FACILITY AGREEMENT AND CONSENT ORDER

  16. Password Generation, Protection, and Use

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-11-23

    To establish minimum requirements for the generation, protection, and use of passwords to support authentication when accessing classified and unclassified Department of Energy (DOE) information systems. DOE N 205.16, dated 9-15-05, extends this Notice until 9-30-06, unless sooner rescinded. Cancels DOE M 471.2-2, Chapter VI, paragraphs 4j(2), and 4j(6) and Chapter VII, paragraph 12a(2)(a).

  17. Nevada National Security Site Radiological Control Manual

    SciTech Connect (OSTI)

    Radiological Control Managers’ Council

    2012-03-26

    This document supersedes DOE/NV/25946--801, 'Nevada Test Site Radiological Control Manual,' Revision 1 issued in February 2010. Brief Description of Revision: A complete revision to reflect a recent change in name for the NTS; changes in name for some tenant organizations; and to update references to current DOE policies, orders, and guidance documents. Article 237.2 was deleted. Appendix 3B was updated. Article 411.2 was modified. Article 422 was re-written to reflect the wording of DOE O 458.1. Article 431.6.d was modified. The glossary was updated. This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection.' Programs covered by this manual are located at the Nevada National Security Site (NNSS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Livermore, California; and Andrews Air Force Base, Maryland. In addition, fieldwork by NNSA/NSO at other locations is covered by this manual. Current activities at NNSS include operating low-level radioactive and mixed waste disposal facilities for United States defense-generated waste, assembly and execution of subcritical experiments, assembly/disassembly of special experiments, the storage and use of special nuclear materials, performing criticality experiments, emergency responder training, surface cleanup and site characterization of contaminated land areas, environmental activity by the University system, and nonnuclear test operations, such as controlled spills of hazardous materials at the Hazardous Materials Spill Center. Currently, the major potential for occupational radiation exposure is associated with the burial of low-level radioactive waste and the handling of radioactive sources. Remediation of contaminated land areas may also result in radiological exposures.

  18. Nanocrystalline ceramic materials

    DOE Patents [OSTI]

    Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  19. Evaluating high-temperature intumescent insulation materials under fire and blast conditions

    SciTech Connect (OSTI)

    Parker, A.J.

    1997-11-01

    This paper describes recent testing conducted to evaluate the performance of high-temperature intumescent materials under adverse fire and blast conditions. Results from fire performance evaluations currently protecting offshore oil platforms are presented. Extensive fire and blast qualification testing of epoxy-based intumescent materials has been conducted utilizing specially designed blast chambers, jet fire facilities, and laboratory furnaces. Blast chambers are capable of loading up to a 3 x 3-m insulated bulkhead assembly to a 2 bar over pressure and having a duration of approximately 250 millisecond generated by a controlled flammable vapor cloud explosion. The jet fire test exposes an insulated test specimen to a fire environment characterized by temperatures of approximately 1100 C, sonic gas velocities, and peak heat flux levels in excess of 300 kW/m{sup 2}.

  20. Method for protection of lithographic components from particle contamination

    DOE Patents [OSTI]

    Klebanoff, Leonard E.; Rader, Daniel J.

    2001-07-03

    A system that employs thermophoresis to protect lithographic surfaces from particle deposition and operates in an environment where the pressure is substantially constant and can be sub-atmospheric. The system (thermophoretic pellicle) comprises an enclosure that surrounds a lithographic component whose surface is being protected from particle deposition. The enclosure is provided with means for introducing a flow of gas into the chamber and at least one aperture that provides for access to the lithographic surface for the entry and exit of a beam of radiation, for example, and further controls gas flow into a surrounding low pressure environment such that a higher pressure is maintained within the enclosure and over the surface being protected. The lithographic component can be heated or, alternatively the walls of the enclosure can be cooled to establish a temperature gradient between the surface of the lithographic component and the walls of the enclosure, thereby enabling the thermophoretic force that resists particle deposition.