Sample records for material cxs applied

  1. Applied Materials | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,Anza ElectricInc Jump to:Applied

  2. Applied Physics A Materials Science & Processing

    E-Print Network [OSTI]

    Harilal, S. S.

    1 23 Applied Physics A Materials Science & Processing ISSN 0947-8396 Volume 117 Number 1 Appl. Phys. A (2014) 117:319-326 DOI 10.1007/s00339-014-8268-8 Background gas collisional effects on expanding fs at link.springer.com". #12;Background gas collisional effects on expanding fs and ns laser ablation plumes

  3. applied materials science: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applied in chemical or materials sciences, physics, biology, psychology, applied maths, engineering - anything science brings clear benefits to: researchers (developing...

  4. Opportunities to Apply Phase Change Materials to Building Enclosures...

    Energy Savers [EERE]

    Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Slides from the Building...

  5. Fracture mechanics applied to the machining of brittle materials

    SciTech Connect (OSTI)

    Hiatt, G.D.; Strenkowski, J.S.

    1988-12-01T23:59:59.000Z

    Research has begun on incorporating fracture mechanics into a model of the orthogonal cutting of brittle materials. Residual stresses are calculated for the machined material by a combination of Eulerian and Lagrangian finite element models and then used in the calculation of stress intensity factors by the Green`s Function Method.

  6. Life-cycle assessment (LCA) methodology applied to energetic materials

    SciTech Connect (OSTI)

    Reardon, P.T.

    1995-03-01T23:59:59.000Z

    The objective of the Clean Agile Manufacturing of Propellants, Explosives, and pyrotechnics (CAMPEP) program is to develop and demonstrate the feasibility of using modeling, alternate materials and processing technology to reduce PEO life-cycle pollution by up to 90%. Traditional analyses of factory pollution treat the manufacturing facility as the singular pollution source. The life cycle of a product really begins with raw material acquisition and includes all activities through ultimate disposal. The life cycle thus includes other facilities besides the principal manufacturing facility. The pollution generated during the product life cycle is then integrated over the total product lifetime, or represents a ``cradle to grave`` accounting philosophy. This paper addresses a methodology for producing a life-cycle inventory assessment.

  7. Applying Risk Communication to the Transportation of Radioactive Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from Tarasa U.S.LLC | DepartmentReport | DepartmentApplying

  8. College of Applied Science and Engineering The George S. Ansell Department of Metallurgical and Materials Engineering

    E-Print Network [OSTI]

    .D. or an equivalent degree in Metallurgical Engineering, Materials Science and Engineering, or related field, and have;College of Applied Science and Engineering The George S. Ansell Department of Metallurgical and MaterialsCollege of Applied Science and Engineering The George S. Ansell Department of Metallurgical

  9. Institute for Critical Technology and Applied Science Seminar Series Silicone Materials for Sustainable

    E-Print Network [OSTI]

    Crawford, T. Daniel

    Institute for Critical Technology and Applied Science Seminar Series Silicone Materials; these goals are critical for the broad adoption of PV globally. Silicone polymers possess key material for Sustainable Energy: Emphasis on Photovoltaic Materials for Module Assembly and Installation with Ann Norris

  10. Vehicle Technologies Office Merit Review 2015: Applied Integrated Computational Materials Engineering (ICME) for New Propulsion Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Applied...

  11. Applied Materials Develops an Advanced Epitaxial Growth System to Bring Down LED Costs

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, Applied Materials has developed an advanced epitaxial growth system for gallium nitride (GaN) LED devices that decreases operating costs, increases internal quantum efficiency, and improves binning yields.

  12. Early career scientists in chemical or materials sciences, physics, biology, psychology, applied maths, engineering: this is for you!

    E-Print Network [OSTI]

    in chemical or materials sciences, physics, biology, psychology, applied maths, engineering ­ anything science in chemical or materials sciences, physics, biology, psychology, applied maths, engineering: this is for youEarly career scientists in chemical or materials sciences, physics, biology, psychology, applied

  13. Table B-1 Prerequisite flow chart for General Engineering, Applied Materials Track 16.5Credits

    E-Print Network [OSTI]

    Kaye, Jason P.

    Table B-1 Prerequisite flow chart for General Engineering, Applied Materials Track 1rst SEMESTER 15(4), CMPEN 271(3), CMPEN 275(1), EDSGN 110(2), EDSGN 210(2), E MCH 212(3) (Alternative Energy and Power

  14. Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations

    E-Print Network [OSTI]

    Shapiro, Benjamin

    Equilibrium behavior of sessile drops under surface tension, applied external fields, and material properties such as dielectric constants, resistivities, and surface tension coefficients. The analysis energy storage in the liquid, will lead to 1/R ``line-tension''-type terms if and only if the energy

  15. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3Appliance andApplicationBerkeleyAppliedApply

  16. Final Technical Summary: Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials

    SciTech Connect (OSTI)

    Michael Mullins, Tony Rogers, Julia King, Jason Keith, Bahne Cornilsen, Jeffrey Allen, Ryan Gilbert, Joseph Holles.

    2010-09-28T23:59:59.000Z

    The core projects for this DOE-sponsored Center at Michigan Tech have focused on several of the materials problems identified by the NAS. These include: new electrode materials, enhanced PEM materials, lighter and more effective bipolar plates, and improvement of the carbon used as a current carrier. This project involved fundamental and applied research in the development and testing of lightweight and nanostructured materials to be used in fuel cell applications and for chemical synthesis. The advent of new classes of materials engineered at the nanometer level can produce materials that are lightweight and have unique physical and chemical properties. The grant was used to obtain and improve the equipment infrastructure to support this research and also served to fund seven research projects. These included: 1. Development of lightweight, thermally conductive bipolar plates for improved thermal management in fuel cells; 2. Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts for fuel cells; 3. Development of hybrid inorganic/organic polymer nanocomposites with improved ionic and electronic properties; 4. Development of oriented polymeric materials for membrane applications; 5. Preparation of a graphitic carbon foam current collectors; 6. The development of lightweight carbon electrodes using graphitic carbon foams for battery and fuel cell applications; and 7. Movement of water in fuel cell electrodes.

  17. MSE Concurrent Enrollment Approval Form Materials Science & Engineering IOWA STATE UNIVERSITY Request/Approval to apply/enroll as a concurrent student in Materials Science & Engineering

    E-Print Network [OSTI]

    Vaswani, Namrata

    01/10 MSE Concurrent Enrollment Approval Form Materials Science & Engineering · IOWA STATE UNIVERSITY Request/Approval to apply/enroll as a concurrent student in Materials Science & Engineering Name ISU ID# (Please Print) I am requesting approval to concurrently pursue my BS/graduate degrees and I

  18. Colomban_EMRSOARTF.doc Applied Physics A: Materials Science & Processing 79 (2004) 167-170

    E-Print Network [OSTI]

    /macro-spectroscopy allows for a non-destructive remote analysis: body and glaze, crystalline and amorphous phases can phases on cooling, raw materials are almost fully molten to produce a glass or a glaze, but small crystals (cooling in many glasses. Different materials

  19. Constrained and unconstrained growth : applying the Avrami Equation to the production of materials

    E-Print Network [OSTI]

    See, Marianna B. (Marianna Blackman)

    2013-01-01T23:59:59.000Z

    Production of materials which are limited by the amount available on the earth's surface follow a growth curve similar to the Avrami equation which governs the process of nucleation and growth. This thesis will analyze ...

  20. Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form

    SciTech Connect (OSTI)

    Keiser, D.D.

    1996-11-01T23:59:59.000Z

    Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne`s waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne`s metal waste form in light of the Yucca Mountain activities.

  1. Anodic Behavior of SAM2X5 Material Applied as Amorphous Coatings

    SciTech Connect (OSTI)

    Hailey, P D; Farmer, J C; Day, S D; Rebak, R B

    2007-08-10T23:59:59.000Z

    Iron-based amorphous alloys are desirable industrial materials since they are highly resistant to corrosion and possess enhanced hardness for wear resistance. The amorphous materials can be produced from the melt as powder and later spray deposited as coatings on large engineering structures. As a laboratory experiment, SAM2X5 powder was coated on electrochemical specimens of 304SS for testing. Results show that the coated specimens did not perform satisfactorily during the laboratory testing. This is because of partial devitrification during the deposition of the powder on the small specimen substrates.

  2. Composit, Nanoparticle-Based Anode material for Li-ion Batteries Applied in Hybrid Electric (HEV's)

    SciTech Connect (OSTI)

    Dr. Malgorzata Gulbinska

    2009-08-24T23:59:59.000Z

    Lithium-ion batteries are promising energy storage devices in hybrid and electric vehicles with high specific energy values ({approx}150 Wh/kg), energy density ({approx}400 Wh/L), and long cycle life (>15 years). However, applications in hybrid and electric vehicles require increased energy density and improved low-temperature (<-10 C) performance. Silicon-based anodes are inexpensive, environmentally benign, and offer excellent theoretical capacity values ({approx}4000 mAh/g), leading to significantly less anode material and thus increasing the overall energy density value for the complete battery (>500 Wh/L). However, tremendous volume changes occur during cycling of pure silicon-based anodes. The expansion and contraction of these silicon particles causes them to fracture and lose electrical contact to the current collector ultimately severely limiting their cycle life. In Phase I of this project Yardney Technical Products, Inc. proposed development of a carbon/nano-silicon composite anode material with improved energy density and silicon's cycleability. In the carbon/nano-Si composite, silicon nanoparticles were embedded in a partially-graphitized carbonaceous matrix. The cycle life of anode material would be extended by decreasing the average particle size of active material (silicon) and by encapsulation of silicon nanoparticles in a ductile carbonaceous matrix. Decreasing the average particle size to a nano-region would also shorten Li-ion diffusion path and thus improve rate capability of the silicon-based anodes. Improved chemical inertness towards PC-based, low-temperature electrolytes was expected as an additional benefit of a thin, partially graphitized coating around the active electrode material.

  3. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility

    SciTech Connect (OSTI)

    P. Calderoni; P. Sharpe; M. Shimada

    2009-09-01T23:59:59.000Z

    The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

  4. The Department of Mechanical and Materials Engineering, Faculty of Engineering and Applied Science, Queen's University invites applications for a tenure-track faculty position at the rank of

    E-Print Network [OSTI]

    Ellis, Randy

    The Department of Mechanical and Materials Engineering, Faculty of Engineering and Applied Science degree (or be near completion) in biomechanical engineering, mechanical engineering, materials science in the core curriculum of Mechanical and Materials Engineering as well as graduate courses in their specific

  5. The Department of Mechanical and Materials Engineering, Faculty of Engineering and Applied Science, Queen's University invites applications for a tenure-track faculty position at the rank of

    E-Print Network [OSTI]

    Ellis, Randy

    ://www.queensu.ca/provost/faculty/facultyrelations/qufa/collectiveagreement.html. Department of Mechanical and Materials Engineering Tenure-Track Faculty Position in Sustainable Energy #12;The Department of Mechanical and Materials Engineering, Faculty of Engineering and Applied Science be near completion) in mechanical engineering, materials science and engineering, or a related area

  6. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography

    SciTech Connect (OSTI)

    Cai, C. [CEA, LIST, 91191 Gif-sur-Yvette, France and CNRS, SUPELEC, UNIV PARIS SUD, L2S, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette (France)] [CEA, LIST, 91191 Gif-sur-Yvette, France and CNRS, SUPELEC, UNIV PARIS SUD, L2S, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette (France); Rodet, T.; Mohammad-Djafari, A. [CNRS, SUPELEC, UNIV PARIS SUD, L2S, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette (France)] [CNRS, SUPELEC, UNIV PARIS SUD, L2S, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette (France); Legoupil, S. [CEA, LIST, 91191 Gif-sur-Yvette (France)] [CEA, LIST, 91191 Gif-sur-Yvette (France)

    2013-11-15T23:59:59.000Z

    Purpose: Dual-energy computed tomography (DECT) makes it possible to get two fractions of basis materials without segmentation. One is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical DECT measurements are usually obtained with polychromatic x-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam polychromaticity fail to estimate the correct decomposition fractions and result in beam-hardening artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log preprocessing and the ill-conditioned water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on nonlinear forward models counting the beam polychromaticity show great potential for giving accurate fraction images.Methods: This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint maximum a posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a nonquadratic cost function. To solve it, the use of a monotone conjugate gradient algorithm with suboptimal descent steps is proposed.Results: The performance of the proposed approach is analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also necessary to have the accurate spectrum information about the source-detector system. When dealing with experimental data, the spectrum can be predicted by a Monte Carlo simulator. For the materials between water and bone, less than 5% separation errors are observed on the estimated decomposition fractions.Conclusions: The proposed approach is a statistical reconstruction approach based on a nonlinear forward model counting the full beam polychromaticity and applied directly to the projections without taking negative-log. Compared to the approaches based on linear forward models and the BHA correction approaches, it has advantages in noise robustness and reconstruction accuracy.

  7. CX-010574: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Applied Materials - Kerf-less Crystaline-Silicon Photovoltaic: Gas to Modules CX(s) Applied: B3.6 Date: 05162013 Location(s): California,...

  8. Computational physics and applied mathematics capability review June 8-10, 2010 (Advance materials to committee members)

    SciTech Connect (OSTI)

    Lee, Stephen R [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the laboratory, starting from the inception of the Laboratory in 1943. The CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled mUlti-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CP AM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections): (1) Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the laboratory; (2) Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution of partial differential equations (broadly defined) in a variety of settings, including particle transport, solvers, and plasma physics; (3) Monte Carlo - Monte Carlo was invented at Los Alamos, and this theme discusses these vitally important methods and their application in everything from particle transport, to condensed matter theory, to biology; (4) Molecular Dynamics - This theme describes the widespread use of molecular dynamics for a variety of important applications, including nuclear energy, materials science, and biological modeling; (5) Discrete Event Simulation - The technical scope of this theme represents a class of complex system evolutions governed by the action of discrete events. Examples include network, communication, vehicle traffic, and epidemiology modeling; and (6) Integrated Codes - This theme discusses integrated applications (comprised of all of the supporting science represented in Themes 1-5) that are of strategic importance to the Laboratory and the nation. The laboratory has in approximately 10 million source lines of code in over 100 different such strategically important applications. Of these themes, four of them will be reviewed during the 2010 review cycle: Themes 1, 2, 3, and 6. Because these capability reviews occur every three years, Themes 4 and 5 will be reviewed in 2013, along with Theme 6 (which will be reviewed during each review, owing to this theme's role as an integrator of the supporting science represented by the other 5 themes). Yearly written status reports will be provided to the Capability Review Committee Chair during off-cycle years.

  9. Vehicle Technologies Office Merit Review 2014: Applied ICME for New Propulsion Materials (Agreement ID:26391) Project ID:18865

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about applied ICME...

  10. Physical protection: threat response and performance goals as applied at the nuclear material inspection and storage (NMIS) building

    SciTech Connect (OSTI)

    Sanford, T.H.

    1982-01-01T23:59:59.000Z

    Only one aspect of nuclear security has been discussed here, a disciplined approach to physical protection systems (PPS) design. The best security against a multitude of threats to the nuclear industry is a dynamic and multifaceted safeguards program. It is one that combines PPS design with employee screening, reliability or behavioral observation programs, procedural control, assessment techniques, response capabilities, and security hardware. To be effective, such a program must be supported by management and applied uniformly to all personnel, including the safeguards and security staff.

  11. CX-011295: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-011295: Categorical Exclusion Determination Material Dynamics and Kinetics Lab CX(s) Applied: B3.6 Date: 10172013 Location(s): Pennsylvania...

  12. CX-005747: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-005747: Categorical Exclusion Determination Biobased Materials Automotive Value Chain Market Development Analysis CX(s) Applied: A9 Date: 05042011...

  13. CX-004085: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination Project T-221, Hazardous Material Management and Emergency Response (HAMMER) Operations Building CX(s) Applied: B1.15 Date: 10082010 Location(s): Richmond,...

  14. CX-004925: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-004925: Categorical Exclusion Determination Material Methods - Phononic Heat Pump CX(s) Applied: B3.6 Date: 08132010 Location(s): Irvine, California Office(s):...

  15. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | NationalMaterials

  16. MATERIALS MANAGEMENT MATERIALS MANAGEMENT -INVENTORY CONTROL

    E-Print Network [OSTI]

    Oliver, Douglas L.

    MATERIALS MANAGEMENT MATERIALS MANAGEMENT - INVENTORY CONTROL Record of Property Transferred from ______ ___________________________________ 2. DEAN (If Applies) ______ ___________________________________ 5. UNIVERSITY DIRECTOR OF MATERIALS MANAGEMENT ______ ___________________________________ 3. HOSPITAL DIRECTOR (If Applies) ______ IF YOU NEED

  17. Engineering and Applied

    E-Print Network [OSTI]

    Stowell, Michael

    > Computer Science > Electrical, Computer, and Energy Engineering > Mechanical Engineering 11, Computational Science and Engineering, Energy Systems and Environmental Sustainability, Materials ScienceCollege of Engineering and Applied Science Contact Robert H. Davis, Engineering Dean 303

  18. Transporting Hazardous Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transporting Hazardous Materials The procedures given below apply to all materials that are considered to be hazardous by the U.S. Department of Transportation (DOT). Consult your...

  19. CX-007966: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sampling of Legacy Material for Material, Control & Accountability (MC&A) Verification CX(s) Applied: B3.6 Date: 02/07/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  20. Building America Webinar: Opportunities to Apply Phase Change...

    Energy Savers [EERE]

    Opportunities to Apply Phase Change Materials to Building Enclosures Building America Webinar: Opportunities to Apply Phase Change Materials to Building Enclosures This webinar,...

  1. Journal of Educational Psychology Applying Grounded Coordination Challenges to Concrete

    E-Print Network [OSTI]

    Journal of Educational Psychology Applying Grounded Coordination Challenges to Concrete Learning, M. I. (2013, August 19). Applying Grounded Coordination Challenges to Concrete Learning Materials.1037/a0034098 #12;Applying Grounded Coordination Challenges to Concrete Learning Materials: A Study

  2. CX-010059: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Density Fuel Material for Light Water Reactors (LWRs) CX(s) Applied: B1.31 Date: 01/14/2013 Location(s): Idaho Offices(s): Nuclear Energy

  3. CX-010399: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Density Fuel Material for Light Water Reactors CX(s) Applied: B1.31 Date: 04/25/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  4. CX-007538: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Offshore 12 Megawatt Turbine Rotor With Advanced Material and Passive Design Concept CX(s) Applied: A9 Date: 01/10/2012 Location(s): Colorado Offices(s): Golden Field Office

  5. CX-000683: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    3: Categorical Exclusion Determination CX-000683: Categorical Exclusion Determination Materials and Fuel Complex Dial Room Replacement Project CX(s) Applied: B1.7, B1.15 Date: 02...

  6. CX-008929: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fundamental Investigations and Rational Design of Durable, High-Performance Cathode Materials CX(s) Applied: B3.6 Date: 08/23/2012 Location(s): Georgia Offices(s): National Energy Technology Laboratory

  7. CX-011364: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bil3 Gamma-Ray Spectrometers for Reliable Room-Temperature Nuclear Materials Safeguarding CX(s) Applied: B3.6 Date: 10/29/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  8. CX-012429: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Truck and Bus Radial Materials for Fuel-Efficiency CX(s) Applied: B3.6Date: 41878 Location(s): OhioOffices(s): National Energy Technology Laboratory

  9. CX-012432: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Truck and Bus Radial Materials for Fuel-Efficiency CX(s) Applied: B3.6Date: 41878 Location(s): PennsylvaniaOffices(s): National Energy Technology Laboratory

  10. CX-008727: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials and Fuel Complex – Sodium Processing Facility Tank System Resource Conservation and Recovery Act Closure CX(s) Applied: B6.1 Date: 06/27/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  11. CX-009637: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Removing Items or Materials Containing Polychlorinated Biphenyls CX(s) Applied: B1.17 Date: 11/19/2012 Location(s): Tennessee, California, California, Virginia Offices(s): Oak Ridge Office

  12. CX-010701: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials and Fuels Complex Diversion Dam CX(s) Applied: B2.5 Date: 06/25/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  13. CX-012290: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Precursor-Derived Nanostructured Si-C-X Materials for MHD Electrode Applications CX(s) Applied: A9, B3.6 Date: 06/05/2014 Location(s): South Carolina Offices(s): National Energy Technology Laboratory

  14. CX-012289: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Precursor-Derived Nanostructured Si-C-X Materials for MHD Electrode Applications CX(s) Applied: A9, B3.6 Date: 06/05/2014 Location(s): Washington Offices(s): National Energy Technology Laboratory

  15. CX-009928: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Innovations in Advanced Materials and Metals (IAM2) CX(s) Applied: A9, A11 Date: 01/15/2013 Location(s): Washington Offices(s): Golden Field Office

  16. CX-010325: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Thermogravimetric/Differential Scanning Calorimetric Measurements of Solid Materials CX(s) Applied: B3.6 Date: 04/11/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  17. CX-010281: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low Temperature Nitrous Oxide Storage and Reduction Using Engineered Materials CX(s) Applied: A9, B3.6 Date: 05/14/2013 Location(s): Kentucky Offices(s): National Energy Technology Laboratory

  18. CX-008370: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Operation of Tube Furnace for Synthesis of Hydrogen Storage Materials CX(s) Applied: B3.6 Date: 03/27/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  19. CX-011817: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Synthesis of Inorganic Materials Using a Microwave Reactor CX(s) Applied: B3.6 Date: 01/27/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  20. CX-011557: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Validation Corrosion of Structural Materials for Advanced Supercritical Carbon-Dioxide Brayton Cycle CX(s) Applied: B3.6 Date: 11/21/2013 Location(s): Wisconsin Offices(s): Idaho Operations Office

  1. CX-010358: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Removing Items or Materials Containing Polychlorinated Biphenyls CX(s) Applied: B1.17 Date: 11/19/2012 Location(s): Tennessee, California, Virginia Offices(s): Berkeley Site Office

  2. CX-012058: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Roof Removal and Replacement at +34 and +38, K-Area Materials Storage Building CX(s) Applied: B1.3 Date: 03/18/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  3. CX-012500: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials and Approaches for the Mitigation of SOFC Cathode Degradation in SOFC Power Systems CX(s) Applied: B3.6Date: 41852 Location(s): ConnecticutOffices(s): National Energy Technology Laboratory

  4. CX-007934: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ultra High Vacuum Materials Chemistry Laboratory CX(s) Applied: B3.6 Date: 02/22/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  5. CX-011586: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A Positron Generator System in Support of High Brightness Materials Characterization at the Pulstar Reactor CX(s) Applied: B1.31 Date: 11/05/2013 Location(s): North Carolina Offices(s): Idaho Operations Office

  6. CX-011585: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A Positron Microprobe Spectrometer for Defects and Nano-Vacancy Characterization in Materials CX(s) Applied: B1.31 Date: 11/05/2013 Location(s): North Carolina Offices(s): Idaho Operations Office

  7. CX-008748: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Automated Serial Sectioning and Imaging in Support of Nuclear Materials Analysis – Colorado School of Mines CX(s) Applied: B3.6 Date: 05/21/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  8. CX-010466: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials Synthesis and Electrochemistry Lab CX(s) Applied: B3.6 Date: 06/03/2013 Location(s): West Virginia Offices(s): National Energy Technology Laboratory

  9. CX-007725: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Northeastern University - Multiscale Development of L 10 Materials for Rare-Earth-Free Permanent Magnets CX(s) Applied: A9, B3.6 Date: 12062011 Location(s): New York,...

  10. CX-008010: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Small-Scale Research and Development Projects Using Nanoscale Materials CX(s) Applied: B3.15 Date: 12/12/2011 Location(s): Washington Offices(s): Science, Pacific Northwest Site Office

  11. CX-012712: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Enhancing the Nuclear Engineering Research Infrastructure in the Core Areas of Materials and Radiation Detection at VCU – Virginia Commonwealth University CX(s) Applied: B1.31Date: 41855 Location(s): VirginiaOffices(s): Nuclear Energy

  12. CX-012378: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Dissolution of Radiological Material CX(s) Applied: B3.6 Date: 05/22/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  13. CX-011573: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Predictive Characterization of Aging and Degradation of Reactor Materials in Extreme Environments CX(s) Applied: B3.6 Date: 11/14/2013 Location(s): Illinois Offices(s): Idaho Operations Office

  14. CX-002154: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    DeepCwind Consortium National Research Program: Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures CX(s) Applied: B3.1, B3.3, B3.6, A9 Date:...

  15. CX-003713: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-003713: Categorical Exclusion Determination Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures CX(s) Applied: A9, B3.1, B3.3, B3.6 Date:...

  16. CX-002373: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-002373: Categorical Exclusion Determination Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures CX(s) Applied: B3.1, A9 Date: 05132010...

  17. CX-009425: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Partial Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures CX(s) Applied: B3.3, B3.16, B5.18 Date:...

  18. CX-004369: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-004369: Categorical Exclusion Determination Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures CX(s) Applied: A9, B3.1, B3.6 Date: 11...

  19. CX-009033: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Radiation Resistant Electrical Insulation Materials for Nuclear Reactors Using Novel Nanocomposite Dielectrics – Oak Ridge National Laboratory CX(s) Applied: B3.6 Date: 08/09/2011 Location(s): Tennessee Offices(s): Nuclear Energy

  20. CX-011502: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Changes to K Area Interim Surveillance Process Material Handling CX(s) Applied: B6.8 Date: 10/29/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  1. CX-002269: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Measurements at Energetic Materials Research and Testing Center, Socorro, New Mexico CX(s) Applied: B3.6 Date: 02252010 Location(s): Socorro, New Mexico Office(s):...

  2. Sustainable FACULTY OF APPLIED SCIENCE

    E-Print Network [OSTI]

    Michelson, David G.

    Working Together Towards a Sustainable Energy Future FACULTY OF APPLIED SCIENCE Clean Energy aspects of sustainable energy solutions, and is committed to using its extensive expertise to serve, Electrical & Computer, Materials, Mechanical, Mining), the School of Architecture & Landscape Architecture

  3. Recent Theoretical Results for Advanced Thermoelectric Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Recent Theoretical Results for Advanced Thermoelectric Materials Transport theory and first principles calculations applied to oxides, chalcogenides and skutterudite...

  4. EMPLOYERS OF OUR GRADUATES Applied Materials

    E-Print Network [OSTI]

    * · 78% minority* · 17% female* · 16% international* *based on 2012 data Student and professor with Non · University of California, Berkeley · University of California, Davis · University of California, Los Angeles

  5. Applied Materials Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,Anza ElectricInc Jump to:

  6. Applied Materials Inc AMAT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County, Michigan:Applewood,StateManagement JumpAMAT Jump

  7. Construction material

    DOE Patents [OSTI]

    Wagh, Arun S. (Orland Park, IL); Antink, Allison L. (Bolingbrook, IL)

    2008-07-22T23:59:59.000Z

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  8. Preparation of asymmetric porous materials

    DOE Patents [OSTI]

    Coker, Eric N. (Albuquerque, NM)

    2012-08-07T23:59:59.000Z

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  9. applied physics iupap: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Mechanics. Graduate students are expected to pass Rock, Chris 4 Applied and Engineering Physics Materials Science Websites Summary: Applied and Engineering Physics...

  10. applying physical layer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Mechanics. Graduate students are expected to pass Rock, Chris 2 Applied and Engineering Physics Materials Science Websites Summary: Applied and Engineering Physics...

  11. applied physics division: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Mechanics. Graduate students are expected to pass Rock, Chris 6 Applied and Engineering Physics Materials Science Websites Summary: Applied and Engineering Physics...

  12. applied physics ieee: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Mechanics. Graduate students are expected to pass Rock, Chris 2 Applied and Engineering Physics Materials Science Websites Summary: Applied and Engineering Physics...

  13. applied physics military: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Mechanics. Graduate students are expected to pass Rock, Chris 3 Applied and Engineering Physics Materials Science Websites Summary: Applied and Engineering Physics...

  14. applied antineutrino physics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Mechanics. Graduate students are expected to pass Rock, Chris 2 Applied and Engineering Physics Materials Science Websites Summary: Applied and Engineering Physics...

  15. applied physics 305a: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Mechanics. Graduate students are expected to pass Rock, Chris 2 Applied and Engineering Physics Materials Science Websites Summary: Applied and Engineering Physics...

  16. applied plasma physics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Mechanics. Graduate students are expected to pass Rock, Chris 3 Applied and Engineering Physics Materials Science Websites Summary: Applied and Engineering Physics...

  17. applying systems engineering: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Elective 3 Engineering Technology courses Sheridan, Scott 9 Applied and Engineering Physics Materials Science Websites Summary: Applied and Engineering Physics Masters...

  18. applied chemistry physical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ULM Code of Student Conduct. Do not enter the classroom Findley, Gary L. 9 Applied and Engineering Physics Materials Science Websites Summary: Applied and Engineering Physics...

  19. applied physics laboratory: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Mechanics. Graduate students are expected to pass Rock, Chris 9 Applied and Engineering Physics Materials Science Websites Summary: Applied and Engineering Physics...

  20. applied epidemiology program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chris 13 Prospective PhD Program -School of Engineering and Applied Sciences Applied Physics Materials Science Websites Summary: Prospective PhD Program - School of...

  1. applying psychological theories: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of continued study of the same material Wixted, John T. 19 Applied Game Theory Syllabus Instructors Engineering Websites Summary: Applied Game Theory Syllabus Instructors...

  2. Hardfacing material

    DOE Patents [OSTI]

    Branagan, Daniel J. (Iona, ID)

    2012-01-17T23:59:59.000Z

    A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  3. Porous Materials Porous Materials

    E-Print Network [OSTI]

    Berlin,Technische Universität

    1 Porous Materials x Porous Materials · Physical properties * Characteristic impedance p = p 0 e -jk xa- = vej[ ] p x - j ; Zc= p ve = c ka 0k = c 1-j #12;2 Porous Materials · Specific acoustic impedance Porous Materials · Finite thickness ­ blocked p e + -jk (x-d)a p e - jk (x-d)a d x #12

  4. Systems and methods for forming defects on graphitic materials and curing radiation-damaged graphitic materials

    DOE Patents [OSTI]

    Ryu, Sunmin; Brus, Louis E.; Steigerwald, Michael L.; Liu, Haitao

    2012-09-25T23:59:59.000Z

    Systems and methods are disclosed herein for forming defects on graphitic materials. The methods for forming defects include applying a radiation reactive material on a graphitic material, irradiating the applied radiation reactive material to produce a reactive species, and permitting the reactive species to react with the graphitic material to form defects. Additionally, disclosed are methods for removing defects on graphitic materials.

  5. Applied ALARA techniques

    SciTech Connect (OSTI)

    Waggoner, L.O.

    1998-02-05T23:59:59.000Z

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  6. MULTIDISCIPLINARY FREE MATERIAL OPTIMIZATION 1 ...

    E-Print Network [OSTI]

    2009-10-18T23:59:59.000Z

    Nonlinear Anal. and Mech., Pitman, London, pages 136–212, 1979. [22] R. Werner. Free Material Optimization. PhD thesis, Institute of Applied Mathematics II, ...

  7. Fluid Bed Combustion Applied to Industrial Waste

    E-Print Network [OSTI]

    Mullen, J. F.; Sneyd, R. J.

    Because of its unique ability to handle a wide variety of liquids and solids in an energy efficient and environmentally acceptable manner, fluid bed combustion is being increasingly applied to the utilization of waste materials and low grade fuels...

  8. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO)

    1993-01-01T23:59:59.000Z

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  9. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, D.K.; Burrows, R.W.

    1993-04-13T23:59:59.000Z

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  10. Applying a tapered electrode on a porous ceramic support tube by masking a band inside the tube and drawing in electrode material from the outside of the tube by suction

    DOE Patents [OSTI]

    Vasilow, T.R.; Zymboly, G.E.

    1991-12-17T23:59:59.000Z

    An electrode is deposited on a support by providing a porous ceramic support tube having an open end and closed end; masking at least one circumferential interior band inside the tube; evacuating air from the tube by an evacuation system, to provide a permeability gradient between the masked part and unmasked part of the tube; applying a liquid dispersion of solid electrode particles to the outside surface of the support tube, where liquid flows through the wall, forming a uniform coating over the unmasked support part and a tapered coating over the masked part. 2 figures.

  11. HOUSING GUARANTEE Apply Online

    E-Print Network [OSTI]

    Mease, Kenneth D.

    THE UCI HOUSING GUARANTEE Apply Online 1 Log in to your MyAdmission account via the tab of Admission fee. 3 Complete the Online Housing Application and pay the $20 non-refundable fee. Freshmen apply for the residence halls. Transfer students apply for Arroyo Vista theme houses and on-campus apartments. Students 25

  12. applied research sub-section: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Science Graduate Research Ambassador Award Materials Science Websites Summary: of Engineering & Applied Science Graduate Research Ambassador Award Spring 2014 Application...

  13. Applied Computer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Innovation Computing CCS Division CCS-7 Applied Computer Science Innovative co-design of applications, algorithms, and architectures in order to enable...

  14. Apply early! Limited enrollment.

    E-Print Network [OSTI]

    volcano. Experience the culture and history of Hawaii, and the impact of human activitiesApply early! Limited enrollment. Environmental Science in the Hawaiian Islands Observe, research

  15. Selecting and Applying Interfacings

    E-Print Network [OSTI]

    2006-05-01T23:59:59.000Z

    Selecting and using interfacing correctly is an important component of garment construction. The various types of interfacing are described and methods of applying them are discussed in detail....

  16. Covetic Materials

    Energy Savers [EERE]

    Can re-melt, dilute, alloy... Fabrication of Covetic Materials - Nanocarbon Infusion 3 4 Technical Approach Unusual Characteristics of Covetic Materials ("covalent" &...

  17. INTRODUCTION APPLIED GEOPHYSICS

    E-Print Network [OSTI]

    Merriam, James

    GEOL 384.3 INTRODUCTION TO APPLIED GEOPHYSICS OUTLINE INTRODUCTION TO APPLIED GEOPHYSICS GEOL 384 unknowns; the ones we don't know we don't know. And if one looks throughout the history of geophysics he didn't really say geophysics. He said, " ... our country and other free countries ...". But I am

  18. Construction Material And Method

    DOE Patents [OSTI]

    Wagh, Arun S. (Orland Park, IL); Antink, Allison L. (Bolingbrook, IL)

    2006-02-21T23:59:59.000Z

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic. The ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  19. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15T23:59:59.000Z

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

  20. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  1. Essays in applied microeconomics

    E-Print Network [OSTI]

    Aron-Dine, Aviva

    2012-01-01T23:59:59.000Z

    This dissertation consists of three chapters on topics in applied microeconomics. In the first chapter. I investigate whether voters are more likely to support additional spending on local public services when they perceive ...

  2. Applying for Research Awards

    E-Print Network [OSTI]

    ... 53.22 KB APPLYING FOR RESEARCH AWARDS The Eastern Bird Banding Association seeks applicants for its annual $500 research awards in aid of research using banding techniques or bird banding data. ...

  3. Polyphosphazine-based polymer materials

    DOE Patents [OSTI]

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25T23:59:59.000Z

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  4. CX-009243: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Radiological Dispersal Device (RDD)/Improvised Nuclear Device (IND) Material Training Activities and Evaluations Using Radiation Emitting Sources/Material/Devices - Overarching CX(s) Applied: B1.2 Date: 08/30/2012 Location(s): Idaho Offices(s): Nuclear Energy

  5. Progress Materials Science Phase-field method and Materials Genome Initiative (MGI)

    E-Print Network [OSTI]

    Chen, Long-Qing

    evolution within a material are considered as the ``holy grail'' of materials science and engineering. Many of materials science and engineering. A microstructure may contain a wide variety of structural features such as an applied SPECIAL ISSUE: Materials Genome L.-Q. Chen (&) Department of Materials Science and Engineering

  6. Radiation Sources and Radioactive Materials (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations apply to persons who receive, transfer, possess, manufacture, use, store, handle, transport or dispose of radioactive materials and/or sources of ionizing radiation. Some...

  7. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science, Computing, Applied Math science-innovationassetsimagesicon-science.jpg Information Science, Computing, Applied Math National security depends on science and...

  8. Opportunities to Apply Phase Change Materials to Building Enclosures

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOfEnergy Online1 March

  9. Building America Webinar: Opportunities to Apply Phase Change Materials to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuilding Enclosures | Department of Energy

  10. Membrane shape as a reporter for applied forces Supplemental Material

    E-Print Network [OSTI]

    Phillips, Rob

    by the canonical theory of bilayer membranes, proposed independently by Helfrich, Canham and Evans [1­3]: E = M d2G is the Gaussian bending modulus. By the Gauss- Bonnet theorem, the second term in the bending energy k

  11. Applying Risk Communication to the Transportation of Radioactive Materials

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplication of SyntheticPowerManagementOpportunity | Department

  12. Applying Risk Communication to the Transportation of Radioactive Materials

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplication of SyntheticPowerManagementOpportunity | Department|

  13. Solar Applied Materials Technology Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteel CorporationSocovoltaicSolaer sa JumpSolar

  14. Applied Materials Switzerland SA Formerly HCT Shaping Systems SA | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County, Michigan:Applewood,StateManagement JumpAMAT

  15. MULTISCALE PHENOMENA IN MATERIALS

    SciTech Connect (OSTI)

    A. BISHOP

    2000-09-01T23:59:59.000Z

    This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.

  16. SUSTAINABILITY WHO CAN APPLY

    E-Print Network [OSTI]

    FUNDED BY CALL FOR SUSTAINABILITY RESEARCH STUDENT WHO CAN APPLY Undergraduate and graduate Participate in the Global Change & Sustainability Center's Research Symposium; attend workshops with faculty or publish in the U's student-run sustainability publication to be released in May 2014. Are you conducting

  17. Applied Microbiology and Biotechnology

    E-Print Network [OSTI]

    Alvarez-Cohen, Lisa

    1 23 Applied Microbiology and Biotechnology ISSN 0175-7598 Appl Microbiol Biotechnol DOI 10.1007/s-Cohen #12;1 23 Your article is protected by copyright and all rights are held exclusively by Springer in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version

  18. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1994-01-01T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  19. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1992-01-01T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  20. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1992-07-28T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  1. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1994-06-07T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  2. Critical Materials:

    Broader source: Energy.gov (indexed) [DOE]

    lighting. 14 (bottom) Criticality ratings of shortlisted raw 76 materials. 15 77 2. Technology Assessment and Potential 78 This section reviews the major trends within...

  3. CONSTRUCTION The construction management associate of applied science degree

    E-Print Network [OSTI]

    Hartman, Chris

    CONSTRUCTION MANAGEMENT The construction management associate of applied science degree program meets the growing needs of the construction industry for preparation of entry-level construction and manage all aspects of construction projects including: workers, subcontractors, materials, equipment

  4. UNIVERSITY OF CALIFORNIA, SANTA CRUZ APPLIED MUSIC INSTRUCTION

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    regarding editing, if any Identification of assisting artists, if applicable · Other relevant materials experience. POSITION AVAILABLE: Fall Quarter 2013 (beginning September 21, 2013). Appointments are contingent availability of funding and positive performance review. TO APPLY: Applicants should submit a letter

  5. Cermet materials

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID)

    2008-12-23T23:59:59.000Z

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  6. Composite material

    DOE Patents [OSTI]

    Hutchens, Stacy A. (Knoxville, TN); Woodward, Jonathan (Solihull, GB); Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN)

    2012-02-07T23:59:59.000Z

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  7. Porous material neutron detector

    DOE Patents [OSTI]

    Diawara, Yacouba (Oak Ridge, TN); Kocsis, Menyhert (Venon, FR)

    2012-04-10T23:59:59.000Z

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  8. Investigation of a HA/PDLGA/Carbon Foam Material System for Orthopedic Fixation Plates Based on Time-Dependent Properties 

    E-Print Network [OSTI]

    Rodriguez, Douglas E.

    2010-01-14T23:59:59.000Z

    the material response to applied physiological loads. Results from this work demonstrate the importance of material dissolution rate as well as material strength when designing internal fixation plates....

  9. Applied Physics Graduate Program The Rice Quantum Institute

    E-Print Network [OSTI]

    Richards-Kortum, Rebecca

    94 Applied Physics Graduate Program The Rice Quantum Institute Participating Faculty This program is open to faculty from physics and astronomy, chemistry, mechanical engineering and materials science and the engineering divisions at Rice and overseen by the Rice Quantum Institute (RQI), the Applied Physics Program

  10. CX-010400: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Engineered Rubble Pile for Training Exercises at the Hazardous Materials Management and Emergency Response Training and Education Facility CX(s) Applied: B1.15 Date: 05/16/2013 Location(s): Washington Offices(s): River Protection-Richland Operations Office

  11. CX-008023: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    CATEGORICAL EXCLUSION (CX) FOR MATERIAL CONSERVATION PROGRAMS (CX-EECBG-009)CX(s) Applied: A9, B3.6, B5.1Date: 11/16/2011Location(s): NationwideOffice(s): Energy Efficiency & Renewable Energy (EERE) / Oak Ridge Office (ORO)

  12. CX-009191: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    (0672-1556) Texas A&M University (TAMU) - System Development for Vehicular Natural Gas Storage Using Advanced Porous Materials CX(s) Applied: B3.6 Date: 08/31/2012 Location(s): Texas, Michigan, North Carolina, California Offices(s): Advanced Research Projects Agency-Energy

  13. CX-010773: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Install Air Conditioning in the Fuel Manufacturing Facility (FMF) (Materials and Fuel Complex [MFC]-704) Security Police Officer (SPO) Office CX(s) Applied: B2.1 Date: 07/17/2013 Location(s): Idaho Offices(s): Nuclear Energy

  14. CX-011363: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Correlating Thermal, Mechanical, and Electrical Coupling Based Multi-Physics Behavior of Nuclear Materials Through In-situ Measurement CX(s) Applied: B3.6 Date: 10/30/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  15. CX-012686: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    An Investigation To Establish Multiphysical Property Dataset of Nuclear Materials Based on In- Situ Observations and Measurements, NEAMS: Nuclear Energy Advanced Modeling and Simulation – Purdue University CX(s) Applied: B3.6Date: 41862 Location(s): IndianaOffices(s): Nuclear Energy

  16. CX-010775: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Next Generation Electromagnetic Pump: Analysis Tools and Insulation Materials Development - General Electric (GE) Hitachi Nuclear Energy Americas Limited Liability Corporation (LLC) CX(s) Applied: B3.6 Date: 07/24/2013 Location(s): Idaho Offices(s): Nuclear Energy

  17. CX-009654: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mission Support Alliance Annual Categorical Exclusion for Drop-Off, Collection, and Transfer Facilities for Recyclable Materials under 10 CFR 1021, Subpart D, Appendix B CX(s) Applied: B1.35 Date: 12/05/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

  18. CX-007706: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    University of South Florida - Development of a Low Cost Thermal Energy Storage System Using Phase Change Materials with Enhanced Radiation Heat Transfer CX(s) Applied: A9, B3.6, B3.15 Date: 11/29/2011 Location(s): Florida Offices(s): Advanced Research Projects Agency-Energy

  19. CX-011599: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mission Support Alliance Annual Categorical Exclusion for Drop-Off, Collection, and Transfer Facilities for Recyclable Materials under 10 CFR 1021, Subpart D, Appendix B, B1.35 for Calendar Year 2014 CX(s) Applied: B1.35 Date: 12/02/2013 Location(s): Washington Offices(s): River Protection-Richland Operations Office

  20. CX-012036: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Smart Cementing Materials and Drilling Muds for Real-Time Monitoring of Deepwater Wellbore Enhancement CX(s) Applied: A9, A11, B3.6, B3.7 Date: 04/15/2014 Location(s): Texas Offices(s): National Energy Technology Laboratory

  1. CX-008751: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Radiation Detection and Nuclear Materials Laboratory Equipment in Support of Student Training and Research by the Department of Mechanical and Nuclear Engineering at Virginia Commonwealth University CX(s) Applied: B3.6 Date: 05/17/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  2. CX-006993: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Naturally Occurring Radioactive Materials Mitigation and Clean Water Recovery from Marcellus Frac Water (Phases 1 and 2)CX(s) Applied: B3.6Date: 09/22/2011Location(s): Niskayuna, New YorkOffice(s): Fossil Energy, Savannah River Operations Office

  3. CX-007780: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Routine Shipping and Transportation of Regulated and Non-Regulated Material, Equipment, or Waste On and Off the Hanford Site CX(s) Applied: B1.30 Date: 01/05/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

  4. Material Symbols 

    E-Print Network [OSTI]

    Clark, Andy

    2006-01-01T23:59:59.000Z

    What is the relation between the material, conventional symbol structures that we encounter in the spoken and written word, and human thought? A common assumption, that structures a wide variety of otherwise competing ...

  5. Complex Materials

    ScienceCinema (OSTI)

    Cooper, Valentino

    2014-05-23T23:59:59.000Z

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  6. Statistics applied to safeguards

    SciTech Connect (OSTI)

    Picard, R.R.

    1993-05-01T23:59:59.000Z

    Statistical methods are central to safeguards work. Measurements forming the basis of much materials accountancy are not perfect - ``perfect`` in the sense of being error free. Other sessions in this course address the destructive and nondestructive measurement of nuclear material, together with the inherent limitations in those measurements. The bottom line is that measurement errors are a fact of life and, since we can`t eliminate them, we have to find a rational way to deal with them. Which leads to the world of statistics. Beyond dealing with measurement errors, another area of statistical application involves the sampling of items for verification. Inspectors from the IAEA and domestic regulatory agencies periodically visit operating facilities and make measurements of selected items. By comparing their own measured values to those declared by the facilities, increased confidence is obtained. If verification measurements were not expensive, time consuming, and disruptive to operations, perhaps verification of 100% of the inventories would be desirable. In reality, many constraints lead to inspection of only a portion of those inventories. Drawing inferences about a larger ``population`` of declared items in a facility based on verification information obtained from a sample of those items is a statistical problem. There are few texts on statistics in safeguards. The lengthy exposition ``IAEA Safeguards: Statistical Concepts and Techniques`` and the US NRC book edited by Bowen and Bennet are two good sources of general information. In the next section, the subject of measurement quality is addressed. The third section covers the evaluation of MUFs, and discusses the related subjects of error propagation and sequential analysis. The final section covers verification, inspection sample size calculations, and the D statistic. The text is written at an elementary level, with references to the safeguards literature for more detailed treatment.

  7. Statistics applied to safeguards

    SciTech Connect (OSTI)

    Picard, R.R.

    1993-01-01T23:59:59.000Z

    Statistical methods are central to safeguards work. Measurements forming the basis of much materials accountancy are not perfect - perfect'' in the sense of being error free. Other sessions in this course address the destructive and nondestructive measurement of nuclear material, together with the inherent limitations in those measurements. The bottom line is that measurement errors are a fact of life and, since we can't eliminate them, we have to find a rational way to deal with them. Which leads to the world of statistics. Beyond dealing with measurement errors, another area of statistical application involves the sampling of items for verification. Inspectors from the IAEA and domestic regulatory agencies periodically visit operating facilities and make measurements of selected items. By comparing their own measured values to those declared by the facilities, increased confidence is obtained. If verification measurements were not expensive, time consuming, and disruptive to operations, perhaps verification of 100% of the inventories would be desirable. In reality, many constraints lead to inspection of only a portion of those inventories. Drawing inferences about a larger population'' of declared items in a facility based on verification information obtained from a sample of those items is a statistical problem. There are few texts on statistics in safeguards. The lengthy exposition IAEA Safeguards: Statistical Concepts and Techniques'' and the US NRC book edited by Bowen and Bennet are two good sources of general information. In the next section, the subject of measurement quality is addressed. The third section covers the evaluation of MUFs, and discusses the related subjects of error propagation and sequential analysis. The final section covers verification, inspection sample size calculations, and the D statistic. The text is written at an elementary level, with references to the safeguards literature for more detailed treatment.

  8. School of Applied Technology School of Applied Technology

    E-Print Network [OSTI]

    Heller, Barbara

    School of Applied Technology School of Applied Technology Daniel F. and Ada L. Rice Campus Illinois Institute of Technology 201 E. Loop Road Wheaton, IL 60187 630.682.6000 www.iit.edu/applied tech/ Dean and Academic Director, Information Technology and Management Programs: C. Robert Carlson Director of Operations

  9. School of Applied Technology School of Applied Technology

    E-Print Network [OSTI]

    Heller, Barbara

    School of Applied Technology School of Applied Technology Daniel F. and Ada L. Rice Campus Illinois Institute of Technology 201 E. Loop Road Wheaton, IL 60187 630.682.6000 www.iit.edu/applied tech/ Dean Technology and Management Programs: Mazin Safar Director, Marketing & Development: Scott Pfeiffer Director

  10. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMARSecurityMaterials Science Materials

  11. ECE 350 / 450 -Fall 2010 Applied Quantum Mechanics for Engineers (3)

    E-Print Network [OSTI]

    Gilchrist, James F.

    ECE 350 / 450 - Fall 2010 Applied Quantum Mechanics for Engineers (3) Instructor: Prof. Nelson (for ECE 450-level) in engineering (Electical and Computer Engineering, Material Science Engineering

  12. Simulated energy savings of cool roofs applied to industrial premises in the Mediterranean Area

    E-Print Network [OSTI]

    De Carli, Michele; Scarpa, Massimiliano; Schiavon, Stefano; Zecchin, Roberto

    2007-01-01T23:59:59.000Z

    materials. Computer energy simulations have been used tomeans of computer energy simulations, in the Mediterraneanof 60% is applied. The energy simulations were performed for

  13. Applied inductive learning Louis Wehenkel

    E-Print Network [OSTI]

    Wehenkel, Louis

    problems 20 2.3.1 Classes 20 2.3.2 Types of classi cation problems 20 2.3.3 Learning and test sets 21 2Applied inductive learning Louis Wehenkel University of Li`ege Faculty of Applied Sciences Course;#12;APPLIED INDUCTIVE LEARNING COURSE NOTES : OCTOBER 2000 LOUIS A. WEHENKEL University of Li#12;ege

  14. Applied inductive learning Louis Wehenkel

    E-Print Network [OSTI]

    Wehenkel, Louis

    .3.2 Types of classification problems 20 2.3.3 Learning and test sets 21 2.3.4 Decision or classificationApplied inductive learning Louis Wehenkel University of Liâ??ege Faculty of Applied Sciences Courseâ??e'' #12; #12; APPLIED INDUCTIVE LEARNING COURSE NOTES : OCTOBER 2000 LOUIS A. WEHENKEL University of Li

  15. Journal of Applied Ecology 2004

    E-Print Network [OSTI]

    Holl, Karen

    Journal of Applied Ecology 2004 41, 922­933 © 2004 British Ecological Society Blackwell Publishing-scale, Sacramento River, succession, vegetation Journal of Applied Ecology (2004) 41, 922­933 Introduction More than@ucsc.edu). #12;923 Riparian forest restoration © 2004 British Ecological Society, Journal of Applied Ecology, 41

  16. Journal of Applied Ecology 2002

    E-Print Network [OSTI]

    Holl, Karen

    Journal of Applied Ecology 2002 39, 960­970 © 2002 British Ecological Society Blackwell Science- tion, succession. Journal of Applied Ecology (2002) 39, 960­970 Introduction Efforts to reclaim@ucsc.edu). #12;961 Vegetation on reclaimed mines © 2002 British Ecological Society, Journal of Applied Ecology

  17. Applying Mathematics.... ... to catch criminals

    E-Print Network [OSTI]

    O'Leary, Michael

    Applying Mathematics.... ... to catch criminals Mike O'Leary Department of Mathematics Towson University Stevenson University Kappa Mu Epsion 2008 Mike O'Leary (Towson University) Applying mathematics Department Mike O'Leary (Towson University) Applying mathematics to catch criminals September 10, 2008 2 / 42

  18. Materials compatibility.

    SciTech Connect (OSTI)

    Somerday, Brian P.

    2010-04-01T23:59:59.000Z

    Objectives are to enable development and implementation of codes and standards for H{sub 2} containment components: (1) Evaluate data on mechanical properties of materials in H{sub 2} gas - Technical Reference on Hydrogen Compatibility of Materials; (2) Generate new benchmark data on high-priority materials - Pressure vessel steels, stainless steels; and (3) Establish procedures for reliable materials testing - Sustained-load cracking, fatigue crack propagation. Summary of this presentation are: (1) Completed measurement of cracking thresholds (K{sub TH}) for Ni-Cr-Mo pressure vessel steels in high-pressure H{sub 2} gas - K{sub TH} measurements required in ASME Article KD-10 (2) Crack arrest test methods appear to yield non-conservative results compared to crack initiation test methods - (a) Proposal to insert crack initiation test methods in Article KD-10 will be presented to ASME Project Team on Hydrogen Tanks, and (b) Crack initiation methods require test apparatus designed for dynamic loading of specimens in H{sub 2} gas; and (3) Demonstrated ability to measure fatigue crack growth of pressure vessel steels in high-pressure H{sub 2} gas - (a) Fatigue crack growth data in H{sub 2} required in ASME Article KD-10, and (b) Test apparatus is one of few in U.S. or abroad for measuring fatigue crack growth in >100 MPa H{sub 2} gas.

  19. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, Edward F. (P.O. Box 900, Isle of Palms, SC 29451)

    1992-01-01T23:59:59.000Z

    A method for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF.sub.4 and HNO.sub.3 and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200.degree. C. The porous material can be pulverized before immersion to further increase the leach rate.

  20. Energy Materials & Processes | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Materials & Processes Overview Atmospheric Aerosol Systems Biosystem Dynamics & Design Energy Materials & Processes Terrestrial & Subsurface Ecosystems Energy Materials &...

  1. FY 1990 Applied Sciences Branch annual report

    SciTech Connect (OSTI)

    Keyes, B.M.; Dippo, P.C. [eds.

    1991-11-01T23:59:59.000Z

    The Applied Sciences Branch actively supports the advancement of DOE/SERI goals for the development and implementation of the solar photovoltaic technology. The primary focus of the laboratories is to provide state-of-the-art analytical capabilities for materials and device characterization and fabrication. The branch houses a comprehensive facility which is capable of providing information on the full range of photovoltaic components. A major objective of the branch is to aggressively pursue collaborative research with other government laboratories, universities, and industrial firms for the advancement of photovoltaic technologies. Members of the branch disseminate research findings to the technical community in publications and presentations. This report contains information on surface and interface analysis, materials characterization, development, electro-optical characterization module testing and performance, surface interactions and FTIR spectroscopy.

  2. Alloy materials

    DOE Patents [OSTI]

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01T23:59:59.000Z

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  3. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) -PublicationsMaterials Science

  4. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | National NuclearMaterial Misfits

  5. Overview of Applied Battery Research

    Broader source: Energy.gov (indexed) [DOE]

    tolerance goals Need low-cost materials Partners Main collaborators: ANL, BNL, INL, LBNL, NREL, SNL, & ARL University support: Illinois Institute of Technology, University of...

  6. Overview of Applied Battery Research

    Broader source: Energy.gov (indexed) [DOE]

    tolerance goals * Need low-cost materials Partners * Main collaborators: ANL, BNL, INL, LBNL, SNL, ARL, & JPL * University support: Illinois Institute of Technology, University of...

  7. APPLIED TECHNOLOGY Strategic Plan Summary

    E-Print Network [OSTI]

    Heller, Barbara

    and collaborative technology-based support for the proposed Innovation Center and the Entrepreneurship Academy. We research centers­CNR, CPI, and CSP. Establish a food safety and processing technology hub/incubator/innovationSCHOOL OF APPLIED TECHNOLOGY Strategic Plan Summary #12;School of Applied Technology Strategic Plan

  8. Materials Characterization | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMAR Os2010Material Safety Electron

  9. Ris National Laboratory Materials Research Department

    E-Print Network [OSTI]

    catalysis H. Lynggaard, A. Andreasen , C. Stegelmann and P. Stoltze Department of Chemistry and Applied in heterogeneous catalysis H. Lynggaard, A. Andreasen, C. Stegelmann and P. Stoltze Department of Chemistry and Applied Engineering Science Aalborg University, Niels Bohrs Vej 8 DK-6700 Esbjerg, Denmark Materials

  10. Critical Materials Institute

    SciTech Connect (OSTI)

    Alex King

    2013-01-09T23:59:59.000Z

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  11. Critical Materials Institute

    ScienceCinema (OSTI)

    Alex King

    2013-06-05T23:59:59.000Z

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  12. Department of Applied Mathematics Department of Applied Mathematics

    E-Print Network [OSTI]

    Heller, Barbara

    , computational mathematics, discrete applied mathematics, and stochas- tics. More detailed descriptions of Philosophy in Collegiate Mathematics Education (joint program with the Department of Mathematics and Science Education) Research Facilities The department provides students with office space equipped with computers

  13. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals, accidentally spilled, or released. In addition to laboratory chemicals, hazardous materials may include common not involve highly toxic or noxious hazardous materials, a fire, or an injury requiring medical attention

  14. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up, or there is a small spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  15. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  16. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up personnel trained in Hazardous Material clean up or an appropriate spill kit is not available? Call 561

  17. Modeling applied to problem solving

    E-Print Network [OSTI]

    Pawl, Andrew

    We describe a modeling approach to help students learn expert problem solving. Models are used to present and hierarchically organize the syllabus content and apply it to problem solving, but students do not develop and ...

  18. IIT SCHOOL OF APPLIED TECHNOLOGY

    E-Print Network [OSTI]

    Heller, Barbara

    INDUSTRIAL TECHNOLOGY AND MANAGEMENT IIT SCHOOL OF APPLIED TECHNOLOGY PREPARING SKILLED INDIVIDUALS, INDUSTRIAL FACILITIES, SUPPLY CHAIN MANAGEMENT, SUSTAINABILITY AND MANUFACTURING TECHNOLOGY. #12;BE ONE to assess, implement, and utilize current technologies, and to learn how to manage industrial operations

  19. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  20. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  1. Functional Materials for Energy | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at...

  2. The Department of Chemical Engineering and Materials Science Michigan State University

    E-Print Network [OSTI]

    AND NANOSTRUCTURE INFLUENCES ON MECHANICAL PROPERTIES OF THERMOELECTRIC MATERIALS Thermoelectric (TE) materials in a device, the thermoelectric material must be able to withstand the applied thermal and mechanical forces

  3. CX-009420: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Additive Manufacturing Using EOSINT M280 CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  4. CX-009418: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Electron Beam Melting CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  5. CX-009419: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Magnetic Pulser CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  6. Materials Project: A Materials Genome Approach

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ceder, Gerbrand (MIT); Persson, Kristin (LBNL)

    Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, this project has computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The computations predicted several new battery materials which were made and tested in the lab and are now being patented. By computing properties of all known materials, the Materials Project aims to remove guesswork from materials design in a variety of applications. Experimental research can be targeted to the most promising compounds from computational data sets. Researchers will be able to data-mine scientific trends in materials properties. By providing materials researchers with the information they need to design better, the Materials Project aims to accelerate innovation in materials research.[copied from http://materialsproject.org/about] You will be asked to register to be granted free, full access.

  7. MATERIALS MANAGEMENT MATERIALS MANAGEMENT -INVENTORY CONTROL

    E-Print Network [OSTI]

    Oliver, Douglas L.

    MATERIALS MANAGEMENT MATERIALS MANAGEMENT - INVENTORY CONTROL NOTICE OF DESIGNATED DEPARTMENTAL OF MATERIALS MANAGEMENT ______ FURTHER INSTRUCTIONS 1. Include a copy of any relevant documents. 2. Item MATERIALS COORDINATOR ­ IC-8 Mail, Fax or PDF the entire package to: MC 2010 Fax: 679-4240 REFERENCE # DMC

  8. Dense, finely, grained composite materials

    DOE Patents [OSTI]

    Dunmead, Stephen D. (Davis, CA); Holt, Joseph B. (San Jose, CA); Kingman, Donald D. (Danville, CA); Munir, Zuhair A. (Davis, CA)

    1990-01-01T23:59:59.000Z

    Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.

  9. Method and apparatus for nucleating the crystallization of undercooled materials

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Barret, Peter F. (Peterbourgh, CA)

    1989-01-01T23:59:59.000Z

    A method of storing and controlling a release of latent heat of transition of a phase-change material is disclosed. The method comprises trapping a crystallite of the material between two solid objects and retaining it there under high pressure by applying a force to press the two solid objects tightly together. A crystallite of the material is exposed to a quantity of the material that is in a supercooled condition to nucleate the crystallization of the supercooled material.

  10. Method and apparatus for vibrating a substrate during material formation

    DOE Patents [OSTI]

    Bailey, Jeffrey A. (Richland, WA) [Richland, WA; Roger, Johnson N. (Richland, WA) [Richland, WA; John, Munley T. (Benton City, WA) [Benton City, WA; Walter, Park R. (Benton City, WA) [Benton City, WA

    2008-10-21T23:59:59.000Z

    A method and apparatus for affecting the properties of a material include vibrating the material during its formation (i.e., "surface sifting"). The method includes the steps of providing a material formation device and applying a plurality of vibrations to the material during formation, which vibrations are oscillations having dissimilar, non-harmonic frequencies and at least two different directions. The apparatus includes a plurality of vibration sources that impart vibrations to the material.

  11. DREDGED MATERIAL EVALUATION AND

    E-Print Network [OSTI]

    DREDGED MATERIAL EVALUATION AND DISPOSAL PROCEDURES (USERS' MANUAL) Dredged Material Management 2009) Prepared by: Dredged Material Management Office US Army Corps of Engineers Seattle District #12........................................................................................2-1 2.2 The Dredged Material Evaluation Process

  12. Method for forming materials

    DOE Patents [OSTI]

    Tolle, Charles R. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Miller, Karen S. (Idaho Falls, ID)

    2009-10-06T23:59:59.000Z

    A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

  13. Journal of Applied Ecology 2006

    E-Print Network [OSTI]

    Thomas, Len

    Journal of Applied Ecology 2006 43, 377­384 © 2006 The Authors. Journal compilation © 2006 British Ecological Society Blackwell Publishing Ltd METHODOLOGICAL INSIGHTS Point transect sampling with traps, Etive House, Beechwood Park, Inverness IV2 3BW, UK Summary 1. The ability to monitor abundance of animal

  14. APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING

    E-Print Network [OSTI]

    Rogina, Mladen

    APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING Brijuni, Croatia June 23{27, 2003. y x Runge's example; Organized by: Department of Mathematics, Unversity of Zagreb, Croatia. Miljenko Maru#20;si#19;c, chairman;simir Veseli#19;c Andro Mikeli#19;c Sponsors: Ministry of Science and Technology, Croatia, CV Sistemi d

  15. Applied Sustainability Political Science 319

    E-Print Network [OSTI]

    Young, Paul Thomas

    1 Applied Sustainability Political Science 319 College of Charleston Spring 2013 Day/Time: TH 1 Address: fisherb@cofc.edu Office: 284 King Street, #206 (Office of Sustainability) Office Hours: by appt sustainability. It will focus on the development of semester-long sustainability projects, from conception

  16. California Energy Commission Apply Today!

    E-Print Network [OSTI]

    including HVAC and thermal energy storage system upgrades, stadium light conversion and a microturbineCalifornia Energy Commission Apply Today! "The College implemented all of the recommended projects Programs Office (916) 654-4147 pubprog@energy.state.ca.us "CEC financing allowed us to install many

  17. implementing bioenergy applied research & development

    E-Print Network [OSTI]

    Northern British Columbia, University of

    1 A Northern Centre for Renewable Energy implementing bioenergy applied research & development to develop local solutions to these challenges by integrating campus operations, education, and research will help the University meet its current and future energy needs, reduce or eliminate our greenhouse gas

  18. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1992-10-13T23:59:59.000Z

    A method is described for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF[sub 4] and HNO[sub 3] and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200 C. The porous material can be pulverized before immersion to further increase the leach rate.

  19. University of Kentucky Chemical and Materials Engineering Department

    E-Print Network [OSTI]

    Rankin, Stephen E.

    synthesis and characterization of materials with advanced nanostructure and properties. Examples and control the "bottom- up" formation of these inorganic materials by polymerization, controlled. Understand self-assembly and its use for materials synthesis 6. Be able to apply physical chemical

  20. University of Kentucky Chemical and Materials Engineering Department

    E-Print Network [OSTI]

    Rankin, Stephen E.

    the chemical synthesis and characterization of materials with advanced nanostructure and properties. Examples and control the "bottom-up" formation of these inorganic materials by polymerization, controlled precipitation. Understand self-assembly and its use for materials synthesis 6. Be able to apply physical chemical

  1. Transporting particulate material

    DOE Patents [OSTI]

    Aldred, Derek Leslie (North Hollywood, CA); Rader, Jeffrey A. (North Hollywood, CA); Saunders, Timothy W. (North Hollywood, CA)

    2011-08-30T23:59:59.000Z

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  2. Materials Science & Engineering

    E-Print Network [OSTI]

    Reisslein, Martin

    Materials Science & Engineering The development of new high-performance materials for energy Research in Niskayuna, NY. He received his BS and PhD in Materials Science and Engineering at MIT. For 22 and composition of materials at higher spatial resolution, with greater efficiency, and on real materials

  3. Process for applying control variables having fractal structures

    DOE Patents [OSTI]

    Bullock, IV, Jonathan S. (Oak Ridge, TN); Lawson, Roger L. (Oliver Springs, TN)

    1996-01-01T23:59:59.000Z

    A process and apparatus for the application of a control variable having a fractal structure to a body or process. The process of the present invention comprises the steps of generating a control variable having a fractal structure and applying the control variable to a body or process reacting in accordance with the control variable. The process is applicable to electroforming where first, second and successive pulsed-currents are applied to cause the deposition of material onto a substrate, such that the first pulsed-current, the second pulsed-current, and successive pulsed currents form a fractal pulsed-current waveform.

  4. Process for applying control variables having fractal structures

    DOE Patents [OSTI]

    Bullock, J.S. IV; Lawson, R.L.

    1996-01-23T23:59:59.000Z

    A process and apparatus are disclosed for the application of a control variable having a fractal structure to a body or process. The process of the present invention comprises the steps of generating a control variable having a fractal structure and applying the control variable to a body or process reacting in accordance with the control variable. The process is applicable to electroforming where first, second and successive pulsed-currents are applied to cause the deposition of material onto a substrate, such that the first pulsed-current, the second pulsed-current, and successive pulsed currents form a fractal pulsed-current waveform. 3 figs.

  5. Techniques and methods in nuclear materials traceability

    SciTech Connect (OSTI)

    Persiani, P.J.

    1996-08-01T23:59:59.000Z

    The nonproliferation community is currently addressing concerns that the access to special nuclear materials may increase the illicit trafficking in weapons-usable materials from civil and/or weapons material stores and/or fuel cycles systems. Illicit nuclear traffic usually involves reduced quantities of nuclear materials perhaps as samplings of a potential protracted diversionary flow from sources to users. To counter illicit nuclear transactions requires the development of techniques and methods in nuclear material traceability as an important phase of a broad forensic analysis capability. This report discusses how isotopic signatures and correlation methods were applied to determine the origins of Highly Enriched Uranium (HEU) and Plutonium samples reported as illicit trafficking in nuclear materials.

  6. Apparatus for combinatorial screening of electrochemical materials

    DOE Patents [OSTI]

    A high throughput combinatorial screening method and apparatus for the evaluation of electrochemical materials using a single voltage source (2) is disclosed wherein temperature changes arising from the application of an electrical load to a cell array (1) are used to evaluate the relative electrochemical efficiency of the materials comprising the array. The apparatus may include an array of electrochemical cells (1) that are connected to each other in parallel or in series, an electronic load (2) for applying a voltage or current to the electrochemical cells (1), and a device (3), external to the cells, for monitoring the relative temperature of each cell when the load is applied.

    2009-12-15T23:59:59.000Z

    A high throughput combinatorial screening method and apparatus for the evaluation of electrochemical materials using a single voltage source (2) is disclosed wherein temperature changes arising from the application of an electrical load to a cell array (1) are used to evaluate the relative electrochemical efficiency of the materials comprising the array. The apparatus may include an array of electrochemical cells (1) that are connected to each other in parallel or in series, an electronic load (2) for applying a voltage or current to the electrochemical cells (1), and a device (3), external to the cells, for monitoring the relative temperature of each cell when the load is applied.

  7. Superhydrophobic Materials Technology-PVC Bonding Techniques

    SciTech Connect (OSTI)

    Hunter, Scott R. [Oak Ridge National Laboratory; Efird, Marty [VeloxFlow, LLC

    2013-05-03T23:59:59.000Z

    The purpose of the technology maturation project was to develop an enhanced application technique for applying diatomaceous earth with pinned polysiloxane oil to PVC pipes and materials. The oil infiltration technique is applied as a spray of diluted oil in a solvent onto the superhydrophobic diatomaceous earth substrate. This makes the surface take on the following characteristics: • wet?cleanable • anti?biofouling • waterproof • anti?corrosion. The project involved obtaining input and supplies from VeloxFlow and the development of successful techniques that would quickly result in a commercial license agreement with VeloxFlow and other companies that use PVC materials in a variety of other fields of use.

  8. Department of Materials Science &

    E-Print Network [OSTI]

    Acton, Scott

    Developing Leaders of Innovation Department of Materials Science & Engineering #12;At the University of Virginia, students in materials science, engineering physics and engineering science choose to tackle compelling issues in materials science and engineering or engineering science

  9. Nanostructured magnetic materials

    E-Print Network [OSTI]

    Chan, Keith T.

    2011-01-01T23:59:59.000Z

    Magnetism and Magnetic Materials Conference, Atlanta, GA (Nanostructured Magnetic Materials by Keith T. Chan Doctor ofinduced by a Si-based material occurs at a Si/Ni interface

  10. Applying to Teacher Education Program at Purdue

    E-Print Network [OSTI]

    David Drasin

    2012-12-02T23:59:59.000Z

    Apply to the Teacher Education Program (TEP). Please remember to apply to the TEP(Gate A) if you wish to officially enroll in the. Professional Education ...

  11. MATERIALS TRANSFER AGREEMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

  12. Materials at the Mesoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials at the Mesoscale 1663 Los Alamos science and technology magazine Latest Issue:January 2015 All Issues submit Materials at the Mesoscale Los Alamos's bold proposal to...

  13. UNCLASSIFIED Institute for Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute for Materials Science Lecture Series Dr Roger D Doherty M.A. D. Phil., Fellow TMS Emeritus Professor of Materials Science and Engineering, Drexel University,...

  14. battery materials | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery materials battery materials Leads No leads are available at this time. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. Abstract: The...

  15. EMSL - Energy Materials & Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy Energy Materials and Processes focuses on the dynamic transformation mechanisms and physical and chemical properties at critical interfaces in catalysts and energy materials...

  16. Propulsion Materials Research Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Materials for Electric and Hybrid Drive Systems - Address materials issues impacting power electronics, motors, and other hybrid drive system components * Combustion System...

  17. Materials Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of these as mixed- material systems. Additionally, materials such as titanium, polycarbonate, acrylics, and metal matrix composites, and approaches to their use must be...

  18. Department of Materials Science and Engineering University of Maryland, College Park, Maryland

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Department of Materials Science and Engineering University of Maryland, College Park, Maryland ENMA in materials engineering and applied physics. The topics include dielectric/ferroelectric materials, magnetic by the Course: ABET A: Ability to apply mathematics, science and engineering principles ABET B: Ability

  19. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf NSEC » ISTI

  20. Synthesis and Morphological, Electrochemical Characterization of Sn92Co8 Nanoalloys for Anode Materials in Li Secondary

    E-Print Network [OSTI]

    Cho, Jaephil

    Materials in Li Secondary Batteries Hyunjung Kim and Jaephil Cho*,z Department of Applied Chemistry, Kumoh the capacity limits of graphite materials, Sn and Si anode materials have been investigated.1-3 However

  1. Materials Science & Engineering

    E-Print Network [OSTI]

    Materials Science & Engineering In this presentation the role of materials in power generation and the person responsible for the integration of science and resources in the Materials Science & Technology University in Mexico City and a Ph.D. in Materials Engineering from Rensselaer Polytechnic Institute, Troy NY

  2. Coated ceramic breeder materials

    DOE Patents [OSTI]

    Tam, Shiu-Wing (Downers Grove, IL); Johnson, Carl E. (Elk Grove, IL)

    1987-01-01T23:59:59.000Z

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  3. HAZARDOUS MATERIALS EMERGENCY RESPONSE

    E-Print Network [OSTI]

    ANNEX Q HAZARDOUS MATERIALS EMERGENCY RESPONSE #12;ANNEX Q - HAZARDOUS MATERIALS EMERGENCY RESPONSE 03/10/2014 v.2.0 Page Q-1 PROMULGATION STATEMENT Annex Q: Hazardous Materials Emergency Response, and contents within, is a guide to how the University conducts a response specific to a hazardous materials

  4. UNDERGRADUATE Materials Science & Engineering

    E-Print Network [OSTI]

    Tipple, Brett

    UNDERGRADUATE HANDBOOK Materials Science & Engineering 2013 2014 #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

  5. Materials Science & Engineering

    E-Print Network [OSTI]

    Simons, Jack

    Materials Science & Engineering The University of Utah 2014-15 Undergraduate Handbook #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

  6. A Materials Facilities Initiative -

    E-Print Network [OSTI]

    A Materials Facilities Initiative - FMITS & MPEX D.L. Hillis and ORNL Team Fusion & Materials for Nuclear Systems Division July 10, 2014 #12;2 Materials Facilities Initiative JET ITER FNSF Fusion Reactor Challenges for materials: fluxes and fluence, temperatures 50 x divertor ion fluxes up to 100 x neutron

  7. University Materials Institute INTRODUCTION

    E-Print Network [OSTI]

    Escolano, Francisco

    University Materials Institute INTRODUCTION The University Materials Science Institute of Alicante the needed multidisciplinary character of the materials area. It is important to highlight the fact participate in the Materials Science PhD program which is imparted at the UA. Scientific research

  8. Dental Materials BIOMATERIALS

    E-Print Network [OSTI]

    Dental Materials BIOMATERIALS Our goal is to provide reference materials and clinically relevant measurement methods to facilitate a rational approach to dental materials design, thus enabling improvements in the clinical performance of dental materials. In particular, methods for determining long-term performance

  9. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  10. SOCIO-CULTURAL BARRIERS TO APPLYING FISHERS' KNOWLEDGE IN FISHERIES MANAGEMENT

    E-Print Network [OSTI]

    SOCIO-CULTURAL BARRIERS TO APPLYING FISHERS' KNOWLEDGE IN FISHERIES MANAGEMENT: AN EVALUATION In the School of Resource and Environmental Management © Cristina Graciela Soto 2006 SIMON FRASER UNIVERSITY written permission. Multimedia materials, if any: No separate DVD or CD-ROM material is included

  11. Process for preparing energetic materials

    DOE Patents [OSTI]

    Simpson, Randall L. (Livermore, CA); Lee, Ronald S. (Livermore, CA); Tillotson, Thomas M. (Tracy, CA; , Hrubesh, Lawrence W. (Pleasanton, CA); Swansiger, Rosalind W. (Livermore, CA); Fox, Glenn A. (Livermore, CA)

    2011-12-13T23:59:59.000Z

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  12. CX-012313: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chicago Office Technical Support Services Contract CX(s) Applied: A8 Date: 06/13/2014 Location(s): CX: none Offices(s): Chicago Office

  13. CX-007858: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Southwest Solar Transformation Initiative CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): California Offices(s): Golden Field Office

  14. CX-010367: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Asbestos Abatement Actions CX(s) Applied: B1.16 Date: 11/19/2012 Location(s): Tennessee, California, Virginia Offices(s): Berkeley Site Office

  15. CX-010258: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bangladesh Meteorological Instrumentation Installation CX(s) Applied: A9 Date: 04/26/2013 Location(s): Colorado Offices(s): Golden Field Office

  16. CX-012632: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    LURR 20140456 - Salmon Creek Avenue Pathway Project CX(s) Applied: B4.9Date: 41885 Location(s): WashingtonOffices(s): Bonneville Power Administration

  17. CX-001373: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Analytical Development Tritium Support Laboratory for Mass Spectroscopy, Infrared Spectroscopy, and Raman CX(s) Applied: B3.6 Date: 03102010 Location(s): Aiken,...

  18. CX-004196: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    6: Categorical Exclusion Determination CX-004196: Categorical Exclusion Determination Infrared and Raman Spectroscopy of Biological Safety Level-1 Biological Samples CX(s) Applied:...

  19. CX-000331: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-000331: Categorical Exclusion Determination Kentucky Revision 2 - Commercial Office Building Retrofit Showcase CX(s) Applied: B1.4, B1.5,...

  20. CX-003518: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003518: Categorical Exclusion Determination Energy from Biomass Research and Technology Transfer Program CX(s) Applied: B3.6 Date: 08232010...

  1. CX-012089: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-012089: Categorical Exclusion Determination Wood Pole Testing for 20 Transmission Lines in Southern Arizona and Southern California CX(s) Applied: B3.1 Date: 04172014...

  2. CX-000815: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    0815: Categorical Exclusion Determination CX-000815: Categorical Exclusion Determination Hydrogen Technology Laboratory 140 - Chromatography, Wet Laboratory CX(s) Applied: B3.6...

  3. CX-009005: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Henderson Solar Energy Project CX(s) Applied: B5.16 Date: 08/22/2012 Location(s): Nevada Offices(s): Golden Field Office

  4. CX-011116: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sunpath SANFAB CX(s) Applied: B5.16 Date: 08/09/2013 Location(s): Nevada Offices(s): Golden Field Office

  5. CX-012474: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Refractories/Ceramics Project CX(s) Applied: B3.6Date: 41870 Location(s): OregonOffices(s): National Energy Technology Laboratory

  6. CX-005151: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005151: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Wyoming CX(s) Applied: A9, A11...

  7. CX-005154: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005154: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Kentucky CX(s) Applied: A9, A11,...

  8. CX-005159: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005159: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - Indiana Geological Survey CX(s) Applied: A9,...

  9. CX-008691: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mason Substation Metering Replacement Project CX(s) Applied: B1.7 Date: 06/25/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  10. CX-011237: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lightspeed Networks Inc. Fiber Installation CX(s) Applied: B4.9 Date: 10/24/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  11. CX-006471: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-006471: Categorical Exclusion Determination Air Awareness Campaign Electric Car Charging Station CX(s) Applied: B5.1 Date: 08042011 Location(s): Greenville, South...

  12. CX-000903: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    903: Categorical Exclusion Determination CX-000903: Categorical Exclusion Determination Smart Grid Photovoltaic Pilot CX(s) Applied: B5.1 Date: 02242010 Location(s): Illinois...

  13. CX-012015: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-012015: Categorical Exclusion Determination Enhanced Wind Resource Assessment with Sonic Ranging and Detection at Tooele Army Depot CX(s) Applied:...

  14. CX-012110: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination Defense Logistics Agency, Tracy, California, Wind Resource Assessment CX(s) Applied: A9, B3.1 Date: 05072014 Location(s): California...

  15. CX-002753: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-002753: Categorical Exclusion Determination Gilt Edge Mine Wind Resource Assessment CX(s) Applied: B3.1 Date: 06212010 Location(s): Deadwood, South...

  16. CX-002823: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-002823: Categorical Exclusion Determination Nebraska College of Technical Agriculture Biomass Facility CX(s) Applied: B5.1 Date: 06242010 Location(s): Curtis, Nebraska...

  17. CX-006074: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-006074: Categorical Exclusion Determination Bay Area Photovoltaics Consortium, Photovoltaic Manufacturing Initiative CX(s) Applied: A9 Date: 0628...

  18. CX-007549: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Harrisonville - Waste Water Treatment Plant CX(s) Applied: B5.1 Date: 01/10/2012 Location(s): Missouri Offices(s): Golden Field Office

  19. CX-007571: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pulaski County - Wastewater CX(s) Applied: B5.1 Date: 12/29/2011 Location(s): Missouri Offices(s): Golden Field Office

  20. CX-008797: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Coal Pile Basin Project CX(s) Applied: B1.29 Date: 06/04/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  1. CX-010590: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kalispell Shunt Cap Addition Project CX(s) Applied: B4.11 Date: 07/01/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  2. CX-008234: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Whole Energy Glycerin Refinery CX(s) Applied: B5.15 Date: 04/20/2012 Location(s): Washington Offices(s): Golden Field Office

  3. CX-011564: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Excess Facilities Deactivation and Demolition CX(s) Applied: B1.23 Date: 11/05/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  4. CX-012724: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Test Reactor (ATR) Electronic Message Board Installation CX(s) Applied: B1.7Date: 41830 Location(s): IdahoOffices(s): Nuclear Energy

  5. CX-002964: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-002964: Categorical Exclusion Determination Wind Energy and Sustainable Energy Solutions CX(s) Applied: B3.11, A9 Date: 07092010...

  6. CX-005201: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005201: Categorical Exclusion Determination Tall Tower Wind Energy Monitoring and Numerical Model Validation in Southern Nevada CX(s) Applied: A9,...

  7. CX-003507: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination State Energy Program American Recovery and Reinvestment Act: Solar Power Incorporated Photovoltaic Panel Manufacturing Facility CX(s) Applied: B1.31,...

  8. CX-012810: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    St. Johns-Keeler Minor Access Road Improvement CX(s) Applied: B1.3Date: 41901 Location(s): OregonOffices(s): Bonneville Power Administration

  9. CX-011368: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Temperature Thermal Properties CX(s) Applied: B1.31 Date: 10/23/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  10. CX-011798: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Analytical Physics - Thermal Analysis CX(s) Applied: B3.6 Date: 01/30/2014 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  11. CX-001724: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-001724: Categorical Exclusion Determination Recovery Act City of Boise Energy Efficiency and Conservation Block Grant (EECBG) CX(s) Applied: B5.1 Date: 04122010...

  12. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center October 26, 2009 CX-005544: Categorical Exclusion Determination Power Rate Formula for the Provo River Project of the Western Area Power Administration CX(s) Applied:...

  13. CX-012706: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Radiochemistry Laboratory (RCL) Supply Intake Filter Housing CX(s) Applied: B2.5Date: 41858 Location(s): IdahoOffices(s): Nuclear Energy

  14. CX-008684: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Metaline Radio Station Upgrade Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  15. CX-009465: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: B3.6 Date: 10182012...

  16. CX-009462: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: A9, A11 Date: 1018...

  17. CX-009463: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: B3.6 Date: 10182012...

  18. CX-009464: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: A9, A11 Date: 1018...

  19. CX-012776: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Catalyst Processing, KCP14-05 CX(s) Applied: NOT NOTEDDate: 41857 Location(s): MissouriOffices(s): Kansas City Site Office

  20. CX-008215: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Small Hydropower Research and Development Technology Project CX(s) Applied: A9 Date: 04/03/2012 Location(s): Colorado Offices(s): Golden Field Office

  1. CX-011535: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    East Grangeville Substation Sale CX(s) Applied: B1.24 Date: 11/14/2013 Location(s): Idaho Offices(s): Bonneville Power Administration

  2. CX-012233: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shed Acquisition at Kalispell Substation CX(s) Applied: B1.24 Date: 06/09/2014 Location(s): Montana Offices(s): Bonneville Power Administration

  3. CX-012622: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace roofing system at 702-F CX(s) Applied: B1.3Date: 41799 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  4. CX-012621: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace 730-2B Roof CX(s) Applied: B1.3Date: 41799 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  5. CX-012433: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Computer Simulation and Prototype Construction and Testing CX(s) Applied: A9Date: 41878 Location(s): GeorgiaOffices(s): National Energy Technology Laboratory

  6. CX-010689: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Generic CX Determination for Financial Assistance Awards CX(s) Applied: Unknown Date: 07/17/2013 Location(s): Illinois Offices(s): Chicago Office

  7. Categorical Exclusion (CX) Determinations By Date | Department...

    Office of Environmental Management (EM)

    (CX) Determinations By Date Categorical Exclusion (CX) Determinations By Date August 25, 2015 CX-012469: Categorical Exclusion Determination Gas Analysis Services CX(s) Applied:...

  8. CX-010869: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Nauticas Research Program CX(s) Applied: B3.6 Date: 08/07/2013 Location(s): Illinois Offices(s): Argonne Site Office

  9. CX-012664: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SBIR/STTR Phase 0 Outreach and Assistance Program CX(s) Applied: A8Date: 41844 Location(s): IllinoisOffices(s): Chicago Office

  10. CX-010581: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Little Shell Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  11. CX-011252: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-011252: Categorical Exclusion Determination Concentrating Solar Power Heat Integration for Baseload Renewable Energy Deployment CX(s) Applied: A9...

  12. CX-004374: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    74: Categorical Exclusion Determination CX-004374: Categorical Exclusion Determination Solar Electric Power for Nonsectarian Educational and Social CX(s) Applied: A9, B5.1 Date:...

  13. CX-011391: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-011391: Categorical Exclusion Determination Municipal Complex Solar Power Project CX(s) Applied: B3.14 Date: 12102013 Location(s): New Jersey...

  14. CX-008507: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-008507: Categorical Exclusion Determination Midwest Regional Carbon Sequestration Partnership - Phase Three CX(s) Applied: B3.1, B5.3 Date: 07162012...

  15. CX-007111: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007111: Categorical Exclusion Determination Shallow Carbon Sequestration Demonstration Project (Iatan Generating Station) CX(s) Applied: B3.1...

  16. CX-008476: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-008476: Categorical Exclusion Determination Small Scale Field Test Demonstrating Carbon Dioxide Sequestration in the Arbuckle Saline Aquifer CX(s) Applied: A9, B1.15,...

  17. CX-007118: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007118: Categorical Exclusion Determination Shallow Carbon Sequestration Demonstration Project CX(s) Applied: B3.1 Date: 10042011...

  18. CX-009326: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-009326: Categorical Exclusion Determination Midwest Regional Carbon Sequestration Partnership - Subtask 1.7 CX(s) Applied: B3.1 Date: 09282012...

  19. CX-000591: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination 25A2936 - Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration CX(s) Applied: B3.6 Date: 12152009 Location(s): California...

  20. CX-003037: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-003037: Categorical Exclusion Determination Mercury Removal from Clean Coal Processing Air Stream CX(s) Applied: B3.6 Date: 07132010 Location(s): Butte,...

  1. CX-011165: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Heavy Mineral Separation CX(s) Applied: B3.6 Date: 08/07/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  2. CX-012716: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    General Scientific Infrastructure Support for University of Wisconsin CX(s) Applied: B1.31Date: 41844 Location(s): WisconsinOffices(s): Nuclear Energy

  3. CX-011115: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Realization of Algae Potential CX(s) Applied: A9 Date: 08/29/2013 Location(s): New Mexico Offices(s): Golden Field Office

  4. CX-007844: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Retrofits CX(s) Applied: B5.1 Date: 12/01/2011 Location(s): Rhode Island Offices(s): Energy Efficiency and Renewable Energy

  5. CX-007689: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Tech Research Corporation- Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-Reliable Green Electricity Internetworks CX(s) Applied: A9 Date: 1118...

  6. CX-000734: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-000734: Categorical Exclusion Determination Detection and Production of Methane Hydrates CX(s) Applied: A9 Date: 01222010 Location(s): Stillwater, Oklahoma Office(s):...

  7. CX-000733: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-000733: Categorical Exclusion Determination Detection and Production of Methane Hydrates CX(s) Applied: A9 Date: 01222010 Location(s): Austin, Texas Office(s): Fossil...

  8. CX-010941: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-010941: Categorical Exclusion Determination Assessing the Response of Methane Hydrates to Environmental Change at the Svalbard Continental Margin CX(s) Applied: B3.6,...

  9. CX-007388: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-007388: Categorical Exclusion Determination Regional Test Center Project: Solar Technology Acceleration Center (SolarTAC) CX(s) Applied: B1.15,...

  10. CX-012245: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Categorical Exclusion Determination CX-012245: Categorical Exclusion Determination Hydro Research Foundation University Research Awards - Carnegie Mellon CX(s) Applied: A9 Date:...

  11. CX-012253: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Categorical Exclusion Determination CX-012253: Categorical Exclusion Determination Hydro Research Foundation University Research Awards - OSU CX(s) Applied: A9 Date: 05272014...

  12. CX-012252: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Categorical Exclusion Determination CX-012252: Categorical Exclusion Determination Hydro Research Foundation University Research Awards- Cornell CX(s) Applied: A9, B3.16 Date:...

  13. CX-012254: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Categorical Exclusion Determination CX-012254: Categorical Exclusion Determination Hydro Research Foundation University Research Awards - Vanderbilt CX(s) Applied: A9 Date: 05...

  14. CX-003904: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    904: Categorical Exclusion Determination CX-003904: Categorical Exclusion Determination Hydro Electric Project - Snohomish Public Utility District CX(s) Applied: A9, A11, B5.1...

  15. CX-012246: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Categorical Exclusion Determination CX-012246: Categorical Exclusion Determination Hydro Research Foundation University Research Awards - University of Tennessee CX(s) Applied:...

  16. CX-012241: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Categorical Exclusion Determination CX-012241: Categorical Exclusion Determination Hydro Research Foundation University Research Awards - MIT CX(s) Applied: A9, B3.6 Date: 06...

  17. CX-011534: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grays River Confluence Property Funding CX(s) Applied: B1.25 Date: 11/08/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  18. CX-012434: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low Cost Titanium Casting Technology CX(s) Applied: B3.6Date: 41878 Location(s): OhioOffices(s): National Energy Technology Laboratory

  19. CX-009542: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Parks Project CX(s) Applied: B5.16 Date: 11/09/2012 Location(s): Florida Offices(s): Golden Field Office

  20. CX-003403: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-003403: Categorical Exclusion Determination The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration CX(s) Applied: A9, B3.7...

  1. CX-002745: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-002745: Categorical Exclusion Determination The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration CX(s) Applied: B3.1, A9...

  2. CX-006681: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-006681: Categorical Exclusion Determination New Drilling Location in Section 29 CX(s) Applied: B3.1 Date: 12232009 Location(s): Casper,...

  3. CX-006682: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-006682: Categorical Exclusion Determination New Drilling Location in Section 29 (Revision 1) CX(s) Applied: B3.7 Date: 06022010 Location(s):...

  4. CX-008486: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-008486: Categorical Exclusion Determination Demonstration of Gas Powered Drilling Operations for Economically-Challenged Wellhead Gas and Evaluation CX(s) Applied:...

  5. CX-007941: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Zonal Isolation Improvement for Horizontal Wells Drilling in the Marcellus Shale CX(s) Applied: A9 Date: 02152012 Location(s): Texas...

  6. CX-003888: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003888: Categorical Exclusion Determination Improved Drilling and Fracturing Fluids for Shale Gas Reservoirs CX(s) Applied: B3.6 Date: 09102010...

  7. CX-007940: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Zonal Isolation Improvement for Horizontal Wells Drilling in the Marcellus Shale CX(s) Applied: B3.6 Date: 02152012 Location(s): Texas...

  8. CX-005582: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Foro Energy, Incorporated - Low-Contact Drilling Technology to Enable Economical Enhance Geothermal System Wells CX(s) Applied: B3.6,...

  9. CX-000855: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-000855: Categorical Exclusion Determination 25A5208 - Low-contact Drilling Technology to Enable Economical Engineered Geothermal System Wells CX(s) Applied:...

  10. CX-008876: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Railroad Island Property Funding CX(s) Applied: B1.25 Date: 08/23/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  11. CX-011239: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Security Upgrades at Multiple Substations CX(s) Applied: ? Date: 10/02/2013 Location(s): Oregon, Washington Offices(s): Bonneville Power Administration

  12. CX-010739: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Golden State Solar Impact CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): California Offices(s): Golden Field Office

  13. CX-011044: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-011044: Categorical Exclusion Determination High Hydrogen, Low Methane Syngas from Low Ranked Coals for Coal-to-Liquids Production CX(s) Applied: A9 Date: 0910...

  14. CX-010751: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Ready 2 CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): Missouri Offices(s): Golden Field Office

  15. CX-004015: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-004015: Categorical Exclusion Determination Arizona Balance of State- Energy Efficiency and Conservation Block Grant Wickenburg CX(s) Applied:...

  16. CX-009555: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-009555: Categorical Exclusion Determination Assisting the Tooling and Machining Industry to Become Energy Efficient CX(s) Applied: A9 Date: 12102012...

  17. CX-000835: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-000835: Categorical Exclusion Determination Wachs Cutter Tooling Station (4495) CX(s) Applied: B1.31 Date: 02112010 Location(s): Oak Ridge,...

  18. CX-012310: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sawmill Creek Stream Bank Erosion CX(s) Applied: B1.3 Date: 06/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

  19. CX-010338: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Eugene Substation Fiber Interconnection CX(s) Applied: B4.7 Date: 05/21/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  20. CX-011531: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Targhee Substation Land Acquisition CX(s) Applied: B1.24 Date: 11/05/2013 Location(s): Idaho Offices(s): Bonneville Power Administration

  1. CX-010435: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    De Moss Substation Expansion CX(s) Applied: B4.6 Date: 06/03/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  2. CX-011384: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination Advanced Controls for the Multi-pod Centipod Wave Energy Converter Device CX(s) Applied: A9 Date: 12022013 Location(s): California...

  3. CX-011537: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wanacut Creek Upper Property Funding CX(s) Applied: B1.25 Date: 11/26/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  4. CX-011538: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ninemile Creek Lower Property Funding CX(s) Applied: B1.25 Date: 11/26/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  5. CX-011536: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Aeneans Creek Spring Property Funding CX(s) Applied: B1.25 Date: 11/25/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  6. CX-011416: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology Integration Program CX(s) Applied: A9, A11 Date: 12/19/2013 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  7. CX-010778: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology Integration Program CX(s) Applied: A9, A11 Date: 08/23/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory

  8. CX-012472: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology Integration Program CX(s) Applied: A9, A11, B3.11Date: 41873 Location(s): OhioOffices(s): National Energy Technology Laboratory

  9. CX-012038: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Deepwater Reverse-Circulation Primary Cementing CX(s) Applied: A9 Date: 04/17/2014 Location(s): Texas Offices(s): National Energy Technology Laboratory

  10. CX-010582: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Spring Creek Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  11. CX-003706: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Solar Power Generation CX(s) Applied: A9, B3.6...

  12. CX-004217: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Replacement Facets for Central Receiver Test Facility Heliostats at the National Solar Thermal Test Facility (American Recovery and Reinvestment Act Funded) CX(s) Applied:...

  13. CX-003222: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    and Reinvestment Act State Energy Program - Eastern Oregon Correctional Institution Solar Thermal CX(s) Applied: B5.1 Date: 08032010 Location(s): Pendleton, Oregon...

  14. CX-004251: Categorical Exclusion Determination | Department of...

    Energy Savers [EERE]

    CX-004251: Categorical Exclusion Determination High Yield Hybrid Cellulosic Ethanol Process Using High-Impact Feedstock for Commercialization by 2013 CX(s) Applied: A9,...

  15. CX-003208: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003208: Categorical Exclusion Determination Michigan 85% Ethanol Fuel (E85) Infrastructure Project CX(s) Applied: B5.1 Date: 08032010 Location(s):...

  16. CX-003471: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003471: Categorical Exclusion Determination Pennsylvania Ethanol Fuel (E85) Corridor Project - Lew's Service Center CX(s) Applied: B5.1 Date: 0823...

  17. CX-011215: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Nepese Marsh Upgrades CX(s) Applied: B2.5 Date: 10/17/2013 Location(s): Illinois Offices(s): Fermi Site Office

  18. CX-008534: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Peter Wentz Geothermal CX(s) Applied: B5.19 Date: 05/23/2012 Location(s): Pennsylvania Offices(s): Golden Field Office

  19. CX-008204: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Finch CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  20. CX-008203: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Demoret CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  1. CX-009442: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cutters Grove, Anoka CX(s) Applied: A9, B5.19 Date: 07/31/2012 Location(s): Minnesota Offices(s): Golden Field Office

  2. CX-007836: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building Retrofits CX(s) Applied: B5.19 Date: 01/30/2012 Location(s): Illinois Offices(s): Energy Efficiency and Renewable Energy

  3. CX-008241: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Teter CX(s) Applied: B5.19 Date: 05/15/2012 Location(s): Missouri Offices(s): Golden Field Office

  4. CX-008205: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Weaver CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  5. CX-010583: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Upper Jocko River Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  6. CX-007925: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-007925: Categorical Exclusion Determination Severe Environment Corrosion and Erosion Research Facility CX(s) Applied: B3.6 Date: 02222012 Location(s):...

  7. CX-006048: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-006048: Categorical Exclusion Determination Severe Environmental Corrosion & Erosion Research Facility (SECERF) CX(s) Applied: B3.6 Date: 06082011...

  8. CX-006395: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-006395: Categorical Exclusion Determination Corrosion Tests on Carbon Steel Exposed to Oxalic Acid and a Sludge Simulant CX(s) Applied:...

  9. CX-005801: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-005801: Categorical Exclusion Determination Polymer Synthesis, Corrosion, and Electrochemical Tests in Lab D-0115 CX(s) Applied: B3.6 Date: 03312011...

  10. CX-006043: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-006043: Categorical Exclusion Determination CorrosionElectrochemistry Laboratory CX(s) Applied: B3.6 Date: 06082011 Location(s):...

  11. CX-005861: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005861: Categorical Exclusion Determination Pretreatment Engineering Platform (PEP) Sludge Simulant Preparation CX(s) Applied: B3.6 Date: 03172011...

  12. CX-011131: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Puget Sound Pilot Tidal Energy Project CX(s) Applied: A9 Date: 08/13/2013 Location(s): Washington Offices(s): Golden Field Office

  13. CX-012195: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alfalfa Substation Control House Replacement CX(s) Applied: B4.11 Date: 05/02/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  14. CX-008683: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shaniko Radio Station Replacement Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  15. CX-012790: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Haystack Butte Radio Site Land Acquisition CX(s) Applied: B1.24Date: 41939 Location(s): WashingtonOffices(s): Bonneville Power Administration

  16. CX-009698: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sale of Lakeside Radio Station CX(s) Applied: B1.24 Date: 12/27/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  17. CX-012231: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mica Peak Radio Station upgrade CX(s) Applied: B1.19 Date: 06/09/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  18. CX-011190: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alberton Communication Site Construction CX(s) Applied: B1.19 Date: 08/26/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  19. CX-002138: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-002138: Categorical Exclusion Determination Waste Digester Biogas Recovery System CX(s) Applied: B5.1 Date: 04292010 Location(s): Plover, Wisconsin...

  20. CX-005444: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Energy Efficiency and Conservation Block Grant: Electric and Hybrid Vehicle Incremental Cost Recovery CX(s) Applied: B5.1 Date: 03222011 Location(s):...

  1. CX-012189: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Microbial Laboratory Analysis CX(s) Applied: B3.12 Date: 05/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

  2. CX-009423: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Relay and Switchboard Panel Replacements CX(s) Applied: B4.6 Date: 10/29/2012 Location(s): Arkansas Offices(s): Southwestern Power Administration

  3. CX-010057: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Eugene Substation Protective Relay Installation CX(s) Applied: B1.7 Date: 01/29/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  4. CX-008803: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Milling Machine Replacement Projects CX(s) Applied: B1.31 Date: 05/14/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  5. CX-011194: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Particle Physics Division Outback Garage CX(s) Applied: B1.15 Date: 09/19/2013 Location(s): Illinois Offices(s): Fermi Site Office

  6. CX-010772: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Water Security Test Bed (WSTB) CX(s) Applied: B3.6 Date: 07/17/2013 Location(s): Idaho Offices(s): Nuclear Energy

  7. CX-011679: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Antifoam Degradation Testing CX(s) Applied: B3.6 Date: 12/05/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  8. CX-012118: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hydro Research Foundation University Research Awards - Tufts CX(s) Applied: A9 Date: 05/21/2014 Location(s): Georgia Offices(s): Golden Field Office

  9. CX-012255: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination Hydro Research Foundation University Research Awards - University of Washington CX(s) Applied: A9 Date: 05272014 Location(s): Washington...

  10. CX-010951: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Automotive Technology Analysis CX(s) Applied: A8 Date: 09/17/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory

  11. CX-001416: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-001416: Categorical Exclusion Determination Integration of Solar Energy in the City of Boston's Emergency Preparedness Infrastructure CX(s) Applied:...

  12. CX-003569: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination Ohio Advanced Transportation Partnership - Pike Delta York Schools Propane Vehicle Fueling Station CX(s) Applied: B5.1 Date: 08242010 Location(s): Delta, Ohio...

  13. CX-006894: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination Ohio Advanced Transportation PartnershipFrito Lay Cincinnati Propane Fueling Infrastructure CX(s) Applied: B5.1 Date: 09282011 Location(s): West...

  14. CX-009634: Categorical Exclusion Determination | Department of...

    Office of Environmental Management (EM)

    Exclusion Determination CX-009634: Categorical Exclusion Determination Advanced Test Reactor (ATR) Transition to Commercial Power CX(s) Applied: B2.5 Date: 12052012...

  15. CX-007358: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Integration of the University of Oregon's Cogeneration Project CX(s) Applied: B1.7 Date: 12012011 Location(s): Oregon Offices(s):...

  16. CX-012200: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Determination of Excess Real Property CX(s) Applied: B1.36 Date: 05/01/2014 Location(s): Colorado Offices(s): Legacy Management

  17. CX-010588: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chehalis Substation Tree Clearing CX(s) Applied: B1.3 Date: 07/02/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  18. CX-008700: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Natapoc Property Funding CX(s) Applied: B1.25 Date: 06/12/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  19. CX-010155: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Augspurger Radio Tower Replacement Project CX(s) Applied: B1.19 Date: 04/03/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  20. CX-007866: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SunShot Massachusetts CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): Massachusetts Offices(s): Golden Field Office

  1. CX-007856: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sacramento Regional Energy Alliance CX(s) Applied: B5.23 Date: 01/27/2012 Location(s): California Offices(s): Golden Field Office

  2. CX-004629: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination CX-004629: Categorical Exclusion Determination Seneca Nation of New York Energy Efficiency and Conservation Strategies CX(s) Applied: A1, A9, A11 Date: 1026...

  3. CX-005672: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination Energy Systems Integration Facility Excavation Soil Stockpile CX(s) Applied: B1.15 Date: 04122011 Location(s): Golden, Colorado...

  4. CX-008264: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compressed Natural Gas Fueling Facility CX(s) Applied: A1 Date: 05/24/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  5. CX-005249: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wisconsin Clean Transportation Program - City of Milwaukee Ruby Avenue Compressed Natural Gas Infrastructure CX(s) Applied: B5.1 Date: 02152011 Location(s): Milwaukee,...

  6. CX-008468: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compressed Natural Gas Fueling Facility CX(s) Applied: A1 Date: 06/12/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  7. CX-007382: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compressed Natural Gas Manufacturing CX(s) Applied: B5.1 Date: 10/26/2011 Location(s): Wisconsin Offices(s): Golden Field Office

  8. CX-006678: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Restoration of 54-TPX-10CX(s) Applied: B6.1Date: 01/19/2010Location(s): Casper, WyomingOffice(s): RMOTC

  9. CX-012463: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Reliable SOFC Systems CX(s) Applied: A9, B3.6Date: 41877 Location(s): ConnecticutOffices(s): National Energy Technology Laboratory

  10. CX-002168: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-002168: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

  11. CX-001403: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-001403: Categorical Exclusion Determination West New York Energy Efficiency Projects CX(s) Applied: B5.1 Date: 04092010 Location(s): West New...

  12. CX-009133: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-009133: Categorical Exclusion Determination New York Program Year 2012 Formula Grants - State Energy Program CX(s) Applied: A9, A11 Date:...

  13. CX-001636: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-001636: Categorical Exclusion Determination Alexandria Bay, New York, Met Tower: General Services Administration Border Station CX(s) Applied: B3.1, A9...

  14. CX-002167: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-002167: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

  15. CX-006748: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-006748: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

  16. CX-007020: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-007020: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

  17. CX-003465: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-003465: Categorical Exclusion Determination Vehicle Technologies Program Advanced Automotive Fuels Research, Development and Commercialization Cluster CX(s) Applied: A9, B2.2,...

  18. CX-006211: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Missouri Independent Energy Efficiency Program: Henniges Automotive - Process Air Compressor Upgrades CX(s) Applied: B5.1 Date: 07182011 Location(s):...

  19. CX-009210: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Silver Butte Fiber Burial Project CX(s) Applied: B.47 Date: 08/28/2012 Location(s): Montana, Montana Offices(s): Bonneville Power Administration

  20. CX-012054: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Catalyst Synthesis CX(s) Applied: B3.6 Date: 03/18/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  1. CX-012117: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-012117: Categorical Exclusion Determination Fuel Cell Hybrid Walk-In Van Deployment Project CX(s) Applied: A9 Date: 05212014 Location(s):...

  2. CX-007517: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    UPF Mock Wall Project CX(s) Applied: B3.6 Date: 11/29/2011 Location(s): Tennessee Offices(s): Y-12 Site Office

  3. CX-004745: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Acquisition of a Conservation Easement for Fish Habitat Mitigation in Okanogan County, Washington CX(s) Applied: A7 Date: 12082010...

  4. CX-003908: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-003908: Categorical Exclusion Determination Fiscal Year 2010 Columbia Basin Fish Accords with Colville Confederated Tribes CX(s) Applied: B1.25 Date: 09082010...

  5. CX-012718: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Idaho State University Reactor Laboratory Modernization CX(s) Applied: B1.31Date: 41844 Location(s): IdahoOffices(s): Nuclear Energy

  6. CX-011642: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pantex Lake Land Utilization CX(s) Applied: B1.11 Date: 11/05/2013 Location(s): Texas Offices(s): Pantex Site Office

  7. CX-011634: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Closure Turf Installation CX(s) Applied: B6.1 Date: 08/27/2013 Location(s): Texas Offices(s): Pantex Site Office

  8. CX-008545: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Energy Evolution and Diffusion Studies CX(s) Applied: A9 Date: 06/19/2012 Location(s): CX: none Offices(s): Golden Field Office

  9. CX-008535: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    King County Biogas and Nutrient Reduction CX(s) Applied: A9 Date: 05/22/2012 Location(s): Washington Offices(s): Golden Field Office

  10. CX-012247: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination CX-012247: Categorical Exclusion Determination Installation of Solar Photovoltaic Systems CX(s) Applied: A9, B5.16 Date: 06182014 Location(s): Wisconsin, Wisconsin...

  11. CX-008989: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program CX(s) Applied: A9, A11 Date: 08/27/2012 Location(s): Kansas Offices(s): Golden Field Office

  12. CX-006539: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-006539: Categorical Exclusion Determination Boulder Wind Power Advanced Gearless Drivetrain CX(s) Applied: A9, B3.6 Date: 08252011 Location(s):...

  13. CX-009898: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-009898: Categorical Exclusion Determination 25A1455 - CO2 Capture with Enzyme Synthetic Analogue CX(s) Applied: B3.6 Date: 12152009...

  14. CX-100018: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination Wind Generator Project CX(s) Applied: A9 Date: 08152014 Location(s): Michigan Offices(s): Golden Field Office Technology Office: Wind Program Award Number:...

  15. CX-009710: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-009710: Categorical Exclusion Determination Spring Creek - Wine County No. 1 Transmission Tower Relocation CX(s) Applied: B4.6 Date: 11292012...

  16. CX-012317: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Performance Computing Upgrades CX(s) Applied: B1.31 Date: 06/16/2014 Location(s): Idaho Offices(s): Nuclear Energy

  17. CX-003506: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    State Energy Program American Recovery and Reinvestment Act: Quantum Solar Photovoltaic Module Manufacturing Plant CX(s) Applied: B5.1 Date: 08302010 Location(s):...

  18. CX-000571: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-000571: Categorical Exclusion Determination Photovoltaic Panel Installation (Building 833, TA-I) CX(s) Applied: B5.1 Date: 12102009...

  19. CX-004002: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination Knoxville Solar America Cites - Knox Heritage, Incorporated Solar Photovoltaic and Solar Thermal Demonstration Installation CX(s) Applied: B5.1 Date: 09202010...

  20. CX-008563: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-008563: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B3.14 Date: 06132012...

  1. CX-000924: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    National Accreditation Certification Program for Installation and Acceptance of Photovoltaic Systems CX(s) Applied: A9 Date: 02232010 Location(s): New York Office(s): Energy...

  2. CX-004021: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination State Energy Program American Recovery and Reinvestment Act: Solaria Photovoltaic Manufacturing Facility CX(s) Applied: B5.1 Date: 10082010 Location(s): Fremont,...

  3. CX-007872: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007872: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B3.14 Date: 01272012...

  4. CX-007873: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007873: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B3.14 Date: 01272012...

  5. CX-009914: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-009914: Categorical Exclusion Determination Plug & Play Solar Photovoltaic for American Homes CX(s) Applied: A9, B3.6 Date: 01282013 Location(s):...

  6. CX-000653: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-000653: Categorical Exclusion Determination Helios - Project: Photovoltaic Crystalline Module Assembly Plant CX(s) Applied: B5.1 Date: 01272010 Location(s):...

  7. CX-007867: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007867: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B5.16 Date: 01272012...

  8. CX-005993: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005993: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B5.1 Date: 05262011...

  9. CX-010740: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-010740: Categorical Exclusion Determination Integration of Behind-the-Meter Photovoltaic Fleet Forecasts into Utility Grid System Operations CX(s) Applied: A9, A11 Date:...

  10. CX-001417: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Field Verification of High-Penetration Levels of Photovoltaic into the Distribution Grid with Advanced Power Conditioning Systems CX(s) Applied:...

  11. CX-001654: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-001654: Categorical Exclusion Determination Burlington County Photovoltaic (PV) System CX(s) Applied: B5.1 Date: 04092010 Location(s): County of Burlington,...

  12. CX-003378: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-003378: Categorical Exclusion Determination Photovoltaic Solar Cell Fabrication Alkaline Texturing Process Improvement CX(s) Applied: B3.6...

  13. CX-005385: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-005385: Categorical Exclusion Determination Low Cost High Concentration Photovoltaic Power Systems for Utility Power Generation -Sandia Site CX(s) Applied: B5.1 Date:...

  14. CX-009272: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building 94 Facade Restoration CX(s) Applied: B1.3 Date: 09/10/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  15. CX-010578: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Celilo Converter Station Upgrades CX(s) Applied: B4.11 Date: 07/25/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  16. CX-004957: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-004957: Categorical Exclusion Determination General Compression, Inc. -Fuel-Free, Ubiquitous, Compressed Air Energy Storage CX(s) Applied: B3.6 Date: 08142010...

  17. CX-011751: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination GreenLight Biosciences - Highly Productive Cell-free Bioconversion of Methane CX(s) Applied: B3.6 Date: 12122013 Location(s):...

  18. CX-006558: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination Geothennal Resource Development with Zero Mass Withdrawal, Engineered Free Convection, and Wellbore Energy Conversion CX(s) Applied: A9, B3.6 Date: 08242011...

  19. CX-002572: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Manufacturing and Commercialization of Energy Efficient Generators for Small Wind Turbines CX(s) Applied: A1, B5.1 Date: 05192010...

  20. CX-010237: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pittsburgh Green Innovators Synergy Center CX(s) Applied: A9 Date: 02/28/2013 Location(s): Pennsylvania Offices(s): Golden Field Office

  1. CX-012110: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cowlitz Falls Fish Facility Access Agreement Extension CX(s) Applied: A2 Date: 04/02/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  2. CX-004249: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-004249: Categorical Exclusion Determination Low Cost High Concentration Photovoltaic Power Systems for Utility Power Generation CX(s) Applied: B5.1 Date: 10142010...

  3. CX-009513: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Aquatic Invasive Mussels Monitoring CX(s) Applied: B3.1 Date: 10/15/2012 Location(s): CX: none Offices(s): Bonneville Power Administration

  4. CX-002511: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-002511: Categorical Exclusion Determination Rhode Island Green Public Buildings Initiative CX(s) Applied: A9, B5.1 Date: 05282010 Location(s):...

  5. CX-000988: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    988: Categorical Exclusion Determination CX-000988: Categorical Exclusion Determination Green Energy Works - Combined Heat and Power - Geisinger Medical Center CX(s) Applied: A9,...

  6. CX-002945: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-002945: Categorical Exclusion Determination Pennsylvania Green Energy Works Targeted Grant - Native Energy Biogas Project CX(s) Applied: B1.15,...

  7. CX-007365: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007365: Categorical Exclusion Determination Integration of the Green Lane Energy Biogas Generator CX(s) Applied: B1.7 Date: 11172011 Location(s):...

  8. CX-008228: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-008228: Categorical Exclusion Determination Hydropower Energy Resource (HyPER) Harvester CX(s) Applied: A9 Date: 04112012 Location(s):...

  9. CX-003856: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-003856: Categorical Exclusion Determination Road Prison Geothermal Earth Coupled Heating, Ventilation and Air Conditioning (HVAC) Upgrade CX(s) Applied: B5.1...

  10. CX-002034: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-002034: Categorical Exclusion Determination Road Prison Geothermal Earth Coupled Heating, Ventilation, and Air Conditioning Upgrade CX(s) Applied: B3.1, A9...

  11. CX-010770: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wildland Fire Chainsaw Training CX(s) Applied: B1.2 Date: 08/01/2013 Location(s): Idaho Offices(s): Nuclear Energy

  12. CX-008341: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A-6 Office Building CX(s) Applied: B1.15 Date: 04/19/2012 Location(s): Pennsylvania Offices(s): Naval Nuclear Propulsion Program

  13. CX-003853: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Efficiency and Conservation Block Grant (EECBG) - Sherman - Geothermal Heat Pump Installation CX(s) Applied: B5.1 Date: 09072010 Location(s): Sherman, Connecticut...

  14. CX-005651: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    State Energy Program - Renewable Energy Incentives - Ennis Residence Open Loop Heat Pump System CX(s) Applied: B5.1 Date: 04282011 Location(s): Greenwood, Delaware...

  15. CX-003717: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-003717: Categorical Exclusion Determination Residential Ground Source Heat Pump Installation - Walter CX(s) Applied: B5.1 Date: 09152010 Location(s): Minnesota...

  16. CX-003715: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-003715: Categorical Exclusion Determination Residential Ground Source Heat Pump Installation - Staus CX(s) Applied: B5.1 Date: 09152010 Location(s): Minnesota...

  17. CX-001512: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Birmingham Recreation Center Ground Source Heat Pump Installation CX(s) Applied: A9, B5.1 Date: 04012010 Location(s): Birmingham,...

  18. CX-006083: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-006083: Categorical Exclusion Determination Ground Source Heat Pump Installation - Lac Qui Parle County Courthouse, Minnesota CX(s) Applied: B5.1 Date:...

  19. CX-000907: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems CX(s) Applied: A9 Date: 02242010 Location(s): Stillwater, Oklahoma...

  20. CX-004348: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination State Energy Program Residential Ground Source Heat Pump Installations (6) CX(s) Applied: B5.1 Date: 10272010 Location(s): Prior Lake,...