National Library of Energy BETA

Sample records for material brick stone

  1. Spatial and Temporal Variation in Stone Raw Material Provisioning in the Chivay Obsidian Source Area

    E-Print Network [OSTI]

    Tripcevich, Nicholas; MacKay, Alex

    2012-01-01

    Variations in Stone Raw Material Provisioning in the ChivayVariations in Stone Raw Material Provisioning in the Chivayof widely cir- culated raw materials provides an opportunity

  2. Stone 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    D. diameter T. thickness P. piercing dimensions (height x width) for stone anchors (hawser and secondary holes) and lead block pres. preserved xii TABLE OF CONTENTS Page ABSTRACT... ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Stone Anchors .......................................................................... 51 Catalog of Stone Anchors ............................................ 54 Ceramic Evidence...

  3. Feasibility evaluation of fired brick technology as a construction material and income-generating industry in Northern Ghana

    E-Print Network [OSTI]

    Bates, Caroline Nijole

    2014-01-01

    This work evaluates the potential to develop fired brick production in the Northern Region of Ghana. While several brick factories operate in southern Ghana, no factories are known to exist in northern Ghana, which remains ...

  4. Method of forming ceramic bricks

    DOE Patents [OSTI]

    Poeppel, Roger B. (Glen Ellyn, IL); Claar, Terry D. (Newark, DE); Silkowski, Peter (Urbana, IL)

    1988-01-01

    A method for forming free standing ceramic bricks for use as tritium breeder material is disclosed. Aqueous solutions of sodium carbonate and potassium carbonate are mixed with an organic hydrocolloid dispersion and powdered lithium carbonate, spray dried, and ceramic bricks formed by molding in a die and firing.

  5. Method of forming ceramic bricks

    DOE Patents [OSTI]

    Poeppel, R.B.; Claar, T.D.; Silkowski, P.

    1987-04-22

    A method for forming free standing ceramic bricks for use as tritium breeder material is disclosed. Aqueous solutions of sodium carbonate and potassium carbonate are mixed with an organic hydrocolloid dispersion and powdered lithium carbonate, spray dried, and ceramic bricks formed by molding in a die and firing.

  6. Mud-Brick Architecture

    E-Print Network [OSTI]

    Emery, Virginia L.

    2011-01-01

    by the author. Mud-Brick Architecture, Emery, UEE 2011Baldwin 1938 Egyptian architecture as cultural expression.Harrassowitz. 1979a Brick architecture in ancient Egypt.

  7. Building Stones

    E-Print Network [OSTI]

    2012-01-01

    3). Photographs by the author. Building Stones, Harrell, UEEOxford Short Citation: Harrell, 2012, Building Stones. UEE.Harrell, James A. , 2012, Building Stones. In Willeke

  8. Hunting for that one special brick? This is the

    E-Print Network [OSTI]

    Li, Yang V.

    ), 'my family either worked in the coal mine or made brick,'" he said. The brick industry existed in many said, as they were used to create the roads needed to transport steel and other materials. Bricks made) is more cost-effective in the long (run)," he said. #12;According to Boll, while it costs more to lay

  9. Mechanics of Interfacial Composite Materials Anand Bala Subramaniam, Manouk Abkarian, L. Mahadevan, and Howard A. Stone*

    E-Print Network [OSTI]

    Mahadevan, L.

    in this paper, these armored interfaces have the attributes of composite materials: the fluid/fluid interface on planar interfaces. Various studies have reported experiments and/or modeling of the Young's modulus,15,16 bending rigidity,17 and surface pressure18,19 of particulate monolayers. Here we provide an experimental

  10. Stone-Wales defects in graphene and other planar sp2 -bonded materials

    E-Print Network [OSTI]

    Alavi, Ali

    that the canonical flat SW defect in graphene is in fact not a local minimum on the potential-energy surface PES have also been predicted to alter the electronic properties band structure and density of states in graphitic materials.12 However, in clean unmodified graphene it is customarily assumed that SW defects

  11. Are ceramics and bricks reliable absolute geomagnetic intensity carriers? Juan Morales a,

    E-Print Network [OSTI]

    Cattin, Rodolphe

    Are ceramics and bricks reliable absolute geomagnetic intensity carriers? Juan Morales a, , Avto performed on the raw material (clay and paste) and on in situ prepared baked ceramics and bricks included indicate a mixture of multi- domain and a significant amount of single-domain grains. Ceramic pieces

  12. Utilitarian Stones

    E-Print Network [OSTI]

    Harrell, James A.

    2012-01-01

    and other metals, and raw materials for paint pigments andand other metals, and raw materials for paint pigments and

  13. The minimum information for a qualified BioBrick

    E-Print Network [OSTI]

    Zhou, Mubing

    2012-10-11

    Since the information of many existing BioBricks is incomplete, thus the usage of the BioBricks will be affected. It is necessary to standardize the minimum information required for a qualified BioBrick. Furthermore this ...

  14. Quarrying and Mining (Stone)

    E-Print Network [OSTI]

    Bloxam, Elizabeth

    2010-01-01

    the author.   Quarrying and Mining (Stone), Bloxam, UEE 2010archaeology and anthropology of mining. In Social approachesand anthropology of mining, ed. Bernard Knapp, Vincent

  15. Modeling environmental impact of unfired bricks in India

    E-Print Network [OSTI]

    Zachau Walker, Miriam E. (Miriam Elizabeth)

    2013-01-01

    Brick manufacturing requires a considerable amount of energy and land, but these numbers have been difficult to quantify in rural parts of the developing world. The environmental impact of unfired bricks in India is ...

  16. Valorization of boiler ash in alkali activated material

    E-Print Network [OSTI]

    Laracy, Michael Edward

    2015-01-01

    For centuries the clay fired brick has been the most popular building material in India due to its local availability and low cost. Despite the growing demand for bricks, some negative environmental and social impacts ...

  17. Summary of Surface Swipe Sampling for Beryllium on Lead Bricks and Shielding

    SciTech Connect (OSTI)

    Paik, S Y; Barron, D A

    2011-08-03

    Approximately 25,000 lbs of lead bricks at Site 300 were assessed by the Site 300 Industrial Hygienis tand Health Physicist for potential contamination of beryllium and radiation for reuse. These lead bricks and shielding had been used as shielding material during explosives tests that included beryllium and depleted uranium. Based on surface swipe sampling that was performed between July 26 and October 11, 2010, specifically for beryllium, the use of a spray encapsulant was found to be an effective means to limit removable surface contamination to levels below the DOE release limit for beryllium, which is 0.2 mcg/100 cm{sup 2}. All the surface swipe sampling data for beryllium and a timeline of when the samples were collected (and a brief description) are presented in this report. On December 15, 2010, the lead bricks and shielding were surveyed with an ion chamber and indicated dose rates less than 0.05 mrem per hour on contact. This represents a dose rate consistent with natural background. An additional suevey was performed on February 8, 2011, using a GM survey instrument to estimate total activity on the lead bricks and shielding, confirming safe levels of radioactivity. The vendor is licensed to possess and work with radioactive material.

  18. Decreasing water absorption in and environmental analysis of alkali activated bricks

    E-Print Network [OSTI]

    Aponte, Cecilio (Cecilio Aponte, III)

    2015-01-01

    Alkali activated bricks offer an alternative to traditional clay fired bricks for use in construction in the developing world. Previous work in this lab focused on creating a robust mix formulation to create these bricks, ...

  19. New Tool Quantitatively Maps Minority-Carrier Lifetime of Multicrystalline Silicon Bricks (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    NREL's new imaging tool could provide manufacturers with insight on their processes. Scientists at the National Renewable Energy Laboratory (NREL) have used capabilities within the Process Development and Integration Laboratory (PDIL) to generate quantitative minority-carrier lifetime maps of multicrystalline silicon (mc-Si) bricks. This feat has been accomplished by using the PDIL's photoluminescence (PL) imaging system in conjunction with transient lifetime measurements obtained using a custom NREL-designed resonance-coupled photoconductive decay (RCPCD) system. PL imaging can obtain rapid high-resolution images that provide a qualitative assessment of the material lifetime-with the lifetime proportional to the pixel intensity. In contrast, the RCPCD technique provides a fast quantitative measure of the lifetime with a lower resolution and penetrates millimeters into the mc-Si brick, providing information on bulk lifetimes and material quality. This technique contrasts with commercially available minority-carrier lifetime mapping systems that use microwave conductivity measurements. Such measurements are dominated by surface recombination and lack information on the material quality within the bulk of the brick. By combining these two complementary techniques, we obtain high-resolution lifetime maps at very fast data acquisition times-attributes necessary for a production-based diagnostic tool. These bulk lifetime measurements provide manufacturers with invaluable feedback on their silicon ingot casting processes. NREL has been applying the PL images of lifetime in mc-Si bricks in collaboration with a U.S. photovoltaic industry partner through Recovery Act Funded Project ARRA T24. NREL developed a new tool to quantitatively map minority-carrier lifetime of multicrystalline silicon bricks by using photoluminescence imaging in conjunction with resonance-coupled photoconductive decay measurements. Researchers are not hindered by surface recombination and can look deeper into the material to map bulk lifetimes. The tool is being applied to silicon bricks in a project collaborating with a U.S. photovoltaic industry partner. Photovoltaic manufacturers can use the NREL tool to obtain valuable feedback on their silicon ingot casting processes.

  20. Seismic Vulnerability and Performance Level of confined brick walls

    SciTech Connect (OSTI)

    Ghalehnovi, M.; Rahdar, H. A. [University of Sistan and Baluchestan, Zahedan (Iran, Islamic Republic of)

    2008-07-08

    There has been an increase on the interest of Engineers and designers to use designing methods based on displacement and behavior (designing based on performance) Regarding to the importance of resisting structure design against dynamic loads such as earthquake, and inability to design according to prediction of nonlinear behavior element caused by nonlinear properties of constructional material.Economically speaking, easy carrying out and accessibility of masonry material have caused an enormous increase in masonry structures in villages, towns and cities. On the other hand, there is a necessity to study behavior and Seismic Vulnerability in these kinds of structures since Iran is located on the earthquake belt of Alpide.Different reasons such as environmental, economic, social, cultural and accessible constructional material have caused different kinds of constructional structures.In this study, some tied walls have been modeled with software and with relevant accelerator suitable with geology conditions under dynamic analysis to research on the Seismic Vulnerability and performance level of confined brick walls. Results from this analysis seem to be satisfactory after comparison of them with the values in Code ATC40, FEMA and standard 2800 of Iran.

  1. 2009 Voluntary Protection Programs Participants' Association (VPPPA) Presentation: Follow The Yellow Brick Road to Safety

    Broader source: Energy.gov [DOE]

    2009 Voluntary Protection Programs Participants' Association (VPPPA) Presentation: Follow The Yellow Brick Road to Safety

  2. Letter Report: LAW Simulant Development for Cast Stone Screening Test

    SciTech Connect (OSTI)

    Russell, Renee L.; Westsik, Joseph H.; Swanberg, David J.; Eibling, Russell E.; Cozzi, Alex; Lindberg, Michael J.; Josephson, Gary B.; Rinehart, Donald E.

    2013-03-27

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in the HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second facility will be needed for the expected volume of additional LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with waste acceptance criteria for the IDF disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long term performance of the waste form in the IDF disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF. A testing program was developed in fiscal year (FY) 2012 describing in some detail the work needed to develop and qualify Cast Stone as a waste form for the solidification of Hanford LAW (Westsik et al. 2012). Included within Westsik et al. (2012) is a section on the near-term needs to address Tri-Party Agreement Milestone M-062-40ZZ. The objectives of the testing program to be conducted in FY 2013 and FY 2014 are to: • Determine an acceptable formulation for the LAW Cast Stone waste form. • Evaluate sources of dry materials for preparing the LAW Cast Stone. • Demonstrate the robustness of the Cast Stone waste form for a range of LAW compositions. • Demonstrate the robustness of the formulation for variability in the Cast Stone process. • Provide Cast Stone contaminant release data for PA and risk assessment evaluations. The first step in determining an acceptable formulation for the LAW Cast Stone waste form is to conduct screening tests to examine expected ranges in pretreated LAW composition, waste stream concentrations, dry-materials sources, and mix ratios of waste feed to dry blend. A statistically designed test matrix will be used to evaluate the effects of these key parameters on the properties of the Cast Stone as it is initially prepared and after curing. The second phase of testing will focus on selection of a baseline Cast Stone formulation for LAW and demonstrating that Cast Stone can meet expected waste form requirements for disposal in the IDF. It is expected that this testing will use the results of the screening tests to define a smaller suite of tests to refine the composition of the baseline Cast Stone formulation (e.g. waste concentration, water to dry mix ratio, waste loading).

  3. Embodied Energy of Fired Bricks: The Case of Uganda and Tanzania

    E-Print Network [OSTI]

    Hashemi, Arman; Cruickshank, Heather

    2015-07-30

    and wastes the energy while too little air flow will stop the fuel from burning properly. Providing dampers and wind breaks to control/protect the fire could greatly improve the fuel efficiency of kilns (Practical Action). 5. BRICK SUPPLIERS Artisans... , small- and medium-scale manufactures are the three major types of suppliers of bricks in Uganda (Table 2). Bricks produced by artisans take a larger share of the market compared to small- and medium-scale manufactured bricks. The handmade bricks...

  4. Semi-Precious Stones to the Aegean

    E-Print Network [OSTI]

    Younger, John G.

    1979-01-01

    A short review of the imported stones used for sealstones in the Aegean Bronze Age, and their possible sources....

  5. A New Standard to Connect BioBrick Parts for Precise Extraction of an Enzyme Digestion Product

    E-Print Network [OSTI]

    Uekusa, Kousuke

    2010-12-05

    This BioBricks Foundation Request for Comments (BBF RFC) introduces a new standard to connect BioBrick parts using BglI site.

  6. Dynamic photoluminescence lifetime imaging of multicrystalline silicon bricks

    E-Print Network [OSTI]

    ,n , Karsten Bothe a , Jan Schmidt a,b , Rolf Brendel a,b , Sebastian Siegmund c a Institute for Solar Energy, Leibniz University of Hanover (LUH), Appelstraße 2, 30167 Hannover, Germany c Schott Solar Wafer GmbH, Fab,2]. The advantage of investigating the brick over measuring as-cut wafers is the smaller influence of the surface

  7. Stone's code reveals Earth's processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveApril 2,BL4-2StefanLightsource504,103 100,658Stone's

  8. Characterization of Technetium Speciation in Cast Stone

    SciTech Connect (OSTI)

    Um, Wooyong; Jung, Hun Bok; Wang, Guohui; Westsik, Joseph H.; Peterson, Reid A.

    2013-11-11

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) EM-31 Support Program (EMSP) subtask, “Production and Long-Term Performance of Low Temperature Waste Forms” to provide additional information on technetium (Tc) speciation characterization in the Cast Stone waste form. To support the use of Cast Stone as an alternative to vitrification for solidifying low-activity waste (LAW) and as the current baseline waste form for secondary waste streams at the Hanford Site, additional understanding of Tc speciation in Cast Stone is needed to predict the long-term Tc leachability from Cast Stone and to meet the regulatory disposal-facility performance requirements for the Integrated Disposal Facility (IDF). Characterizations of the Tc speciation within the Cast Stone after leaching under various conditions provide insights into how the Tc is retained and released. The data generated by the laboratory tests described in this report provide both empirical and more scientific information to increase our understanding of Tc speciation in Cast Stone and its release mechanism under relevant leaching processes for the purpose of filling data gaps and to support the long-term risk and performance assessments of Cast Stone in the IDF at the Hanford Site.

  9. GreyStone Power- Photovoltaic Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    GreyStone Power, an electricity cooperative in Georgia, offers a rebate for solar photovoltaic (PV) systems to members. The one-time rebate is offered for PV installations that are interconnected...

  10. Evaluation of a stack: A concrete chimney with brick liner

    SciTech Connect (OSTI)

    Joshi, J.R.; Amin, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Porthouse, R.A. [Chimney Consultants, West Lebanon, NH (United States)

    1995-12-31

    A 200 ft. tall stack, consisting of a concrete chimney with an independent acid proof brick liner built in the 1950`s, serving the Separations facility at the Savannah River Site (SRS), was evaluated for the performance category 3 (PC3) level of Natural Phenomena Hazards (NPH) effects. The inelastic energy absorption capacity of the concrete chimney was considered in the evaluation of the earthquake resistance, in particular, to compute the F{sub {mu}} factor. The calculated value of F{sub {mu}} exceeded 3.0, while the seismic demand for the PC3 level, using an F{sub {mu}} value of 1.5, was found to be less than the capacity of the concrete chimney. The capacity formulation of ACI 307 was modified to incorporate the effect of an after design opening on the tension side. There are considerable uncertainties in determining the earthquake resistance of the independent brick liner. The critical liner section, located at the bottom of the breeching opening, does not meet the current recommendations. A discussion is provided for the possible acceptable values for the ``Moment Reduction Factor``, R{sub w} or F{sub {mu}} for the liner. Comments are provided on the comparison of stack demands using response spectra (RS) versus time history (TH) analysis, with and without soil structure interaction (SSI) effects.

  11. Brick Walls for Black Holes in AdS/CFT

    E-Print Network [OSTI]

    Norihiro Iizuka; Seiji Terashima

    2015-01-01

    We study the 't Hooft's brick wall model for black holes in a holographic context. The brick wall model suggests that without an appropriate near horizon IR cut-off, the free energy of the probe fields show the divergence due to the large degenerate states near the horizons. After studying the universal nature of the divergence in various holographic setting in various dimensions, we interpret the nature of the divergence in a holographic context. The free energy divergence is due to the large degeneracy and continuity of the low energy spectrum in the boundary theory at the deconfinement phase. These divergence and continuity should be removed by finite N effects, which make the spectrum discrete even at the deconfinement phase. On the other hand, in the bulk, these degenerate states are localized near the horizon, and the universal divergence of these degenerate states implies that the naive counting of the degrees of freedom in bulk should be modified once we take into account the non-perturbative quantum gravity effects near the horizon. Depending on the microscopic degrees of freedom, the position, where the effective field theory description to count the states breaks down, has different Planck scale dependence. It also implies the difficulty to have an electron like gauge-singlet elementary field in the boundary theory Lagrangian. These singlet fields are at most composite fields, because they show divergent free energy, suggesting a positive power of N at the deconfinement phase.

  12. Delayed Linear Expansion of Two Ultra-low Expansion Dental Stones 

    E-Print Network [OSTI]

    Oppedisano, Michael

    2013-12-20

    The purpose of this study was to measure the linear setting expansion of two ultra-low expansion dental stones used in definitive cast/ prosthesis fabrication which claim to have very low to no setting expansion. Five specimens of each material...

  13. ANALYSIS OF INDENTATION CREEP D.S. Stone,1,2

    E-Print Network [OSTI]

    Stone, Don

    -forward to analyze and interpret as the more conventional uniaxial creep experiment, the indentation test1 ANALYSIS OF INDENTATION CREEP D.S. Stone,1,2 J.E. Jakes,2,3 J. Puthoff,2 and A.A. Elmustafa4 1 of Materials Research #12;2 ABSTRACT Finite element analysis is used to simulate cone indentation creep

  14. Economy in embodied utterances1 Matthew Stone

    E-Print Network [OSTI]

    DeCarlo, Doug

    Economy in embodied utterances1 Matthew Stone Rutgers University In natural language generation to explore one kind of brevity, TEXTUAL ECONOMY, or, more generally, COMMUNICATIVE ECONOMY, which I introduce in Section 1. In communicative economy, speakers organize their actions to contribute to multiple

  15. Stone Age Distributed Computing (Extended Abstract)

    E-Print Network [OSTI]

    Stone Age Distributed Computing (Extended Abstract) Yuval Emek Distributed Computing Group ETH Zurich, Switzerland yemek@ethz.ch Roger Wattenhofer Distributed Computing Group ETH Zurich, Switzerland and cellular automata is suitable for applying the distributed computing lens to the study of networks of sub

  16. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect (OSTI)

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2014-02-28

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leachability indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the l

  17. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect (OSTI)

    Fox, K. M.; Edwards, T. A.; Roberts, K. B.

    2013-10-02

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leach indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the limited

  18. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect (OSTI)

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2013-09-17

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leach indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the limited

  19. Low-Btu coal gasification in the United States: company topical. [Brick producers

    SciTech Connect (OSTI)

    Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

    1983-07-01

    Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

  20. Engineering scale demonstration of a prospective Cast Stone process

    SciTech Connect (OSTI)

    Cozzi, A.; Fowley, M.; Hansen, E.; Fox, K.; Miller, D.; Williams, M.

    2014-09-30

    This report documents an engineering-scale demonstration with non-radioactive simulants that was performed at SRNL using the Scaled Continuous Processing Facility (SCPF) to fill an 8.5 ft container with simulated Cast Stone grout. The Cast Stone formulation was chosen from the previous screening tests. Legacy salt solution from previous Hanford salt waste testing was adjusted to correspond to the average composition generated from the Hanford Tank Waste Operation Simulator (HTWOS). The dry blend materials, ordinary portland cement (OPC), Class F fly ash, and ground granulated blast furnace slag (GGBFS or BFS), were obtained from Lafarge North America in Pasco, WA. Over three days, the SCPF was used to fill a 1600 gallon container, staged outside the facility, with simulated Cast Stone grout. The container, staged outside the building approximately 60 ft from the SCPF, was instrumented with x-, y-, and z-axis thermocouples to monitor curing temperature. The container was also fitted with two formed core sampling vials. For the operation, the targeted grout production rate was 1.5 gpm. This required a salt solution flow rate of approximately 1 gpm and a premix feed rate of approximately 580 lb/h. During the final day of operation, the dry feed rate was increased to evaluate the ability of the system to handle increased throughput. Although non-steady state operational periods created free surface liquids, no bleed water was observed either before or after operations. The final surface slope at a fill height of 39.5 inches was 1-1.5 inches across the 8.5 foot diameter container, highest at the final fill point and lowest diametrically opposed to the fill point. During processing, grout was collected in cylindrical containers from both the mixer discharge and the discharge into the container. These samples were stored in a humid environment either in a closed box proximal to the container or inside the laboratory. Additional samples collected at these sampling points were analyzed for rheological properties and density. Both the rheological properties (plastic viscosity and yield strength) and density were consistent with previous and later SCPF runs.

  1. Economic Impact of New Residents in Big Stone,

    E-Print Network [OSTI]

    Minnesota, University of

    Economic Impact of New Residents in Big Stone, Chippewa, Lac Qui Parle, Swift, and Yellow of Minnesota Extension Center for Community Vitality August 2011 1 ECONOMIC IMPACT ANALYSIS An Extension Community Economics Program #12; Economic Impact of New Residents: Big Stone, Chippewa, Lac Qui

  2. A Case for Safer Building Materials: Lifecycle Concerns, Data Gaps, and

    E-Print Network [OSTI]

    Lee, Seung-Wuk

    ;Conventional Building Materials · Wood · Stone · Cement · Metal · Glass · Straw · Ceramics #12;Synthetic;Volatile organic compounds (VOCs) · Aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons

  3. Practical 2: Getting Started with BrickPi; Accurate Robot Motion Andrew Davison and Stefan Leutenegger

    E-Print Network [OSTI]

    Davison, Andrew

    and login IDs of the group members, and give you a box which contains a Raspberry Pi + BrickPi kit which you to assemble and use a Raspberry Pi based robotics kit; and then examine how wheeled robots move the following items: · Raspberry Pi and Brickpi: the computer and an interface board to Lego Mindstorms sensors

  4. Measure Guideline: Installing Rigid Foam Insulation on the Interior of Existing Brick Walls

    SciTech Connect (OSTI)

    Natarajan, H.; Klocke, S.; Puttagunta, S.

    2012-06-01

    This measure guideline provides information on an effective method to insulate the interior of existing brick masonry walls with extruded polystyrene (XPS) insulation board. The guide outlines step-by-step design and installation procedures while explaining the benefits and tradeoffs where applicable. The authors intend that this document be useful to a varied audience that includes builders, remodelers, contractors and homeowners.

  5. Measure Guideline. Installing Rigid Foam Insulation on the Interior of Existing Brick Walls

    SciTech Connect (OSTI)

    Natarajan, Hariharan; Klocke, Steve; Puttagunta, Srikanth

    2012-06-01

    This measure guideline provides information on an effective method to insulate the interior of existing brick masonry walls with extruded polystyrene (XPS) insulation board. The guide outlines step-by-step design and installation procedures while explaining the benefits and tradeoffs where applicable. The authors intend that this document be useful to a varied audience that includes builders,remodelers, contractors and homeowners.

  6. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterialMaterials Materials Access to

  7. Hanford's Simulated Low Activity Waste Cast Stone Processing

    SciTech Connect (OSTI)

    Kim, Young

    2013-08-20

    Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanford’s (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process as this time and could not be concluded.

  8. GreyStone Power- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    GreyStone Power, an electricity cooperative serving 103,000 customers in Georgia, introduced a solar water heating rebate in March 2009. This $500 rebate is available to customers regardless of...

  9. EIS-0377: Big Stone II Power Plant and Transmission Project

    Broader source: Energy.gov [DOE]

    A systems study was carried out to identify the most appropriate locations to interconnect the proposed Big Stone II power plant to the regional utility grid. The study also identified transmission...

  10. Extended Leach Testing of Simulated LAW Cast Stone Monoliths

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Westsik, Joseph H.; Williams, Benjamin D.; Jung, H. B.; Wang, Guohui

    2015-07-09

    This report describes the results from long-term laboratory leach tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams. Specific objectives of the Cast Stone long-term leach tests described in this report focused on four activities: 1. Extending the leaching times for selected ongoing EPA-1315 tests on monoliths made with LAW simulants beyond the conventional 63-day time period up to 609 days reported herein (with some tests continuing that will be documented later) in an effort to evaluate long-term leaching properties of Cast Stone to support future performance assessment activities. 2. Starting new EPA-1315 leach tests on archived Cast Stone monoliths made with four LAW simulants using two leachants (deionized water [DIW] and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water [VZP]). 3. Evaluating the impacts of varying the iodide loading (starting iodide concentrations) in one LAW simulant (7.8 M Na Hanford Tank Waste Operations Simulator (HTWOS) Average) by manufacturing new Cast Stone monoliths and repeating the EPA-1315 leach tests using DIW and the VZP leachants. 4. Evaluating the impacts of using a non-pertechnetate form of Tc that is present in some Hanford tanks. In this activity one LAW simulant (7.8 M Na HTWOS Average) was spiked with a Tc(I)-tricarbonyl gluconate species and then solidified into Cast Stone monoliths. Cured monoliths were leached using the EPA-1315 leach protocol with DIW and VZP. The leach results for the Tc-Gluconate Cast Stone monoliths were compared to Cast Stone monoliths pertechnetate.

  11. AEM/S ... Stepping Stone Bill Solitario

    E-Print Network [OSTI]

    /SENSOR AEM/S #12;TAILORED MATERIAL SYSTEMS #12;Manufacturing Process Seemann Composite Resin Infusion Molding

  12. Entropy of Warped Taub-NUT AdS Black String via the Brick Wall Method

    E-Print Network [OSTI]

    Chong Oh Lee

    2015-03-10

    When we consider five-dimensional warped Taub-NUT/bolt AdS black string with minimally coupled massive scalar field, we calculate entropies by using the brick wall method. It is found that they are proportional to being quadratically divergent in a cutoff parameter. In particular, we show that the entropy of warped Taub-NUT AdS black string holds for an area law in the bulk as well as on the brane.

  13. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterial

  14. Development of a Crush and Mix Machine for Composite Brick Fabrication

    SciTech Connect (OSTI)

    Sothea, Kruy; Fazli, Nik; Hamdi, M. [Department of Design and Manufacture Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Aoyama, Hideki [Department of System Design Engineering, Keio University (Japan)

    2011-01-17

    Currently, people are more and more concerned about the environmental protection. Municipal solid wastes (MSW) have bad effect on the environment and also human health. In addition, the amounts of municipal solid wastes are increasing due to the economic development, density of population, especially in the developing countries and they are recycled in a little percentage. To address this problem, the composite brick forming machine was designed and developed to make brick using combination of MSW and mortar. The machine consists of two independent parts, crusher and mixer part, and molding part. This paper explores the design of crusher and mixer part. The crusher has ability to cut MSW such as wood, paper and plastic into small size. There are two mixers; one is used for making mortar and other use for making slurry. FEA analyses were carried out to address the suitable strength of the critical parts of the crusher which ensures that crusher can run properly with high efficiency. The experimentation of the crusher shows that it has high performance for cutting MSW. The mixers also work very well in high efficiency. The results of composite brick testing have been shown that ability of the machine can performance well. This is the innovation of crush and mix machine which is portable and economic by using MSW in replacement of sand.

  15. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  16. FREDERICK E. STONE, HAROLD J. BARNETT, PATRICK J. HUNTER, GLENN C. ROBERTS, and RICHARD W. NELSON

    E-Print Network [OSTI]

    FREDERICK E. STONE, HAROLD J. BARNETT, PATRICK J. HUNTER, GLENN C. ROBERTS, and RICHARD W. NELSON- Frederick E. Stone, Chemist; Harold J. Barnett, Research Chemist; Patrick J. Hunter, Chemical Engineering

  17. What is a Stone Crab? The biggest crab that you might find at a Florida

    E-Print Network [OSTI]

    !) that might want to eat you. Your eyes would be on stalks similar to a little submarines periscope. Stone

  18. Stone Age Distributed Computing Yuval Emek Jasmin Smula Roger Wattenhofer

    E-Print Network [OSTI]

    Stone Age Distributed Computing Yuval Emek Jasmin Smula Roger Wattenhofer Computer Engineering.g. traffic), or electrical engineering (e.g. circuits). Distributed computing is the area that studies on "Internet-capable" devices. The standard model in distributed computing is the so called message passing

  19. Technetium and Iodine Getters to Improve Cast Stone Performance

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Neeway, James J.; Lawter, Amanda R.; Levitskaia, Tatiana G.; Serne, R. Jeffrey; Westsik, Joseph H.; Snyder, Michelle MV

    2014-07-01

    To determine the effectiveness of the various getter materials prior to their solidification in Cast Stone, a series of batch sorption experiments was performed at Pacific Northwest National Laboratory. To quantify the effectiveness of the removal of Tc(VII) and I(I) from solution by getters, the distribution coefficient, Kd (mL/g), was calculated. Testing involved placing getter material in contact with spiked waste solutions at a 1:100 solid-to-solution ratio for periods up to 45 days with periodic solution sampling. One Tc getter was also tested at a 1:10 solid-to-solution ratio. Two different solution media, 18.2 M? deionized water (DI H2O) and a 7.8 M Na LAW simulant, were used in the batch sorption tests. Each test was conducted at room temperature in an anoxic chamber containing N2 with a small amount of H2 (0.7%) to maintain anoxic conditions. Each getter-solution combination was run in duplicate. Three Tc- and I-doping concentrations were used separately in aliquots of both the 18.2 M? DI H2O and a 7.8 M Na LAW waste simulant. The 1× concentration was developed based on Hanford Tank Waste Operations Simulator (HTWOS) model runs to support the River Protection Project System Plan Revision 6. The other two concentrations were 5× and 10× of the HTWOS values. The Tc and I tests were run separately (i.e., the solutions did not contain both solutes). Sampling of the solid-solution mixtures occurred nominally after 0.2, 1, 3, 6, 9, 12, 15 days and ~35 to 45 days. Seven getter materials were tested for Tc and five materials were tested for I. The seven Tc getters were blast furnace slag 1 (BFS1) (northwest source), BFS2 (southeast source), Sn(II)-treated apatite, Sn(II) chloride, nano tin phosphate, KMS (a potassium-metal-sulfide), and tin hydroxapatite. The five iodine getters were layered bismuth hydroxide (LBH), argentite mineral, synthetic argentite, silver-treated carbon, and silver-treated zeolite. The Tc Kd values measured from experiments conducted using the 7.8 M Na LAW simulant (the simulant selected to represent LAW) for the first 15 days for four Tc getters (BFS1, BFS2, Sn(II)-treated apatite, and Sn(II) chloride) show no, to a very small, capacity to remove Tc from the LAW simulant. For the Tc-getter experiments in the 7.8 M LAW simulant, the majority of the effluent samples show very small drops in Tc concentrations for the 35-day compared to the 15-day samplings. However, the Tc concentration in the simulant blanks also dropped slightly during this period, so the effect of the getter contacting LAW simulant at 35 days compared to 15 days is minimal; except that the BFS1 1:10 test shows a slow but steady decrease in Tc concentration in the LAW simulant supernatant from the beginning to the 35 day contact at which point about 20% of the original Tc has been removed from solution. Lastly, the KMS getter gives the highest Kd value for Tc at 35 days where Kd values have increased to 104 mL/g. When considering the different I getters reacting with the 7.8 M LAW simulant, two getters are much more effective than the others: Ag zeolite and Syn Arg. The other getters have calculated iodide distribution coefficients that show very limited effectiveness in the caustic conditions created by the LAW simulant. These are preliminary results that will need more detailed analyses including both pre- and post-batch sorption getter solid-phase characterization using state-of-the-art instrumentation such as synchrotron X ray absorption spectroscopy, which can delineate the oxidation state of the Tc and likely iodine species as well as some of the getters key major components, sulfur and iron in the BFS, and tin and sulfur in the tin-bearing and sulfur-bearing getters. This report also describes future experimental studies to be performed to better elucidate the mechanisms controlling the Tc and I sequestration processes in the various getters and leach tests of getter-bearing Cast Stone monoliths.

  20. Kitkahahki Chipped Stone Technologies: A Comparative Study

    E-Print Network [OSTI]

    Asher, Brendon Patrick

    2009-06-11

    Research Center at the University of Kansas. Additional 14RP1 materials were analyzed while on loan from the Kansas State Historical Society, Topeka, and represent the excavations conducted by Thomas Witty, Jr. from 1965 to 1968, as well..., with sponsorship from the National Park Service (Marshall and Witty 1967:6). In 1967, the Kansas State Historical Society, under the direction of James Marshall and Thomas Witty, excavated a single house. They also conducted minimal tests in a pit depression...

  1. Energy Efficiency Opportunities in the Stone and Asphalt Industry 

    E-Print Network [OSTI]

    Moray, S.; Throop, N.; Seryak, J.; Schmidt, C.; Fisher, C.; D'Antonio, M.

    2006-01-01

    of locations use underground mines. Mining methods involve removing the overburden to extract the underlying rock deposits. Tricone rotary drills, long-hole percussion drills, and churn drills are used to create the blast holes in the rocks. Blasting... Energy & Resource Solutions, Inc. Haverhill, MA Abstract The highly energy-intensive stone mining and crushing industry, grouped with other mining industries, has been one of the focal sectors of the US Department of Energy’s Industries...

  2. Data Package for Secondary Waste Form Down-Selection—Cast Stone

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Westsik, Joseph H.

    2011-09-05

    Available literature on Cast Stone and Saltstone was reviewed with an emphasis on determining how Cast Stone and related grout waste forms performed in relationship to various criteria that will be used to decide whether a specific type of waste form meets acceptance criteria for disposal in the Integrated Disposal Facility (IDF) at Hanford. After the critical review of the Cast Stone/Saltstone literature, we conclude that Cast Stone is a good candidate waste form for further consideration. Cast stone meets the target IDF acceptance criteria for compressive strength, no free liquids, TCLP leachate are below the UTS permissible concentrations and leach rates for Na and Tc-99 are suiteably low. The cost of starting ingredients and equipment necessary to generate Cast Stone waste forms with secondary waste streams are low and the Cast Stone dry blend formulation can be tailored to accommodate variations in liquid waste stream compositions. The database for Cast Stone short-term performance is quite extensive compared to the other three candidate waste solidification processes. The solidification of liquid wastes in Cast Stone is a mature process in comparison to the other three candidates. Successful production of Cast Stone or Saltstone has been demonstrated from lab-scale monoliths with volumes of cm3 through m3 sized blocks to 210-liter sized drums all the way to the large pours into vaults at Savannah River. To date over 9 million gallons of low activity liquid waste has been solidified and disposed in concrete vaults at Savannah River.

  3. Stone & McCarthy Research Associates | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) JumpandStereoNew York: Energy ResourcesStokes County,Stone

  4. GreenStone Technologies LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEniaElectricHydro ElectricGreen St. EnergyGreenStone

  5. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH); Griffen, Charles W. (Mason, OH)

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  6. From Human Genome to Materials "Genome" | U.S. DOE Office of...

    Office of Science (SC) Website

    pointed out, ever since the transition from the Stone Age to the Ages of Bronze and Iron, new materials have defined new technologies and whole new ways of life. (To call our own...

  7. Building Stones (C002638) Valid in the academic year 2013-2014

    E-Print Network [OSTI]

    Gent, Universiteit

    from several different research domains (petrography, microscopy, engineering ,...) (M. 1.1; M 1.3; M 1 and petrography Recognizing the most important natural building stones used in Belgium based on microscopical reason can lead to a failure practicals: Petrography of natural stones used in Belgium ( hand specimens

  8. CAST STONE TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect (OSTI)

    MINWALL HJ

    2011-04-08

    Cast stone technology is being evaluated for potential application in the treatment and immobilization of Hanford low-activity waste. The purpose of this document is to provide background information on cast stone technology. The information provided in the report is mainly based on a pre-conceptual design completed in 2003.

  9. Toward a global space exploration program: A stepping stone approach Pascale Ehrenfreund a,

    E-Print Network [OSTI]

    of exploration programs and to safeguard the potential scientific assets of solar system objects. In this reportReview Toward a global space exploration program: A stepping stone approach Pascale Ehrenfreund a to a global space exploration program. The proposed stepping stones are intended to transcend cross

  10. Steinway & Sons Upgrades Its Turn-of-the-Century Brick Kilns to a Quick-Dry Partial Vacuum System 

    E-Print Network [OSTI]

    Bossis, R.

    2015-01-01

    Street, Suite 350, North Andover, MA 01845 With offices in: CA, CT, ME, NY, OR, TX, VT www.ers-inc.com PRESENTATION BY RYAN BOSSIS June 3, 2015 Steinway & Sons Upgrades Its Turn-of-the-Century Brick Kilns to a Quick-Dry Partial Vacuum System ESL...-IE-15-06-17 Proceedings of the Thrity-Seventh Industrial Energy Technology Conference New Orleans, LA. June 2-4, 2015 ?History of Steinway & Sons and manufacturing process ?Current wood-drying process ?Data collection and measurement of existing kiln’s...

  11. A reinterpretation of "sense of place" : a study of the Stone Town of Zanzibar

    E-Print Network [OSTI]

    De Costa, Alfred Franklin

    1989-01-01

    This thesis attempts to understand the evolution of the Stone Town of Zanzibar, an urban fabric that had undergone a phase of upheaval that was brought about by a brief period of rapid change in its political, social and ...

  12. Isotopic and microbial indicators of sewage pollution from Stone Town, Zanzibar, Tanzania

    E-Print Network [OSTI]

    Harvell, Catherine Drew

    Isotopic and microbial indicators of sewage pollution from Stone Town, Zanzibar, Tanzania Molly A, Washington, DC, USA c Institute of Marine Sciences, University of Dar es Salaam, Zanzibar, Tanzania a r t i c

  13. Conservation of stone-roofs: Challenges and the effect of new Techniques 

    E-Print Network [OSTI]

    Teba, Tarek

    Stone-roofing has a great history which spans many millennia BC which witnessed a lot of development to roofing systems and geometry regarding the area and type of building demands. Therefore, this paper discusses this ...

  14. TEXTUAL ECONOMY THROUGH CLOSE COUPLING OF SYNTAX AND SEMANTICS Matthew Stone Bonnie Webber

    E-Print Network [OSTI]

    Stone, Matthew

    TEXTUAL ECONOMY THROUGH CLOSE COUPLING OF SYNTAX AND SEMANTICS Matthew Stone Bonnie Webber Dept, thatexploitsthe hearer's recognitionof inferentiallinkstomaterial elsewhere withina sentence. Textual economy argue that achieving textual economy imposes strong requirements on the representation and reasoning

  15. Palynology and paleoecology of the Stone City member, Crockett Formation, Middle Eocene, Burleson Co, Texas 

    E-Print Network [OSTI]

    McMahon, Jennifer Marie

    1997-01-01

    A total of 103 genera and 157 species of terrestrial pollen, and at least 36 genera and 52 species of dinoflagellates were recovered from a core taken from the Stone City section in Burleson County, Texas. Both terrestrial ...

  16. Worn Stones with Flat Sides - All Time Regularity of the Interface

    E-Print Network [OSTI]

    Worn Stones with Flat Sides - All Time Regularity of the Interface. We study the all time regularity of the free-boundary problem associated to the de- formation of ...

  17. HANFORD CONTAINERIZED CAST STONE FACILITY TASK 1 PROCESS TESTING & DEVELOPMENT FINAL TEST REPORT

    SciTech Connect (OSTI)

    LOCKREM, L L

    2005-07-13

    Laboratory testing and technical evaluation activities on Containerized Cast Stone (CCS) were conducted under the Scope of Work (SOW) contained in CH2M HILL Hanford Group, Inc. (CHG) Contract No. 18548 (CHG 2003a). This report presents the results of testing and demonstration activities discussed in SOW Section 3.1, Task I--''Process Development Testing'', and described in greater detail in the ''Containerized Grout--Phase I Testing and Demonstration Plan'' (CHG, 2003b). CHG (2003b) divided the CCS testing and evaluation activities into six categories, as follows: (1) A short set of tests with simulant to select a preferred dry reagent formulation (DRF), determine allowable liquid addition levels, and confirm the Part 2 test matrix. (2) Waste form performance testing on cast stone made from the preferred DRF and a backup DRF, as selected in Part I, and using low activity waste (LAW) simulant. (3) Waste form performance testing on cast stone made from the preferred DRF using radioactive LAW. (4) Waste form validation testing on a selected nominal cast stone formulation using the preferred DRF and LAW simulant. (5) Engineering evaluations of explosive/toxic gas evolution, including hydrogen, from the cast stone product. (6) Technetium ''getter'' testing with cast stone made with LAW simulant and with radioactive LAW. In addition, nitrate leaching observations were drawn from nitrate leachability data obtained in the course of the Parts 2 and 3 waste form performance testing. The nitrate leachability index results are presented along with other data from the applicable activity categories.

  18. Set in stone? A perspective on the concrete sustainability challenge

    E-Print Network [OSTI]

    Vliet, Krystyn Van J.

    As the most abundant engineered material on Earth, concrete is essential to the physical infrastructure of all modern societies. There are no known materials that can replace concrete in terms of cost and availability. ...

  19. MANAGING TRAINING AND DEVELOPMENT Professor Thomas H. Stone

    E-Print Network [OSTI]

    and development information are: www.astd.org www.prospera.com and www.trainingoutsourcing.com Additional material

  20. Algorithms and Automated Material Handling Systems Design for Stacking 3D Irregular Stone Pieces 

    E-Print Network [OSTI]

    Ko, Ming-Cheng

    2011-10-21

    problems, many algorithms such as the genetic algorithm, simulated annealing and other heuristic algorithms have been proposed. The three-dimensional stacking problem has a practical application in the transportation, manufacturing, and construction...

  1. Spatial and Temporal Variation in Stone Raw Material Provisioning in the Chivay Obsidian Source Area

    E-Print Network [OSTI]

    Tripcevich, Nicholas; MacKay, Alex

    2012-01-01

    Peru and its effects upon human use of the landscape. Quaternary International 2005 Preludes to power

  2. CO2-driven Enhanced Oil Recovery as a Stepping Stone to What?

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2010-07-14

    This paper draws heavily on the authors’ previously published research to explore the extent to which near term carbon dioxide-driven enhanced oil recovery (CO2-EOR) can be “a stepping stone to a long term sequestration program of a scale to be material in climate change risk mitigation.” The paper examines the historical evolution of CO2-EOR in the United States and concludes that estimates of the cost of CO2-EOR production or the extent of CO2 pipeline networks based upon this energy security-driven promotion of CO2-EOR do not provide a robust platform for spurring the commercial deployment of carbon dioxide capture and storage technologies (CCS) as a means of reducing greenhouse gas emissions. The paper notes that the evolving regulatory framework for CCS makes a clear distinction between CO2-EOR and CCS and the authors examine arguments in the technical literature about the ability for CO2-EOR to generate offsetting revenue to accelerate the commercial deployment of CCS systems in the electric power and industrial sectors of the economy. The authors conclude that the past 35 years of CO2-EOR in the U.S. have been important for boosting domestic oil production and delivering proven system components for future CCS systems. However, though there is no reason to suggest that CO2-EOR will cease to deliver these benefits, there is also little to suggest that CO2-EOR is a necessary or significantly beneficial step towards the commercial deployment of CCS as a means of addressing climate change.

  3. Investigation of photon attenuation coefficient of some building materials used in Turkey

    SciTech Connect (OSTI)

    Dogan, B.; Altinsoy, N.

    2015-03-30

    In this study, some building materials regularly used in Turkey, such as concrete, gas concrete, pumice and brick have been investigated in terms of mass attenuation coefficient at different gamma-ray energies. Measurements were carried out by gamma spectrometry containing NaI(Tl) detector. Narrow beam gamma-ray transmission geometry was used for the attenuation measurements. The results are in good agreement with the theoretical calculation of XCOM code.

  4. Facile residue analysis of recent and prehistoric cook-stones using handheld Raman spectrometry

    E-Print Network [OSTI]

    Short, Laura; Cao, Bin; Sinyukov, Alexander M; Joshi, Amitabh; Scully, Rob; Sanders, Virgil; Voronine, Dmitri V

    2013-01-01

    We performed food residue analysis of cook-stones from experimental and prehistoric earth ovens using a handheld Raman spectrometry. Progress in modern optical technology provides a facile means of rapid non-destructive identification of residue artifacts from archaeological sites. For this study spectral signatures were obtained on sotol (Dasylirion spp.) experimentally baked in an earth oven as well as sotol residue on an experimentally used processing tool. Inulin was the major residue component. The portable handheld Raman spectrometer also detected traces of inulin on boiling stones used to boil commercially obtained inulin. The Raman spectra of inulin and sotol may be useful as signatures of wild plant residues in archaeology. Spectroscopic analysis of millennia-old cook-stones from prehistoric archaeological sites in Fort Hood, TX revealed the presence of residues whose further identification requires improvement of current optical methods.

  5. Evaluation of Technetium Getters to Improve the Performance of Cast Stone

    SciTech Connect (OSTI)

    Neeway, James J.; Qafoku, Nikolla P.; Serne, R. Jeffrey; Lawter, Amanda R.; Stephenson, John R.; Lukens, Wayne W.; Westsik, Joseph H.

    2015-11-01

    Cast Stone has been selected as the preferred waste form for solidification of aqueous secondary liquid effluents from the Hanford Tank Waste Treatment and Immobilization Plant (WTP) process condensates and low-activity waste (LAW) melter off-gas caustic scrubber effluents. Cast Stone is also being evaluated as a supplemental immobilization technology to provide the necessary LAW treatment capacity to complete the Hanford tank waste cleanup mission in a timely and cost effective manner. One of the major radionuclides that Cast Stone has the potential to immobilize is technetium (Tc). The mechanism for immobilization is through the reduction of the highly mobile Tc(VII) species to the less mobile Tc(IV) species by the blast furnace slag (BFS) used in the Cast Stone formulation. Technetium immobilization through this method would be beneficial because Tc is one of the most difficult contaminants to address at the U.S. Department of Energy (DOE) Hanford Site due to its complex chemical behavior in tank waste, limited incorporation in mid- to high-temperature immobilization processes (vitrification, steam reformation, etc.), and high mobility in subsurface environments. In fact, the Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC&WM EIS) identifies technetium-99 (99Tc) as one of the radioactive tank waste components contributing the most to the environmental impact associated with the cleanup of the Hanford Site. The TC&WM EIS, along with an earlier supplemental waste-form risk assessment, used a diffusion-limited release model to estimate the release of different contaminants from the WTP process waste forms. In both of these predictive modeling exercises, where effective diffusivities based on grout performance data available at the time, groundwater at the 100-m down-gradient well exceeded the allowable maximum permissible concentrations for 99Tc. (900 pCi/L). Recent relatively short-term (63 day) leach tests conducted on both LAW and secondary waste Cast Stone monoliths indicated that 99Tc diffusivities were at or near diffusivities where the groundwater at the 100-m down-gradient well would exceed the allowable maximum permissible 99Tc concentrations. There is, therefore, a need and an opportunity to improve the retention of Tc in the Cast Stone waste form. One method to improve the performance of the Cast Stone waste form is through the addition of “getters” that selectively sequester Tc inside Cast Stone.

  6. Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith

    SciTech Connect (OSTI)

    Mattigod, Shas V.; Westsik, Joseph H.; Chung, Chul-Woo; Lindberg, Michael J.; Parker, Kent E.

    2011-08-12

    To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions has initiated secondary-waste-form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is conducting tests on four candidate waste forms to evaluate their ability to meet potential waste acceptance criteria for immobilized secondary wastes that would be placed in the IDF. All three waste forms demonstrated compressive strengths above the minimum 3.45 MPa (500 psi) set as a target for cement-based waste forms. Further, none of the waste forms showed any significant degradation in compressive strength after undergoing thermal cycling (30 cycles in a 10 day period) between -40 C and 60 C or water immersion for 90 days. The three leach test methods are intended to measure the diffusion rates of contaminants from the waste forms. Results are reported in terms of diffusion coefficients and a leachability index (LI) calculated based on the diffusion coefficients. A smaller diffusion coefficient and a larger LI are desired. The NRC, in its Waste Form Technical Position (NRC 1991), provides recommendations and guidance regarding methods to demonstrate waste stability for land disposal of radioactive waste. Included is a recommendation to conduct leach tests using the ANS 16.1 method. The resulting leachability index (LI) should be greater than 6.0. For Hanford secondary wastes, the LI > 6.0 criterion applies to sodium leached from the waste form. For technetium and iodine, higher targets of LI > 9 for Tc and LI > 11 for iodine have been set based on early waste-disposal risk and performance assessment analyses. The results of these three leach tests conducted for a total time between 11days (ASTM C1308) to 90 days (ANS 16.1) showed: (1) Technetium diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that all the waste forms had leachability indices better than the target LI > 9 for technetium; (2) Rhenium diffusivity: Cast Stone 2M specimens, when tested using EPA 1315 protocol, had leachability indices better than the target LI > 9 for technetium based on rhenium as a surrogate for technetium. All other waste forms tested by ANSI/ANS 16.1, ASTM C1308, and EPA 1315 test methods had leachability indices that were below the target LI > 9 for Tc based on rhenium release. These studies indicated that use of Re(VII) as a surrogate for 99Tc(VII) in low temperature secondary waste forms containing reductants will provide overestimated diffusivity values for 99Tc. Therefore, it is not appropriate to use Re as a surrogate 99Tc in future low temperature waste form studies. (3) Iodine diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that the three waste forms had leachability indices that were below the target LI > 11 for iodine. Therefore, it may be necessary to use a more effective sequestering material than silver zeolite used in two of the waste forms (Ceramicrete and DuraLith); (4) Sodium diffusivity: All the waste form specimens tested by the three leach methods (ANSI/ANS 16.1, ASTM C1308, and EPA 1315) exceeded the target LI value of 6; (5) All three leach methods (ANS 16.1, ASTM C1308 and EPA 1315) provided similar 99Tc diffusivity values for both short-time transient diffusivity effects as well as long-term ({approx}90 days) steady diffusivity from each of the three tested waste forms (Cast Stone 2M, Ceramicrete and DuraLith). Therefore, any one of the three methods can be used to determine the contaminant diffusivities from a selected waste form.

  7. Online Supplementary Material Biomass availability, energy consumption and biochar production in

    E-Print Network [OSTI]

    Lehmann, Johannes

    Online Supplementary Material Biomass availability, energy consumption and biochar production to the cooking flame as the ring of biomass turns to biochar. #12;Figure S1. Traditional three-stone fire;Supplementary Materials and Methods 1 Description of stoves 1.1 Traditional stove Cooking activities

  8. Performance analysis of boron nitride embedded armchair graphene nanoribbon metal–oxide–semiconductor field effect transistor with Stone Wales defects

    SciTech Connect (OSTI)

    Chanana, Anuja; Sengupta, Amretashis; Mahapatra, Santanu

    2014-01-21

    We study the performance of a hybrid Graphene-Boron Nitride armchair nanoribbon (a-GNR-BN) n-MOSFET at its ballistic transport limit. We consider three geometric configurations 3p, 3p + 1, and 3p + 2 of a-GNR-BN with BN atoms embedded on either side (2, 4, and 6 BN) on the GNR. Material properties like band gap, effective mass, and density of states of these H-passivated structures are evaluated using the Density Functional Theory. Using these material parameters, self-consistent Poisson-Schrodinger simulations are carried out under the Non Equilibrium Green's Function formalism to calculate the ballistic n-MOSFET device characteristics. For a hybrid nanoribbon of width ?5?nm, the simulated ON current is found to be in the range of 265??A–280??A with an ON/OFF ratio 7.1 × 10{sup 6}–7.4 × 10{sup 6} for a V{sub DD}?=?0.68?V corresponding to 10?nm technology node. We further study the impact of randomly distributed Stone Wales (SW) defects in these hybrid structures and only 2.5% degradation of ON current is observed for SW defect density of 3.18%.

  9. utism is the Rosetta Stone of human neurobiology. Deciphering autism will

    E-Print Network [OSTI]

    A utism is the Rosetta Stone of human neurobiology. Deciphering autism will lead us to new insights ways to bring autism research to the forefront of mod- ern brain science, not just to help our children Autism" lectures to parent groups, I like to refer to this phenomenon because I imagine that someday we

  10. New Hampshire "4-H Horse of the Year" Peter Stone Model Horse Contest

    E-Print Network [OSTI]

    New Hampshire, University of

    New Hampshire "4-H Horse of the Year" Peter Stone Model Horse® Contest Current and former 4-H members are invited to submit nominations for the New Hampshire "4- H Horse of the Year" award. The focus.Davis@unh.edu ****************************************************************************** February 2015 The University of New Hampshire Cooperative Extension is an equal opportunity educator

  11. THE EFFECTS OF STONE FRUIT EXTRACT ON THE PROCESS OF PLATELET AGGREGATION IN VITRO 

    E-Print Network [OSTI]

    Deleeuw, Peter 1990-

    2011-07-25

    This project attempts to examine the impact stone fruits can have on the clotting of blood in the human body. Plum rich anthocyanin extract (RAE) was added in different concentrations (1-25ug/ml) to rabbit platelets suspended in Tyrode’s buffer...

  12. Multi-robot Human Guidance using Topological Graphs Piyush Khandelwal and Peter Stone

    E-Print Network [OSTI]

    Stone, Peter

    Multi-robot Human Guidance using Topological Graphs Piyush Khandelwal and Peter Stone Department,pstone}@cs.utexas.edu Abstract Prior approaches to human guidance using robots in- side a building have typically been limited to a single robot guide that navigates a human from start to goal. However, due to their limited mobility

  13. TEXTUAL ECONOMY THROUGH CLOSE COUPLING OF SYNTAX AND SEMANTICS Matthew Stone Bonnie Webber

    E-Print Network [OSTI]

    TEXTUAL ECONOMY THROUGH CLOSE COUPLING OF SYNTAX AND SEMANTICS ·Matthew Stone Bonnie Webber Dept efficientdescriptionsofobjects, actions and events. Wedefinea typeof efficiency, textual economy, thatexploitsthehearer goals, and is therefore overloaded in the sense of Pollack [18]. We argue that achieving textual economy

  14. Short communication Control of brown rot of stone fruits by brief heated water immersion treatments

    E-Print Network [OSTI]

    Crisosto, Carlos H.

    Short communication Control of brown rot of stone fruits by brief heated water immersion treatments, this treatment reduced decay incidence from 100 to less than 5% on fruit stored at 20 C and from 73 to 28% on cold-stored fruit. Therefore, brief immersion in heated water can be an effective approach to manage

  15. An evaluation of Stones method to determinte pseudo-relative permeability 

    E-Print Network [OSTI]

    Permadi, Asep Kurnia

    1994-01-01

    saturations in the vertical direction have been published. However, at present, the most common method is either the method proposed by Jacks et al. or Kyte and BeiTy. Both methods use fine-grid reservoir simulation results. Stone developed a new method based...

  16. CAST STONE TECHNOLOGY FOR TREATMENT & DISPOSAL OF IODINE RICH CAUSTIC WASTE DEMONSTRATION FINAL REPORT

    SciTech Connect (OSTI)

    LOCKREM, L.L.

    2005-07-14

    CH2M HILL is working to develop, design, and construct low-activity waste (LAW) treatment and imcholization systems to supplement the LAW capacity provided by the Waste Treatment and Immobilization Plant. CH2M HILL is investigating use of cast stone technology for treatment and immobilization of caustic solutions containing high concentrations of radioactive Iodine-129.

  17. An Experiment on Length Perception with a Virtual Rolling Stone Hsin-Yun Yao Vincent Hayward

    E-Print Network [OSTI]

    Hayward, Vincent

    the hand. It is natural that learned gravity-related invariance in humans (and probably in most animals) be An Experiment on Length Perception with a Virtual Rolling Stone Hsin-Yun Yao Vincent Hayward contingency posits that humans exploit invariants about the physics of their environment and about their own

  18. Recycle of Wastes of Clay Brick Industry for Producing Eco-cement 

    E-Print Network [OSTI]

    Amin, A. M

    2010-01-01

    factors as type, degree of crystallinty, and fineness of the used pozzolana in addition to the ESL-IC-10-10-09 Proceedings of the Tenth International Conference for Enhanced Building Operations, Kuwait, October 26-28, 2010 curing conditions (4... for Enhanced Building Operations, Kuwait, October 26-28, 2010 strength of the hardened specimens decreases with increasing waste material content in the mix. The continuous growth of the compressive strength is mainly due to the formation and accumulation...

  19. The provenance of the stone ballast from the Molasses Reef Wreck 

    E-Print Network [OSTI]

    Lamb, William Reginald

    1988-01-01

    with the actual (optically observed) mi nera I composition, the mode. The samples that were sent for chemical analysis were only from those basalt ballast stones which had been petrographically examined. Chemical analysis was used to decrease the potential...). The proportion of groundmass in the individual rocks is variable. Some of the rocks are nearly andesitic in composition as judged by the high amount of p lagioclase feldspars. They are grouped with basalts because of their similarity in overall appearance...

  20. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Screening Tests

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Piepel, Gregory F.; Lindberg, Michael J.; Heasler, Patrick G.; Mercier, Theresa M.; Russell, Renee L.; Cozzi, Alex; Daniel, William E.; Eibling, Russell E.; Hansen, E. K.; Reigel, Marissa M.; Swanberg, David J.

    2013-09-30

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in the HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second LAW immobilization facility will be needed for the expected volume of LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF. The PA is needed to satisfy both Washington State IDF Permit and DOE Order requirements. Cast Stone has been selected for solidification of radioactive wastes including WTP aqueous secondary wastes treated at the Effluent Treatment Facility (ETF) at Hanford. A similar waste form called Saltstone is used at the Savannah River Site (SRS) to solidify its LAW tank wastes.

  1. PC1 CHALLENGES IN ASTEROIDAL, LUNAR AND MARTIAN MINERALOGY -ORAL The planetary materials database

    E-Print Network [OSTI]

    Downs, Robert T.

    __________________________________________________________________________________________________________________________________________ The planetary materials database Lafuente B1* , Downs R1 , Blake D2 , Stone N1 , Pires A1 1 - University characterization of minerals. This open database, which receives more than 80,000 visits per week from geologists and maintenance of the RRUFF project has motivated the creation of a new and more interactive database

  2. Secondary Waste Form Screening Test Results—Cast Stone and Alkali Alumino-Silicate Geopolymer

    SciTech Connect (OSTI)

    Pierce, Eric M.; Cantrell, Kirk J.; Westsik, Joseph H.; Parker, Kent E.; Um, Wooyong; Valenta, Michelle M.; Serne, R. Jeffrey

    2010-06-28

    PNNL is conducting screening tests on the candidate waste forms to provide a basis for comparison and to resolve the formulation and data needs identified in the literature review. This report documents the screening test results on the Cast Stone cementitious waste form and the Geopolymer waste form. Test results suggest that both the Cast Stone and Geopolymer appear to be viable waste forms for the solidification of the secondary liquid wastes to be treated in the ETF. The diffusivity for technetium from the Cast Stone monoliths was in the range of 1.2 × 10-11 to 2.3 × 10-13 cm2/s during the 63 days of testing. The diffusivity for technetium from the Geopolymer was in the range of 1.7 × 10-10 to 3.8 × 10-12 cm2/s through the 63 days of the test. These values compare with a target of 1 × 10-9 cm2/s or less. The Geopolymer continues to show some fabrication issues with the diffusivities ranging from 1.7 × 10-10 to 3.8 × 10-12 cm2/s for the better-performing batch to from 1.2 × 10-9 to 1.8 × 10-11 cm2/s for the poorer-performing batch. In the future more comprehensive and longer term performance testing will be conducted, to further evaluate whether or not these waste forms will meet the regulation and performance criteria needed to cost-effectively dispose of secondary wastes.

  3. Cast Stone Oxidation Front Evaluation: Preliminary Results For Samples Exposed To Moist Air

    SciTech Connect (OSTI)

    Langton, C. A.; Almond, P. M.

    2013-11-26

    The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO{sub 4}{sup ?} in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O{sub 4}{sup ?}, which is very soluble. Consequently the rate of technetium oxidation front advancement into a monolith and the technetium leaching profile as a function of depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate (Cr(VI) was used as a non-radioactive surrogate for pertechnetate, Tc(VII), in Cast Stone samples prepared with 5 M Simulant. Cast Stone spiked with pertechnetate was also prepared and tested. Depth discrete subsamples spiked with Cr were cut from Cast Stone exposed to Savannah River Site (SRS) outdoor ambient temperature fluctuations and moist air. Depth discrete subsamples spiked with Tc-99 were cut from Cast Stone exposed to laboratory ambient temperature fluctuations and moist air. Similar conditions are expected to be encountered in the Cast Stone curing container. The leachability of Cr and Tc-99 and the reduction capacities, measured by the Angus-Glasser method, were determined for each subsample as a function of depth from the exposed surface. The results obtained to date were focused on continued method development and are preliminary and apply to the sample composition and curing / exposure conditions described in this report. The Cr oxidation front (depth to which soluble Cr was detected) for the Cast Stone sample exposed for 68 days to ambient outdoor temperatures and humid air (total age of sample was 131 days) was determined to be about 35 mm below the top sample surface exposed. The Tc oxidation front, depth at which Tc was insoluble, was not determined. Interpretation of the results indicates that the oxidation front is at least 38 mm below the exposed surface. The sample used for this measurement was exposed to ambient laboratory conditions and humid air for 50 days. The total age of the sample was 98 days. Technetium appears to be more easily oxidized than Cr in the Cast Stone matrix. The oxidized forms of Tc and Cr are soluble and therefore leachable. Longer exposure times are required for both the Cr and Tc spiked samples to better interpret the rate of oxidation. Tc spiked subsamples need to be taken further from the exposed surface to better define and interpret the leachable Tc profile. Finally Tc(VII) reduction to Tc(IV) appears to occur relatively fast. Results demonstrated that about 95 percent of the Tc(VII) was reduced to Tc(IV) during the setting and very early stage setting for a Cast Stone sample cured 10 days. Additional testing at longer curing times is required to determine whether additional time is required to reduce 100 % of the Tc(VII) in Cast Stone or whether the Tc loading exceeded the ability of the waste form to reduce 100 % of the Tc(VII). Additional testing is required for samples cured for longer times. Depth discrete subsampling in a nitrogen glove box is also required to determine whether the 5 percent Tc extracted from the subsamples was the result of the sampling process which took place in air. Reduction capacity measurements (per the Angus-Glasser method) performed on depth discrete samples could not be correlated with the amount of chromium or technetium leached from the depth discrete subsamples or with the oxidation front inferred from soluble chromium and technetium (i.e., effective Cr and Tc oxidation fronts). Residual reduction capacity

  4. Abundance and distribution of the western Gulf stone crab (Menippe adina) in Galveston Bay, Texas 

    E-Print Network [OSTI]

    Boslet, Jane Murray

    1989-01-01

    I BUNDANCE AND DI STRISUT . ON OF THE WESTERN GULF STOiuE CRAB LilFNIL'PC l', Diijil) IN GALVESTON BAY TEXAS Thesis JALXE iiURRAY HOSLET SuL&mitted to th= Office of Graduate Studies of Texa Aai1 University in :. a- Dial fulfullment... of the requirements for the deqree of MAS'I ~ R OI" SCIENCE May 19B9 Major subject: Wildlife and Fisheries Sciences ABUNDANCE AND DISTRIBUTION OF THE WESTERN GULF STONE CRAB (NENIPPE ADINA) IN GALVESTON BAY, TEXAS A Thesis by JANE MURRAY BOSLET Approved...

  5. "Rolling Stone" covers climate change research at Los Alamos Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentatabout Who WorksNameGlaser,Rolling Stone" covers

  6. Beyond Mortar and Bricks

    E-Print Network [OSTI]

    Kretsinger, Anne

    2008-07-01

    ://www.dailysoft.com/berlinwall/indes.html>. 4. “Episode 9: !e Wall.” CNN Interactive. Retrieved on Oct. 21, 2006, from . 5. Munro, Sir Leslie. (1962). “Introduction” in !e Berlin Wall: A De#ance of Human Rights. International Commission...://www.dailysoft.com/berlinwall/indes.html>. 4. “Episode 9: !e Wall.” CNN Interactive. Retrieved on Oct. 21, 2006, from . 5. Munro, Sir Leslie. (1962). “Introduction” in !e Berlin Wall: A De#ance of Human Rights. International Commission...

  7. Building Stones

    E-Print Network [OSTI]

    2012-01-01

    UEE 2012 “Concrete” or “lime plaster” made from limestoneto reduce (calcine) calcite (CaCO 3 ) to “quick lime” (CaO).When powdered quick lime is mixed with water (a process

  8. Ornamental Stones

    E-Print Network [OSTI]

    Harrell, James A.

    2013-01-01

    Geological Survey of Norway, Special Publication 12, ed.Geological Survey of Norway, Special Publication 12, ed.Geological Survey of Norway, Special Publication 12, ed.

  9. Utilitarian Stones

    E-Print Network [OSTI]

    Harrell, James A.

    2012-01-01

    Geological Survey of Norway, Special Publication 12, ed.Geological Survey of Norway, Special Publication 12, ed.Geological Survey of Norway, Special Publication 12, ed.

  10. Building Stones

    E-Print Network [OSTI]

    2012-01-01

    Geological Survey of Norway, Special Publication 12, ed.Geological Survey of Norway, Special Publication 12, ed.

  11. Three-dimensional fracture and fragmentation of artificial kidney stones This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Ortiz, Michael

    Three-dimensional fracture and fragmentation of artificial kidney stones This article has been IOPscience #12;Three-dimensional fracture and fragmentation of artificial kidney stones Alejandro Mota1 Laboratory Livermore, CA 94550, USA July 25, 2006 Abstract The brittle fracture of a gypsum cylinder, which

  12. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issues submit Material Misfits How well nanocomposite materials align at their interfaces determines what properties they have, opening broad new avenues of materials-science...

  13. A few comments on Brick-wall model and the Entropy of a scalar field in Schwarzschild black hole background:II

    E-Print Network [OSTI]

    K. Ghosh

    2014-10-14

    In this article we will discuss a Lorentzian sector calculation of the entropy of a minimally coupled scalar field in the Schwarzschild and in the Reissner-Nordstrom black hole backgrounds using the brick wall model of t' Hooft. We will use the semiclassical WKB approximation and find the possible states using the WKB quantization rule which is similar to the semiclassical Bohr-Sommerfeld quantization rule. In a previous article we found that the WKB quantization rule together with a proper counting of the states lead to a new expression for the matter field entropy which is not proportional to the area of the horizon. The expression of the entropy is logarithmically divergent in the brick wall cut-off parameter in contrary to an inverse power divergence obtained earlier. In this article we will first show that similar situation remains to be valid for the non-extreme Reissner-Nordstrom black hole background. We will next consider the modes which are not globally stationary and are confined near the horizon. The results indicate the regions in which the WKB approximation holds better and we will consider the entropy for a thin shell of matter field of a given thickness surrounding the black hole horizon. The thickness is chosen to be large compared to the Planck length. We will discuss the corresponding boundary conditions and the appropriateness of the WKB approximation using the Regge-Wheeler tortoise coordinates. When expressed in terms of a covariant cut-off parameter, the entropy of a thin shell of matter field of a given thickness and surrounding the horizon in the Schwarzschild black hole background is given by an expression proportional to the area of the black hole horizon. This leading order divergent term in the cut-off parameter remains to be logarithmically divergent.

  14. The Effects of Infrared-Blocking Pigments and Deck Venting on Stone-Coated Metal Residential Roofs

    SciTech Connect (OSTI)

    Miller, William A [ORNL

    2006-01-01

    Field data show that stone-coated metal shakes and S-mission tile, which exploit the use of infraredblocking color pigments (IrBCPs), along with underside venting reduce the heat flow penetrating the conditioned space of a residence by 70% compared with the amount of heat flow penetrating roofs with conventional asphalt shingles. Stone-coated metal roof products are typically placed on battens and counter-battens and nailed through the battens to the roof deck. The design provides venting on the underside of the metal roof that reduces the heat flow penetrating a home. The Metal Construction Association (MCA) and its affiliate members installed stone-coated metal roofs with shake and S-mission tile profiles and a painted metal shake roof on a fully instrumented attic test assembly at Oak Ridge National Laboratory (ORNL). Measurements of roof, deck, attic, and ceiling temperatures; heat flows; solar reflectance; thermal emittance; and ambient weather were recorded for each of the test roofs and also for an adjacent attic cavity covered with a conventional pigmented and direct nailed asphalt shingle roof. All attic assemblies had ridge and soffit venting; the ridge was open to the underside of the stone-coated metal roofs. A control assembly with a conventional asphalt shingle roof was used for comparing deck and ceiling heat transfer rates.

  15. Transformation Plasticity in Steel Weld Metals H. K. D. H. Bhadeshia, J. A. Francis, H. J. Stone, S. Kundu

    E-Print Network [OSTI]

    Cambridge, University of

    Transformation Plasticity in Steel Weld Metals H. K. D. H. Bhadeshia, J. A. Francis, H. J. Stone, S transformation is particularly important when dealing with martensite or bainite. These phases evolve, a phenomenon intrinsic to the mechanical behaviour of TRIP­ assisted steels. The subject of this paper

  16. A PCT funding formula for England based on faith may be wasting billions1 Mervyn Stone and Jane Galbraith

    E-Print Network [OSTI]

    Guillas, Serge

    A PCT funding formula for England based on faith may be wasting billions1 Mervyn Stone and Jane by slicing a Treasury cake of £44B. The division was guided by targets given by a weighted capitation formula/science divide will not block future attempts to devise a funding formula based on direct measurement of health

  17. Rolling stones: The motion of a sphere down an inclined plane coated with a thin liquid film

    E-Print Network [OSTI]

    Bico,José

    Rolling stones: The motion of a sphere down an inclined plane coated with a thin liquid film J 2009 A spherical bead deposited on a smooth tilted dry plane wall rolls down the slope under that is coated with a thin layer of order 50­100 m of a viscous liquid. The steady motion of the sphere under

  18. USDA Forest Service Gen. Tech. Rep. PSW-GTR-193. 2004. 159 Turning Stumbling Blocks into Stepping Stones

    E-Print Network [OSTI]

    impact statement and environmental impact report, several timber harvest plans, a habitat conservation); it is the environmental impact that must be evaluated, not a change relative to a hypothetical alternative. Another Stones in the Analysis of Cumulative Impacts1 Leslie M. Reid2 Federal and state legislation

  19. Microfluidics for block polymer shells (DMR 0819860) SEED :H.A. Stone, R.A. Register and Janine Nunes

    E-Print Network [OSTI]

    Petta, Jason

    Microfluidics for block polymer shells (DMR 0819860) SEED :H.A. Stone, R.A. Register and Janine. We utilized microfluidic methods to investigate the role of geometric structures, e.g. thin spherical, microfluidic devices with two consecutive flow-focusing junctions were used to generate air bubble

  20. #WomenInSTEM: Stepping Stones From One Career to Another

    ScienceCinema (OSTI)

    Martin, Cheryl

    2014-11-24

    Meet Cheryl Martin, Acting Director of the Advanced Research Projects Agency for Energy (ARPA-E) and the latest profile in the Energy Department's #WomenInSTEM video series. Cheryl looks at transformational projects to explore the uncharted territories of energy technology to generate options for entirely new paths to create, store and use energy. There are many challenges to overcome in the energy field, and it's important to have a diverse set of voices in STEM careers to meet these demands. Cheryl recommends that young women include all the skills they have - those gained at formal jobs as well as through volunteering or nonprofit organizations - when they take their next career step. These skills form the stepping stones that lead from one career to the next. And with a solid grounding in STEM, the opportunities are endless.

  1. Supplemental Immobilization Cast Stone Technology Development and Waste Form Qualification Testing Plan

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Serne, R. Jeffrey; Pierce, Eric M.; Cozzi, Alex; Chung, Chul-Woo; Swanberg, David J.

    2013-05-31

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). The pretreatment facility will have the capacity to separate all of the tank wastes into the HLW and LAW fractions, and the HLW Vitrification Facility will have the capacity to vitrify all of the HLW. However, a second immobilization facility will be needed for the expected volume of LAW requiring immobilization. A number of alternatives, including Cast Stone—a cementitious waste form—are being considered to provide the additional LAW immobilization capacity.

  2. Effects of Stone-Wales and vacancy defects in atomic-scale friction on defective graphite

    SciTech Connect (OSTI)

    Sun, Xiao-Yu; Wu, RunNi; Xia, Re; Chu, Xi-Hua; Xu, Yuan-Jie

    2014-05-05

    Graphite is an excellent solid lubricant for surface coating, but its performance is significantly weakened by the vacancy or Stone-Wales (SW) defect. This study uses molecular dynamics simulations to explore the frictional behavior of a diamond tip sliding over a graphite which contains a single defect or stacked defects. Our results suggest that the friction on defective graphite shows a strong dependence on defect location and type. The 5-7-7-5 structure of SW defect results in an effectively negative slope of friction. For defective graphite containing a defect in the surface, adding a single vacancy in the interior layer will decrease the friction coefficients, while setting a SW defect in the interior layer may increase the friction coefficients. Our obtained results may provide useful information for understanding the atomic-scale friction properties of defective graphite.

  3. Electronic and magnetic properties of zigzag silicene nanoribbons with Stone–Wales defects

    SciTech Connect (OSTI)

    Dong, Haixia; Fang, Dangqi; Gong, Baihua; Zhang, Yang; Zhang, Erhu; Zhang, Shengli

    2015-02-14

    The structural, electronic, and magnetic properties of zigzag silicene nanoribbons (ZSiNRs) with Stone–Wales (SW) defects were investigated using first-principles calculations. We found that two types of SW defects (named SW-? and SW-??) exist in ZSiNRs. The SW defect was found to be the most stable at the edge of the ZSiNR, independently of the defect orientation, even more stable than it is in an infinite silicene sheet. In addition, the ZSiNRs can transition from semiconductor to metal or half-metal by modifying the SW defect location and concentration. For the same defect concentration, the band structures influenced by the SW-? defect are more distinct than those influenced by the SW-?? when the SW defect is at the edge. The present study suggests the possibility of tuning the electronic properties of ZSiNRs using the SW defects and might motivate their potential application in nanoelectronics and spintronics.

  4. Setting and stiffening of cementitious components in Cast Stone waste form for disposal of secondary wastes from the Hanford waste treatment and immobilization plant

    SciTech Connect (OSTI)

    Chung, Chul-Woo; Chun, Jaehun, E-mail: jaehun.chun@pnnl.gov; Um, Wooyong; Sundaram, S.K.; Westsik, Joseph H.

    2013-04-01

    Cast Stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from the Hanford Waste Treatment and Immobilization Plant. However, no study has been performed to understand the flow and stiffening behavior, which is essential to ensure proper workability and is important to safety in a nuclear waste field-scale application. X-ray diffraction, rheology, and ultrasonic wave reflection methods were used to understand the specific phase formation and stiffening of Cast Stone. Our results showed a good correlation between rheological properties of the fresh mixture and phase formation in Cast Stone. Secondary gypsum formation was observed with low concentration simulants, and the formation of gypsum was suppressed in high concentration simulants. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. Highlights: • A combination of XRD, UWR, and rheology gives a better understanding of Cast Stone. • Stiffening of Cast Stone was strongly dependent on the concentration of simulant. • A drastic change in stiffening of Cast Stone was found at 1.56 M Na concentration.

  5. Setting and Stiffening of Cementitious Components in Cast Stone Waste Form for Disposal of Secondary Wastes from the Hanford waste treatment and immobilization plant

    SciTech Connect (OSTI)

    Chung, Chul-Woo; Chun, Jaehun; Um, Wooyong; Sundaram, S. K.; Westsik, Joseph H.

    2013-04-01

    Cast stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from Hanford vitrification plant. While the strength and radioactive technetium leaching of different waste form candidates have been reported, no study has been performed to understand the flow and stiffening behavior of Cast Stone, which is essential to ensure the proper workability, especially considering necessary safety as a nuclear waste form in a field scale application. The rheological and ultrasonic wave reflection (UWR) measurements were used to understand the setting and stiffening Cast Stone batches. X-ray diffraction (XRD) was used to find the correlation between specific phase formation and the stiffening of the paste. Our results showed good correlation between rheological properties of the fresh Cast Stone mixture and phase formation during hydration of Cast Stone. Secondary gypsum formation originating from blast furnace slag was observed in Cast Stone made with low concentration simulants. The formation of gypsum was suppressed in high concentration simulants. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration.

  6. 2011 Regents of the University of Minnesota. All rights reserved. University of Minnesota Extension is an equal opportunity educator and employer. In accordance with the Americans with Disabilities Act, this material is available in alternative formats u

    E-Print Network [OSTI]

    Minnesota, University of

    waste material. BIG STONE, CHIPPEWA, LAC QUI PARLE, SWIFT, AND YELLOW MEDICINE COUNTIES Economic Impact and recyclable paper with at least 10 percent postconsumer waste material. BY THE NUMBERS For the study, new wholesale and retail trade, food and drinking establishments, housing, and health care. While the survey

  7. Covetic Materials

    Broader source: Energy.gov (indexed) [DOE]

    Can re-melt, dilute, alloy... Fabrication of Covetic Materials - Nanocarbon Infusion 3 4 Technical Approach Unusual Characteristics of Covetic Materials ("covalent" &...

  8. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:www.nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  9. Critical Materials:

    Office of Environmental Management (EM)

    Extraction Separation Processes for Critical Materials in 30- 21 Stage Test Facility (Bruce Moyer) ......

  10. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  11. Assessment of the Cast Stone Low-Temperature Waste Form Technology Coupled with Technetium Removal - 14379

    SciTech Connect (OSTI)

    Brown, Christopher F.; Rapko, Brian M.; Serne, R. Jeffrey; Westsik, Joseph H.; Cozzi, Alex; Fox, Kevin M.; Mccabe, Daniel J.; Nash, C. A.; Wilmarth, William R.

    2014-03-03

    The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) were chartered to implement a science and technology program addressing low-temperature waste forms for immobilization of DOE aqueous waste streams, including technetium removal as an implementing technology. As a first step, the laboratories examined the technical risks and uncertainties associated with the Cast Stone waste immobilization and technetium removal projects at Hanford. Science and technology gaps were identified for work associated with 1) conducting performance assessments and risk assessments of waste form and disposal system performance, and 2) technetium chemistry in tank wastes and separation of technetium from waste processing streams. Technical approaches to address the science and technology gaps were identified and an initial sequencing priority was suggested. A subset of research was initiated in 2013 to begin addressing the most significant science and technology gaps. The purpose of this paper is to report progress made towards closing these gaps and provide notable highlights of results achieved to date.

  12. BUILDING MATERIALS MADE FROM FLUE GAS DESULFURIZATION BY-PRODUCTS

    SciTech Connect (OSTI)

    Michael W. Grutzeck; Maria DiCola; Paul Brenner

    2006-03-30

    Flue gas desulphurization (FGD) materials are produced in abundant quantities by coal burning utilities. Due to environmental restrains, flue gases must be ''cleaned'' prior to release to the atmosphere. They are two general methods to ''scrub'' flue gas: wet and dry. The choice of scrubbing material is often defined by the type of coal being burned, i.e. its composition. Scrubbing is traditionally carried out using a slurry of calcium containing material (slaked lime or calcium carbonate) that is made to contact exiting flue gas as either a spay injected into the gas or in a bubble tower. The calcium combined with the SO{sub 2} in the gas to form insoluble precipitates. Some plants have been using dry injection of these same materials or their own Class C fly ash to scrub. In either case the end product contains primarily hannebachite (CaSO{sub 3} {center_dot} 1/2H{sub 2}O) with smaller amounts of gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O). These materials have little commercial use. Experiments were carried out that were meant to explore the feasibility of using blends of hannebachite and fly ash mixed with concentrated sodium hydroxide to make masonry products. The results suggest that some of these mixtures could be used in place of conventional Portland cement based products such as retaining wall bricks and pavers.

  13. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys...

  14. Sedimentary and faunal analysis of a marginal marine section, the Stone City Member (middle eocene), Crockett Formation, Burleson County, Texas 

    E-Print Network [OSTI]

    Nelms, Katherine Currier

    1979-01-01

    Diagram relating Miliolina-Rotaliina-Textulariina abundance to deltaic and other marginal marine environments 98 LIST OF FIGURES - Cont1nued F1 gure 15 Ratio of Textulari1na-Rotaliina-Nil1olina in samples from the Stone C1ty beds 16 Vertical... sediment packages and faunal assemblages may still be recognized. W. L. F1sher (1964) describes transgressive and regressive sediments from the Eocene of the Gulf Coast and characterizes dist1nctive groups of sediments which tend to occur in typical...

  15. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  16. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  17. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  18. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  19. material recovery

    National Nuclear Security Administration (NNSA)

    dispose of dangerous nuclear and radiological material, and detect and control the proliferation of related WMD technology and expertise.

  20. Cermet materials

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID)

    2008-12-23

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  1. Composite material

    DOE Patents [OSTI]

    Hutchens, Stacy A. (Knoxville, TN); Woodward, Jonathan (Solihull, GB); Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN)

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  2. Refractory Materials based on Magnesia-Alumina Spinel for Improved Performance in Coal Gasification Environments

    SciTech Connect (OSTI)

    Hemrick, James Gordon [ORNL; Armstrong, Beth L [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL; O'Hara, Kelley [University of Missouri, Rolla

    2013-01-01

    As part of a larger project to develop novel refractory systems and techniques to reduce energy consumption of refractory lined vessels, a team composed of Oak Ridge National Laboratory, refractory manufacturer Minteq International, Inc., and academic partner Missouri University of Science and Technology have developed new refractory materials and coating systems specifically for application in coal gasification environments. Materials were developed under this U.S. DOE funded project to address the need for innovative refractory compositions by developing MgO-Al2O3 spinel gunnable refractory compositions utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques. Work was conducted to develop and deploy these new materials and to develop and apply low cost coatings using a colloidal approach for protection against attack of the refractory brick by the serviced environment. Additionally, a light-weight back-up refractory system was developed to help offset the high thermal conductivity inherent in spinel materials. This paper discusses the efforts involved in the development of these materials, along with the laboratory testing and evaluation of these materials leading to relevant results achieved toward the reduction of chemical reactions and mechanical degradation by the service environment though compositional and processing modifications.

  3. Complex Materials

    SciTech Connect (OSTI)

    Cooper, Valentino

    2014-04-17

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  4. Complex Materials

    ScienceCinema (OSTI)

    Cooper, Valentino

    2014-05-23

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  5. material removal

    National Nuclear Security Administration (NNSA)

    %2A en Nuclear Material Removal http:www.nnsa.energy.govaboutusourprogramsdnnm3remove

    Pag...

  6. Propulsion materials

    SciTech Connect (OSTI)

    Wall, Edward J.; Sullivan, Rogelio A.; Gibbs, Jerry L.

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  7. Synthetic aggregate compositions derived from spent bed materials from fluidized bed combustion and fly ash

    DOE Patents [OSTI]

    Boyle, Michael J. (Aston, PA)

    1994-01-01

    Cementitious compositions useful as lightweight aggregates are formed from a blend of spent bed material from fluidized bed combustion and fly ash. The proportions of the blend are chosen so that ensuing reactions eliminate undesirable constituents. The blend is then mixed with water and formed into a shaped article. The shaped article is preferably either a pellet or a "brick" shape that is later crushed. The shaped articles are cured at ambient temperature while saturated with water. It has been found that if used sufficiently, the resulting aggregate will exhibit minimal dimensional change over time. The aggregate can be certified by also forming standardized test shapes, e.g., cylinders while forming the shaped articles and measuring the properties of the test shapes using standardized techniques including X-ray diffraction.

  8. Mick Jagger Explains High Crude Oil Prices How can Mick Jagger of The Rolling Stones help explain the current high crude oil

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Mick Jagger Explains High Crude Oil Prices How can Mick Jagger of The Rolling Stones help explain the current high crude oil price? It does not relate to Mick' short stint at the London School of Economics for crude oil, that they attempted to control the price of crude on international markets. Their ability

  9. Cast Stone Formulation for Nuclear Waste Immobilization at Higher Sodium Concentrations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fox, Kevin; Cozzi, Alex; Roberts, Kimberly; Edwards, Thomas

    2014-11-01

    Low activity radioactive waste at U.S. Department of Energy sites can be immobilized for permanent disposal using cementitious waste forms. This study evaluated waste forms produced with simulated wastes at concentrations up to twice that of currently operating processes. The simulated materials were evaluated for their fresh properties, which determine processability, and cured properties, which determine waste form performance. The results show potential for greatly reducing the volume of material. Fresh properties were sufficient to allow for processing via current practices. Cured properties such as compressive strength meet disposal requirements. Leachability indices provide an indication of expected long-term performance.

  10. Fulvio_Brick and Mortar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvanServicesAmesFourFromFuel CellFull CommentsI,5

  11. Hardfacing material

    DOE Patents [OSTI]

    Branagan, Daniel J. (Iona, ID)

    2012-01-17

    A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  12. Effects of boron-nitride substrates on Stone-Wales defect formation in graphene: An ab initio molecular dynamics study

    SciTech Connect (OSTI)

    Jin, K.; Xiao, H. Y. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Zhang, Y. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Weber, W. J., E-mail: wjweber@utk.edu [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-05-19

    Ab initio molecular dynamics simulations are performed to investigate the effects of a boron nitride (BN) substrate on Stone-Wales (SW) defect formation and recovery in graphene. It is found that SW defects can be created by an off-plane recoil atom that interacts with the BN substrate. A mechanism with complete bond breakage for formation of SW defects in suspended graphene is also revealed for recoils at large displacement angles. In addition, further irradiation can result in recovery of the SW defects through a bond rotation mechanism in both graphene and graphene/BN, and the substrate has little effect on the recovery process. This study indicates that the BN substrate enhances the irradiation resistance of graphene.

  13. Materials compatibility.

    SciTech Connect (OSTI)

    Somerday, Brian P.

    2010-04-01

    Objectives are to enable development and implementation of codes and standards for H{sub 2} containment components: (1) Evaluate data on mechanical properties of materials in H{sub 2} gas - Technical Reference on Hydrogen Compatibility of Materials; (2) Generate new benchmark data on high-priority materials - Pressure vessel steels, stainless steels; and (3) Establish procedures for reliable materials testing - Sustained-load cracking, fatigue crack propagation. Summary of this presentation are: (1) Completed measurement of cracking thresholds (K{sub TH}) for Ni-Cr-Mo pressure vessel steels in high-pressure H{sub 2} gas - K{sub TH} measurements required in ASME Article KD-10 (2) Crack arrest test methods appear to yield non-conservative results compared to crack initiation test methods - (a) Proposal to insert crack initiation test methods in Article KD-10 will be presented to ASME Project Team on Hydrogen Tanks, and (b) Crack initiation methods require test apparatus designed for dynamic loading of specimens in H{sub 2} gas; and (3) Demonstrated ability to measure fatigue crack growth of pressure vessel steels in high-pressure H{sub 2} gas - (a) Fatigue crack growth data in H{sub 2} required in ASME Article KD-10, and (b) Test apparatus is one of few in U.S. or abroad for measuring fatigue crack growth in >100 MPa H{sub 2} gas.

  14. Passive neutron techniques for the nondestructive assay of nuclear material 

    E-Print Network [OSTI]

    Mapili, Gabriel

    2000-01-01

    Three drums containing potentially contaminated lead bricks were assayed with the Segmented Gamma Scan Neutron Assay System (SGSNAS) at Pacific Northwest National Laboratory's (PNNL) Nondestructive Assay Center. The assay system reported...

  15. The first stage of BFS integrated system for nuclear materials control and accounting. Final report

    SciTech Connect (OSTI)

    NONE

    1996-09-01

    The BFS computerized accounting system is a network-based one. It runs in a client/server mode. The equipment used in the system includes a computer network consisting of: One server computer system, including peripheral hardware and three client computer systems. The server is located near the control room of the BFS-2 facility outside of the `stone sack` to ensure access during operation of the critical assemblies. Two of the client computer systems are located near the assembly tables of the BFS-1 and BFS-2 facilities while the third one being the Fissile Material Storage. This final report details the following topics: Computerized nuclear material accounting methods; The portal monitoring system; Test and evaluation of item control technology; Test and evaluation of radiation based nuclear material measurement equipment; and The integrated demonstration of nuclear material control and accounting methods.

  16. Casting materials

    DOE Patents [OSTI]

    Chaudhry, Anil R. (Xenia, OH); Dzugan, Robert (Cincinnati, OH); Harrington, Richard M. (Cincinnati, OH); Neece, Faurice D. (Lyndurst, OH); Singh, Nipendra P. (Pepper Pike, OH)

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  17. Construction material

    DOE Patents [OSTI]

    Wagh, Arun S. (Orland Park, IL); Antink, Allison L. (Bolingbrook, IL)

    2008-07-22

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  18. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout Us HanfordReference Materials Reference

  19. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout Us HanfordReference Materials

  20. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

  1. Materials Science & Engineering

    E-Print Network [OSTI]

    Materials Science & Engineering The development of new high-performance materials for energy Use of Advanced Characterization Techniques for Materials Development in Energy and Transportation and composition of materials at higher spatial resolution, with greater efficiency, and on real materials

  2. Critical Materials Institute

    ScienceCinema (OSTI)

    Alex King

    2013-06-05

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  3. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals, accidentally spilled, or released. In addition to laboratory chemicals, hazardous materials may include common not involve highly toxic or noxious hazardous materials, a fire, or an injury requiring medical attention

  4. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up, or there is a small spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  5. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  6. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up personnel trained in Hazardous Material clean up or an appropriate spill kit is not available? Call 561

  7. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  8. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  9. Materials Science & Tech Division | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applied materials science and technology. One key component of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of materials theory,...

  10. Advanced Materials Manufacturing | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Manufacturing New materials drive the development of innovative products. Building upon a rich history in materials science, ORNL is discovering and developing...

  11. Materials Project: A Materials Genome Approach

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ceder, Gerbrand [MIT; Persson, Kristin [LBNL

    Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, this project has computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The computations predicted several new battery materials which were made and tested in the lab and are now being patented. By computing properties of all known materials, the Materials Project aims to remove guesswork from materials design in a variety of applications. Experimental research can be targeted to the most promising compounds from computational data sets. Researchers will be able to data-mine scientific trends in materials properties. By providing materials researchers with the information they need to design better, the Materials Project aims to accelerate innovation in materials research.[copied from http://materialsproject.org/about] You will be asked to register to be granted free, full access.

  12. Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specific Binding ORNL discovery holds potential for separations, sensors, batteries, biotech and more Home | Science & Discovery | Advanced Materials Advanced Materials |...

  13. Composite material dosimeters

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  14. Method for forming materials

    DOE Patents [OSTI]

    Tolle, Charles R. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Miller, Karen S. (Idaho Falls, ID)

    2009-10-06

    A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

  15. Wave Propagation in Multiferroic Materials

    E-Print Network [OSTI]

    Keller, Scott Macklin

    2013-01-01

    Waves in Magnetoelectric Materials . . . Need forApplication of Multiferroic Materials to Receive AntennaMaterials . . . . . . . . . . . . . . . . . . . . . . . . .

  16. Copper, iron and stone sculpture placed in front of the Department. The artist is Chr. Dahlgaard Larsen

    E-Print Network [OSTI]

    Cyclic Plasticity 14 2.4. Metal Matrix Composites 15 2.5. Deformation of Polymer Matrix Composites 17 2.6. Irradiation Defects - Fusion Materials 19 2.7. Solid Electrolytes - Ion Conductivity 21 2.8. Characterization 30 4.1. Manufacturing Processes for Advanced Composite Materials and Products 30 4.2. Fabrication

  17. Transporting particulate material

    DOE Patents [OSTI]

    Aldred, Derek Leslie (North Hollywood, CA); Rader, Jeffrey A. (North Hollywood, CA); Saunders, Timothy W. (North Hollywood, CA)

    2011-08-30

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  18. Nanocrystalline ceramic materials

    DOE Patents [OSTI]

    Siegel, Richard W. (Hinsdale, IL); Nieman, G. William (Evanston, IL); Weertman, Julia R. (Evanston, IL)

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  19. Comparison of glass surfaces as a countertop material to existing surfaces

    SciTech Connect (OSTI)

    Turo, Laura A.; Winschell, Abigail E.

    2011-09-01

    Gleen Glass, a small production glass company that creates countertops, was selected for the Technology Assistance Program through Pacific Northwest National Laboratory. Gleen Glass was seeking material property analysis comparing glass as a countertop material to current surfaces (i.e. marble, granite and engineered stone). With samples provided from Gleen Glass, testing was done on granite, marble, and 3 different glass surfaces ('Journey,' 'Pebble,' and 'Gleen'). Results showed the glass surfaces have a lower density, lower water absorption, and are stronger in compressive and flexural tests as compared to granite and marble. Thermal shock tests showed the glass failed when objects with a high thermal mass are placed directly on them, whereas marble and granite did not fracture under these conditions.

  20. THE BANDEIRANTES STONES

    E-Print Network [OSTI]

    By the time he came up for air, his lungs were set to implode. Three hours of this and he was ready to give up and let the sea take his body, along with the crystal ...

  1. Quarrying and Mining (Stone)

    E-Print Network [OSTI]

    Bloxam, Elizabeth

    2010-01-01

    Geological Survey of Norway Special Publication 12.Geological Survey of Norway. American Geological InstituteGeological Survey of Norway. (INCO-CT-2005- 015416-Project

  2. Stone & Cedar Cabin 

    E-Print Network [OSTI]

    Raiford Stripling Associates, Inc.; Stripling, Raiford L.

    1934-01-01

    operation ..................................................................................... 215 6.3 Types of CAES ................................................................................................... 216 6.3.1 CAES in salt and hard rock...

  3. Nanostructured magnetic materials

    E-Print Network [OSTI]

    Chan, Keith T.

    2011-01-01

    Magnetism and Magnetic Materials Conference, Atlanta, GA (Nanostructured Magnetic Materials by Keith T. Chan Doctor ofinduced by a Si-based material occurs at a Si/Ni interface

  4. Department of Materials Science &

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    Developing Leaders of Innovation Department of Materials Science & Engineering #12;At the University of Virginia, students in materials science, engineering physics and engineering science choose to tackle compelling issues in materials science and engineering or engineering science

  5. Sandia Energy - Materials Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Chemistry Home Transportation Energy Predictive Simulation of Engines Clean FuelsPower Materials Chemistry Materials ChemistryAshley Otero2015-10-28T02:42:21+00:00...

  6. Technical Approach for Determining Key Parameters Needed for Modeling the Performance of Cast Stone for the Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Yabusaki, Steven B.; Serne, R. Jeffrey; Rockhold, Mark L.; Wang, Guohui; Westsik, Joseph H.

    2015-03-30

    Washington River Protection Solutions (WRPS) and its contractors at Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) are conducting a development program to develop / refine the cementitious waste form for the wastes treated at the ETF and to provide the data needed to support the IDF PA. This technical approach document is intended to provide guidance to the cementitious waste form development program with respect to the waste form characterization and testing information needed to support the IDF PA. At the time of the preparation of this technical approach document, the IDF PA effort is just getting started and the approach to analyze the performance of the cementitious waste form has not been determined. Therefore, this document looks at a number of different approaches for evaluating the waste form performance and describes the testing needed to provide data for each approach. Though the approach addresses a cementitious secondary aqueous waste form, it is applicable to other waste forms such as Cast Stone for supplemental immobilization of Hanford LAW. The performance of Cast Stone as a physical and chemical barrier to the release of contaminants of concern (COCs) from solidification of Hanford liquid low activity waste (LAW) and secondary wastes processed through the Effluent Treatment Facility (ETF) is of critical importance to the Hanford Integrated Disposal Facility (IDF) total system performance assessment (TSPA). The effectiveness of cementitious waste forms as a barrier to COC release is expected to evolve with time. PA modeling must therefore anticipate and address processes, properties, and conditions that alter the physical and chemical controls on COC transport in the cementitious waste forms over time. Most organizations responsible for disposal facility operation and their regulators support an iterative hierarchical safety/performance assessment approach with a general philosophy that modeling provides the critical link between the short-term understanding from laboratory and field tests, and the prediction of repository performance over repository time frames and scales. One common recommendation is that experiments be designed to permit the appropriate scaling in the models. There is a large contrast in the physical and chemical properties between the Cast Stone waste package and the IDF backfill and surrounding sediments. Cast Stone exhibits low permeability, high tortuosity, low carbonate, high pH, and low Eh whereas the backfill and native sediments have high permeability, low tortuosity, high carbonate, circumneutral pH, and high Eh. These contrasts have important implications for flow, transport, and reactions across the Cast Stone – backfill interface. Over time with transport across the interface and subsequent reactions, the sharp geochemical contrast will blur and there will be a range of spatially-distributed conditions. In general, COC mobility and transport will be sensitive to these geochemical variations, which also include physical changes in porosity and permeability from mineral reactions. Therefore, PA modeling must address processes, properties, and conditions that alter the physical and chemical controls on COC transport in the cementitious waste forms over time. Section 2 of this document reviews past Hanford PAs and SRS Saltstone PAs, which to date have mostly relied on the lumped parameter COC release conceptual models for TSPA predictions, and provides some details on the chosen values for the lumped parameters. Section 3 provides more details on the hierarchical modeling strategy and processes and mechanisms that control COC release. Section 4 summarizes and lists the key parameters for which numerical values are needed to perform PAs. Section 5 provides brief summaries of the methods used to measure the needed parameters and references to get more details.

  7. Transporting Hazardous Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transporting Hazardous Materials The procedures given below apply to all materials that are considered to be hazardous by the U.S. Department of Transportation (DOT). Consult your...

  8. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Education Center About Us Conferences and Workshops Advanced Qualification of Additive Manufacturing Materials Workshop Quantum and Dirac Materials for Energy...

  9. Materials Physics and Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MPA Materials Physics and Applications We develop new technologies that solve pressing national energy and security challenges by exploring and exploiting materials and their...

  10. HAZARDOUS MATERIALS EMERGENCY RESPONSE

    E-Print Network [OSTI]

    ANNEX Q HAZARDOUS MATERIALS EMERGENCY RESPONSE #12;ANNEX Q - HAZARDOUS MATERIALS EMERGENCY RESPONSE 03/10/2014 v.2.0 Page Q-1 PROMULGATION STATEMENT Annex Q: Hazardous Materials Emergency Response, and contents within, is a guide to how the University conducts a response specific to a hazardous materials

  11. Materials Science & Engineering

    E-Print Network [OSTI]

    Materials Science & Engineering In this presentation the role of materials in power generation sector is about 20%, opportunities for materials-based technologies to improve energy efficiency (e Ridge National Laboratory (ORNL). He is also the Director of the High Temperature Materials Laboratory

  12. Tritium breeding materials

    SciTech Connect (OSTI)

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.

    1984-03-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved.

  13. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  14. Sediment diagenesis, fossil preservation, and depositional environment in the Stone City/Lower Cook Mountain transgression (Middle Eocene, southeast Texas): a test of chemical taphofacies in the rock record 

    E-Print Network [OSTI]

    Thornton, Charles Anthony

    1994-01-01

    sediments, and there is a great need to test the taphofacies concept on the rock record. The taphofacies concept has been tested in the Stone City/Cook Mountain formations, middle Eocene, in Southeast Texas. The strata consist of brown shales, pelleted green...

  15. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

    1998-03-31

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

  16. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, Robert E. (Los Alamos, NM); Ramsey, David R. (Bothel, WA); Stampfer, Joseph F. (Santa Fe, NM); Macdonald, John M. (Santa Fe, NM)

    1998-01-01

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material.

  17. Nanocrystalline ceramic materials

    DOE Patents [OSTI]

    Siegel, R.W.; Nieman, G.W.; Weertman, J.R.

    1994-06-14

    A method is disclosed for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material. 19 figs.

  18. Joining of dissimilar materials

    DOE Patents [OSTI]

    Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

    2012-10-16

    A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

  19. Nondestructive material characterization

    DOE Patents [OSTI]

    Deason, Vance A. (Idaho Falls, ID); Johnson, John A. (Idaho Falls, ID); Telschow, Kenneth L. (Idaho Falls, ID)

    1991-01-01

    A method and apparatus for nondestructive material characterization, such as identification of material flaws or defects, material thickness or uniformity and material properties such as acoustic velocity. The apparatus comprises a pulsed laser used to excite a piezoelectric (PZ) transducer, which sends acoustic waves through an acoustic coupling medium to the test material. The acoustic wave is absorbed and thereafter reflected by the test material, whereupon it impinges on the PZ transducer. The PZ transducer converts the acoustic wave to electrical impulses, which are conveyed to a monitor.

  20. EC Transmission Line Materials

    SciTech Connect (OSTI)

    Bigelow, Tim S

    2012-05-01

    The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH&CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. [Ref. 2] Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.

  1. Earth-Abundant Materials

    Broader source: Energy.gov [DOE]

    DOE funds research into Earth-abundant materials for thin-film solar applications in response to the issue of materials scarcity surrounding other photovoltaic (PV) technologies. The sections below...

  2. Factors of material consumption

    E-Print Network [OSTI]

    Silva Díaz, Pamela Cristina

    2012-01-01

    Historic consumption trends for materials have been studied by many researchers, and, in order to identify the main drivers of consumption, special attention has been given to material intensity, which is the consumption ...

  3. Materials Science & Engineering

    E-Print Network [OSTI]

    and Forensics team in the Polymers and Coatings Group, MST-7. He graduated from the University of Toledo, aerogels, carbon fiber composites, damaged materials, and low density materials examining defects

  4. CRITICAL MATERIALS INSTITUTE PROJECTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INL National Technology Roadmap for Critical Materials 4 4-3 4.3.3 McCall, Scott LLNL Additive Manufacturing of Permanent Magnets 2 2-1 2.1.2 Turchi, Patrice LLNL Materials...

  5. Nanostructured composite reinforced material

    DOE Patents [OSTI]

    Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  6. Nanocomposites as thermoelectric materials

    E-Print Network [OSTI]

    Hao, Qing

    2010-01-01

    Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, ...

  7. Karankawa linguistic Materials

    E-Print Network [OSTI]

    Grant, Anthony P.

    1994-01-01

    In this paper I present the available materials on the diverse dialectal forms of the extinct Karankawa language of coastal Texas in the form of an English-Karankawa vocabulary, together with the attested sentence and text material, a transcription...

  8. Radioactive Materials Product Stewardship

    E-Print Network [OSTI]

    Radioactive Materials Product Stewardship ABackground Report for the National Dialogue...................................................................................................26 Low Level Waste (LLW) Disposal Regulations on Radioactive Materials Product Stewardship Prepared by the: Product Stewardship Institute University

  9. Geopolymer Sealing Materials

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop and characterize field-applicable geopolymer temporary sealing materials in the laboratory and to transfer this developed material technology to geothermal drilling service companies as collaborators for field validation tests.

  10. VHTR Materials Overview

    SciTech Connect (OSTI)

    Wright, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-07-30

    The PowerPoint presentation was given at the DOE-NE Materials Crosscut Coordination Meeting, Tuesday, 30 July 2013.

  11. UNCLASSIFIED Institute for Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Garritt Tucker Drexel University, Philadelphia, Pennsylvania Atomistic Methods to Quantify Nanoscale Strain and Deformation Mechanisms in Nanostructured Materials Thursday, August...

  12. HIGH PERFORMANCE MACROMOLECULAR MATERIALS

    E-Print Network [OSTI]

    M. Gregory Forest. Department of Mathematics. Institute for Advanced Materials, Nanoscience & Technology. University of North Carolina at Chapel Hill.

  13. Instructions and Materials

    Broader source: Energy.gov [DOE]

    The following are 2012 Program Peer Review Meeting instructions, materials and resource links for presenters and reviewers.

  14. Materials Science & Engineering

    E-Print Network [OSTI]

    Materials Science & Engineering New paradigms in the R&D of novel multifunctional oxide and nanocarbon thin films are providing the bases for new physics, new materials science and chemistry Laboratory (ANL) during the past fifteen years. Also, the applications of these materials for a new

  15. Advanced neutron absorber materials

    DOE Patents [OSTI]

    Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  16. Esselen Linguistic Materials

    E-Print Network [OSTI]

    Shaul, David L.; Turner, Katherine; Collins, James D.

    1984-01-01

    The primary purpose of this paper is to make a complete list of materials known on the Esselen language available in a single place. The existing lexical material has been organized into a lexicon which is followed by phrasal and sentence materials...

  17. Materials Science & Engineering

    E-Print Network [OSTI]

    Simons, Jack

    Materials Science & Engineering The University of Utah 2014-15 Undergraduate Handbook #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines, including chemistry, physics and engineering. It is the one discipline within the College of Engineering

  18. Defective graphene as promising anode material for Na-ion battery and Ca-ion battery

    E-Print Network [OSTI]

    Datta, Dibakar; Shenoy, Vivek B

    2013-01-01

    We have investigated adsorption of Na and Ca on graphene with divacancy (DV) and Stone-Wales (SW) defect. Our results show that adsorption is not possible on pristine graphene. However, their adsorption on defective sheet is energetically favorable. The enhanced adsorption can be attributed to the increased charge transfer between adatoms and underlying defective sheet. With the increase in defect density until certain possible limit, maximum percentage of adsorption also increases giving higher battery capacity. For maximum possible DV defect, we can achieve maximum capacity of 1459 mAh/g for Na-ion batteries (NIBs) and 2900 mAh/g for Ca-ion batteries (CIBs). For graphene full of SW defect, we find the maximum capacity of NIBs and CIBs is around 1071 mAh/g and 2142 mAh/g respectively. Our results will help create better anode materials with much higher capacity and better cycling performance for NIBs and CIBs.

  19. Tailored Porous Materials

    SciTech Connect (OSTI)

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  20. Materials Research Department Annual Report 2002

    E-Print Network [OSTI]

    - cruitment of many new employees during the year, especially within our solid oxide fuel cell research, but has lead to some difficulties with office and laboratory space. In the coming years we plan to expand solid oxide fuel cells This facility is one of the corner stones in our fuel cell activities. The pre

  1. FY 2009 Progress Report for Lightweighting Materials - 12. Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Lightweighting Materials - 12. Materials Crosscutting Research and Development The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction...

  2. Water Well with Brick Pump House 

    E-Print Network [OSTI]

    Raiford Stripling Associates, Inc.; Stripling, Raiford L.

    2011-08-29

    Expensive fan wrecks and down time occurs when couplings break or gearboxes self-destruct. A viable alternative eliminates shaft, coupling, and gearbox moving motor to ground level, driving a hydraulic pump transmitting fluid under pressure. A...

  3. RavenBrick LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergy Marketing CorpMemberREC) JumpRaus

  4. Deformation Mechanisms in Nanocrystalline Materials

    E-Print Network [OSTI]

    Mohamed, Farghalli A.; Yang, Heather

    2010-01-01

    2010 METALLURGICAL AND MATERIALS TRANSACTIONS A 47. F.A.12. METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 41A,of Slip: Progress in Materials Science, Pergamon Press,

  5. Vibrational Damping of Composite Materials

    E-Print Network [OSTI]

    Biggerstaff, Janet M.

    2006-01-01

    Smart Structures and Materials, 3989:531- 538. Biggerstaff,2002. “Electroviscoelastic Materials As Active Dampers”,Smart Structures and Materials, 4695:345-350. Biggerstaff,

  6. Sandia Energy - Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wavelength Conversion Materials Home Energy Research EFRCs Solid-State Lighting Science EFRC Overview Wavelength Conversion Materials Wavelength Conversion MaterialsAlyssa...

  7. ANS materials databook

    SciTech Connect (OSTI)

    Marchbanks, M.F.

    1995-08-01

    Technical development in the Advanced Neutron Source (ANS) project is dynamic, and a continuously updated information source is necessary to provide readily usable materials data to the designer, analyst, and materials engineer. The Advanced Neutron Source Materials Databook (AMBK) is being developed as a part of the Advanced Neutron Source Materials Information System (AMIS). Its purpose is to provide urgently needed data on a quick-turnaround support basis for those design applications whose schedules demand immediate estimates of material properties. In addition to the need for quick materials information, there is a need for consistent application of data throughout the ANS Program, especially where only limited data exist. The AMBK is being developed to fill this need as well. It is the forerunner to the Advanced Neutron Source Materials Handbook (AMHB). The AMHB, as reviewed and approved by the ANS review process, will serve as a common authoritative source of materials data in support of the ANS Project. It will furnish documented evidence of the materials data used in the design and construction of the ANS system and will serve as a quality record during any review process whose objective is to establish the safety level of the ANS complex. The information in the AMBK and AMHB is also provided in electronic form in a dial-up computer database known as the ANS Materials Database (AMDB). A single consensus source of materials information prepared and used by all national program participants has several advantages. Overlapping requirements and data needs of various sub-projects and subcontractors can be met by a single document which is continuously revised. Preliminary and final safety analysis reports, stress analysis reports, equipment specifications, materials service reports, and many other project-related documents can be substantially reduced in size and scope by appropriate reference to a single data source.

  8. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  9. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  10. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    comprises the core actinide materials science and metallurgical capability within the nuclear weapons production and surveillance communities. Contact Us Group Leader David...

  11. Nanoscale Materials in Medicine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanoparticle Technology for Drug Delivery. Gao, X., et al. 2002. Journal of Biomedical Optics 7: 532-537. Ferromagnetic materials become superparamagnetic below 20 nm Size...

  12. Webinar: Materials Genome Initative

    Broader source: Energy.gov [DOE]

    Audio recording and text version of the Fuel Cell Technologies Office webinar titled "Materials Genome Initiative," originally presented on December 2, 2014.

  13. Computational Chemical Materials Engineering

    E-Print Network [OSTI]

    . Thermodynamic and micromechanical analysis #12;Home Polyimide-nanotube composites for electro-active materials · (ß ­ CN)APB/ODPA Polyimide · Piezoelectric polyimide · Exceptional thermal, mechanical

  14. Fluorinated elastomeric materials

    DOE Patents [OSTI]

    Lagow, Richard J. (6204 Shadow Mountain, Austin, TX 78731); Dumitru, Earl T. (10116 Aspen St., Austin, TX 78758)

    1986-11-04

    This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.

  15. Fluorinated elastomeric materials

    DOE Patents [OSTI]

    Lagow, Richard J. (6204 Shadow Mountain, Austin, TX 78731); Dumitru, Earl T. (10116 Aspen St., Austin, TX 78758)

    1990-02-13

    This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.

  16. Radiation Safety Training Materials

    Broader source: Energy.gov [DOE]

    The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

  17. Radioactive Material Transportation Practices

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  18. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

  19. Critical Materials Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Critical Materials Workshop U.S. Department of Energy April 3, 2012 eere.energy.gov Dr. Leo Christodoulou Program Manager Advanced Manufacturing Office Energy Efficiency and...

  20. Next Generation Materials:

    Office of Environmental Management (EM)

    databases for ICME Surface treatments User facility for remanufactured parts testing; lower-cost coating materials Low-cost laser processing; high accuracy non-planar surface...

  1. Phase Change Material Tower

    Office of Environmental Management (EM)

    transfer of pulverized coal Assortment of available fabrication methods (shrink fit, adhesive, casting) & liner materials (i.e. alumina, SiC, etc.) Pyrotek molten metal transfer...

  2. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, C.E.; Morrow, M.S.

    1994-07-19

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  3. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Morrow, Marvin S. (Kingston, TN)

    1994-01-01

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  4. Thermoelectric materials having porosity

    DOE Patents [OSTI]

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  5. MULTISCALE PHENOMENA IN MATERIALS

    SciTech Connect (OSTI)

    A. BISHOP

    2000-09-01

    This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.

  6. Materials Science & Engineering

    E-Print Network [OSTI]

    Capecchi, Mario R.

    -twines numerous disciplines, including chemistry, physics and engineering. It is the one discipline within an engineering degree. Materials Scientists apply the principles of physics and chemistry to engineering problemsMaterials Science & Engineering 2015-2016 Undergraduate Handbook The University of Utah #12

  7. Hydrocarbonaceous material upgrading method

    DOE Patents [OSTI]

    Brecher, Lee E.; Mones, Charles G.; Guffey, Frank D.

    2015-06-02

    A hydrocarbonaceous material upgrading method may involve a novel combination of heating, vaporizing and chemically reacting hydrocarbonaceous feedstock that is substantially unpumpable at pipeline conditions, and condensation of vapors yielded thereby, in order to upgrade that feedstock to a hydrocarbonaceous material condensate that meets crude oil pipeline specification.

  8. Nanocrystalline Heterojunction Materials

    DOE Patents [OSTI]

    Elder, Scott H. (Portland, OR); Su, Yali (Richland, WA); Gao, Yufei (Blue Bell, PA); Heald, Steve M. (Downers Grove, IL)

    2004-02-03

    Mesoporous nanocrystalline titanium dioxide heterojunction materials and methods of making the same are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  9. Measurements and material accounting

    SciTech Connect (OSTI)

    Hammond, G.A. )

    1989-11-01

    The DOE role for the NBL in safeguarding nuclear material into the 21st century is discussed. Development of measurement technology and reference materials supporting requirements of SDI, SIS, AVLIS, pyrochemical reprocessing, fusion, waste storage, plant modernization program, and improved tritium accounting are some of the suggested examples.

  10. Materials of Gasification

    SciTech Connect (OSTI)

    2005-09-15

    The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

  11. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    xi Material CharacterizationThermoelectric Materials . . . . . . . . Graphene-Like5 Nanostructured Materials for Electrochemical Energy

  12. Midwestern Radioactive Materials Transportation Committee Agenda...

    Office of Environmental Management (EM)

    Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation...

  13. Electrically conductive composite material

    SciTech Connect (OSTI)

    Clough, Roger L. (Albuquerque, NM); Sylwester, Alan P. (Albuquerque, NM)

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  14. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A. )

    1988-01-01

    The true goal of Nuclear Materials MANAGEMENT (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. it is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how ''what is and what if'' questions are handled, and in overall decision-making methods.

  15. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A.

    1988-01-01

    The true goal of Nuclear Materials Management (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. It is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how /open quotes/What is and what if/close quotes/ questions are handled, and in overall decision-making methods. 2 refs.

  16. Critical Materials Hub

    Broader source: Energy.gov [DOE]

    Critical materials, including some rare earth elements that possess unique magnetic, catalytic, and luminescent properties, are key resources needed to manufacture products for the clean energy economy. These materials are so critical to the technologies that enable wind turbines, solar panels, electric vehicles, and energy-efficient lighting that DOE's 2010 and 2011 Critical Materials Strategy reported that supply challenges for five rare earth metals—dysprosium, neodymium, terbium, europium, and yttrium—could affect clean energy technology deployment in the coming years.1, 2

  17. Fissile material detector

    DOE Patents [OSTI]

    Ivanov, Alexander I. (Dubna, RU); Lushchikov, Vladislav I. (Dubna, RU); Shabalin, Eugeny P. (Dubna, RU); Maznyy, Nikita G. (Dubna, RU); Khvastunov, Michael M. (Dubna, RU); Rowland, Mark (Alamo, CA)

    2002-01-01

    A detector for fissile materials which provides for integrity monitoring of fissile materials and can be used for nondestructive assay to confirm the presence of a stable content of fissile material in items. The detector has a sample cavity large enough to enable assay of large items of arbitrary configuration, utilizes neutron sources fabricated in spatially extended shapes mounted on the endcaps of the sample cavity, incorporates a thermal neutron filter insert with reflector properties, and the electronics module includes a neutron multiplicity coincidence counter.

  18. RADIOACTIVE MATERIALS SENSORS

    SciTech Connect (OSTI)

    Mayo, Robert M.; Stephens, Daniel L.

    2009-09-15

    Providing technical means to detect, prevent, and reverse the threat of potential illicit use of radiological or nuclear materials is among the greatest challenges facing contemporary science and technology. In this short article, we provide brief description and overview of the state-of-the-art in sensor development for the detection of radioactive materials, as well as an identification of the technical needs and challenges faced by the detection community. We begin with a discussion of gamma-ray and neutron detectors and spectrometers, followed by a description of imaging sensors, active interrogation, and materials development, before closing with a brief discussion of the unique challenges posed in fielding sensor systems.

  19. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  20. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  1. Materials Physics and Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterialMaterials Materials

  2. Materials Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterialMaterialsMST Materials

  3. Materials at LANL

    SciTech Connect (OSTI)

    Taylor, Antoinette J

    2010-01-01

    Exploring the physics, chemistry, and metallurgy of materials has been a primary focus of Los Alamos National Laboratory since its inception. In the early 1940s, very little was known or understood about plutonium, uranium, or their alloys. In addition, several new ionic, polymeric, and energetic materials with unique properties were needed in the development of nuclear weapons. As the Laboratory has evolved, and as missions in threat reduction, defense, energy, and meeting other emerging national challenges have been added, the role of materials science has expanded with the need for continued improvement in our understanding of the structure and properties of materials and in our ability to synthesize and process materials with unique characteristics. Materials science and engineering continues to be central to this Laboratory's success, and the materials capability truly spans the entire laboratory - touching upon numerous divisions and directorates and estimated to include >1/3 of the lab's technical staff. In 2006, Los Alamos and LANS LLC began to redefine our future, building upon the laboratory's established strengths and promoted by strongly interdependent science, technology and engineering capabilities. Eight Grand Challenges for Science were set forth as a technical framework for bridging across capabilities. Two of these grand challenges, Fundamental Understanding of Materials and Superconductivity and Actinide Science. were clearly materials-centric and were led out of our organizations. The complexity of these scientific thrusts was fleshed out through workshops involving cross-disciplinary teams. These teams refined the grand challenge concepts into actionable descriptions to be used as guidance for decisions like our LDRD strategic investment strategies and as the organizing basis for our external review process. In 2008, the Laboratory published 'Building the Future of Los Alamos. The Premier National Security Science Laboratory,' LA-UR-08-1541. This document introduced three strategic thrusts that crosscut the Grand Challenges and define future laboratory directions and facilities: (1) Information Science and Technology enabl ing integrative and predictive science; (2) Experimental science focused on materials for the future; and (3) Fundamental forensic science for nuclear, biological, and chemical threats. The next step for the Materials Capability was to develop a strategic plan for the second thrust, Materials for the Future. within the context of a capabilities-based Laboratory. This work has involved extending our 2006-2007 Grand Challenge workshops, integrating materials fundamental challenges into the MaRIE definition, and capitalizing on the emerging materials-centric national security missions. Strategic planning workshops with broad leadership and staff participation continued to hone our scientific directions and reinforce our strength through interdependence. By the Fall of 2008, these workshops promoted our primary strength as the delivery of Predictive Performance in applications where Extreme Environments dominate and where the discovery of Emergent Phenomena is a critical. These planning efforts were put into action through the development of our FY10 LDRD Strategic Investment Plan where the Materials Category was defined to incorporate three central thrusts: Prediction and Control of Performance, Extreme Environments and Emergent Phenomena. As with all strategic planning, much of the benefit is in the dialogue and cross-fertilization of ideas that occurs during the process. By winter of 2008/09, there was much agreement on the evolving focus for the Materials Strategy, but there was some lingering doubt over Prediction and Control of Performance as one of the three central thrusts, because it overarches all we do and is, truly, the end goal for materials science and engineering. Therefore, we elevated this thrust within the overarching vision/mission and introduce the concept of Defects and Interfaces as a central thrust that had previously been implied but not clearly articulated.

  4. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO)

    1993-01-01

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  5. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, D.K.; Burrows, R.W.

    1993-04-13

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  6. Nuclear material operations manual

    SciTech Connect (OSTI)

    Tyler, R.P.

    1981-02-01

    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion.

  7. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal...

  8. Critical Materials Workshop Agenda

    Broader source: Energy.gov (indexed) [DOE]

    Critical Materials Workshop Sheraton Crystal City 1800 Jefferson Davis Highway, Arlington, VA April 3, 2012, 8 am - 5 pm Time (EDT) Activity Speaker 8:00 am - 9:00 am Registration...

  9. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Admin Chg 1 dated 4-10-2014, supersedes DOE O 410.2.

  10. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng (Knoxville, TN); Wang, Xiqing (Oak Ridge, TN)

    2012-02-14

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  11. Critical Materials Workshop

    Broader source: Energy.gov [DOE]

    AMO hosted a public workshop on Tuesday, April 3, 2012 in Arlington, VA to provide background information on critical materials assessment, the current research within DOE related to critical...

  12. Nuclear Material Packaging Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-03-07

    The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. Does not cancel/supersede other directives. Certified 11-18-10.

  13. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-05-26

    To establish requirements and procedures for the management of nuclear materials within the Department of Energy (DOE). Cancels DOE 5660.1A. Canceled by DOE O 410.2.

  14. Engineering Materials and

    E-Print Network [OSTI]

    Furui, Sadaoki

    Science Engineering Materials and Chemical Technology Computing Life Science and Technology Environment and Society Mathematics Physics Chemistry Earth and Planetary Sciences Mechanical Engineering Systems and Control Engineering Electrical and Electronic Engineering Information and Communications

  15. Cookoff of energetic materials

    SciTech Connect (OSTI)

    Baer, M.R.; Hobbs, M.L.; Gross, R.J.; Schmitt, R.G.

    1998-09-01

    An overview of cookoff modeling at Sandia National Laboratories is presented aimed at assessing the violence of reaction following cookoff of confined energetic materials. During cookoff, the response of energetic materials is known to involve coupled thermal/chemical/mechanical processes which induce thermal damage to the energetic material prior to the onset of ignition. These damaged states enhance shock sensitivity and lead to conditions favoring self-supported accelerated combustion. Thus, the level of violence depends on the competition between pressure buildup and stress release due to the loss of confinement. To model these complex processes, finite element-based analysis capabilities are being developed which can resolve coupled heat transfer with chemistry, quasi-static structural mechanics and dynamic response. Numerical simulations that assess the level of violence demonstrate the importance of determining material damage in pre- and post-ignition cookoff events.

  16. Small Building Material Loan

    Broader source: Energy.gov [DOE]

    Applicants may borrow up to $100,000 for projects that improve the livability of a home, improve energy efficiency or expand space. The loan can be applied toward building materials, freight or...

  17. Physical Education ! Teaching Materials!

    E-Print Network [OSTI]

    Burg, Theresa

    Physical Education ! Teaching Materials! !!! ! 1. PROGRAMS OF STUDY ! ! ! ! ! ! ! ! ! !P.E. Program Physical Activity (DPA) Initiative: Mandatory program introduced in 2005. Schools are required to create opportunities for students to engage in Physical activity. Administrators and all teachers are responsible

  18. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  19. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Wang, Xiqing

    2013-08-20

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  20. Electrically conductive material

    DOE Patents [OSTI]

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  1. Electrically conductive material

    DOE Patents [OSTI]

    Singh, Jitendra P. (Bollingbrook, IL); Bosak, Andrea L. (Burnam, IL); McPheeters, Charles C. (Woodridge, IL); Dees, Dennis W. (Woodridge, IL)

    1993-01-01

    An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.

  2. Heavy Vehicle Propulsion Materials

    SciTech Connect (OSTI)

    Ray Johnson

    2000-01-31

    The objectives are to Provide Key Enabling Materials Technologies to Increase Energy Efficiency and Reduce Exhaust Emissions. The following goals are listed: Goal 1: By 3rd quarter 2002, complete development of materials enabling the maintenance or improvement of fuel efficiency {ge} 45% of class 7-8 truck engines while meeting the EPA/Justice Department ''Consent Decree'' for emissions reduction. Goal 2: By 4th quarter 2004, complete development of enabling materials for light-duty (class 1-2) diesel truck engines with efficiency over 40%, over a wide range of loads and speeds, while meeting EPA Tier 2 emission regulations. Goal 3: By 4th quarter 2006, complete development of materials solutions to enable heavy-duty diesel engine efficiency of 50% while meeting the emission reduction goals identified in the EPA proposed rule for heavy-duty highway engines.''

  3. Nano-composite materials

    DOE Patents [OSTI]

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  4. Biomimetic hydrogel materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn (Albany, CA); Mukkamala, Ravindranath (Houston, TX); Chen, Qing (Albany, CA); Hu, Hopin (Albuquerque, NM); Baude, Dominique (Creteil, FR)

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  5. Biomimetic Hydrogel Materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn (Albany, CA), Mukkamala, Ravindranath (Houston, TX), Chen, Oing (Albany, CA), Hu, Hopin (Albuquerque, NM), Baude, Dominique (Creteil, FR)

    2003-04-22

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  6. Materials in design 

    E-Print Network [OSTI]

    Perata, Alfredo Ferando

    1970-01-01

    gears so the alloy content has to be higher. Gear shape -17- $11 these considerations can be summarized in three reasons for selecting a terial. 1) The mechanical properties of the material selected had to satisfy the service requirements 2... of materials at the various temperatures encountered in service and during the process of manufacturing. He must know other properties such as resistance to corrosion in the expected environment and their rate of change in mechanical properties with time...

  7. Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report ManagementMarineLaboratory:Materials Materials 2011 DOE

  8. Materials Research Institute 199 Materials Research Institute Building

    E-Print Network [OSTI]

    Lee, Dongwon

    promise to transform the field of materials research in areas such as energy, health, and the environment of Materials Research A New Building for the 21st Century he Materials Research Institute promotes interdisciMaterials Research Institute 199 Materials Research Institute Building The Pennsylvania State

  9. Smart Material Interfaces: "A Material Step to the Future"

    E-Print Network [OSTI]

    Theune, Mariët

    of smart materials in designing and building interfaces of everyday life. Inter- faces that communicateSmart Material Interfaces: "A Material Step to the Future" Anton Nijholt Human Media Interaction on the mar- ket many new smart materials. Smart Material Interfaces (SMIs) want to take advantage

  10. Supplemental Material for Ferreira and Stoltz 1 Supplemental Materials for

    E-Print Network [OSTI]

    Stoltz, Brian M.

    Supplemental Material for Ferreira and Stoltz 1 Supplemental Materials for: The Palladium., Tweddell, J.; Fu, G. C. J. Org. Chem. 1998, 63, 2794. #12;Supplemental Material for Ferreira and Stoltz 2

  11. BUILDING MATERIALS RECLAMATION PROGRAM

    SciTech Connect (OSTI)

    David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner

    2010-08-31

    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

  12. Material bagging device

    DOE Patents [OSTI]

    Wach, Charles G. (Oak Lawn, IL); Nelson, Robert E. (Lombard, IL); Brak, Stephen B. (Tinley Park, IL)

    1984-01-01

    A bagging device for transferring material from one chamber through an opening in a wall to a second chamber includes a cylindrical housing communicating with the opening and defining a passage between the chambers. A cylindrical cartridge is slidably received within the housing. The cartridge has a substantially rigid cylindrical sleeve to which is affixed a pliable tube. The pliable tube is positioned concentrically about the sleeve and has a pleated portion capable of unfolding from the sleeve and a closed end extending over a terminal end of the sleeve. Sealing means are interposed in sealed relationship between the cartridge and the housing. Material from one chamber is inserted into the cartridge secured in the housing and received in the closed end of the tube which unfolds into the other chamber enclosing the material therein. The tube may then be sealed behind the material and then severed to form a bag-like enclosure defined by the tube's closed terminal end and the new seal. The new seal then forms a terminal end for the unsevered portion of the pliable tube into which additional material may be placed and the bagging process repeated.

  13. Sandia Energy - Light Creation Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light Creation Materials Home Energy Research EFRCs Solid-State Lighting Science EFRC Overview Light Creation Materials Light Creation MaterialsAlyssa Christy2015-03-26T16:28:52+00...

  14. annual progress report Propulsion Materials

    E-Print Network [OSTI]

    Pennycook, Steve

    for Propulsion Materials Energy Efficiency and Renewable Energy Office of Vehicle Technologies Advanced Materials Agreement 13295 - Permanent Magnet Development for Automotive Traction Motors......... 55 PROJECT 18517 PROJECT 18519 ­ MATERIALS FOR CONTROL OF EXHAUST GASES AND ENERGY RECOVERY SYSTEMS

  15. annual progress report Propulsion Materials

    E-Print Network [OSTI]

    Pennycook, Steve

    Progress Report for Propulsion Materials Energy Efficiency and Renewable Energy Office of Vehicle - Permanent Magnet Development for Automotive Traction Motors......... 47 PROJECT 18518 - MATERIALS FOR HIGH)...................................................................... 193 PROJECT 18519 ­ MATERIALS FOR CONTROL OF EXHAUST GASES AND ENERGY RECOVERY SYSTEMS

  16. Porous material neutron detector

    DOE Patents [OSTI]

    Diawara, Yacouba (Oak Ridge, TN); Kocsis, Menyhert (Venon, FR)

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  17. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  18. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  19. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  20. Optimized nanoporous materials.

    SciTech Connect (OSTI)

    Braun, Paul V.; Langham, Mary Elizabeth; Jacobs, Benjamin W.; Ong, Markus D.; Narayan, Roger J.; Pierson, Bonnie E.; Gittard, Shaun D.; Robinson, David B.; Ham, Sung-Kyoung; Chae, Weon-Sik; Gough, Dara V.; Wu, Chung-An Max; Ha, Cindy M.; Tran, Kim L.

    2009-09-01

    Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired by these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.

  1. Apparatus for dispensing material

    DOE Patents [OSTI]

    Sutter, Peter Werner (Beach, NY); Sutter, Eli Anguelova (Beach, NY)

    2011-07-05

    An apparatus capable of dispensing drops of material with volumes on the order of zeptoliters is described. In some embodiments of the inventive pipette the size of the droplets so dispensed is determined by the size of a hole, or channel, through a carbon shell encapsulating a reservoir that contains material to be dispensed. The channel may be formed by irradiation with an electron beam or other high-energy beam capable of focusing to a spot size less than about 5 nanometers. In some embodiments, the dispensed droplet remains attached to the pipette by a small thread of material, an atomic scale meniscus, forming a virtually free-standing droplet. In some embodiments the droplet may wet the pipette tip and take on attributes of supported drops. Methods for fabricating and using the pipette are also described.

  2. MATERIAL CONTROL ACCOUNTING INMM

    SciTech Connect (OSTI)

    Hasty, T.

    2009-06-14

    Since 1996, the Mining and Chemical Combine (MCC - formerly known as K-26), and the United States Department of Energy (DOE) have been cooperating under the cooperative Nuclear Material Protection, Control and Accounting (MPC&A) Program between the Russian Federation and the U.S. Governments. Since MCC continues to operate a reactor for steam and electricity production for the site and city of Zheleznogorsk which results in production of the weapons grade plutonium, one of the goals of the MPC&A program is to support implementation of an expanded comprehensive nuclear material control and accounting (MC&A) program. To date MCC has completed upgrades identified in the initial gap analysis and documented in the site MC&A Plan and is implementing additional upgrades identified during an update to the gap analysis. The scope of these upgrades includes implementation of MCC organization structure relating to MC&A, establishing material balance area structure for special nuclear materials (SNM) storage and bulk processing areas, and material control functions including SNM portal monitors at target locations. Material accounting function upgrades include enhancements in the conduct of physical inventories, limit of error inventory difference procedure enhancements, implementation of basic computerized accounting system for four SNM storage areas, implementation of measurement equipment for improved accountability reporting, and both new and revised site-level MC&A procedures. This paper will discuss the implementation of MC&A upgrades at MCC based on the requirements established in the comprehensive MC&A plan developed by the Mining and Chemical Combine as part of the MPC&A Program.

  3. Container for radioactive materials

    DOE Patents [OSTI]

    Fields, S.R.

    1984-05-30

    A container is claimed for housing a plurality of canister assemblies containing radioactive material. The several canister assemblies are stacked in a longitudinally spaced relation within a carrier to form a payload concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path. 7 figures.

  4. Ultrasonic Processing of Materials

    SciTech Connect (OSTI)

    Meek, Thomas T.; Han, Qingyou; Jian, Xiaogang; Xu, Hanbing

    2005-06-30

    The purpose of this project was to determine the impact of a new breakthrough technology, ultrasonic processing, on various industries, including steel, aluminum, metal casting, and forging. The specific goals of the project were to evaluate core principles and establish quantitative bases for the ultrasonc processing of materials, and to demonstrate key applications in the areas of grain refinement of alloys during solidification and degassing of alloy melts. This study focussed on two classes of materials - aluminum alloys and steels - and demonstrated the application of ultrasonic processing during ingot casting.

  5. Chapter 6: Materials

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying caulk toRoadmapsMaterials Material

  6. Material Disposal Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterial Disposal Areas Material

  7. Materials Science Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterialMaterials

  8. Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterialMaterialsMST

  9. Advanced Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Together, these research capabilities in materials synthesis, characterization, and theory contribute to our leadership in basic and applied materials science that ultimately...

  10. Advanced Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials synthesis, characterization, and theory. In other words, we discover and make new materials, we study their structure, dynamics and functionality, and we use...

  11. Supercapacitors specialities - Materials review

    SciTech Connect (OSTI)

    Obreja, Vasile V. N.

    2014-06-16

    The electrode material is a key component for supercapacitor cell performance. As it is known, performance comparison of commercial available batteries and supercapacitors reveals significantly lower energy storage capability for supercapacitor devices. The energy density of commercial supercapacitor cells is limited to 10 Wh/kg whereas that of common lead acid batteries reaches 35-40 Wh/kg. For lithium ion batteries a value higher than 100 Wh/kg is easily available. Nevertheless, supercapacitors also known as ultracapacitors or electrochemical capacitors have other advantages in comparison with batteries. As a consequence, many efforts have been made in the last years to increase the storage energy density of electrochemical capacitors. A lot of results from published work (research and review papers, patents and reports) are available at this time. The purpose of this review is a presentation of the progress to date for the use of new materials and approaches for supercapacitor electrodes, with focus on the energy storage capability for practical applications. Many reported results refer to nanostructured carbon based materials and the related composites, used for the manufacture of experimental electrodes. A specific capacitance and a specific energy are seldom revealed as the main result of the performed investigation. Thus for nanoprous (activated) carbon based electrodes a specific capacitance up to 200-220 F/g is mentioned for organic electrolyte, whereas for aqueous electrolyte, the value is limited to 400-500 F/g. Significant contribution to specific capacitance is possible from fast faradaic reactions at the electrode-electrolyte interface in addition to the electric double layer effect. The corresponding energy density is limited to 30-50 Wh/kg for organic electrolyte and to 12-17 Wh/kg for aqueous electrolyte. However such performance indicators are given only for the carbon material used in electrodes. For a supercapacitor cell, where two electrodes and also other materials for cell assembling and packaging are used, the above mentioned values have to be divided by a factor higher than four. As a consequence, the specific energy of a prototype cell, hardly could exceed 10 Wh/kg because of difficulties with the existing manufacturing technology. Graphene based materials and carbon nanotubes and different composites have been used in many experiments reported in the last years. Nevertheless in spite of the outstanding properties of these materials, significant increase of the specific capacitance or of the specific energy in comparison with activated or nanoporous carbon is not achieved. Use of redox materials as metal oxides or conducting polymers in combination with different nanostructured carbon materials (nanocomposite electrodes) has been found to contribute to further increase of the specific capacitance or of the specific energy. Nevertheless, few results are reported for practical cells with such materials. Many results are reported only for a three electrode system and significant difference is possible when the electrode is used in a practical supercapacitor cell. Further improvement in the electrode manufacture and more experiments with supercapacitor cells with the known electrochemical storage materials are required. Device prototypes and commercial products with an energy density towards 15-20 Wh/kg could be realized. These may be a milestone for further supercapacitor device research and development, to narrow the storage energy gap between batteries and supercapacitors.

  12. Materials Technical Team Roadmap

    SciTech Connect (OSTI)

    none,

    2013-08-01

    Roadmap identifying the efforts of the Materials Technical Team (MTT) to focus primarily on reducing the mass of structural systems such as the body and chassis in light-duty vehicles (including passenger cars and light trucks) which enables improved vehicle efficiency regardless of the vehicle size or propulsion system employed.

  13. Supplemental Material Supplemental methods

    E-Print Network [OSTI]

    Tsien, Roger Y.

    Supplemental Material Supplemental methods Conjugation of ACPPs to macromolecules. The peptide Photoshop using regions similar to those shown in Supplemental figure 1. Technetium experiments for validation of SUV technique. Optical SUV values were done as described above and in Supplemental Figure 2

  14. Lead carbonate scintillator materials

    DOE Patents [OSTI]

    Derenzo, Stephen E. (Pinole, CA); Moses, William W. (Berkeley, CA)

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  15. Materials Science and Engineering

    Broader source: Energy.gov (indexed) [DOE]

    re f avorable. 1. M . P . S eah, P roc. R oyal S oc, L ondon, A 349 n o. 1 659, 5 35 ( 1976) Materials Science and Engineering 7 Simula9ons f or F e14CrxSr a nd F e14CrxSc Sr and...

  16. Materials Engineering Is Materials Engineering right for me?

    E-Print Network [OSTI]

    Martin, Ralph R.

    Materials Engineering Is Materials Engineering right for me? If you are interested in the development of new products and technologies then Materials Engineering is well worth considering for university study. A Materials Engineering degree programme will focus on aspects such as structure

  17. MaterialsChemistryA Materials for energy and sustainability

    E-Print Network [OSTI]

    Lin, Zhiqun

    Journalof MaterialsChemistryA Materials for energy and sustainability www.rsc.org/MaterialsA ISSN the prognosis for future progress in exploiting perovskite materials for high efficiency solar cells. 1-renewableenergyandwilleventuallybeexhaustedin the future. In this context, solar cells that convert solar energy into electrical energy possess cost

  18. ALTERNATE MATERIALS IN DESIGN OF RADIOACTIVE MATERIAL PACKAGES

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2010-07-09

    This paper presents a summary of design and testing of material and composites for use in radioactive material packages. These materials provide thermal protection and provide structural integrity and energy absorption to the package during normal and hypothetical accident condition events as required by Title 10 Part 71 of the Code of Federal Regulations. Testing of packages comprising these materials is summarized.

  19. Thermodynamic estimation: Ionic materials

    SciTech Connect (OSTI)

    Glasser, Leslie, E-mail: l.glasser@curtin.edu.au

    2013-10-15

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy, lattice energy, enthalpy, Gibbs energy values are available.

  20. Facilities&Equipment Advanced Materials

    E-Print Network [OSTI]

    Birmingham, University of

    , Metallurgy & Materials and Dentistry departments at both institutions. This investment has created world

  1. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  2. Radioactive Materials Emergencies Course Presentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Hanford Fire Department has developed this training to assist emergency responders in understanding the hazards in responding to events involving radioactive materials, to know the fundamentals of radioactive contamination, to understand the biological affects of exposure to radioactive materials, and to know how to appropriately respond to hazardous material events involving radioactive materials.

  3. Laser detection of material thickness

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM)

    2002-01-01

    There is provided a method for measuring material thickness comprising: (a) contacting a surface of a material to be measured with a high intensity short duration laser pulse at a light wavelength which heats the area of contact with the material, thereby creating an acoustical pulse within the material: (b) timing the intervals between deflections in the contacted surface caused by the reverberation of acoustical pulses between the contacted surface and the opposite surface of the material: and (c) determining the thickness of the material by calculating the proportion of the thickness of the material to the measured time intervals between deflections of the contacted surface.

  4. MIT and Materials Industries MIT Industry Brief

    E-Print Network [OSTI]

    Herr, Hugh

    -based materials, devices and systems to provide breakthrough capabilities for applications ranging from energy materials; magnetic materials and processes; biomaterials; and materials economics. The NECSTlab (Nano-Engineered · Materials Selection, Fabrication, Processing · Materials and Electronics, Photonics, Semiconductors

  5. Handling difficult materials: Textiles

    SciTech Connect (OSTI)

    Polk, T.

    1994-07-01

    As recyclable materials, textiles are a potentially valuable addition to community collection programs. They make up a fairly substantial fraction--about 4%--of the residential solid waste stream, a higher figure than corrugated cardboard or magazines. Textiles have well-established processing and marketing infrastructures, with annual sales of over $1 billion in the US And buyers are out there, willing to pay $40 to $100 per ton. There doesn't seem to be any cumbersome government regulations standing in the way, either. So why are so few municipalities and waste haulers currently attempting to recover textiles The answers can be found in the properties of the material itself and a lack of knowledge about the existing textile recycling industry. There are three main end markets that come from waste textiles. In descending order of market share, they are: used clothing, fiber for paper and re-processing, and industrial wiping and polishing cloths.

  6. Porosity in hybrid materials

    SciTech Connect (OSTI)

    Schaefer, D.W.; Beaucage, G.; Loy, D. [Sandia National Labs., Albuquerque, NM (United States)

    1995-12-31

    Multicomponent, or hybrid composites are emerging as precursors to porous materials. Sacrifice of an ephemeral phase can be used to generate porosity, the nature of which depends on precursor structure. Retention of an organic constituent, on the other hand, can add desirable toughness to an otherwise brittle ceramic. We use small-angle x-ray and neutron scattering to examine porosity in both simple and hybrid materials. We find that microphase separation controls porosity in almost all systems studied. Pore distributions are controlled by the detailed bonding within and between phases as well as the flexibility of polymeric constituents. Thus hybridization opens new regions of pore distributions not available in simple systems. We look at several sacrificial concepts and show that it is possible to generate multimodal pore size distributions due to the complicated phase structure in the precursor.

  7. Lead carbonate scintillator materials

    DOE Patents [OSTI]

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  8. Scalable Routes to Efficient Thermoelectric Materials

    E-Print Network [OSTI]

    Feser, Joseph Patrick

    2010-01-01

    thermoelectric materials consisting of epitaxially-grownefficient thermoelectric materials," Nature, vol. 451, pp.superlattice thermoelectric materials and devices," Science,

  9. Materials for HCCI Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Materials for HCCI Engines Advanced Materials Development through Computational Design Exhaust Valve Materials for High Efficiency...

  10. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Safety Enhancing Railroad Hazardous Materials Transportation Safety Presented by Kevin R. Blackwell, Radioactive Materials Program Manager. Enhancing Railroad Hazardous Materials...

  11. Hydrolysis of biomass material

    DOE Patents [OSTI]

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  12. Skipping Stone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology CoWanpingSilveira deScience Technology|Siri

  13. Division of Materials Science (DMS) meeting presentation

    SciTech Connect (OSTI)

    Cline, C.F.; Weber, M.J.

    1982-11-08

    Materials preparation techniques are listed. Materials preparation capabilities are discussed for making BeF/sub 2/ glasses and other materials. Materials characterization techniques are listed. (DLC)

  14. Heavy Vehicle Propulsion Materials Program

    SciTech Connect (OSTI)

    Diamond, S.; Johnson, D.R.

    1999-04-26

    The objective of the Heavy Vehicle Propulsion Materials Program is to develop the enabling materials technology for the clean, high-efficiency diesel truck engines of the future. The development of cleaner, higher-efficiency diesel engines imposes greater mechanical, thermal, and tribological demands on materials of construction. Often the enabling technology for a new engine component is the material from which the part can be made. The Heavy Vehicle Propulsion Materials Program is a partnership between the Department of Energy (DOE), and the diesel engine companies in the United States, materials suppliers, national laboratories, and universities. A comprehensive research and development program has been developed to meet the enabling materials requirements for the diesel engines of the future. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications.

  15. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

    2002-02-12

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  16. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

    2001-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  17. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

    1999-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  18. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

    1999-12-21

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  19. Combinatorial sythesis of organometallic materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

    2002-07-16

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  20. Materials Data on Ge (SG:96) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on Ge (SG:225) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on Ge (SG:148) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on Ge (SG:96) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on UGe2 (SG:63) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on UGe2 (SG:65) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on Ge (SG:69) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on WO2 (SG:166) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on VO2 (SG:227) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on UPS (SG:129) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on N2 (SG:194) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on Nd (SG:229) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on KSi (SG:218) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on VPt2 (SG:71) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on Nd (SG:229) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on S (SG:221) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on Pr (SG:8) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on VPO5 (SG:2) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on Be (SG:229) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on Tc (SG:194) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on WS2 (SG:194) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on YS (SG:225) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on URh3 (SG:221) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on UBi (SG:225) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on UN (SG:225) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on UP (SG:225) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on CO2 (SG:136) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on KPb (SG:142) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on KSb2 (SG:12) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on VP (SG:194) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on P (SG:2) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on BPO4 (SG:152) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on VPO4 (SG:63) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on KHF2 (SG:140) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on KHSO4 (SG:61) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on H2 (SG:194) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on KPHNO2 (SG:148) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on HIO3 (SG:19) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on HN (SG:53) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on VO2 (SG:139) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-14

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on KI (SG:221) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on Yb (SG:225) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-14

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on KNO2 (SG:8) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on KCN (SG:44) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on UF6 (SG:62) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on WSCl4 (SG:2) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on YS2 (SG:227) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on VSO5 (SG:85) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on YUO4 (SG:123) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on YPb3 (SG:221) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on B (SG:166) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on Fe (SG:194) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on Nd (SG:225) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on KC10 (SG:204) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on Se (SG:148) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on Ga (SG:139) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on VFe (SG:221) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on VOs (SG:221) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on La (SG:225) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on Ho (SG:166) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on YMn12 (SG:139) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on PI3 (SG:173) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on Dy (SG:166) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on Er (SG:229) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on YB2 (SG:191) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on La (SG:229) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on Tb (SG:229) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on Dy (SG:229) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on YZn (SG:225) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on Tm (SG:229) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on Lu (SG:229) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on SO3 (SG:33) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on SO3 (SG:33) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on WO3 (SG:130) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on WO3 (SG:14) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on WO3 (SG:129) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on WO3 (SG:60) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on WO3 (SG:221) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on WO3 (SG:185) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on WO3 (SG:193) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on I (SG:64) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on Mn (SG:217) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Cathode materials review

    SciTech Connect (OSTI)

    Daniel, Claus Mohanty, Debasish Li, Jianlin Wood, David L.

    2014-06-16

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  3. Immobilized lipid-bilayer materials

    SciTech Connect (OSTI)

    Sasaki, Darryl Y. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Yamanaka, Stacey A. (Dallas, TX)

    2000-01-01

    A method for preparing encapsulated lipid-bilayer materials in a silica matrix comprising preparing a silica sol, mixing a lipid-bilayer material in the silica sol and allowing the mixture to gel to form the encapsulated lipid-bilayer material. The mild processing conditions allow quantitative entrapment of pre-formed lipid-bilayer materials without modification to the material's spectral characteristics. The method allows for the immobilization of lipid membranes to surfaces. The encapsulated lipid-bilayer materials perform as sensitive optical sensors for the detection of analytes such as heavy metal ions and can be used as drug delivery systems and as separation devices.

  4. Construction Material And Method

    DOE Patents [OSTI]

    Wagh, Arun S. (Orland Park, IL); Antink, Allison L. (Bolingbrook, IL)

    2006-02-21

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic. The ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  5. Metallic carbon materials

    DOE Patents [OSTI]

    Cohen, Marvin Lou (Berkeley, CA); Crespi, Vincent Henry (Darien, IL); Louie, Steven Gwon Sheng (Berkeley, CA); Zettl, Alexander Karlwalter (Kensington, CA)

    1999-01-01

    Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

  6. Optical limiting materials

    DOE Patents [OSTI]

    McBranch, D.W.; Mattes, B.R.; Koskelo, A.C.; Heeger, A.J.; Robinson, J.M.; Smilowitz, L.B.; Klimov, V.I.; Cha, M.; Sariciftci, N.S.; Hummelen, J.C.

    1998-04-21

    Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO{sub 2}) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400--1,100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes. 5 figs.

  7. Synthesis of refractory materials

    DOE Patents [OSTI]

    Holt, J.B.

    1983-08-16

    Refractory metal nitrides are synthesized during a self-propagating combustion process utilizing a solid source of nitrogen. For this purpose, a metal azide is employed, preferably NaN/sub 3/. The azide is combusted with Mg or Ca, and a metal oxide is selected from Groups III-A, IV-A, III-B, IV-B, or a rare earth metal oxide. The mixture of azide, Ca or Mg and metal oxide is heated to the mixture's ignition temperature. At that temperature the mixture is ignited and undergoes self-sustaining combustion until the starter materials are exhausted, producing the metal nitride.

  8. Accelerating Advanced Material Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation DataStreamsTotalproposalsAbout SAGEAboutJ.ACME -Materials

  9. Next Generation Materials:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartmentNew Jersey isDepartment ofInstitute *Materials: 1

  10. Materials for the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDSMaterials and Transportation ServicesMaterials

  11. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDSMaterials andMaterials/Condensed Matter Print

  12. Sandia Energy - Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &Water Power& SF-BREEZE HomeMarketMaterials

  13. Magnetic Materials Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) |Administration Savannah RiverMagnetic Materials

  14. Materials in the news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matter By Sarah Schlieder *8 Materials Science in11News

  15. Smart Material Interfaces: "Another Step to a Material Future"

    E-Print Network [OSTI]

    Theune, Mariët

    Smart Material Interfaces: "Another Step to a Material Future" Manuel Kretzer Chair for CAAD Swiss Interaction University of Twente Enschede, Netherlands a.nijholt@utwente.nl ABSTRACT Smart Materials have fields, temperature or stress. Shape, size and color are among the properties that can be changed. Smart

  16. Oxide materials for electronics Inorganic Materials and Ceramics Research Group

    E-Print Network [OSTI]

    Oxide materials for electronics Inorganic Materials and Ceramics Research Group Sverre M. Selbach annually #12;Inorganic and ceramic materials research group Professor Mari-Ann Einarsrud (1988) Professor docs 10 master students http://www.ntnu.edu/mse/research/ceramics NTNU Faculty of Natural Sciences

  17. Optical polarizer material

    DOE Patents [OSTI]

    Ebbers, C.A.

    1999-08-31

    Several crystals have been identified which can be grown using standard single crystals growth techniques and which have a high birefringence. The identified crystals include Li.sub.2 CO.sub.3, LiNaCO.sub.3, LiKCO.sub.3, LiRbCO.sub.3 and LiCsCO.sub.3. The condition of high birefringence leads to their application as optical polarizer materials. In one embodiment of the invention, the crystal has the chemical formula LiK.sub.(1-w-x-y) Na.sub.(1-w-x-z) Rb.sub.(1-w-y-z) Cs.sub.(1-x-y-z) CO.sub.3, where w+x+y+z=1. In another embodiment, the crystalline material may be selected from a an alkali metal carbonate and a double salt of alkali metal carbonates, where the polarizer has a Wollaston configuration, a Glan-Thompson configuration or a Glan-Taylor configuration. A method of making an LiNaCO.sub.3 optical polarizer is described. A similar method is shown for making an LiKCO.sub.3 optical polarizer.

  18. Additive assembly of digital materials

    E-Print Network [OSTI]

    Ward, Jonathan (Jonathan Daniel)

    2010-01-01

    This thesis develops the use of additive assembly of press-fit digital materials as a new rapid-prototyping process. Digital materials consist of a finite set of parts that have discrete connections and occupy discrete ...

  19. Application of petrographic examination techniques to the assessment of fire-damaged concrete and masonry structures

    SciTech Connect (OSTI)

    Ingham, Jeremy P., E-mail: inghamjp@halcrow.com [Halcrow Group Limited, Vineyard House, 44 Brook Green, Hammersmith, London W6 7BY (United Kingdom)

    2009-07-15

    The number of building fires has doubled over the last 50 years. There has never been a greater need for structures to be assessed for fire damage to ensure safety and enable appropriate repairs to be planned. Fortunately, even after a severe fire, concrete and masonry structures are generally capable of being repaired rather than demolished. By allowing direct examination of microcracking and mineralogical changes, petrographic examination has become widely used to determine the depth of fire damage for reinforced concrete elements. Petrographic examination can also be applied to fire-damaged masonry structures built of materials such as stone, brick and mortar. Petrography can ensure accurate detection of damaged geomaterials, which provides cost savings during building repair and increased safety reassurance. This paper comprises a review of the role of petrography in fire damage assessments, drawing on a range of actual fire damage investigations.

  20. Remaining Sites Verification Package for the 100-B-18, 184-B Powerhouse Debris Pile, Waste Site Reclassification Form 2007-020

    SciTech Connect (OSTI)

    L. M. Dittmer

    2007-11-30

    The 100-B-18 Powerhouse Debris Pile contained miscellaneous demolition waste from the decommissioning activities of the 184-B Powerhouse. The debris covered an area roughly 15 m by 30 m and included materials such as concrete blocks, mixed aggregate/concrete slabs, stone rubble, asphalt rubble, traces of tar/coal, broken fluorescent lights, brick chimney remnants, and rubber hoses. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  1. Management of Transuranic Contaminated Material

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1982-09-30

    To establish guidelines for the generation, treatment, packaging, storage, transportation, and disposal of transuranic (TRU) contaminated material.

  2. Webinar: Hydrogen Storage Materials Requirements

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

  3. Combinatorial synthesis of ceramic materials

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN) [Oak Ridge, TN; Walls, Claudia A. (Oak Ridge, TN) [Oak Ridge, TN; Boatner, Lynn A. (Oak Ridge, TN) [Oak Ridge, TN

    2010-02-23

    A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.

  4. Combinatorial synthesis of ceramic materials

    DOE Patents [OSTI]

    Lauf, Robert J.; Walls, Claudia A.; Boatner, Lynn A.

    2006-11-14

    A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.

  5. APPROVED MATERIALS FOR ALSEP EQUIPMENT

    E-Print Network [OSTI]

    Rathbun, Julie A.

    expanding Section I and Section II and adding Section III. New materials added in this revision are: 211 212#12;#12;: : . APPROVED MATERIALS FOR ALSEP EQUIPMENT NO. REV. NO. ATM 242 E PAGE COVER OF 54 DATE 213 322 323 324 417 418 419 612 613 806 1111 Materials reinstated (clarified type no.): 1009 Prepared

  6. Preparation of asymmetric porous materials

    DOE Patents [OSTI]

    Coker, Eric N. (Albuquerque, NM)

    2012-08-07

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  7. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  8. Materials Department Annual Report 1992

    E-Print Network [OSTI]

    Materials Technology 37 4.1 Manufacturing Processes for Advanced Composites 37 4.2 Polymer Antioxidants 38 4-2840 ISSN 0906-3242 Grafisk Service, Riso, 1993 #12;Contents ^n Introduction 5 ^ y Materials Science 13 2.1 Modelling within Materials Science 13 2.2 Micromechanical Modelling /> 2.3 Scale-Effects in C u V IT 2A

  9. Inline evenflow material distributor for pneumatic material feed systems

    DOE Patents [OSTI]

    Thiry, Michael J. (Oakdale, CA)

    2007-02-20

    An apparatus for reducing clogs in a pneumatic material feed line, such as employed in abrasive waterjet machining systems, by providing an evenflow feed of material therethrough. The apparatus preferably includes a hollow housing defining a housing volume and having an inlet capable of connecting to an upstream portion of the pneumatic material feed line, an outlet capable of connecting to a downstream portion of the pneumatic material feed line, and an air vent located between the inlet and outlet for venting excess air pressure out from the housing volume. A diverter, i.e. an impingement object, is located at the inlet and in a path of incoming material from the upstream portion of the pneumatic material feed line, to break up clumps of ambient moisture-ridden material impinging on the diverter. And one or more filter screens is also preferably located in the housing volume to further break up clumps and provide filtering.

  10. Corrosion resistant ceramic materials

    DOE Patents [OSTI]

    Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  11. Corrosion resistant ceramic materials

    DOE Patents [OSTI]

    Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

    1995-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  12. Packaging - Materials review

    SciTech Connect (OSTI)

    Herrmann, Matthias

    2014-06-16

    Nowadays, a large number of different electrochemical energy storage systems are known. In the last two decades the development was strongly driven by a continuously growing market of portable electronic devices (e.g. cellular phones, lap top computers, camcorders, cameras, tools). Current intensive efforts are under way to develop systems for automotive industry within the framework of electrically propelled mobility (e.g. hybrid electric vehicles, plug-in hybrid electric vehicles, full electric vehicles) and also for the energy storage market (e.g. electrical grid stability, renewable energies). Besides the different systems (cell chemistries), electrochemical cells and batteries were developed and are offered in many shapes, sizes and designs, in order to meet performance and design requirements of the widespread applications. Proper packaging is thereby one important technological step for designing optimum, reliable and safe batteries for operation. In this contribution, current packaging approaches of cells and batteries together with the corresponding materials are discussed. The focus is laid on rechargeable systems for industrial applications (i.e. alkaline systems, lithium-ion, lead-acid). In principle, four different cell types (shapes) can be identified - button, cylindrical, prismatic and pouch. Cell size can be either in accordance with international (e.g. International Electrotechnical Commission, IEC) or other standards or can meet application-specific dimensions. Since cell housing or container, terminals and, if necessary, safety installations as inactive (non-reactive) materials reduce energy density of the battery, the development of low-weight packages is a challenging task. In addition to that, other requirements have to be fulfilled: mechanical stability and durability, sealing (e.g. high permeation barrier against humidity for lithium-ion technology), high packing efficiency, possible installation of safety devices (current interrupt device, valve, etc.), chemical inertness, cost issues, and others. Finally, proper cell design has to be considered for effective thermal management (i.e. cooling and heating) of battery packs.

  13. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  14. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  15. Polyphosphazine-based polymer materials

    DOE Patents [OSTI]

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  16. Catalyzed Ceramic Burner Material

    SciTech Connect (OSTI)

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant period in accomplishing these objectives. Our work in the area of Pd-based, methane oxidation catalysts has led to the development of highly active catalysts with relatively low loadings of Pd metal using proprietary coating methods. The thermal stability of these Pd-based catalysts were characterized using SEM and BET analyses, further demonstrating that certain catalyst supports offer enhanced stability toward both PdO decomposition and/or thermal sintering/growth of Pd particles. When applied to commercially available fiber mesh substrates (both metallic and ceramic) and tested in an open-air burner, these catalyst-support chemistries showed modest improvements in the NOx emissions and radiant output compared to uncatalyzed substrates. More significant, though, was the performance of the catalyst-support chemistries on novel media substrates. These substrates were developed to overcome the limitations that are present with commercially available substrate designs and increase the gas-catalyst contact time. When catalyzed, these substrates demonstrated a 65-75% reduction in NOx emissions across the firing range when tested in an open air burner. In testing in a residential boiler, this translated into NOx emissions of <15 ppm over the 15-150 kBtu/hr firing range.

  17. On the fracture toughness of advanced materials

    E-Print Network [OSTI]

    Launey, Maximilien E.

    2009-01-01

    toughness of advanced materials ?? By Maximilien E. LauneyAbstract: Few engineering materials are limited by theirare manufactured from materials that are comparatively low

  18. NUCLEAR MATERIALS PROGRESS REPORTS FOR 1980

    E-Print Network [OSTI]

    Olander, D.R.

    2010-01-01

    Ceramics", Progress in Material Science 21, 307 (1976}. S. -heating techniques in material processing. Thermal analysisIrreversible Thermodynamics in Materials Problems", in Mass

  19. Synthesizing Smart Polymeric and Composite Materials

    E-Print Network [OSTI]

    GONG, CHAOKUN

    2013-01-01

    Composites,” Annual Review of Materials Research, vol. 40,Promoted Self-Healing Epoxy Materials,” Macromolecules, vol.White, "Self-healing materials with microvascular networks,"

  20. Computational materials: Embedding Computation into the Everyday

    E-Print Network [OSTI]

    Thomsen, Mette Ramsgard; Karmon, Ayelet

    2009-01-01

    Computational materials: Embedding Computation into thepaper presents research into material design merging thean integrated part of our material surroundings. Rather than

  1. Chemical & Engineering Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the...

  2. Materials Science & Engineering | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More Science Home | Science & Discovery | More Science | Materials Science and Engineering SHARE Materials Science and Engineering ORNL's core capability in applied materials...

  3. Advanced Materials by Design: Programable Transient Electronics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials by Design: Programable Transient Electronics Transient materials is an emerging area of materials design with the key attribute being the ability to physically...

  4. Advanced Battery Materials Characterization: Success stories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    stories from the High Temperature Materials Laboratory (HTML) User Program Advanced Battery Materials Characterization: Success stories from the High Temperature Materials...

  5. Nanostructured Electrode Materials for Supercapacitors

    E-Print Network [OSTI]

    Wu, Shin-Tson

    and batteries/fuel cells. Nanostructured electrode materials have demonstrated superior electrochemical of polymethine dyes electronic spectra is crucial for successful design of the new molecules with optimized

  6. Radiation Damage/Materials Modification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ion irradiation is an important tool for studying radiation damage effects Materials in a nuclear reactor are exposed to extreme temperature and radiation conditions that degrade...

  7. Material-based design computation

    E-Print Network [OSTI]

    Oxman, Neri

    2010-01-01

    The institutionalized separation between form, structure and material, deeply embedded in modernist design theory, paralleled by a methodological partitioning between modeling, analysis and fabrication, resulted in ...

  8. Melt Processing of Covetic Materials

    Broader source: Energy.gov (indexed) [DOE]

    to making covetic material. Considering its uniqueness and potential value as an invention, NETL has chosen not to disclose the technique here but rather present some of our...

  9. Lightweighting Materials | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with lightweight materials can directly reduce fuel consump-tion. It also allows cars to carry advanced emissions control equipment, safety devices, and integrated...

  10. LANL: Ion Beam Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and materials synthesis through ion implantation technology, and radiation damage stud- ies in gases, liquids, and solids. The laboratory's core is a 3.2 MV tandem ion...

  11. Nuclear Materials Control and Accountability

    Broader source: Energy.gov (indexed) [DOE]

    June 2011 DOE STANDARD Nuclear Materials Control and Accountability U.S. Department of Energy AREA SANS Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public...

  12. Nuclear Materials Control and Accountability

    Broader source: Energy.gov (indexed) [DOE]

    CHANGE NOTICE NO.1 AUGUST 2011 DOE STANDARD NUCLEAR MATERIALS CONTROL AND ACCOUNTABILITY U.S. Department of Energy AREA SANS Washington,...

  13. Advanced materials research areas | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy, national security, and industrial competitiveness. For instance, lightweight materials are fundamental to the future of transportation and in other energy-related...

  14. Highly Enriched Uranium Materials Facility

    National Nuclear Security Administration (NNSA)

    Appropriations Subcommittee, is shown some of the technology in the Highly Enriched Uranium Materials Facility by Warehousing and Transportation Operations Manager Byron...

  15. ENVIRONMENTAL SCIENCES; ENVIRONMENTAL MATERIALS; CONTAMINATION...

    Office of Scientific and Technical Information (OSTI)

    audit of SRP radioactive waste Ashley, C. 05 NUCLEAR FUELS; 54 ENVIRONMENTAL SCIENCES; ENVIRONMENTAL MATERIALS; CONTAMINATION; RADIOACTIVE EFFLUENTS; EMISSION; HIGH-LEVEL...

  16. Materials Science Application Training 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterialMaterials MaterialsMaterials

  17. Material for Point Design (final summary of DIME material)

    SciTech Connect (OSTI)

    Bradley, Paul A.

    2014-02-25

    These slides summarize the motivation of the Defect Induced Mix Experiment (DIME) project, the “point design” of the Polar Direct Drive (PDD) version of the NIF separated reactant capsule, the experimental requirements, technical achievements, and some useful backup material. These slides are intended to provide much basic material in one convenient location and will hopefully be of some use for subsequent experimental projects.

  18. Advanced Materials Center of Excellence Jason Boehm

    E-Print Network [OSTI]

    Advanced Materials Center of Excellence Webinar Jason Boehm Program Coordination Office National · Materials Genome Initiative · Advanced Materials Center of Excellence · Overview Federal Funding Opportunity one Center focused on Advanced Materials Depending on FY2014 Funding NIST expects to announce

  19. Critical Materials For Sustainable Energy Applications

    E-Print Network [OSTI]

    ..................................................22 Case Study: Solar/Photovoltaics ......................................24 Materials Reduction

  20. FURTHERING THE RECLAIMED MATERIALS EXPERIENCE

    E-Print Network [OSTI]

    Bartels, Robert A.

    2012-08-31

    that would cover a broad spectrum of Design Management principles. Scope of Work: The topic is specifi cally related to the reclaimed materials industry and ways to improve the buyer's and seller's experience in relation to the location and sale of materials...

  1. Superconductivity and Magnetism: Materials Properties

    E-Print Network [OSTI]

    .g. within high-Tc superconductivity, magnetic superconductors, MgB2, CMR materials, nanomagnetism and spin#12;#12;Superconductivity and Magnetism: Materials Properties and Developments #12;Copyright 2003 Risø National Laboratory Roskilde, Denmark ISBN 87-550-3244-3 ISSN 0907-0079 #12;Superconductivity

  2. A strongly coupled anyon material

    E-Print Network [OSTI]

    Daniel K. Brattan

    2014-12-03

    We use alternative quantisation of the D3-D5 system to explore properties of a strongly coupled anyon material at finite density and temperature. We study the transport properties of the material and find both diffusion and massive holographic zero sound modes. By studying the anyon number conductivity we also find evidence for the anyonic analogue of the metal-insulator transition.

  3. Mechanics of Materials and Structures

    E-Print Network [OSTI]

    Pellegrino, Sergio

    Journal of Mechanics of Materials and Structures A ZERO-STIFFNESS ELASTIC SHELL STRUCTURE Simon D publishers #12;JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES Vol. 6, No. 1-4, 2011 msp A ZERO-STIFFNESS ELASTIC SHELL STRUCTURE SIMON D. GUEST, ELIZBAR KEBADZE AND SERGIO PELLEGRINO A remarkable shell structure

  4. Radioactive Material Transportation Practices Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-04

    This Manual establishes standard transportation practices for the Department of Energy, including National Nuclear Security Administration to use in planning and executing offsite shipments of radioactive materials and waste. The revision reflects ongoing collaboration of DOE and outside organizations on the transportation of radioactive material and waste. Supersedes DOE M 460.2-1.

  5. Inorganic Materials and Assembly Techniques

    E-Print Network [OSTI]

    Rogers, John A.

    a transformational set of capabilities for high performance flexible/stretchable electronics. KEYWORDS | Bio-integrated electronics; flexible electronics; inorganic materials; integrated systems; stretchable electron- icsINVITED P A P E R Inorganic Materials and Assembly Techniques for Flexible and Stretchable

  6. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27

    This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6. Admin Chg 1, 8-3-11.

  7. Material stabilization characterization management plan

    SciTech Connect (OSTI)

    GIBSON, M.W.

    1999-08-31

    This document presents overall direction for characterization needs during stabilization of SNM at the Plutonium Finishing Plant (PFP). Technical issues for needed data and equipment are identified. Information on material categories and links to vulnerabilities are given. Comparison data on the material categories is discussed to assist in assessing the relative risks and desired processing priority.

  8. High Performance Bulk Thermoelectric Materials

    SciTech Connect (OSTI)

    Ren, Zhifeng

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  9. Creating Wave-Focusing Materials

    E-Print Network [OSTI]

    A. G. Ramm

    2008-05-16

    Basic ideas for creating wave-focusing materials by injecting small particles in a given material are described. The number of small particles to be injected around any point is calculated. Inverse scattering problem with fixed wavenumber and fixed incident direction of the plane acoustic wave is formulated and solved.

  10. Voltage sensor and dielectric material

    DOE Patents [OSTI]

    Yakymyshyn, Christopher Paul; Yakymyshyn, Pamela Jane; Brubaker, Michael Allen

    2006-10-17

    A voltage sensor is described that consists of an arrangement of impedance elements. The sensor is optimized to provide an output ratio that is substantially immune to changes in voltage, temperature variations or aging. Also disclosed is a material with a large and stable dielectric constant. The dielectric constant can be tailored to vary with position or direction in the material.

  11. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  12. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  13. Materials Technologies: Goals, Strategies, and Top Accomplishments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Technologies: Goals, Strategies, and Top Accomplishments (Brochure), Vehicle Technologies Program (VTP) Materials Technologies: Goals, Strategies, and Top Accomplishments...

  14. Materials Classification & Accelerated Property Predictions using...

    Office of Scientific and Technical Information (OSTI)

    Materials Classification & Accelerated Property Predictions using Machine Learning Citation Details In-Document Search Title: Materials Classification & Accelerated Property...

  15. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    Refrigeration Optimization of Thermoelectric Materialof specific material optimization. One should note, Goldsmidrebirth. Optimization of Thermoelectric Material Systems and

  16. ITP Industrial Materials: Development and Commercialization of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and...

  17. Engineering and Materials for Automotive Thermoelectric Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Materials for Automotive Thermoelectric Applications Engineering and Materials for Automotive Thermoelectric Applications Design and optimization of TE exhaust generator,...

  18. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities...

  19. Downloads & Patient Materials - HPMC Occupational Health Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health Education & Wellness > Downloads & Patient Materials Health Education & Wellness Downloads & Patient Materials Ergonomics Fitness & Exercise Men's Health Nutrition Health &...

  20. Combinatorial Approaches for Hydrogen Storage Materials (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial Methods at the...