Powered by Deep Web Technologies
Note: This page contains sample records for the topic "material assessment process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Materials - Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Assessment The staff of the Energy Systems Division has a long history of technical and economic analysis of the production and recycling of materials for transportation...

2

GRR/Section 18 - Waste and Hazardous Material Assessment Process | Open  

Open Energy Info (EERE)

- Waste and Hazardous Material Assessment Process - Waste and Hazardous Material Assessment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18 - Waste and Hazardous Material Assessment Process 18 - WasteAndHazardousMaterialAssessmentProcess.pdf Click to View Fullscreen Contact Agencies Environmental Protection Agency Regulations & Policies RCRA CERCLA 40 CFR 261 Triggers None specified Click "Edit With Form" above to add content 18 - WasteAndHazardousMaterialAssessmentProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The use of underground and above ground storage tanks, discovery of waste

3

materials processing  

Science Conference Proceedings (OSTI)

... of the Stainless Steel Elaborated by the Duplex Procedure (Electric Furnace- VOD Installation) [pp. ... Materials Processing on a Solar Furnace Satellite [pp.

4

Technology Assessment of Laser-Assisted Materials Processing in Space  

Science Conference Proceedings (OSTI)

Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, shock processing, and surface treatments. These attributes are attractive for the supportability of longer-term missions in space due to the multi-functionality ...

Nagarathnam Karthik; Taminger Karen M. B.

2001-02-01T23:59:59.000Z

5

Laser Shock Processing of Metallic Materials: Coupling of Laser-Plasma Interaction and Material Behaviour Models for the Assessment of Key Process Issues  

SciTech Connect

Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm{sup 2} with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals. The main advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Although significant work from the experimental side has been contributed to explore the optimum conditions of application of the treatments and to assess their ultimate capability to provide enhanced mechanical behaviour to work-pieces of typical materials, only limited attempts have been developed in the way of full comprehension and predictive assessment of the characteristic physical processes and material transformations with a specific consideration of real material properties. In the present paper, a review on the physical issues dominating the development of LSP processes from a high intensity laser-matter interaction point of view is presented along with the theoretical and computational methods developed by the authors for their predictive assessment and practical results at laboratory scale on the application of the technique to different materials.

Ocana, J. L.; Morales, M.; Molpeceres, C.; Porro, J. A. [Centro Laser UPM. Universidad Politecnica de Madrid, Campus Sur UPM. Edificio La Arboleda. Ctra. de Valencia, km. 7.3. 28031 Madrid (Spain)

2010-10-08T23:59:59.000Z

6

Materials Processing & Manufacturing Division  

Science Conference Proceedings (OSTI)

In its broadest scope, the Materials Processing & Manufacturing Division (MPMD) covers manufacturing from product design to production, integrating process ...

7

Materials Processing Fundamentals  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium, Materials Processing Fundamentals. Sponsorship, The Minerals, Metals ...

8

Materials Processing Fundamentals  

Science Conference Proceedings (OSTI)

Symposium, Materials Processing Fundamentals ... to be covered in the symposium are all aspects of the fundamentals, synthesis, analysis, design, monitoring, ...

9

Nonconforming Material Process  

NLE Websites -- All DOE Office Websites (Extended Search)

11 Nonconforming Material / Product Process 11_0304 Page 1 of 6 11 Nonconforming Material / Product Process 11_0304 Page 1 of 6 EOTA - Business Process Document Title: Nonconforming Material / Product Process Document Number: P-011 Rev. 11_0304 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: EOTA Employees Referenced Document(s): F-015 Nonconformance Report, REG-003 Record Register, ISDP-002 Training Production Process P-011 Nonconforming Material / Product Process 11_0304 Page 2 of 6 Revision History: Rev. Description of Change A Initial Release 08_0416 Added verbiage CAR/PAR/IO to Step 2 P-011 Nonconforming Material / Product Process 11_0304 Page 3 of 6 I. Purpose To establish the process for nonconforming material to be identified, segregated and dispositioned to prevent its unintended

10

Assessment of materials for use in a solar ceramic receiver for chemical process heat  

DOE Green Energy (OSTI)

Candidate ceramic matrials were evaluated on the basis of two potential temperature operating regimes: 600 to 1300/sup 0/C (1100 to 2400/sup 0/F) and 1300 to 2200/sup 0/C (2400 to 4000/sup 0/F). Discussion of properties important to the proposed application includes thermal shock resistance, tensile strength, creep resistance, oxidation resistance, vaporization rate, chemical inertness to process reactants and products, cost, and fabricability. Many ceramic materials were considered for the 600 to 1300/sup 0/C operating regime. On the basis of a significant data base on tensile strength, thermal expansion, thermal conductivity, fabricability, and stability, the leading candidates were identified, in decreasing order of preference, as (1) silicon carbide, (2) magnesium oxide, (3) cordierite (2MgO.2Al/sub 2/O/sub 3/.5SiO/sub 2/) known as MAS (4) aluminum oxide, (5) silicon nitride, (6) silicon aluminum oxynitrides (Si/sub w/Al/sub x/N/sub y/O/sub z/) known as sialons, and (7) beryllium oxide. Selection of candidate materials for the 1300 to 2200/sup 0/C regime was restricted because of the insufficient property data and operational experience on key performance parameters. Leading candidates were identified, in decreasing ordr of preference, as (1) zirconium oxide (Y/sub 2/O/sub 3/) stabilized), (2) magnesium oxide, (3) cerium oxide, (4) beryllium oxide, (5) calcium oxide, and (6) thorium and uranium oxide.

Tennery, V.J.; Weber, G.W.

1979-02-01T23:59:59.000Z

11

Microwave Processing of Materials  

Science Conference Proceedings (OSTI)

Furthermore, lower energy consumption is another aspect that the world should consider to cope with this matter. Microwave processing of materials is a clean, ...

12

Laser Application for Material Processing  

Science Conference Proceedings (OSTI)

Oct 10, 2012 ... Advanced Materials, Processes and Applications for Additive Manufacturing: Laser Application for Material Processing Program Organizers: ...

13

Materials Processing Fundamentals Symposium I  

Science Conference Proceedings (OSTI)

Sponsored by: Jt. EPD/MDMD Synthesis, Control, and Analysis in Materials Processing Committee, EPD Process Fundamentals, Aqueous Processing, Copper, ...

14

Advanced Materials Processing  

Science Conference Proceedings (OSTI)

Feb 15, 2010... the copper bearing materials which did not contain inflammable materials due to a restriction on capacity of furnace waste heat boilers.

15

TMS 2010: Materials Processing and Production  

Science Conference Proceedings (OSTI)

Materials Processing and Production Advances in the vitally important field of materials processing will receive extensive coverage. Materials processing ...

16

MATERIALS PROCESSING FUNDAMENTALS: II  

Science Conference Proceedings (OSTI)

... Deodoro Trani Capocchi, Department of Metallurgical and Materials Engineering, Escola Politecnica de Universidade de Sao Paulo, Sao Paulo SP-

17

Processing Materials for Properties  

Science Conference Proceedings (OSTI)

Functional Products: Fuel Cells, Solar Cells, Flat Panel Display, LED,. Data Storage, Environmental (materials for CO2 sequestration, soil remediation, water

18

Draft Risk Assessment Processes  

Science Conference Proceedings (OSTI)

A cyber security risk assessment process includes the characterization of assets. A thorough asset characterization process can lead to a more robust threat characterization. One means of enhancing the thoroughness of the asset-and-threat characterization processes is to improve the characterization mechanisms. This technical update supports this approach by providing the results of initial research and developing a framework to support further analysis.This project builds upon the work ...

2012-12-28T23:59:59.000Z

19

PROCESS OF FORMING POWDERED MATERIAL  

DOE Patents (OSTI)

A process of forming high-density compacts of a powdered ceramic material is described by agglomerating the powdered ceramic material with a heat- decompossble binder, adding a heat-decompossble lubricant to the agglomerated material, placing a quantity of the material into a die cavity, pressing the material to form a compact, pretreating the compacts in a nonoxidizing atmosphere to remove the binder and lubricant, and sintering the compacts. When this process is used for making nuclear reactor fuel elements, the ceramic material is an oxide powder of a fissionsble material and after forming, the compacts are placed in a cladding tube which is closed at its ends by vapor tight end caps, so that the sintered compacts are held in close contact with each other and with the interior wall of the cladding tube.

Glatter, J.; Schaner, B.E.

1961-07-14T23:59:59.000Z

20

Laser Materials Processing: Past, Present and Future  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2010. Symposium, Laser Applications in Materials Processing. Presentation Title, Laser Materials ...

Note: This page contains sample records for the topic "material assessment process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Battery Materials and Electrochemical Processes I - Programmaster ...  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Mesoscale Computational Materials Science of Energy Materials: Battery Materials and Electrochemical Processes I Sponsored by: TMS ...

22

Metabonomics for detection of nuclear materials processing.  

SciTech Connect

Tracking nuclear materials production and processing, particularly covert operations, is a key national security concern, given that nuclear materials processing can be a signature of nuclear weapons activities by US adversaries. Covert trafficking can also result in homeland security threats, most notably allowing terrorists to assemble devices such as dirty bombs. Existing methods depend on isotope analysis and do not necessarily detect chronic low-level exposure. In this project, indigenous organisms such as plants, small mammals, and bacteria are utilized as living sensors for the presence of chemicals used in nuclear materials processing. Such 'metabolic fingerprinting' (or 'metabonomics') employs nuclear magnetic resonance (NMR) spectroscopy to assess alterations in organismal metabolism provoked by the environmental presence of nuclear materials processing, for example the tributyl phosphate employed in the processing of spent reactor fuel rods to extract and purify uranium and plutonium for weaponization.

Alam, Todd Michael; Luxon, Bruce A. (University Texas Medical Branch); Neerathilingam, Muniasamy (University Texas Medical Branch); Ansari, S. (University Texas Medical Branch); Volk, David (University Texas Medical Branch); Sarkar, S. (University Texas Medical Branch); Alam, Mary Kathleen

2010-08-01T23:59:59.000Z

23

An Assessment Model on Green Degree of Biodegradable Packaging Materials  

Science Conference Proceedings (OSTI)

An assessment model of green degree of biodegradable packaging materials is built. The first-order assessment indexes are composed of environmental properties, energy properties, resource properties and economy and the second order assessment index are ... Keywords: packaging materials, analytic hierarchy process, life cycle assessment

Xiaoming Zuo; Zhaomei Xu

2010-03-01T23:59:59.000Z

24

Process Management Maturity Assessment Process Management Maturity Assessment  

E-Print Network (OSTI)

This paper outlines a Business Process Management implementation approach in a large international company. It introduces a Process Management Maturity Assessment (PMMA) which was developed to assess the implementation of Business Process Management. The maturity model is based on the assessment of nine categories which comprehensively cover all aspects which impact the success of Business Process Management. Some findings of the first assessment round are presented to illustrate the benefits of the PMMA approach.

Michael Rohloff; Michael Rohloff

2009-01-01T23:59:59.000Z

25

Advanced Materials and Processes for Extreme Environments  

Science Conference Proceedings (OSTI)

Symposium, Advanced Materials and Reservoir Engineering for Extreme Oil & Gas Environments. Presentation Title, Advanced Materials and Processes for ...

26

Module Encapsulation Materials, Processing and Testing (Presentation)  

DOE Green Energy (OSTI)

Study of PV module encapsulation materials, processing, and testing shows that overall module reliability is determined by all component materials and processing factors.

Pern, J.

2008-12-01T23:59:59.000Z

27

Processing Materials for Properties - Programmaster.org  

Science Conference Proceedings (OSTI)

Microstructural Development during Thermo Mechanical Processing of Pipeline Steel · Microstructure Characterization of Joining Dissimilar Materials.

28

Laser Materials Processing - Programmaster.org  

Science Conference Proceedings (OSTI)

Oct 17, 2011 ... Laser Applications in Materials Technology (II): Laser Materials Processing Sponsored by: MS&T Organization Program Organizers: Stephen ...

29

Microstructural Processes in Irradiated Materials  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... TMS/ASM: Nuclear Materials Committee ... Both experimental and theoretical studies are solicited with a particular emphasis on linking state-of-the-art modeling with ... Radiation damage in fusion & fission reactor materials

30

Advanced Material Development, Processing and Characterization  

The patented suite of Advanced Material Development, Processing and Characterization offers armor structures to prevent unauthorized entry or ...

31

LOW ENERGY BEAM PROCESSES IN ELECTRONIC MATERIALS ...  

Science Conference Proceedings (OSTI)

LOW ENERGY BEAM PROCESSES IN ELECTRONIC MATERIALS: Session II: Shallow Junction and Low Energy Implantation. Sponsored by: EMPMD Thin ...

32

Novel SOFC Processing Techniques Employing Printed Materials  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2011. Symposium, Energy Conversion/Fuel Cells. Presentation Title, Novel SOFC Processing ...

33

Transport Phenomena in Materials Processing  

Science Conference Proceedings (OSTI)

Jul 1, 1998 ... Print Book: Handbook on Material and Energy Balance Calculations in Metallurgical ... Fundamentals; Molten Metal and Solidification; ...

34

Microstructural Processes in Irradiated Materials  

Science Conference Proceedings (OSTI)

Aug 2, 2010 ... Both experimental and theoretical studies are solicited with a particular ... of Structural Materials Pre-Selected for Advanced Nuclear Reactors.

35

Processing of Anode Cover Material  

Science Conference Proceedings (OSTI)

Determination of Cryolite Ratio of Aluminum Electrolytes · Development and Application of a Multivariate Process Parameters Intelligence Control Technology  ...

36

Fuzzy Assessment of Material Recyclability and Its Applications  

Science Conference Proceedings (OSTI)

A method to assess material recyclability using fuzzy logic is presented. Recyclability of materials is defined as a function of several variables, called basic indicators, which influence the technology and economics of the recycling processes, policies ... Keywords: Monotonic fuzzy systems, Recyclability

Yannis A. Phillis; Vassilis S. Kouikoglou; Xiaomin Zhu

2009-06-01T23:59:59.000Z

37

Ion beam processing of advanced electronic materials  

SciTech Connect

This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

1989-01-01T23:59:59.000Z

38

Solution-based Processing for Ceramic Materials  

Science Conference Proceedings (OSTI)

Active R&D efforts continue in the development of materials with novel or improved properties, processes that offer enhanced control, reliability, reproducibility, ...

39

Solution-Based Processing for Ceramic Materials  

Science Conference Proceedings (OSTI)

Active R&D efforts continue in the development of materials with novel or improved properties, processes that offer enhanced control, reliability, reproducibility ...

40

J. Materials and Processes for Enhanced Performance  

Science Conference Proceedings (OSTI)

... and Recovery Process of Rare Metals from Oil Desulfurization Spent Catalyst ... Low-cost Precursors for In-situ Synthesis of Composite Materials Using ...

Note: This page contains sample records for the topic "material assessment process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy Savings in Materials Processing Using Electromagnetic ...  

Science Conference Proceedings (OSTI)

It is only in the last two decades that the microwave energy is being increasingly applied in materials processing. Besides its several advantages over ...

42

Solidification Processing of Materials in Magnetic Fields  

Science Conference Proceedings (OSTI)

7. S. Asai, Metallurgical Aspects of Electromagnetic Processing of Materials in Liquid Metal Magnetohydrodynamics, ed. J. Lielpeteris and R. Moreau (Boston, ...

43

LOW ENERGY PROCESSES IN ELECTRONIC MATERIALS: IV ...  

Science Conference Proceedings (OSTI)

LOW ENERGY PROCESSES IN ELECTRONIC MATERIALS: Session IV: Plasma ... Goorsky, H.P. Gillis, A.M. Andrews, University of California, Los Angeles, CA.

44

Advanced Materials and Processes for Gas Turbines  

Science Conference Proceedings (OSTI)

Jul 1, 2003 ... Out of Print. Description These proceedings from the United Engineering Foundation's Advanced Materials and Processes for Gas Turbines ...

45

Solution-Based Processing for Ceramic Materials  

Science Conference Proceedings (OSTI)

Apr 2, 2012 ... Active R&D efforts continue in the development of materials with novel or improved properties, processes that offer enhanced control, reliability, ...

46

Methodology for assessing systems materials requirements  

SciTech Connect

A potential stumbling block to new system planning and design is imprecise, confusing, or contradictory data regarding materials - their availability and costs. A methodology is now available that removes this barrier by minimizing uncertainties regarding materials availability. Using this methodology, a planner can assess materials requirements more quickly, at lower cost, and with much greater confidence in the results. Developed specifically for energy systems, its potential application is much broader. This methodology and examples of its use are discussed.

Culver, D.H.; Teeter, R.R.; Jamieson, W.M.

1980-01-01T23:59:59.000Z

47

Materials Processing and Product Fabrication Course Description  

E-Print Network (OSTI)

and fundamental nature of these processes will be developed in lectures and their pragmatic application Handbooks, Volumes 1-18. #12;Syllabus Topics: 1. General Introduction 1.1 History of Materials Processing 1

48

Process for producing dispersed particulate composite materials  

DOE Patents (OSTI)

This invention is directed to a process for forming noninterwoven dispersed particulate composite products. In one case a composite multi-layer film product comprises a substantially noninterwoven multi-layer film having a plurality of discrete layers. This noninterwoven film comprises at least one discrete layer of a first material and at least one discrete layer of a second material. In another case the first and second materials are blended together with each other. In either case, the first material comprises a metalloid and the second material a metal compound. At least one component of a first material in one discrete layer undergoes a solid state displacement reaction with at least one component of a second material thereby producing the requisite noninterwoven composite film product. Preferably, the first material comprises silicon, the second material comprises Mo.sub.2 C, the third material comprises SiC and the fourth material comprises MoSi.sub.2.

Henager, Jr., Charles H. (Richland, WA); Hirth, John P. (Viola, ID)

1995-01-01T23:59:59.000Z

49

Petroleum recovery materials and process  

SciTech Connect

A petroleum recovery process uses micellar solutions made from liquefied petroleum gas (LPG). During the process, microemulsions utilizing LPG in the external phase are injected through at least one injection well into the oil-bearing formations. The microemulsions are driven toward at least one recovery well and crude petroleum is recovered through the recovery well. The LPG in the micellar system may be propane or butane. Corrosion inhibitors can be used in sour fields, and bactericides can be used where necessary. The microemulsions used contain up to about 10-20% water and about 8% surfactant. (4 claims)

Gogarty, W.B.; Olson, R.W.

1967-01-31T23:59:59.000Z

50

Plant Networks for Processing Recyclable Materials  

Science Conference Proceedings (OSTI)

We use a modified optimal market area model to examine how links between material recycling and other aspects of operations strategy can shape plant networks for the processing of recyclable materials. We characterize the complementarity of the recyclate ... Keywords: localization, material versatility, minimills, operations strategy, optimal market area, plant networks, recycling

Lieven Demeester, Mei Qi, Luk N. Van Wassenhove

2013-10-01T23:59:59.000Z

51

Batteries - Materials Processing and Manufacturing Breakout session  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Processing and Manufacturing Materials Processing and Manufacturing Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * PHEV40 and AEV 100 possible with success in current R&D * Achievable with Li-ion manufacturing improvements and advanced chemistries in current Li-ion R&D * AEV300 more challenging * Requires manufacturing improvements and materials and chemistry improvements * Quantify benefits/ drawbacks of fast charging vs. increased electrode cost Barriers Interfering with Reaching the Targets * Materials cost * Need: Material synthesis in large quantities/ with increased impurities and broader size distributions or advanced manufacturing * Electrode thickness - manufacturing and performance * Separator cost/ performance/ safety

52

New NSF Program Accepting Proposals for Material Processing and ...  

Science Conference Proceedings (OSTI)

Aug 27, 2013 ... Structural Materials—Materials that, in service, bear mechanical load. Materials Processing—Processes that convert material into useful form ...

53

Thermal plasma processing of materials  

SciTech Connect

Emphasis has been on plasma synthesis of fine powders, plasma Chemical Vapor Deposition (CVD), on related diagnostics, and on modeling work. Since plasma synthesis as well as plasma CVD make frequent use of plasma jets, the beginning has been devoted of plasma jets and behavior of particulates injected into such plasma jets. Although most of the construction of the Triple-Torch Plasma Reactor (TTPR) has already been done, modifications have been made in particular modifications required for plasma CVD of diamond. A new reactor designed for Counter-Flow Liquid Injection Plasma Synthesis (CFLIPS) proved to be an excellent tool for synthesis of fine powders as well as for plasma CVD. An attempt was made to model flow and temperature fields in this reactor. Substantial efforts were made to single out those parameters which govern particle size, size distribution, and powder quality in our plasma synthesis experiments. This knowledge is crucial for controlling the process and for meaningful diagnostics and modeling work. Plasma CVD of diamond films using both reactors has been very successful and we have been approached by a number of companies interested in using this technology for coating of tools.

Pfender, E.; Heberlein, J.

1992-02-01T23:59:59.000Z

54

EMSL: Science: Energy Materials and Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Materials & Processes Energy Materials & Processes Energy Materials logo TEM image In situ transmission electron microscopy at EMSL was used to study structural changes in the teamÂ’s new anode system. Real-time measurements show silicon nanoparticles inside carbon shells before (left) and after (right) lithiation. Energy Materials and Processes focuses on the dynamic transformation mechanisms and physical and chemical properties at critical interfaces in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination of critical molecular-level information along with predictive modeling of interfaces and their unique properties EMSL helps enable the design and development of practical, efficient, environmentally

55

The Production and Processing of Inorganic Materials  

Science Conference Proceedings (OSTI)

Oct 1, 2002 ... Print Book: Handbook on Material and Energy Balance Calculations in ... phase equilibria and transformation, process engineering, and surface chemistry to ... The text focuses on fundamentals and how fundamentals can be ...

56

Materials Processing for Lithium-Ion Batteries  

SciTech Connect

Extensive efforts have been undertaken to develop and optimize new materials for lithium-ion batteries to address power and energy demands of mobile electronics and electric vehicles. However, the introduction of large-format lithium-ion batteries is hampered by high cost, safety concerns, and deficiencies in energy density and calendar life. Advanced materials-processing techniques can contribute solutions to such issues. From that perspective, this work summarizes the materials-processing techniques used to fabricate the cathodes, anodes, and separators used in lithium-ion batteries.

Li, Jianlin [ORNL; Daniel, Claus [ORNL; Wood III, David L [ORNL

2010-01-01T23:59:59.000Z

57

Preliminary materials assessment for the Satellite Power System (SPS)  

DOE Green Energy (OSTI)

Presently, there are two SPS reference design concepts (one using silicon solar cells; the other using gallium arsenide solar cells). A materials assessment of both systems was performed based on the materials lists set forth in the DOE/NASA SPS Reference System Report: Concept Development and Evaluation Program. This listing identified 22 materials (plus miscellaneous and organics) used in the SPS. Tracing the production processes for these 22 materials, a total demand for over 20 different bulk materials (copper, silicon, sulfuric acid, etc.) and nealy 30 raw materials (copper ore, sand, sulfur ore, etc.) was revealed. Assessment of these SPS material requirements produced a number of potential material supply problems. The more serious problems are those associated with the solar cell materials (gallium, gallium arsenide, sapphire, and solar grade silicon), and the graphite fiber required for the satellite structure and space construction facilities. In general, the gallium arsenide SPS option exhibits more serious problems than the silicon option, possibly because gallium arsenide technology is not as well developed as that for silicon. Results are presented and discussed in detail. (WHK)

Teeter, R.R.; Jamieson, W.M.

1980-01-01T23:59:59.000Z

58

Thermal storage material and process for making  

SciTech Connect

A thermal storage structure and process for making the same comprises a base material of a substantially open cell structure, with the pores interconnected and open to the surface. The open cell structure may be a volcanic rock or alternatively may be a synthetically made structure such as foamed glass, foamed concrete or foamed metal. The open cell material is completely saturated with a latent heat storage component such as a salthydrate or eutectic salts. In the process of making the latent heat storage structure, the latent heat storage component is melted in a container and the open cell structure is placed therein, whereupon the melt is spontaneously imbibed by the structure, replacing the air in the open cell structure with the liquid latent heat storage component. The structure, after cooling, is packaged or encapsulated with a vapor impermeable material. In a preferred embodiment of foamed glass material, the structure is sealed in an aluminum foil, and in an alternative embodiment, the foamed aluminum material is sealed with an aluminum foil.

Boardman, B.J.

1981-05-19T23:59:59.000Z

59

Laser Applications in Materials Processing - Programmaster.org  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2010. Symposium, Laser Applications in Materials Processing. Sponsorship, MS&T ...

60

Teaching and Learning Green Materials Selection and Processes  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2010. Symposium, Green Technologies for Materials Manufacturing and Processing II.

Note: This page contains sample records for the topic "material assessment process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fundamental Properties and Processes of Energetic Materials  

E-Print Network (OSTI)

Energetic materials comprise a set of systems of tremendous technological importance. Besides helping shape landscapes to establish communications, they have been used to reach fuel reservoirs, deploy safety bags and prevent heart strokes. Understanding its behavior can help in attaining strategic and tactical superiority, and importantly, preserve lives of people who handle these materials. The large discrepancy in length and time scales at which characteristic processes of energetic materials are of relevance pose a major challenge for current simulation techniques. We present a systematic study of crystalline energetic materials of different sensitivity and analyze their properties at different theoretical levels. Equilibrium structures, vibrational frequencies, conformational rearrangement and mechanical properties can be calculated within the density functional theory and molecular dynamics at finite temperatures. We have found marked differences in the calculated properties in systems with ranging sensitivities. Reactions at elevated temperatures have been studied using ab initio molecular dynamics method for crystals of nitroethane. Furthermore, while presenting the state of the art of energetic materials modeling, the limitations of each methodology are also discussed. Prospective systems and an elasticity driven approach that can be applied to other type of materials is also presented.

Ojeda Mota, Oscar Ulises

2011-08-01T23:59:59.000Z

62

Assessment tool for nuclear material acquisition pathways  

E-Print Network (OSTI)

An assessment methodology has been developed at Texas A&M University for predicting weapons useable material acquisition by a terrorist organization or rogue state based on an acquisition network simulation. The network has been designed to include all of the materials, facilities, and expertise (each of which are represented by a unique node) that must be obtained to acquire Special Nuclear Material (SNM). Using various historical cases and open source expert opinion, the resources required to successfully obtain the goal of every node within the network was determined. A visual representation of the network was created within Microsoft Visio and uses Visual Basic for Applications (VBA) to analyze the network. This tool can be used to predict the most likely pathway(s) that a predefined organization would take in attempting to acquire SNM. The methodology uses the resources available to the organization, along with any of the nodes to which the organization may already have access, to determine which path the organization is most likely to attempt. Using this resource based decision model, various sample simulations were run to exercise the program. The results of these simulations were in accordance with what was expected for the resources allocated to the organization being modeled. The program was demonstrated to show that it was capable of taking many complex resources considerations into account and modeled them accurately.

Ford, David Grant

2008-05-01T23:59:59.000Z

63

Second National Climate Assessment: Background and Process  

NLE Websites -- All DOE Office Websites (Extended Search)

information on the background and process materials that were used to produce the report: An Agenda for Climate Science Impacts Primary Sources of Information Data Sets References...

64

Low cost materials of construction for biological processes: Proceedings  

DOE Green Energy (OSTI)

The workshop was held, May 1993 in conjunction with the 15th Symposium on Biotechnology for Fuels and Chemicals. The purpose of this workshop was to present information on the biomass to ethanol process in the context of materials selection and through presentation and discussion, identify promising avenues for future research. Six technical presentations were grouped into two sessions: process assessment and technology assessment. In the process assessment session, the group felt that the pretreatment area would require the most extensive materials research due the complex chemical, physical and thermal environment. Discussion centered around the possibility of metals being leached into the process stream and their effect on the fermentation mechanics. Linings were a strong option for pretreatment assuming the economics were favorable. Fermentation was considered an important area for research also, due to the unique complex of compounds and dual phases present. Erosion in feedstock handling equipment was identified as a minor concern. In the technology assessment session, methodologies in corrosion analysis were presented in addition to an overview of current coatings/linings technology. Widely practiced testing strategies, including ASTM methods, as well as novel procedures for micro-analysis of corrosion were discussed. Various coatings and linings, including polymers and ceramics, were introduced. The prevailing recommendations for testing included keeping the testing simple until the problem warranted a more detailed approach and developing standardized testing procedures to ensure the data was reproducible and applicable. The need to evaluate currently available materials such as coatings/linings, carbon/stainless steels, or fiberglass reinforced plastic was emphasized. It was agreed that economic evaluation of each material candidate must be an integral part of any research plan.

Not Available

1993-05-13T23:59:59.000Z

65

ACTIVE PROCESS DEVELOPMENT ACTIVITIES FOR PROCESSING OF FEED MATERIALS  

SciTech Connect

The carbonate and organic leaching processes for the recovery of U from its ores are outlined. The Excer prccess (ion-exchange conversion and electrolytic reduction) and the Fluorox process (starch-- HF reaction) for the production of UF/sub 4/ from ore concentrate and depleted reactor fuels are described. The fluidized-bed process for UF/sub 4/ production from UO/sub 2/(NO/ sub 3/)/sub 2/ is also described. Methods for improving the reactivity of UO/sub 3/ and mechanical and thermal processes for increasing the density of UF/sub 4/ were investigated. Applications of fluoride volatility prccesses to feed materials are discussed. (C.W.H.)

1956-01-01T23:59:59.000Z

66

Generalized Comprehensive Mitigation Assessment Process (GCOMAP) | Open  

Open Energy Info (EERE)

Generalized Comprehensive Mitigation Assessment Process (GCOMAP) Generalized Comprehensive Mitigation Assessment Process (GCOMAP) (Redirected from GCOMAP) Jump to: navigation, search Tool Summary Name: Generalized Comprehensive Mitigation Assessment Process (GCOMAP) Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Land Focus Area: Forestry Topics: GHG inventory, Pathways analysis Website: ies.lbl.gov/taxonomy/term/34 References: GCOMAP Project [1] Logo: Generalized Comprehensive Mitigation Assessment Process (GCOMAP) "The GCOMAP project reported on the global potential for carbon sequestration in forest plantations, and the reduction of carbon emissions from deforestation, in response to six carbon price scenarios from 2000 to 2100. These carbon price scenarios cover a range typically seen in global

67

Generalized Comprehensive Mitigation Assessment Process (GCOMAP) | Open  

Open Energy Info (EERE)

Generalized Comprehensive Mitigation Assessment Process (GCOMAP) Generalized Comprehensive Mitigation Assessment Process (GCOMAP) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Generalized Comprehensive Mitigation Assessment Process (GCOMAP) Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Land Focus Area: Forestry Topics: GHG inventory, Pathways analysis Website: ies.lbl.gov/taxonomy/term/34 References: GCOMAP Project [1] Logo: Generalized Comprehensive Mitigation Assessment Process (GCOMAP) "The GCOMAP project reported on the global potential for carbon sequestration in forest plantations, and the reduction of carbon emissions from deforestation, in response to six carbon price scenarios from 2000 to 2100. These carbon price scenarios cover a range typically seen in global

68

National Climate Assessment: Background and Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Background and Process Print E-mail Background and Process Print E-mail Please view the links below to find out more about the background and process of the National Climate Assessment: National Climate Assessment Development & Advisory Committee Charter ( PDF) National Climate Assessment Proposed 2013 Report Outline [updated on 12/08/2011] (PDF) Strategy On May 20th, 2011 the National Climate Assessment released the following two strategy documents: National Climate Assessment Strategy Summary National Climate Assessment Engagement Strategy Federal Register Notices November 18, 2013 National Climate Assessment and Development Advisory Committee (NCADAC) Notice of Open Meeting pdf | html A Notice by the National Oceanic and Atmospheric Administration on 10/29/2013 This notice sets forth the schedule of a forthcoming meeting of the DoC NOAA National Climate Assessment and Development Advisory Committee (NCADAC).

69

Low Cost Materials and Processing - Programmaster.org  

Science Conference Proceedings (OSTI)

Feb 15, 2010 ... Cost-Affordable Titanium III: Low Cost Materials and Processing Sponsored by: The Minerals, Metals and Materials Society, TMS Structural ...

70

Membrane Materials for Carbon Capture from Power Processes  

Science Conference Proceedings (OSTI)

Symposium, Materials for CO2 Capture and Conversion. Presentation Title, Membrane Materials for Carbon Capture from Power Processes. Author(s), Tim ...

71

First National Climate Assessment: Background and Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Background and Process Print E-mail Workshops of the First National Climate Assessment In February 1997, the U.S. Global Change Research Program and the Office of Science and...

72

3.082 Materials Processing Laboratory, Spring 2003  

E-Print Network (OSTI)

Student project teams design and fabricate a materials engineering prototype using appropriate processing technologies (injection molding, thermoforming, investment casting, powder processing, brazing, etc.). Emphasis on ...

Chiang, Yet-Ming

73

Processing and Performance of Materials using Microwaves, Electric ...  

Science Conference Proceedings (OSTI)

Symposium, Rustum Roy Memorial Symposium: Processing and Performance of Materials using Microwaves, Electric and Magnetic Fields, Ultrasound, Lasers, ...

74

TMS 2013: Technical Area - Materials Processing and Production  

Science Conference Proceedings (OSTI)

MATERIALS PROCESSING AND PRODUCTION. Abstract submission for the TMS 2013 Annual Meeting is now closed. PLANNED SYMPOSIA - Place your ...

75

Green Materials and Processes for Managing Electronic Waste - TMS  

Science Conference Proceedings (OSTI)

Disassembly — selective disassembly, targeting hazardous or valuable components ... materials for the refining process, such as grinding plastics into powders.

76

Materials processing with intense pulsed ion beams  

SciTech Connect

We review research investigating the application of intense pulsed ion beams (IPIBs) for the surface treatment and coating of materials. The short range (0.1-10 {mu}m) and high-energy density (1-50 J/cm{sup 2}) of these short-pulsed ({le} 1 {mu}s) beams (with ion currents I = 5 - 50 kA, and energies E = 100 - 1000 keV) make them ideal to flash-heat a target surface, similar to the more familiar pulsed laser processes. IPIB surface treatment induces rapid melt and solidification at up to 10{sup 10} K/s to cause amorphous layer formation and the production of non-equilibrium microstructures. At higher energy density the target surface is vaporized, and the ablated vapor is condensed as coatings onto adjacent substrates or as nanophase powders. Progress towards the development of robust, high-repetition rate IPIB accelerators is presented along with economic estimates for the cost of ownership of this technology.

Rej, D.J.; Davis, H.A.; Olson, J.C. [and others

1996-12-31T23:59:59.000Z

77

Second National Climate Assessment: Companion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Working Groups Budget Strategic Plan Related Federal Climate Efforts What We Do Study Climate & Global Change Prepare The Nation For Change Assess the U.S. Climate Make Our...

78

Integrated Assessment Systems for Chemical Warfare Material  

Science Conference Proceedings (OSTI)

The US Army must respond to a variety of situations involving suspect discovered, recovered, stored, and buried chemical warfare materiel (CWM). In some cases, the identity of the fill materiel and the status of the fusing and firing train cannot be visually determined due to aging of the container, or because the item is contained in an over-pack. In these cases, non-intrusive assessments are required to provide information to allow safe handling, storage, and disposal of the materiel. This paper will provide an overview of the integrated mobile and facility-based CWM assessment system prototypes that have been, and are being developed, at the Idaho National Engineering and Environmental Laboratory (INEEL) for the US Army Non-Stockpile Chemical Materiel Project. In addition, this paper will discuss advanced sensors being developed to enhance the capability of the existing and future assessment systems. The Phase I Mobile Munitions Assessment System (MMAS) is currently being used by the Army's Technical Escort Unit (TEU) at Dugway Proving Ground, Utah. This system includes equipment for non-intrusively identifying the munitions fill materiel and for assessing the condition and stability of the fuzes, firing trains, and other potential safety hazards. The system provides a self-contained, integrated command post including an on-board computer system, communications equipment, video and photographic equipment, weather monitoring equipment, and miscellaneous safety-related equipment. The Phase II MMAS is currently being tested and qualified for use by the INEEL and the US Army. The Phase II system contains several new assessment systems that significantly enhance the ability to assess CWM. A facility-based munitions assessment system prototype is being developed for the assessment of CWM stored in igloos at Pine Bluff Arsenal, Arkansas. This system is currently in the design and fabrication stages. Numerous CWM advanced sensors are being developed and tested, and pending successful test results, may be incorporated in the various munitions assessment systems in the future. These systems are intended to enhance CWM fill materiel identification, agent air monitoring, agent or agent degradation product detection by surface analysis, and real-time x-ray capabilities.

A. M. Snyder; D. A. Verrill; G. L. Thinnes; K. D. Watts; R. J. McMorland

1999-05-27T23:59:59.000Z

79

Second International Conference on Processing Materials for ...  

Science Conference Proceedings (OSTI)

... PMP2000 will provide a forum for the world's materials community to address ... 0527893360; fax 81 0527893228; e-mail: yamauchi@numse.nagoya-u.ac.jp.

80

Sustainable Materials Processing and Production: Motivating ...  

Science Conference Proceedings (OSTI)

Feb 16, 2010 ... We project the maximum demand for lithium and other materials if electric-drive vehicles expanded their market share rapidly, estimating ...

Note: This page contains sample records for the topic "material assessment process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Microstructural Processes in Irradiated Materials: Defect ...  

Science Conference Proceedings (OSTI)

Mar 1, 2007 ... Role of self-interstitial atom clusters in microstructural evolution induced ... of Pu- Ga alloys is important to understand how these materials age.

82

Second International Conference on Processing Materials for ...  

Science Conference Proceedings (OSTI)

The technical topics include Copper, Nickel, Zinc, Lead and Tin, Rare Metals, Nonferrous Alloys and Light Metals, High-Technology Materials: Electronic, ...

83

Materials Processing Augmentation in Hostile Environments for ...  

Science Conference Proceedings (OSTI)

... demand for energy combined with our depleting natural oil and gas reserves has ... Consequently, there has been a constant demand for improved materials ...

84

General Abstracts: Materials Processing and Manufacturing Division  

Science Conference Proceedings (OSTI)

Cyclic Oxidation Behavior of Detonation Gun Sprayed Ni-20Cr Coating on a Boiler Steel at 900°C · Distortion Assessment of a Direct Cast Uranium - 6 wt.

85

Lithium Ion Batteries: Materials Processing and Mechanical ...  

Science Conference Proceedings (OSTI)

Assessing Cast Alloys for Use in Advanced Ultra-supercritical Steam Turbines · Cathode/Anode Selection and Full Cell Performance for Stationary Li-ion Battery

86

MATERIALS, COATINGS AND PROCESSES FOR IMPROVED ...  

Science Conference Proceedings (OSTI)

... was investigated by performing high temperature compression, bending, and .... sensitivity of vapor cloud chemistry to fluctuations in processing parameters.

87

Advance In system Materials Processing Operations  

Science Conference Proceedings (OSTI)

ESP Dust Recovery Process Test Works, Plant Trial, Commissioning, Operations and Metallurgical Performance · Expansion and Collapse of Liquid Aluminum ...

88

An Introduction to Materials Processes under Irradiation  

Science Conference Proceedings (OSTI)

Jun 1, 2007 ... TMS Member price: 79.00. Non-member price: 79.00. TMS Student Member price : 79.00. Product In Stock. Description Radiation materials ...

89

MATERIALS, COATINGS AND PROCESSES FOR IMPROVED ...  

Science Conference Proceedings (OSTI)

Three common gas turbine superalloys; X-45, IN-738 and Inconel-617 were exposed to ... on the location of blades operated for 21000h under liquefied natural gas. ... Institute of Materials of Russian Academy of Sciences, Khabarovsk , Russia.

90

Pulse thermal processing of functional materials using directed plasma arc  

DOE Patents (OSTI)

A method of thermally processing a material includes exposing the material to at least one pulse of infrared light emitted from a directed plasma arc to thermally process the material, the pulse having a duration of no more than 10 s.

Ott, Ronald D. (Knoxville, TN); Blue, Craig A. (Knoxville, TN); Dudney, Nancy J. (Knoxville, TN); Harper, David C. (Kingston, TN)

2007-05-22T23:59:59.000Z

91

Electromagnetic and Ultrasonic Processing of Materials  

Science Conference Proceedings (OSTI)

Mar 14, 2012... for Processing of Metal Matrix Nanocomposites: Payodhar Padhi1; Pragyan Mohanty2; 1Konark Institute of Science & Technology; 2ITER

92

Controlled Processing of Nanoparticle-Based Materials and ...  

Science Conference Proceedings (OSTI)

This includes high energy conversion efficiency fuel cells, smart materials, high ... Mechanical Characterization of Heat Treated Natural Nanoparticle-Based Material - Nacre ... Patterning Nanoparticle-Based Arrays through a Liquid Process.

93

Electrochromic materials, devices and process of making  

DOE Patents (OSTI)

Thin films of transition metal compositions formed with magnesium that are metals, alloys, hydrides or mixtures of alloys, metals and/or hydrides exhibit reversible color changes on application of electric current or hydrogen. Thin films of these materials are suitable for optical switching elements, thin film displays, sun roofs, rear-view mirrors and architectural glass.

Richardson, Thomas J. (Oakland, CA)

2003-11-11T23:59:59.000Z

94

First National Climate Assessment: Background and Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Background and Process Print E-mail Background and Process Print E-mail Workshops of the First National Climate Assessment In February 1997, the U.S. Global Change Research Program and the Office of Science and Technology Policy initiated a series of Regional Climate Change Workshops with the goal of starting the process of examining the vulnerabilities of regions of the United States to climate variability and climate change. What was initially intended to be three or four workshops developed into a series of twenty, covering every state and territory of the United States. The workshops span from May 1997 to September 1998 and represented the first step in conducting a regional assessment. Each workshop was sponsored by one or more government agencies,and was carried out by coordinators from local institutions. For details on each workshop, including its geographic coverage, see:

95

Innovative Materials Processing Technologies Ltd IMPT | Open Energy  

Open Energy Info (EERE)

Processing Technologies Ltd IMPT Processing Technologies Ltd IMPT Jump to: navigation, search Name Innovative Materials Processing Technologies Ltd (IMPT) Place United Kingdom Zip NG1 1GF Sector Solar Product UK-based manufacturer of non-vacuum coating systems for fuel cells and solar sectors. References Innovative Materials Processing Technologies Ltd (IMPT)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Innovative Materials Processing Technologies Ltd (IMPT) is a company located in United Kingdom . References ↑ "Innovative Materials Processing Technologies Ltd (IMPT)" Retrieved from "http://en.openei.org/w/index.php?title=Innovative_Materials_Processing_Technologies_Ltd_IMPT&oldid=346972

96

Friction Stir Welding and Processing of Advanced Materials for Coal ...  

Science Conference Proceedings (OSTI)

Presentation Title, Friction Stir Welding and Processing of Advanced Materials for Coal and Nuclear Power Applications. Author(s), Glenn J. Grant, Scott Weil, ...

97

Linking Transformational Materials and Processing for an Energy  

Science Conference Proceedings (OSTI)

Mar 16, 2010... materials and processing technologies used across the economy. “Finding ways to develop low-carbon products with a ubiquitous presence ...

98

Materials Processing Handbook (2007), by Joanna R. Groza ... - TMS  

Science Conference Proceedings (OSTI)

10/23/2007 - Materials Processing Handbook (2007) ... the editors and authors of individual chapters in this handbook present the fundamentals of a particular ...

99

Pulse Thermal Processing of Functional Materials Using a ...  

Ronald D. Ott, Craig A. Blue, Nancy J. Dudney, and David C. Harper, Pulse Thermal Processing of Functional Materials Using Directed Plasma Arc, U.S.

100

Femtosecond laser processing of photovoltaic and transparent materials.  

E-Print Network (OSTI)

??The photovoltaic semiconducting and transparent dielectric materials are of high interest in current industry. Femtosecond laser processing can be an effective technique to fabricate such… (more)

Ahn, Sanghoon

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "material assessment process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

applications of sensors and modeling to materials processing: vi  

Science Conference Proceedings (OSTI)

Sponsored by: Jt. EPD/MDMD Synthesis, Control, and Analysis in Materials ... The control system was interfaced with customized processing hardware via a ...

102

2004 research briefs :Materials and Process Sciences Center.  

Science Conference Proceedings (OSTI)

This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

Cieslak, Michael J.

2004-01-01T23:59:59.000Z

103

FLUORINE PROCESS FOR SEPARATION OF MATERIALS  

DOE Patents (OSTI)

A process is described for separating plutoniunn from neutron-irradiated uranium, which consists of reacting the irradiated uranium mass with HF to form the tetrafluorides of U, Pu, and Np, and then reacting this mixture of tetrafluorides with fiuorine at temperature between 140 and 315 d C. This causes volatile hexafluorides of U and Np to form while at the temperature employed the Pu tetrafluoride is unaffected and remains as a residue.

Seaborg, G.T.; Brown, H.S.

1958-05-01T23:59:59.000Z

104

NREL: Photovoltaics Research - New Materials, Devices, and Processes for  

NLE Websites -- All DOE Office Websites (Extended Search)

New Materials, Devices, and Processes for Advanced Concepts New Materials, Devices, and Processes for Advanced Concepts Computational Science and Theory We can use high-performance computing tools in modeling and simulation studies of semiconductor and other solar materials. We also determine the performance of solar devices. Theoretical studies can help us understand underlying physical principles or predict useful chemical compositions and crystalline structures. Scientific Computing Experimental Materials Science Solid-State Theory. NREL has strong complementary research capabilities in organic photovoltaic (OPV) cells, transparent conducting oxides (TCOs), combinatorial (combi) methods, and atmospheric processing. From fundamental physical studies to applied research relating to solar industry needs, we are developing the

105

Alternative materials for solid oxide fuel cells: Processing and interactions of materials  

SciTech Connect

The purpose of this research is to develop alternative materials for solid oxide fuel cell (SOFC) interconnections and electrodes with improved electrical, thermal, and electrochemical properties. The overall approach for this research and development is to: minimize the number of cations in the electrode, electrolyte, and interconnection by developing yttrium compounds, such as Y(Ca)CrO{sub 3} as the interconnection, and Y(M{prime})MnO{sub 3} as the air electrode; develop advanced synthesis and fabrication processes for air sintering, below 1,500 C, of chromite interconnections through (1) the use of sintering aids; and (2) the synthesis of submicrometer powders; establish methods for the simultaneous processing and consolidation of air-sinterable powders; electrochemically evaluate interface reactions (in reproducible and controlled laboratory tests) for both the alternate and state-of-the-art materials and cell components developed under this program; and evaluate the chemical reactivity and interdiffusion effects that take place between the various fuel cell components: electrolyte/cathode, interconnect/cathode, and interconnect/anode. This paper describes a comprehensive study that assessed the processing of air-sinterable chromites, the sintering mechanism of chromites, and the chemical reactivity and interdiffusional effects between the interconnect, air, and fuel electrodes. Materials evaluated were La{sub 0.7}Ca{sub 0.31}CrO{sub 3}, La{sub 0.7}Ca{sub 0.29}CrO{sub 3}, (Y{sub 0.6}Ca{sub 0.4}){sub 1.05}Cr{sub 0.95}O{sub 3}, La{sub 1{minus}x}Sr{sub x}MnO{sub 3}, La{sub 1{minus}x}Ca{sub x}MnO{sub 3}, Y{sub 1{minus}x}Ca{sub x}MnO{sub 3}, and Y{sub 1{minus}x}Sr{sub x}MnO{sub 3}.

Bates, J.L.; Armstrong, T.R.; Chick, L.A.

1993-11-01T23:59:59.000Z

106

In-Stage Assessment Process Guide | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In-Stage Assessment Process Guide In-Stage Assessment Process Guide Provides guidance on conducting an In-Stage Assessment (ISA). An ISA is an independent review of a project's...

107

Process for producing clad superconductive materials  

DOE Patents (OSTI)

A process for fabricating superconducting composite wire by the steps of placing a superconductive precursor admixture capable of undergoing a self propagating combustion in stoichiometric amounts sufficient to form a superconductive product within a metal tube, sealing one end of said tube, igniting said superconductive precursor admixture whereby said superconductive precursor admixture endburns along the length of the admixture, and cross-section reducing said tube at a rate substantially equal to the rate of burning of said superconductive precursor admixture and at a point substantially planar with the burnfront of the superconductive precursor mixture, whereby a clad superconductive product is formed in situ, the product characterized as superconductive without a subsequent sintering stage, is disclosed.

Cass, R.B.; Ott, K.C.; Peterson, D.E.

1991-03-19T23:59:59.000Z

108

Process for producing clad superconductive materials  

DOE Patents (OSTI)

A process for fabricating superconducting composite wire by the steps of placing a superconductive precursor admixture capable of undergoing a self propagating combustion in stoichiometric amounts sufficient to form a superconductive product within a metal tube, sealing one end of said tube, igniting said superconductive precursor admixture whereby said superconductive precursor admixture endburns along the length of the admixture, and cross-section reducing said tube at a rate substantially equal to the rate of burning of said superconductive precursor admixture and at a point substantially planar with the burnfront of the superconductive precursor mixture, whereby a clad superconductive product is formed in situ, the product characterized as superconductive without a subsequent sintering stage, is disclosed.

Cass, Richard B. (Ringoes, NJ); Ott, Kevin C. (Los Alamos, NM); Peterson, Dean E. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

109

High-energy ion processing of materials for improved hardcoatings  

SciTech Connect

Research has been directed toward use of economically viable ion processing strategies for production and improvement of hardcoatings. Processing techniques were high-energy ion implantation and electron cyclotron resonance microwave plasma processing. Subject materials were boron suboxides, Ti-6Al-4V alloy, CoCrMo alloy (a Stellite{trademark}), and electroplated Cr. These materials may be regarded either as coatings themselves (which might be deposited by thermal spraying, plasma processing, etc.) or in some cases, as substrates whose surfaces can be improved. hardness and other properties in relation to process variables are reported.

Williams, J.M.; Gorbatkin, S.M.; Rhoades, R.L.; Oliver, W.C.; Riester, L.; Tsui, T.Y.

1994-02-01T23:59:59.000Z

110

Assessing processes in uncertain, complex physical phenomena and manufacturing  

SciTech Connect

PREDICT (Performance and Reliability Evaluation with Diverse Information Combination and Tracking) is a set of structured quantitative approaches for the evaluation of system performance based on multiple information sources. The methodology integrates diverse types and sources of information, and their associated uncertainties, to develop full distributions for performance metrics, such as reliability. The successful application of PREDICT has involved system performance assessment in automotive product development, aging nuclear weapons, and fatigued turbine jet engines. In each of these applications, complex physical, mechanical and materials processes affect performance, safety and reliability assessments. Processes also include the physical actions taken during manufacturing, quality control, inspections, assembly, etc. and the steps involved in product design, development and certification. In this paper, we will examine the various types of processes involved in the decision making leading to production in an automotive system reliability example. Analysis of these processes includes not only understanding their impact on performance and reliability, but also the uncertainties associated with them. The automotive example demonstrates some of the tools used in tackling the complex problem of understanding processes. While some tools and methods exist for understanding processes (man made and natural) and the uncertainties associated with them, many of the complex issues discussed are open for continued research efforts.

Booker, J. M. (Jane M.); Kerscher, W. J. III (William J.); Smith, R. E. (Ronald E.)

2002-01-01T23:59:59.000Z

111

Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief  

DOE Green Energy (OSTI)

This technical brief is a guide to selecting high-temperature metallic materials for use in process heating applications such as burners, electrical heating elements, material handling, load support, and heater tubes, etc.

Not Available

2004-11-04T23:59:59.000Z

112

Friction stir welding tool and process for welding dissimilar materials  

SciTech Connect

A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

2013-05-07T23:59:59.000Z

113

Melt Processing of Al-TiB2 Nanocomposite Materials  

Science Conference Proceedings (OSTI)

Symposium, J. Materials and Processes for Enhanced Performance ... Separation and Recovery Process of Rare Metals from Oil Desulfurization Spent Catalyst ... Pulsed Laser Evaporation: An Enabling Technology for Organic Thin Films ... Redox Investigation of NiFe2O4 Supported on Al2O3 and Yttria-Stabilized Zirconia ...

114

Concurrent materials and process selection in conceptual design  

DOE Patents (OSTI)

A method for concurrent selection of materials and a joining process based on product requirements using a knowledge-based, constraint satisfaction approach facilitates the product design and manufacturing process. Using a Windows-based computer video display and a data base of materials and their properties, the designer can ascertain the preferred composition of two parts based on various operating/environmental constraints such as load, temperature, lifetime, etc. Optimum joinder of the two parts may simultaneously be determined using a joining process data base based upon the selected composition of the components as well as the operating/environmental constraints.

Kleban, Stephen D.; Knorovsky, Gerald A.

2000-08-16T23:59:59.000Z

115

Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)  

DOE Green Energy (OSTI)

Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

Not Available

2011-06-01T23:59:59.000Z

116

The Life Cycle Assessment of Copper Metallurgical Processes  

Science Conference Proceedings (OSTI)

The Estimation of Waste Packaging Containers Generated by Households in Taiwan · The Life Cycle Assessment of Copper Metallurgical Processes.

117

Background information for the economic assessment of solvent fermentation processes  

DOE Green Energy (OSTI)

An economic assessment of solvent fermentation processes was made. The question of whether or not the increased costs for petrochemical raw materials are sufficiently high now (or their projected costs in the 1980's), such that certain chemicals could be produced commercially from a cheaper raw material, say cellulosics, via various fermentation routes is considered. Specific examples under consideratin are n-butanol, propionic acid, and acetic acid. A qualitative approach was developed, based on major cost factors of alternative routes for making such projections. The technique described can be made as quantitative as desired by applying accepted engineering design and economic analysis principles to the complex, interacting factors that are involved. Some broad qualitative conclusions are made.

Not Available

1977-01-01T23:59:59.000Z

118

Raw materials evaluation and process development studies for conversion of biomass to sugars and ethanol  

DOE Green Energy (OSTI)

A range of cellulosic raw materials in the form of agricultural crop residue was analyzed for chemical composition and assessed for potential yields of sugars through chemical pretreatment and enzymatic hydrolysis of these materials. Corn stover was used as a representative raw material for a preliminary process design and economic assessment of the production of sugars and ethanol. With the process as presently developed, 23 gallons of ethanol can be obtained per ton of corn stover at a processing cost of about $1.80 per gallon exclusive of by-product credits. The analysis shows the cost of ethanol to be highly dependent upon (1) the cost of the biomass, (2) the extent of conversion to glucose, (3) enzyme recovery and production cost and (4) potential utilization of xylose. Significant cost reduction appears possible through further research in these directions.

Wilke, C.R.; Yang, R.D.; Sciamanna, A.S.; Freitas, R.P.

1978-06-01T23:59:59.000Z

119

Method for materials deposition by ablation transfer processing  

DOE Patents (OSTI)

A method in which a thin layer of semiconducting, insulating, or metallic material is transferred by ablation from a source substrate, coated uniformly with a thin layer of said material, to a target substrate, where said material is desired, with a pulsed, high intensity, patternable beam of energy. The use of a patternable beam allows area-selective ablation from the source substrate resulting in additive deposition of the material onto the target substrate which may require a very low percentage of the area to be covered. Since material is placed only where it is required, material waste can be minimized by reusing the source substrate for depositions on multiple target substrates. Due to the use of a pulsed, high intensity energy source the target substrate remains at low temperature during the process, and thus low-temperature, low cost transparent glass or plastic can be used as the target substrate. The method can be carried out atmospheric pressures and at room temperatures, thus eliminating vacuum systems normally required in materials deposition processes. This invention has particular application in the flat panel display industry, as well as minimizing materials waste and associated costs. 1 fig.

Weiner, K.H.

1996-04-16T23:59:59.000Z

120

Method for materials deposition by ablation transfer processing  

DOE Patents (OSTI)

A method in which a thin layer of semiconducting, insulating, or metallic material is transferred by ablation from a source substrate, coated uniformly with a thin layer of said material, to a target substrate, where said material is desired, with a pulsed, high intensity, patternable beam of energy. The use of a patternable beam allows area-selective ablation from the source substrate resulting in additive deposition of the material onto the target substrate which may require a very low percentage of the area to be covered. Since material is placed only where it is required, material waste can be minimized by reusing the source substrate for depositions on multiple target substrates. Due to the use of a pulsed, high intensity energy source the target substrate remains at low temperature during the process, and thus low-temperature, low cost transparent glass or plastic can be used as the target substrate. The method can be carried out atmospheric pressures and at room temperatures, thus eliminating vacuum systems normally required in materials deposition processes. This invention has particular application in the flat panel display industry, as well as minimizing materials waste and associated costs.

Weiner, Kurt H. (San Jose, CA)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "material assessment process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Continuous Material Balance Reconciliation for a Modern Plutonium Processing Facility  

SciTech Connect

This paper describes a safeguards approach that can be deployed at any modern plutonium processing facility to increase the level of safeguards assurance and significantly reduce the impact of safeguards on process operations. One of the most perplexing problems facing the designers of plutonium processing facilities is the constraint placed upon the limit of error of the inventory difference (LEID). The current DOE manual constrains the LEID for Category I and II material balance areas to 2 per cent of active inventory up to a Category II quantity of the material being processed. For 239Pu a Category II quantity is two kilograms. Due to the large material throughput anticipated for some of the modern plutonium facilities, the required LEID cannot be achieved reliably during a nominal two month inventory period, even by using state-of-the-science non-destructive assay (NDA) methods. The most cost-effective and least disruptive solution appears to be increasing the frequency of material balance closure and thus reducing the throughput being measured during each inventory period. Current inventory accounting practices and systems can already provide the book inventory values at any point in time. However, closing the material balance with measured values has typically required the process to be cleaned out, and in-process materials packaged and measured. This process requires one to two weeks of facility down time every two months for each inventory, thus significantly reducing productivity. To provide a solution to this problem, a non-traditional approach is proposed that will include using in-line instruments to provide measurement of the process materials on a near real-time basis. A new software component will be developed that will operate with the standard LANMAS application to provide the running material balance reconciliation, including the calculation of the inventory difference and variance propagation. The combined measurement system and software implementation will make it possible for a facility to close material balances on a measured basis in a time period as short as one day.

CLARK, THOMAS G.

2004-07-02T23:59:59.000Z

122

Method for co-processing waste rubber and carbonaceous material  

DOE Green Energy (OSTI)

In a process for the co-processing of waste rubber and carbonaceous material to form a useful liquid product, the rubber and the carbonaceous material are combined and heated to the depolymerization temperature of the rubber in the presence of a source of hydrogen. The deploymerized rubber acts as a liquefying solvent for the carbonaceous material while a beneficial catalytic effect is obtained from the carbon black released on deploymerization the reinforced rubber. The reaction is carried out at liquefaction conditions of 380--600{degrees}C and 70--280 atmospheres hydrogen pressure. The resulting liquid is separated from residual solids and further processed such as by distillation or solvent extraction to provide a carbonaceous liquid useful for fuels and other purposes.

Farcasiu, M.; Smith, C.M.

1990-10-09T23:59:59.000Z

123

Method for co-processing waste rubber and carbonaceous material  

DOE Green Energy (OSTI)

In a process for the co-processing of waste rubber and carbonaceous material to form a useful liquid product, the rubber and the carbonaceous material are combined and heated to the depolymerization temperature of the rubber in the presence of a source of hydrogen. The depolymerized rubber acts as a liquefying solvent for the carbonaceous material while a beneficial catalytic effect is obtained from the carbon black released on depolymerization the reinforced rubber. The reaction is carried out at liquefaction conditions of 380.degree.-600.degree. C. and 70-280 atmospheres hydrogen pressure. The resulting liquid is separated from residual solids and further processed such as by distillation or solvent extraction to provide a carbonaceous liquid useful for fuels and other purposes.

Farcasiu, Malvina (Pittsburgh, PA); Smith, Charlene M. (Pittsburgh, PA)

1991-01-01T23:59:59.000Z

124

Nuclear Material Processing at the Savannah River Site  

Science Conference Proceedings (OSTI)

Plutonium production for national defense began at Savannah River in the mid-1950s, following construction of production reactors and separations facilities. Following the successful completion of its production mission, the site`s nuclear material processing facilities continue to operate to perform stabilization of excess materials and potentially support the disposition of these materials. A number of restoration and productivity improvement projects implemented in the 1980s, totaling nearly a billion dollars, have resulted in these facilities representing the most modern and only remaining operating large-scale processing facilities in the DOE Complex. Together with the Site`s extensive nuclear infrastructure, and integrated waste management system, SRS is the only DOE site with the capability and mission of ongoing processing operations.

Severynse, T.F. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1998-07-01T23:59:59.000Z

125

SWEAP, Solid Waste Environmental Assessment Plan: Component 3, technology evaluation: Discussion paper No. 3. 5 A,B,C, addendum to documents: Extension of process to identify candidate sites (step 2) and the development of comparative evaluation process for step 3 of the site selection process for a materials recovery facility, compost facility and energy from waste facility  

Science Conference Proceedings (OSTI)

The facility design assumptions for a materials recovery facility, a compost facility and an energy from waste facility were intended to result in a facility with minimal impact on the natural environment. The criteria described in discussion paper 3.5A were based on this assumption. This addendum describes the additional criteria identified for use in Step 2 of the site selection process, the revised criteria to be used in Step 3 and the method that will be used to apply the revised Step 3 criterial. Step 2 addresses the type of technology used to minimize adverse effects on the natural environment. Step 3 addresses the selection of short-listed sites from a longer list and the methods used.

Not Available

1991-01-01T23:59:59.000Z

126

Assessing process-centered software engineering environments  

Science Conference Proceedings (OSTI)

Process-centered software engineering environments (PSEEs) are the most recent generation of environments supporting software development activities. They exploit an representation of the process (called the process model that specifies ... Keywords: CASE, enabling technology, process modeling languages, process-centered software engineering environments, software process

Vincenzo Ambriola; Reidar Conradi; Alfonso Fuggetta

1997-07-01T23:59:59.000Z

127

Method of processing materials using an inductively coupled plasma  

DOE Patents (OSTI)

A method of processing materials. The invention enables ultrafine, ultrapure powders to be formed from solid ingots in a gas free environment. A plasma is formed directly from an ingot which insures purity. The vaporized material is expanded through a nozzle and the resultant powder settles on a cold surface. An inductively coupled plasma may also be used to process waste chemicals. Noxious chemicals are directed through a series of plasma tubes, breaking molecular bonds and resulting in relatively harmless atomic constituents. 3 figs.

Hull, D.E.; Bieniewski, T.M.

1987-04-13T23:59:59.000Z

128

Processing fissile material mixtures containing zirconium and/or carbon  

DOE Patents (OSTI)

A method of processing spent TRIZO-coated nuclear fuel may include adding fluoride to complex zirconium present in a dissolved TRIZO-coated fuel. Complexing the zirconium with fluoride may reduce or eliminate the potential for zirconium to interfere with the extraction of uranium and/or transuranics from fission materials in the spent nuclear fuel.

Johnson, Michael Ernest; Maloney, Martin David

2013-07-02T23:59:59.000Z

129

CIGS Material and Device Stability: A Processing Perspective (Presentation)  

DOE Green Energy (OSTI)

This is a general overview of CIGS material and device fundamentals. In the first part, the basic features of high efficiency CIGS absorbers and devices are described. In the second part, some examples of previous collaboration with Shell Solar CIGSS graded absorbers and devices are shown to illustrate how process information was used to correct deviations and improve the performance and stability.

Ramanathan, K.

2012-03-01T23:59:59.000Z

130

Process for Low Cost Domestic Production of LIB Cathode Materials  

DOE Green Energy (OSTI)

The objective of the research was to determine the best low cost method for the large scale production of the Nickel-Cobalt-Manganese (NCM) layered cathode materials. The research and development focused on scaling up the licensed technology from Argonne National Laboratory in BASF’s battery material pilot plant in Beachwood Ohio. Since BASF did not have experience with the large scale production of the NCM cathode materials there was a significant amount of development that was needed to support BASF’s already existing research program. During the three year period BASF was able to develop and validate production processes for the NCM 111, 523 and 424 materials as well as begin development of the High Energy NCM. BASF also used this time period to provide free cathode material samples to numerous manufactures, OEM’s and research companies in order to validate the ma-terials. The success of the project can be demonstrated by the construction of the production plant in Elyria Ohio and the successful operation of that facility. The benefit of the project to the public will begin to be apparent as soon as material from the production plant is being used in electric vehicles.

Thurston, Anthony

2012-10-31T23:59:59.000Z

131

PROPERTIES AND NANOSTRUCTURES OF MATERIALS PROCESSED BY SPD TECHNIQUES  

Science Conference Proceedings (OSTI)

Metallic materials usually exhibit higher strength but lower ductility after being plastically deformed by conventional techniques such as rolling, drawing and extrusion. In contrast, nanostructured metals and alloys processed by severe plastic deformation (SPD) have demonstrated both high strength and high ductility. This extraordinary mechanical behavior is attributed to the unique nanostructures generated by SPD processing. It demonstrates the possibility of tailoring the microstructures of metals and alloys by SPD to obtain superior mechanical properties. The SPD-generated nanostructures have many features related to deformation, including high dislocation densities, and high- and low-angle grain boundaries in equilibrium or non-equilibrium states. This paper reviews the mechanical properties and the defect structures of SPD-processed nanostructured materials. Keywords: strength, ductility, nanostructures, SPD, non-equilibrium grain boundary

Liao, Xiaoshan; Huang, J. (Jianyu); Zhu, Y. T. (Yuntian Theodore)

2001-01-01T23:59:59.000Z

132

Cracking Condition of Cohesionless Porous Materials in Drying Processes  

E-Print Network (OSTI)

The invasion of air into porous systems in drying processes is often localized in soft materials, such as colloidal suspensions and granular pastes, and it typically develops in the form of cracks before ordinary drying begins. To investigate such processes, we construct an invasion percolation model on a deformable lattice for cohesionless elastic systems, and with this model we derive the condition under which cracking occurs. A Griffith-like condition characterized by a dimensionless parameter is proposed, and its validity is checked numerically. This condition indicates that the ease with which cracking occurs increases as the particles composing the material become smaller, as the rigidity of the system increases, and as the degree of heterogeneity characterizing the drying processes decreases.

So Kitsunezaki

2013-01-15T23:59:59.000Z

133

Synthesis, processing and properties of materials for SOFCs  

Science Conference Proceedings (OSTI)

The synthesis and processing methods of complex oxide materials can significantly influence use in solid oxide fuel cells (SOFCs). This paper discusses (1) effects of powder synthesis and conditioning on fabrication, i.e., sintering, where close, reproducible control of composition and structure are required, and (2) influences on electrical, mechanical, structural and electrochemical properties that can influence SOFC performance. Examples are given for chromites, manganites and related oxides used as interconnections and electrodes in SOFCs. Materials, from source to incorporation into the fuel cell and generator, is a major issue in the development of solid oxide fuel cells (SOFCs). An integral part of this is the synthesis from chemicals and other virgin materials, generally as an oxide or metal powder, which can become a SOFC component. In some instances, such as with electrochemical vapor deposition, the component is formed directly from the chemicals. The synthesized materials are then conditioned and processes prior to fabrication into the fuel cell component, either separately or in conjunction with other material components.

Bates, J.L.; Armstrong, T.A.; Kingsley, J.J.; Pederson, L.R.

1994-03-01T23:59:59.000Z

134

Life Cycle Assessment of Different Gold Extraction Process  

Science Conference Proceedings (OSTI)

Material consumption, energy consumption and emissions during each gold production process are analyzed by using Gabi 6 software, and the environmental ...

135

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents (OSTI)

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

1998-05-12T23:59:59.000Z

136

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents (OSTI)

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1998-05-12T23:59:59.000Z

137

Process Waste Assessment for the Diana Laser Laboratory  

SciTech Connect

This Process Waste Assessment was conducted to evaluate the Diana Laser Laboratory, located in the Combustion Research Facility. It documents the hazardous chemical waste streams generated by the laser process and establishes a baseline for future waste minimization efforts. This Process Waste Assessment will be reevaluated in approximately 18 to 24 months, after enough time has passed to implement recommendations and to compare results with the baseline established in this assessment.

Phillips, N.M.

1993-12-01T23:59:59.000Z

138

Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie...  

Open Energy Info (EERE)

Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Geothermal Area- A Reactive Transport Modeling Approach Jump to: navigation, search OpenEI Reference LibraryAdd...

139

Process for stabilizing the viscosity characteristics of coal derived materials and the stabilized materials obtained thereby  

SciTech Connect

A process is disclosed for stabilizing the viscosity of coal derived materials such as an SRC product by adding up to 5.0% by weight of a light volatile phenolic viscosity repressor. The viscosity will remain stabilized for a period of time of up to 4 months.

Bronfenbrenner, James C. (Allentown, PA); Foster, Edward P. (Allentown, PA); Tewari, Krishna (Allentown, PA)

1985-01-01T23:59:59.000Z

140

Materials and Processing for Lithium-Ion batteries  

Science Conference Proceedings (OSTI)

Lithium ion battery technology is projected to be the leapfrog technology for the electrification of the drivetrain and to provide stationary storage solutions to enable the effective use of renewable energy sources. The technology is already in use for low-power applications such as consumer electronics and power tools. Extensive research and development has enhanced the technology to a stage where it seems very likely that safe and reliable lithium ion batteries will soon be on board hybrid electric and electric vehicles and connected to solar cells and windmills. However, safety of the technology is still a concern, service life is not yet sufficient, and costs are too high. This paper summarizes the state of the art of lithium ion battery technology for nonexperts. It lists materials and processing for batteries and summarizes the costs associated with them. This paper should foster an overall understanding of materials and processing and the need to overcome the remaining barriers for a successful market introduction.

Daniel, Claus [ORNL

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "material assessment process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

High-throughput Characterization of Porous Materials Using Graphics Processing Units  

E-Print Network (OSTI)

A.E. ; Purcell, T. Computer Graphics Forum 2007, 26(1), 80-of Porous Materials Using Graphics Processing Units Jihanof Porous Materials Using Graphics Processing Units Jihan

Kim, Jihan

2013-01-01T23:59:59.000Z

142

Process for converting cellulosic materials into fuels and chemicals  

DOE Patents (OSTI)

A process for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system.

Scott, Charles D. (Oak Ridge, TN); Faison, Brendlyn D. (Knoxville, TN); Davison, Brian H. (Knoxville, TN); Woodward, Jonathan (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

143

Material instability hazards in mine-processing operations  

SciTech Connect

Many accidents occur in the mining industry as a result of the instability of material during handling and processing operation. Accidents due to dump point instability at stockpiles, and at spoil or waste piles, for example, occur with alarming frequency. Miners must be trained to be better aware of these hazards. Information on safe working procedures at stockpiles and surge piles is provided. Mine operators must review their training and operating procedures regularly to ensure that hazardous conditions are avoided.

Fredland, J.W.; Wu, K.K.; Kirkwood, D.W.

1993-10-01T23:59:59.000Z

144

Independent Oversight Assessment, Salt Waste Processing Facility Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Processing Facility Salt Waste Processing Facility Project - January 2013 Independent Oversight Assessment, Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent assessment of nuclear safety culture at the Salt Waste Processing Facility (SWPF) Project. The primary objective of the evaluation was to provide information regarding the status of the safety culture at the SWPF Project. The data collection phase of the assessment occurred during August - September 2012. Independent Oversight Assessment, Salt Waste Processing Facility Project -

145

In-Situ X-ray Spectroscopic Studies of the Fundamental Chemistry of Pb and Pb-Bi Corrosion Processes at High Temperatures: Development and Assessment of Composite Corrosion Resistant Materials.  

SciTech Connect

Over the course of this project, we have a number of accomplishments. The following list is presented as a summary statement for the project. Specific details from previous Quarterly Reports are given. (1) We established that it is possible to use EXAFS to study the interface layer between a material and the liquid Pb overlayer. We have discovered that molybdenum grows a selflimiting oxide layer which does not spall even at the highest temperatures studied. There have been 2 publications resulting from these studies. (2) We have fabricated a high temperature environmental chamber capable of extending the Pb overlayer studies by varying the incident x-ray beam angle to perform depth profiling of the Pb layer. This chamber will continue to be available to nuclear materials program researchers who wish to use the MRCAT beam line. (3) We have developed a collaboration with researchers at the Paul Scherrer Institute to study corrosion layers on zircalloy. One publication has resulted from this collaboration and another is in progress. (4) We have developed a collaboration with Prof. G.R. Odette of UCSB in which we studied the local structure of Ti and Y in nanoclusters found in oxygen dispersion strengthened steels. There are two publications in progress form this collaboration and we have extended the project to anomalous small angle x-ray scattering as well as EXAFS. (5) We have promoted the use of EXAFS for the study of nuclear materials to the community over the past 4 years and we have begun to see an increase in demand for EXAFS from the community at the MRCAT beam line. (6) This grant was instrumental in nucleating interest in establishing a new Collaborative Access Team at the Advanced Photon Source, the Nuclear and Radiological Research CAT (NRR-CAT). The co-PI (Jeff Terry) is the lead investigator on this project and it has been approved by the APS Scientific Advisory Committee for further planning. The status of the NRR-CAT project is being discussed in a series of workshops in 2009-2010 and has received exploratory funding from INL. This funding is being used to provide beam time and support at MRCAT for NRR-CAT related experiments. This will continue through 2010 as the development of a full NRR-CAT proposal develops. We believe that this has been a very successful project whose impact will continue to be felt for a number of years. Not only will there be additional publications coming from the work supported directly by this grant but the establishment of NRR-CAT will have a significant impact on the field of nuclear materials research for decades to come.

Carlo Segre

2009-12-30T23:59:59.000Z

146

Toxicology and Risk Assessment for Process Contaminants (3-MCPD)  

Science Conference Proceedings (OSTI)

Toxicology and Risk Assessment references for 3-MCPD (3-Monochloropropane-1,2-diol )or process contaminants. Toxicology and Risk Assessment for Process Contaminants (3-MCPD) 3-MCPD 2-diol 3-MCPD 3-MCPD Esters 3-monochloropropane-1 acid analysis aocs apri

147

MERCURY CONTAMINATED MATERIAL DECONTAMINATION METHODS: INVESTIGATION AND ASSESSMENT  

Science Conference Proceedings (OSTI)

Over the years mercury has been recognized as having serious impacts on human health and the environment. This recognition has led to numerous studies that deal with the properties of various mercury forms, the development of methods to quantify and speciate the forms, fate and transport, toxicology studies, and the development of site remediation and decontamination technologies. This report reviews several critical areas that will be used in developing technologies for cleaning mercury from mercury-contaminated surfaces of metals and porous materials found in many DOE facilities. The technologies used for decontamination of water and mixed wastes (solid) are specifically discussed. Many technologies that have recently appeared in the literature are included in the report. Current surface decontamination processes have been reviewed, and the limitations of these technologies for mercury decontamination are discussed. Based on the currently available technologies and the processes published recently in the literature, several processes, including strippable coatings, chemical cleaning with iodine/iodide lixiviant, chemisorbing surface wipes with forager sponge and grafted cotton, and surface/pore fixation through amalgamation or stabilization, have been identified as potential techniques for decontamination of mercury-contaminated metal and porous surfaces. Their potential merits and applicability are discussed. Finally, two processes, strippable coatings and chemical cleaning with iodine/iodide lixiviant, were experimentally investigated in Phase II of this project.

M.A. Ebadian, Ph.D.

2001-01-01T23:59:59.000Z

148

GRR/Section 16 - Geological Resources Assessment Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 16 - Geological Resources Assessment Process GRR/Section 16 - Geological Resources Assessment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 16 - Geological Resources Assessment Process 16GeologicalResourceAssessmentProcess.pdf Click to View Fullscreen Contact Agencies Bureau of Land Management Regulations & Policies Paleontological Resources Preservation Act 43 CFR 8365.1-5: Public Property and Resources 43 CFR 3620: Petrified Wood 16 USC 4301: Federal Cave Resources Protection Act 43 CFR 1610.7-2: Areas of Critical Environmental Concern Federal Land Policy and Management Act of 1976 Triggers None specified Click "Edit With Form" above to add content 16GeologicalResourceAssessmentProcess.pdf Error creating thumbnail: Page number not in range.

149

Scoping the Environmental Assessment Process for a MRS | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Scoping the Environmental Assessment Process for a MRS Scoping the Environmental Assessment Process for a MRS Scoping the Environmental Assessment Process for a MRS Reaching negotiated agreement with a state or Indian tribe and preparing of the environmental assessment (EA) required by Section 404 of the Nuclear Waste Policy Act, as amended (NWPAA), are the first steps in a process intended to result in the acceptance of radioactive waste at a monitored retrievable storage (MRS) facility starting in 1998. This paper examines requirements for the EA, the first environmental document to be prepared for siting an MRS facility, and discusses the process used to develop that document. The EA process can be conducted in an efficient manner to produce a high-quality product, with full public involvement, that meets

150

Electronic processes in thin-film PV materials. Final report  

DOE Green Energy (OSTI)

The electronic and optical processes in an important class of thin-film PV materials, hydrogenated amorphous silicon (a-Si:H) and related alloys, have been investigated using several experimental techniques designed for thin-film geometries. The experimental techniques include various magnetic resonance and optical spectroscopies and combinations of these two spectroscopies. Two-step optical excitation processes through the manifold of silicon dangling bond states have been identifies as important at low excitation energies. Local hydrogen motion has been studied using nuclear magnetic resonance techniques and found to be much more rapid than long range diffusion as measured by secondary ion mass spectroscopy. A new metastable effect has been found in a-Si:H films alloyed with sulfur. Spin-one optically excited states have been unambiguously identified using optically detected electron spin resonance. Local hydrogen bonding in microcrystalline silicon films has been studied using NMR.

Taylor, P.C.; Chen, D.; Chen, S.L. [and others

1998-07-01T23:59:59.000Z

151

Safety assessment of the liquid-fed ceramic melter process  

Science Conference Proceedings (OSTI)

As part of its development program for the solidification of high-level nuclear waste, Pacific Northwest Laboratory assessed the safety issues for a complete liquid-fed ceramic melter (LFCM) process. The LFCM process, an adaption of commercial glass-making technology, is being developed to convert high-level liquid waste from the nuclear fuel cycle into glass. This safety assessment uncovered no unresolved or significant safety problems with the LFCM process. Although in this assessment the LFCM process was not directly compared with other solidification processes, the safety hazards of the LFCM process are comparable to those of other processes. The high processing temperatures of the glass in the LFCM pose no additional significant safety concerns, and the dispersible inventory of dried waste (calcine) is small. This safety assessment was based on the nuclear power waste flowsheet, since power waste is more radioactive than defense waste at the time of solidification, and all accident conditions for the power waste would have greater radiological consequences than those for defense waste. An exhaustive list of possible off-standard conditions and equipment failures was compiled. These accidents were then classified according to severity of consequence and type of accident. Radionuclide releases to the stack were calculated for each group of accidents using conservative assumptions regarding the retention and decontamination features of the process and facility. Two recommendations that should be considered by process designers are given in the safety assessment.

Buelt, J.L.; Partain, W.L.

1980-08-01T23:59:59.000Z

152

Wide-Area Thermal Processing of Light-Emitting Materials  

Science Conference Proceedings (OSTI)

Silicon carbide based materials and devices have been successfully exploited for diverse electronic applications. However, they have not achieved the same success as Si technologies due to higher material cost and higher processing temperatures required for device development. Traditionally, SiC is not considered for optoelectronic applications because it has an indirect bandgap. However, AppliCote Associates, LLC has developed a laser-based doping process which enables light emission in SiC through the creation of embedded p-n junctions. AppliCote laser irradiation of silicon carbide allows two different interaction mechanisms: (1) Laser conversion or induced phase transformation which creates carbon rich regions that have conductive properties. These conductive regions are required for interconnection to the light emitting semiconducting region. (2) Laser doping which injects external dopant atoms into the substrate that introduces deep level transition states that emit light when electrically excited. The current collaboration with AppliCote has focused on the evaluation of ORNL's unique Pulse Thermal Processing (PTP) technique as a replacement for laser processing. Compared to laser processing, Pulse Thermal Processing can deliver similar energy intensities (20-50 kW/cm2) over a much larger area (up to 1,000 cm2) at a lower cost and much higher throughput. The main findings of our investigation; which are significant for the realization of SiC based optoelectronic devices, are as follows: (1) The PTP technique is effective in low thermal budget activation of dopants in SiC similar to the laser technique. The surface electrical conductivity of the SiC samples improved by about three orders of magnitude as a result of PTP processing which is significant for charge injection in the devices; (2) The surface composition of the SiC film can be modified by the PTP technique to create a carbon-rich surface (increased local C:Si ratio from 1:1 to 2.9:1). This is significant as higher thermal and electrical conductivities of the surface layer are critical for a successful development of integrated optoelectronic devices; and (3) PTP provides low thermal budget dopant activation with a controlled depth profile, which can be exploited for high performance device development with selective patterning of the substrate. This project has successfully demonstrated that a low thermal budget annealing technique, such as PTP, is critical to defining the path for low cost electronic devices integrated on glass or polymeric substrates. This project is complimentary to the goals of the Solid State Lighting Program within DOE. It involves new manufacturing techniques for light emitting materials that are potentially much lower cost and energy efficient than existing products. Significant opportunity exists for further exploration of AppliCote's material and device technology in combination with ORNL's PTP technique, modeling, and characterization capabilities.

Duty, C.; Quick, N. (AppliCote Associates, LLC)

2011-09-30T23:59:59.000Z

153

Materials technology assessment for a 1050 K Stirling Space Engine design  

DOE Green Energy (OSTI)

An assessment of materials technology and proposed materials selection was made for the 1050 K (superalloy) Stirling Space Engine design. The objectives of this assessment were to evaluate previously proposed materials selections, evaluate the current state-of-the-art materials, propose potential alternate materials selections and identify research and development efforts needed to provide materials that can meet the stringent system requirements. This assessment generally reaffirmed the choices made by the contractor; however, in many cases alternative choices were described and suggestions for needed materials and fabrication research and development were made.

Scheuermann, C.M.; Dreshfield, R.L.; Gaydosh, D.J.; Kiser, J.D.; MacKay, R.A.; McDanels, D.L.; Petrasek, D.W.; Vannucci, R.D.; Bowles, K.J.; Watson, G.K.

1988-10-01T23:59:59.000Z

154

Process Optimization and Integration Strategies for Material Reclamation and Recovery  

E-Print Network (OSTI)

Industrial facilities are characterized by the significant usage of natural resources and the massive discharge of waste materials. An effective strategy towards the sustainability of industrial processes is the conservation of natural resources through waste reclamation and recycles. Because of the numerous number of design alternatives, systematic procedures must be developed for the effective synthesis and screening of reclamation and recycle options. The objective of this work is to develop systematic and generally applicable procedures for the synthesis, design, and optimization of resource conservation networks. Focus is given to two important applications: material utilities (with water as an example) and spent products (with lube oil as an example). Traditionally, most of the previous research efforts in the area of designing direct-recycle water networks have considered the chemical composition as the basis for process constraints. However, there are many design problems that are not component-based; instead, they are property-based (e.g., pH, density, viscosity, chemical oxygen demand (COD), basic oxygen demand (BOD), toxicity). Additionally, thermal constraints (e.g., stream temperature) may be required to identify acceptable recycles. In this work, a novel approach is introduced to design material-utility (e.g., water) recycle networks that allows the simultaneous consideration of mass, thermal, and property constraints. Furthermore, the devised approach accounts for the heat of mixing and for the interdependence of properties. An optimization formulation is developed to embed all potential configurations of interest and to model the mass, thermal, and property characteristics of the targeted streams and units. Solution strategies are developed to identify stream allocation and targets for minimum fresh usage and waste discharge. A case study on water management is solved to illustrate the concept of the proposed approach and its computational aspects. Next, a systematic approach is developed for the selection of solvents, solvent blends, and system design in in extraction-based reclamation processes of spent lube oil Property-integration tools are employed for the systematic screening of solvents and solvent blends. The proposed approach identifies the main physical properties that influence solvent(s) performance in extracting additives and contaminants from used lubricating oils (i.e. solubility parameter (delta), viscosity (v), and vapor pressure (p)). The results of the theoretical approach are validated through comparison with experimental data for single solvents and for solvent blends. Next, an optimization formulation is developed and solved to identify system design and extraction solvent(s) by including techno-economic criteria. Two case studies are solved for identification of feasible blends and for the cost optimization of the system.

Kheireddine, Houssein

2012-05-01T23:59:59.000Z

155

Process for hydrocracking carbonaceous material in liquid carrier  

DOE Patents (OSTI)

Solid carbonaceous material is hydrocracked to provide aliphatic and aromatic hydrocarbons for use as gaseous and liquid fuels or chemical feed stock. Particulate carbonaceous material such as coal in slurry with recycled product oil is preheated in liquid state to a temperature of 600.degree.-1200.degree. F. in the presence of hydrogen gas. The product oil acts as a sorbing agent for the agglomerating bitumins to minimize caking within the process. In the hydrocracking reactor, the slurry of oil and carbonaceous particles is heated within a tubular passageway to vaporize the oil and form a gas-solid mixture which is further heated to a hydropyrolysis temperature in excess of 1200.degree. F. The gas-solid mixture is quenched by contact with additional oil to condense normally liquid hydrocarbons for separation from the gases. A fraction of the hydrocarbon liquid product is recycled for quenching and slurrying with the carbonaceous feed. Hydrogen is recovered from the gas for recycle and additional hydrogen is produced by gasification of residual char.

Duncan, Dennis A. (Downers Grove, IL)

1980-01-01T23:59:59.000Z

156

Addressing Materials Processing Issues for USC Steam Turbines  

Science Conference Proceedings (OSTI)

Symposium, Materials in Clean Power Systems V: Clean Coal-, Hydrogen Based -Technologies, Fuel Cells, and Materials for Energy Storage. Presentation Title ...

157

Hydrogen gettering packing material, and process for making same  

DOE Patents (OSTI)

A hydrogen gettering system for a sealed container is disclosed comprising packing material for use within the sealed container, and a coating film containing hydrogen gettering material on at least a portion of the surface of such packing material. The coating film containing the hydrogen gettering material comprises a mixture of one or more organic materials capable of reacting with hydrogen and one or more catalysts capable of catalyzing the reaction of hydrogen with such one or more organic materials. The mixture of one or more organic materials capable of reacting with hydrogen and the one or more catalysts is dispersed in a suitable carrier which preferably is a curable film-forming material. In a preferred embodiment, the packing material comprises a foam material which is compatible with the coating film containing hydrogen gettering material thereon.

LeMay, James D. (Castro Valley, CA); Thompson, Lisa M. (Knoxville, TN); Smith, Henry Michael (Overland Park, KS); Schicker, James R. (Lee' s Summit, MO)

2001-01-01T23:59:59.000Z

158

Hydrogen gettering packing material and process for making same  

DOE Patents (OSTI)

A hydrogen gettering system for a sealed container is disclosed comprising packing material for use within the sealed container, and a coating film containing hydrogen gettering material on at least a portion of the surface of such packing material. The coating film containing the hydrogen gettering material comprises a mixture of one or more organic materials capable of reacting with hydrogen and one or more catalysts capable of catalyzing the reaction of hydrogen with such one or more organic materials. The mixture of one or more organic materials capable of reacting with hydrogen and the one or more catalysts is dispersed in a suitable carrier which preferably is a curable film-forming material. In a preferred embodiment, the packing material comprises a foam material which is compatible with the coating film containing hydrogen gettering material thereon.

LeMay, James D.; Thompson, Lisa M.; Smith, Henry Michael; Schicker, James R.

1999-09-09T23:59:59.000Z

159

Methods for managing uncertainly in material selection decisions : robustness of early stage life cycle assessment  

E-Print Network (OSTI)

Utilizing alternative materials is an important tactic to improve the environmental performance of products. Currently a growing array of materials candidates confronts today's product designer. While life-cycle assessment ...

Nicholson, Anna L. (Anna Louise)

2009-01-01T23:59:59.000Z

160

Assessment of Structural and Clad Materials for Fission Surface...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1413 Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone Report on Materials and Machining of Specimens for the ATR-2 Experiment January 2011...

Note: This page contains sample records for the topic "material assessment process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

POLL: What's your assessment of materials engineers' salaries? - TMS  

Science Conference Proceedings (OSTI)

Dec 22, 2009 ... In the 2009 salary survey by the American Association of Engineering Societies, the median pay for materials engineers with 35+ years since ...

162

Sol-gel processing of nanostructured inorganic scintillating materials  

Science Conference Proceedings (OSTI)

The development of scintillating materials is believed to reach a new step by controlling their preparation on a nanometric level. Sol-Gel chemistry offers very unique tools for nanoscale mastering of the materials preparation. In particular, shaping ...

J. M. Nedelec

2007-01-01T23:59:59.000Z

163

Sustainable Materials Processing and Production - Programmaster.org  

Science Conference Proceedings (OSTI)

The materials community is strategically positioned to establish sustainable material production and ... Proceedings Plan, Definite: A print-only volume ... of Alkali Activated Slag Fine Aggregate Concrete by Design Of Experiment (DOE).

164

Laser Processing of Biomedical Materials - Programmaster.org  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2012. Symposium, Recent Advances in Laser Fabrication and Characterization Methods: ...

165

applications of sensors and modeling to materials processing: iii - TMS  

Science Conference Proceedings (OSTI)

... based sensor is being developed for remote metrology of plasma facing material surfaces in the International Thermonuclear Experimental Reactor (ITER ).

166

Assessment of Structural and Clad Materials for Fission Surface...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges September 2011 Prepared by R.K. Nanstad, Oak Ridge...

167

Modeling of plasma spraying process to manufacture hybrid materials  

Science Conference Proceedings (OSTI)

A component, which has an optimized combination of different materials in its different portions for a specific application, is considered as the component made of a multiphase perfect material. To fabricate such components, a hybrid layered manufacturing ... Keywords: Behavior simulation, Hybrid layered manufacturing, Multiphase perfect material, Plasma spraying, Virtual manufacturing, Virtual prototyping

Feng Wang; Ke-Zhang Chen; Xin-An Feng

2007-12-01T23:59:59.000Z

168

Analytical and experimental studies for thermal plasma processing of materials  

SciTech Connect

Work continued on thermal plasma processing of materials. This quarter, ceramic powders of carbides, aluminium nitride, oxides, solids solutions, magnetic and non magnetic spinels, superconductors, and composites have been successfully synthesized in a Triple DC Torch Plasma Jet Reactor (TTPR) and in a single DC Plasma Jet Reactor. All the ceramic powders with the exception of AIN were synthesized using a novel injection method developed to overcome the problems associated with solid injection, in particular for the single DC plasma jet reactor, and to realize the benefits of gas phase reactions. Also, initial experiments have been performed for the deposition of diamond coatings on Si wafers using the TTPR with methane as the carbon source. Well faceted diamond crystallites were deposited on the surface of the wafers, forming a continuous one particle thick coating. For measuring temperature and velocity fields in plasma systems, enthalpy probes have been developed and tested. The validity has been checked by performing energy and mass flux balances in an argon plasma jet operated in argon atmosphere. Total Gibbs free energy minimization calculations using a quasi-equilibrium modification have been applied to simulate several chemical reactions. Plasma reactor modelling has been performed for the counter-flow liquid injection plasma synthesis experiment. Plasma diagnostics has been initiated to determine the pressure gradient in the coalesced part of the plasma jet. The pressure gradient drives the diffusion of chemical species which ultimately controls the chemical reactions. 4 figs.

1990-01-01T23:59:59.000Z

169

Apparatus and method for microwave processing of materials  

DOE Patents (OSTI)

Disclosed is a variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency heating apparatus is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity depending upon the material, including the state thereof, from which the workpiece is fabricated. The variable frequency microwave heating apparatus includes a microwave signal generator and a high-power microwave amplifier or a microwave voltage-controlled oscillator. A power supply is provided for operation of the high-power microwave oscillator or microwave amplifier. A directional coupler is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 10 figs.

Johnson, A.C.; Lauf, R.J.; Bible, D.W.; Markunas, R.J.

1996-05-28T23:59:59.000Z

170

Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley  

Open Energy Info (EERE)

Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Geothermal Area- A Reactive Transport Modeling Approach Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Geothermal Area- A Reactive Transport Modeling Approach Abstract A 2D reactive transport model of the Dixie Valley,Nevada, geothermal area was developed to assessfluid flow pathways and fluid rock interactionprocesses. Setting up the model includedspecification of the mineralogy of the different rockunits, the formulation of the corresponding mineraldissolution and precipitation reactions, the explicitdefinition of two major normal faults and thespecification of a dual continuum domain

171

Process of making porous ceramic materials with controlled porosity  

DOE Patents (OSTI)

A method of making metal oxide ceramic material is disclosed by which the porosity of the resulting material can be selectively controlled by manipulating the sol used to make the material. The method can be used to make a variety of metal oxide ceramic bodies, including membranes, but also pellets, plugs or other bodies. It has also been found that viscous sol materials can readily be shaped by extrusion into shapes typical of catalytic or adsorbent bodies used in industry, to facilitate the application of such materials for catalytic and adsorbent applications.

Anderson, Marc A. (Madison, WI); Ku, Qunyin (Madison, WI)

1993-01-01T23:59:59.000Z

172

Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes - May 2008  

Fuel Cell Technologies Publication and Product Library (EERE)

Chemical Hydrogen Storage Center of Excellence FY2008 Second Quarter Milestone Report: Technical report describing assessment of hydrogen storage materials and progress towards meeting DOE’s hydrogen

173

More Efficient ICME through Materials Informatics and Process ...  

Science Conference Proceedings (OSTI)

Cyber-Enabled Ab Initio Simulations in Nanohub.org: Simulation Tools and Learning Modules · Cyber-Enabled Materials Simulations Via Nanohub.org.

174

Green Technologies for Materials Manufacturing and Processing VI  

Science Conference Proceedings (OSTI)

Therefore, “green” or environmentally benign technologies have been a major focus ... The volumes of consumed raw materials, used energy (or emitted carbon  ...

175

Advanced Materials and Processes for Gas Turbines TABLE OF ...  

Science Conference Proceedings (OSTI)

Materials Issues for the Design of Industrial Gas Turbines [pp. 3-13] ... French Developments of Superalloys for Gas Turbine Disks and Blades [pp. 17-28

176

Processing and Properties of Traditional and Novel Materials at ...  

Science Conference Proceedings (OSTI)

Mar 12, 2012... to ensure safety, lower life-cycle costs, and improve aircraft availability. ... Advancements in Nuclear Materials Research at the Idaho National ...

177

applications of sensors and modeling to materials processing - TMS  

Science Conference Proceedings (OSTI)

Program Organizers: S. Viswanathan, Oak Ridge National Lab., Oak Ridge, TN 37831-6083; R.G. Reddy, Department of Metallurgical and Materials ...

178

A Process for Efficient Material Recovery from Scrap Electronics  

Science Conference Proceedings (OSTI)

Leaching Toxicity of Pb and Ba Containing in Cathode Ray Tube Glasses by SEP -TCLP · Mechanical Recycling of Electronic Wastes for Materials Recovery.

179

One-Pot Mechanochemical Processing of Cathode Materials for Li ...  

Science Conference Proceedings (OSTI)

Environmental Assessment of Li-CNT Battery Production ... The Production of High-Quality Magnesite Ore Concentrate With Permroll Type Magnetic Separator.

180

Crafting technology: Reimagining the processes, materials, and cultures of electronics  

Science Conference Proceedings (OSTI)

This article examines the practice of electronics building in the context of other crafts. We compare the experience of making electronics with the experiences of carving, sewing, and painting. Our investigation is grounded in a survey of 40 practicing ... Keywords: Craft, DIY, art, design, e-textiles, education, electronics, materiality, materials science, paper-based electronics

Leah Buechley; Hannah Perner-Wilson

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "material assessment process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Method of processing materials using an inductively coupled plasma  

SciTech Connect

A method for coating surfaces or implanting ions in an object using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The coating material or implantation material is intitially in solid form.

Hull, Donald E. (Los Alamos, NM); Bieniewski, Thomas M. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

182

Green Technologies for Materials Manufacturing and Processing IV  

Science Conference Proceedings (OSTI)

Apr 2, 2012 ... Therefore, “green” or environmentally benign technologies have been a ... products and processes; development of alternative technologies; ...

183

Future Materials and Process Needs for Commercial Jet Transports  

Science Conference Proceedings (OSTI)

One scenario would address more polymer composite applications while other scenarios could ... Analysis and Optimization of Aerospace Machining Processes.

184

Process and Material Data Needed for Heat Treatment and Laser ...  

Science Conference Proceedings (OSTI)

For heat treatment processes, thermocouple experiments and analysis required to determine the heat transfer boundary conditions are explained.

185

Materials measurement and accounting in an operating plutonium conversion and purification process. Phase I. Process modeling and simulation. [PUCSF code  

SciTech Connect

A model of an operating conversion and purification process for the production of reactor-grade plutonium dioxide was developed as the first component in the design and evaluation of a nuclear materials measurement and accountability system. The model accurately simulates process operation and can be used to identify process problems and to predict the effect of process modifications.

Thomas, C.C. Jr.; Ostenak, C.A.; Gutmacher, R.G.; Dayem, H.A.; Kern, E.A.

1981-04-01T23:59:59.000Z

186

Process for biological material carbon-carbon bond formation  

DOE Patents (OSTI)

A process for providing vicinal dimethyl long chain between alkyl groups of organic compounds is described. The process uses intact or disrupted cells of various species of bacteria, particularly Thermoanaerobacter sp., Sarcina sp. and Butyrivibrio sp. The process can be conducted in an aqueous reaction mixture at room temperatures.

Hollingsworth, Rawle I. (Haslett, MI); Jung, Seunho (Kuyngkido, KR); Mindock, Carol A. (Lansing, MI)

1998-01-01T23:59:59.000Z

187

Process for biological material carbon-carbon bond formation  

DOE Patents (OSTI)

A process for providing vicinal dimethyl long chain between alkyl groups of organic compounds is described. The process uses intact or disrupted cells of various species of bacteria, particularly Thermoanaerobacter sp., Sarcina sp. and Butyrivibrio sp. The process can be conducted in an aqueous reaction mixture at room temperatures. 8 figs.

Hollingsworth, R.I.; Jung, S.; Mindock, C.A.

1998-12-22T23:59:59.000Z

188

Progress Toward Roll Processing of Solar Reflective Material (Presentation)  

DOE Green Energy (OSTI)

This presentation discusses the goal of this project which was to demonstrate that it is possible to cost-effectively produce high performance solar reflective material using vacuum deposition techniques.

Smilgys, R.; Wallace, S.; Kennedy, C.

2001-04-01T23:59:59.000Z

189

Method of processing materials using an inductively coupled plasma  

DOE Patents (OSTI)

A method for making fine power using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The starting material used in the method is in solid form.

Hull, Donald E. (Los Alamos, NM); Bieniewski, Thomas M. (Los Alamos, NM)

1990-01-01T23:59:59.000Z

190

Investigation of test methods, material properties, and processes for solar-cell encapsulants. Annual report  

DOE Green Energy (OSTI)

Potentially useful low cost encapsulation materials are evaluated. The goal of the program is to identify, evaluate, test, and recommend encapsulant materials and processes for the production of cost-effective, long life solar cell modules. Technical investigations have concerned the development of advanced cure chemistries for lamination type pottants, the continued evaluation of soil resistant surface treatments, and the results of an accelerated aging test program for the comparison of material stabilities. Experiments are underway to assess the durability and cost effectiveness of coatings for protection of steel. Investigations are continuing with commercial maintenance coatings based on fluorocarbon and silicone-alkyd chemistries. Experiments were conducted to determine the effectiveness of occlusive coatings for wood products such as hard-board. An experimental program continued to determine the usefulness of soil resistant coatings. Primers were evaluated for effectiveness in bonding candidate pottants to outer covers, glass and substate materials. A program of accelerated aging and life predictive strategies is being conducted and data are reported for sunlamp exposure and thermal aging. Supporting activities are also discussed briefly. (LEW)

Willis, P. B.; Baum, B.

1982-07-01T23:59:59.000Z

191

Methodology and Process for Condition Assessment at Existing Hydropower Plants  

SciTech Connect

Hydropower Advancement Project was initiated by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy to develop and implement a systematic process with a standard methodology to identify the opportunities of performance improvement at existing hydropower facilities and to predict and trend the overall condition and improvement opportunity within the U.S. hydropower fleet. The concept of performance for the HAP focuses on water use efficiency how well a plant or individual unit converts potential energy to electrical energy over a long-term averaging period of a year or more. The performance improvement involves not only optimization of plant dispatch and scheduling but also enhancement of efficiency and availability through advanced technology and asset upgrades, and thus requires inspection and condition assessment for equipment, control system, and other generating assets. This paper discusses the standard methodology and process for condition assessment of approximately 50 nationwide facilities, including sampling techniques to ensure valid expansion of the 50 assessment results to the entire hydropower fleet. The application and refining process and the results from three demonstration assessments are also presented in this paper.

Zhang, Qin Fen [ORNL; Smith, Brennan T [ORNL; Cones, Marvin [Mesa Associates, Inc.; March, Patrick [Hydro Performance Processes, Inc.; Dham, Rajesh [U.S. Department of Energy; Spray, Michael [New West Technologies, LLC.

2012-01-01T23:59:59.000Z

192

Materials technology assessment of high-temperature solar receivers for fuels and chemicals production  

DOE Green Energy (OSTI)

Current interest in using solar thermal energy to produce fuels and chemicals has prompted an assessment of materials technology for five proposed designs of solar receivers. The principal process of interest is water splitting. Reaction schemes considered involve the high-temperature decomposition of sulfuric acid, and silicon carbide is the structural ceramic material usually considered most resistant to the conditions of this reaction. Hence we have assessed the fabricability of the designs from SiC for that reaction system, even though most designs envision use with air, helium, or nitrogen as a heat transfer medium. Honeycomb and hemispherical dome receivers have been fabricated from SiC. A receiver using planar coiled tubes has been fabricated from cordierite but not from SiC. Fabrication has not been demonstrated for helical coil and long tube designs. The last three of these should be fabricable with up to two years development. All lack the ultimate test: operational experience. The need for relable seals is common to all designs. Metallic gaskets are subject to corrosion, and ceramic and mechanical seals have not been demonstrated for the anticipated thermal cycling.

Tiegs, T.N.

1981-07-01T23:59:59.000Z

193

LEACHING ASSESSMENT OF RED MUD AND PHOSPHOGYPSUM FOR BENEFICIAL USE AS CONSTRUCTION MATERIALS.  

E-Print Network (OSTI)

??Beneficial use involves the application of a secondary material from an industrial process, which otherwise may be considered a potentially hazardous waste, as a building… (more)

Kirkland, Ryan Anderson

2009-01-01T23:59:59.000Z

194

Uniform bulk Material Processing using Multimode Microwave Radiation  

DOE Patents (OSTI)

An apparatus for generating uniform heating in material contained in a cylindrical vessel is described. TE{sub 10}-mode microwave radiation is coupled into a cylindrical microwave transition such that microwave radiation having TE{sub 11}-, TE{sub 01}- and TM{sub 01}-cylindrical modes is excited therein. By adjusting the intensities of these modes, substantially uniform heating of materials contained in a cylindrical drum which is coupled to the microwave transition through a rotatable choke can be achieved. The use of a poor microwave absorbing insulating cylindrical insert, such as aluminum oxide, for separating the material in the container from the container walls and for providing a volume through which air is circulated is expected to maintain the container walls at room temperature. The use of layer of highly microwave absorbing material, such as SiC, inside of the insulating insert and facing the material to be heated is calculated to improve the heating pattern of the present apparatus.

Varma, Ravi; Vaughan, Worth E.

1999-06-18T23:59:59.000Z

195

Uniform bulk material processing using multimode microwave radiation  

DOE Patents (OSTI)

An apparatus for generating uniform heating in material contained in a cylindrical vessel is described. TE.sub.10 -mode microwave radiation is coupled into a cylindrical microwave transition such that microwave radiation having TE.sub.11 -, TE.sub.01 - and TM.sub.01 -cylindrical modes is excited therein. By adjusting the intensities of these modes, substantially uniform heating of materials contained in a cylindrical drum which is coupled to the microwave transition through a rotatable choke can be achieved. The use of a poor microwave absorbing insulating cylindrical insert, such as aluminum oxide, for separating the material in the container from the container walls and for providing a volume through which air is circulated is expected to maintain the container walls at room temperature. The use of layer of highly microwave absorbing material, such as SiC, inside of the insulating insert and facing the material to be heated is calculated to improve the heating pattern of the present apparatus.

Varma, Ravi (Los Alamos, NM); Vaughn, Worth E. (Madison, WI)

2000-01-01T23:59:59.000Z

196

The Nuclear Material Focus Area Roadmapping Process Utilizing Environmental Management Complex-Wide Nuclear Material Disposition Pathways  

SciTech Connect

This paper describes the process that the Nuclear Materials Focus Area (NMFA) has developed and utilizes in working with individual Department of Energy (DOE) sites to identify, address, and prioritize research and development efforts in the stabilization, disposition, and storage of nuclear materials. By associating site technology needs with nuclear disposition pathways and integrating those with site schedules, the NMFA is developing a complex wide roadmap for nuclear material technology development. This approach will leverage technology needs and opportunities at multiple sites and assist the NMFA in building a defensible research and development program to address the nuclear material technology needs across the complex.

Sala, D. R.; Furhman, P.; Smith, J. D.

2002-02-26T23:59:59.000Z

197

Second International Conference on Processing Materials for ... - TMS  

Science Conference Proceedings (OSTI)

Nov 6, 2000 ... He has also spent periods working in the aluminum industry. ... synthesis and processing of advanced ceramic, intermetallic and composite ...

198

Materials Processing Innovation – Why's the Path so Tortuous?  

Science Conference Proceedings (OSTI)

Solidification Advances · The Solidification of Methane Hydrate · **Synthesis and Processing of Abrasives as Industrial Ceramics: Prof. M. C. Flemings' Role in ...

199

NSLS II: Growth and Processing of Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

is a non-equilibrium phenomenon governed by a competition between kinetics and thermodynamics. The figure illustrates common themes in thin film growth processes and methods....

200

Processing and Properties of Powder-Based Materials  

Science Conference Proceedings (OSTI)

Preliminary Investigations in Current-Activated Tip-Based Sintering (CATS): Modeling and Experiments · Process Simulation of Cold Pressing and Sintering of ...

Note: This page contains sample records for the topic "material assessment process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

An Ultrasonic Sensor for High-Temperature Materials Processing  

Science Conference Proceedings (OSTI)

While the ability to create and control extreme processing conditions is .... with the ultrasonic pulser-receiver instrumentation required considerable research and ...

202

Hazardous Materials Management and Emergency Response training Center needs assessment  

SciTech Connect

For the Hanford Site to provide high-quality training using simulated job-site situations to prepare the 4,000 Site workers and 500 emergency responders for known and unknown hazards a Hazardous Materials Management and Emergency Response Training Center is needed. The center will focus on providing classroom lecture as well as hands-on, realistic training. The establishment of the center will create a partnership among the US Department of Energy; its contractors; labor; local, state, and tribal governments; and Xavier and Tulane Universities of Louisiana. This report presents the background, history, need, benefits, and associated costs of the proposed center.

McGinnis, K.A. [Westinghouse Hanford Co., Richland, WA (United States); Bolton, P.A. [Pacific Northwest Lab., Richland, WA (United States); Robinson, R.K. [RKR, Inc. (United States)

1993-09-01T23:59:59.000Z

203

Model and Analytic Processes for Export License Assessments  

SciTech Connect

This paper represents the Department of Energy Office of Nonproliferation Research and Development (NA-22) Simulations, Algorithms and Modeling (SAM) Program's first effort to identify and frame analytical methods and tools to aid export control professionals in effectively predicting proliferation intent; a complex, multi-step and multi-agency process. The report focuses on analytical modeling methodologies that alone, or combined, may improve the proliferation export control license approval process. It is a follow-up to an earlier paper describing information sources and environments related to international nuclear technology transfer. This report describes the decision criteria used to evaluate modeling techniques and tools to determine which approaches will be investigated during the final 2 years of the project. The report also details the motivation for why new modeling techniques and tools are needed. The analytical modeling methodologies will enable analysts to evaluate the information environment for relevance to detecting proliferation intent, with specific focus on assessing risks associated with transferring dual-use technologies. Dual-use technologies can be used in both weapons and commercial enterprises. A decision-framework was developed to evaluate which of the different analytical modeling methodologies would be most appropriate conditional on the uniqueness of the approach, data availability, laboratory capabilities, relevance to NA-22 and Office of Arms Control and Nonproliferation (NA-24) research needs and the impact if successful. Modeling methodologies were divided into whether they could help micro-level assessments (e.g., help improve individual license assessments) or macro-level assessment. Macro-level assessment focuses on suppliers, technology, consumers, economies, and proliferation context. Macro-level assessment technologies scored higher in the area of uniqueness because less work has been done at the macro level. An approach to developing testable hypotheses for the macro-level assessment methodologies is provided. The outcome of this works suggests that we should develop a Bayes Net for micro-level analysis and continue to focus on Bayes Net, System Dynamics and Economic Input/Output models for assessing macro-level problems. Simultaneously, we need to develop metrics for assessing intent in export control, including the risks and consequences associated with all aspects of export control.

Thompson, Sandra E.; Whitney, Paul D.; Weimar, Mark R.; Wood, Thomas W.; Daly, Don S.; Brothers, Alan J.; Sanfilippo, Antonio P.; Cook, Diane; Holder, Larry

2011-09-29T23:59:59.000Z

204

Accelerator Production of Tritium project process waste assessment  

Science Conference Proceedings (OSTI)

DOE has made a commitment to compliance with all applicable environmental regulatory requirements. In this respect, it is important to consider and design all tritium supply alternatives so that they can comply with these requirements. The management of waste is an integral part of this activity and it is therefore necessary to estimate the quantities and specific wastes that will be generated by all tritium supply alternatives. A thorough assessment of waste streams includes waste characterization, quantification, and the identification of treatment and disposal options. The waste assessment for APT has been covered in two reports. The first report was a process waste assessment (PWA) that identified and quantified waste streams associated with both target designs and fulfilled the requirements of APT Work Breakdown Structure (WBS) Item 5.5.2.1. This second report is an expanded version of the first that includes all of the data of the first report, plus an assessment of treatment and disposal options for each waste stream identified in the initial report. The latter information was initially planned to be issued as a separate Waste Treatment and Disposal Options Assessment Report (WBS Item 5.5.2.2).

Carson, S.D.; Peterson, P.K.

1995-09-01T23:59:59.000Z

205

Process for gasifying carbonaceous material from a recycled condensate slurry  

DOE Patents (OSTI)

Coal or other carbonaceous material is gasified by reaction with steam and oxygen in a manner to minimize the problems of effluent water stream disposal. The condensate water from the product gas is recycled to slurry the coal feed and the amount of additional water or steam added for cooling or heating is minimized and preferably kept to a level of about that required to react with the carbonaceous material in the gasification reaction. The gasification is performed in a pressurized fluidized bed with the coal fed in a water slurry and preheated or vaporized by indirect heat exchange contact with product gas and recycled steam. The carbonaceous material is conveyed in a gas-solid mixture from bottom to top of the pressurized fluidized bed gasifier with the solids removed from the product gas and recycled steam in a supported moving bed filter of the resulting carbonaceous char. Steam is condensed from the product gas and the condensate recycled to form a slurry with the feed coal carbonaceous particles.

Forney, Albert J. (Coraopolis, PA); Haynes, William P. (Pittsburgh, PA)

1981-01-01T23:59:59.000Z

206

Life cycle assessment of materials and construction in commercial structures : variability and limitations  

E-Print Network (OSTI)

Life cycle assessment has become an important tool for determining the environmental impact of materials and products. It is also useful in analyzing the impact a structure has over the course of its life cycle. The ...

Hsu, Sophia Lisbeth

2010-01-01T23:59:59.000Z

207

Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities, Materials, and Wastes Proposed for Facilities, Materials, and Wastes Proposed for Transfer to EM Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM In December 2007 the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM More Documents & Publications Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM

208

Plantwide Energy Assessment of a Sugarcane Farming and Processing Facility  

DOE Green Energy (OSTI)

A plantwide energy assessment was performed at Hawaiian Commercial & Sugar Co., an integrated sugarcane farming and processing facility on the island of Maui in the State of Hawaii. There were four main tasks performed for the plantwide energy assessment: 1) pump energy assessment in both field and factory operations, 2) steam generation assessment in the power production operations, 3) steam distribution assessment in the sugar manufacturing operation, and 4) electric power distribution assessment of the company system grid. The energy savings identified in each of these tasks were summarized in terms of fuel savings, electricity savings, or opportunity revenue that potentially exists mostly from increased electric power sales to the local electric utility. The results of this investigation revealed eight energy saving projects that can be implemented at HC&S. These eight projects were determined to have potential for $1.5 million in annual fuel savings or 22,337 MWh equivalent annual electricity savings. Most of the savings were derived from pump efficiency improvements and steam efficiency improvements both in generation and distribution. If all the energy saving projects were implemented and the energy savings were realized as less fuel consumed, there would be corresponding reductions in regulated air pollutants and carbon dioxide emissions from supplemental coal fuel. As HC&S is already a significant user of renewable biomass fuel for its operations, the projected reductions in air pollutants and emissions will not be as great compared to using only coal fuel for example. A classification of implementation priority into operations was performed for the identified energy saving projects based on payback period and ease of implementation.

Jakeway, L.A.; Turn, S.Q.; Keffer, V.I.; Kinoshita, C.M.

2006-02-27T23:59:59.000Z

209

Open Source Software for Materials and Process Modeling  

Science Conference Proceedings (OSTI)

Though open source engineering analysis tools have not been widely deployed, ... over half of websites,3 and the market share of the open source Firefox web ... 10 kWh of energy per kg of product.7 The magnesium (hydr)oxide dissolves in a ... to post-process the information generated by the ATAT code, which consists of

210

Radiological dose assessment related to management of naturally occurring radioactive materials generated by the petroleum industry  

Science Conference Proceedings (OSTI)

A preliminary radiological dose assessment related to equipment decontamination, subsurface disposal, landspreading, equipment smelting, and equipment burial was conducted to address concerns regarding the presence of naturally occurring radioactive materials in production waste streams. The assessment evaluated the relative dose of these activities and included a sensitivity analysis of certain input parameters. Future studies and potential policy actions are recommended.

Smith, K.P.; Blunt, D.L.; Williams, G.P.; Tebes, C.L. [Argonne National Lab., IL (United States). Environmental Assessment Div.

1995-05-01T23:59:59.000Z

211

Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology  

Science Conference Proceedings (OSTI)

Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

2005-06-30T23:59:59.000Z

212

Temperature programmed combustion studies of the co-processing of coal and waste materials  

E-Print Network (OSTI)

Temperature programmed combustion studies of the co-processing of coal and waste materials F) to study the interaction between coal, polyethylene, and dried sewage sludge which are possible components in coal/ waste materials co-processing combustion systems. The TPC studies were carried out on the raw

Thomas, Mark

213

Commercial Light Water Reactor -Tritium Extraction Facility Process Waste Assessment (Project S-6091)  

Science Conference Proceedings (OSTI)

The Savannah River Site (SRS) has been tasked by the Department of Energy (DOE) to design and construct a Tritium Extraction Facility (TEF) to process irradiated tritium producing burnable absorber rods (TPBARs) from a Commercial Light Water Reactor (CLWR). The plan is for the CLWR-TEF to provide tritium to the SRS Replacement Tritium Facility (RTF) in Building 233-H in support of DOE requirements. The CLWR-TEF is being designed to provide 3 kg of new tritium per year, from TPBARS and other sources of tritium (Ref. 1-4).The CLWR TPBAR concept is being developed by Pacific Northwest National Laboratory (PNNL). The TPBAR assemblies will be irradiated in a Commercial Utility light water nuclear reactor and transported to the SRS for tritium extraction and processing at the CLWR-TEF. A Conceptual Design Report for the CLWR-TEF Project was issued in July 1997 (Ref. 4).The scope of this Process Waste Assessment (PWA) will be limited to CLWR-TEF processing of CLWR irradiated TPBARs. Although the CLWR- TEF will also be designed to extract APT tritium-containing materials, they will be excluded at this time to facilitate timely development of this PWA. As with any process, CLWR-TEF waste stream characteristics will depend on process feedstock and contaminant sources. If irradiated APT tritium-containing materials are to be processed in the CLWR-TEF, this PWA should be revised to reflect the introduction of this contaminant source term.

Hsu, R.H.; Delley, A.O.; Alexander, G.J.; Clark, E.A.; Holder, J.S.; Lutz, R.N.; Malstrom, R.A.; Nobles, B.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Carson, S.D. [Sandia National Laboratories, New Mexico, NM (United States); Peterson, P.K. [Sandia National Laboratories, New Mexico, NM (United States)

1997-11-30T23:59:59.000Z

214

Process for strengthening aluminum based ceramics and material  

DOE Green Energy (OSTI)

A process for strengthening aluminum based ceramics is provided. A gaseous atmosphere consisting essentially of silicon monoxide gas is formed by exposing a source of silicon to an atmosphere consisting essentially of hydrogen and a sufficient amount of water vapor. The aluminum based ceramic is exposed to the gaseous silicon monoxide atmosphere for a period of time and at a temperature sufficient to produce a continuous, stable silicon-containing film on the surface of the aluminum based ceramic that increases the strength of the ceramic.

Moorhead, Arthur J. (Knoxville, TN); Kim, Hyoun-Ee (Seoul, KR)

2000-01-01T23:59:59.000Z

215

Process for strengthening aluminum based ceramics and material  

DOE Patents (OSTI)

A process for strengthening aluminum based ceramics is provided. A gaseous atmosphere consisting essentially of silicon monoxide gas is formed by exposing a source of silicon to an atmosphere consisting essentially of hydrogen and a sufficient amount of water vapor. The aluminum based ceramic is exposed to the gaseous silicon monoxide atmosphere for a period of time and at a temperature sufficient to produce a continuous, stable silicon-containing film on the surface of the aluminum based ceramic that increases the strength of the ceramic.

Moorhead, Arthur J.; Kim, Hyoun-Ee

1998-12-01T23:59:59.000Z

216

Advanced computational research in materials processing for design and manufacturing  

DOE Green Energy (OSTI)

The computational requirements for design and manufacture of automotive components have seen dramatic increases for producing automobiles with three times the mileage. Automotive component design systems are becoming increasingly reliant on structural analysis requiring both overall larger analysis and more complex analyses, more three-dimensional analyses, larger model sizes, and routine consideration of transient and non-linear effects. Such analyses must be performed rapidly to minimize delays in the design and development process, which drives the need for parallel computing. This paper briefly describes advanced computational research in superplastic forming and automotive crash worthiness.

Zacharia, T. [Oak Ridge National Lab., TN (United States). Metals and Ceramics

1994-12-31T23:59:59.000Z

217

Alkali metal recovery from carbonaceous material conversion process  

DOE Patents (OSTI)

In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

Sharp, David W. (Seabrook, TX); Clavenna, LeRoy R. (Baytown, TX); Gorbaty, Martin L. (Fanwood, NJ); Tsou, Joe M. (Galveston, TX)

1980-01-01T23:59:59.000Z

218

Hard surfaced polymeric materials by ion beam processing  

DOE Green Energy (OSTI)

Initially, both General Motors and Lockheed Martin Energy Systems, Inc. were interested in altering the surface properties of polymers using ion beam technologies. Specifically, GM wished to treat the nylon that is used to encapsulate automotive assemblies so that it would be impervious to the alcohols and ethers used in present day blends of gasoline. Fuel oxygenates such as methanol can rapidly permeate the nylon encapsulant and tend to corrode the components within the assemblies. Once the CRADA was initiated, GM learned about the cleaning/decontamination expertise that was available at the Oak Ridge Y-12 Plant. Because GM was also interested in solving contamination issues related to these assemblies, GM worked with Lockheed Martin Energy Systems, Inc. to amend the CRADA to include such issues. Y-12 was eager to share its environmentally friendly, cleaning/decontamination expertise and also to expand upon its knowledge in this area. GM provided funds into the CRADA in order to address these contamination issues. Further on into the CRADA, GM put even more emphasis on the decontamination issues. This change in direction resulted because of rapid progress on the decontamination issues and, secondly, because GM changed its component material from nylon to the highly impervious polyphenylene sulfide.

Simandl, R.F. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Rose, D. [Delphi Energy and Engine Management Systems, Flint, MI (United States)

1996-09-27T23:59:59.000Z

219

Economic assessment of advanced flue gas desulfurization processes. Final report  

Science Conference Proceedings (OSTI)

This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final reprot, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluations, was completed in October 1980. A slightly modified and condensed version of that report appears as appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

1981-09-01T23:59:59.000Z

220

Bates solar industrial process steam application environmental impact assessment  

DOE Green Energy (OSTI)

It is planned to install 34,440 square feet of linear parabolic trough solar collectors at a new corrugator plant for making corrugated boxes. The system is to operate in parallel with a fossil fuel boiler. An assessment is presented of the impacts of the solar energy system on the existing environment and to determine whether or not a more detailed environmental impact statement is needed. The environmental assessment is based on actual operational data obtained on the collector, fluid, and heat transport system. A description of the design of the solar energy system and its application is given. Also included is a discussion of the location of the new plant in Fort Worth, Texas, and of the surrounding environment. Environmental impacts are discussed in detail, and alternatives to the solar industrial process steam retrofit application are offered. It is concluded that the overall benefits from the solar industrial process heat system outweigh any negative environmental factors. Benefits include reduced fossil fuel demand, with attending reductions in air pollutants. The selection of a stable heat transfer fluid with low toxicity and biodegradable qualities minimizes environmental damage due to fluid spills, personal exposure, and degradation byproducts. The collector is found to be aesthetically attractive with minimal hazards due to glare. (LEW)

Not Available

1981-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "material assessment process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Integrating Chemical Hazard Assessment into the Design of Inherently Safer Processes  

E-Print Network (OSTI)

Reactive hazard associated with chemicals is a major safety issue in process industries. This kind of hazard has caused the occurrence of many accidents, leading to fatalities, injuries, property damage and environment pollution. Reactive hazards can be eliminated or minimized by applying Inherently Safer Design (ISD) principles such as "substitute" or "moderate" strategies. However, ISD would not be a feasible option for industry without an efficient methodology for chemical hazard assessment, which provides the technical basis for applying ISD during process design. In this research, a systematic chemical hazard assessment methodology was developed for assisting the implementation of ISD in the design of inherently safer process. This methodology incorporates the selection of safer chemicals and determination of safer process conditions, which correspond to "substitute" and "moderate" strategies in ISD. The application of this methodology in conjunction with ISD technique can effectively save the time and investment spent on the process design. As part of selecting safer chemicals, prediction models were developed for predicting hazardous properties of reactive chemicals. Also, a hazard index was adopted to rate chemicals according to reactive hazards. By combining the prediction models with the hazard index, this research can provide important information on how to select safer chemicals for the processes, which makes the process chemistry inherently safer. As part of determining safer process conditions, the incompatibility of Methyl Ethyl Ketone Peroxide (MEKPO) with iron oxide was investigated. It was found that iron oxide at low levels has no impact on the reactive hazards of MEKPO as well as the operational safety. However, when iron oxide is beyond 0.3 wt%, it starts to change the kinetics of MEKPO runaway reaction and even the reaction mechanism. As a result, with the presence of a certain level of iron oxide (> 0.3 wt%), iron oxide can intensify the reactive hazards of MEKPO and impose higher risk to process operations. The investigation results can help to determine appropriate materials for fabricating process equipment and safer process conditions.

Lu, Yuan

2011-12-01T23:59:59.000Z

222

Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials  

SciTech Connect

The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.

Rachor, Ingke, E-mail: i.rachor@ifb.uni-hamburg.de [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany); Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany)

2011-05-15T23:59:59.000Z

223

Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Processing Facility Salt Waste Processing Facility Technology Readiness Assessment Report Kurt D. Gerdes Harry D. Harmon Herbert G. Sutter Major C. Thompson John R. Shultz Sahid C. Smith July 13, 2009 Prepared by the U.S. Department of Energy Washington, D.C. SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 ii This page intentionally left blank SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iii SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iii Signatures SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iv This page intentionally left blank SRS Salt Waste Processing Facility

224

ORISE: Multi-Agency Radiation Survey and Assessment of Materials and  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of Materials and Equipment Assessment of Materials and Equipment (MARSAME) resources ORISE provides training and support for agencies required to use MARSAME for property clearance programs Decommissioned site The Multi-Agency Radiation Survey and Assessment of Materials and Equipment manual (MARSAME) is a resource developed to help with the disposition of metals, concrete, tools, piping, furniture, solids, liquids, and gases in containers, and similar non-real property that were part of former nuclear sites that have undergone decontamination and decommissioning (D&D). The MARSAME manual was published in January 2009 as a supplement to the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM 2002) and is a critical resource for federal agencies involved in property

225

EPRI Report on Solid Material Disposition: Evaluation to Assess Industry Impact  

Science Conference Proceedings (OSTI)

In March 2005, the NRC staff requested Commission approval for publication of a proposed rule in the Federal Register to amend 10CFR Part 20 to include criteria for controlling the disposition of solid materials. This report provides an initial analysis of whether or not methods of solid material assessment, currently practiced at nuclear power facilities, would be sufficient to meet the disposition limits in the proposed rule.

2005-12-01T23:59:59.000Z

226

A high liquid yield process for retorting various organic materials including oil shale  

DOE Patents (OSTI)

This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process. 2 figs.

Coburn, T.T.

1988-07-26T23:59:59.000Z

227

High liquid yield process for retorting various organic materials including oil shale  

DOE Patents (OSTI)

This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process.

Coburn, Thomas T. (Livermore, CA)

1990-01-01T23:59:59.000Z

228

Workshop on innovation in materials processing and manufacture: Exploratory concepts for energy applications  

DOE Green Energy (OSTI)

The goal of the workshop was to bring together industrial, academic, and DOE Laboratory personnel to discuss and identify potential areas for which creative, innovative, and/or multidisciplinary solutions could result in major payoffs for the nation`s energy economy, DOE, and industry. The topics emphasized in these discussions were: surfaces and interfacial processing technologies, biomolecular materials, powder/precursor technologies, magnetic materials, nanoscale materials, novel ceramics and composites, novel intermetallics and alloys, environmentally benign materials, and energy efficiency. The workshop had a 2-day format. One the first day, there was an introductory session that summarized future directions within DOE`s basic and materials technology programs, and the national studies on manufacturing and materials science and engineering. The balance of the workshop was devoted to brainstorming sessions by seven working groups. During the first working group session, the entire group was divided to discuss topics on: challenges for hostile environments, novel materials in transportation technologies, novel nanoscale materials, and opportunities in biomolecular materials. For the second session, the entire group (except for the working group on biomolecular materials) was reconfigured into new working groups on: alternative pathways to energy efficiency, environmentally benign materials and processes, and waste treatment and reduction: a basic sciences approach. This report contains separate reports from each of the seven working groups.

Horton, L.L. [comp.

1993-06-01T23:59:59.000Z

229

Fracture process zone : microstructure and nanomechanics in quasi-brittle materials  

E-Print Network (OSTI)

Cracks begin (and end) at a crack tip; the "Fracture Process Zone" (FPZ) is a region of damage around the crack tip. The context of this research is the FPZ in quasi-brittle materials, which is characterized by cracking ...

Brooks, Zenzile (Zenzile Z.)

2013-01-01T23:59:59.000Z

230

Process for impregnating a concrete or cement body with a polymeric material  

DOE Patents (OSTI)

A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.

Mattus, A.J.; Spence, R.D.

1988-05-04T23:59:59.000Z

231

Multiscale Simulation of Thermo-mechanical Processes in Irradiated Fission-reactor Materials  

SciTech Connect

This report contains a summary of progress made on the subtask area on phase field model development for microstructure evolution in irradiated materials, which was a part of the Computational Materials Science Network (CMSN) project entitled: Multiscale Simulation of Thermo-mechanical Processes in Irradiated Fission-reactor Materials. The model problem chosen has been that of void nucleation and growth under irradiation conditions in single component systems.

Anter El-Azab

2012-05-28T23:59:59.000Z

232

Materials selection for process equipment in the Hanford waste vitrification plant  

Science Conference Proceedings (OSTI)

The Hanford Waste Vitrification Plant (HWVP) is being designed to vitrify defense liquid high-level wastes and transuranic wastes stored at Hanford. The HWVP Functional Design Criteria (FDC) requires that materials used for fabrication of remote process equipment and piping in the facility be compatible with the expected waste stream compositions and process conditions. To satisfy FDC requirements, corrosion-resistant materials have been evaluated under simulated HWVP-specific conditions and recommendations have been made for HWVP applications. The materials recommendations provide to the project architect/engineer the best available corrosion rate information for the materials under the expected HWVP process conditions. Existing data and sound engineering judgement must be used and a solid technical basis must be developed to define an approach to selecting suitable construction materials for the HWVP. This report contains the strategy, approach, criteria, and technical basis developed for selecting materials of construction. Based on materials testing specific to HWVP and on related outside testing, this report recommends for constructing specific process equipment and identifies future testing needs to complete verification of the performance of the selected materials. 30 refs., 7 figs., 11 tabs.

Elmore, M R; Jensen, G A

1991-07-01T23:59:59.000Z

233

materials processing  

Science Conference Proceedings (OSTI)

C.E. JORDAN and A.R. MARDER A study was conducted on the effect of a uniform oxide layer on the galvanizing reaction in 0.20 wt pct Al-Zn and pure Zn baths ...

234

materials processing  

Science Conference Proceedings (OSTI)

... Quartz Cell/Atomic Absorption Spectrophotometer Combination (Invited) [pp. ... Study On Recovery Of Lead And Antimony From A Used Lead-Battery [pp.

235

Materials and Process Design for High-Temperature Carburizing: Integrating Processing and Performance  

SciTech Connect

The objective of the project is to develop an integrated process for fast, high-temperature carburizing. The new process results in an order of magnitude reduction in cycle time compared to conventional carburizing and represents significant energy savings in addition to a corresponding reduction of scrap associated with distortion free carburizing steels.

D. Apelian

2007-07-23T23:59:59.000Z

236

Material  

DOE Green Energy (OSTI)

Li(Ni{sub 0.4}Co{sub 0.15}Al{sub 0.05}Mn{sub 0.4})O{sub 2} was investigated to understand the effect of replacement of the cobalt by aluminum on the structural and electrochemical properties. In situ X-ray absorption spectroscopy (XAS) was performed, utilizing a novel in situ electrochemical cell, specifically designed for long-term X-ray experiments. The cell was cycled at a moderate rate through a typical Li-ion battery operating voltage range. (1.0-4.7 V) XAS measurements were performed at different states of charge (SOC) during cycling, at the Ni, Co, and the Mn edges, revealing details about the response of the cathode to Li insertion and extraction processes. The extended X-ray absorption fine structure (EXAFS) region of the spectra revealed the changes of bond distance and coordination number of Ni, Co, and Mn absorbers as a function of the SOC of the material. The oxidation states of the transition metals in the system are Ni{sup 2+}, Co{sup 3+}, and Mn{sup 4+} in the as-made material (fully discharged), while during charging the Ni{sup 2+} is oxidized to Ni{sup 4+} through an intermediate stage of Ni{sup 3+}, Co{sup 3+} is oxidized toward Co{sup 4+}, and Mn was found to be electrochemically inactive and remained as Mn{sup 4+}. The EXAFS results during cycling show that the Ni-O changes the most, followed by Co-O, and Mn-O varies the least. These measurements on this cathode material confirmed that the material retains its symmetry and good structural short-range order leading to the superior cycling reported earlier.

Rumble, C.; Conry, T.E.; Doeff, Marca; Cairns, Elton J.; Penner-Hahn, James E.; Deb, Aniruddha

2010-06-14T23:59:59.000Z

237

Accepting Mixed Waste as Alternate Feed Material for Processing and Disposal at a Licensed Uranium Mill  

SciTech Connect

Certain categories of mixed wastes that contain recoverable amounts of natural uranium can be processed for the recovery of valuable uranium, alone or together with other metals, at licensed uranium mills, and the resulting tailings permanently disposed of as 11e.(2) byproduct material in the mill's tailings impoundment, as an alternative to treatment and/or direct disposal at a mixed waste disposal facility. This paper discusses the regulatory background applicable to hazardous wastes, mixed wastes and uranium mills and, in particular, NRC's Alternate Feed Guidance under which alternate feed materials that contain certain types of mixed wastes may be processed and disposed of at uranium mills. The paper discusses the way in which the Alternate Feed Guidance has been interpreted in the past with respect to processing mixed wastes and the significance of recent changes in NRC's interpretation of the Alternate Feed Guidance that sets the stage for a broader range of mixed waste materials to be processed as alternate feed materials. The paper also reviews the le gal rationale and policy reasons why materials that would otherwise have to be treated and/or disposed of as mixed waste, at a mixed waste disposal facility, are exempt from RCRA when reprocessed as alternate feed material at a uranium mill and become subject to the sole jurisdiction of NRC, and some of the reasons why processing mixed wastes as alternate feed materials at uranium mills is preferable to direct disposal. Finally, the paper concludes with a discussion of the specific acceptance, characterization and certification requirements applicable to alternate feed materials and mixed wastes at International Uranium (USA) Corporation's White Mesa Mill, which has been the most active uranium mill in the processing of alternate feed materials under the Alternate Feed Guidance.

Frydenland, D. C.; Hochstein, R. F.; Thompson, A. J.

2002-02-26T23:59:59.000Z

238

Battery resource assessment. Subtask II. 5. Battery manufacturing capability recycling of battery materials. Draft final report  

SciTech Connect

Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials. Each recycle process has been designed to produce a product material which can be used directly as a raw material by the battery manufacturer. Metal recoverabilities are in the range of 93 to 95% for all processes. In each case, capital and operating costs have been developed for a recycling plant which processes 100,000 electric vehicle batteries per year. These costs have been developed based on material and energy balances, equipment lists, factored installation costs, and manpower estimates. In general, there are no technological barriers for recycling in the Nickel/Zinc, Nickel/Iron, Zinc/Chlorine and Zinc/Bromine battery systems. The recycling processes are based on essentially conventional, demonstrate technology. The lead times required to build battery recycling plants based on these processes is comparable to that of any other new plant. The total elapsed time required from inception to plant operation is approximately 3 to 5 y. The recycling process for the sodium/sulfur and lithium-aluminum/sulfide battery systems are not based on conventional technology. In particular, mechanical systems for dismantling these batteries must be developed.

Pemsler, P.

1981-02-01T23:59:59.000Z

239

Materials - Assessment - Lightweight Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

the weight of light-duty vehicles. The weight-reduction potential of aluminum and carbon-fiber-based PMCs was computed on the basis of a set of component-specific...

240

The DOE Center of Excellence for the Synthesis and Processing of Advanced Materials: Research briefs  

Science Conference Proceedings (OSTI)

This publication is designed to inform present and potential customers and partners of the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials about significant advances resulting from Center-coordinated research. The format is an easy-to-read, not highly technical, concise presentation of the accomplishments. Selected accomplishments from each of the Center`s seven initial focused projects are presented. The seven projects are: (1) conventional and superplastic forming; (2) materials joining; (3) nanoscale materials for energy applications; (4) microstructural engineering with polymers; (5) tailored microstructures in hard magnets; (6) processing for surface hardness; and (7) mechanically reliable surface oxides for high-temperature corrosion resistance.

NONE

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "material assessment process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Lawrence Livermore National Security CFO Processes Functional Management Assessment  

Science Conference Proceedings (OSTI)

The scope of the Functional Management Assessment of the CFO included a review of the CFO Organizational Structure, including deployed financial services and the division of responsibilities and internal controls between CFO and other organizations that perform financial functions across the Laboratory. In addition, the assessment team solicited input from end users and reviewers. Three issues discussed are: ISSUE 1: Financial activities and cash transactions are occurring outside the CFO organization. Approximately $200M of non-purchase order spending occurs in seven areas outside CFO control (travel, relocation, special disbursements, IPO, legal, risk management, and freight). NIF financial services have not been integrated into the CFO organization and operate outside CFO control. Business risks--There is no single point of financial accountably; Currently within the CFO and Business and Operations organizations there is a lack of clarity of roles and responsibilities for financial activities; Financial talent within the laboratory is fragmented; and Inefficiencies exist based on the current structure; An example of the above business risks associated with organizational structure can be observed in the process for reimbursement of relocation costs to employees. Currently, Human Resources and Travel both administer portions of an employee's relocation. Costs are reviewed for compliance with FAR travel guidelines and for compliance with the offer letter but there is no financial review for allowability of costs nor is there a single point where the total relocation costs are reviewed. Through the e-pay system the check is processed by the CFO organization but there is no review by that organization. ISSUE 2: Impact of involuntary separation on current and future activities. 3 risks are: (1) Loss of internal controls--with the upcoming involuntary reductions there will be a loss of personnel with institutional knowledge which will increase the risk of losing internal control on some processes. The organization needs to be cognizant of this risk and take measures to minimize financial risk and ensure on-going A-123 compliance. (2) Project Costing Implementation (PCI) delay--the implementation of PCI is key to achieving integration and reporting of financial data. Presently, business analysts spend half of their time collecting and compiling data and 94% of the labs financial management reports are created using spreadsheets. Currently, the PCI project is on schedule but the involuntary reductions may result in loss of support in this area. (3) Financial Performance Milestones not met--for FY-08 there are fixed, base and stretch financial performance milestones for the laboratory. With reductions in staff the risk of missing key milestones increases. ISSUE 3: Strategically growing the Work for Others (WFO) Portfolio. A key objective of the laboratory is to increase WFO. Greater reliance on WFO will result in additional funding sources and increase the number of control points and financial activities to be monitored thus increasing the level of financial complexity at the lab. The CFO organization should work now to improve controls and processes to accommodate these changes. In particular the following areas should be focused on: (1) Cost reporting needs to be streamlined; (2) Cost Transfer controls need to be increased; and (3) Timely monitoring and close out of contracts needs occur.

Sparks, A; Sampson, D; Thomas, B; Mendez, M

2008-06-12T23:59:59.000Z

242

Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes  

DOE Green Energy (OSTI)

The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.

2008-08-24T23:59:59.000Z

243

CORROSION ISSUES ASSOCIATED WITH AUSTENITIC STAINLESS STEEL COMPONENTS USED IN NUCLEAR MATERIALS EXTRACTION AND SEPARATION PROCESSES  

Science Conference Proceedings (OSTI)

This paper illustrated the magnitude of the systems, structures and components used at the Savannah River Site for nuclear materials extraction and separation processes. Corrosion issues, including stress corrosion cracking, pitting, crevice corrosion and other corrosion induced degradation processes are discussed and corrosion mitigation strategies such as a chloride exclusion program and corrosion release testing are also discussed.

Mickalonis, J.; Louthan, M.; Sindelar, R.

2012-12-17T23:59:59.000Z

244

Application of the Analytic Hierarchy Process and the Analytic Network Process for the assessment of different wastewater treatment systems  

Science Conference Proceedings (OSTI)

Multicriteria analyses (MCAs) are used to make comparative assessments of alternative projects or heterogeneous measures and allow several criteria to be taken into account simultaneously in a complex situation. The paper shows the application of different ... Keywords: Analytic Hierarchy Process (AHP), Analytic Network Process (ANP), Sustainability assessment, decision support systems (DSS), wastewater treatment (WWT) technologies

Marta Bottero; Elena Comino; Vincenzo Riggio

2011-10-01T23:59:59.000Z

245

New Oversight Process and Safety Culture Assessment Lessons Learned...  

NLE Websites -- All DOE Office Websites (Extended Search)

Urgency * Training Safety Culture Assessment Lessons Learned Method -- Data Gathering Techniques Surveys Behavioral Anchored Rating Scales (BARS) Focus Group...

246

Integration of photonic and passive microfluidic devices into lab-on-chip with femtosecond laser materials processing  

E-Print Network (OSTI)

Femtosecond laser materials processing is a powerful method for the integration of high resolution, 3D structures into Lab-On-Chip (LOC) systems. One major application of femtosecond laser materials processing is waveguide ...

Gu, Yu, Ph.D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

247

Illinois biomass resources: annual crops and residues; canning and food-processing wastes. Preliminary assessment  

DOE Green Energy (OSTI)

Illinois, a major agricultural and food-processing state, produces vast amounts of renewable plant material having potential for energy production. This biomass, in the form of annual crops, crop residues, and food-processing wastes, can be converted to alternative fuels (such as ethanol) and industrial chemicals (such as furfural, ethylene, and xylene). The present study provides a preliminary assessment of these Illinois biomass resources, including (a) an appraisal of the effects of their use on both agriculture and industry; (b) an analysis of biomass conversion systems; and (c) an environmental and economic evaluation of products that could be generated from biomass. It is estimated that, of the 39 x 10/sup 6/ tons of residues generated in 1978 in Illinois from seven main crops, about 85% was collectible. The thermal energy equivalent of this material is 658 x 10/sup 6/ Btu, or 0.66 quad. And by fermenting 10% of the corn grain grown in Illinois, some 323 million gallons of ethanol could have been produced in 1978. Another 3 million gallons of ethanol could have been produced in the same year from wastes generated by the state's food-processing establishments. Clearly, Illinois can strengthen its economy substantially by the development of industries that produce biomass-derived fuels and chemicals. In addition, a thorough evaluation should be made of the potential for using the state's less-exploitable land for the growing of additional biomass.

Antonopoulos, A A

1980-06-01T23:59:59.000Z

248

Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Assessment of Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project May 2011 January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project

249

Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Oversight Assessment of Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project May 2011 January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project

250

Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries  

DOE Green Energy (OSTI)

The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

Adam Polcyn; Moe Khaleel

2009-01-06T23:59:59.000Z

251

Radiological Dose Assessment Related to Management of Naturally Occurring Radioactive Materials Generated by the Petroleum Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Tebes is affiliated with the University of Illinois. Tebes is affiliated with the University of Illinois. ANL/EAD-2 Radiological Dose Assessment Related to Management of Naturally Occurring Radioactive Materials Generated by the Petroleum Industry by K.P. Smith, D.L. Blunt, G.P. Williams, and C.L. Tebes * Environmental Assessment Division Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 September 1996 Work sponsored by the United States Department of Energy, Office of Policy iii CONTENTS ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

252

Manufacturing Analysis of SOFC Interconnect Coating Processes - NexTech Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Analysis of SOFC Manufacturing Analysis of SOFC Interconnect Coating Processes- NexTech Materials Background The adoption of high-temperature metal alloys as alternatives to traditional ceramic interconnect materials provides a cost effective path for the production of solid oxide fuel cells (SOFCs). Low-cost and effective protective coatings must be developed for the metallic system and stack components for SOFCs to be economical. Since current

253

Liquefaction process for solid carbonaceous materials containing alkaline earth metal humates  

DOE Patents (OSTI)

An improved liquefaction process wherein wall scale and particulate agglomeration during the liquefaction of solid carbonaceous materials containing alkaline earth metal humates is reduced and/or eliminated by subjecting the solid carbonaceous materials to controlled cyclic cavitation during liquefaction. It is important that the solid carbonaceous material be slurried in a suitable solvent or diluent during liquefaction. The cyclic cavitation may be imparted via pressure cycling, cyclic agitation and the like. When pressure cycling or the like is employed an amplitude equivalent to at least 25 psia is required to effectively remove scale from the liquefaction vessel walls.

Epperly, William R. (Summit, NJ); Deane, Barry C. (East Brunswick, NJ); Brunson, Roy J. (Buffalo Grove, IL)

1982-01-01T23:59:59.000Z

254

A unified point process probabilistic framework to assess heartbeat dynamics and autonomic cardiovascular control  

E-Print Network (OSTI)

In recent years, time-varying inhomogeneous point process models have been introduced for assessment of instantaneous heartbeat dynamics as well as specific cardiovascular control mechanisms and hemodynamics. Assessment ...

Chen, Zhe

255

Assessment of fibrous insulation materials for the selenide isotope generator system  

DOE Green Energy (OSTI)

Fibrous insulations for use in the converter and the heat source of the radioisotope-powered, selenide element, thermoelectric generator (selenide isotope generator) are assessed. The most recent system design and material selection basis is presented. Several fibrous insulation materials which have the potential for use as load-bearing or nonload-bearing thermal insulations are reviewed, and thermophysical properties supplied by manufacturers or published in the literature are presented. Potential problems with the application of fibrous insulations in the selenide isotope generator are as follows: compatibility with graphite, the thermoelectric elements, and the isolation hot frame; devitrification, grain growth, and sintering with an accompanying degradation of insulation quality; impurity diffusion from the insulation to adjoining structures; outgassing and storage of fibrous materials. Areas in which thermophysical data or quantitative information on the insulation and structural stability is lacking are identified.

Wei, G.C; Tennery, V.J.

1977-11-01T23:59:59.000Z

256

Assessment of database for interaction of tritium with ITER plasma facing materials  

SciTech Connect

The present work surveys recent literature on hydrogen isotope interactions with Be, SS and Inconels, Cu, C, and V, and alloys of Cu and V. The goals are (1) to provide input to the International Thermonuclear Experimental Reactor (ITER) team to help with tritium source term estimates for the Early Safety and Environmental Characterization Study and (2) to provide guidance for planning additional research that will be needed to fill gaps in the present materials database. Properties of diffusivity, solubility, permeability, chemical reactions, Soret effect, recombination coefficient, surface effects, trapping, porosity, layered structures, interfaces, and oxides are considered. Various materials data are tabulated, and a matrix display shows an assessment of the quality of the data available for each main property of each material. Recommendations are made for interim values of diffusivity and solubility to be used, pending further discussion by the ITER community.

Dolan, T.J.; Anderl, R.A.

1994-09-01T23:59:59.000Z

257

The environmental assessment of nuclear materials disposition options: A transportation perspective  

SciTech Connect

The US Department of Energy has undertaken a program to evaluate and select options for the long-term storage and disposition of fissile materials declared surplus to defense needs as a result of the end of the Cold War. The transport of surplus fissile material will be an important and highly visible aspect of the environmental impact studies and other planning documents required for implementation of the disposition options. This report defines the roles and requirements for transportation of fissile materials in the program, and discusses an existing methodology for determining the environmental impact in terms of risk. While it will be some time before specific alternatives are chosen that will permit the completion of detailed risk calculations, the analytical models for performing the probabilistic risk assessments already exist with much of the supporting data related to the transportation system. This report summarizes the various types of data required and identifies sources for that data.

Wilson, R.K.; Clauss, D.B.; Moyer, J.W.

1994-12-31T23:59:59.000Z

258

Assessment of Various Processes for Rare Earth Elements Recovery I  

Science Conference Proceedings (OSTI)

Characterization of Indonesia Rare Earth Minerals and their Potential Processing Techniques · Characterization of Rare Earth Minerals with Field Emission ...

259

GRR/Section 12 - Flora & Fauna Resource Assessment Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 12 - Flora & Fauna Resource Assessment Process GRR/Section 12 - Flora & Fauna Resource Assessment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 12 - Flora & Fauna Resource Assessment Process 12 - FloraFaunaResourceAssessmentProcess.pdf Click to View Fullscreen Contact Agencies Fish and Wildlife Service US Army Corps of Engineers Bureau of Land Management Regulations & Policies Bald and Golden Eagle Protection Act Marine Mammal Protection Act Migratory Bird Treaty Act Endangered Species Act State species protection acts Triggers None specified Click "Edit With Form" above to add content 12 - FloraFaunaResourceAssessmentProcess.pdf 12 - FloraFaunaResourceAssessmentProcess.pdf Error creating thumbnail: Page number not in range.

260

American Electric Power/Alstom Chilled Ammonia Process Validation Facility -- Material Inspection Report  

Science Conference Proceedings (OSTI)

A CO2 capture and storage (CCS) pilot plant was constructed at American Electric Power’s (AEP’s) 1300-MWe Mountaineer station in New Haven, West Virginia, employing Alstom Power’s Chilled Ammonia Process (CAP). This CAP Process Validation Facility (PVF) was operated for 7900 hours between September 2009 and May 2011, when the demonstration ended. One of the objectives of the program was a determination of the adequacy of the materials that had been selected for the ...

2012-12-13T23:59:59.000Z

Note: This page contains sample records for the topic "material assessment process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Comprehensive mitigation assessment process (COMAP) - Description and instruction manual  

E-Print Network (OSTI)

resulting changes in biomass supply. This has to be followedmitigation option on biomass supply, with a goal to match itSteps involved in assessing biomass supply and demand In the

Makundi, Willy; Sathaye, Jayant

2001-01-01T23:59:59.000Z

262

Material and process screening as applied to a reinforced plastic parabolic trough concentrator module  

DOE Green Energy (OSTI)

Existing parabolic trough solar collectors are basically sheet metal designs utilizing aluminum or steel as the major structural materials. The relatively high labor content associated with these sheet metal designs has generated an interest in investigating the cost effectiveness of using reinforced plastics as a major structural material for trough solar collectors. This interest is bolstered by a growing desire on the part of industry to identify new material-process combinations which save weight, use less energy, and require less capital equipment and assembly costs. The use of reinforced plastics as the basic material for a line-focus parabolic trough concentrator module is studied. This module constitutes a basic building block with which longer trough rows can be built. The basic part analysis is described including the quantification of key material and part-function relationships. In addition candidate materials and processes are reviewed and, the costs associated with the most attractive combinations defined. Finally, the major conclusions and recommendations are summarized.

Hodge, R. (ed.)

1980-08-01T23:59:59.000Z

263

Marketing research for EE G Mound Applied Technologies' heat treatment process of high strength materials  

Science Conference Proceedings (OSTI)

This report summarizes research conducted by ITI to evaluate the commercialization potential of EG G Mound Applied Technologies' heat treatment process of high strength materials. The remainder of the report describes the nature of demand for maraging steel, extent of demand, competitors, environmental trends, technology life cycle, industry structure, and conclusion. (JL)

Shackson, R.H.

1991-10-09T23:59:59.000Z

264

NREL Develops Accelerated Sample Activation Process for Hydrogen Storage Materials (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes NREL's accomplishments in developing a new sample activation process that reduces the time to prepare samples for measurement of hydrogen storage from several days to five minutes and provides more uniform samples. Work was performed by NREL's Chemical and Materials Science Center.

Not Available

2010-12-01T23:59:59.000Z

265

Book review Laser Processing of Engineering Materials by John C. Ion  

E-Print Network (OSTI)

Book review Laser Processing of Engineering Materials by John C. Ion 2005, Oxford, Butterworth of the book lays the foundations: there is an introduction to the physics of lasers, the engineering these which make this book fascinating to study. The book is not a homily to lasers ­ both the limitations

Cambridge, University of

266

Book review Laser Processing of Engineering Materials by John C. Ion  

E-Print Network (OSTI)

Book review Laser Processing of Engineering Materials by John C. Ion 2005, Oxford, Butterworth of the book lays the foundations: there is an introduction to the physics of lasers, the engineering as to facilitate the precise printing of characters. It is details like these that make this book fascinating

Cambridge, University of

267

INTEGRATED PROCESS DESIGN REPORT ON FEED MATERIALS PRODUCTION CENTER, FERNALD, OHIO REFINERY AND GREEN SALT PLANT  

SciTech Connect

A coordinated record of the design of a FMPC processing plant for the production of pure massive U from U-contrining raw materials is presented. A thorough understanding of FMPC operations may be obtained through the medium of over-all flow diagrams and associated rate criteria.(auth)

1952-10-20T23:59:59.000Z

268

MATERIALS PHYSICS AND PROCESSING (MPP) Project Team: J.L. Jordan-Sweet  

NLE Websites -- All DOE Office Websites (Extended Search)

MATERIALS PHYSICS AND PROCESSING (MPP) MATERIALS PHYSICS AND PROCESSING (MPP) Project Team: J.L. Jordan-Sweet 1 , V. Kiryukhin 2 , C. Lavoie 1 , C.E. Murray 1 , C.S. Nelson 3 , I.C. Noyan 4 1 IBM Research Division, 2 Rutgers University, 3 Brookhaven National Laboratory, 4 Columbia University TECHNIQUES AND CAPABILITIES APPLICATIONS SPECIFIC PROJECTS / ADDITIONAL INFORMATION * High-throughput, real-time, in-situ rapid thermal annealing (RTA) studies of structural changes in thin films, film stacks, and nanopatterned samples: * Phase transformations, texture changes, barrier failure, interfacial roughening, etc. * X-ray diffraction (XRD) and scattering techniques on solids, including thin films, stacks, nanopatterned samples, magnetic and strongly correlated systems, and bulk materials. Capability for

269

Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment  

Science Conference Proceedings (OSTI)

This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the assessment of the environmental performance of any integrated waste management scheme address the importance of properly defining, beyond the design value assumed for the separate collection as a whole, also the yields of each material recovered; particular significance is finally related to the amount of residues deriving from material recovery activities, resulting on average in the order of 20% of the collected materials.

Giugliano, Michele; Cernuschi, Stefano [Politecnico di Milano - DIIAR, Environmental Section, P.zza Leonardo da Vinci, 32, 20133 Milano (Italy); Grosso, Mario, E-mail: mario.grosso@polimi.it [Politecnico di Milano - DIIAR, Environmental Section, P.zza Leonardo da Vinci, 32, 20133 Milano (Italy); Rigamonti, Lucia [Politecnico di Milano - DIIAR, Environmental Section, P.zza Leonardo da Vinci, 32, 20133 Milano (Italy)

2011-09-15T23:59:59.000Z

270

Transient Heat and Material Flow Modeling of Friction Stir Processing of Magnesium Alloy using Threaded Tool  

SciTech Connect

A three-dimensional transient computational fluid dynamics (CFD) model was developed to investigate the material flow and heat transfer during friction stir processing (FSP) in an AZ31B magnesium alloy. The material was assumed to be a non-Newtonian viscoplastic fluid, and the Zener-Hollomon parameter was used to describe the dependence of material viscosity on temperature and strain rate. The material constants used in the constitutive equation were determined experimentally from compression tests of the AZ31B Mg alloy under a wide range of strain rates and temperatures. A dynamic mesh method, combining both Lagrangian and Eulerian formulations, was used to capture the material flow induced by the movement of the threaded tool pin. Massless inert particles were embedded in the simulation domain to track the detailed history of material flow. The actual FSP was also carried out on a wrought Mg plate where temperature profiles were recorded by embedding thermocouples. The predicted transient temperature history was found to be consistent with that measured during FSP. Finally, the influence of the thread on the simulated results of thermal history and material flow was studied by comparing two models: one with threaded pin and the other with smooth pin surface.

Yu, Zhenzhen [ORNL; Zhang, Wei [ORNL; Choo, Hahn [ORNL; Feng, Zhili [ORNL

2012-01-01T23:59:59.000Z

271

Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PACKAGING AND TRANSFER PACKAGING AND TRANSFER OF HAZARDOUS MATERIALS AND MATERIALS OF NATIONAL SECURITY INTEREST Assessment Plan NNSA/Nevada Site Office Facility Representative Division Performance Objective: Verify that packaging and transportation safety requirements of hazardous materials and materials of national security interest have been established and are in compliance with DOE Orders 461.1 and 460.1B Criteria: Verify that safety requirements for the proper packaging and transportation of DOE/NNSA offsite shipments and onsite transfers of hazardous materials and for modal transport have been established [DOE O 460.1B, 1, "Objectives"]. Verify that the contractor transporting a package of hazardous materials is in compliance with the requirements of the Hazardous Materials Regulations

272

Solution Synthesis and Processing of PZT Materials for Neutron Generator Applications  

SciTech Connect

A new solution synthesis route has been developed for the preparation of lead-based ferroelectric materials (patent filed). The process produces controlled stoichiometry precursor powders by non-aqueous precipitation. For a given ferroelectric material to be prepared, a metal acetate/alkoxide solution containing constituent metal species in the appropriate ratio is mixed with an oxalic acid/n-propanol precipitant solution. An oxalate coprecipitate is instantly fonned upon mixing that quantitatively removes the metals from solution. Most of the process development was focused on the synthesis and processing of niobium-substituted lead zirconate titanate with a Zr-to-Ti ratio of 95:5 (PNZT 95/5) that has an application in neutron generator power supplies. The process was scaled to produce 1.6 kg of the PNZT 95/5 powder using either a sen-ii-batch or a continuous precipitation scheme. Several of the PNZT 95/5 powder lots were processed into ceramic slug form. The slugs in turn were processed into components and characterized. The physical properties and electrical performance (including explosive functional testing of the components met the requirements set for the neutron generator application. Also, it has been demonstrated that the process is highly reproducible with respect to the properties of the powders it produces and the properties of the ceramics prepared from its powders. The work described in this report was funded by Sandia's Laboratory Directed Research and Development Program.

Anderson, M.A.; Ewsuk, K.G.; Montoya, T.V.; Moore, R.H.; Sipola, D.L.; Tuttle, B.A.; Voigt, J.A.

1998-12-01T23:59:59.000Z

273

An overview of safety assessment, regulation, and control of hazardous material use at NREL  

DOE Green Energy (OSTI)

This paper summarizes the methodology we use to ensure the safe use of hazardous materials at the National Renewable Energy Laboratory (NREL). First, we analyze the processes and the materials used in those processes to identify the hazards presented. Then we study federal, state, and local regulations and apply the relevant requirements to our operations. When necessary, we generate internal safety documents to consolidate this information. We design research operations and support systems to conform to these requirements. Before we construct the systems, we perform a semiquantitative risk analysis on likely accident scenarios. All scenarios presenting in unacceptable risk require system or procedural modifications to reduce the risk. Following these modifications, we repeat the risk analysis to ensure that the respective accident scenarios present acceptable risk. Once all risks are acceptable, we conduct an operational readiness review (ORR). A management appointed panel performs the ORR ensuring compliance with all relevant requirements. After successful completion of the ORR, operations can begin.

Nelson, B.P.; Crandall, R.S. (National Renewable Energy Lab., Golden, CO (United States)); Moskowitz, P.D.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States))

1992-01-01T23:59:59.000Z

274

EA-437; Environmental Assessment Process Equipment Waste and Process Waste Liquid Collection Systems Idaho Chemical Processing Plant Idaho National Engineering Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

437; Environmental Assessment Process Equipment Waste and 437; Environmental Assessment Process Equipment Waste and Process Waste Liquid Collection Systems Idaho Chemical Processing Plant Idaho National Engineering Laboratory TABLE OF CONTENTS Environmental Assessment Process Equipment Waste and Process Waste Liquid Collection Systems Idaho Chemical Processing Plant Idaho National Engineering Laboratory 1. INTRODUCTION 2. DESCRIPTION OF THE PROPOSED ACTION AND ALTERNATIVES 2.1 Purpose and Need of the Proposed Action 2.2 Description of the Affected Facilities 2.3 Description of Proposed Action 2.4 Alternatives to the Proposed Action 2.5 Separate But Related Actions 3. AFFECTED ENVIRONMENT 3.1 Introduction 3.2 Physical Environment 3.3 Biological Resources 3.4 Cultural Resources 3.5 Environmental Quality and Monitoring Programs

275

Virtual Welded-Joint Design Integrating Advanced Materials and Processing Technologies  

Science Conference Proceedings (OSTI)

The primary goal of this project is to increase the fatigue life of a welded-joint by 10 times and to reduce energy use by 25% through product performance and productivity improvements using an integrated modeling approach. The fatigue strength of a welded-joint is currently the bottleneck to design high performance and lightweight welded structures using advanced materials such as high strength steels. In order to achieve high fatigue strength in a welded-joint it is necessary to manage the weld bead shape for lower stress concentration, produce preferable residual stress distribution, and obtain the desired microstructure for improved material toughness and strength. This is a systems challenge that requires the optimization of the welding process, the welding consumable, the base material, as well as the structure design. The concept of virtual welded-joint design has been proposed and established in this project. The goal of virtual welded-joint design is to develop a thorough procedure to predict the relationship of welding process, microstructure, property, residual stress, and the ultimate weld fatigue strength by a systematic modeling approach. The systematic approach combines five sub-models: weld thermal-fluid model, weld microstructure model, weld material property model, weld residual stress model, and weld fatigue model. The systematic approach is thus based on interdisciplinary applied sciences including heat transfer, computational fluid dynamics, materials science, engineering mechanics, and material fracture mechanics. The sub-models are based on existing models with further development. The results from modeling have been validated with critical experiments. The systematic modeling approach has been used to design high fatigue resistant welds considering the combined effects of weld bead geometry, residual stress, microstructure, and material property. In particular, a special welding wire has been developed in this project to introduce compressive residual stress at weld toe for weld fatigue resistance.

Yang, Z.; Dong, P.; Liu, S.; Babu, S.; Olson, G.; DebRoy, T.

2005-04-15T23:59:59.000Z

276

Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Integrated Facilities Disposition Non-Integrated Facilities Disposition Project Technical Assistance Page 1 of 2 Complex-Wide Multi-State Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM Challenge In December 2007 the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). Transfers of facilities, materials, and waste to EM will generate liabilities that are currently unfunded. For purposes of overall planning, it is important to understand the impacts of proposed transfers with regard to technical

277

Radiological surveys of properties contaminated by residual radioactive materials from uranium processing sites  

Science Conference Proceedings (OSTI)

This report examines methods for determining the extent and nature of contamination on properties contaminated by residual radioactive materials from uranium processing sites. Methods are also examined for verifying the success of remedial actions in removing the residual radioactive materials. Using literature review and practical experiences from the Edgemont, South Dakota survey program a critical review is made of sampling programs, instrumentation, analytical procedures, data reporting format, and statistical analyses of data. Protocols are recommended for measuring indoor and outdoor gamma-ray exposure rates, surface and subsurface Radium-226 concentrations in soil, and radon daughter concentrations.

Young, J.A.; Jackson, P.O.; Thomas, V.W.

1983-06-01T23:59:59.000Z

278

Evaluation of critical materials for five advanced design photovoltaic cells with an assessment of indium and gallium  

DOE Green Energy (OSTI)

The objective of this study is to identify potential material supply constraints due to the large-scale deployment of five advanced photovoltaic (PV) cell designs, and to suggest strategies to reduce the impacts of these production capacity limitations and potential future material shortages. This report presents the results of the screening of the five following advanced PV cell designs: polycrystalline silicon, amorphous silicon, cadmium sulfide/copper sulfide frontwall, polycrystalline gallium arsenide MIS, and advanced concentrator-500X. Each of these five cells is screened individually assuming that they first come online in 1991, and that 25 GWe of peak capacity is online by the year 2000. A second computer screening assumes that each cell first comes online in 1991 and that each cell has 5 GWe of peak capacity by the year 2000, so that the total online cpacity for the five cells is 25 GWe. Based on a review of the preliminary basline screening results, suggestions were made for varying such parameters as the layer thickness, cell production processes, etc. The resulting PV cell characterizations were then screened again by the CMAP computer code. Earlier DOE sponsored work on the assessment of critical materials in PV cells conclusively identtified indium and gallium as warranting further investigation as to their availability. Therefore, this report includes a discussion of the future availability of gallium and indium. (WHK)

Watts, R.L.; Gurwell, W.E.; Jamieson, W.M.; Long, L.W.; Pawlewicz, W.T.; Smith, S.A.; Teeter, R.R.

1980-05-01T23:59:59.000Z

279

Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents (OSTI)

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

1999-03-16T23:59:59.000Z

280

Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents (OSTI)

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1999-03-16T23:59:59.000Z

Note: This page contains sample records for the topic "material assessment process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

GRR/Section 13 - Land Use Assessment Process | Open Energy Information  

Open Energy Info (EERE)

- Land Use Assessment Process - Land Use Assessment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 13 - Land Use Assessment Process 13 - LandUseAssessmentProcess.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 13 - LandUseAssessmentProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Preexisting land uses at and surrounding the site are critical considerations in the early planning stages of the project. Federal and state law may prohibit interference with certain preexisting uses. For instance, developers should consider impact on farmland, livestock, nearby

282

GRR/Section 15-AK-a - Air Quality Assessment Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 15-AK-a - Air Quality Assessment Process GRR/Section 15-AK-a - Air Quality Assessment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-AK-a - Air Quality Assessment Process 15AKAAirQualityAssessmentProcess.pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies Alaska Statutes Alaska Statute Title 46 Alaska Administrative Code 18 AAC 50 Air Quality Regulations 40 CFR 71 Operating Permits Triggers None specified Click "Edit With Form" above to add content 15AKAAirQualityAssessmentProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

283

Attacks against process control systems: risk assessment, detection, and response  

Science Conference Proceedings (OSTI)

In the last years there has been an increasing interest in the security of process control and SCADA systems. Furthermore, recent computer attacks such as the Stuxnet worm, have shown there are parties with the motivation and resources to effectively ... Keywords: IDS, SCADA, control systems, critical infrastructure protection, cyber-physical systems, security

Alvaro A. Cárdenas; Saurabh Amin; Zong-Syun Lin; Yu-Lun Huang; Chi-Yen Huang; Shankar Sastry

2011-03-01T23:59:59.000Z

284

Assessing vehicle detection utilizing video image processing technology  

E-Print Network (OSTI)

Urban freeways are the backbone of the highway transportation system and the demand on this system is growing. The increase in demand creates an increase in traffic congestion. Past construction solutions to relieve congestion are less viable today due to rising costs and government regulations. Effectively managing the operations of the existing highway transportation network is an alternative for congestion mitigation. The research documented in this study analyzes a trip-wire video image processing system's ability and limitations in accurately detecting passenger cars with and without passenger cars traveling in the adjacent travel lane. This study also analvzes a video image processing system's ability to determine passenger car speeds. Testing was performed at Texas A&M University's Riverside Campus research facility. Testing analyzed three camera heights, 30 feet, 40 feet and 49 feet-6 inches, in conjunction with three passenger car speeds, 20 mph, 45 mph and 55 mph. The video image processing system used in the study was the Autoscop0m 2004 by Image Sensing Systems, Inc. The camera imaging device was a one-half (1/2) inch interline transfer microlens charged coupled device (CCD). The camera lens was a six (6) mm, fl.2 auto ifis lens. An analysis of variance (ANOVA) test indicated both camera height and travel lane location affected the system's ability to accurately detect passenger cars. Generally, higher camera heights and travel lanes farther from the camera produced accurate passenger car detection farther upstream from the camera. Also, it was determined that passenger cars traveling in adjacent travel lanes did not significantly influence the video image processing system's ability to accurately detect passenger cars. The paired t-test indicated that passenger car speeds determined by the video image processing system were significantly different when compared to passenger car speeds obtained by a radar speed gun. The results of this thesis research study provide some guidance on the use and placement of a video image processing system in a freeway application. This study also provides some recommendations regarding future video image processing system research and development.

Hartmann, Duane E

1996-01-01T23:59:59.000Z

285

Advanced materials and electrochemical processes in high-temperature solid electrolytes  

DOE Green Energy (OSTI)

Fuel cells for the direct conversion of fossil fuels to electric energy necessitates the use of high-temperature solid electrodes. This study has included: (1) determination of electrical transport, thermal and electrical properties to illucidate the effects of microstructure, phase equilibria, oxygen partial pressure, additives, synthesis and fabrication on these properties; (2) investigation of synthesis and fabrication of advanced oxide materials, such as La{sub 0.9}Sn{sub 0.1}MnO{sub 3}; and (3) application of new analytical techniques using complex impedance coupled with conventional electrochemical methods to study the electrochemical processes and behavior of materials for solid oxide fuel cells and other high-temperature electrolyte electrochemical process. 15 refs., 10 figs., 2 tabs. (BM)

Bates, J.L.; Chick, L.A.; Youngblood, G.E.; Weber, W.J.

1990-10-01T23:59:59.000Z

286

Final Report - Assessment of Potential Phosphate Ion-Cementitious Materials Interactions  

SciTech Connect

The objectives of this limited study were to: (1) review the potential for degradation of cementitious materials due to exposure to high concentrations of phosphate ions; (2) provide an improved understanding of any significant factors that may lead to a requirement to establish exposure limits for concrete structures exposed to soils or ground waters containing high levels of phosphate ions; (3) recommend, as appropriate, whether a limitation on phosphate ion concentration in soils or ground water is required to avoid degradation of concrete structures; and (4) provide a "primer" on factors that can affect the durability of concrete materials and structures in nuclear power plants. An assessment of the potential effects of phosphate ions on cementitious materials was made through a review of the literature, contacts with concrete research personnel, and conduct of a "bench-scale" laboratory investigation. Results of these activities indicate that: no harmful interactions occur between phosphates and cementitious materials unless phosphates are present in the form of phosphoric acid; phosphates have been incorporated into concrete as set retarders, and phosphate cements have been used for infrastructure repair; no standards or guidelines exist pertaining to applications of reinforced concrete structures in high-phosphate environments; interactions of phosphate ions and cementitious materials has not been a concern of the research community; and laboratory results indicate similar performance of specimens cured in phosphate solutions and those cured in a calcium hydroxide solution after exposure periods of up to eighteen months. Relative to the "primer," a separate NUREG report has been prepared that provides a review of pertinent factors that can affect the durability of nuclear power plant reinforced concrete structures.

Naus, Dan J [ORNL; Mattus, Catherine H [ORNL; Dole, Leslie Robert [ORNL

2007-06-01T23:59:59.000Z

287

Nuclear power plant cable materials : review of qualification and currently available aging data for margin assessments in cable performance.  

SciTech Connect

A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by a LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostlyinert' aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section - a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on original qualification testing data alone. The non-availability of conclusive predictions for the aging conditions of 40-year-old cables implies that the same levels of uncertainty will remain for any re-qualification or extended operation of these cables. The highly variable aging behavior of the range of materials employed also implies that simple, standardized aging tests are not sufficient to provide the required aging data and performance predictions for all materials. It is recommended that focused studies be conducted that would yield the material aging parameters needed to predict aging behaviors under low dose, low temperature plant equivalent conditions and that appropriately aged specimens be prepared that would mimic oxidatively-aged 40- to 60- year-old materials for confirmatory LOCA performance testing. This study concludes that it is not sufficient to expose materials to rapid, high radiation and high temperature levels with subsequent LOCA qualification testing in order to predictively quantify safety margins of existing infrastructure with regard to LOCA performance. We need to better understand how cable jacketing and insulation materials have degraded over decades of power plant operation and how this aging history relates to service life prediction and the performance of existing equipment to withstand a LOCA situation.

Celina, Mathias Christopher; Gillen, Kenneth Todd; Lindgren, Eric Richard

2013-05-01T23:59:59.000Z

288

Nuclear power plant cable materials : review of qualification and currently available aging data for margin assessments in cable performance.  

Science Conference Proceedings (OSTI)

A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by a LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostlyinert' aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section - a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on original qualification testing data alone. The non-availability of conclusive predictions for the aging conditions of 40-year-old cables implies that the same levels of uncertainty will remain for any re-qualification or extended operation of these cables. The highly variable aging behavior of the range of materials employed also implies that simple, standardized aging tests are not sufficient to provide the required aging data and performance predictions for all materials. It is recommended that focused studies be conducted that would yield the material aging parameters needed to predict aging behaviors under low dose, low temperature plant equivalent conditions and that appropriately aged specimens be prepared that would mimic oxidatively-aged 40- to 60- year-old materials for confirmatory LOCA performance testing. This study concludes that it is not sufficient to expose materials to rapid, high radiation and high temperature levels with subsequent LOCA qualification testing in order to predictively quantify safety margins of existing infrastructure with regard to LOCA performance. We need to better understand how cable jacketing and insulation materials have degraded over decades of power plant operation and how this aging history relates to service life prediction and the performance of existing equipment to withstand a LOCA situation.

Celina, Mathias Christopher; Gillen, Kenneth Todd; Lindgren, Eric Richard

2013-05-01T23:59:59.000Z

289

Solid-state resistance upset welding: A process with unique advantages for advanced materials  

SciTech Connect

Solid-state resistance upset welding is suitable for joining many alloys that are difficult to weld using fusion processes. Since no melting takes place, the weld metal retains many of the characteristics of the base metal. Resulting welds have a hot worked structure, and thereby have higher strength than fusion welds in the same mate. Since the material being joined is not melted, compositional gradients are not introduced, second phase materials are minimally disrupted, and minor alloying elements, do not affect weldability. Solid-state upset welding has been adapted for fabrication of structures considered very large compared to typical resistance welding applications. The process has been used for closure of capsules, small vessels, and large containers. Welding emphasis has been on 304L stainless steel, the material for current applications. Other materials have, however, received enough attention to have demonstrated capability for joining alloys that are not readily weldable using fusion welding methods. A variety of other stainless steels (including A-286), superalloys (including TD nickel), refractory metals (including tungsten), and aluminum alloys (including 2024) have been successfully upset welded.

Kanne, W.R. Jr.

1993-12-31T23:59:59.000Z

290

PROCESS FOR THE PRODUCTION OF URANIUM TETRAFLUORIDE FROM URANIUM RAW MATERIAL  

SciTech Connect

This process consists oi the following steps: dissolving and leaching uranium raw material with sulfuric acid, adding a tetravalent uranium solution obtained by electrolytic reduction to the leach, subjecting the leach exuded by suifuric acid to an extraction with an organic solvent to refine and concentrate uranium, converting the extract to a tetravalent uranous solution by electrolytic reduction, and reacting hydrogen fluoride with the uranous solution to produce uranium tetrafluoride. (R.J.S.)

Ito, C.; Okuda, T.; Hamabe, N.

1962-11-20T23:59:59.000Z

291

Investigation of test methods, material properties, and processes for solar cell encapsulants. Seventh annual report  

DOE Green Energy (OSTI)

The goal of the program is to identify and evaluate encapsulation materials and processes for the protection of silicon solar cells for service in a terrestrial environment. Aging and degradation studies were performed including: thermal aging, sunlamp exposures, aging in controlled environment reactors and outdoor photothermal aging devices, and metal catalyzed degradation. Other tests addressed water absorption, primers and adhesives, soiling experiments, and corrosion protection. (LEW)

Willis, P.B.

1983-01-01T23:59:59.000Z

292

17th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Workshop Proceedings  

DOE Green Energy (OSTI)

The National Center for Photovoltaics sponsored the 17th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 5-8, 2007. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The theme of this year's meeting was 'Expanding Technology for a Future Powered by Si Photovoltaics.'

Sopori, B. L.

2007-08-01T23:59:59.000Z

293

Assessment of nuclear safety and nuclear criticality potential in the Defense Waste Processing Facility. Revision 1  

SciTech Connect

The S-Area Defense Waste Processing Facility (DWPF) will initially process Batch 1 sludge in the sludge-only processing mode, with simulated non-radioactive Precipitate Hydrolysis, Aqueous (PHA) product, without the risk of nuclear criticality. The dilute concentration of fissile material in the sludge combined with excess of neutron absorbers during normal operations make criticality throughout the whole process incredible. Subsequent batches of the DWPF involving radioactive precipitate slurry and PHA will require additional analysis. Any abnormal or upset process operations, which are not considered in this report and could potentially separate fissile material, must be individually evaluated. Scheduled maintenance operation procedures are not considered to be abnormal.

Ha, B.C.

1993-07-20T23:59:59.000Z

294

Proof-of-Concept Assessment of a Photofission-Based Interrogation System for the Detection of Shielded Nuclear Material  

SciTech Connect

A photonuclear interrogation method was experimentally assessed for the detection of shielded nuclear materials. Proof-of-Concept assessment was performed at the Los Alamos National Laboratory (LANL) TA-18 facility and used the INEEL VARITRON electron accelerator. Experiments were performed to assess and characterize the delayed neutron emission responses for different nuclear materials with various shield configurations using three ''nominal'' electron beam energies; 8-, 10-, and 11-MeV. With the exception of highly enriched uranium (HEU), the nuclear materials assessed represent material types commonly encountered in commerce. The specific nuclear materials studied include a solid 4.8-kg HEU sphere, a 5-kg multiple-object, depleted uranium (DU) [uranium with about 0.2% enrichment with U-235] target, and two 11-kg thorium disks. The shield materials selected include polyethylene, borated-polyethylene, and lead. Experimental results, supported with numerical predictions, have shown that the photonuclear interrogation technique is quite capable of detecting shielded nuclear material via the direct measurement of the photofission-induced delayed neutron emissions. To identify or discriminate between nuclear material types (i.e., depleted uranium, HEU, and thorium), a ratio of delayed neutron counts at two different beam energies is utilized. This latter method, referred to as the dual-beam energy ratio Figure-of-Merit, allows one to differentiate among the three nuclear material types.

Jones, J. L.; Yoon, W. Y.; Harker, Y. D.; Hoggan, J. M.; Haskell, K. J.; VanAusdeln, L. A.

2000-11-01T23:59:59.000Z

295

A kilowatt average power laser for sub-picosecond materials processing  

Science Conference Proceedings (OSTI)

The performance of laser pulses in the sub-picosecond range for materials processing is substantially enhanced over similar fluences delivered in longer pulses. Recent advances in the development of solid state lasers have progressed significantly toward the higher average powers potentially useful for many applications. Nonetheless, prospects remain distant for multi-kilowatt sub-picosecond solid state systems such as would be required for industrial scale surface processing of metals and polymers. The authors present operational results from the world's first kilowatt scale ultra-fast materials processing laser. A Free Electron Laser (FEL) called the IR Demo is operational as a User Facility at Thomas Jefferson National Accelerator Facility in Newport News, Virginia, USA. In its initial operation at high average power it is capable of wavelengths in the 2 to 6 micron range and can produce {approximately}0.7 ps pulses in a continuous train at {approximately}75 MHz. This pulse length has been shown to be nearly optimal for deposition of energy in materials at the surface. Upgrades in the near future will extend operation beyond 10 kW CW average power in the near IR and kilowatt levels of power at wavelengths from 0.3 to 60 microns. This paper will cover the design and performance of this groundbreaking laser and operational aspects of the User Facility.

Stephen V. Benson; George R. Neil; C. Bohn; , G. Biallas; D. Douglas; F. Dylla; J. Fugitt; K. Jordan; G. Krafft; , L. Merminga; , J. Preble; , Michelle D. Shinn; T. Siggins; R. Walker; B. Yunn

1999-11-01T23:59:59.000Z

296

Development of Functionally Graded Materials for Manufacturing Tools and Dies and Industrial Processing Equipment  

Science Conference Proceedings (OSTI)

Hot forming processes such as forging, die casting and glass forming require tooling that is subjected to high temperatures during the manufacturing of components. Current tooling is adversely affected by prolonged exposure at high temperatures. Initial studies were conducted to determine the root cause of tool failures in a number of applications. Results show that tool failures vary and depend on the operating environment under which they are used. Major root cause failures include (1) thermal softening, (2) fatigue and (3) tool erosion, all of which are affected by process boundary conditions such as lubrication, cooling, process speed, etc. While thermal management is a key to addressing tooling failures, it was clear that new tooling materials with superior high temperature strength could provide improved manufacturing efficiencies. These efficiencies are based on the use of functionally graded materials (FGM), a new subset of hybrid tools with customizable properties that can be fabricated using advanced powder metallurgy manufacturing technologies. Modeling studies of the various hot forming processes helped identify the effect of key variables such as stress, temperature and cooling rate and aid in the selection of tooling materials for specific applications. To address the problem of high temperature strength, several advanced powder metallurgy nickel and cobalt based alloys were selected for evaluation. These materials were manufactured into tooling using two relatively new consolidation processes. One process involved laser powder deposition (LPD) and the second involved a solid state dynamic powder consolidation (SSDPC) process. These processes made possible functionally graded materials (FGM) that resulted in shaped tooling that was monolithic, bi-metallic or substrate coated. Manufacturing of tooling with these processes was determined to be robust and consistent for a variety of materials. Prototype and production testing of FGM tooling showed the benefits of the nickel and cobalt based powder metallurgy alloys in a number of applications evaluated. Improvements in tool life ranged from three (3) to twenty (20) or more times than currently used tooling. Improvements were most dramatic where tool softening and deformation were the major cause of tool failures in hot/warm forging applications. Significant improvement was also noted in erosion of aluminum die casting tooling. Cost and energy savings can be realized as a result of increased tooling life, increased productivity and a reduction in scrap because of improved dimensional controls. Although LPD and SSDPC tooling usually have higher acquisition costs, net tooling costs per component produced drops dramatically with superior tool performance. Less energy is used to manufacture the tooling because fewer tools are required and less recycling of used tools are needed for the hot forming process. Energy is saved during the component manufacturing cycle because more parts can be produced in shorter periods of time. Energy is also saved by minimizing heating furnace idling time because of less downtime for tooling changes.

Lherbier, Louis, W.; Novotnak, David, J.; Herling, Darrell, R.; Sears, James, W.

2009-03-23T23:59:59.000Z

297

Radiological Assessment of Target Materials for Accelerator Transmutation of Waste (ATW) Applications  

Science Conference Proceedings (OSTI)

This paper issues the first published research of the radiation absorbed dose rate (rad-h-1) to tissue from radioactive spallation products in target materials of Ta, W, Pb, Bi, and LBE which are used in Accelerator Transmutation of Waste (ATW) applications. No previous works have provided an estimate of the absorbed dose rate (rad-h-1) from activated targets for ATW applications. The results of this paper are useful for planning the radiological safety assessment to personnel, and for the design, construction, maintenance, and disposition of target materials of high-energy particle accelerators for ATW applications. In addition, this paper provides the characterization of target materials of high-energy particle accelerators for the parameters of: 1) spallation neutron yield (neutrons/proton), 2) spallation products yield (nuclides/proton), 3) energy-dependent spallation neutron fluence distribution, 4) spallation neutron flux, 5) identification of radioactive spallation products for consideration in safety of personnel to high radiation dose rates, and 6) identification of the optimum geometrical dimensions for the target applicable to the maximum radial spallation neutron leakage from the target. Pb and Bi target materials yielded the lowest absorbed dose rates (rad-h-1) for a 10-year irradiation/50-year decay scheme, and would be the preferred target materials for consideration of the radiological safety of personnel during ATW operations. A beneficial characteristic of these target materials is that they do not produce radioactive transuranic isotopes, which have very long half-lives and require special handling and disposition requirements Furthermore, the targets are not considered High-Level Waste (HLW) such as reactor spent fuel for disposal purposes. It is a basic ATW system requirement that the spallation target after it has been expended should be disposable as Class C low-level radioactive waste. Therefore, the disposal of Pb and Bi targets would be optimally beneficial to the economy and environment. Future research should relate the target performance to other system parameters, specifically solid and liquid blanket systems that contain the radioactive waste to be transmuted. The methodology of this paper may be applied to any target material of a high-energy particle accelerator. (author)

Vickers, Linda D. [BWXT, U.S. Department of Energy, Pantex Plant, P.O. Box 30020, Hwy60/FM2373, Amarillo, TX 79120-0020 (United States)

2002-07-01T23:59:59.000Z

298

An Assessment of Uncertainty in Remaining Life Estimation for Nuclear Structural Materials  

SciTech Connect

In recent years, several operating US light-water nuclear power reactors (LWRs) have moved to extended-life operations (from 40 years to 60 years), and there is interest in the feasibility of extending plant life to 80 years. Operating experience suggests that material degradation of structural components in LWRs (such as the reactor pressure vessel) is expected to be the limiting factor for safe operation during extended life. Therefore, a need exists for assessing the condition of LWR structural components and determining its remaining useful life (RUL). The ability to estimate RUL of degraded structural components provides a basis for determining safety margins (i.e., whether safe operation over some pre-determined time horizon is possible), and scheduling degradation management activities (such as potentially modifying operating conditions to limit further degradation growth). A key issue in RUL estimation is calculation of uncertainty bounds, which are dependent on current material state, as well as past and future stressor levels (such as time-at-temperature, pressure, and irradiation). This paper presents a preliminary empirical investigation into the uncertainty of RUL estimates for nuclear structural materials.

Ramuhalli, Pradeep; Griffin, Jeffrey W.; Fricke, Jacob M.; Bond, Leonard J.

2012-12-01T23:59:59.000Z

299

Environmental assessment of remedial action at the Naturita Uranium processing site near Naturita, Colorado. Revision 1  

SciTech Connect

The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [ 1 0 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial action would result in the loss of approximately 164 ac (66 ha) of soils, but 132 ac (53 ha) of these soils are contaminated and cannot be used for other purposes. Another 154 ac (62 ha) of soils would be temporarily disturbed. Approximately 57 ac (23 ha) of open range land would be permanently removed from livestock grazing and wildlife use. The removal of the contaminated materials would affect the 1 00-year floodplain of the San Miguel River and would result in the loss of riparian habitat along the river. The southwestern willow flycatcher, a Federal candidate species, may be affected by the remedial action, and the use of water from the San Miguel River ``may affect`` the Colorado squawfish, humpback chub, bonytail chub, and razorback sucker. Traffic levels on State Highways 90 and 141 would be increased during the remedial action, as would the noise levels along these transportation routes. Measures for mitigating the adverse environmental impacts of the proposed remedial action are discussed in Section 6.0 of this environmental assessment (EA).

Not Available

1993-08-01T23:59:59.000Z

300

Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste  

SciTech Connect

This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "material assessment process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Ninth workshop on crystalline silicon solar cell materials and processes: Summary discussion sessions  

DOE Green Energy (OSTI)

This report is a summary of the panel discussions included with the Ninth Workshop on Crystalline Silicon Solar Cell Materials and Processes. The theme for the workshop was ``R and D Challenges and Opportunities in Si Photovoltaics.'' This theme was chosen because it appropriately reflects a host of challenges that the growing production of Si photovoltaics will be facing in the new millennium. The anticipated challenges will arise in developing strategies for cost reduction, increased production, higher throughput per manufacturing line, new sources of low-cost Si, and the introduction of new manufacturing processes for cell production. At the same time, technologies based on CdTe and CIS will come on line posing new competition. With these challenges come new opportunities for Si PV to wean itself from the microelectronics industry, to embark on a more aggressive program in thin-film Si solar cells, and to try new approaches to process monitoring.

Sopori, B.; Tan, T.; Swanson, D.; Rosenblum, M.; Sinton, R.

1999-11-23T23:59:59.000Z

302

Program Evaluation - Automotive Lightweighting Materials Program Research and Development Projects Assessment of Benefits - Case Studies No. 2  

SciTech Connect

This report is the second of a series of studies to evaluate research and development (R&D) projects funded by the Automotive Lightweighting Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The objectives of the program evaluation are to assess short-run outputs and long-run outcomes that may be attributable to the ALM R&D projects. The ALM program focuses on the development and validation of advanced technologies that significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. Funded projects range from fundamental materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers. Three ALM R&D projects were chosen for this evaluation: Design and Product Optimization for Cast Light Metals, Durability of Lightweight Composite Structures, and Rapid Tooling for Functional Prototyping of Metal Mold Processes. These projects were chosen because they have already been completed. The first project resulted in development of a comprehensive cast light metal property database, an automotive application design guide, computerized predictive models, process monitoring sensors, and quality assurance methods. The second project, the durability of lightweight composite structures, produced durability-based design criteria documents, predictive models for creep deformation, and minimum test requirements and suggested test methods for establishing durability properties and characteristics of random glass-fiber composites for automotive structural composites. The durability project supported Focal Project II, a validation activity that demonstrates ALM program goals and reduces the lead time for bringing new technology into the marketplace. Focal projects concentrate on specific classes of materials and nonproprietary components and are done jointly by DOE and the Automotive Composites Consortium of U.S. Council for Automotive Research (USCAR). The third project developed a rapid tooling process that reduces tooling time, originally some 48-52 weeks, to less than 12 weeks by means of rapid generation of die-casting die inserts and development of generic holding blocks, suitable for use with large casting applications. This project was conducted by the United States Automotive Materials Partnership, another USCAR consortium.

Das, S.

2003-01-23T23:59:59.000Z

303

Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

304

Process feasibility study in support of silicon material task I. Quarterly technical progress report (IV)  

DOE Green Energy (OSTI)

During this reporting period, major efforts were expended on process system properties, chemical engineering, and economic analyses. In Task 1, primary activities were devoted to properties analyses of silicon source materials and silicon tetrafluoride investigation. Experimental data were identified for critical temperature and pressure for silicon tetrafluoride. Major chemical engineering analysis activities in Task 2 were devoted to preliminary process design for a 1000 metric ton/yr plant (solar cell grade silicon) based on the Zn/SiCl/sub 4/ process (Battelle). In Task 3, economic analysis activities were continued including survey results for product cost estimation techniques. Nominal values--product cost subitems for application to alternate processes--were selected. Economic results based on the preliminary process design are presented for the Zn/Sicl/sub 4/ process. Capital investment (fixed) was determined at $10,100,000 for the 1000 metric/tons year plant. Total product cost was estimated at $9.49 per kg of silicon. (WDM)

Hansen, K.C.; Hopper, J.R.; Miller, J.W. Jr.; Yaws, C.L.

1976-09-01T23:59:59.000Z

305

Analysis of low-cost building material for the MixAlco process  

E-Print Network (OSTI)

The development of biofuels as an alternative fuel source highlights the MixAlco process as one method to convert organic waste into alcohol fuels. The pretreatment and fermentation of waste is integral to the process and represents a principal cost consideration due to the large structure needed to encapsulate the fermenting materials. This research developed papercrete as a potential construction material to reduce the cost of a structure. Papercrete is a mixture of paper, cement, and sand. The strengths, thermal conductivity, and other physical properties were compared with those of conventional building materials. This research identified acceptable property ranges necessary for using a structural papercrete facility and recorded compressive and tensile strengths that were too weak to build an economical structure. The identification of a hybrid papercrete-concrete structure produced results and economics within acceptable ranges. The papercrete-concrete alternative was tested on the same basis as the papercrete for structural and economic analysis, which provided acceptable results. The results indicate that a papercrete-concrete structure is a viable alternative structurally and economically within a range of sizes for the structure.

Titzman, L. Clinton

2006-12-01T23:59:59.000Z

306

Probabilistic accident consequence uncertainty analysis -- Uncertainty assessment for deposited material and external doses. Volume 2: Appendices  

SciTech Connect

The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA deposited material and external dose models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on deposited material and external doses, (4) short biographies of the experts, and (5) the aggregated results of their responses.

Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Boardman, J. [AEA Technology (United Kingdom); Jones, J.A. [National Radiological Protection Board (United Kingdom); Harper, F.T.; Young, M.L. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States)

1997-12-01T23:59:59.000Z

307

Process for hydrocracking carbonaceous material to provide fuels or chemical feed stock  

DOE Patents (OSTI)

A process is disclosed for hydrocracking coal or other carbonaceous material to produce various aromatic hydrocarbons including benzene, toluene, xylene, ethylbenzene, phenol and cresols in variable relative concentrations while maintaining a near constant maximum temperature. Variations in relative aromatic concentrations are achieved by changing the kinetic severity of the hydrocracking reaction by altering the temperature profile up to and quenching from the final hydrocracking temperature. The relative concentration of benzene to the alkyl and hydroxyl aromatics is increased by imposing increased kinetic severity above that corresponding to constant heating rate followed by immediate quenching at about the same rate to below the temperature at which dehydroxylation and dealkylation reactions appreciably occur. Similarly phenols, cresols and xylenes are produced in enhanced concentrations by adjusting the temperature profile to provide a reduced kinetic severity relative to that employed when high benzene concentrations are desired. These variations in concentrations can be used to produce desired materials for chemical feed stocks or for fuels.

Duncan, Dennis A. (Downers Grove, IL)

1980-01-01T23:59:59.000Z

308

Method and apparatus for optimizing the efficiency and quality of laser material processing  

DOE Patents (OSTI)

The efficiency of laser welding and other laser material processing is optimized according to this invention by rotating the plane of polarization of a linearly polarized laser beam in relation to a work piece of the material being processed simultaneously and in synchronization with steering the laser beam over the work piece so as to keep the plane of polarization parallel to either the plane of incidence or the direction of travel of the beam in relation to the work piece. Also, depending to some extent on the particular processing being accomplished, such as welding or fusing, the angle of incidence of the laser beam on the work piece is kept at or near the polarizing or Brewster's angle. The combination of maintaining the plane of polarization parallel to plane of incidence while also maintaining the angle of incidence at or near the polarizing or Brewster's angle results in only minimal, if any, reflection losses during laser welding. Also, coordinating rotation of the plane of polarization with the translation or steering of a work piece under a laser cutting beam maximizes efficiency and kerf geometry, regardless of the direction of cut. 7 figs.

Susemihl, I.

1990-03-13T23:59:59.000Z

309

Method and apparatus for optimizing the efficiency and quality of laser material processing  

DOE Patents (OSTI)

The efficiency of laser welding and other laser material processing is optimized according to this invention by rotating the plane of polarization of a linearly polarized laser beam in relation to a work piece of the material being processed simultaneously and in synchronization with steering the laser beam over the work piece so as to keep the plane of polarization parallel to either the plane of incidence or the direction of travel of the beam in relation to the work piece. Also, depending to some extent on the particular processing being accomplished, such as welding or fusing, the angle of incidence of the laser beam on the work piece is kept at or near the polarizing or Brewster's angle. The combination of maintaining the plane of polarization parallel to plane of incidence while also maintaining the angle of incidence at or near the polarizing or Brewster's angle results in only minimal, if any, reflection losses during laser welding. Also, coordinating rotation of the plane of polarization with the translation or steering of a work piece under a laser cutting beam maximizes efficiency and kerf geometry, regardless of the direction of cut.

Susemihl, Ingo (Norderstedt, DE)

1990-01-01T23:59:59.000Z

310

GRR/Section 15 - Air Quality Assessment Process | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 15 - Air Quality Assessment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15 - Air Quality Assessment Process 15AirQualityAssessmentProcess.pdf Click to View Fullscreen Contact Agencies United States Environmental Protection Agency Regulations & Policies Clean Air Act (42 USC 1857 et seq.) Triggers None specified Click "Edit With Form" above to add content 15AirQualityAssessmentProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Clean Air Act is the law that defines EPA's responsibilities for

311

Assessment of Slag-Aided Deoxidation Process in 3.5crmov Rotor ...  

Science Conference Proceedings (OSTI)

Presentation Title, Assessment of Slag-Aided Deoxidation Process in 3.5crmov Rotor Steel. Author(s), June-Seong Park, Chang-Woo Seo, Seonhyo Kim.

312

Molecular Level Assessment of Thermal Transport and Thermoelectricity in Materials: From Bulk Alloys to Nanostructures  

E-Print Network (OSTI)

The ability to manipulate material response to dynamical processes depends on the extent of understanding of transport properties and their variation with chemical and structural features in materials. In this perspective, current work focuses on the thermal and electronic transport behavior of technologically important bulk and nanomaterials. Strontium titanate is a potential thermoelectric material due to its large Seebeck coefficient. Here, first principles electronic band structure and Boltzmann transport calculations are employed in studying the thermoelectric properties of this material in doped and deformed states. The calculations verified that excessive carrier concentrations are needed for this material to be used in thermoelectric applications. Carbon- and boron nitride-based nanomaterials also offer new opportunities in many applications from thermoelectrics to fast heat removers. For these materials, molecular dynamics calculations are used to evaluate lattice thermal transport. To do this, first, an energy moment term is reformulated for periodic boundary conditions and tested to calculate thermal conductivity from Einstein relation in various systems. The influences of the structural details (size, dimensionality) and defects (vacancies, Stone-Wales defects, edge roughness, isotopic disorder) on the thermal conductivity of C and BN nanostructures are explored. It is observed that single vacancies scatter phonons stronger than other type of defects due to unsatisfied bonds in their structure. In pristine states, BN nanostructures have 4-6 times lower thermal conductivity compared to C counterparts. The reason of this observation is investigated on the basis of phonon group velocities, life times and heat capacities. The calculations show that both phonon group velocities and life times are smaller in BN systems. Quantum corrections are also discussed for these classical simulations. The chemical and structural diversity that could be attained by mixing hexagonal boron nitride and graphene provide further avenues for tuning thermal and electronic properties. In this work, the thermal conductivity of hybrid graphene/hexagonal-BN structures: stripe superlattices and BN (graphene) dots embedded in graphene (BN) are studied. The largest reduction in thermal conductivity is observed at 50% chemical mixture in dot superlattices. The dot radius appears to have little effect on the magnitude of reduction around large concentrations while smaller dots are more influential at dilute systems.

Kinaci, Alper

2013-05-01T23:59:59.000Z

313

TEMPLUM: a process adapted numerical simulation code for the 3D predictive assessment of laser surface heat treatments in planar geometry  

Science Conference Proceedings (OSTI)

A process adapted numerical simulation code for the 3D predictive assessment of laser heat treatment of materials has been developed. Primarily intended for the analysis of the laser transformation hardening of steels, the code has been successfully ... Keywords: finite element, heat conduction, laser surface treatments, modeling, numerical analysis, optical glass polishing, simulation, transformation hardening

A. A. García-Beltrán; J. L. Ocaña; C. L. Molpeceres

2008-02-01T23:59:59.000Z

314

Developing a practical framework for ERP readiness assessment using fuzzy analytic network process  

Science Conference Proceedings (OSTI)

Previous studies report unusually high failure in enterprise resource planning (ERP) projects. Thus, it is necessary to perform an assessment at the initial stage of an ERP implementation program to identify weaknesses or problems which may lead to project ... Keywords: Critical success factors (CSF), Enterprise resource planning (ERP), Fuzzy analytic network process, Readiness assessment

Jafar Razmi; Mohamad Sadegh Sangari; Reza Ghodsi

2009-11-01T23:59:59.000Z

315

Nano-scale optical and electrical probes of materials and processes.  

DOE Green Energy (OSTI)

This report describes the investigations and milestones of the Nano-Scale Optical and Electrical Probes of Materials and Processes Junior/Senior LDRD. The goal of this LDRD was to improve our understanding of radiative and non-radiative mechanisms at the nanometer scale with the aim of increasing LED and solar cell efficiencies. These non-radiative mechanisms were investigated using a unique combination of optical and scanning-probe microscopy methods for surface, materials, and device evaluation. For this research we utilized our new near-field scanning optical microscope (NSOM) system to aid in understanding of defect-related emission issues for GaN-based materials. We observed micrometer-scale variations in photoluminescence (PL) intensity for GaN films grown on Cantilever Epitaxy pattern substrates, with lower PL intensity observed in regions with higher dislocation densities. By adding electrical probes to the NSOM system, the photocurrent and surface morphology could be measured concurrently. Using this capability we observed reduced emission in InGaN MQW LEDs near hillock-shaped material defects. In spatially- and spectrally-resolved PL studies, the emission intensity and measured wavelength varied across the wafer, suggesting the possibility of indium segregation within the InGaN quantum wells. Blue-shifting of the InGaN MQW wavelength due to thinning of quantum wells was also observed on top of large-scale ({micro}m) defect structures in GaN. As a direct result of this program, we have expanded the awareness of our new NSOM/multifunctional SPM capability at Sandia and formed several collaborations within Sandia and with NINE Universities. Possible future investigations with these new collaborators might include GaN-based compound semiconductors for green LEDs, nanoscale materials science, and nanostructures, novel application of polymers for OLEDs, and phase imprint lithography for large area 3D nanostructures.

Bogart, Katherine Huderle Andersen

2007-03-01T23:59:59.000Z

316

Process for the production of thermodynamically stable solid ion conductor materials  

Science Conference Proceedings (OSTI)

The present invention provides a process for the production of solid in conductor materials based on the following formula: A3 /SUB u/ /sub +/2 /SUB v/ /sub +/ /SUB w/ XuYuZw wherein A is lithium or sodium, X is nitrogen, phosphorus or arsenic, Y is nitrogen, sulphur, tellurium or selenium, Z is hydrogen or a halogen, and u, v, and w each represent a number from 0 to 1 inclusive, with the proviso that only one of u, v, and w can assume the value of 0.

Hartwig, P.; Wepper, W.; Winfried, W.

1985-07-02T23:59:59.000Z

317

High-throughput Characterization of Porous Materials Using Graphics Processing Units  

Science Conference Proceedings (OSTI)

We have developed a high-throughput graphics processing units (GPU) code that can characterize a large database of crystalline porous materials. In our algorithm, the GPU is utilized to accelerate energy grid calculations where the grid values represent interactions (i.e., Lennard-Jones + Coulomb potentials) between gas molecules (i.e., CH$_{4}$ and CO$_{2}$) and material's framework atoms. Using a parallel flood fill CPU algorithm, inaccessible regions inside the framework structures are identified and blocked based on their energy profiles. Finally, we compute the Henry coefficients and heats of adsorption through statistical Widom insertion Monte Carlo moves in the domain restricted to the accessible space. The code offers significant speedup over a single core CPU code and allows us to characterize a set of porous materials at least an order of magnitude larger than ones considered in earlier studies. For structures selected from such a prescreening algorithm, full adsorption isotherms can be calculated by conducting multiple grand canonical Monte Carlo simulations concurrently within the GPU.

Kim, Jihan; Martin, Richard L.; Ruebel, Oliver; Haranczyk, Maciej; Smit, Berend

2012-03-19T23:59:59.000Z

318

PROPERTIES AND NANOSTRUCTURES OF NANO-MATERIALS PROCESSED BY SEVERE PLASTIC DEFORMATION (SPD).  

Science Conference Proceedings (OSTI)

Metallic materials usually exhibit higher strength but lower ductility after being plastically deformed by conventional techniques such as rolling, drawing and extrusion. In contrast, nanostructured metals and alloys processed by severe plastic deformation (SPD) have demonstrated both high strength and high ductility. This extraordinary mechanical behavior is attributed to the unique nanostructures generated by SPD processing. The combination of ultrafine grain size and high-density dislocations appears to enable deformation by new mechanisms not active in coarse-grained metals and alloys. These results demonstrate the possibility of tailoring the microstructures of metals and alloys by SPD to obtain superior mechanical properties. Nanostructured metals and alloys processed by SPD techniques have unique nanostructures not observed in nanomaterials synthesized by other techniques such as the consolidation of nanopowders. The SPD-generated nanostructures have many features related to deformation, including high dislocation densities, and high- and low-angle grain boundaries in equilibrium or nonequilibrium states. Future studies are needed to investigate the deformation mechanisms that relate the unique nanostructures with the superior mechanical properties exhibited by SPD-processed metals and alloys.

Zhu, Y. T. (Yuntian Theodore)

2001-01-01T23:59:59.000Z

319

Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials  

SciTech Connect

The focus of this report is the evaluation of various co-precipitation processes for use in the synthesis of mixed oxide feedstock powders for the Ceramic Fuels Technology Area within the Fuels Cycle R&D (FCR&D) Program's Advanced Fuels Campaign. The evaluation will include a comparison with standard mechanical mixing of dry powders and as well as other co-conversion methods. The end result will be the down selection of a preferred sequence of co-precipitation process for the preparation of nuclear fuel feedstock materials to be used for comparison with other feedstock preparation methods. A review of the literature was done to identify potential nitrate-to-oxide co-conversion processes which have been applied to mixtures of uranium and plutonium to achieve recycle fuel homogeneity. Recent studies have begun to study the options for co-converting all of the plutonium and neptunium recovered from used nuclear fuels, together with appropriate portions of recovered uranium to produce the desired mixed oxide recycle fuel. The addition of recycled uranium will help reduce the safeguard attractiveness level and improve proliferation resistance of the recycled fuel. The inclusion of neptunium is primarily driven by its chemical similarity to plutonium, thus enabling a simple quick path to recycle. For recycle fuel to thermal-spectrum light water reactors (LWRs), the uranium concentration can be {approx}90% (wt.), and for fast spectrum reactors, the uranium concentration can typically exceed 70% (wt.). However, some of the co-conversion/recycle fuel fabrication processes being developed utilize a two-step process to reach the desired uranium concentration. In these processes, a 50-50 'master-mix' MOX powder is produced by the co-conversion process, and the uranium concentration is adjusted to the desired level for MOX fuel recycle by powder blending (milling) the 'master-mix' with depleted uranium oxide. In general, parameters that must be controlled for co-precipitation processes include (1) feed solution concentration adjustment, (2) precipitant concentration and addition methods, (3) pH, temperature, mixing method and time, (4) valence adjustment, (5) solid precipitate separation from the filtrate 'mother liquor,' generally by means of centrifugation or filtration, and (6) temperatures and times for drying, calcination, and reduction of the MOX product powder. Also a recovery step is necessary because of low, but finite solubility of the U/TRU metals in the mother liquor. The recovery step usually involves destruction of the residual precipitant and disposal of by-product wastes. Direct denitrations of U/TRU require fewer steps, but must utilize various methods to enable production of MOX with product characteristics that are acceptable for recycle fuel fabrication. The three co-precipitation processes considered for evaluation are (1) the ammonia co-precipitation process being developed in Russia, (2) the oxalate co-precipitation process, being developed in France, and (3) the ammonium-uranyl-plutonyl-carbonate (AUPuC) process being developed in Germany. Two direct denitration processes are presented for comparison: (1) the 'Microwave Heating (MH)' automated multi-batch process developed in Japan and (2) the 'Modified Direct Denitration (MDD)' continuous process being developed in the USA. Brief comparative descriptions of the U/TRU co-conversion processes are described. More complete details are provided in the references.

Collins, Emory D [ORNL; Voit, Stewart L [ORNL; Vedder, Raymond James [ORNL

2011-06-01T23:59:59.000Z

320

Process and reliability assessment of plasma-based copper etch process  

E-Print Network (OSTI)

The plasma-based etching processes of copper (Cu) and titanium tungsten (TiW) thin films, and the electromigration of the copper lines patterned by above etching processes were studied. Instead of vaporizing the plasma/copper reaction product, a dilute hydrogen chloride solution was used to dissolve the nonvolatile reaction product. The plasma/copper reaction process was affected by many factors including the microstructure of the copper film and the plasma conditions. Under the same chlorine plasma exposure condition, the copper conversation rate and the copper chloride (CuClx) formation rate increased monotonically with the Cu grain size. The characteristics of the Cu etching process were explained by diffusion mechanisms of Cl and Cu in the plasmacopper reaction process as well as microstructures of Cu and CuClx. The Cu chlorination process was also affected by the additive gas in the Cl2 plasma. The additive gas, such as Ar, N2, and CF4, dramatically changed the plasma phase chemistry, i.e., the Cl concentration, and the ion bombardment energy, which resulted in changes of the Cu chlorination rate and the sidewall roughness. TiW thin films, used as the diffusion barrier layer for the Cu film, were reactive ion etched with CF4/O2, CF4/Cl2, and CF4/HCl plasma. Process parameter such as feed gas composition, RF power, and plasma pressure showed tremendous effects on the etch rate and the etch selectivity. The TiW etch rate was a function of the sum of Cl and F concentrations and the ion bombardment energy. Cu/diffusion barrier metal stack was successfully patterned by above plasma etch processes. The electromigration (EM) performance of the Cu lines was evaluated by the accelerated isothermal test. The activation energy of 0.5~0.6 eV and the current density exponent of 2.7 were obtained. Failure analysis showed that both copper-silicon nitride cap layer interface and the copper grain boundary were active diffusion paths. The EM induced stress caused the cap layer crack and affected the reliability of Cu lines. The processes studied in this dissertation can be applied in advanced microelectronic fabrication including large area flexible microelectronics.

Liu, Guojun

2008-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "material assessment process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

An image processing system for the monitoring of special nuclear material and personnel  

SciTech Connect

An important aspect of insider protection in production facilities is the monitoring of the movement of special nuclear material (SNM) and personnel. One system developed at Sandia National Labs for this purpose is the Personnel and Material Tracking System (PAMTRAK). PAMTRAK can intelligently integrate different sensor technologies and the security requirements of a facility to provide a unique capability in monitoring and tracking SNM and personnel. Currently many sensor technologies are used to track the location of personnel and SNM inside a production facility. These technologies are generally intrusive; they require special badges be worn by personnel, special tags be connected to material, and special detection devices be mounted in the area. Video technology, however, is non-intrusive because it does not require that personnel wear special badges or that special tags be attached to SNM. Sandia has developed a video-based image processing system consisting of three major components: the Material Monitoring-Subsystem (MMS), the Personnel Tracking Subsystem (PTS) and the Item Recognition Subsystem (IRS). The basic function of the MMS is to detect movements of SNM, that occur in user-defined regions of interest (ROI) from multiple cameras; these ROI can be of any shape and size. The purpose of the PTS is to track location of personnel in an area using multiple cameras. It can also be used to implement the two-person rule or to detect unauthorized personnel in a restricted area. Finally, the IRS can be used for the recognition and inventory of SNM in a working area. It can also generate a log record on the status of each SNM. Currently the MMS is integrated with PAMTRAK to complement other monitoring technologies in the system. The paper will discuss the system components and their implementations, and describe current enhancements as well as future work.

Thai, T.; Carlson, J.; Urenda, D.; Cooley, T.

1994-08-01T23:59:59.000Z

322

NUCLEAR MATERIAL ATTRACTIVENESS: AN ASSESSMENT OF MATERIAL FROM PHWR'S IN A CLOSED THORIUM FUEL CYCLE  

SciTech Connect

This paper examines the attractiveness of material mixtures containing special nuclear materials (SNM) associated with reprocessing and the thorium-based LWR fuel cycle. This paper expands upon the results from earlier studies that examined the attractiveness of SNM associated with the reprocessing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR. This study shows that {sup 233}U that is produced in thorium-based fuel cycles is very attractive for weapons use. Consistent with other studies, these results also show that all fuel cycles examined to date need to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of 'attractiveness levels' that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities. The methodology and key findings will be presented.

Sleaford, B W; Collins, B A; Ebbinghaus, B B; Bathke, C G; Prichard, A W; Wallace, R K; Smith, B W; Hase, K R; Bradley, K S; Robel, M; Jarvinen, G D; Ireland, J R; Johnson, M W

2010-04-26T23:59:59.000Z

323

Assessment of Structural and Clad Materials for Fission Surface Power Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ORNL/LTR-2011/351 ORNL/LTR-2011/351 Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges September 2011 Prepared by R.K. Nanstad, Oak Ridge National Laboratory and W. L. Server, ATI Consulting This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product,

324

Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments, Step 5-glossary, June, 1997  

NLE Websites -- All DOE Office Websites (Extended Search)

OVERVIEW Before the WP and SAP are signed, it is important to verify that the field sampling plan they specify is appropriate and implementable at the site. If this has not already been done, it should be done now. During field verification of the sampling design, the testable hypotheses, exposure pathway models, and measurement endpoints are evaluated for their appropriateness and implementability. The assessment endpoint(s), however, should not be under evaluation in this step; the appropriateness of the assessment endpoint should have been resolved in Step 3. If an assessment endpoint is changed at this step, the risk assessor must return to Step 3, because the entire process leading to the actual site investigation in Step 6 assumes the selection of

325

Environmental assessment of remedial action at the inactive uraniferous lignite processing sites at Belfield and Bowman, North Dakota. [UMTRA Project  

SciTech Connect

The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), to clean up the Belfield and Bowman, North Dakota, uraniferous lignite processing sites to reduce the potential health impacts associated with the residual radioactive materials remaining at these sites. Remedial action at these sites must be performed in accordance with the US Environmental Protection Agency's (EPA) standards promulgated for the remedial action and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of North Dakota. The inactive Belfield uraniferous lignite processing site is one mile southeast of Belfield, North Dakota. The inactive Bowman uraniferous lignite processing site at the former town of Griffin, is seven miles northwest of Bowman, North Dakota and 65 road miles south of Belfield. Lignite ash from the processing operations has contaminated the soils over the entire 10.7-acre designated Belfield site and the entire 12.1-acre designated Bowman site. Dispersion of the ash has contaminated an additional 20.6 acres surrounding the Belfield processing site and an additional 59.2 acres surrounding the Bowman processing site. The proposed remedial action is to relocate the contaminated materials at the Belfield processing site to the Bowman processing/disposal site for codisposal with the Bowman contaminated soils. The environmental impacts assessed in this EA were evaluated for the proposed remedial action and the no action alternative and demonstrate that the proposed action would not significantly affect the quality of the human environment and would be performed in compliance with applicable environmental laws. The no action alternative would not be consistent with the intent of Public Law 95-604 and would not comply with the EPA standards. 48 refs., 10 figs., 7 tabs.

Beranich, S.; Berger, N.; Bierley, D.; Bond, T.M.; Burt, C.; Caldwell, J.A.; Dery, V.A.; Dutcher, A.; Glover, W.A.; Heydenburg, R.J.; Larson, N.B.; Lindsey, G.; Longley, J.M.; Millard, J.B.; Miller, M.; Peel, R.C.; Persson-Reeves, C.H.; Titus, F.B.; Wagner, L.

1989-09-01T23:59:59.000Z

326

Environmental assessment of remedial action at the inactive uraniferous lignite processing sites at Belfield and Bowman, North Dakota. [UMTRA Project  

SciTech Connect

The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), to clean up the Belfield and Bowman, North Dakota, uraniferous lignite processing sites to reduce the potential health impacts associated with the residual radioactive materials remaining at these sites. Remedial action at these sites must be performed in accordance with the US Environmental Protection Agency's (EPA) standards promulgated for the remedial action and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of North Dakota. The inactive Belfield uraniferous lignite processing site is one mile southeast of Belfield, North Dakota. The inactive Bowman uraniferous lignite processing site at the former town of Griffin, is seven miles northwest of Bowman, North Dakota and 65 road miles south of Belfield. Lignite ash from the processing operations has contaminated the soils over the entire 10.7-acre designated Belfield site and the entire 12.1-acre designated Bowman site. Dispersion of the ash has contaminated an additional 20.6 acres surrounding the Belfield processing site and an additional 59.2 acres surrounding the Bowman processing site. The proposed remedial action is to relocate the contaminated materials at the Belfield processing site to the Bowman processing/disposal site for codisposal with the Bowman contaminated soils. The environmental impacts assessed in this EA were evaluated for the proposed remedial action and the no action alternative and demonstrate that the proposed action would not significantly affect the quality of the human environment and would be performed in compliance with applicable environmental laws. The no action alternative would not be consistent with the intent of Public Law 95-604 and would not comply with the EPA standards. 48 refs., 10 figs., 7 tabs.

Beranich, S.; Berger, N.; Bierley, D.; Bond, T.M.; Burt, C.; Caldwell, J.A.; Dery, V.A.; Dutcher, A.; Glover, W.A.; Heydenburg, R.J.; Larson, N.B.; Lindsey, G.; Longley, J.M.; Millard, J.B.; Miller, M.; Peel, R.C.; Persson-Reeves, C.H.; Titus, F.B.; Wagner, L.

1989-09-01T23:59:59.000Z

327

Use of Modeling for Prevention of Solids Formation During Canyon Processing of Legacy Nuclear Materials at the Savannah River Site  

Science Conference Proceedings (OSTI)

The Savannah River Site (SRS) Environmental Management (EM) nuclear material stabilization program includes the dissolution and processing of legacy materials from various DOE sites. The SRS canyon facilities were designed to dissolve and process spent nuclear fuel and targets. As the processing of typical materials is completed, unusual and exotic nuclear materials are being targeted for stabilization. These unusual materials are often difficult to dissolve using historical flowsheet conditions and require more aggressive dissolver solutions. Solids must be prevented in the dissolver to avoid expensive delays associated with the build-up of insoluble material in downstream process equipment. Moreover, it is vital to prevent precipitation of all solids, especially plutonium-bearing solids, since their presence in dissolver solutions raises criticality safety issues. To prevent precipitation of undesirable solids in aqueous process solutions, the accuracy of computer models to predict precipitate formation requires incorporation of plant specific fundamental data. These data are incorporated into a previously developed thermodynamic computer program that applies the Pitzer correlation to derive activity coefficient parameters. This improved predictive model will reduce unwanted precipitation in process solutions at DOE sites working with EM nuclear materials in aqueous solutions.

Rhodes, W. D.; Crooks III, W. J.; Christian, J. D.

2002-02-26T23:59:59.000Z

328

Radiological/Health physics program assessement at Rocky Flats, the process  

SciTech Connect

The Department of Energy, Rocky Flats Office, Safety and Health Group, Health Physics Team (HPT) is responsible for oversight of the Radiation Protection and Health Physics Program (RPHP) of the Integrating Management Contractor (IMC), Kaiser-Hill (K-H) operations at the Rocky Flats Environmental Technology Site (RFETS). As of 1 January 1996 the Rocky Flats Plant employed 300 DOE and 4,300 contractor personnel (K-H and their subcontractors). WSI is a subcontractor and provides plant security. To accomplish the RPHP program oversight HPT personnel developed a systematic methodology for performing a functional RPHP Assessment. The initial process included development of a flow diagram identifying all programmatic elements and assessment criteria documents. Formulation of plans for conducting interviews and performance of assessments constituted the second major effort. The generation of assessment reports was the final step, based on the results of this process. This assessment will be a 6 person-year effort, over the next three years. This process is the most comprehensive assessment of any Radiation Protection and Health Physics (RPHP) Program ever performed at Rocky Flats. The results of these efforts will establish a baseline for future RPHP Program assessments at RFETS. This methodology has been well-received by contractor personnel and creates no Privacy Act violations or other misunderstandings.

Psomas, P.O. [Department of Energy, Golden, CO (United States)

1996-06-01T23:59:59.000Z

329

Combination of job oriented simulation with ecological material flow analysis as integrated analysis tool for business production processes  

Science Conference Proceedings (OSTI)

This paper outlines the application of a special Environmental Management Information System (EMIS) as combination of discrete event simulation with ecological material flow analysis for a selected production process. The software tool serves as decision ...

Philip Joschko; Bernd Page; Volker Wohlgemuth

2009-12-01T23:59:59.000Z

330

Recovery and regeneration of spent MHD seed material by the formate process  

DOE Patents (OSTI)

The specification discloses a spent seed recovery and regeneration process for an MHD power plant employing an alkali metal salt seed material such as potassium salt wherein the spent potassium seed in the form of potassium sulfate is collected from the flue gas and reacted with calcium hydroxide and carbon monoxide in an aqueous solution to cause the formation of calcium sulfate and potassium formate. The pH of the solution is adjusted to suppress formation of formic acid and to promote precipitation of any dissolved calcium salts. The solution containing potassium formate is then employed to provide the potassium salt in the form of potassium formate or, optionally, by heating the potassium formate under oxidizing conditions to convert the potassium formate to potassium carbonate. 5 figures.

Sheth, A.C.; Holt, J.K.; Rasnake, D.G.; Solomon, R.L.; Wilson, G.L.; Herrigel, H.R.

1991-10-15T23:59:59.000Z

331

Recovery and regeneration of spent MHD seed material by the formate process  

SciTech Connect

The specification discloses a spent seed recovery and regeneration process for an MHM power plant employing an alkali metal salt seed material such as potassium salt wherein the spent potassium seed in the form of potassium sulfate is collected from the flue gas and reacted with calcium hydroxide and carbon monoxide in an aqueous solution to cause the formation of calcium sulfate and potassium formate. The pH of the solution is adjusted to supress formation of formic acid and to promote precipitation of any dissolved calcium salts. The solution containing potassium formate is then employed to provide the potassium salt in the form of potassium formate or, optionally, by heating the potassium formate under oxidizing conditions to convert the potassium formate to potassium carbonate.

Sheth, Atul C. (Tullahoma, TN); Holt, Jeffrey K. (Manchester, TN); Rasnake, Darryll G. (Manchester, TN); Solomon, Robert L. (Seattle, WA); Wilson, Gregory L. (Redmond, WA); Herrigel, Howard R. (Seattle, WA)

1991-01-01T23:59:59.000Z

332

Materials, Processes and Testing Laboratory. Technical progress report, November 1979-February 1980  

DOE Green Energy (OSTI)

The US Department of Energy has set a 20-year lifetime goal for terrestrial photovoltaic modules. In its capacity as a Photovoltaic Field Test and Application Center, Massachusetts Institute of Technology Lincoln Laboratory has established various experimental test sites, ranging in size from 0.1 to 100 kW of peak power, throughout the United States. These sites contain modules from several manufacturers and serve as test beds for photovoltaic system components. The activities of the Materials, Processes and Testing Laboratory of the Solar Photovoltaic Field Tests and Application Project during the last two months of 1979 and the first two months of 1980 are summarized. Module field inspection, I-V curve plotting, module failure analysis, and module degradation analysis are reported.

Forman, S.E.; Themelis, M.P.

1980-11-30T23:59:59.000Z

333

CONSTRUCTION MATERIALS FOR THE HYDROFLUORINATOR OF THE FLUORIDE-VOLATILITY PROCESS  

DOE Green Energy (OSTI)

Fuel elements clad with Zr or containing Zr as a diluent can be recovered by a fluoride-volatility process. The first step consists of hydrofluorination of the elements in a bath of molten fluoride salts using an HF sparge. In this case the two salt systems considered were NaF-ZrF/sub 4/ and NaF- LiF. Materials evaluated at Battelle for possible use in the construction of this hydrofluorinator include Inconel, A'' Nickel, copper, silver, Monel, Hastelloy B, Hastelloy W, INOR-1, and INOR-8. The metals were exposed to molten fluoride salts through which HF was bubbled continuously. The data indicate that the NaF-LiF systems are much more corrosive than the NaF-ZrF/sub 4/ system. The systems are most corrosive when the alkali fluoride component is high. An elevation in temperature increases the corrosion significantly as does an increase in the HF flow rate. Hydrogen in the HF flow stream retards the corrosion of the sodiumzirconium salts significantly, but appears to have less effect on the sodium -lithium systems. The areas at the interface of the liquid and vapor phases were most seriously damaged under the exposure conditions usually used. However, appreciable reduction in attack was experienced when zirconium was actually hydrofluorinated. INOR-8 was the most promising of the materials evaluated. (auth)

Miller, P.D.; Peterson, C.L.; Stewart, O.M.; Stephan, E.F.; Fink, F.W.

1959-06-01T23:59:59.000Z

334

Dynamic high pressure process for fabricating superconducting and permanent magnetic materials  

DOE Patents (OSTI)

Shock waves directed on thin layers of materials is used to form superconducting and permanent magnetic materials with improved microstructures. 9 figs.

Nellis, W.J.; Maple, M.B.; Geballe, T.H.

1986-12-04T23:59:59.000Z

335

Fractionally distilled SRC-I, SRC-II, EDS, H-Coal and ITSL direct coal liquefaction process materials: a comparative summary of chemical analysis and biological testing  

DOE Green Energy (OSTI)

This document reports and compares the results compiled from chemical analyses and biological testing of coal liquefaction process materials which were fractionally distilled, after production, into various comparable boiling-point range cuts. Comparative analyses were performed on solvent refined coal (SRC)-I, SRC-II, H-Coal, EDS an integrated two-stage liquefaction (ITSL) distillate materials. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative, chemical and biological assessments. Where possible, results obtained from the distillate cuts are compared to those from coal liquefaction materials with limited boiling ranges. Work reported here was conducted by investigators in the Biology and Chemistry Department at the Pacific Northwest Laboratory (PNL), Richland, WA. 38 refs., 16 figs., 27 tabs.

Wright, C.W.; Later, D.W.; Dauble, D.D.; Wilson, B.W.

1985-07-01T23:59:59.000Z

336

Assessment of the ISO 9000 Quality Management System (QMS) Registrar Accreditation and Supplier Certification Processes  

Science Conference Proceedings (OSTI)

This report documents the assessment of key processes associated with administration and implementation of the International Organization for Standardization's (ISO's) family of standards known as ISO 9000. The results of this assessment were used to develop guidance to assist utilities when dedicating commercial-grade items procured from ISO 9000 suppliers. (The resulting guidance is published in EPRI Report 1003105, "Dedicating Commercial-Grade Items Procured From ISO 9000 Suppliers.")

2001-12-21T23:59:59.000Z

337

CBT -LOQCAP (Lube Oil QC Assessment Process) Version 1.0  

Science Conference Proceedings (OSTI)

This Lube Oil QC Assessment Process (LOQCAP) version 1.0 computer-based training software provides the user with the fundamental skills for implementation of the Lube Oil PdM, Handling, and Quality Assurance Guideline, Final Report. This computer-based training is to be used as a companion to the Lube Oil Predictive Maintenance, Handling, and Quality Assurance Guideline developed by Program 69. The training provides the basic knowledge for using the guideline to assess your lubrication program through th...

2004-12-08T23:59:59.000Z

338

Processing method for forming dislocation-free SOI and other materials for semiconductor use  

DOE Patents (OSTI)

A method for preparing a silicon-on-insulator material having a relatively defect-free Si overlayer involves the implanting of oxygen ions within a silicon body and the interruption of the oxygen-implanting step to implant Si ions within the silicon body. The implanting of the oxygen ions develops an oxide layer beneath the surface of the silicon body, and the Si ions introduced by the Si ion-implanting step relieves strain which is developed in the Si overlayer during the implanting step without the need for any intervening annealing step. By relieving the strain in this manner, the likelihood of the formation of strain-induced defects in the Si overlayer is reduced. In addition, the method can be carried out at lower processing temperatures than have heretofore been used with SIMOX processes of the prior art. The principles of the invention can also be used to relieve negative strain which has been induced in a silicon body of relatively ordered lattice structure.

Holland, Orin Wayne (Oak Ridge, TN); Thomas, Darrell Keith (Kingston, TN); Zhou, Dashun (Sunnyvale, CA)

1997-01-01T23:59:59.000Z

339

Process for forming a homogeneous oxide solid phase of catalytically active material  

DOE Patents (OSTI)

A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.

Perry, Dale L. (Hercules, CA); Russo, Richard E. (Walnut Creek, CA); Mao, Xianglei (Berkeley, CA)

1995-01-01T23:59:59.000Z

340

A workshop on developing risk assessment methods for medical use of radioactive material. Volume 2: Supporting documents  

SciTech Connect

A workshop was held at the Idaho National Engineering Laboratory, August 16--18, 1994 on the topic of risk assessment on medical devices that use radioactive isotopes. Its purpose was to review past efforts to develop a risk assessment methodology to evaluate these devices, and to develop a program plan and a scoping document for future methodology development. This report contains presentation material and a transcript of the workshop. Participants included experts in the fields of radiation oncology, medical physics, risk assessment, human-error analysis, and human factors. Staff from the US Nuclear Regulatory Commission (NRC) associated with the regulation of medical uses of radioactive materials and with research into risk-assessment methods participated in the workshop. The workshop participants concurred in NRC`s intended use of risk assessment as an important technology in the development of regulations for the medical use of radioactive material and encouraged the NRC to proceed rapidly with a pilot study. Specific recommendations are included in the executive summary and the body of this report.

Tortorelli, J.P. [ed.] [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "material assessment process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Enabling streamlined life cycle assessment : materials-classification derived structured underspecification  

E-Print Network (OSTI)

As environmental footprint considerations for companies gain greater importance, the need for quantitative impact assessment tools such as life cycle assessment (LCA) has become a higher priority. Currently, the cost and ...

Rampuria, Abhishek

2012-01-01T23:59:59.000Z

342

Coal gasification via the Lurgi process: Topical report: Volume 1, Production of SNG (substitute material gas)  

Science Conference Proceedings (OSTI)

A Lurgi baseline study was requested by the DOE/GRI Operating Committee of the Joint Coal Gasification Program for the purpose of updating the economics of earlier Lurgi coal gasification plant studies for the production of substitute natural gas (SNG) based on commercially advanced technologies. The current study incorporates the recent experience with large size Lurgi plants in an effort to improve capital and operating costs of earlier plant designs. The present coal gasification study is based on a mine mouth plant producing 250 billion Btu (HHV) per day of SNG using the Lurgi dry bottom coal gasification technology. A Western subbituminous coal was designated as the plant food, obtained from the Rosebud seam at Colstrip, Montana. This study presents the detailed description of an integrated facility which utilizes coal, air, and water to produce 250 billion Btu (HHV) per day of SNG. The plant consists of coal handling and preparation, twenty-six Lurgi dry bottom gasifiers, shift conversion, acid gas removal, methanation, compression and drying of product gas, sulfur recovery, phenol and ammonia recovery, as well as necessary support facilities. The plant is a grass roots, mine mouth facility located in a Western location similar to the town of Colstrip in Rosebud County, Montana. The Lurgi Corporation assisted in this study, under subcontract to Foster Wheeler, by supplying the heat and material balances, flow sheets, utilities, catalysts and chemical requirements, and cost data for Lurgi designed process sections. Details of material supplied by Lurgi Corporation are presented in Appendix A. 52 refs., 36 figs., 64 tabs.

Zahnstecher, L.W.

1984-09-01T23:59:59.000Z

343

Process feasibility study in support of silicon material Task I. Quarterly technical progress report (XIV), January-March 1979  

DOE Green Energy (OSTI)

Analyses of process system properties was continued for materials involved in the alternate processes under consideration for solar cell grade silicon. The following property data are reported for silicon tetrafluoride: critical constants, vapor pressure, heat of vaporization, heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation, and Gibb's free energy of formation. In the viscosity investigation, experimentally determined values for gas viscosity of trichlorosilane and dichlorosilane are reported in the temperature range of 40/sup 0/C to 200/sup 0/C. Previous data are not available in this temperature range for either compound. Chemical engineering analysis of the BCL process was continued with primary efforts being devoted to the preliminary process design. Status and progress are reported for base case conditions; process flow diagram; reaction chemistry; material and energy balances; and major process equipment design. Current engineering efforts are nearing completion for manpower estimate of production labor requirements for the plant.

Li, K.Y.; Hansen, K.C.; Yaws, C.L.

1979-03-01T23:59:59.000Z

344

Some potential material supply constraints in solar systems for heating and cooling of buildings and process heat. (A preliminary screening to identify critical materials)  

DOE Green Energy (OSTI)

Nine Solar Heating and Cooling of Buildings (SHACOB) designs and three Agricultural and Industrial Process Heat (AIPH) designs have been studied to identify potential future material constraints to their large scale installation and use. The nine SHACOB and three AIPH systems were screened and found to be free of serious future material constraints. The screening was carried out for each individual system design assuming 500 million m/sup 2/ of collector area installed by the year 2000. Also, two mixed design scenarios, containing equal portions of each system design, were screened. To keep these scenarios in perspective, note that a billion m/sup 2/ containing a mixture of the nine SHACOB designs will yield an annual solar contribution of about 1.3 Quads or will displace about 4.2 Quads of fossil fuel used to generate electricity. For AIPH a billion square meters of the mixed designs will yield about 2.8 Quads/year. Three materials were identified that could possibly restrain the deployment of solar systems in the specific scenarios investigated. They are iron and steel, soda lime glass and polyvinyl fluoride. All three of these materials are bulk materials. No raw material supply constraints were found.

Watts, R.L.; Gurwell, W.E.; Nelson, T.A.; Smith, S.A.

1979-06-01T23:59:59.000Z

345

Process feasibility study in support of silicon material Task I. Final report, October 1, 1975-February 6, 1981  

DOE Green Energy (OSTI)

The Low-Cost Solar Array (LSA) Project is directed toward effective cost reduction in the production of silicon for solar cells. Results are presented for process system properties, chemical engineering and economic analyses of the new technologies and processes being developed for the production of lower cost silicon for solar cells. Major physical, thermodynamic and transport property data are reported for the following silicon source and processing chemical materials: silane, silicon tetrachloride, trichlorosilane, dichlorosilane, silicon tetrafluoride, and silicon. The property data are reported for critical temperature, critical pressure, critical volume, vapor pressure, heat of vaporization, heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation and Gibb's free energy of formation. Chemical engineering analyses involving the preliminary process design of a plant (1000 MT/yr capacity) to produce silicon via the technology under consideration were accomplished for the following processes: UCC silane process for silicon, BCL process for silicon, conventional polysilicon process (Siemens technology), SiI/sub 4/ decomposition process, and DCS process (dichlorosilane).Major activities in chemical engineering analyses include base case conditions, reaction chemistry, process flowsheet, material balance, energy balance, property data, equipment design, major equipment list, production labor and forward for economic analysis. The process design package provides detailed data for raw materials, utilities, major process equipment and production labor requirements necessary for polysilicon production in each process. Using detailed data from the process design package, economic analyses for a 1000 MT/yr silicon plant were accomplished. Primary results from the economic analyses included plant capital investment and product cost. Results are presented and discussed. (WHK)

Yaws, C.L.; Li, K.Y.; Hopper, J.R.; Fang, C.S.; Hansen, K.C.

1981-02-06T23:59:59.000Z

346

Real Time Simulation and Visualization of NC Milling Processes for Inhomogeneous Materials on Low-End Graphics Hardware  

E-Print Network (OSTI)

Simulation and visualization of NC milling processes has become an important step in computer aided manufacturing. The usage of stock materials with specific locally varying properties (like density, accuracy, color,. . . ) becomes more and more important with new technologies emerging in the material industry. Our new approach, using volumetric representation, has been adapted to this needs and copes with inhomogeneous material properties. Taking color as one possible material property, our approach enables the visualization of milled wood or compound materials. Furthermore, our approach has been developed with the usage of low-end graphics hardware in mind. The algorithms have been optimized to ensure interactive update rates even on standard personal computers without hardware graphics acceleration. Keywords: NC milling simulation, dexel approach, inhomogeneous material properties 1. Introduction NC milling simulation using computer graphics techniques was proposed some years ag...

Andreas Holger König; Eduard Gröller

1998-01-01T23:59:59.000Z

347

Process for the liquefaction of solid carbonaceous materials wherein nitrogen is separated from hydrogen via ammonia synthesis  

DOE Patents (OSTI)

In a process for the liquefaction of solid carbonaceous materials wherein bottoms residues are upgraded with a process wherein air is employed, the improvement wherein nitrogen buildup in the system is avoided by ammonia synthesis. In a preferred embodiment hydrogen from other portions of the liquefaction process will be combined with hydrogen produced as a result of the bottoms upgrading to increase the H.sub.2 :N.sub.2 ratio in the ammonia reactor.

Stetka, Steven S. (Fleetwood, PA); Nazario, Francisco N. (Parsippany, NJ)

1982-01-01T23:59:59.000Z

348

GRR/Section 9-FD-b - Environmental Assessment (EA) Process | Open Energy  

Open Energy Info (EERE)

b - Environmental Assessment (EA) Process b - Environmental Assessment (EA) Process < GRR(Redirected from GRR/Section 8b - Environmental Assessment (EA) Process) Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 9-FD-b - Environmental Assessment (EA) Process 09-FD-b - EAProcess.pdf Click to View Fullscreen Contact Agencies Bureau of Land Management Regulations & Policies National Environmental Policy Act NEPA Sec. 102(E) (42 U.S.C. 4332) 40 CFR 1500.4 40 CFR 1500.5 40 CFR 1501.4 40 CFR 1501.7 40 CFR 1502.5 40 CFR 1502.16 40 CFR 1503.4 40 CFR 1506.5 40 CFR 1506.6 40 CFR 1508.8 40 CFR 1508.9 40 CFR 1508.13 40 CFR 1508.23 40 CFR 1508.25 40 CFR 1508.27 43 CFR 46.315 43 CFR 1610.5-3 Healthy Forests Restoration Act of 2003 Triggers None specified

349

Industry and government perspectives on First Nations' participation in the British Columbia environmental assessment process  

Science Conference Proceedings (OSTI)

Research was conducted with West Moberly First Nations, Halfway First Nation and the Treaty 8 Tribal Association (located in northeastern British Columbia, Canada) on effective engagement in environmental assessment processes. As part of this research, we examined the perspectives of a subset of resource industry proponents and their consultants, as well as staff from the British Columbia Environmental Assessment Office on their experiences with the requirement to consult with Canada's indigenous peoples. Research into the perspectives of industry proponents and consultants is almost non-existent, yet industry and governments are key participants within environmental assessments. This research found that industry proponents were disenfranchised by the British Columbia environmental assessment process and its mechanisms for consulting with First Nations, and that they sought changes to that process. Their concerns and their implications are documented and some recommendations are offered for addressing those concerns. Understanding industry and government views on First Nations engagement could suggest not only potential improvements in EA processes that facilitate all parties but provide common grounds for mutually engaging to resolve challenges.

Booth, Annie L., E-mail: annie@unbc.ca; Skelton, Norm W.

2011-04-15T23:59:59.000Z

350

Symposium on intermediate-range atmospheric-transport processes and technology assessment. [Lead Abstract  

Science Conference Proceedings (OSTI)

Separate abstracts were prepared for the 47 papers in this proceedings. The purpose of this meeting was to assess the state of the art of modeling atmospheric transport processes 10 to 100 km downwind of point and area sources of pollution. (KRM)

Not Available

1981-10-01T23:59:59.000Z

351

EPRI Materials Management Matrix Project Gap and Opportunity Assessment: Revision 0  

Science Conference Proceedings (OSTI)

An opportunity exists to leverage operating plant experience by proactively identifying and addressing materials performance issues for advanced light water reactor (ALWR) designs currently under consideration for new construction. The Electric Power Research Institute's (EPRI's) Advanced Nuclear Technology (ANT) program Materials Management Matrix (MMM) project was initiated to identify important materials performance issues. This report provides a distillation of the important gaps and opportunities id...

2011-12-01T23:59:59.000Z

352

Battery resource assessment. Interim report No. 1. Battery materials demand scenarios  

DOE Green Energy (OSTI)

Projections of demand for batteries and battery materials between 1980 and 2000 are presented. The estimates are based on existing predictions for the future of the electric vehicle, photovoltaic, utility load-leveling, and existing battery industry. Battery demand was first computed as kilowatt-hours of storage for various types of batteries. Using estimates for the materials required for each battery, the maximum demand that could be expected for each battery material was determined.

Sullivan, D.

1980-12-01T23:59:59.000Z

353

Thin Film Materials and Processing Techniques for a Next Generation Photovoltaic Device: Cooperative Research and Development Final Report, CRADA Number CRD-12-470  

DOE Green Energy (OSTI)

This research extends thin film materials and processes relevant to the development and production of a next generation photovoltaic device.

van Hest, M.

2013-08-01T23:59:59.000Z

354

RAW MATERIALS EVALUATION AND PROCESS DEVELOPMENT STUDIES FOR CONVERSION OF BIOMASS TO SUGARS AND ETHANOL  

E-Print Network (OSTI)

WISCONSIN j Table 10 BASE UTILITY RATE POWER STEAM WATER **raw materials costs. utility rate and chemicals costs are

Wilke, C.R.

2011-01-01T23:59:59.000Z

355

Multiple pass and multiple layer friction stir welding and material enhancement processes  

DOE Patents (OSTI)

Processes for friction stir welding, typically for comparatively thick plate materials using multiple passes and multiple layers of a friction stir welding tool. In some embodiments a first portion of a fabrication preform and a second portion of the fabrication preform are placed adjacent to each other to form a joint, and there may be a groove adjacent the joint. The joint is welded and then, where a groove exists, a filler may be disposed in the groove, and the seams between the filler and the first and second portions of the fabrication preform may be friction stir welded. In some embodiments two portions of a fabrication preform are abutted to form a joint, where the joint may, for example, be a lap joint, a bevel joint or a butt joint. In some embodiments a plurality of passes of a friction stir welding tool may be used, with some passes welding from one side of a fabrication preform and other passes welding from the other side of the fabrication preform.

Feng, Zhili (Knoxville, TN); David, Stan A. (Knoxville, TN); Frederick, David Alan (Harriman, TN)

2010-07-27T23:59:59.000Z

356

Solar Photovoltaic Project: materials, processes, and testing activities. Quarterly report, April 1-June 30, 1979  

DOE Green Energy (OSTI)

The US Department of Energy has set a 20-year lifetime goal for terrestrial photovoltaic modules. In its capacity as a Photovoltaic Field Tests and Applications Center, Massachusetts Institute of Technology Lincoln Laboratory has established various experimental test sites, ranging in size from 0.1- to 25-kW-peak power, throughout the United States. These sites include modules from several manufacturers and serve as test beds for photovoltaic system components. This report, the fifth in a series of similar reports (1-4), summarizes the activities of the Materials, Processes and Testing Laboratory of the Solar Photovoltaic Field Tests and Applications Project during the three-month period (4/1/79 to 6/30/79). During this period, inspection trips were made to test sites at the University of Texas at Arlington and at Mead, Nebraska. Modules were tested in the field to determine the extent of physical and electrical degradation which had taken place since previous inspections. Several modules were removed from these sites for more detailed laboratory analysis. In addition, degradation analysis of modules from the rooftop of the Chicago Museum of Science and Industry, and failure analysis of modules from the Lincoln Laboratory Rooftop Test Bed and Residential Test Beds was performed. The results of both field testing and the laboratory analyses are reported.

Forman, S.E.; Themelis, M.P.

1979-10-31T23:59:59.000Z

357

Materials, Processes and Testing Laboratory. Technical progress report: July, August, September, October 1979  

DOE Green Energy (OSTI)

The US Department of Energy has set a 20-year lifetime goal for terrestrial photovoltaic modules. In its capacity as a Photovoltaic Field Test and Application Center, Massachusetts Institute of Technology Lincoln Laboratory has established various experimental test sites, ranging in size from 0.1 to 25 kW of peak power, throughout the United States. These sites contain modules from several manufacturers and serve as test beds for photovoltaic system components. This report, the sixth in a series of similar reports, summarizes the activities of the Materials, Processes and Testing Laboratory of the Solar Photovoltaic Field Tests and Applications Project during the four-month period, 1 July 1979 through 31 October 1979. During this period, field inspections of test sites at Bryan, Ohio, and Mead, Nebraska, were conducted and are reviewed. An inordinate module failure rate at the University of Texas at Arlington is reviewed and analyzed. Failures and degradation of Mead, Nebraska, modules are analyzed, and the development of testing equipment for PV systems is discussed.

Forman, S.E.; Themelis, M.P.

1980-03-15T23:59:59.000Z

358

Solar Photovoltaic Project: materials, processes, and testing activities. Quarterly report, 1 January-31 March 1979  

DOE Green Energy (OSTI)

The Department of Energy has set a 20-year-lifetime goal for terrestrial photovoltaic modules. Massachusetts Institute of Technology's Lincoln Laboratory, in its capacity as a Photovoltaic Field Tests and Applications Center, has established throughout the United States various experimental test sites which range in size from 0.1 to 25 kW of peak power. These sites include modules from several manufacturers and serve as test beds for photovoltaic system components. The activities of the Materials, Processes, and Testing Laboratory of the Solar Photovoltaic Project during a three-month (1/1/79-3/31/79) period are summarized. During this period, an inspection trip was made to the Mead, Nebraska, test site. The modules were tested in the field to determine the extent of physical and electrical degradation which had taken place since previous inspections. In addition, several modules were removed from the site for more detailed laboratory examination. The results of both the field testing and laboratory analyses are reported.

Forman, S.E.; Themelis, M.P.

1979-06-30T23:59:59.000Z

359

Low-Cost Ash-Derived Construction Materials: State-of-the-Art Assessment  

Science Conference Proceedings (OSTI)

Existing technologies have been successfully applied in the manufacturing of construction materials that incorporate coal combustion byproducts. This report describes an extensive literature review on coal ash use in low-cost building materials, including information on technical and economic feasibility.

1992-04-01T23:59:59.000Z

360

Assessment of the energy impacts of improving highway-infrastructure materials  

SciTech Connect

Argonne National Laboratory has conducted a study to ascertain the relative importance of improved highway materials compared to vehicle energy consumption on US energy consumption. Energy savings through an improved highway infrastructure can occur in at least three ways. First, replacing aged and failing materials with improved and advanced materials can produce energy ``use`` savings. Second, advances in materials science can yield energy efficiency gains in the production of infrastructure materials. Third, using new or improved transportation-infrastructure materials that have longer service life reduces the energy expended in producing replacement materials and installing or repairing facilities. The Argonne study finds that energy savings from highway materials improvements are on the order of 0.1 {times} 10{sup 12} to 2.1 {times} 10{sup 12} Btu. This savings is relatively small compared with energy savings from improvements in vehicle fuel economy. Several infrastructure improvement scenarios were examined, with results that were highly dependent on the assumptions. Reducing traffic congestion, particularly in high-traffic-volume locations, produces major energy savings compared with the other scenarios.

Stammer, R.E. Jr. [Vanderbilt Univ., Nashville, TN (United States). School of Engineering; Stodolsky, F. [Argonne National Lab., IL (United States)

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "material assessment process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

GRR/Section 9-FD-b - Environmental Assessment (EA) Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 9-FD-b - Environmental Assessment (EA) Process GRR/Section 9-FD-b - Environmental Assessment (EA) Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 9-FD-b - Environmental Assessment (EA) Process 09-FD-b - EAProcess.pdf Click to View Fullscreen Contact Agencies Bureau of Land Management Regulations & Policies National Environmental Policy Act NEPA Sec. 102(E) (42 U.S.C. 4332) 40 CFR 1500.4 40 CFR 1500.5 40 CFR 1501.4 40 CFR 1501.7 40 CFR 1502.5 40 CFR 1502.16 40 CFR 1503.4 40 CFR 1506.5 40 CFR 1506.6 40 CFR 1508.8 40 CFR 1508.9 40 CFR 1508.13 40 CFR 1508.23 40 CFR 1508.25 40 CFR 1508.27 43 CFR 46.315 43 CFR 1610.5-3 Healthy Forests Restoration Act of 2003 Triggers None specified An Environmental Assessment (EA)is appropriate for projects that are not

362

MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS  

DOE Green Energy (OSTI)

This document summarizes the technical progress from April to September 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. Characteristics of doped lanthanum gallate (LSGMF) powder suitable for thin electrolyte fabrication have been defined. Bilayers with thin LSGMF electrolyte supported on an anode were fabricated and the fabrication process was improved. Preliminary performance was characterized. High performance cathode material Sr{sub 0.5}Sm{sub 0.5}CoO{sub 3} has been down-selected and is being optimized by modifying materials characteristics and processing parameters. The selected cathode exhibited excellent performance with cathode polarization of {approx}0.23 ohm-cm{sup 2} at 600 C.

Jie Guan; Nguyen Minh

2003-10-01T23:59:59.000Z

363

PERMEABILITY, SOLUBILITY, AND INTERACTION OF HYDROGEN IN POLYMERS- AN ASSESSMENT OF MATERIALS FOR HYDROGEN TRANSPORT  

DOE Green Energy (OSTI)

Fiber-reinforced polymer (FRP) piping has been identified as a leading candidate for use in a transport system for the Hydrogen Economy. Understanding the permeation and leakage of hydrogen through the candidate materials is vital to effective materials system selection or design and development of safe and efficient materials for this application. A survey of the literature showed that little data on hydrogen permeation are available and no mechanistically-based models to quantitatively predict permeation behavior have been developed. However, several qualitative trends in gaseous permeation have been identified and simple calculations have been performed to identify leakage rates for polymers of varying crystallinity. Additionally, no plausible mechanism was found for the degradation of polymeric materials in the presence of pure hydrogen. The absence of anticipated degradation is due to lack of interactions between hydrogen and FRP and very low solubility coefficients of hydrogen in polymeric materials. Recommendations are made to address research and testing needs to support successful materials development and use of FRP materials for hydrogen transport and distribution.

Kane, M

2008-02-05T23:59:59.000Z

364

GAO Cost Estimating and Assessment Guide Twelve Steps of a High-Quality Cost Estimating Process  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GAO Cost Estimating and Assessment Guide GAO Cost Estimating and Assessment Guide Twelve Steps of a High-Quality Cost Estimating Process Step Description Associated task 1 Define estimate's purpose Determine estimate's purpose, required level of detail, and overall scope; Determine who will receive the estimate 2 Develop estimating plan Determine the cost estimating team and develop its master schedule; Determine who will do the independent cost estimate; Outline the cost estimating approach; Develop the estimate timeline 3 Define program characteristics In a technical baseline description document, identify the program's

365

ADVANCED PLASMA-ETCHING PROCESSES FOR DIELECTRIC MATERIALS IN VLSI TECHNOLOGY  

E-Print Network (OSTI)

-intensive or faster fiber carbonization processes, such as microwave or plasma processing. In addition to improved: Hydrogen production system based on centralized biomass gasification technology producing hydrogen

Pearton, Stephen J.

366

Dynamic high pressure process for fabricating superconducting and permanent magnetic materials  

DOE Patents (OSTI)

Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures is disclosed. The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80--100 K to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder. 9 figs.

Nellis, W.J.; Geballe, T.H.; Maple, M.B.

1990-03-13T23:59:59.000Z

367

Dynamic high pressure process for fabricating superconducting and permanent magnetic materials  

DOE Patents (OSTI)

Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures. The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80.degree.-100.degree. K. to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder.

Nellis, William J. (Berkeley, CA); Geballe, Theodore H. (Woodside, CA); Maple, M. Brian (Del Mar, CA)

1990-01-01T23:59:59.000Z

368

Biomolecular hybrid material and process for preparing same and uses for same  

DOE Patents (OSTI)

Disclosed is a composition and method for fabricating novel hybrid materials comprised of, e.g., carbon nanotubes (CNTs) and crosslinked enzyme clusters (CECs). In one method, enzyme-CNT hybrids are prepared by precipitation of enzymes which are subsequently crosslinked, yielding crosslinked enzyme clusters (CECs) on the surface of the CNTs. The CEC-enzyme-CNT hybrids exhibit high activity per unit area or mass as well as improved enzyme stability and longevity over hybrid materials known in the art. The CECs in the disclosed materials permit multilayer biocatalytic coatings to be applied to surfaces providing hybrid materials suitable for use in, e.g., biocatalytic applications and devices as described herein.

Kim, Jungbae [Richland, WA

2010-11-23T23:59:59.000Z

369

Program on Technology Innovation: Feasibility Assessment of a Core Vacuum for Foreign Material and Activity Removal  

Science Conference Proceedings (OSTI)

The need for increased fuel reliability and radioactive source term reduction motivated EPRI to investigate methods for removing small foreign material and activated corrosion products from reactor vessels. Several methods exist to remove these materials from above the core plate of the reactor vessel, but there has been limited research and development of techniques to remove them from underneath the core plate. This report investigates the development of a core vacuum to remove debris and corrosion pro...

2008-09-30T23:59:59.000Z

370

Assessment of Treated Wood and Alternate Materials for Utility Distribution Poles  

Science Conference Proceedings (OSTI)

This report provides salient facts about common and potential alternative wood pole preservatives and common and potential alternative wood pole materials for use in the electrical distribution setting. Relevant organizations are also discussed. The report presents a brief history of the development and use of each preservative and pole material. It characterizes, qualifies, and quantifies (where possible) the potential impacts of shifts from common preservatives to alternative preservatives and from sou...

2010-10-11T23:59:59.000Z

371

Environmental assessment of remedial action at the Naturita Uranium Processing Site near Naturita, Colorado. Revision 4  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contain measures to control the contaminated materials and to protect groundwater quality. Remedial action at the Naturita site must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of Colorado. The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to either the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast, or a licensed non-DOE disposal facility capable of handling RRM. At either disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed Dry Flats disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. This report discusses environmental impacts associated with the proposed remedial action.

Not Available

1994-05-01T23:59:59.000Z

372

Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments, Steps 1-4, June, 1997  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 OVERVIEW The screening-level problem formulation and ecological effects evaluation is part of the initial ecological risk screening assessment. For this initial step, it is likely that site- specific information for determining the nature and extent of contamination and for characterizing ecological receptors at the site is limited. This step includes all the functions of problem formulation (more fully described in Steps 3 and 4) and ecological effects analysis, but on a screening level. The results of this step will be used in conjunction with exposure estimates in the preliminary risk calculation in Step 2. STEP 1: SCREENING-LEVEL PROBLEM FORMULATION AND ECOLOGICAL EFFECTS EVALUATION 1.1 INTRODUCTION Step 1 is the screening-level problem formulation process and ecological effects evaluation

373

Modeling mining economics and materials markets to inform criticality assessment and mitigation  

E-Print Network (OSTI)

Conventional criticality-assessment methods drawn from the existing literature are often limited to evaluations of scarcity risks, or rely on price as an indicator of criticality. Such approaches, however, are ill-suited ...

Poulizac, Claire Marie Franc?oise

2013-01-01T23:59:59.000Z

374

Assessment of selected conservation measures for high-temperature process industries  

Science Conference Proceedings (OSTI)

Energy conservation projects involving high-temperature processes in various stages of development are assessed to quantify their energy conservation potential; to determine their present status of development; to identify their research and development needs and estimate the associated costs; and to determine the most effective role for the Federal government in developing these technologies. The program analyzed 25 energy conserving processes in the iron and steel, aluminium, copper, magnesium, cement, and glassmaking industries. A preliminary list of other potential energy conservation projects in these industries is also presented in the appendix. (MCW)

Kusik, C L; Parameswaran, K; Nadkarni, R; O'Neill, J K; Malhotra, S; Hyde, R; Kinneberg, D; Fox, L; Rossetti, M

1981-01-01T23:59:59.000Z

375

Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U U U . . S S . . D D e e p p a a r r t t m m e e n n t t o o f f E E n n e e r r g g y y O O f f f f i i c c e e o o f f E E n n v v i i r r o o n n m m e e n n t t a a l l M M a a n n a a g g e e m m e e n n t t Technology Readiness Assessment (TRA) / Technology Maturation Plan (TMP) Process Guide March 2008 U.S. DOE Office of Environmental Management March 2008 TRA/TMP Process Guide Page 2 of 48 TABLE OF CONTENTS 1.0 INTRODUCTION ...................................................................................................................... 4 1.1 Document Purpose............................................................................................................................ 4 2.0 OVERVIEW OF TECHNOLOGY READINESS ASSESSMENTS AND TECHNOLOGY MATURATION PLANS ............................................................................................................

376

Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado. Revision 3  

SciTech Connect

The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers. Another 220 ac (89 ha) of soils would be temporarily disturbed during the remedial action. The final disposal site would result in approximately 57 ac (23 ha) being removed from livestock grazing and wildlife use.

Not Available

1994-02-01T23:59:59.000Z

377

Environmental assessment of remedial action at the Naturita Uranium processing site near Naturita, Colorado. Revision 2  

SciTech Connect

The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal sits, 6 road miles (mi) [10 kilometers (km)) to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal sits would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers. Another 220 ac (89 ha) of soils would be temporarily disturbed during the remedial action. The final disposal site would result in approximately 57 ac (23 ha) being removed from livestock grazing and wildlife use.

Not Available

1994-01-01T23:59:59.000Z

378

Process and apparatus for recovery of fissionable materials from spent reactor fuel by anodic dissolution  

DOE Patents (OSTI)

An electrochemical process and apparatus for the recovery of uranium and plutonium from spent metal clad fuel pins is disclosed. The process uses secondary reactions between U.sup.+4 cations and elemental uranium at the anode to increase reaction rates and improve anodic efficiency compared to prior art processes. In another embodiment of the process, secondary reactions between Cd.sup.+2 cations and elemental uranium to form uranium cations and elemental cadmium also assists in oxidizing the uranium at the anode.

Tomczuk, Zygmunt (Orland Park, IL); Miller, William E. (Naperville, IL); Wolson, Raymond D. (Lockport, IL); Gay, Eddie C. (Park Forest, IL)

1991-01-01T23:59:59.000Z

379

IMPROVEMENT OF WEAR COMPONENT'S PERFORMANCE BY UTILIZING ADVANCED MATERIALS AND NEW MANUFACTURING TECHNOLOGIES: CASTCON PROCESS FOR MINING APPLICATIONS  

Science Conference Proceedings (OSTI)

The project has seen quite a bit of activity in this quarter, highlighted by the fabrication of a bit insert for field testing. In addition: (1) Several alternative process techniques were attempted to prevent bloating, cracking and delamination of FM material that occurs during binder burnout. The approaches included fabrication of FM material by three pass extrusion and warm isostatic pressing of green material, slow and confined burnouts as well as, burnout of thin plate instead of rod stock. Happily, a confined burnout followed by HIPing, produced FM button inserts without bloating or delamination. (2) Four rock bit inserts were produced from FM material and are ready for use on blast hole bits in the field. (3) Six of the project participants from Michigan Technological University, Advanced Ceramic Manufacturing, and The Robbins Group visited the Superior Rock Bit Company in Minnesota and planned the field test of FM inserts.

Xiaodi Huang; Richard Gertsch

2002-08-27T23:59:59.000Z

380

SiGe: An attractive material for post-CMOS processing of MEMS  

Science Conference Proceedings (OSTI)

This work gives an overview of the different developments for silicon germanium (Si"1"-"xGe"x) from a MEMS post-processing perspective. First, the maximum processing temperature that does not introduce any damage or degradation into the standard characteristics ... Keywords: Excimer laser annealing, MEMS Post-Processing, Silicon germanium

Sherif Sedky

2007-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "material assessment process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Separation and recovery process R&D to enhance automotive materials recycling  

SciTech Connect

Since 1976, the sales-weighted curb-weight of cars and light trucks sold in the United States has decreased by almost 800 pounds. Vehicle weight reduction has, of course, provided for a significant increase in US fleet fuel economy, from 17 to 27 miles per gallon. However, achievement of the weight reduction and concomitant increase in fuel economy was brought about, in part, by the substitution of lighter-weight materials, such as thinner-gauge coated sheet-steels replacing heavy-gauge noncoated sheet-steels and new aluminum alloys replacing steel as well as the increased use of plastics replacing metals. Each of these new materials has created the need for new technology for materials recycling. This paper highlights some of the R&D being conducted at Argonne National Laboratory to develop technology that will enhance and minimize the cost of automotive materials recycling.

Daniels, E.J.

1994-05-01T23:59:59.000Z

382

Department of Materials Science & Engineering Spring 2012 Assessing the Performance of Energy Efficient Housing  

E-Print Network (OSTI)

of Energy Efficient Housing Overview Penn State's Department of Architecture partnered with the Union Country Housing Authority (UCHA) to create the Energy Efficient Housing Program (EEHP). A duplex was constructed and two homes were remodelled using energy efficient technologies and sustainable materials. UCHA

Demirel, Melik C.

383

Facilities Condition and Hazards Assessment for Materials and Fuel Complex Facilities MFC-799, 799A, and 770C  

Science Conference Proceedings (OSTI)

The Materials & Fuel Complex (MFC) facilities 799 Sodium Processing Facility (a single building consisting of two areas: the Sodium Process Area (SPA) and the Carbonate Process Area (CPA), 799A Caustic Storage Area, and 770C Nuclear Calibration Laboratory have been declared excess to future Department of Energy mission requirements. Transfer of these facilities from Nuclear Energy to Environmental Management, and an associated schedule for doing so, have been agreed upon by the two offices. The prerequisites for this transfer to occur are the removal of nonexcess materials and chemical inventory, deinventory of the calibration source in MFC-770C, and the rerouting and/or isolation of utility and service systems. This report provides a description of the current physical condition and any hazards (material, chemical, nuclear or occupational) that may be associated with past operations of these facilities. This information will document conditions at time of transfer of the facilities from Nuclear Energy to Environmental Management and serve as the basis for disposition planning. The process used in obtaining this information included document searches, interviews and facility walk-downs. A copy of the facility walk-down checklist is included in this report as Appendix A. MFC-799/799A/770C are all structurally sound and associated hazardous or potentially hazardous conditions are well defined and well understood. All installed equipment items (tanks, filters, etc.) used to process hazardous materials remain in place and appear to have maintained their integrity. There is no evidence of leakage and all openings are properly sealed or closed off and connections are sound. The pits appear clean with no evidence of cracking or deterioration that could lead to migration of contamination. Based upon the available information/documentation reviewed and the overall conditions observed during the facilities walk-down, it is concluded that these facilities may be disposed of at minimal risk to human health, safety or the environment.

Gary Mecham; Don Konoyer

2009-11-01T23:59:59.000Z

384

Development & Optimization of Materials and Processes for a Cost Effective Photoelectrochemical Hydrogen Production System  

DOE Green Energy (OSTI)

The overall project objective was to apply high throughput experimentation and combinatorial methods together with novel syntheses to discover and optimize efficient, practical, and economically sustainable materials for photoelectrochemical production of bulk hydrogen from water. Automated electrochemical synthesis and photoelectrochemical screening systems were designed and constructed and used to study a variety of new photoelectrocatalytic materials. We evaluated photocatalytic performance in the dark and under illumination with or without applied bias in a high-throughput manner and did detailed evaluation on many materials. Significant attention was given to ?-Fe2O3 based semiconductor materials and thin films with different dopants were synthesized by co-electrodeposition techniques. Approximately 30 dopants including Al, Zn, Cu, Ni, Co, Cr, Mo, Ti, Pt, etc. were investigated. Hematite thin films doped with Al, Ti, Pt, Cr, and Mo exhibited significant improvements in efficiency for photoelectrochemical water splitting compared with undoped hematite. In several cases we collaborated with theorists who used density functional theory to help explain performance trends and suggest new materials. The best materials were investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visual spectroscopy (UV-Vis), X-ray photoelectron spectroscopy (XPS). The photoelectrocatalytic performance of the thin films was evaluated and their incident photon

Eric W. McFarland

2011-01-17T23:59:59.000Z

385

Assessment An Evaluation of Organic Material Resources for Bioenergy Production in Washington State  

E-Print Network (OSTI)

Publication No. 05-07-047 printed on recycled paperA biomass inventory and bioenergy assessment for Washington State was completed producing this final report, as well as a web accessible computer database with GIS maps on a Visual Basic platform. This report is available on the Department of Ecology home page on the World Wide Web at

Craig Frear; Bingcheng Zhao; Guobin Fu; Michael Richardson; Shulin Chen; Mark R. Fuchs

2005-01-01T23:59:59.000Z

386

MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS  

DOE Green Energy (OSTI)

This report summarizes the results of the work conducted under the program: ''Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells'' under contract number DE-AC26-00NT40711. The program goal is to advance materials and processes that can be used to produce economical, high-performance solid oxide fuel cells (SOFC) capable of achieving extraordinary high power densities at reduced temperatures. Under this program, anode-supported thin electrolyte based on lanthanum gallate (LSMGF) has been developed using tape-calendering process. The fabrication parameters such as raw materials characteristics, tape formulations and sintering conditions have been evaluated. Dense anode supported LSGMF electrolytes with thickness range of 10-50 micron have been fabricated. High performance cathode based on Sr{sub 0.5}Sm{sub 0.5}CoO{sub 3} (SSC) has been developed. Polarization of {approx}0.23 ohm-cm{sup 2} has been achieved at 600 C with Sr{sub 0.5}Sm{sub 0.5}CoO{sub 3}cathode. The high-performance SSC cathode and thin gallate electrolyte have been integrated into single cells and cell performance has been characterized. Tested cells to date generally showed low performance because of low cell OCVs and material interactions between NiO in the anode and lanthanum gallate electrolyte.

Jie Guan; Nguyen Minh

2003-12-01T23:59:59.000Z

387

Damage Assessment Technologies for Prognostics and Proactive Management of Materials Degradation  

SciTech Connect

The Nuclear Regulatory Commission has undertaken a program to lay the groundwork for defining proactive actions to manage degradation of materials in light water reactors (LWRs). This paper discusses the U.S. Nuclear Regulatory Commission’s Proactive Management of Materials Degradation (PMMD) program and its application to nuclear power plant structures, systems and components. The PMMD program is examining LWR component materials and the degradation phenomena that affect them. Of particular interest is how such phenomena can be monitored to predict degradation and prevent component failure. Some forms of degradation, such as stress corrosion cracking, are characterized by a long initiation time followed by a rapid growth phase. Monitoring such long-term degradation will require new NDE methods and measurement procedures. A critical analysis of all reactor components is required to determine if new inspection strategies are required to effectively manage slow degradation mechanisms that may lead to component failure. As reactor lifetimes are extended, degradation mechanisms previously considered too long-term to be of consequence (such as concrete and wiring insulation degradation) may become more important. This paper includes a review of techniques with potential for sensing and monitoring degradation in its early stages and will concisely explain the basic principles of PMMD and its relationship to in-service inspection, condition based maintenance, and advanced diagnostics and prognostics.

Bond, Leonard J.; Doctor, Steven R.; Griffin, Jeffrey W.; Hull, Amy; Malik, Shah

2011-02-26T23:59:59.000Z

388

Radiological Assessment of Target Materials for Accelerator Transmutation of Waste Applications  

SciTech Connect

This paper provides the radiation absorbed dose rates (rad-h{sup -1}) to a tissue-equivalent torus ring at 1 meter from radioactive spallation products in Ta, W, Pb, Bi, and LBE target materials used in Accelerator Transmutation of Waste (ATW) applications. No previous works have provided an estimate of the absorbed dose rates (rad-h{sup -1}) to tissue from activated targets for ATW applications. In addition, this paper provides the characterization of target materials of high-energy particle accelerators for the parameters of (a) spallation neutron yield (neutrons/proton), (b) spallation products yield (nuclides/proton), (c) energy-dependent spallation neutron fluence distribution (n-cm{sup -2} MeV{sup -1}), and (d) identification of the optimal target dimensions to yield the maximum radial spallation neutron leakage from the target. A beneficial characteristic of these target materials (Ta, W, Pb, Bi, and LBE) is they do not produce radioactive transuranic isotopes, which have very long half-lives and require special handling and disposition controls. In addition, these activated, spent targets are not considered high-level radioactive waste for disposal purposes such as spent fuel from a nuclear power reactor.

Vickers, Linda D

2003-11-15T23:59:59.000Z

389

A Virtual Test Approach to Incorporate Materials and Manufacturing Processes to Aid Design choices in High Performance Composites  

Science Conference Proceedings (OSTI)

The increasing use of fibre reinforced composites in structural components in the aerospace industry is providing many challenges to designers in understanding how they can be used more effectively to exploit their advantages. One of the main challenges is the selection of lay-ups for a given application. The difficulty lies in the variability that is achievable with composites. Each new layup or configuration is effectively a new material and requires and extensive test programme to validate the performance, from coupons which give basic material characteristics, up through the test pyramid through to large sub-component which contains basic assemblies. This variety of testing gives confidence in understanding the material behaviour and performance in structural assemblies. On the other hand, the manufacturing process is also important here with different processes sometimes needed for different materials or thicknesses. This is a time consuming and expensive process requiring many thousands of small tests leading up to a few major tests which are complex to set up and carry out. This research is attempting to address this by developing a virtual test system which will sit hand-in-hand with a physical test system. The goal of virtual tests appears reachable using the finite element analysis technique in which many experimental tests can be replaced by high fidelity simulations. The payoff in reduced cycle time and costs for designing and certifying composite structures is very attractive; and the possibility also arises of considering material configurations that are too complex to certify by purely empirical methods. The validated simulations could then be subsequently used for variants or derivatives of composites to inform design choices and establish new validation programmes where appropriate. This paper presents a series of simulations of the critical testing procedures needed to validate high performance composites materials using linear and non-linear models and compares the results with physical test performed in carbon fibre specimens.

Gonzalez-Murillo, C.; Price, M. [School of Mechanical and Aerospace Engineering, Queens University, Belfast (United Kingdom)

2011-05-04T23:59:59.000Z

390

Pulse Thermal Processing of Functional Materials Using a Directed Plasma Arc  

Using pulses of high density infrared light from a directed plasma arc, ORNL researchersinvented a method to thermally process thin films and other ...

391

Process and apparatus for recovery of fissionable materials from spent reactor fuel by anodic dissolution  

DOE Patents (OSTI)

An electrochemical process and apparatus for the recovery of uranium and plutonium from spent metal clad fuel pins is disclosed. The process uses secondary reactions between U{sup +4} cations and elemental uranium at the anode to increase reaction rates and improve anodic efficiency compared to prior art processes. In another embodiment of the process, secondary reactions between Cd{sup +2} cations and elemental uranium to form uranium cations and elemental cadmium also assists in oxidizing the uranium at the anode. 5 figs.

Tomczuk, Z.; Miller, W.E.; Wolson, R.D.; Gay, E.C.

1989-08-25T23:59:59.000Z

392

Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 2  

SciTech Connect

In July, 1994, a team of materials specialists from Sandia and US. Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US. Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

Zanner, F.J.; Moffatt, W.C.

1995-07-01T23:59:59.000Z

393

Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado: Revision 5  

SciTech Connect

Title 1 of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the inactive Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. Title 2 of the UMTRCA authorized the US Nuclear Regulatory Commission (NRC) or agreement state to regulate the operation and eventual reclamation of active uranium processing sites. The uranium mill tailings at the site were removed and reprocessed from 1977 to 1979. The contaminated areas include the former tailings area, the mill yard, the former ore storage area, and adjacent areas that were contaminated by uranium processing activities and wind and water erosion. The Naturita remedial action would result in the loss of 133 acres (ac) of contaminated soils at the processing site. If supplemental standards are approved by the NRC and the state of Colorado, approximately 112 ac of steeply sloped contaminated soils adjacent to the processing site would not be cleaned up. Cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers.

Not Available

1994-10-01T23:59:59.000Z

394

Magnetic Processing – A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets  

SciTech Connect

Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functional applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNL’s unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNL’s expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNL’s Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials’ product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial/commercial alloy that is envisioned to provide the potential for new markets for this alloy. These thermomechanical processing results provide these alloys with a major breakthrough demonstrating that simultaneous improvements in yield strength and ductility are achieved: 12 %, 10%, 13%, and 22% increases in yield strength, elongation, reduction-in-area, and impact energy respectively. In addition, TMP appears to overcome detrimental chemical homogeneity impacts on uniform microstructure evolution.

Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P. (Carpenter Technologies, Inc.); Magee, J. (Carpenter Technologies, Inc.)

2010-09-10T23:59:59.000Z

395

Process for forming one or more substantially pure layers in substrate material using ion implantation  

DOE Patents (OSTI)

The method comprises selecting an implantable element and a substrate material to be implanted which, at the implant/anneal temperatures, have limited mutual solubility and have no intermediate phases formed. In an example, Be is implanted with 11 {times}10{sup 17} Al/cm{sup 2} at 200 keV and then annealed for 1 h at 500 C. Rutherford backscattering shows that layer formation occurred during the anneal. SEM shows rectangular Be defects in the Al layer. Other examples of implantable elements and suitable substrate materials are tabulated. 6 figs, 1 table. (DLC)

Musket, R.G.; Brown, D.W.; Munir, Z.A.

1990-12-31T23:59:59.000Z

396

An assessment of the DOE Active Solar Planning Process: Final report  

DOE Green Energy (OSTI)

This report is a review of the planning process used by the Active Solar Heating and Cooling Program, Office of Solar Heat Technologies, US Department of Energy as it pertains to a project title, ''An Industry Assessment of Solar Building R and D Needs.'' This report will restrict its discussion to the active solar planning aspects of this particular project, and will not address Congressional plans for funding the DOE solar programs, DOE national laboratory planning procedures, internal DOE programmatic directives and procedures, or planning activities provided by DOE support services contractors. The purpose of the DOE planning process is to establish a systemmatic procedure for developing a future program of activities. The DOE procedure is designed to include an assessment of current goals and objectives, review direction of the overall program, and appraise present program activities to assure they are in tune with the public interest and private sector needs. This project was designed to provide broad private sector input to the process.

Not Available

1985-03-01T23:59:59.000Z

397

Process feasibility study in support of silicon material. Task I. Quarterly technical progress report (XV), April-June 1979  

DOE Green Energy (OSTI)

Analyses of process system properties were continued for materials involved in the alternate processes under consideration for semiconductor silicon. Primary efforts centered on physical and thermodynamic property data for dichlorosilane. The following property data are reported for dichlorosilane which is involved in processing operations for solar cell grade silicon: critical temperature, critical pressure, critical volume, critical density, acentric factor, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity and density. Work was initiated on the assembly of a system to prepare binary gas mixtures of known proportions and to measure the thermal conductivity of these mixtures between 30/sup 0/ and 350/sup 0/C. The binary gas mixtures will include silicon source material such as silanes and halogenated silanes which are used in the production of semiconductor silicon. Chemical engineering analysis of the BCL process was continued with major efforts being concentrated to the preliminary process design. Primary activities in the preliminary design were devoted to determining production labor requirements for operating the major process equipment. The plant was divided into the following sections for determining labor: Purification (I), Deposition (II), Electrolysis (III), Waste Treatment (IV) and Product Handling (V). The results indicated the production labor requirements were 0.06309 man-hr/kg silicon production for the plant size of 1,000 metric tons/year.

Li, K.; Hansen, K.C.; Yaws, C.L.

1979-06-01T23:59:59.000Z

398

Exergy analysis of the Chartherm process for energy valorization and material recuperation of chromated copper arsenate (CCA) treated wood waste  

Science Conference Proceedings (OSTI)

The Chartherm process (Thermya, Bordeaux, France) is a thermochemical conversion process to treat chromated copper arsenate (CCA) impregnated wood waste. The process aims at maximum energy valorization and material recuperation by combining the principles of low-temperature slow pyrolysis and distillation in a smart way. The main objective of the exergy analysis presented in this paper is to find the critical points in the Chartherm process where it is necessary to apply some measures in order to reduce exergy consumption and to make energy use more economic and efficient. It is found that the process efficiency can be increased with 2.3-4.2% by using the heat lost by the reactor, implementing a combined heat and power (CHP) system, or recuperating the waste heat from the exhaust gases to preheat the product gas. Furthermore, a comparison between the exergetic performances of a 'chartherisation' reactor and an idealized gasification reactor shows that both reactors destroy about the same amount of exergy (i.e. 3500 kW kg{sub wood}{sup -1}) during thermochemical conversion of CCA-treated wood. However, the Chartherm process possesses additional capabilities with respect to arsenic and tar treatment, as well as the extra benefit of recuperating materials.

Bosmans, A., E-mail: anouk.bosmans@mech.kuleuven.be [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Heverlee (Belgium); Auweele, M. Vanden; Govaerts, J.; Helsen, L. [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Heverlee (Belgium)

2011-04-15T23:59:59.000Z

399

Overview of the government/industry workshop on opportunities for new materials in pulp and paper processing  

Science Conference Proceedings (OSTI)

This report presents a synopsis of the presentations made at the two-day workshop conducted in Portland, Oregon, on August 12 and 13, 1993, for the Advanced Industrial Concepts division (AICD) of the US Department of Energy (DOE) Office of Industrial Technologies (OIT) and DOE national laboratory representatives from the pulp and paper industry. The information from the presentations is supplemented by additional statistics, as appropriate. The workshop objectives were (1) to develop a strategy and framework for collaboration between the pulp and paper industries and DOE`s national laboratories, (2) to identify major challenges to pulp and paper industry modernization, and (3) to identify research objectives for DOE national laboratories to improve materials and process technology in pulp and paper mills. Prior to the workshop, participants had the opportunity to tour paper mills and gain familiarity with pulp and paper processing methods. During the workshop, research needs for materials and processing that were identified at earlier AICD workshops were reviewed. Major problems of the pulp and paper industry were addressed, and ways in which DOE national laboratories are interacting with other industries to foster innovation and solve problems were presented. As a result of this and other workshops, a Pulp Paper Mill of the future strategy is being developed to address challenges identified in these proceedings. Continued efforts are expected by AICD to match candidate materials and processes from DOE national laboratories with the technology needs of pulp and paper mills.

Young, J.K.; Fowler, R.A.

1994-05-01T23:59:59.000Z

400

Performance of Three Mode-Meter Block-Processing Algorithms for Automated Dynamic Stability Assessment  

SciTech Connect

The frequency and damping of electromechanical modes offer considerable insight into the dynamic stability properties of a power system. The performance properties of three block-processing algorithms from the perspective of near real-time automated stability assessment are demonstrated and examined. The algorithms are: the extended modified Yule Walker (YW); extended modified Yule Walker with Spectral analysis (YWS); and numerical state-space subspace system identification(N4SID) algorithm. The YW and N4SID have been introduced in previous publications while the YWS is introduced here. Issues addressed include: stability assessment requirements; automated subset selecting identified modes; using algorithms in an automated format; data assumptions and quality; and expected algorithm estimation performance.

Trudnowski, Daniel J.; Pierre, John W.; Zhou, Ning; Hauer, John F.; Parashar, Manu

2008-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "material assessment process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Process for forming pure silver ohmic contacts to N- and P-type gallium arsenide materials  

DOE Patents (OSTI)

Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components a n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffuse layer and the substrate layer wherein the n-type layer comprises a substantially low doping carrier concentration.

Hogan, S.J.

1983-03-13T23:59:59.000Z

402

Neutron and gamma radiation shielding material, structure, and process of making structure  

DOE Patents (OSTI)

The present invention is directed to a novel neutron and gamma radiation shielding material consisting of 95 to 97% by weight SiO/sub 2/ and 5 to 3% by weight sodium silicate. In addition, the method of using this composition to provide a continuous neutron and gamma radiation shielding structure is disclosed.

Hondorp, H.L.

1981-07-06T23:59:59.000Z

403

Performing a course material enhancement process with asynchronous interactive online system  

Science Conference Proceedings (OSTI)

Online systems have come to be heavily used in education, particularly for online learning and collecting information not otherwise readily available. Most e-learning systems, including interactive learning systems, have been designed to ''push'' course ... Keywords: Asynchronous interaction, Course material enhancement, Improving classroom teaching, Interactive learning environments, Teacher digital assistant

Hei-Chia Wang

2007-05-01T23:59:59.000Z

404

Method and apparatus for de-watering biomass materials in a compression drying process  

DOE Patents (OSTI)

A method and apparatus for more effectively squeezing moisture from wood chips and/or other "green" biomass materials. A press comprising a generally closed chamber having a laterally movable base at the lower end thereof, and a piston or ram conforming in shape to the cross-section of the chamber is adapted to periodically receive a charge of biomass material to be dehydrated. The ram is forced against the biomass material with suffcient force to compress the biomass and to crush the matrix in which moisture is contained within the material with the face of the ram being configured to cause a preferential flow of moisture from the center of the mass outwardly to the grooved walls of the chamber. Thus, the moisture is effectively squeezed from the biomass and flows through the grooves formed in the walls of the chamber to a collecting receptacle and is not drawn back into the mass by capillary action when the force is removed from the ram.

Haygreen, John G. (Roseville, MN)

1986-01-01T23:59:59.000Z

405

Neutron and gamma radiation shielding material, structure, and process of making structure  

DOE Patents (OSTI)

The present invention is directed to a novel neutron and gamma radiation elding material consisting of 95 to 97 percent by weight SiO.sub.2 and 5 to 3 percent by weight sodium silicate. In addition, the method of using this composition to provide a continuous neutron and gamma radiation shielding structure is disclosed.

Hondorp, Hugh L. (Princeton Junction, NJ)

1984-01-01T23:59:59.000Z

406

Hydrogen storage material and process using graphite additive with metal-doped complex hydrides  

DOE Patents (OSTI)

A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

Zidan, Ragaiy (Aiken, SC); Ritter, James A. (Lexington, SC); Ebner, Armin D. (Lexington, SC); Wang, Jun (Columbia, SC); Holland, Charles E. (Cayce, SC)

2008-06-10T23:59:59.000Z

407

UNSUSTAINABLE PROPOSAL: THE PRODUCTION OF RAW MATERIALS FOR FUTURE BIOFUEL PROCESSING PLANTS IN ENTRE RÍOS  

E-Print Network (OSTI)

A number of international bodies, academic institutions and well-known civil society organisation are currently debating and ‘consulting ’ on the sustainable production of energy commodities. Discussions on the establishment of standards, sustainability criteria and certification will give the production of raw materials for biofuels an air of acceptability. But the discussions have ignored all the existing

Stella Semino; Lilian Joensen; Els Wijnstra

2007-01-01T23:59:59.000Z

408

National Waste Processing Conference Proceedings ASME 1994 THERMOSELECT: ENERGY AND RAW MATERIAL  

E-Print Network (OSTI)

in the form of an inert and non-toxic vitreous material that meets TCLP elution test standards (Tables II As Sulfide TCLP TCLP 0.07 mgtl 100.0 Cadmium, TCLP .01 mgtl 1.0 Chromium, TCLP 0.04 mgtl 5.0 Copper, TCLP 0.11 mgtl 100.0 Lead, TCLP

Columbia University

409

Idaho National Laboratory Materials and Fuels Complex Natural Phenomena Hazards Flood Assessment  

Science Conference Proceedings (OSTI)

This report presents the results of flood hazards analyses performed for the Materials and Fuels Complex (MFC) and the adjacent Transient Reactor Experiment and Test Facility (TREAT) located at Idaho National Laboratory. The requirements of these analyses are provided in the U.S. Department of Energy Order 420.1B and supporting Department of Energy (DOE) Natural Phenomenon Hazard standards. The flood hazards analyses were performed by Battelle Energy Alliance and Pacific Northwest National Laboratory. The analyses addressed the following: • Determination of the design basis flood (DBFL) • Evaluation of the DBFL versus the Critical Flood Elevations (CFEs) for critical existing structures, systems, and components (SSCs).

Gerald Sehlke; Paul Wichlacz

2010-12-01T23:59:59.000Z

410

Supercritical Water Reactor (SCWR) - Survey of Materials Research and Development Needs to Assess Viability  

SciTech Connect

Supercritical water-cooled reactors (SCWRs) are among the most promising advanced nuclear systems because of their high thermal efficiency [i.e., about 45% vs. 33% of current light water reactors (LWRs)] and considerable plant simplification. SCWRs achieve this with superior thermodynamic conditions (i.e., high operating pressure and temperature), and by reducing the containment volume and eliminating the need for recirculation and jet pumps, pressurizer, steam generators, steam separators and dryers. The reference SCWR design in the U.S. is a direct cycle, thermal spectrum, light-water-cooled and moderated reactor with an operating pressure of 25 MPa and inlet/outlet coolant temperature of 280/500 °C. The inlet flow splits, partly to a down-comer and partly to a plenum at the top of the reactor pressure vessel to flow downward through the core in special water rods to the inlet plenum. This strategy is employed to provide good moderation at the top of the core, where the coolant density is only about 15-20% that of liquid water. The SCWR uses a power conversion cycle similar to that used in supercritical fossil-fired plants: high- intermediate- and low-pressure turbines are employed with one moisture-separator re-heater and up to eight feedwater heaters. The reference power is 3575 MWt, the net electric power is 1600 MWe and the thermal efficiency is 44.8%. The fuel is low-enriched uranium oxide fuel and the plant is designed primarily for base load operation. The purpose of this report is to survey existing materials for fossil, fission and fusion applications and identify the materials research and development needed to establish the SCWR viabilitya with regard to possible materials of construction. The two most significant materials related factors in going from the current LWR designs to the SCWR are the increase in outlet coolant temperature from 300 to 500 °C and the possible compatibility issues associated with the supercritical water environment. • Reactor pressure vessel • Pumps and piping

Philip E. MacDonald

2003-09-01T23:59:59.000Z

411

DOE/EA-1651: Final Environmental Assessment for U-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory Oak Ridge, Tennessee (January 2010)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

51 51 Final Environmental Assessment for U-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory Oak Ridge, Tennessee U. S. Department of Energy Oak Ridge Office Oak Ridge, Tennessee January 2010 FINDING OF NO SIGNIFICANT IMPACT URANIUM-233 MATERIAL DOWNBLENDING AND DISPOSITION PROJECT AT THE OAK RIDGE NATIONAL LABORATORY, OAK RIDGE, TENNESSEE AGENCY: U.S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: DOE has completed the Final Environmental Assessment for U-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory [DOE/EA-1651]. This environmental assessment (EA) evaluates the impacts of planned activities to modify selected

412

Lessons learned from the EG&G consolidated hazardous waste subcontract and ESH&Q liability assessment process  

SciTech Connect

Hazardous waste transportation, treatment, recycling, and disposal contracts were first consolidated at the Idaho National Engineering Laboratory in 1992 by EG&G Idaho, Inc. At that time, disposition of Resource, Conservation and Recovery Act hazardous waste, Toxic Substance Control Act waste, Comprehensive Environmental Response, Compensation, and Liability Act hazardous substances and contaminated media, and recyclable hazardous materials was consolidated under five subcontracts. The wastes were generated by five different INEL M&O contractors, under the direction of three different Department of Energy field offices. The consolidated contract reduced the number of facilities handling INEL waste from 27 to 8 qualified treatment, storage, and disposal facilities, with brokers specifically prohibited. This reduced associated transportation costs, amount and cost of contractual paperwork, and environmental liability exposure. EG&G reviewed this approach and proposed a consolidated hazardous waste subcontract be formed for the major EG&G managed DOE sites: INEL, Mound, Rocky Flats, Nevada Test Site, and 10 satellite facilities. After obtaining concurrence from DOE Headquarters, this effort began in March 1992 and was completed with the award of two master task subcontracts in October and November 1993. In addition, the effort included a team to evaluate the apparent awardee`s facilities for environment, safety, health, and quality (ESH&Q) and financial liability status. This report documents the evaluation of the process used to prepare, bid, and award the EG&G consolidated hazardous waste transportation, treatment, recycling, and/or disposal subcontracts and associated ESH&Q and financial liability assessments; document the strengths and weaknesses of the process; and propose improvements that would expedite and enhance the process for other DOE installations that used the process and for the re-bid of the consolidated subcontract, scheduled for 1997.

Fix, N.J.

1995-03-01T23:59:59.000Z

413

Assessment and control of water contamination associated with shale oil extraction and processing. Work plan  

SciTech Connect

The work plan for Los Alamos Scientific Laboratory's research on assessment and control of water contamination associated with shale oil extraction and processing is outlined. There are two tandem tasks in the program, a literature and information review and evaluation and an experimental effort. The experimental work will address environmental control technologies for retort and product water, contamination of ground water by abandoned in situ retorts, raw and spent shale leachates, fugitive emissions from background oil shale retorting, and aquifer bridging during or after shale oil extraction.

Wewerka, E.M.; Wagner, P.; Wanek, P.L.

1979-03-01T23:59:59.000Z

414

16th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Program, Extended Abstracts, and Papers  

DOE Green Energy (OSTI)

The National Center for Photovoltaics sponsored the 16th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes held August 6-9, 2006 in Denver, Colorado. The workshop addressed the fundamental properties of PV-Si, new solar cell designs, and advanced solar cell processing techniques. It provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The Workshop Theme was: "Getting more (Watts) for Less ($i)". A combination of oral presentations by invited speakers, poster sessions, and discussion sessions reviewed recent advances in crystal growth, new cell structures, new processes and process characterization techniques, and cell fabrication approaches suitable for future manufacturing demands. The special sessions included: Feedstock Issues: Si Refining and Purification; Metal-impurity Engineering; Thin Film Si; and Diagnostic Techniques.

Sopori, B. L.

2006-08-01T23:59:59.000Z

415

Process based cost modeling of emerging optoelectronic interconnects : implications for material platform choice  

E-Print Network (OSTI)

Continuously increasing demand for processing power, storage capacity, and I/O capacity in personal computing, data network, and display interface suggests that optical interconnects may soon supplant copper not only for ...

Liu, Shan, S.M. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

416

Nonaqueous solution synthesis process for preparing oxide powders of lead zirconate titanate and related materials  

DOE Patents (OSTI)

A process is disclosed for producing powders of perovskite-type compounds which comprises mixing a metal alkoxide solution with a lead acetate solution to form a homogeneous, clear metal solution, adding an oxalic acid/n-propanol solution to this metal solution to form an easily filterable, free-flowing precursor powder and then calcining this powder. This process provides fine perovskite-phase powders with ferroelectric properties which are particularly useful in a variety of electronic applications. 4 figs.

Voigt, J.A.; Sipola, D.L.; Tuttle, B.A.; Anderson, M.T.

1999-06-01T23:59:59.000Z

417

15th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Extended Abstracts and Papers  

DOE Green Energy (OSTI)

The National Center for Photovoltaics sponsored the 15th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 7-10, 2005. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The workshop addressed the fundamental properties of PV silicon, new solar cell designs, and advanced solar cell processing techniques. A combination of oral presentations by invited speakers, poster sessions, and discussion sessions reviewed recent advances in crystal growth, new cell designs, new processes and process characterization techniques, and cell fabrication approaches suitable for future manufacturing demands. The theme of this year's meeting was 'Providing the Scientific Basis for Industrial Success.' Specific sessions during the workshop included: Advances in crystal growth and material issues; Impurities and defects in Si; Advanced processing; High-efficiency Si solar cells; Thin Si solar cells; and Cell design for efficiency and reliability module operation. The topic for the Rump Session was ''Si Feedstock: The Show Stopper'' and featured a panel discussion by representatives from various PV companies.

Sopori, B. L.

2005-11-01T23:59:59.000Z

418

Novel Processing of Unique Ceramic-Based Nuclear Materials and Fuels  

Science Conference Proceedings (OSTI)

Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These include refractory alloys base on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as those based on silicon carbide (SiCf-SiC); carbon-carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor componets is necessary for improved efficiency. Improving thermal conductivity of the materials used in nuclear fuels and other temperature critical components can lower the center-line fuel temperature and thereby enhance durability and reduce the risk of premature failure.

Hui Zhang; Raman P. Singh

2008-11-30T23:59:59.000Z

419

Environmental assessment for consolidation of certain materials and machines for nuclear criticality experiments and training  

Science Conference Proceedings (OSTI)

In support of its assigned missions and because of the importance of avoiding nuclear criticality accidents, DOE has adopted a policy to reduce identifiable nuclear criticality safety risks and to protect the public, workers, government property and essential operations from the effects of a criticality accident. In support of this policy, the Los Alamos Critical Experiments Facility (LACEF) at the Los Alamos National Laboratory (LANL) Technical Area (TA) 18, provides a program of general purpose critical experiments. This program, the only remaining one of its kind in the United States, seeks to maintain a sound basis of information for criticality control in those physical situations that DOE will encounter in handling and storing fissionable material in the future, and ensuring the presence of a community of individuals competent in practicing this control.

NONE

1996-05-21T23:59:59.000Z

420

Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer We model the environmental impact of recycling and incineration of household waste. Black-Right-Pointing-Pointer Recycling of paper, glass, steel and aluminium is better than incineration. Black-Right-Pointing-Pointer Recycling and incineration of cardboard and plastic can be equally good alternatives. Black-Right-Pointing-Pointer Recyclables can be transported long distances and still have environmental benefits. Black-Right-Pointing-Pointer Paper has a higher environmental benefit than recyclables found in smaller amounts. - Abstract: Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.

Merrild, Hanna [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Larsen, Anna W., E-mail: awla@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Christensen, Thomas H. [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark)

2012-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "material assessment process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Preliminary Compatibility Assessment of Metallic Dispenser Materials for Service in Ethanol Fuel Blends  

Science Conference Proceedings (OSTI)

The compatibility of selected metals representative of those commonly used in dispensing systems was evaluated in an aggressive E20 formulation (CE20a) and in synthetic gasoline (Reference Fuel C) in identical testing to facilitate comparison of results. The testing was performed at modestly elevated temperature (nominally 60 C) and with constant fluid flow in an effort to accelerate potential interactions in the screening test. Based on weight change, the general corrosion of all individual coupons exposed in the vapor phase above Reference Fuel C and CE20a as well as all coupons immersed in Reference Fuel C was essentially nil (brass and phosphor bronze), but the associated corrosion films were quite thin and apparently protective. For coupons immersed in CE20a, four different materials exhibited net weight loss over the entire course of the experiment: cartridge brass, phosphor bronze, galvanized steel, and terne-plated steel. None of these exhibited substantial incompatibility with the test fluid, with the largest general corrosion rate calculated from coupon weight loss to be approximately 4 {micro}m/y for the cartridge brass specimens. Selective leaching of zinc (from brass) and tin (from bronze) was observed, as well as the presence of sulfide surface films rich in these elements, suggesting the importance of the role of sulfuric acid in the CE20a formulation. Analysis of weight loss data for the slightly corroded metals indicated that the corrosivity of the test environment decreased with exposure time for brass and bronze and increased for galvanized and terne-plated steel. Other materials immersed in CE20a - type 1020 mild steel, type 1100 aluminum, type 201 nickel, and type 304 stainless steel - each appeared essentially immune to corrosion at the test conditions.

Pawel, Steven J [ORNL; Kass, Michael D [ORNL; Janke, Christopher James [ORNL

2009-11-01T23:59:59.000Z

422

Preliminary Compatibility Assessment of Metallic Dispenser Materials for Service in Ethanol Fuel Blends  

SciTech Connect

The compatibility of selected metals representative of those commonly used in dispensing systems was evaluated in an aggressive E20 formulation (CE20a) and in synthetic gasoline (Reference Fuel C) in identical testing to facilitate comparison of results. The testing was performed at modestly elevated temperature (nominally 60 C) and with constant fluid flow in an effort to accelerate potential interactions in the screening test. Based on weight change, the general corrosion of all individual coupons exposed in the vapor phase above Reference Fuel C and CE20a as well as all coupons immersed in Reference Fuel C was essentially nil (<0.3 {micro}m/y), with no evidence of localized corrosion such as pitting/crevice corrosion or selective leaching at any location. Modest discoloration was observed on the copper-based alloys (cartridge brass and phosphor bronze), but the associated corrosion films were quite thin and apparently protective. For coupons immersed in CE20a, four different materials exhibited net weight loss over the entire course of the experiment: cartridge brass, phosphor bronze, galvanized steel, and terne-plated steel. None of these exhibited substantial incompatibility with the test fluid, with the largest general corrosion rate calculated from coupon weight loss to be approximately 4 {micro}m/y for the cartridge brass specimens. Selective leaching of zinc (from brass) and tin (from bronze) was observed, as well as the presence of sulfide surface films rich in these elements, suggesting the importance of the role of sulfuric acid in the CE20a formulation. Analysis of weight loss data for the slightly corroded metals indicated that the corrosivity of the test environment decreased with exposure time for brass and bronze and increased for galvanized and terne-plated steel. Other materials immersed in CE20a - type 1020 mild steel, type 1100 aluminum, type 201 nickel, and type 304 stainless steel - each appeared essentially immune to corrosion at the test conditions.

Pawel, Steven J [ORNL; Kass, Michael D [ORNL; Janke, Christopher James [ORNL

2009-11-01T23:59:59.000Z

423

The thermal expansion coefficient as a key design parameter for thermoelectric materials and its relationship to processing-dependent bloating  

Science Conference Proceedings (OSTI)

The coefficient of thermal expansion (CTE) is a key design parameter for thermoelectric (TE) materials, especially in energy harvesting applications since stresses generated by CTE mismatch, thermal gradients, and thermal transients scale with the CTE of the TE material. For the PbTe PbS-based TE material (Pb 0.95 Sn 0.05 Te) 0.92(PbS) 0.08 0.055 % PbI 2 over the temperature ranges of 293 543 and 293 773 K, a CTE, alpha avg , of 21.4 0.3 x 10-6 K-1 was measured using (1) dilatometry and (2) high-temperature X-ray diffraction (HT-XRD) for powder and bulk specimens. The CTE values measured via dilatometry and HT-XRD are similar to the literature values for other Pb-based chalcogenides. However, the processing technique was found to impact the thermal expansion such that bloating (which leads to a hysteresis in thermal expansion) occurred for hot pressed billets heated to temperatures [603 K while specimens fabricated by pulsed electric current sintering and as-cast specimens did not show a bloating-modified thermal expansion even for temperatures up to 663 K. The relationship of bloating to the processing techniques is discussed, along with a pos- sible mechanism for inhibiting bloating in powder processed specimens.

Ni, Jennifer E. [Michigan State University, East Lansing; Case, Eldon D [Michigan State University, East Lansing; Schmidt, Robert [Michigan State University, East Lansing; Wu, Chun-I [Michigan State University, East Lansing; Hogan, Timothy [Michigan State University, East Lansing; Trejo, Rosa M [ORNL; Kirkham, Melanie J [ORNL; Lara-Curzio, Edgar [ORNL; Kanatzidis, Mercouri G. [Northwestern University, Evanston

2013-01-01T23:59:59.000Z

424

Probabilistic accident consequence uncertainty analysis -- Uncertainty assessment for deposited material and external doses. Volume 1: Main report  

SciTech Connect

The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA deposited material and external dose models.

Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Boardman, J. [AEA Technology (United Kingdom); Jones, J.A. [National Radiological Protection Board (United Kingdom); Harper, F.T.; Young, M.L. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States)

1997-12-01T23:59:59.000Z

425

Electrospray neutralization process and apparatus for generation of nano-aerosol and nano-structured materials  

DOE Patents (OSTI)

The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.

Bailey, Charles L. (Cross Junction, VA); Morozov, Victor (Manassas, VA); Vsevolodov, Nikolai N. (Kensington, MD)

2010-08-17T23:59:59.000Z

426

Assessment of Structural and Clad Materials for Fission Surface Power Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2/113 2/113 Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: M3LW-12OR0402012 - Letter Report on Metallurgical Examination of the High Fluence RPV Specimens From the Ringhals Nuclear Reactors March 2012 Prepared by R.K. Nanstad, Oak Ridge National Laboratory This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product,

427

Correlation of Process Data and Electrocheical Noise to Assess Kraft Digester Corrosion: Second Year at Spring Grove  

DOE Green Energy (OSTI)

Electrochemical noise (EN) probes were deployed in the carbon steel continuous kraft digester at Spring Grove at four locations and at one location in the bottom cone of the associated flash tank for a second consecutive year of a corrosion study. The probes contained dual electrodes of 309LSi stainless steel overlay--representing a field repair material applied to a portion of the vessel--and dual electrodes of 312 stainless steel overlay. Current and potential noise, the temperature at each probe location, and the value of 23 process parameters (flow rates, liquor chemistry, etc.) were again monitored continuously for a period of almost one year. Historical vessel inspection data and post-test evaluation of the probe components were used to assess/compare EN corrosion activity with physical changes in wall thickness and corrosion patterns on the digester shell. In addition, attempts were made to correlate EN activity from each electrode type with process parameters. The results indicate the corrosion conditions aggressive to mild steel persist within the digester, as post-test inspection of the vessel revealed localized corrosion of mild steel in locations previously free of attack. Further, there was evidence that the depth of localized attack of exposed steel had increased in some locations. Nevertheless, the stainless steel overlay in the digester was essentially immune to corrosion, as evidenced by retained surface relief and heat tint associated with the original deposition process. The 309LSi electrodes also appeared visually pristine, and post-exposure metallographic examination of the 309LSi electrode materials revealed no attack. The 312 electrode materials were similar in appearance, but exhibited very minor interdendritic attack over the exposed surface. The silver electrodes in the probes were consumed (to Ag{sub 2}S) to variable degree over the course of the exposure indicating a useful life of not more than a year in digester service in this vessel. Since the stainless steel overlay electrodes were immune to corrosion during the exposure, the current and potential noise activity on these probes is likely related to redox processes on the electrode surfaces. Analysis of this activity as a function of position (and year) in the vessel suggests that redox chemistry/conditions vary by a significant amount on a consistent basis--even on opposite sides of the vessel at the same elevation--and that these differences are not identified by process parameters tracked at the mill. These variable environmental conditions (flow, temperature, liquor chemistry) appear to have little effect on stainless steel overlays under evaluation, but apparently can be quite corrosive to steel as determined in the initial study in the digester at Spring Grove. With the exception of start-up and shutdown activity, including brief upsets for ''hanging columns'' or brief maintenance periods, no regular correlation was observed between tracked process variables and EN activity on any of the probes. In combination with the variable redox activity, this result suggests that the liquor sampling and flow data compiled at the mill do not represent the corrosion conditions in the vessel particularly well.

Pawel, SJ

2004-04-27T23:59:59.000Z

428

Mechanistic investigations of condensed-phase energetic-material decomposition processes using the kinetic deuterium isotope effect  

Science Conference Proceedings (OSTI)

The condensed phase kinetic deuterium isotope effect (KDIE) approach directly reveals the rate-controlling mechanistic step that ultimately determines the rate at which energy is released by an energetic material's thermochemical decomposition process. This paper reviews the KDIE concept and discusses previous condensed phase KDIE mechanistic investigations conducted during the thermochemical decomposition process of various nitroaromatic (TNT, HNBB, TATB) and nitramine (HMX, RDX) compounds using isothermal DSC and TGA analyses. Isothermal DSC evaluation methods used for obtaining an energetic compound's KDIE and in determining its rate-controlling step are outlined, and the possible dependence of the rate-limiting step on a energetic compound's physical state during the thermochemical decomposition process is considered.

Shackelford, S.A.

1990-01-01T23:59:59.000Z

429

Materials processing issues for non-destructive laser gas sampling (NDLGS)  

Science Conference Proceedings (OSTI)

The Non-Destructive Laser Gas Sampling (NDLGS) process essentially involves three steps: (1) laser drilling through the top of a crimped tube made of 304L stainles steel (Hammar and Svennson Cr{sub eq}/Ni{sub eq} = 1.55, produced in 1985); (2) gas sampling; and (3) laser re-welding of the crimp. All three steps are performed in a sealed chamber with a fused silica window under controlled vacuum conditions. Quality requirements for successful processing call for a hermetic re-weld with no cracks or other defects in the fusion zone or HAZ. It has been well established that austenitic stainless steels ({gamma}-SS), such as 304L, can suffer from solidification cracking if their Cr{sub eq}/Ni{sub eq} is below a critical value that causes solidification to occur as austenite (fcc structure) and their combined impurity level (%P+%S) is above {approx}0.02%. Conversely, for Cr{sub eq}/Ni{sub eq} values above the critical level, solidification occurs as ferrite (bcc structure), and cracking propensity is greatly reduced at all combined impurity levels. The consensus of results from studies of several researchers starting in the late 1970's indicates that the critical Cr{sub eq}/Ni{sub eq} value is {approx}1.5 for arc welds. However, more recent studies by the author and others show that the critical Cr{sub eq}/Ni{sub eq} value increases to {approx}1 .6 for weld processes with very rapid thermal cycles, such as the pulsed Nd:YAG laser beam welding (LBW) process used here. Initial attempts at NDLGS using pulsed LBW resulted in considerable solidification cracking, consistent with the results of work discussed above. After a brief introduction to the welding metallurgy of {gamma}-SS, this presentation will review the results of a study aimed at developing a production-ready process that eliminates cracking. The solution to the cracking issue, developed at LANL, involved locally augmenting the Cr content by applying either Cr or a Cr-rich stainless steel (ER 312) to the top of the crimp using the electro-spark deposition (ESD) process followed by laser mixing, drilling and rewelding. Results of a study of the ESD parameters on deposition rate and efficiency will be discussed along with mass balance calculations for determining the desired Cr content to eliminate cracking. The study also required purchase of new pulsed Nd:YAG laser welders. Evaluation of the performance of the new lasers, including beam profiling results, will also be presented. Development of a mixing, drilling and re-welding process at atmospheric pressure with inert gas shielding demonstrated the efficacy of the Cr-augmentation approach. However, extending the process to vacuum conditions proved more challenging owing to loss of laser transmission through the window from spatter and condensation of metal vapors. Solutions developed to circumvent hese issues will be reviewed. Weld microstructures found with various Cr levels will be presented and discussed.

Lienert, Thomas J [Los Alamos National Laboratory

2010-12-09T23:59:59.000Z

430

SLURRY SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM SOLID MATERIALS  

DOE Patents (OSTI)

A solvent extraction process is described for recovering uranium from low grade uranium bearing minerals such as carnotit or shale. The finely communited ore is made up as an aqueous slurry containing the necessary amount of acid to solubilize the uranium and simultaneously or subsequently contacted with an organic solvent extractant such as the alkyl ortho-, or pyro phosphoric acids, alkyl phosphites or alkyl phosphonates in combination with a diluent such as kerosene or carbon tetrachlorids. The extractant phase is separated from the slurry and treated by any suitable process to recover the uranium therefrom. One method for recovering the uranium comprises treating the extract with aqueous HF containing a reducing agent such as ferrous sulfate, which reduces the uranium and causes it to be precipitated as uranium tetrafluoride.

Grinstead, R.R.

1959-01-20T23:59:59.000Z

431

Eighth workshop on crystalline silicon solar cell materials and processes: Extended abstracts and papers  

DOE Green Energy (OSTI)

The theme of this workshop is Supporting the Transition to World Class Manufacturing. This workshop provides a forum for an informal exchange of information between researchers in the photovoltaic and non-photovoltaic fields on various aspects of impurities and defects in silicon, their dynamics during device processing, and their application in defect engineering. This interaction helps establish a knowledge base that can be used for improving device fabrication processes to enhance solar-cell performance and reduce cell costs. It also provides an excellent opportunity for researchers from industry and universities to recognize mutual needs for future joint research. The workshop format features invited review presentations, panel discussions, and two poster sessions. The poster sessions create an opportunity for both university and industrial researchers to present their latest results and provide a natural forum for extended discussions and technical exchanges.

NONE

1998-08-01T23:59:59.000Z

432

Silicon dendritic web material process development. First quarterly report, March 28-June 30, 1980  

DOE Green Energy (OSTI)

Initial values of pressure, power, and speed have been determined for seam bonding interconnects to dendritic web solar cells. Satisfactory bond strengths and high yield have been achieved without cell damage. However, in case of processing large numbers of cells for module fabrication, further testing is required to assure reproducibility of this technique. Various techniques have been developed for fabricating solar modules by lamination using ethylene vinyl acetate with a glass superstrate, and no cell breakage has been noted.

Campbell, R. B.; Stapleton, R. E.; Sienkiewicz, L.; Rai-Choudhury, P.

1980-01-01T23:59:59.000Z

433

Two-dimensional modeling of high plasma density inductively coupled sources for materials processing  

SciTech Connect

Inductively coupled plasma sources are being developed to address the need for high plasma density (10[sup 11]--10[sup 12] cm[sup [minus]3]), low pressure (a few to 10--20 mTorr) etching of semiconductor materials. One such device uses a flat spiral coil of rectangular cross section to generate radio-frequency (rf) electric fields in a cylindrical plasma chamber, and capacitive rf biasing on the substrate to independently control ion energies incident on the wafer. To investigate these devices we have developed a two-dimensional hybrid model consisting of electromagnetic, electron Monte Carlo, and hydrodynamic modules; and an off line plasma chemistry Monte Carlo simulation. The results from the model for plasma densities, plasma potentials, and ion fluxes for Ar, O[sub 2], Ar/CF[sub 4]/O[sub 2] gas mixtures will be presented.

Ventzek, P.L.G.; Hoekstra, R.J.; Kushner, M.J. (Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States))

1994-01-01T23:59:59.000Z

434

Liquefaction process wherein solvents derived from the material liquefied and containing increased concentrations of donor species are employed  

DOE Patents (OSTI)

An improved process for the liquefaction of solid carbonaceous materials wherein a solvent or diluent derived from the solid carbonaceous material being liquefied is used to form a slurry of the solid carbonaceous material and wherein the solvent or diluent comprises from about 65 to about 85 wt. % hydroaromatic components. The solvent is prepared by first separating a solvent or diluent distillate fraction from the liquefaction product, subjecting this distillate fraction to hydrogenation and then extracting the naphthenic components from the hydrogenated product. The extracted naphthenic components are then dehydrogenated and hydrotreated to produce additional hydroaromatic components. These components are combined with the solvent or diluent distillate fraction. The solvent may also contain hydroaromatic constituents prepared by extracting naphthenic components from a heavy naphtha, dehydrogenating the same and then hydrotreating the dehydrogenated product. When the amount of solvent produced in this manner exceeds that required for steady state operation of the liquefaction process a portion of the solvent or diluent distillated fraction will be withdrawn as product.

Fant, B. T. (Kingwood, TX); Miller, John D. (Baytown, TX); Ryan, D. F. (Friendswood, TX)

1982-01-01T23:59:59.000Z

435

Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)  

Science Conference Proceedings (OSTI)

Under the Tritium Facility Modernization {ampersand} Consolidation (TFM{ampersand}C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM{ampersand}C Project also provides for a new replacement R&D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H.

Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Oji, L.N.

1997-11-14T23:59:59.000Z

436

Neutronic Assessment of Candidate Materials for TF Coils Shielding in a DEMO Fusion Reactor Based on a DCLL Blanket  

Science Conference Proceedings (OSTI)

Blanket Materials Technology / Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology

J. P. Catalán; J. Sanz; F. Ogando; R. Pampin

437

Microwave Effects on Liquid and Solid State Material Processing: Energy Delivery and Utilization Division Chemicals, Petroleum and N atural Gas Target  

Science Conference Proceedings (OSTI)

The use of microwave energy is emerging as a major breakthrough in material processing, providing a change in the basic mechanism for heating ceramics. Because heat is generated within the material itself, many important technical glasses and ceramics can be heated rapidly and uniformly. This internal heating mechanism is responsible for improved microstructures and mechanical properties in these materials. The research described in this report has led to development of new microwave processing and chara...

2000-12-12T23:59:59.000Z

438

The performance assessment process for DOE low-level waste disposal facilities  

Science Conference Proceedings (OSTI)

Safety of the low-level waste disposal facilities, as well as al US DOE facilities, is a primary criterion in their design and operation. Safety of low-level waste disposal facilities is evaluated from two perspectives. Operational safety is evaluated based on the perceived level of hazard of the operation. The safety evaluations vary from simple safety assessments to very complex safety analysis reports, depending on the degree of hazard associated with the facility operation. Operational requirements for the Department's low-level waste disposal facilities, including long-term safety are contained in DOE Order 5820.2A, Radioactive Waste Management (1). This paper will focus on the process of conducting long-term performance analyses rather than on operational safety analysis.

Wilhite, E.L.

1992-01-01T23:59:59.000Z

439

The performance assessment process for DOE low-level waste disposal facilities  

Science Conference Proceedings (OSTI)

Safety of the low-level waste disposal facilities, as well as al US DOE facilities, is a primary criterion in their design and operation. Safety of low-level waste disposal facilities is evaluated from two perspectives. Operational safety is evaluated based on the perceived level of hazard of the operation. The safety evaluations vary from simple safety assessments to very complex safety analysis reports, depending on the degree of hazard associated with the facility operation. Operational requirements for the Department`s low-level waste disposal facilities, including long-term safety are contained in DOE Order 5820.2A, Radioactive Waste Management (1). This paper will focus on the process of conducting long-term performance analyses rather than on operational safety analysis.

Wilhite, E.L.

1992-11-01T23:59:59.000Z

440

Materials and process development for the monolithic interconnected module (MIM) InGaAs/InP TPV cells  

DOE Green Energy (OSTI)

Four major components of a thermophotovoltaic (TPV) energy conversion system are a heat source, a graybody or a selective emitter, spectrum shaping elements such as filters, and photovoltaic (PV) cells. One approach to achieving a high voltage/low current configuration is to fabricate a device, where small area PV cells are monolithically series connected. The authors have termed this device a monolithic interconnected module (MIM). A MIM device has other advantages over conventional one-junction cells, such as simplified array interconnections and heat-sinking, and radiation recycling capability via a back surface reflector (BSR). The authors confine the contents of this article to the MIM materials, process development, and some optical results. The successful fabrication of InGaAs/InP MIM devices entails the development and optimization of several key components and processes. These include: isolation trench via geometry, selective chemical etching, contact and interconnect metallization, dielectric isolation barrier, back surface reflector (BSR), and anti-reflection (AR) coating. The selection, development, and testing of the materials and processes described above for MIM fabrication will be described.

Fatemi, N.S.; Jenkins, P.P.; Hoffman, R.W. Jr.; Weizer, V.G. [Essential Research, Inc., Cleveland, OH (United States); Wilt, D.M. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Murray, C.S.; Riley, D. [Westinghouse Electric Corp., West Mifflin, PA (United States)

1997-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "material assessment process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Neutron Scattering Studies of Fundamental Processes in Earth Materials, Final Report  

DOE Green Energy (OSTI)

The aim of this work was to use neutron scattering techniques to explore the dynamics and structure of water in rock samples. The dynamics of water in rock at low (residual) saturation are directly related to the transport properties of fluids within the host rock. The structure of water in rock may be related to the elastic behavior of the rock, which in many cases is nonlinear and hysteretic. Neutron scattering techniques allow us to study water in intact rock samples at both the molecular and microstructural scales. Our samples were Berea sandstone, Calico Hills and Prow Pass tuffs from Yucca Mountain, NV, and pure samples of the tuff constituents, specifically mordenite and clinoptilolite. We chose Berea sandstone because its macroscopic elastic behavior is known to be highly unusual, and the microscopic mechanisms producing this behavior are not understood. We chose Yucca Mountain tuff, because the fluid transport properties of the geologic structure at Yucca Mountain, Nevada could be relevant to the performance of a high level nuclear waste repository at that site. Neutron scattering methods have a number of properties that are extremely useful for the study of earth materials. In contrast to X-rays, neutrons have very low absorption cross-sections for most elements so that entire bulk samples of considerable size can be 'illuminated' by the neutron beam. Similarly, samples that are optically opaque can be readily investigated by inelastic neutron scattering techniques. Neutrons are equally sensitive to light atoms as to heavy atoms, and can, for example, readily distinguish between Al and Si, neighboring atoms in the periodic table that are difficult to tell apart by X-ray diffraction. Finally, neutrons are particularly sensitive to hydrogen and thus can be used to study the motions, both vibrational and diffusive, of H-containing molecules in rocks, most notably of course, water. Our studies were primarily studies of guest molecules (in our case, water) in a host material (rock). We used three neutron scattering techniques: quasielastic neutron scattering (QNS), inelastic neutron scattering (INS), and neutron powder diffraction (NPD). We used QNS to measure the translational and rotational diffusional motion of water in rock; INS vibrational spectra allowed us to determine the nature of residual water in a sample (disassociated, chemisorbed, or physisorbed); and NPD measurements may allow us to determine the locations of residual water molecules (and the associated dynamic disorder), and thereby understand the binding of water molecules in our samples.

McCall, K. R.

2007-06-11T23:59:59.000Z

442

Nonproliferation and arms control assessment of weapons-usable fissile material storage and excess plutonium disposition alternatives  

SciTech Connect

This report has been prepared by the Department of Energy`s Office of Arms Control and Nonproliferation (DOE-NN) with support from the Office of Fissile Materials Disposition (DOE-MD). Its purpose is to analyze the nonproliferation and arms reduction implications of the alternatives for storage of plutonium and HEU, and disposition of excess plutonium, to aid policymakers and the public in making final decisions. While this assessment describes the benefits and risks associated with each option, it does not attempt to rank order the options or choose which ones are best. It does, however, identify steps which could maximize the benefits and mitigate any vulnerabilities of the various alternatives under consideration.

1997-01-01T23:59:59.000Z

443

MATERIALS DEGRADATION ANALYSIS AND DEVELOPMENT TO ENABLE ULTRA LOW COST, WEB-PROCESSED WHITE P-OLED FOR SSL  

SciTech Connect

Progress over Phase II of DE-FG02-07ER86293 'Materials Degradation Analysis and Development to Enable Ultra Low Cost, Web-Processed White P-OLED for SSL' was initially rapid in terms of device performance improvements. We exceeded our device luminance lifetime goals for printed flexible white OLEDs as laid out in our project proposal. Our Phase II performance target was to demonstrate >1500 hours luminance lifetime at 100 Cd/m2 from a printed flexible device. We now have R&D devices well in excess of 8000 hrs lifetime at 100 Cd/m2, tested in air. We also were able to produce devices which met the voltage target of >1500 hours below 15V operation. After completing the initial performance milestones, we went on to focus on color-related degradation issues which were cited as important to commercialization of the technology by our manufacturing partners. We also put additional focus on cathode work as the active material development that occurred over the STTR time period required an adaptation of the cathode from the original cathode formulations which were developed based on previous generation active layer materials. We were able to improve compatibility of the cathode with some of the newer generation active layer materials and improve device yield and voltage behavior. An additional objective of the initial Phase II was to further develop the underlying manufacturing technology and real-life product specifications. This is a key requirement that must be met to ensure eventual commercialization of this DOE-funded technology. The link between commercial investment for full commercialization and R&D efforts in OLED solid State Lighting is often a large one. Add-Vision's lower cost, printed OLED manufacturing approach is an attraction, but close engagement with manufacturing partners and addressing customer specifications is a very important link. Manufacturing technology encompasses development of moisture reduction encapsulation technology, improved cost performance, and reductions in operating voltage through thinner and higher uniformity active device layers. We have now installed a pilot encapsulation system at AVI for controlled, high throughput lamination encapsulation of flexible OLEDs in a novel process. Along with this, we have developed, with our