Sample records for material aerial photography

  1. Aerial Photography At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Exploration Activity: Aerial Photography At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area...

  2. Aerial Photography At Roosevelt Hot Springs Geothermal Area ...

    Open Energy Info (EERE)

    Exploration Technique Aerial Photography Activity Date 1975 - 1975 Usefulness useful DOE-funding Unknown Exploration Basis Petersen, C.A. Masters Thesis at the University of Utah...

  3. Aerial Photography At Nevada Test And Training Range Area (Sabin...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location...

  4. Category:Aerial Photography | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSLInformationMissouri:Catalyst2-M Probe SurveyPhotography

  5. CHAPTERS 3 AND 4:CHAPTERS 3 AND 4: Aerial PhotographyAerial Photography

    E-Print Network [OSTI]

    Gilbes, Fernando

    . (copyright Gernsheim Collection, Harry Ransom Humanities Research Center, University of Texas) Camera Sensor SystemsCamera Sensor Systems Louis Jacques Mande Daguerre One of the first commercially available box of WW I trenches in Europe. Examination of stereoscopic photography revealed the location of men, gun

  6. Comparison of AVHRR classification and aerial photography interpretation for estimation of forest area. Forest Service research paper

    SciTech Connect (OSTI)

    Lannom, K.B.; Evans, D.L.; Zhu, Z.

    1995-09-01T23:59:59.000Z

    The USDA Forest Service Southern Forest Experiment Station`s Forest Inventory and Analysis (SO-FIA) unit uses a dot count method to estimate the percentage of forest area in counties or parishes from aerial photographs. The research reported in this paper was designed to determine whether Advanced Very High Resolution Radiometer (AVHRR) data could be used to estimate forest area at the county or parish level. For this study, AVHRR data for three parishes in central Louisiana were extracted from a 1991 AVHRR forest type map of the United States. Photo interpretation data were obtained from a digital mosaic of aerial photography of the parishes. Forest area estimates obtained by means of photo interpretation did not differ significantly from those obtained by analyzing AVHRR data.

  7. Using historical aerial photography and softcopy photogrammetry for waste unit mapping in L Lake.

    SciTech Connect (OSTI)

    Christel, L.M.

    1997-10-01T23:59:59.000Z

    L Lake was developed as a cooling water reservoir for the L Reactor at the Savannah River Site. The construction of the lake, which began in the fall of 1984, altered the structure and function of Steel Creek. Completed in the fall of 1985, L Lake has a capacity of 31 million cubic meters and a normal pool of 58 meters. When L Reactor operations ceased in 1988, the water level in the lake still had to be maintained. Site managers are currently trying to determine the feasibility of draining or drawing down the lake in order to save tax dollars. In order to understand the full repercussions of such an undertaking, it was necessary to compile a comprehensive inventory of what the lake bottom looked like prior to filling. Aerial photographs, acquired nine days before the filling of the lake began, were scanned and used for softcopy photogrammetry processing. A one-meter digital elevation model was generated and a digital orthophoto mosaic was created as the base map for the project. Seven categories of features, including the large waste units used to contain the contaminated soil removed from the dam site, were screen digitized and used to generate accurate maps. Other map features include vegetation waste piles, where contaminated vegetation from the flood plain was contained, and ash piles, which are sites where vegetation debris was burned and then covered with clean soil. For all seven categories, the area of disturbance totaled just over 63 hectares. When the screen digitizing was completed, the elevation at the centroid of each disturbance was determined. When the information is used in the Savannah River Site Geographical Information System, it can be used to visualize the various L Lake draw-down scenarios suggested by site managers and hopefully, to support evaluations of the cost effectiveness for each proposed activity.

  8. Aerial Photography | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004) | Open Energy Information Sabin,

  9. Photography | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Photography Office and the Energy Technology Visuals Collection (ETVC) Visuals Library. Photography Forrestal: Room BH-071 Phone: (202) 586-1350 The Photography Office is a...

  10. Aerial Photography Collection cmkelly@uoregon.edu

    E-Print Network [OSTI]

    Cina, Jeff

    :15,840 B/W Ashland only 1974-5 A0150 1:12,000 Color Ashland only 1979 616010 1:80,000 B/W Crater Lake area 1980 616100 1:80,000 B/W Complete Coverage 1988-90 616150A 1:12,000 Color Ashland only Siskiyou

  11. Aerial Photography Collection cmkelly@uoregon.edu

    E-Print Network [OSTI]

    Cina, Jeff

    :12,000 Black & white Complete coverage. (not including Medford or Ashland) 1975 BLM-MLC-75 1:12,000 Black-AMC 1:12,000 Black & white Complete coverage. (Medford and Ashland are not included) Roseburg District

  12. Aerial Photography (Nannini, 1986) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara,Addington,Admire,CABiomass, RenewableAegir

  13. Wildlife Photography Market Study

    E-Print Network [OSTI]

    Phillips, Miles

    2008-03-24T23:59:59.000Z

    Private landowners who are considering offering fee-based wildlife photography opportunities on their land as a way to diversify their income will be interested in the results of this 2007 pilot survey of members of the North American Nature...

  14. Study on release and transport of aerial radioactive materials in reprocessing plants

    SciTech Connect (OSTI)

    Amano, Y.; Tashiro, S.; Uchiyama, G.; Abe, H.; Yamane, Y.; Yoshida, K. [Japan Atomic Energy Agency, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); Kodama, T. [Japan Nuclear Fuel Ltd., 4-108 Okitsuke, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori, 039-3212 (Japan)

    2013-07-01T23:59:59.000Z

    The release and transport characteristics of radioactive materials at a boiling accident of the high active liquid waste (HALW) in a reprocessing plant have been studied for improving experimental data of source terms of the boiling accident. In the study, a heating test and a thermogravimetry and differential thermal analysis (TG-DTA) test were conducted. In the heating test using a simulated HALW, it was found that ruthenium was mainly released into the air in the form of gas and that non-volatile elements were released into the air in the form of mist. In the TG-DTA test, the rate constants and reaction heat of thermal decomposition of ruthenium nitrosyl nitrate were obtained from TG and DTA curves. (authors)

  15. Photography | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for #SpaceWeekOMBDepartment ofPhotography Photography

  16. Aerial Photography At Dixie Valley Geothermal Area (Wesnousky...

    Open Energy Info (EERE)

    Field And Other Geothermal Fields Of The Basin And Range David D. Blackwell, Richard P. Smith, Al Waibel, Maria C. Richards, Patrick Stepp (2009) Why Basin and Range Systems are...

  17. Aerial Photography At Roosevelt Hot Springs Geothermal Area ...

    Open Energy Info (EERE)

    infrared. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  18. Aerial Photography At Dixie Valley Geothermal Area (Blackwell...

    Open Energy Info (EERE)

    David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis and Structure of Basin and Range...

  19. Aerial Photography At Truckhaven Area (Layman Energy Associates, 2006) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004) | Open Energy Information Sabin, EtOpen

  20. Aerial Photography At Blue Mountain Geothermal Area (Fairbank Engineering

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio:Ads-tecInformationAecomLtd, 2003) | Open

  1. Aerial Photography At Chena Geothermal Area (Kolker, 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio:Ads-tecInformationAecomLtd, 2003) |

  2. Aerial Photography At Dixie Valley Geothermal Area (Blackwell, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio:Ads-tecInformationAecomLtd, 2003) |2003)

  3. Aerial Photography At Dixie Valley Geothermal Area (Wesnousky, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio:Ads-tecInformationAecomLtd, 2003)2003) |

  4. Aerial Photography At Roosevelt Hot Springs Geothermal Area (Petersen,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio:Ads-tecInformationAecomLtd, 2003)2003)

  5. Aerial Measuring System | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Consequence Management Aerial Measuring System Aerial Measuring System AMS Logo NNSA's Aerial Measuring System (AMS) provides specialized airborne radiation detection...

  6. Aerial Measuring System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-09-20T23:59:59.000Z

    To establish policy for the Department of Energy's (DOE) Aerial Measuring System (AMS) Program. This directive does not cancel another directive. Canceled by DOE O 153.1.

  7. Supporting Blind Photography Chandrika Jayant

    E-Print Network [OSTI]

    Bigham, Jeffrey P.

    Supporting Blind Photography Chandrika Jayant , Hanjie Ji , Samuel White , and Jeffrey P. Bigham.ji,swhite,jbigham}@cs.rochester.edu ABSTRACT Blind people want to take photographs for the same reasons as others­ to record important events technology and human-powered services can be used to give blind people feedback on their environment

  8. Development of a Carbon Dioxide Monitoring Rotorcraft Unmanned Aerial Vehicle

    E-Print Network [OSTI]

    Zimmer, Uwe

    stage to prevent potential danger to workforce and material, and carbon capture and sequestration (CCSDevelopment of a Carbon Dioxide Monitoring Rotorcraft Unmanned Aerial Vehicle Florian Poppa and Uwe the development of a carbon dioxide (CO2) sensing rotorcraft unmanned aerial vehicle (RUAV) and the experiences

  9. Unmanned Aerial Vehicle Instrumentation for Rapid Aerial Photo System

    E-Print Network [OSTI]

    Adiprawita, Widyawardana; Semibiring, Jaka

    2008-01-01T23:59:59.000Z

    This research will proposed a new kind of relatively low cost autonomous UAV that will enable farmers to make just in time mosaics of aerial photo of their crop. These mosaics of aerial photo should be able to be produced with relatively low cost and within the 24 hours of acquisition constraint. The autonomous UAV will be equipped with payload management system specifically developed for rapid aerial mapping. As mentioned before turn around time is the key factor, so accuracy is not the main focus (not orthorectified aerial mapping). This system will also be equipped with special software to post process the aerial photos to produce the mosaic aerial photo map

  10. ADMINISTRATIVE RECORDS SCHEDULE 17: CARTOGRAPHIC, AERIAL PHOTOGRAPHIC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: CARTOGRAPHIC, AERIAL PHOTOGRAPHIC, ARCHITECTURAL, ENGINEERING, AND FACILITY MANAGEMENT RECORDS ADMINISTRATIVE RECORDS SCHEDULE 17: CARTOGRAPHIC, AERIAL PHOTOGRAPHIC,...

  11. Engineering Aerial view of

    E-Print Network [OSTI]

    Yang, Junfeng

    -neutral Torus 2 Climate Change 4 Combustion and Catalysis Laboratory #12;4 5 1Engineering Revolution 5 #12;6 7Columbia Engineering Plus #12;1 1 2 3 4 5 6 Aerial view of Columbia campus with Columbia Engineering-a liated buildings highlighted in blue Columbia Engineering Plus Engineering Revolution 4

  12. Aerial Measuring System in Japan

    SciTech Connect (OSTI)

    Lyons, C., Colton, D. P.

    2012-05-01T23:59:59.000Z

    The U.S. Department of Energy National Nuclear Security Agency’s Aerial Measuring System deployed personnel and equipment to partner with the U.S. Air Force in Japan to conduct multiple aerial radiological surveys. These were the first and most comprehensive sources of actionable information for U.S. interests in Japan and provided early confirmation to the government of Japan as to the extent of the release from the Fukushima Daiichi Nuclear Power Generation Station. Many challenges were overcome quickly during the first 48 hours; including installation and operation of Aerial Measuring System equipment on multiple U.S. Air Force Japan aircraft, flying over difficult terrain, and flying with talented pilots who were unfamiliar with the Aerial Measuring System flight patterns. These all combined to make for a dynamic and non-textbook situation. In addition, the data challenges of the multiple and on-going releases, and integration with the Japanese government to provide valid aerial radiological survey products that both military and civilian customers could use to make informed decisions, was extremely complicated. The Aerial Measuring System Fukushima response provided insight in addressing these challenges and gave way to an opportunity for the expansion of the Aerial Measuring System’s mission beyond the borders of the US.

  13. Tabletop Computed Lighting for Practical Digital Photography

    E-Print Network [OSTI]

    Tabletop Computed Lighting for Practical Digital Photography Ankit Mohan, Reynold Bailey, Jonathan Abstract--We apply simplified image-based lighting methods to reduce the equipment, cost, time, and specialized skills required for high-quality photographic lighting of desktop-sized static objects

  14. Biennial Workshop on Aerial Photography, Videography, and High Resolution Digital Imagery for Resource Assessment

    E-Print Network [OSTI]

    Hung, I-Kuai

    for Resource Assessment May 15-17, 2007 * Terre Haute, Indiana USING REMOTELY SENSED DATA TO QUANTIFY for Resource Assessment May 15-17, 2007 * Terre Haute, Indiana Figure 1. Scar of oilfield brine contaminated to the successful modeling of numerous natural resource and cultural processes (Jensen, 2005). Because oilfield

  15. Using vertical aerial photography to estimate mass balance at a point

    E-Print Network [OSTI]

    Rasmussen, L.A.

    surface topography of South Cascade Glacier on a 100-meter square grid. The known bed topography is subtracted from the surface topography to get thickness, and the surface topographies are subtracted from to sliding at the bed, the surface velocity is scaled by 0.82 to get the average velocity in the vertical ice

  16. Jurisdictional wetland delineation in the Texas Gulf Coast Prairie utilizing aerial photography

    E-Print Network [OSTI]

    Watson, Samuel Jewell

    1997-01-01T23:59:59.000Z

    ,jurisdictional wetlands, areas of inclusion (wetlands which occurred within the remote sensing and the onsite method), omission (wetlands omitted by the remote sensing method), and commission (upland areas delineated as wetlands by the remote sensing method). An equation...

  17. Aerial Photography At Beowawe Hot Springs Area (Wesnousky, Et Al., 2003) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara,Addington,Admire,CABiomass, RenewableAegirOpen

  18. Aerial Photography At Brady Hot Springs Area (Wesnousky, Et Al., 2003) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara,Addington,Admire,CABiomass,

  19. Aerial Photography At Coso Geothermal Area (1968-1971) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara,Addington,Admire,CABiomass,Information

  20. Aerial Photography At Hawthorne Area (Lazaro, Et Al., 2010) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta

  1. Aerial Photography At Nevada Test And Training Range Area (Sabin, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004) | Open Energy Information Sabin, Et Al.,

  2. Aerial Photography At Pilgrim Hot Springs Area (Prakash, Et Al., 2010) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004) | Open Energy Information Sabin, Et

  3. Aerial Photography At Dixie Valley Geothermal Area (Helton, Et Al., 2011) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio:Ads-tecInformationAecomLtd, 2003)

  4. Aerial Photography At Roosevelt Hot Springs Geothermal Area (Ward, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio:Ads-tecInformationAecomLtd,

  5. LOCOMOTION (TERRESTRIAL AND AERIAL) AND COMMUNICATION OF AUTONOMOUS ROBOT NETWORKS

    E-Print Network [OSTI]

    Kansas, University of

    , flying robots, micro-air vehicles, robot communication, autonomous robot networks. #12;2 1. TERRESTRIAL1 LOCOMOTION (TERRESTRIAL AND AERIAL) AND COMMUNICATION OF AUTONOMOUS ROBOT NETWORKS Arvin Agah vehicles, next generation robotic platforms, platform mechanics and materials, winterization of robotic

  6. Controlled manipulation using autonomous aerial systems

    E-Print Network [OSTI]

    Srikanth, Manohar B. (Manohar Balagatte)

    2013-01-01T23:59:59.000Z

    The main focus of the thesis is to design and control Autonomous Aerial Systems, also referred to as Unmanned Aerial Vehicles (UAVs). UAVs are able to hover and navigate in space using the thrust forces generated by the ...

  7. Award-winning film director to discuss technical photography...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photography during the atmospheric testing years. June 5, 2014 Bradbury Science Museum Bradbury Science Museum Contact Steve Sandoval Communications Office (505) 665-9206...

  8. Toolbox Safety Talk Aerial Work Platforms

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Aerial Work Platforms Environmental Health & Safety Facilities Safety & Health to Environmental Health & Safety for recordkeeping. Aerial work platforms are important tools and if used correctly, and equipment damage. This guide addresses safe use of aerial work platforms and provides tips to prevent

  9. Rev: 29 March 2011 Aerial Lift Operator Job Performance Measure (TQ-AERIAL-P)

    E-Print Network [OSTI]

    Ohta, Shigemi

    . Approximate total observation hours: ______. Administer the JPM. Equipment Qualifications Aerial Platform Manufacturer: _______________________________ Model: _____________ Maximum Capacity: ______ Note: Qualification successfully demonstrated. Type Propulsion Elevating Mechanism Qualification CodesANSI/SIA Standard Aerial

  10. AERIAL PHOTO INTERPRETATION NATIONAL INVENTORY OF LANDSCAPES

    E-Print Network [OSTI]

    MANUAL FOR AERIAL PHOTO INTERPRETATION IN THE NATIONAL INVENTORY OF LANDSCAPES IN SWEDEN NILS YEAR.................................................................................................. 10 2.1.4 Information for directed field inventories

  11. An aerial radiological survey of the Nevada Test Site

    SciTech Connect (OSTI)

    Hendricks, T J; Riedhauser, S R

    1999-12-01T23:59:59.000Z

    A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the US Department of Energy's Nevada Test Site including three neighboring areas during August and September 1994. The survey team measured the terrestrial gamma radiation at the Nevada Test Site to determine the levels of natural and man-made radiation. This survey included the areas covered by previous surveys conducted from 1962 through 1993. The results of the aerial survey showed a terrestrial background exposure rate that varied from less than 6 microroentgens per hour (mR/h) to 50 mR/h plus a cosmic-ray contribution that varied from 4.5 mR/h at an elevation of 900 meters (3,000 feet) to 8.5 mR/h at 2,400 meters (8,000 feet). In addition to the principal gamma-emitting, naturally occurring isotopes (potassium-40, thallium-208, bismuth-214, and actinium-228), the man-made radioactive isotopes found in this survey were cobalt-60, cesium-137, europium-152, protactinium-234m an indicator of depleted uranium, and americium-241, which are due to human actions in the survey area. Individual, site-wide plots of gross terrestrial exposure rate, man-made exposure rate, and americium-241 activity (approximating the distribution of all transuranic material) are presented. In addition, expanded plots of individual areas exhibiting these man-made contaminations are given. A comparison is made between the data from this survey and previous aerial radiological surveys of the Nevada Test Site. Some previous ground-based measurements are discussed and related to the aerial data. In regions away from man-made activity, the exposure rates inferred from the gamma-ray measurements collected during this survey agreed very well with the exposure rates inferred from previous aerial surveys.

  12. Factors influencing the neglect of color photography : 1860 to 1970

    E-Print Network [OSTI]

    Milanowski, Stephen R

    1982-01-01T23:59:59.000Z

    While the history of photographic color technology has been adequately discussed by E.J. Hall, Joseph Friedman, and Brian Coe, the relationship between complex tri-color systems and generalized use of color photography has ...

  13. Stills from movies : personal photography and the personal computer

    E-Print Network [OSTI]

    Hourvitz, Leo

    1985-01-01T23:59:59.000Z

    A system for the capture and combination of video images is proposed as a prototype for a future personal computer that allows free manipulation and intermixing of information from the computer, video, and photography ...

  14. Femto-photography: capturing and visualizing the propagation of light

    E-Print Network [OSTI]

    Velten, Andreas

    We present femto-photography, a novel imaging technique to capture and visualize the propagation of light. With an effective exposure time of 1.85 picoseconds (ps) per frame, we reconstruct movies of ultrafast events at ...

  15. aerial density distributions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unmanned Aerial Vehicles MIT - DSpace Summary: In order to deploy intelligent, next-generation applications on Unmanned Aerial Vehicles (UAVs), we must first develop a software...

  16. The DOE ARM Aerial Facility

    SciTech Connect (OSTI)

    Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.; Comstock, Jennifer M.; Mei, Fan; Chand, Duli; Pekour, Mikhail S.; Kluzek, Celine D.; Andrews, Elisabeth; Biraud, S.; McFarquhar, Greg

    2014-05-01T23:59:59.000Z

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routine measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.

  17. Aerial reconstructions via probabilistic data fusion

    E-Print Network [OSTI]

    Cabezas, Randi

    2013-01-01T23:59:59.000Z

    In this thesis we propose a probabilistic model that incorporates multi-modal noisy measurements: aerial images and Light Detection and Ranging (LiDAR) to recover scene geometry and appearance in order to build a 3D ...

  18. Tensor photography : exploring space of 4D modulations inside traditional camera designs

    E-Print Network [OSTI]

    Marwah, Kshitij

    2013-01-01T23:59:59.000Z

    Light field photography has gained a significant research in the last two decades: today, commercial light field cameras are widely available demonstrating capabilities such as post-capture refocus, 3D photography and view ...

  19. MSU Friday Audition/Portfolio Scholarships for the School of Film and Photography

    E-Print Network [OSTI]

    Dyer, Bill

    MSU Friday Audition/Portfolio Scholarships for the School of Film and Photography The School of Film and Photography expects to have scholarship monies on the basis of the written statement, originality, creative energy, and relative

  20. Robust trajectory planning for unmanned aerial vehicles in uncertain environments

    E-Print Network [OSTI]

    Luders, Brandon (Brandon Douglas)

    2008-01-01T23:59:59.000Z

    As unmanned aerial vehicles (UAVs) take on more prominent roles in aerial missions, it becomes necessary to increase the level of autonomy available to them within the mission planner. In order to complete realistic mission ...

  1. Digital Photography and the Ethics of Photo Alteration

    E-Print Network [OSTI]

    Schiller, Aschley

    2008-07-18T23:59:59.000Z

    ?Little?Green? Footballs,?identified?the?image?as?fake?because?the?exact?same?plume?of?smoke?appeared?at? two?points?in?the?same?image. 13 ??An?artist?first?alerted?the?blog?to?the?fake,?as?he?recognized? ? ? ? ?8 the?work?as?similar?to?his?own?early...?theorist,? said?that?“every?photograph?is?fake,?from?start?to?finish,?a?purely?impersonal? unmanipulated?photograph?being?practically?impossible.” 16 ?Thus?even?before?the?advent?of? digital?photography?the?topic?of?photographic?alterability?was?discussed...

  2. Technical Note Field Test of Digital Photography Biomass Estimation Technique in Tallgrass Prairie

    E-Print Network [OSTI]

    Morrison, Lloyd W.

    Technical Note Field Test of Digital Photography Biomass Estimation Technique in Tallgrass Prairie unmeasured because of the time required to clip plots and process samples, as well as limited access or proximity to a drying oven. We tested the digital photography biomass estimation technique for measuring

  3. MSU Friday Audition/Portfolio Scholarships for the School of Film and Photography

    E-Print Network [OSTI]

    Dyer, Bill

    MSU Friday Audition/Portfolio Scholarships for the School of Film and Photography The School-Bozeman School of Film and Photography, Attn: Portfolio/Audition Committee PO Box 173350 VCB 202 Bozeman, MT on the basis of the written statement, originality, creative energy, and relative accomplishment of the work

  4. aerial monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring System for the Dynamics of Lands Based on Aerial Photos Assessed by Artificial Neural Techniques Physics Websites Summary: interest in this direction is the...

  5. aerial radiological monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring System for the Dynamics of Lands Based on Aerial Photos Assessed by Artificial Neural Techniques Physics Websites Summary: interest in this direction is the...

  6. Aerial Thermal Infrared Mapping Of The Waimangu-Waiotapu Geothermal...

    Open Energy Info (EERE)

    Published Journal International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1995 DOI 10.10160148-9062(95)99556-D Citation . 1995. Aerial Thermal...

  7. aerial surveys give: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were sighted 3 Techniques and Technology Article Aerial Surveys for Estimating Wild Turkey Abundance in Environmental Sciences and Ecology Websites Summary: Techniques and...

  8. aerial surveying: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were sighted 3 Techniques and Technology Article Aerial Surveys for Estimating Wild Turkey Abundance in Environmental Sciences and Ecology Websites Summary: Techniques and...

  9. aerial radiation survey: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were sighted 3 Techniques and Technology Article Aerial Surveys for Estimating Wild Turkey Abundance in Environmental Sciences and Ecology Websites Summary: Techniques and...

  10. aerial photograph study: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BUILDINGS IN AERIAL IMAGES Samuel Vinson Mathematics Websites Summary: an exhaustive process for assisting buildings extraction out of the Digital Elevation Model (DEM...

  11. aerial photographic interpretation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BUILDINGS IN AERIAL IMAGES Samuel Vinson Mathematics Websites Summary: an exhaustive process for assisting buildings extraction out of the Digital Elevation Model (DEM...

  12. aerial spectrometric survey: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    strategies to missionflight planning for aerial vehicles engaged in planetary exploration. Two candidate concepts based on natural resource utilization and searching...

  13. Trajectory optimization for target localization using small unmanned aerial vehicles

    E-Print Network [OSTI]

    Ponda, Sameera S

    2008-01-01T23:59:59.000Z

    Small unmanned aerial vehicles (UAVs), equipped with navigation systems and video capability, are currently being deployed for intelligence, reconnaissance and surveillance missions. One particular mission of interest ...

  14. NNSA to Conduct Aerial Radiological Surveys Over Washington,...

    National Nuclear Security Administration (NNSA)

    Office (DNDO). The background data will be used by DNDO to improve aerial radiation measurement capabilities used by local, state, and federal entities. Established by Congress in...

  15. Estimation algorithm for autonomous aerial refueling using a vision based relative navigation system

    E-Print Network [OSTI]

    Bowers, Roshawn Elizabeth

    2005-11-01T23:59:59.000Z

    A new impetus to develop autonomous aerial refueling has arisen out of the growing demand to expand the capabilities of unmanned aerial vehicles (UAVs). With autonomous aerial refueling, UAVs can retain the advantages of being small, inexpensive...

  16. Digital autoland system for unmanned aerial vehicles

    E-Print Network [OSTI]

    Wagner, Thomas William, Jr.

    2007-09-17T23:59:59.000Z

    aerial vehicles, the work and results found from this paper apply for piloted aircraft as well. The tech- niques developed in this paper can easily be extended to general aviation aircraft, military aircraft, or commercial aircraft. For any automatic.... This is reasonable for an aircraft of this size because most general aviation aircraft start to flare between 10 ft and 30 ft above the ground. It is desired for the aircraft to intercept the localizer and glideslope and track these beams to the runway centerline...

  17. E-Print Network 3.0 - all-electric unmanned aerial Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    missile (SAM) site and unmanned aerial vehicles do not have collaborative capabilities... Automation in Unmanned Aerial Vehicle ... Source: Cummings, Mary "Missy" - Department of...

  18. aerial infrared surveys: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aerial infrared surveys First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Aerial Survey of the Upper...

  19. APAWSAN: Actor Positioning for Aerial Wireless Sensor and Actor Networks

    E-Print Network [OSTI]

    Turgut, Damla

    to be autonomous during deployment. The recent advances in development of small unmanned aerial vehicles (UAVs stations can improve network performance measures such as energy consumption and traffic load balancing vehicles (UAVs) with built in sensors made it possible to deploy aerial sensor and actor networks

  20. Actor Positioning Based on Molecular Geometry in Aerial Sensor Networks

    E-Print Network [OSTI]

    Turgut, Damla

    as central data collectors, can improve network performance in terms of energy consumption or traffic load Florida Email: {miakbas,gsolmaz,turgut}@eecs.ucf.edu Abstract-- Advances in unmanned aerial vehicle (UAV the collected information and react accordingly. The recent advances in unmanned aerial vehicles (UAVs

  1. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | NationalMaterials

  2. An aerial radiological survey of the Davis-Monthan Air Force Base and surrounding area, Tucson, Arizona

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    An aerial radiological survey, which was conducted from March 1 to 13, 1995, covered a 51-square-mile (132-square-kilometer) area centered on the Davis-Monthan Air Force Base (DMAFB) in Tucson, Arizona. The results of the survey are reported as contours of bismuth-214 ({sup 214}Bi) soil concentrations, which are characteristic of natural uranium and its progeny, and as contours of the total terrestrial exposure rates extrapolated to one meter above ground level. All data were scaled and overlaid on an aerial photograph of the DMAFB area. The terrestrial exposure rates varied from 9 to 20 microroentgens per hour at one meter above the ground. Elevated levels of terrestrial radiation due to increased concentrations of {sup 214}Bi (natural uranium) were observed over the Southern Pacific railroad yard and along portions of the railroad track bed areas residing both within and outside the base boundaries. No man-made, gamma ray-emitting radioactive material was observed by the aerial survey. High-purity germanium spectrometer and pressurized ionization chamber measurements at eight locations within the base boundaries were used to verify the integrity of the aerial results. The results of the aerial and ground-based measurements were found to be in agreement. However, the ground-based measurements were able to detect minute quantities of cesium-137 ({sup 137}Cs) at six of the eight locations examined. The presence of {sup 137}Cs is a remnant of fallout from foreign and domestic atmospheric nuclear weapons testing that occurred in the 1950s and early 1960s. Cesium-137 concentrations varied from 0.1 to 0.3 picocuries per gram, which is below the minimum detectable activity of the aerial system.

  3. 11.309J / 4.215J Sensing Place: Photography as Inquiry, Spring 2006

    E-Print Network [OSTI]

    MacLean, Alex

    This course explores photography as a disciplined way of seeing, of investigating landscapes and expressing ideas. Readings, observations, and photographs form the basis of discussions on landscape, light, significant ...

  4. The California Museum of Photography at UCR ARTSblock presents a reception and book signing

    E-Print Network [OSTI]

    Mills, Allen P.

    The California Museum of Photography at UCR ARTSblock presents a reception and book signing ROBERTO's photographs, Blockaded: A photographic itinerary through Iran, North Korea, and Cuba (on view at the museum

  5. Visibility maximization with unmanned aerial vehicles in complex environments

    E-Print Network [OSTI]

    Lee, Kenneth (Kenneth King Ho)

    2010-01-01T23:59:59.000Z

    Unmanned aerial vehicles are used extensively in persistent surveillance, search and track, border patrol, and environment monitoring applications. Each of these applications requires the obtainment of information using a ...

  6. Motion Planning for Unmanned Aerial Vehicles with Resource Constraints 

    E-Print Network [OSTI]

    Sundar, Kaarthik

    2012-10-19T23:59:59.000Z

    Small Unmanned Aerial Vehicles (UAVs) are currently used in several surveillance applications to monitor a set of targets and collect relevant data. One of the main constraints that characterize a small UAV is the maximum amount of fuel the vehicle...

  7. Motion Planning for Unmanned Aerial Vehicles with Resource Constraints

    E-Print Network [OSTI]

    Sundar, Kaarthik

    2012-10-19T23:59:59.000Z

    Small Unmanned Aerial Vehicles (UAVs) are currently used in several surveillance applications to monitor a set of targets and collect relevant data. One of the main constraints that characterize a small UAV is the maximum amount of fuel the vehicle...

  8. MSU Friday Audition/Portfolio Scholarships 2012 -School of Film & Photography The School of Film and Photography expects to have scholarship monies

    E-Print Network [OSTI]

    Dyer, Bill

    MSU Friday Audition/Portfolio Scholarships 2012 - School of Film & Photography The School of Film of the written statement, originality, creative energy, and relative accomplishment of the work submitted no later than 4:00 p.m., Friday, January 27, 2012 addressed to: Montana State University-Bozeman School

  9. MSU Friday Audition/Portfolio Scholarships 2013 -School of Film & Photography The School of Film and Photography expects to have scholarship monies available to award to

    E-Print Network [OSTI]

    Dyer, Bill

    MSU Friday Audition/Portfolio Scholarships 2013 - School of Film & Photography The School of Film on the written statement, originality, creative energy, and relative accomplishment of the work submitted no later than 4:00 p.m., Friday, January 25, 2013 addressed to: Montana State University-Bozeman School

  10. LLaannggeerrhhaannss LLaabb PPrroottooccoollss Live Fish Photography Protocol.docx revised 10/1/13 by JW Page 1 of 2

    E-Print Network [OSTI]

    Langerhans, Brian

    LLaannggeerrhhaannss LLaabb PPrroottooccoollss Live Fish Photography Protocol.docx revised 10/1/13 by JW Page 1 of 2 Live Fish Photography Protocol Set up: Stand the white board used for preserved to the white board. Position camera so that fish area fills view. Make sure auto focus is on. Make camera

  11. Using LiDAR, Aerial Photography, and Geospatial Technologies to Reveal and Understand Past Landscapes in Four West Central Missouri Counties

    E-Print Network [OSTI]

    Price, R. Zane

    2012-05-31T23:59:59.000Z

    This dissertation focuses on Hugh Prince's principle of using the present (in this case as seen through remotely sensed imagery) to understand the past via relict features. I studied ghost towns, cemeteries, and abandoned ...

  12. Avionics and control system development for mid-air rendezvous of two unmanned aerial vehicles

    E-Print Network [OSTI]

    Park, Sanghyuk, 1973-

    2004-01-01T23:59:59.000Z

    A flight control system was developed to achieve mid-air rendezvous of two unmanned aerial vehicles (UAVs) as a part of the Parent Child Unmanned Aerial Vehicle (PCUAV) project at MIT and the Draper Laboratory. A lateral ...

  13. Table-top Extreme Ultraviolet Laser Aerial Imaging of Lithographic Masks

    E-Print Network [OSTI]

    Brizuela, F.

    2012-01-01T23:59:59.000Z

    Table-top Extreme Ultraviolet Laser Aerial Imaging ofmasks realized using a table-top aerial imaging systembased on a table-top X=\\3.2 laser. © 2 0 0 9 Optical Society

  14. Nonlinear Trajectory Control of Multi-body Aerial Manipulators Marin Kobilarov

    E-Print Network [OSTI]

    Kobilarov, Marin

    Nonlinear Trajectory Control of Multi-body Aerial Manipulators Marin Kobilarov Laboratory- of-freedom aerial manipulators using linear control techniques [15] or nonlinear variable parameter for Computational Sensing and Robotics Johns Hopkins University Abstract This paper studies trajectory control

  15. Hybrid Modeling and Experimental Cooperative Control of Multiple Unmanned Aerial Vehicles

    E-Print Network [OSTI]

    Fainekos, Georgios E.

    focused on single aerial vehicles. In particular, we have witnessed autonomous or aggressive control autonomous formation flying of autonomous aerial vehicles (UAVs) are [20]­[24]. In [22] and [23], the authorsHybrid Modeling and Experimental Cooperative Control of Multiple Unmanned Aerial Vehicles Selcuk

  16. aerial natural gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aerial natural gas First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 A Low-Cost Natural GasFreshwater...

  17. myCopter Enabling Technologies for Personal Aerial Transportation Systems

    E-Print Network [OSTI]

    towards a Personal Aerial Transportation System, in which vehicles would also have vertical space into account the required operational infrastructure, instead of starting with the design of a vehicle. By investigating human-machine interfaces and training, automation technologies, and socio-economic impact, the my

  18. aerial gamma ray: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aerial gamma ray First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Cosmic Rays: What Gamma Rays Can Say...

  19. Experimental Cooperative Control of Fixed-Wing Unmanned Aerial Vehicles

    E-Print Network [OSTI]

    Fainekos, Georgios E.

    Experimental Cooperative Control of Fixed-Wing Unmanned Aerial Vehicles Selcuk Bayraktar, Georgios architecture (Cloud cap technologies) Hybrid Modeling (of the Piccolo autopilot) Experiments Autonomous Flight - 20min #12;UAVs @ Penn Servos controlling the payload LaptopPC Dell X200 3.5HP fuel engine Deployable

  20. An aerial radiological survey of the Central Savannah River Site, Aiken, South Carolina

    SciTech Connect (OSTI)

    Feimster, E.L.

    1991-09-01T23:59:59.000Z

    An aerial radiological survey was conducted over a 194-square- kilometer (75-square-mile) area encompassing the central portion of the Savannah River Site (SRS). The survey was flown during February 10--27, 1987. These radiological measurements were used as baseline data for the central area and for determining the extent of man-made radionuclide distribution. Previous SRS surveys included small portions of the area; the 1987 survey was covered during the site- wide survey conducted in 1979. Man-made radionuclides (including cobalt-60, cesium-137, protactinium-234m, and elevated levels of uranium-238 progeny) that were detected during the survey were typical of those produced by the reactor operations and material processing activities being conducted in the area. The natural terrestrial radiation levels were consistent with those measured during prior surveys of other SRS areas. 1 refs., 4 figs.

  1. Region Three Aerial Measurement System Flight Planning Tool - 12006

    SciTech Connect (OSTI)

    Messick, Chuck; Pham, Minh; Smith, Ron; Isiminger, Dave [Savannah River Nuclear Solutions, Aiken, South Carolina 29808 (United States)

    2012-07-01T23:59:59.000Z

    The Region 3 Aerial Measurement System Flight Planning Tool is used by the National Nuclear Security Agency (NNSA), United States Department of Energy, Radiological Assistance Program, Region 3, to respond to emergency radiological situations. The tool automates the flight planning package process while decreasing Aerial Measuring System response times and decreases the potential for human error. Deployment of the Region Three Aerial Measurement System Flight Planning Tool has resulted in an immediate improvement to the flight planning process in that time required for mission planning has been reduced from 1.5 hours to 15 minutes. Anecdotally, the RAP team reports that the rate of usable data acquired during surveys has improved from 40-60 percent to over 90 percent since they began using the tool. Though the primary product of the flight planning tool is a pdf format document for use by the aircraft flight crew, the RAP team has begun carrying their laptop computer on the aircraft during missions. By connecting a Global Positioning System (GPS) device to the laptop and using ESRI ArcMap's GPS tool bar to overlay the aircraft position directly on the flight plan in real time, the RAP team can evaluate and correct the aircraft position as the mission is executed. (authors)

  2. Shock wave propagation in vibrofluidized granular materials

    E-Print Network [OSTI]

    Kai Huang; Guoqing Miao; Peng Zhang; Yi Yun; Rongjue Wei

    2005-11-29T23:59:59.000Z

    Shock wave formation and propagation in two-dimensional granular materials under vertical vibration are studied by digital high speed photography. The steepen density and temperature wave fronts form near the plate as granular layer collides with vibrating plate and propagate upward through the layer. The temperature front is always in the transition region between the upward and downward granular flows. The effects of driving parameters and particle number on the shock are also explored.

  3. E-Print Network 3.0 - aerial vehicle instrumentation Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W. McLain, Randal W. Beard, "Maximizing miniature aerial vehicles," IEEE Robotics and Automation... Unexpected Obstacle Research Overview Guidance, Navigation, Vehicle...

  4. E-Print Network 3.0 - aerial vehicle radome Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W. McLain, Randal W. Beard, "Maximizing miniature aerial vehicles," IEEE Robotics and Automation... Unexpected Obstacle Research Overview Guidance, Navigation, Vehicle...

  5. E-Print Network 3.0 - autonomous unmanned aerial Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Miniature Helicopters with Summary: -based autonomous landing of an unmanned aerial vehicle. In IEEE Intl. Conf. on Robotics and Automation (ICRA... flying robots (MFRs)....

  6. Integrating Geometric, Motion and Appearance Constraints for Robust Tracking in Aerial Videos

    E-Print Network [OSTI]

    Hasan, Mahmudul

    2013-01-01T23:59:59.000Z

    P. Pan and D. Schonfeld, “Video tracking based on sequentialand S. Mubarak, “Simultaneous video stabilization and movingAlgorithm 2: GMAC aerial video tracking Data: Unstable

  7. MULTIMEDIA PHOTOGRAPHY PERFORMANCE AGREEMENT AND RELEASE FORM FOR ALL USER GROUP/VISITING RESEARCHER PARTICIPANTS @ Shoals Marine Laboratory on Appledore Island, Maine.

    E-Print Network [OSTI]

    MULTIMEDIA PHOTOGRAPHY PERFORMANCE AGREEMENT AND RELEASE FORM FOR ALL USER GROUP updating its multimedia products, including, but not limited to web content, broadcast television

  8. Aerial Measuring System (AMS) Baseline Surveys for Emergency Planning

    SciTech Connect (OSTI)

    Lyons, C

    2012-06-04T23:59:59.000Z

    Originally established in the 1960s to support the Nuclear Test Program, the AMS mission is to provide a rapid and comprehensive worldwide aerial measurement, analysis, and interpretation capability in response to a nuclear/radiological emergency. AMS provides a responsive team of individuals whose processes allow for a mission to be conducted and completed with results available within hours. This presentation slide-show reviews some of the history of the AMS, summarizes present capabilities and methods, and addresses the value of the surveys.

  9. Use of Micro Unmanned Aerial Vehicles in Transportation Infrastructure Condition Surveys

    E-Print Network [OSTI]

    Hart, William Scott

    2011-02-22T23:59:59.000Z

    Collection Methods????????????????.......................... 9 2.4 Evolution of the Micro-Unmanned Aerial Vehicle??????............. 10 2.5 Current Uses of Micro-Unmanned Aerial Vehicles??????..........? 12 2.6 Types of MUAVs...?s Potential for Creating a Safer Work Environment....................................................................................... 10 2.4. Dragan Fly Innovations Tango Plane Type MUAV (Dragan Fly 2010...

  10. Techniques and Technology Article Aerial Surveys for Estimating Wild Turkey Abundance in

    E-Print Network [OSTI]

    Butler, Matthew J.

    Techniques and Technology Article Aerial Surveys for Estimating Wild Turkey Abundance in the Texas Aerial surveys have been used to estimate abundance of several wild bird species including wild turkeys (Meleagris gallopavo). We used inflatable turkey decoys at 3 study sites in the Texas Rolling Plains

  11. Paper AAS 02-141 Navigation of Aerial Platforms on Titan

    E-Print Network [OSTI]

    Lorenz, Ralph D.

    -shrouded moon Titan may involve aerial platforms such as airships or helicopters. A significant challenge Cassini-Huygens mission may involve mobile aerial platforms such as airships or helicopters. Such vehicles (these may not be the same thing ­ sample acquisition systems may be deployable from an airship

  12. Wind-Energy based Path Planning For Unmanned Aerial Vehicles Using Markov Decision Processes

    E-Print Network [OSTI]

    Smith, Ryan N.

    Wind-Energy based Path Planning For Unmanned Aerial Vehicles Using Markov Decision Processes Wesam H. Al-Sabban, Luis F. Gonzalez and Ryan N. Smith Abstract-- Exploiting wind-energy is one possible way to extend the flight duration of an Unmanned Aerial Vehicle. Wind-energy can also be used

  13. Modelling of a captive unmanned aerial system teledetecting oil pollution on sea surface

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -Water Horizon crisis in the Gulf of Mexico, numerous aerial means were used to detect oil pollution locationsModelling of a captive unmanned aerial system teledetecting oil pollution on sea surface F. Muttin-spill, detection, dynamic modelling, winch, maritime pollution. 1 Introduction During 2010, and the Deep

  14. DOWNSTREAM CHANNEL CHANGES AFTER A SMALL DAM REMOVAL: USING AERIAL PHOTOS AND MEASUREMENT ERROR FOR CONTEXT;

    E-Print Network [OSTI]

    Tullos, Desiree

    DOWNSTREAM CHANNEL CHANGES AFTER A SMALL DAM REMOVAL: USING AERIAL PHOTOS AND MEASUREMENT ERROR to assess downstream channel changes associated with a small dam removal. The Brownsville Dam, a 2.1 m tall downstream from the dam and in an upstream control reach using aerial photos (1994­2008) and in the field

  15. Modeling Residential Urban Areas from Dense Aerial LiDAR Point Clouds

    E-Print Network [OSTI]

    Shahabi, Cyrus

    Modeling Residential Urban Areas from Dense Aerial LiDAR Point Clouds Qian-Yi Zhou and Ulrich models for residential areas from aerial LiDAR scans. The key differ- ence between downtown area modeling and residential area modeling is that the latter usually contains rich vegetation. Thus, we propose a robust

  16. Aerial Radiation Measurements from the Fukushima Dai-ichi Nuclear Power Plant Accident

    SciTech Connect (OSTI)

    Guss, P. P.

    2012-07-16T23:59:59.000Z

    This document is a slide show type presentation concerning DOE and Aerial Measuring System (AMS) activities and results with respect to assessing the consequences of the releases from the Fukushima Dai-ichi Nuclear Power Plant. These include ground monitoring and aerial monitoring.

  17. A Low-Cost Natural Gas/Freshwater Aerial Pipeline

    E-Print Network [OSTI]

    Alexander Bolonkin; Richard Cathcart

    2007-01-05T23:59:59.000Z

    Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for cheap shipment of a various payloads (oil, coal and water) over long distances. The article contains a computed macroproject in northwest China for delivery of 24 billion cubic meter of gas and 23 millions tonnes of water annually.

  18. Embedded avionics with Kalman state estimation for a novel micro-scale unmanned aerial vehicle

    E-Print Network [OSTI]

    Tzanetos, Theodore

    2013-01-01T23:59:59.000Z

    An inertial navigation system leveraging Kalman estimation techniques and quaternion dynamics is developed for deployment to a micro-scale unmanned aerial vehicle (UAV). The capabilities, limitations, and requirements of ...

  19. Biogeochemistry of Isotopically-distinct Sources of Lead in a Former WWII Aerial Gunnery Range

    E-Print Network [OSTI]

    McBee, Jayme M

    2014-01-08T23:59:59.000Z

    Isotopic composition and concentrations of Pb are used to identify sources of anthropogenic and natural Pb and to assess Pb bioavailability in soils and native plants at a former military installation that served as a WWII era aerial gunnery range...

  20. E-Print Network 3.0 - autonomous aerial vehicle Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the European Union under the 7th Framework Programme Summary: behavior of vehicles Automation of aerial vehicles PAVs should be autonomous to a very high degree... design of...

  1. E-Print Network 3.0 - aerial vehicle piloting Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the European Union under the 7th Framework Programme Summary: design of a Personal Aerial Vehicle The myCopter project will investigate User-centered design of human... , Max...

  2. E-Print Network 3.0 - aerial vehicle air Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Designing the air vehicle is only a relative small part... design of a Personal Aerial Vehicle The myCopter project will investigate User-centered design of human... , Max...

  3. Autonomous navigation and tracking of dynamic surface targets on-board a computationally impoverished aerial vehicle

    E-Print Network [OSTI]

    Selby, William Clayton

    2011-01-01T23:59:59.000Z

    This thesis describes the development of an independent, on-board visual servoing system which allows a computationally impoverished aerial vehicle to autonomously identify and track a dynamic surface target. Image ...

  4. Auditory Decision Aiding in Supervisory Control of Multiple Unmanned Aerial Vehicles

    E-Print Network [OSTI]

    Donmez, B.

    2009-01-01T23:59:59.000Z

    This paper investigates the effectiveness of sonification, continuous auditory alert mapped to the state of a monitored task, in supporting unmanned aerial vehicle (UAV) supervisory control. Background: UAV supervisory ...

  5. Effect of auditory peripheral displays on unmanned aerial vehicle operator performance

    E-Print Network [OSTI]

    Graham, Hudson D

    2008-01-01T23:59:59.000Z

    With advanced autonomy, Unmanned Aerial Vehicle (UAV) operations will likely be conducted by single operators controlling multiple UAVs. As operator attention is divided across multiple supervisory tasks, there is a need ...

  6. Aerial Survey Results for 131I Deposition on the Ground after the Fukushima Daiichi Nuclear Power Plant Accident

    SciTech Connect (OSTI)

    Torii, Tatsuo [JAEA; Sugita, Takeshi [JAEA; Okada, Colin E. [NSTec; Reed, Michael S. [NSTec; Blumenthal, Daniel J. [NNSA

    2013-08-01T23:59:59.000Z

    In March 2011 the second largest accidental release of radioactivity in history occurred at the Fukushima Daiichi nuclear power plant following a magnitude 9.0 earthquake and subsequent tsunami. Teams from the U.S. Department of Energy, National Nuclear Security Administration Office of Emergency Response performed aerial surveys to provide initial maps of the dispersal of radioactive material in Japan. The initial results from the surveys did not report the concentration of 131I. This work reports on analyses performed on the initial survey data by a joint Japan-US collaboration to determine 131I ground concentration. This information is potentially useful in reconstruction of the inhalation and external exposure doses from this short-lived radionuclide. The deposited concentration of 134Cs is also reported.

  7. AERIAL MEASUREMENTS OF CONVECTION CELL ELEMENTS IN HEATED LAKES

    SciTech Connect (OSTI)

    Villa-Aleman, E; Saleem Salaymeh, S; Timothy Brown, T; Alfred Garrett, A; Malcolm Pendergast, M; Linda Nichols, L

    2007-12-19T23:59:59.000Z

    Power plant-heated lakes are characterized by a temperature gradient in the thermal plume originating at the discharge of the power plant and terminating at the water intake. The maximum water temperature discharged by the power plant into the lake depends on the power generated at the facility and environmental regulations on the temperature of the lake. Besides the observed thermal plume, cloud-like thermal cells (convection cell elements) are also observed on the water surface. The size, shape and temperature of the convection cell elements depends on several parameters such as the lake water temperature, wind speed, surfactants and the depth of the thermocline. The Savannah River National Laboratory (SRNL) and Clemson University are collaborating to determine the applicability of laboratory empirical correlations between surface heat flux and thermal convection intensity. Laboratory experiments at Clemson University have demonstrated a simple relationship between the surface heat flux and the standard deviation of temperature fluctuations. Similar results were observed in the aerial thermal imagery SRNL collected at different locations along the thermal plume and at different elevations. SRNL will present evidence that the results at Clemson University are applicable to cooling lakes.

  8. Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial Facility

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. ARM data is collected both through permanent monitoring stations and field campaigns around the world. Airborne measurements required to answer science questions from researchers or to validate ground data are also collected. To find data from all categories of aerial operations, follow the links from the AAF information page at http://www.arm.gov/sites/aaf. Tables of information will provide start dates, duration, lead scientist, and the research site for each of the named campaigns. The title of a campaign leads, in turn, to a project description, contact information, and links to the data. Users will be requested to create a password, but the data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  9. Utilization of Local Law Enforcement Aerial Resources in Consequence Management (CM) Response

    SciTech Connect (OSTI)

    Wasiolek, Piotr T.; Malchow, Russell L.

    2013-03-12T23:59:59.000Z

    During the past decade the U.S. Department of Homeland Security (DHS) was instrumental in enhancing the nation’s ability to detect and prevent a radiological or nuclear attack in the highest risk cities. Under the DHS Securing the Cities initiative, nearly 13,000 personnel in the New York City region have been trained in preventive radiological and nuclear detection operations, and nearly 8,500 pieces of radiological detection equipment have been funded. As part of the preventive radiological/nuclear detection (PRND) mission, several cities have received funding to purchase commercial aerial radiation detection systems. In 2008, the U.S. Department of Energy, National Nuclear Security Administration Aerial Measuring System (AMS) program started providing Mobile Aerial Radiological Surveillance (MARS) training to such assets, resulting in over 150 HAZMAT teams’ officers and pilots from 10 law enforcement organizations and fire departments being trained in the aerial radiation detection. From the beginning, the MARS training course covered both the PRND and consequence management (CM) missions. Even if the law enforcement main focus is PRND, their aerial assets can be utilized in the collection of initial radiation data for post-event radiological CM response. Based on over 50 years of AMS operational experience and information collected during MARS training, this presentation will focus on the concepts of CM response using aerial assets as well as utilizing law enforcement/fire department aerial assets in CM. Also discussed will be the need for establishing closer relationships between local jurisdictions’ aerial radiation detection capabilities and state and local radiation control program directors, radiological health department managers, etc. During radiological events these individuals may become primary experts/advisers to Incident Commanders for radiological emergency response, especially in the early stages of a response. The knowledge of the existence, specific capabilities, and use of local aerial radiation detection systems would be critical in planning the response, even before federal assets arrive on the scene. The relationship between local and federal aerial assets and the potential role for the further use of the MARS training and expanded AMS Reachback capabilities in facilitating such interactions will be discussed.

  10. An optical water vapor sensor for unmanned aerial vehicles

    SciTech Connect (OSTI)

    Timothy A. Berkoff; Paul L. Kebabian; Robert A. McClatchy; Charles E. Kolb; Andrew Freedman

    1998-12-01T23:59:59.000Z

    The water vapor sensor developed by Aerodyne Research, based on the optical absorption of light at {approximately}935 nm, has been successfully demonstrated on board the Pacific Northwest National Laboratory's Gulfstream-1 research aircraft during the Department of Energy's ARM Intensive Operations Period in August 1998. Data taken during this field campaign show excellent agreement with a chilled mirror and Lyman-alpha hygrometers and measurements confirm the ability to measure rapid, absolute water vapor fluctuations with a high degree of instrument stability and accuracy, with a noise level as low 10 ppmv (1 Hz measurement bandwidth). The construction of this small, lightweight sensor contains several unique elements which result in several significant advantages when compared to other techniques. First, the low power consumption Argon discharge lamp provides an optical beam at a fixed wavelength without a need for temperature or precision current control. The multi-pass absorption cell developed for this instrument provides a compact, low cost method that can survive deployment in the field. Fiber-optic cables, which are used to convey to light between the absorption cell, light source, and detection modules enable remote placement of the absorption cell from the opto-electronics module. Finally, the sensor does not use any moving parts which removes a significant source of potential malfunction. The result is an instrument which maintained its calibration throughout the field measurement campaign, and was not affected by high vibration and large uncontrolled temperature excursions. We believe that the development of an accurate, fast response water vapor monitor described in this report will open up new avenues of aerial-vehicle-based atmospheric research which have been relatively unexplored due to the lack of suitable low-cost, light-weight instrumentation.

  11. An aerial radiological survey of the Paducah Gaseous Diffusion Plant and surrounding area, Paducah, Kentucky

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    An aerial radiological survey of the Paducah Gaseous Diffusion Plant (PGDP) and surrounding area in Paducah, Kentucky, was conducted during May 15--25, 1990. The purpose of the survey was to measure and document the terrestrial radiological environment at the PGDP and surrounding area for use in effective environmental management and emergency response planning. The aerial survey was flown at an altitude of 61 meters (200 feet) along a series of parallel lines 107 meters (350 feet) apart. The survey encompassed an area of 62 square kilometers (24 square miles), bordered on the north by the Ohio River. The results of the aerial survey are reported as inferred exposure rates at 1 meter above ground level in the form of a gamma radiation contour map. Typical background exposure rates were found to vary from 5 to 12 microroentgens per hour ([mu]R/h). Protactinium-234m, a radioisotope indicative of uranium-238, was detected at several facilities at the PGDR. In support of the aerial survey, ground-based exposure rate and soil sample measurements were obtained at several sites within the survey perimeter. The results of the aerial and ground-based measurements were found to agree within [plus minus]15%.

  12. Porous Materials Porous Materials

    E-Print Network [OSTI]

    Berlin,Technische Universität

    1 Porous Materials x Porous Materials · Physical properties * Characteristic impedance p = p 0 e -jk xa- = vej[ ] p x - j ; Zc= p ve = c ka 0k = c 1-j #12;2 Porous Materials · Specific acoustic impedance Porous Materials · Finite thickness ­ blocked p e + -jk (x-d)a p e - jk (x-d)a d x #12

  13. Collaborative Exploration with a Micro Aerial Vehicle: A Novel Interaction Method for Controlling a MAV with a Hand-Held Device

    E-Print Network [OSTI]

    Pitman, David

    2012-01-01T23:59:59.000Z

    In order to collaboratively explore an environment with a Micro Aerial Vehicle (MAV), an operator needs a mobile interface, which can support the operator’s divided attention. To this end, we developed the Micro Aerial ...

  14. Preprint version 2011 IEEE International Conference on Robotics and Automation, Shanghai, CN Haptic Teleoperation of Multiple Unmanned Aerial Vehicles

    E-Print Network [OSTI]

    Preprint version 2011 IEEE International Conference on Robotics and Automation, Shanghai, CN Haptic Teleoperation of Multiple Unmanned Aerial Vehicles over the Internet Dongjun Lee, Antonio Franchi, Paolo Robuffo control framework for multiple unmanned aerial vehicles (UAVs) over the Internet, consisting of the three

  15. An aerial radiological survey of the Salmon Site and surrounding area, Lamar County, Mississippi

    SciTech Connect (OSTI)

    Kernan, W.J.

    1994-05-01T23:59:59.000Z

    An aerial radiological survey was conducted over the former Atomic Energy Commission Test Site at the Salmon Site and surrounding area between April 20 and May 1, 1992. The Salmon Site is located in Lamar County, Mississippi, approximately 20 miles southwest of Hattiesburg, Mississippi. The purpose of the survey was to measure and document the gamma-ray environment of the Salmon Site and adjacent lands. A contour map showing gamma radiation exposure rates at 1 meter above ground level was constructed from the aerial data and overlaid on a rectified aerial photograph of the area. The exposure rates within the area are between 5 and 8 {mu}R/h. The reported exposure rates include a cosmic-ray contribution estimated to be 3.7 {mu}R/h. Radionuclide assays of soil samples and in situ measurements, taken with a pressurized ion chamber and a high-purity germanium detector, were obtained at 4 locations within the survey boundaries. These measurements were taken in support of and are in agreement with the aerial data.

  16. Optimal Complete Terrain Coverage using an Unmanned Aerial Vehicle Anqi Xu, Chatavut Viriyasuthee, and Ioannis Rekleitis

    E-Print Network [OSTI]

    Rekleitis, Ioannis

    in a bounded environment, while: · avoiding a set of obstacle regions with arbitrary shape · preventing from of coverage using an aerial vehicle has many applications, including: environmental inspection, search] for the general class of non-holonomic robots. We compute a set of waypoints outlining the desired cover- age path

  17. Experimental Dependability Evaluation of a Fail-Bounded Jet Engine Control System for Unmanned Aerial Vehicles

    E-Print Network [OSTI]

    Karlsson, Johan

    having only minor effect on the jet engine (7.0%), while 20.1% of the errors were detected by hardware exceptions and 1.9% were detected by executable assertions in the software. The remaining 1.6% is classified. This is especially true for applications such as Unmanned Aerial Vehicles (UAVs). The market for military UAVs

  18. Wind-Energy based Path Planning For Electric Unmanned Aerial Vehicles Using Markov Decision Processes

    E-Print Network [OSTI]

    Smith, Ryan N.

    Wind-Energy based Path Planning For Electric Unmanned Aerial Vehicles Using Markov Decision wind-energy is one possible way to ex- tend flight duration for Unmanned Arial Vehicles. Wind-energy sources of wind energy available to exploit for this problem [5]: 1) Vertical air motion, such as thermal

  19. Large-Scale Urban Modeling by Combining Ground Level Panoramic and Aerial Imagery

    E-Print Network [OSTI]

    Shahabi, Cyrus

    building or part of a build- ing. Due to error propagation, they are difficult to scale up to model aerial image, we can identify the footprints(up to a common scale) of the buildings, in- cluding of multiple tall buildings. Existing methods for large-scale modeling mostly de- pend on remote sensing

  20. Modeling a Prototype Optical Collision Avoidance Sensor For Unmanned Aerial Vehicles

    E-Print Network [OSTI]

    Hornsey, Richard

    Modeling a Prototype Optical Collision Avoidance Sensor For Unmanned Aerial Vehicles Cyrus Minwalla) are essential in controlled airspace under visual flight rules (VFR). A prototype optical sensor accomplishes and evaluation of the prototype sensor are presented here, as are preliminary measurements to clarify the roles

  1. DESIGN OF SMALL SCALE GAS TURBINE SYSTEMS FOR UNMANNED-AERIAL VEHICLES

    E-Print Network [OSTI]

    Camci, Cengiz

    DESIGN OF SMALL SCALE GAS TURBINE SYSTEMS FOR UNMANNED-AERIAL VEHICLES (AERSP 597/497-K) SPRING 814 865 9871 cxc11@psu.edu Summary : The proposed course is a three-credit gas turbine design course will be evaluated against (agreed) deadlines by the instructor. A number of lecturers from the gas turbine industry

  2. Identification of "lost" structures through satellite imagery and aerial photographs at Fort Garland, CO

    E-Print Network [OSTI]

    Gilbes, Fernando

    .joyce@upr.edu ABSTRACT: Thermography studies using airborne remote sensors have proven useful in the search for buried the appropriateness of thermography studies using free LandSat 7 ETM+ images, and digital manipulation of aerial of variations in temperature to determine the presence of buried foundations or features. Thermography studies

  3. ReseaRch at the University of Maryland Unmanned Aerial Vehicle Technology

    E-Print Network [OSTI]

    Hill, Wendell T.

    -wing vehicles that can monitor atmospheric data without using fossil fuels. J. Sean Humbert tests autonomous varieties of autonomous aerial vehicles, and new ways of utilizing them, offer the potential for making for autonomous bio-inspired micro-vehicles capable of penetrating caves and tunnels, and of reducing the human

  4. Complete Residential Urban Area Reconstruction from Dense Aerial LiDAR Point Clouds

    E-Print Network [OSTI]

    Shahabi, Cyrus

    Complete Residential Urban Area Reconstruction from Dense Aerial LiDAR Point Clouds Qian-Yi Zhou area modeling and residential area modeling is that the latter usually con- tains rich vegetation. Thus representing the 3D urban reality of residential areas. Keywords: urban modeling, LiDAR, residential area

  5. A Practical Visual Servo Control for an Unmanned Aerial N. GUENARD, T. HAMEL, and R. MAHONY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    with respect to the robot and results in a Cartesian motion planning problem. This approach requires dynamics of the system using control Lyapunov function design techniques. Experimental results on a quad and performance of the proposed control strategy. Keywords: Image based visual servo (IBVS), Aerial Robotic

  6. Resources for Studying the Urban

    E-Print Network [OSTI]

    Thompson, Michael

    · Detailed information about a city at the building-by-building level · Building size, construction and type from the 1890s-1960s #12;Sample section of fire insurance plan Material of Construction Pink = brick Yellow = wood Blue = stone Small houses Larger industrial buildings #12;Aerial Photography · An exact

  7. INTERNSHIP OPPORTUNITY PHOTOGRAPHY & EVENTS After 5 Detroit is looking for a Photo and Event Intern for Fall 2011. The internship runs

    E-Print Network [OSTI]

    Cinabro, David

    INTERNSHIP OPPORTUNITY ­ PHOTOGRAPHY & EVENTS After 5 Detroit is looking for a Photo and Event Intern for Fall 2011. The internship runs from the beginning of May until the end of August. It is an unpaid internship but our past interns have generally earned college credits for their work. After 5

  8. Investigation of an MLE Algorithm for Quantification of Aerial Radiological Measurements

    SciTech Connect (OSTI)

    Reed, Michael; Essex, James

    2012-05-10T23:59:59.000Z

    Aerial radiation detection is routinely used by many organizations (DHS, DOE, EPA, etc.) for the purposes of identifying the presence of and quantifying the existence of radiation along the ground. This work involves the search for lost or missing sources, as well as the characterization of large-scale releases such as might occur in a nuclear power plant accident. The standard in aerial radiological surveys involves flying large arrays of sodium-iodide detectors at altitude (15 to 700 meters) to acquire geo-referenced, 1 Hz, 1024-channel spectra. The historical shortfalls of this technology include: • Very low spatial resolution (typical field of view is circle of two-times altitude) • Relatively low detectability associated with large stand-off distances • Fundamental challenges in performing ground-level quantification This work uses modern computational power in conjunction with multi-dimensional deconvolution algorithms in an effort to improve spatial resolution, enhance detectability, and provide a robust framework for quantification.

  9. Lichens as bioindicators of aerial fallout of heavy metals in Zaria, Nigeria

    SciTech Connect (OSTI)

    Kapu, M.M. (Univ. of Illinois, Urbana (United States) Ahmadu Bello Univ., Zaria (Nigeria)); Ipaye, M.M.; Ega, R.A.I.; Balarabe, M.L. (Ahmadu Bello Univ., Zaria (Nigeria)); Akanya, H.O. (Federal Univ. of Technology, Minna (Nigeria)); Schaeffer, D.J. (Univ. of Illinois, Urbana (United States))

    1991-09-01T23:59:59.000Z

    Lichens and other epiphytic cryptogams possess efficient ion-exchange mechanisms which enable many species to accumulate airborne metals and which probably contribute to their tolerating metals at concentrations high enough to cause death to other plant species. A direct relationship between the distribution pattern of lichens and the trace metal content of the surrounding air has been demonstrated. The present study used lichens to assess the aerial fallout of heavy metals from traffic in Zaria, northern Nigeria.

  10. Aerial Neutron Detection: Neutron Signatures for Nonproliferation and Emergency Response Applications

    SciTech Connect (OSTI)

    Maurer, Richard J.; Stampahar, Thomas G.; Smith, Ethan X.; Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Rourke, Timothy J.; LeDonne, Jeffrey P.; Avaro, Emanuele; Butler, D. Andre; Borders, Kevin L.; Stampahar, Jezabel; Schuck, William H.; Selfridge, Thomas L.; McKissack, Thomas M.; Duncan, William W.; Hendricks, Thane J.

    2012-10-17T23:59:59.000Z

    From 2007 to the present, the Remote Sensing Laboratory has been conducting a series of studies designed to expand our fundamental understanding of aerial neutron detection with the goal of designing an enhanced sensitivity detection system for long range neutron detection. Over 35 hours of aerial measurements in a helicopter were conducted for a variety of neutron emitters such as neutron point sources, a commercial nuclear power reactor, nuclear reactor spent fuel in dry cask storage, depleted uranium hexafluoride and depleted uranium metal. The goals of the project were to increase the detection sensitivity of our instruments such that a 5.4 × 104 neutron/second source could be detected at 100 feet above ground level at a speed of 70 knots and to enhance the long-range detection sensitivity for larger neutron sources, i.e., detection ranges above 1000 feet. In order to increase the sensitivity of aerial neutron detection instruments, it is important to understand the dynamics of the neutron background as a function of altitude. For aerial neutron detection, studies have shown that the neutron background primarily originates from above the aircraft, being produced in the upper atmosphere by galactic cosmic-ray interactions with air molecules. These interactions produce energetic neutrons and charged particles that cascade to the earth’s surface, producing additional neutrons in secondary collisions. Hence, the neutron background increases as a function of altitude which is an impediment to long-range neutron detection. In order to increase the sensitivity for long range detection, it is necessary to maintain a low neutron background as a function of altitude. Initial investigations show the variation in the neutron background can be decreased with the application of a cosmic-ray shield. The results of the studies along with a representative data set are presented.

  11. Aerial photographic monitoring of spruce damage in Bayerischer Wald National Park, Federal Republic of Germany

    E-Print Network [OSTI]

    Goebel, John Martin

    1989-01-01T23:59:59.000Z

    pollutants, it is important to consider plot aspect in detail. Since prevailing winds are Easterly-Southeasterly, i. e. , blow out of the West and No~, it can be ajax. cted that slopes with West and Nort)msst ~ will be moze damaged than others. These data... of the requirements for the Degree of MASTER OF AGRICULTURE August, 1989 Major Subject: Natural Resources Development Recreation and Parks AERIAL PHOTOGRAPHIC MONITORZNG OF SPRUCE DAMAGE ZN BAYERISCHER WELD NATIONAL PARK, Federal Republic of Germany A...

  12. Covetic Materials

    Energy Savers [EERE]

    Can re-melt, dilute, alloy... Fabrication of Covetic Materials - Nanocarbon Infusion 3 4 Technical Approach Unusual Characteristics of Covetic Materials ("covalent" &...

  13. Inventory of Ponds in the Brazos and Colorado River (Texas) Drainages, from NASA Color Infrared Photography.

    E-Print Network [OSTI]

    Clark, William J.; Springer, Timothy A.

    1986-01-01T23:59:59.000Z

    -Denton 5 0.843 ? 0.345 0.044 ? 0.029 0.003 ? 0.004 0 0.893 ? 0.345 Tarrant- Kavett-Tobosa 5 0.477 ? 0.313 0.015 ? 0.016 0.001 ? 0.003 0 0.493 ? 0.319 Tarrant- Brackett-Speck 3 0.677 ? 0.291 0.037 ? 0.022 0.000 ? 0.000 0 0.704?0.295 Amarillo- Acuff... the tedious work of this study. Introduction ............. . ............... 1 Materials and Methods ..................... 1 Results and Discussion ..................... 3 Statistical Analysis .............. .. ........ 5 Conclusions...

  14. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  15. Number of lightning discharges causing damage to lightning arrester cables for aerial transmission lines in power systems

    SciTech Connect (OSTI)

    Nikiforov, E. P. [Electric Power Scientific Research Institute (VNIIE), branch of OAO 'NTTs Elektroenergetika' (Russian Federation)

    2009-07-15T23:59:59.000Z

    Damage by lightning discharges to lightning arrester cables for 110-175 kV aerial transmission lines is analyzed using data from power systems on incidents with aerial transmission lines over a ten year operating period (1997-2006). It is found that failures of lightning arrester cables occur when a tensile force acts on a cable heated to the melting point by a lightning current. The lightning currents required to heat a cable to this extent are greater for larger cable cross sections. The probability that a lightning discharge will develop decreases as the amplitude of the lightning current increases, which greatly reduces the number of lightning discharges which damage TK-70 cables compared to TK-50 cables. In order to increase the reliability of lightning arrester cables for 110 kV aerial transmission lines, TK-70 cables should be used in place of TK-50 cables. The number of lightning discharges per year which damage lightning arrester cables is lowered when the density of aerial transmission lines is reduced within the territory of electrical power systems. An approximate relationship between these two parameters is obtained.

  16. Power-Efficient Radio Resource Allocation for Low-Medium-Altitude Aerial Platform Based TD-LTE

    E-Print Network [OSTI]

    Quartly, Graham

    in emergency scenarios, a low-medium-altitude aerial platform based time-division-duplex long term evolution. A similar scenario occurred after the recent tsunami near Sendai, Japan. Since then lowMAX or combinations of them. The time-division-duplex long term evolution (TD-LTE) system is considered as one

  17. Automate Monitoring System for the Dynamics of Lands Based on Aerial Photos Assessed by Artificial Neural Techniques

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    24 Automate Monitoring System for the Dynamics of Lands Based on Aerial Photos Assessed by Artificial Neural Techniques Ioan Ilean Department of Computer Science "1Decembrie 1918" University Alba. In this project an application of artificial neural networks to human-centered earth science information

  18. EVALUATION OF EFFICACY AND HUMAN HEALTH RISK OF AERIAL ULTRA-LOW VOLUME APPLICATIONS OF PYRETHRINS AND

    E-Print Network [OSTI]

    Peterson, Robert K. D.

    EVALUATION OF EFFICACY AND HUMAN HEALTH RISK OF AERIAL ULTRA-LOW VOLUME APPLICATIONS OF PYRETHRINS). A human health risk assessment conducted by Peterson et al. (2006) for truck-mounted ultra-low volume (ULV to epidemic levels and dispersed to all 58 counties in the state, and was associated with low

  19. Getting Ready for the Challenges for the Air Traffic Management for Unmanned Aerial Systems (UAS) C.W. Johnson,

    E-Print Network [OSTI]

    Johnson, Chris

    for a lost link profile. If communications are lost, the vehicle will autonomously cross the airspace between as EUROCONTROL's Spec-0102 on the Use of Military Unmanned Aerial Vehicles as Operational Air Traffic Outside interaction between ATCOs and UAS platforms. These are the flight patterns that are executed autonomously when

  20. 2.5D Dual Contouring: A Robust Approach to Creating Building Models from Aerial LiDAR

    E-Print Network [OSTI]

    Southern California, University of

    thank Tao Ju, Suya You, and anonymous reviewers for their valuable comments. #12;2 Qian-Yi Zhou, Ulrich Neumann Fig. 2. Manually created models [3] show the 2.5D nature of building structures. The aerial Li few points on building walls connecting roof boundaries. In addition, manually created building models

  1. Quantitative evaluation of mask phase defects from through-focus EUV aerial images

    SciTech Connect (OSTI)

    Mochi, Iacopo; Yamazoe, Kenji; Neureuther, Andrew; Goldberg, Kenneth A.

    2011-02-21T23:59:59.000Z

    Mask defects inspection and imaging is one of the most important issues for any pattern transfer lithography technology. This is especially true for EUV lithography where the wavelength-specific properties of masks and defects necessitate actinic inspection for a faithful prediction of defect printability and repair performance. In this paper we will present a technique to obtain a quantitative characterization of mask phase defects from EUV aerial images. We apply this technique to measure the aerial image phase of native defects on a blank mask, measured with the SEMATECH Berkeley Actinic Inspection Tool (AIT) an EUV zoneplate microscope that operates at Lawrence Berkeley National Laboratory. The measured phase is compared with predictions made from AFM top-surface measurements of those defects. While amplitude defects are usually easy to recognize and quantify with standard inspection techniques like scanning electron microscopy (SEM), defects or structures that have a phase component can be much more challenging to inspect. A phase defect can originate from the substrate or from any level of the multilayer. In both cases its effect on the reflected field is not directly related to the local topography of the mask surface, but depends on the deformation of the multilayer structure. Using the AIT, we have previously showed that EUV inspection provides a faithful and reliable way to predict the appearance of mask defect on the printed wafer; but to obtain a complete characterization of the defect we need to evaluate quantitatively its phase component. While aerial imaging doesn't provide a direct measurement of the phase of the object, this information is encoded in the through focus evolution of the image intensity distribution. Recently we developed a technique that allows us to extract the complex amplitude of EUV mask defects using two aerial images from different focal planes. The method for the phase reconstruction is derived from the Gerchberg-Saxton (GS) algorithm, an iterative method that can be used to reconstruct phase and amplitude of an object from the intensity distributions in the image and in the pupil plane. The GS algorithm is equivalent to a two-parameter optimization problem and it needs exactly two constraints to be solved, namely two intensity distributions in different focal planes. In some formulations, adding any other constraint would result in an ill posed problem. On the other hand, the solution's stability and convergence time can both be improved using more information. We modified our complex amplitude reconstruction algorithm to use an arbitrary number of through focus images and we compared its performance with the previous version in terms of convergence speed, robustness and accuracy. We have demonstrated the phase-reconstruction method on native, mask-blank phase defects and compared the results with phase-predictions made from AFM data collected before and after the multilayer deposition. The method and the current results could be extremely useful for improving the modeling and understanding of native phase defects, their detectability, and their printability.

  2. Statistical techniques applied to aerial radiometric surveys (STAARS): principal components analysis user's manual. [NURE program

    SciTech Connect (OSTI)

    Koch, C.D.; Pirkle, F.L.; Schmidt, J.S.

    1981-01-01T23:59:59.000Z

    A Principal Components Analysis (PCA) has been written to aid in the interpretation of multivariate aerial radiometric data collected by the US Department of Energy (DOE) under the National Uranium Resource Evaluation (NURE) program. The variations exhibited by these data have been reduced and classified into a number of linear combinations by using the PCA program. The PCA program then generates histograms and outlier maps of the individual variates. Black and white plots can be made on a Calcomp plotter by the application of follow-up programs. All programs referred to in this guide were written for a DEC-10. From this analysis a geologist may begin to interpret the data structure. Insight into geological processes underlying the data may be obtained.

  3. Nonlinear Decelerator for Payloads in Aerial Delivery Systems. I: Design and Testing

    E-Print Network [OSTI]

    T. Lyons; M. Ginther; P. Mascarenas; E. Rickard; J. Robinson; J. Braeger; H. Liu; A. Ludu

    2014-08-19T23:59:59.000Z

    We study the dynamics and the optimization of the shock deceleration supported by a payload when its airborne carrier impacts the ground. We build a nonlinear elastic model for a container prototype and an elastic suspension system for the payload. We model the dynamics of this system and extract information on maximum deceleration, energy transfer between the container and payload, and energy resonant damping. We designed the system and perform lab experiments for various terminal velocities and types of grounds (cement, grass, sand water, etc.). The results are compared with the theoretical model and results are commented, including predictions for deceleration at different types of ground impact. The results can be used for aerial delivery systems, splash-down of capsules, recoveries, weather balloons, coastal surveying systems, or the new introduced goal-line technology in sport competitions.

  4. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1994-01-01T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  5. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1992-01-01T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  6. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1992-07-28T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  7. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1994-06-07T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  8. Critical Materials:

    Broader source: Energy.gov (indexed) [DOE]

    lighting. 14 (bottom) Criticality ratings of shortlisted raw 76 materials. 15 77 2. Technology Assessment and Potential 78 This section reviews the major trends within...

  9. Cermet materials

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID)

    2008-12-23T23:59:59.000Z

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  10. Composite material

    DOE Patents [OSTI]

    Hutchens, Stacy A. (Knoxville, TN); Woodward, Jonathan (Solihull, GB); Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN)

    2012-02-07T23:59:59.000Z

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  11. Active Fault Controls At High-Temperature Geothermal Sites- Prospectin...

    Open Energy Info (EERE)

    the level of unrecognized active faults present in these areas. Analysis of low-sun-angle aerial photography acquired over the Needle Rocks, Astor Pass, Empire, and Lee...

  12. Structural Analysis of Southern Dixie Valley using LiDAR and...

    Open Energy Info (EERE)

    Structural Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle Aerial Photography, NAS Fallon Geothermal Exploration Project, Dixie Valley, Nevada Jump to: navigation,...

  13. Skin perfusion photography

    E-Print Network [OSTI]

    Satat, Guy

    The separation of global and direct light components of a scene is highly useful for scene analysis, as each component offers different information about illumination-scene-detector interactions. Relying on ray optics, the ...

  14. An aerial radiological survey of the Hanford Site and surrounding area, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    An aerial radiological survey was conducted over the Department of Energy's Hanford Site near Richland, Washington, during the period 5 July through 26 August 1988. The survey was expanded, and additional flights were conducted to the east of the site and along the banks of the Columbia River down to McNary Dam near Umatilla. The survey was flown at altitude of 61 meters (200 feet) by a helicopter containing 17 liters (eight 2 in. {times} 4 in. {times} 16 in.) of sodium iodide detectors. Gamma ray data were collected over the survey area by flying north-south lines spaced 122 meters (400 feet) apart. The processed data indicated that detected radioisotopes and their associated gamma ray exposure rates were generally consistent with those expected from normal background emitters and man-made fission/activation products resulting from activities at the site. External exposure rates were generally 10 microroentgens per hour ({mu}R/h) with some operating areas over 1000 {mu}R/h. The radiation levels over more than 95% of the site are due to normal background exposure rates. 3 refs., 25 figs.

  15. Tests of Australian aerial radiometric data for use in petroleum reconnaissance

    SciTech Connect (OSTI)

    Saunders, D.F.; Branch, J.F.; Thompson, C.K. (Recon Exploration Pty. Ltd., Dallas, TX (United States))

    1994-03-01T23:59:59.000Z

    Recon Exploration Pty. Ltd. has successfully completed initial testing of a new method for processing and interpretation of AGSO's (Australian Geological Survey Organization, formerly Bureau of Mineral Resources) aerial gamma-ray spectrometer data for petroleum exploration in the Canning Basin, Western Australia and the Otway Basin, Victoria. Count-rate data for potassium and uranium were normalized to the thorium count rate for each sample to suppress unwanted effects of variations in surface lithology or soil type, soil moisture, vegetation cover, and counting geometry. The Canning Basin test area included five producing oil fields. All except one clearly exhibit significant and characteristic radiometric anomalies which include negative normalized potassium and more positive normalized uranium values. The Otway Basin test areas included PPL-1 commercial gas production which is associated with a group of significant radiometric anomalies similar to those in the Canning Basin. These results are similar to extensive ongoing tests in the US and are explained in terms of well-understood geological, geochemical, and geophysical models. Based on 69 wells in the three test areas, it is estimated that the chance of encountering hydrocarbons (economic production or shows) in wells within the radiometrically favorable zones is about 2.6 times greater than outside the favorable areas.

  16. Modelling of a captive unmanned aerial system teledetecting oil pollution on sea surface

    E-Print Network [OSTI]

    Muttin, Frédéric

    2013-01-01T23:59:59.000Z

    Recent major oil-spills were tracked using observations with sufficient altitudes over the sea surface, to detect oil slick locations. For oil-spill responders, we propose a captive Unmanned Aerial System, UAS acting like a periscope over a ship or supply vessel. The system is composed of an umbilical deployed from ship deck, and there are few studies that have examined elasticity within cable dynamic during take-off or landing (TOL) and normal flight phases. Therefore, the safest approach for the control-commands of the system is through umbilical dynamic modelling. We give a time-dependant finite-element formulation, using improved elastic non-linear cable elements. Two kinds of boundary condition, natural or essential, are discussed for roll-in or roll-out of the umbilical. A numerical convergence and a validation with an exact solution are provided, using two examples for the flight parameters. Finally, sensitivity of the model potentially extends its capacity for the system equilibrium prediction, under ...

  17. Material Symbols 

    E-Print Network [OSTI]

    Clark, Andy

    2006-01-01T23:59:59.000Z

    What is the relation between the material, conventional symbol structures that we encounter in the spoken and written word, and human thought? A common assumption, that structures a wide variety of otherwise competing ...

  18. Complex Materials

    ScienceCinema (OSTI)

    Cooper, Valentino

    2014-05-23T23:59:59.000Z

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  19. Biological investigations of the Sandia National Laboratories Sol se Mete Aerial Cable Facility

    SciTech Connect (OSTI)

    Sullivan, R.M.

    1994-10-01T23:59:59.000Z

    This report provides results of a comprehensive biological field survey performed on the Sandia National Laboratories Aerial Cable Facility, at the east end of Kirtland Air Force Base (KAFB), Bernalillo County, New Mexico. This survey was conducted late September through October, 1991. ACF occupies a 440-acre tract of land withdrawn by the US Forest Service (USFS) for use by KAFB, and in turn placed under operational control of SNL by the Department of Energy (DOE). All land used by SNL for ACF is part of a 15,851-acre tract of land withdrawn by the US Forest Service. In addition, a number of different organizations use the 15,851-acre area. The project area used by SNL encompasses portions of approximately six sections (3,840 acres) of US Forest Service land located within the foothills of the west side of the Manzano Mountains (East Mesa). The biological study area is used by the KAFB, the US Department of Interior, and SNL. This area includes: (1) Sol se Mete Springs and Canyon, (2) East Anchor Access Road, (3) East Anchor Site, (4) Rocket Sled Track, (5) North Arena, (6) East Instrumentation Site and Access Road, (7) West Anchor Access Road, (8) West Anchor Site, (9) South Arena, (10) Winch Sites, (11) West Instrumentation Sites, (12) Explosive Assembly Building, (13) Control Building, (14) Lurance Canyon Road and vicinity. Although portions of approximately 960 acres of withdrawn US Forest Service land have been altered, only 700 acres have been disturbed by activities associated with ACF; approximately 2,880 acres consist of natural habitat. Absence of grazing by livestock and possibly native ungulates, and relative lack of human disturbance have allowed this area to remain in a more natural vegetative state relative to the condition of private range lands throughout New Mexico. This report evaluates threatened and endangered species found on ACF, as well as a comprehensive assessment of biological habitats.

  20. Combined planar imaging of schlieren photography with OH-LIPF and spontaneous OH-emission in a 2-D valveless pulse combustor

    SciTech Connect (OSTI)

    Ishino, Yojiro; Hasegawa, Tatsuya; Yamaguchi, Shigeki; Ohiwa, Norio

    1999-07-01T23:59:59.000Z

    Using a novel optical system, simultaneous imaging of schlieren photography and laser induced predissociation fluorescence of OH radicals (OH-LIPF) have been carried out to examine combustion processes and flame structure in a two-dimensional valveless pulse combustor. Simultaneous imaging of schlieren photographs and spontaneous OH-emission have also been made, in order to obtain information on the behavior of the flame front during a cycle of pulsation. The pulse combustor used in this experiment consists of a combustion chamber of a volume of 125 cm{sup 3} and a tailpipe of a length of 976 mm, which is followed by an automobile muffler. The fuel used is commercial grade gaseous propane.

  1. Hardfacing material

    DOE Patents [OSTI]

    Branagan, Daniel J. (Iona, ID)

    2012-01-17T23:59:59.000Z

    A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  2. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMARSecurityMaterials Science Materials

  3. Materials compatibility.

    SciTech Connect (OSTI)

    Somerday, Brian P.

    2010-04-01T23:59:59.000Z

    Objectives are to enable development and implementation of codes and standards for H{sub 2} containment components: (1) Evaluate data on mechanical properties of materials in H{sub 2} gas - Technical Reference on Hydrogen Compatibility of Materials; (2) Generate new benchmark data on high-priority materials - Pressure vessel steels, stainless steels; and (3) Establish procedures for reliable materials testing - Sustained-load cracking, fatigue crack propagation. Summary of this presentation are: (1) Completed measurement of cracking thresholds (K{sub TH}) for Ni-Cr-Mo pressure vessel steels in high-pressure H{sub 2} gas - K{sub TH} measurements required in ASME Article KD-10 (2) Crack arrest test methods appear to yield non-conservative results compared to crack initiation test methods - (a) Proposal to insert crack initiation test methods in Article KD-10 will be presented to ASME Project Team on Hydrogen Tanks, and (b) Crack initiation methods require test apparatus designed for dynamic loading of specimens in H{sub 2} gas; and (3) Demonstrated ability to measure fatigue crack growth of pressure vessel steels in high-pressure H{sub 2} gas - (a) Fatigue crack growth data in H{sub 2} required in ASME Article KD-10, and (b) Test apparatus is one of few in U.S. or abroad for measuring fatigue crack growth in >100 MPa H{sub 2} gas.

  4. Aerial vehicle with paint for detection of radiological and chemical warfare agents

    DOE Patents [OSTI]

    Farmer, Joseph C.; Brunk, James L.; Day, S. Daniel

    2013-04-02T23:59:59.000Z

    A paint that warns of radiological or chemical substances comprising a paint operatively connected to the surface, an indicator material carried by the paint that provides an indication of the radiological or chemical substances, and a thermo-activation material carried by the paint. In one embodiment, a method of warning of radiological or chemical substances comprising the steps of painting a surface with an indicator material, and monitoring the surface for indications of the radiological or chemical substances. In another embodiment, a paint is operatively connected to a vehicle and an indicator material is carried by the paint that provides an indication of the radiological or chemical substances.

  5. Aerial Measurement of Radioxenon Concentration off the West Coast of Vancouver Island following the Fukushima Reactor Accident

    E-Print Network [OSTI]

    Sinclair, L E; Fortin, R; Carson, J M; Saull, P R B; Coyle, M J; Van Brabant, R A; Buckle, J L; Desjardins, S M; Hall, R M

    2011-01-01T23:59:59.000Z

    In response to the Fukushima nuclear reactor accident, on March 20th, 2011, Natural Resources Canada conducted aerial radiation surveys over water just off of the west coast of Vancouver Island. Dose-rate levels were found to be consistent with background radiation, however a clear signal due to Xe-133 was observed. Methods to extract Xe-133 count rates from the measured spectra, and to determine the corresponding Xe-133 volumetric concentration, were developed. The measurements indicate that Xe-133 concentrations on average lie in the range of 30 to 70 Bq/m3.

  6. USE OF THE AERIAL MEASUREMENT SYSTEM HELICOPTER EMERGENCY RESPONSE ACQUISITION SYSTEMS WITH GEOGRAPHIC INFORMATION SYSTEM FOR RADIOACTIVE SOIL REMEDIATION - [11504

    SciTech Connect (OSTI)

    BROCK CT

    2011-02-15T23:59:59.000Z

    The Aerial Measurement System (AMS) Helicopter Emergency Response Acquisition System provides a thorough and economical means to identify and characterize the contaminants for large area radiological surveys. The helicopter system can provide a 100-percent survey of an area that qualifies as a scoping survey under the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) methodology. If the sensitivity is adequate when compared to the clean up values, it may also be used for the characterization survey. The data from the helicopter survey can be displayed and manipulated to provide invaluable data during remediation activities.

  7. Aerial Measurement of Radioxenon Concentration off the West Coast of Vancouver Island following the Fukushima Reactor Accident

    E-Print Network [OSTI]

    L. E. Sinclair; H. C. J. Seywerd; R. Fortin; J. M. Carson; P. R. B. Saull; M. J. Coyle; R. A. Van Brabant; J. L. Buckle; S. M. Desjardins; R. M. Hall

    2011-06-20T23:59:59.000Z

    In response to the Fukushima nuclear reactor accident, on March 20th, 2011, Natural Resources Canada conducted aerial radiation surveys over water just off of the west coast of Vancouver Island. Dose-rate levels were found to be consistent with background radiation, however a clear signal due to Xe-133 was observed. Methods to extract Xe-133 count rates from the measured spectra, and to determine the corresponding Xe-133 volumetric concentration, were developed. The measurements indicate that Xe-133 concentrations on average lie in the range of 30 to 70 Bq/m3.

  8. Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems

    SciTech Connect (OSTI)

    Robert Paul Breckenridge

    2007-05-01T23:59:59.000Z

    Creeping environmental changes are impacting some of the largest remaining intact parcels of sagebrush steppe ecosystems in the western United States, creating major problems for land managers. The Idaho National Laboratory (INL), located in southeastern Idaho, is part of the sagebrush steppe ecosystem, one of the largest ecosystems on the continent. Scientists at the INL and the University of Idaho have integrated existing field and remotely sensed data with geographic information systems technology to analyze how recent fires on the INL have influenced the current distribution of terrestrial vegetation. Three vegetation mapping and classification systems were used to evaluate the changes in vegetation caused by fires between 1994 and 2003. Approximately 24% of the sagebrush steppe community on the INL was altered by fire, mostly over a 5-year period. There were notable differences between methods, especially for juniper woodland and grasslands. The Anderson system (Anderson et al. 1996) was superior for representing the landscape because it includes playa/bare ground/disturbed area and sagebrush steppe on lava as vegetation categories. This study found that assessing existing data sets is useful for quantifying fire impacts and should be helpful in future fire and land use planning. The evaluation identified that data from remote sensing technologies is not currently of sufficient quality to assess the percentage of cover. To fill this need, an approach was designed using both helicopter and fixed wing unmanned aerial vehicles (UAVs) and image processing software to evaluate six cover types on field plots located on the INL. The helicopter UAV provided the best system compared against field sampling, but is more dangerous and has spatial coverage limitations. It was reasonably accurate for dead shrubs and was very good in assessing percentage of bare ground, litter and grasses; accuracy for litter and shrubs is questionable. The fixed wing system proved to be feasible and can collect imagery for very large areas in a short period of time. It was accurate for bare ground and grasses. Both UAV systems have limitations, but these will be reduced as the technology advances. In both cases, the UAV systems collected data at a much faster rate than possible on the ground. The study concluded that improvements in automating the image processing efforts would greatly improve use of the technology. In the near future, UAV technology may revolutionize rangeland monitoring in the same way Global Positioning Systems have affected navigation while conducting field activities.

  9. Error Detection, Factorization and Correction for Multi-View Scene Reconstruction from Aerial Imagery

    SciTech Connect (OSTI)

    Hess-Flores, M

    2011-11-10T23:59:59.000Z

    Scene reconstruction from video sequences has become a prominent computer vision research area in recent years, due to its large number of applications in fields such as security, robotics and virtual reality. Despite recent progress in this field, there are still a number of issues that manifest as incomplete, incorrect or computationally-expensive reconstructions. The engine behind achieving reconstruction is the matching of features between images, where common conditions such as occlusions, lighting changes and texture-less regions can all affect matching accuracy. Subsequent processes that rely on matching accuracy, such as camera parameter estimation, structure computation and non-linear parameter optimization, are also vulnerable to additional sources of error, such as degeneracies and mathematical instability. Detection and correction of errors, along with robustness in parameter solvers, are a must in order to achieve a very accurate final scene reconstruction. However, error detection is in general difficult due to the lack of ground-truth information about the given scene, such as the absolute position of scene points or GPS/IMU coordinates for the camera(s) viewing the scene. In this dissertation, methods are presented for the detection, factorization and correction of error sources present in all stages of a scene reconstruction pipeline from video, in the absence of ground-truth knowledge. Two main applications are discussed. The first set of algorithms derive total structural error measurements after an initial scene structure computation and factorize errors into those related to the underlying feature matching process and those related to camera parameter estimation. A brute-force local correction of inaccurate feature matches is presented, as well as an improved conditioning scheme for non-linear parameter optimization which applies weights on input parameters in proportion to estimated camera parameter errors. Another application is in reconstruction pre-processing, where an algorithm detects and discards frames that would lead to inaccurate feature matching, camera pose estimation degeneracies or mathematical instability in structure computation based on a residual error comparison between two different match motion models. The presented algorithms were designed for aerial video but have been proven to work across different scene types and camera motions, and for both real and synthetic scenes.

  10. Energy Materials & Processes | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Materials & Processes Overview Atmospheric Aerosol Systems Biosystem Dynamics & Design Energy Materials & Processes Terrestrial & Subsurface Ecosystems Energy Materials &...

  11. PHOTO BY PAUL EFIRD From left, Jay Maurer, director of photography, Kevin O'Connor, host of DIY's "This

    E-Print Network [OSTI]

    and air conditioning systems to phase-change insulation, which transforms from a solid to a liquid before," he said. "I didn't even know such a thing (as phase-change insulation) existed, and I'm seeing that we don't always talk about in `This Old House.' This is new material, and it's a great story

  12. Alloy materials

    DOE Patents [OSTI]

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01T23:59:59.000Z

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  13. Construction material

    DOE Patents [OSTI]

    Wagh, Arun S. (Orland Park, IL); Antink, Allison L. (Bolingbrook, IL)

    2008-07-22T23:59:59.000Z

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  14. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) -PublicationsMaterials Science

  15. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | National NuclearMaterial Misfits

  16. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15T23:59:59.000Z

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

  17. Materials Characterization | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMAR Os2010Material Safety Electron

  18. Critical Materials Institute

    SciTech Connect (OSTI)

    Alex King

    2013-01-09T23:59:59.000Z

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  19. Critical Materials Institute

    ScienceCinema (OSTI)

    Alex King

    2013-06-05T23:59:59.000Z

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  20. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals, accidentally spilled, or released. In addition to laboratory chemicals, hazardous materials may include common not involve highly toxic or noxious hazardous materials, a fire, or an injury requiring medical attention

  1. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up, or there is a small spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  2. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  3. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up personnel trained in Hazardous Material clean up or an appropriate spill kit is not available? Call 561

  4. MATERIALS MANAGEMENT MATERIALS MANAGEMENT -INVENTORY CONTROL

    E-Print Network [OSTI]

    Oliver, Douglas L.

    MATERIALS MANAGEMENT MATERIALS MANAGEMENT - INVENTORY CONTROL Record of Property Transferred from ______ ___________________________________ 2. DEAN (If Applies) ______ ___________________________________ 5. UNIVERSITY DIRECTOR OF MATERIALS MANAGEMENT ______ ___________________________________ 3. HOSPITAL DIRECTOR (If Applies) ______ IF YOU NEED

  5. Effects of aerially applied glyphosate and hexazinone on hardwoods and pines in a loblolly pine plantation. Forest Service research paper

    SciTech Connect (OSTI)

    Haywood, J.D.

    1993-09-01T23:59:59.000Z

    Areas in a 4-year-old loblolly pine (Pinus taeda L.) plantation were treated with aerially applied Roundup (glyphosate), Pronone 10G (hexazinone), and Velpar L (hexazinone) plus Lo Drift (a spray additive). All herbicides were applied with appropriate helicopter-mounted equipment. The proportion of free-to-grow pine trees increased over a 2-year period in both the treated and untreated areas, but the increase was slightly greater in the treated areas. Final loblolly pine height, d.b.h., and volume per tree did not differ significantly among the four treatments. About 1,200 hardwood trees and 4,700 shrubs over 3 ft tall per acre were present at the beginning of the study.

  6. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  7. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  8. Functional Materials for Energy | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at...

  9. Materials Project: A Materials Genome Approach

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ceder, Gerbrand (MIT); Persson, Kristin (LBNL)

    Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, this project has computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The computations predicted several new battery materials which were made and tested in the lab and are now being patented. By computing properties of all known materials, the Materials Project aims to remove guesswork from materials design in a variety of applications. Experimental research can be targeted to the most promising compounds from computational data sets. Researchers will be able to data-mine scientific trends in materials properties. By providing materials researchers with the information they need to design better, the Materials Project aims to accelerate innovation in materials research.[copied from http://materialsproject.org/about] You will be asked to register to be granted free, full access.

  10. MATERIALS MANAGEMENT MATERIALS MANAGEMENT -INVENTORY CONTROL

    E-Print Network [OSTI]

    Oliver, Douglas L.

    MATERIALS MANAGEMENT MATERIALS MANAGEMENT - INVENTORY CONTROL NOTICE OF DESIGNATED DEPARTMENTAL OF MATERIALS MANAGEMENT ______ FURTHER INSTRUCTIONS 1. Include a copy of any relevant documents. 2. Item MATERIALS COORDINATOR ­ IC-8 Mail, Fax or PDF the entire package to: MC 2010 Fax: 679-4240 REFERENCE # DMC

  11. DREDGED MATERIAL EVALUATION AND

    E-Print Network [OSTI]

    DREDGED MATERIAL EVALUATION AND DISPOSAL PROCEDURES (USERS' MANUAL) Dredged Material Management 2009) Prepared by: Dredged Material Management Office US Army Corps of Engineers Seattle District #12........................................................................................2-1 2.2 The Dredged Material Evaluation Process

  12. Method for forming materials

    DOE Patents [OSTI]

    Tolle, Charles R. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Miller, Karen S. (Idaho Falls, ID)

    2009-10-06T23:59:59.000Z

    A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

  13. NURE aerial gamma ray and magnetic detail survey of portions of northeast Washington. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-11-01T23:59:59.000Z

    The Northeast Washington Survey was performed under the United States Department of Energy's National Uranium Resource Evaluation (NURE) Program, which is designed to provide radioelement distribution information to assist in assessing the uraniferous material potential of the United States. The radiometric and ancilliary data were digitally recorded and processed. The results are presented in the form of stacked profiles, contour maps, flight path maps, statistical tables and frequency distribution histograms. These graphical outputs are presented at a scale of 1:62,500 and are contained in the individual Volume 2 reports.

  14. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Russellville quadrangle, Arkansas

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    The Russellville quadrangle in north central Arkansas overlies thick Paleozoic sediments of the Arkoma Basin. These Paleozoics dominate surface exposure except where covered by Quaternary alluvial materials. Examination of available literature shows no known uranium deposits (or occurrences) within the quadrangle. Eighty-eight groups of uranium samples were defined as anomalies and are discussed briefly. None were considered significant, and most appeared to be of cultural origin. Magnetic data show character that suggest structural and/or lithologic complexity, but imply relatively deep-seated sources.

  15. Transporting particulate material

    DOE Patents [OSTI]

    Aldred, Derek Leslie (North Hollywood, CA); Rader, Jeffrey A. (North Hollywood, CA); Saunders, Timothy W. (North Hollywood, CA)

    2011-08-30T23:59:59.000Z

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  16. Materials Science & Engineering

    E-Print Network [OSTI]

    Reisslein, Martin

    Materials Science & Engineering The development of new high-performance materials for energy Research in Niskayuna, NY. He received his BS and PhD in Materials Science and Engineering at MIT. For 22 and composition of materials at higher spatial resolution, with greater efficiency, and on real materials

  17. Department of Materials Science &

    E-Print Network [OSTI]

    Acton, Scott

    Developing Leaders of Innovation Department of Materials Science & Engineering #12;At the University of Virginia, students in materials science, engineering physics and engineering science choose to tackle compelling issues in materials science and engineering or engineering science

  18. Nanostructured magnetic materials

    E-Print Network [OSTI]

    Chan, Keith T.

    2011-01-01T23:59:59.000Z

    Magnetism and Magnetic Materials Conference, Atlanta, GA (Nanostructured Magnetic Materials by Keith T. Chan Doctor ofinduced by a Si-based material occurs at a Si/Ni interface

  19. MATERIALS TRANSFER AGREEMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

  20. Materials at the Mesoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials at the Mesoscale 1663 Los Alamos science and technology magazine Latest Issue:January 2015 All Issues submit Materials at the Mesoscale Los Alamos's bold proposal to...

  1. UNCLASSIFIED Institute for Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute for Materials Science Lecture Series Dr Roger D Doherty M.A. D. Phil., Fellow TMS Emeritus Professor of Materials Science and Engineering, Drexel University,...

  2. Transporting Hazardous Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transporting Hazardous Materials The procedures given below apply to all materials that are considered to be hazardous by the U.S. Department of Transportation (DOT). Consult your...

  3. battery materials | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery materials battery materials Leads No leads are available at this time. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. Abstract: The...

  4. EMSL - Energy Materials & Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy Energy Materials and Processes focuses on the dynamic transformation mechanisms and physical and chemical properties at critical interfaces in catalysts and energy materials...

  5. Propulsion Materials Research Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Materials for Electric and Hybrid Drive Systems - Address materials issues impacting power electronics, motors, and other hybrid drive system components * Combustion System...

  6. Materials Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of these as mixed- material systems. Additionally, materials such as titanium, polycarbonate, acrylics, and metal matrix composites, and approaches to their use must be...

  7. Materials Science & Engineering

    E-Print Network [OSTI]

    Materials Science & Engineering In this presentation the role of materials in power generation and the person responsible for the integration of science and resources in the Materials Science & Technology University in Mexico City and a Ph.D. in Materials Engineering from Rensselaer Polytechnic Institute, Troy NY

  8. Coated ceramic breeder materials

    DOE Patents [OSTI]

    Tam, Shiu-Wing (Downers Grove, IL); Johnson, Carl E. (Elk Grove, IL)

    1987-01-01T23:59:59.000Z

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  9. HAZARDOUS MATERIALS EMERGENCY RESPONSE

    E-Print Network [OSTI]

    ANNEX Q HAZARDOUS MATERIALS EMERGENCY RESPONSE #12;ANNEX Q - HAZARDOUS MATERIALS EMERGENCY RESPONSE 03/10/2014 v.2.0 Page Q-1 PROMULGATION STATEMENT Annex Q: Hazardous Materials Emergency Response, and contents within, is a guide to how the University conducts a response specific to a hazardous materials

  10. UNDERGRADUATE Materials Science & Engineering

    E-Print Network [OSTI]

    Tipple, Brett

    UNDERGRADUATE HANDBOOK Materials Science & Engineering 2013 2014 #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

  11. Materials Science & Engineering

    E-Print Network [OSTI]

    Simons, Jack

    Materials Science & Engineering The University of Utah 2014-15 Undergraduate Handbook #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

  12. A Materials Facilities Initiative -

    E-Print Network [OSTI]

    A Materials Facilities Initiative - FMITS & MPEX D.L. Hillis and ORNL Team Fusion & Materials for Nuclear Systems Division July 10, 2014 #12;2 Materials Facilities Initiative JET ITER FNSF Fusion Reactor Challenges for materials: fluxes and fluence, temperatures 50 x divertor ion fluxes up to 100 x neutron

  13. University Materials Institute INTRODUCTION

    E-Print Network [OSTI]

    Escolano, Francisco

    University Materials Institute INTRODUCTION The University Materials Science Institute of Alicante the needed multidisciplinary character of the materials area. It is important to highlight the fact participate in the Materials Science PhD program which is imparted at the UA. Scientific research

  14. Dental Materials BIOMATERIALS

    E-Print Network [OSTI]

    Dental Materials BIOMATERIALS Our goal is to provide reference materials and clinically relevant measurement methods to facilitate a rational approach to dental materials design, thus enabling improvements in the clinical performance of dental materials. In particular, methods for determining long-term performance

  15. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  16. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, Robert E. (Los Alamos, NM); Ramsey, David R. (Bothel, WA); Stampfer, Joseph F. (Santa Fe, NM); Macdonald, John M. (Santa Fe, NM)

    1998-01-01T23:59:59.000Z

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material.

  17. Supporting Online Material Materials and Methods

    E-Print Network [OSTI]

    Wolfe, Cecily J.

    1 Supporting Online Material Materials and Methods (15) For all possible earthquake pairs. The parameters chosen for window length, filter bandpass, negative sidelobe identification, and cross-correlation threshold are appropriate for high-frequency earthquakes. In order to remove false positives or poor data

  18. SUPPORTING ONLINE MATERIAL Materials and Methods

    E-Print Network [OSTI]

    Newsome, William

    SUPPORTING ONLINE MATERIAL Materials and Methods Two adult male rhesus monkeys (Macaca mulatta with a head-holding device (S1), scleral search coil for monitoring eye position (S2) and a recording chamber monkeys remain actively engaged in experiments, so precise histological identification of recording sites

  19. Sensors & Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensors and Materials Argonne uses its materials and engineering expertise to develop, test, and deploy sensors and materials to detect nuclear and radiological materials, chemical...

  20. Lightweighting Materials | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL conducts lightweight materials research in several areas: materials development, properties and manufacturing, computational materials science, and multi-material enabling...

  1. Joining of dissimilar materials

    DOE Patents [OSTI]

    Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

    2012-10-16T23:59:59.000Z

    A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

  2. Field evaluation of aerial applications of hydramethylnon and metaflumizone to control the red imported fire ant, Solenopsis invicta (Buren) and related ant species (Hymenoptera: formicidae)

    E-Print Network [OSTI]

    Thompson, Aaron Neal

    2009-05-15T23:59:59.000Z

    and applied to defatted corn grit. Amdro? was conditionally registered in 1980 for use against RIFA. Currently, Amdro Pro? (BASF Corp., 26 Davis Dr., P.O. Box 13528, Research Triangle Park, NC) is registered for use on pastures, range grasses, lawns, turfs..., and non-agricultural land (Meister 2008). No published results have been done to evaluate the effectiveness of aerial applications of Amdro Pro?. Siesta? (BASF Corp., 26 Davis Dr., P.O. Box 13528, Research Triangle Park, NC) is a RIFA bait...

  3. Materials for breeding blankets

    SciTech Connect (OSTI)

    Mattas, R.F.; Billone, M.C.

    1995-09-01T23:59:59.000Z

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as Primary Blanket Materials, which have the greatest influence in determining the overall design and performance, and Secondary Blanket Materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified.

  4. Nondestructive material characterization

    DOE Patents [OSTI]

    Deason, Vance A. (Idaho Falls, ID); Johnson, John A. (Idaho Falls, ID); Telschow, Kenneth L. (Idaho Falls, ID)

    1991-01-01T23:59:59.000Z

    A method and apparatus for nondestructive material characterization, such as identification of material flaws or defects, material thickness or uniformity and material properties such as acoustic velocity. The apparatus comprises a pulsed laser used to excite a piezoelectric (PZ) transducer, which sends acoustic waves through an acoustic coupling medium to the test material. The acoustic wave is absorbed and thereafter reflected by the test material, whereupon it impinges on the PZ transducer. The PZ transducer converts the acoustic wave to electrical impulses, which are conveyed to a monitor.

  5. EC Transmission Line Materials

    SciTech Connect (OSTI)

    Bigelow, Tim S [ORNL

    2012-05-01T23:59:59.000Z

    The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH&CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. [Ref. 2] Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.

  6. INTERDISCIPLINARY MATERIALS SCIENCE GRADUATE PROGRAM IN MATERIALS SCIENCE

    E-Print Network [OSTI]

    Simaan, Nabil

    .m.satterwhite@vanderbilt.edu Interdisciplinary Graduate Program in Materials Science Vanderbilt University School of Engineering PMB 350106INTERDISCIPLINARY MATERIALS SCIENCE GRADUATE PROGRAM IN MATERIALS SCIENCE Materials advancements, faculty members from chemistry, physics, materials engineering, chemical engineering, electrical

  7. Materials Science & Engineering

    E-Print Network [OSTI]

    and Forensics team in the Polymers and Coatings Group, MST-7. He graduated from the University of Toledo, aerogels, carbon fiber composites, damaged materials, and low density materials examining defects

  8. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute for Material Science Who we are and what we do 2:23 Institute for Materials Science: Alexander V. Balatsky IMS is an interdisciplinary research and educational center...

  9. Electronic digital materials

    E-Print Network [OSTI]

    Langford, William Kai

    2014-01-01T23:59:59.000Z

    Digital materials are constructions assembled from a small number of types of discrete building blocks; they represent a new way of building functional, multi-material, three-dimensional structures. In this thesis, I focus ...

  10. Geopolymer Sealing Materials

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop and characterize field-applicable geopolymer temporary sealing materials in the laboratory and to transfer this developed material technology to geothermal drilling service companies as collaborators for field validation tests.

  11. Nanocomposites as thermoelectric materials

    E-Print Network [OSTI]

    Hao, Qing

    2010-01-01T23:59:59.000Z

    Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, ...

  12. Factors of material consumption

    E-Print Network [OSTI]

    Silva Díaz, Pamela Cristina

    2012-01-01T23:59:59.000Z

    Historic consumption trends for materials have been studied by many researchers, and, in order to identify the main drivers of consumption, special attention has been given to material intensity, which is the consumption ...

  13. Nanostructured composite reinforced material

    DOE Patents [OSTI]

    Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    2012-07-31T23:59:59.000Z

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  14. VHTR Materials Overview

    SciTech Connect (OSTI)

    Wright, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-07-30T23:59:59.000Z

    The PowerPoint presentation was given at the DOE-NE Materials Crosscut Coordination Meeting, Tuesday, 30 July 2013.

  15. Research Councils UK materials

    E-Print Network [OSTI]

    Berzins, M.

    as completely new materials such as super-strong graphene, or developments of traditional materials such as graphene is still being realised, with the Research Councils investing in both the further exploitation to UK growth. For example, the 2004 `discovery' of wonder-material graphene sparked a host of global

  16. MATERIALS SCIENCE ENGINEERING

    E-Print Network [OSTI]

    California at Irvine, University of

    MATERIALS SCIENCE AND ENGINEERING GRADUATE MANUAL COLLEGE OF ENGINEERING UNIVERSITY OF CALIFORNIA AT BERKELEY October 23, 2013 #12;Materials Science and Engineering University of California at Berkeley Page 2 Subject Matter · Outcome of the Preliminary Exam #12;Materials Science and Engineering University

  17. MATERIALS SCIENCE AND ENGINEERING

    E-Print Network [OSTI]

    Knobloch,Jürgen

    MATERIALS SCIENCE AND ENGINEERING BACHELOR OF SCIENCE MASTER OF SCIENCE Get your own impression. Materials Science and Engineering in Ilmenau stands for: + a broad and practical university education Catòlica del Peru (PUCP) in Lima/Peru and to receive a double degree in Materials Science and Engineering

  18. Radioactive Materials License Commitments

    E-Print Network [OSTI]

    Radioactive Materials License Commitments for The University of Texas at Austin May 2009 July 2009 in the use of radioactive materials. In July 1963, the State of Texas granted The University of Texas at Austin a broad radioactive materials license for research, development and instruction. While this means

  19. Advanced neutron absorber materials

    DOE Patents [OSTI]

    Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

    2000-01-01T23:59:59.000Z

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  20. Aeriality : music for orchestra

    E-Print Network [OSTI]

    Anna S. Þorvaldsdóttir

    2011-01-01T23:59:59.000Z

    œ . œ . œ . œ . œ . œ . ® ‰ ppp n œ œ . œ . œ . œ . œ . œ .n œ œ Bsn. pp 5 Ob. B. Cl. ppp # œ œ œ œ b œ n œ œ # œ œ p wn œ b œ n œ œ b œ œ b œ ~ w ppp o ord. - senza s.p. w pp ~ w

  1. ARM Aerial Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become agovEducationWelcome to Study Hall Outreach

  2. Materials Science and Materials Chemistry for Large Scale Electrochemi...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid Materials Science and Materials Chemistry for Large Scale...

  3. FY 2009 Progress Report for Lightweighting Materials - 12. Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Lightweighting Materials - 12. Materials Crosscutting Research and Development The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction...

  4. ADVANCED MATERIALS Curriculum Biomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP

    E-Print Network [OSTI]

    Pfeifer, Holger

    ADVANCED MATERIALS Curriculum Biomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP Computational Methods in Materials Science 4 CP Lab Materials Science I 5 CP Physical Chemistry 4 CP General Chemistry 2 CP Synthesis of Org. & Inorg. Materials 4 CP Introductory Solid

  5. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

    2012-05-15T23:59:59.000Z

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  6. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

    2010-07-13T23:59:59.000Z

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  7. Vibrational Damping of Composite Materials

    E-Print Network [OSTI]

    Biggerstaff, Janet M.

    2006-01-01T23:59:59.000Z

    Smart Structures and Materials, 3989:531- 538. Biggerstaff,2002. “Electroviscoelastic Materials As Active Dampers”,Smart Structures and Materials, 4695:345-350. Biggerstaff,

  8. Deformation Mechanisms in Nanocrystalline Materials

    E-Print Network [OSTI]

    Mohamed, Farghalli A.; Yang, Heather

    2010-01-01T23:59:59.000Z

    2010 METALLURGICAL AND MATERIALS TRANSACTIONS A 47. F.A.12. METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 41A,of Slip: Progress in Materials Science, Pergamon Press,

  9. Advanced Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials SHARE Advanced Materials ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of...

  10. Environmental Evaluation of Water Resources Development

    E-Print Network [OSTI]

    James, W. P.; Woods, C. E.; Blanz, R. E.

    Methodology for the utilization of LANDSAT-1 imagery and aerial photography on the environmental evaluation of water resources development is presented. Environmental impact statements for water resource projects were collected and reviewed...

  11. Environmental Evaluation of Water Resources Development 

    E-Print Network [OSTI]

    James, W. P.; Woods, C. E.; Blanz, R. E.

    1976-01-01T23:59:59.000Z

    Methodology for the utilization of LANDSAT-1 imagery and aerial photography on the environmental evaluation of water resources development is presented. Environmental impact statements for water resource projects were collected and reviewed...

  12. Jurisdictional waters of the United States Wetlands Assessment Analysis and Delineation

    E-Print Network [OSTI]

    Siems-Alford, Susan

    1994-01-01T23:59:59.000Z

    . The subject property was evaluated for its content of jurisdictional wetlands, based on U.S. Army corps of Engineers criteria, using interpretation of historical aerial photography, topographic maps, hydrology indicators, and data gathered from site...

  13. Wide Bandgap Materials

    Broader source: Energy.gov (indexed) [DOE]

    Materials Madhu Chinthavali Oak Ridge National Laboratory May 15, 2012 Project ID: APE007 This presentation does not contain any proprietary, confidential, or otherwise restricted...

  14. Critical Materials Strategy Summary

    Broader source: Energy.gov (indexed) [DOE]

    in magnets, batteries, photovoltaic films and phosphors; environmentally sound mining and materials processing; and recycling. The eight programs and policies address...

  15. Radioactive Material Transportation Practices

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23T23:59:59.000Z

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  16. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17T23:59:59.000Z

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

  17. UESC Workshop Materials

    Broader source: Energy.gov (indexed) [DOE]

    Policy Act (NEPA) Detailed disposal requirements statement for hazardous materials related to the project are essential It is in the FAR Subpart 23.3. Acquisition...

  18. Geopolymer Sealing Materials

    Broader source: Energy.gov (indexed) [DOE]

    Geopolymer Sealing Materials PI : Dr. Tomas Butcher Presenter: Dr. Toshi Sugama Brookhaven National Laboratory May 18, 2010 This presentation does not contain any proprietary...

  19. Materials for MA 182.

    E-Print Network [OSTI]

    Materials for MA 182. INSTRUCTOR: Richard Penney. Office: MATH 822: Telephone: 494-1968: e-mail: rcp@math.purdue.edu: Office Hours: Mon, Tu, Fri,

  20. Layered Cathode Materials

    Broader source: Energy.gov (indexed) [DOE]

    Layered Cathode Materials presented by Michael Thackeray Chemical Sciences and Engineering Division, Argonne Annual Merit Review DOE Vehicle Technologies Program Washington, D.C....

  1. EMSL - battery materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery-materials en Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. http:www.emsl.pnl.govemslwebpublicationsmodeling-interfacial-glass-wa...

  2. Thermoelectric materials having porosity

    DOE Patents [OSTI]

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05T23:59:59.000Z

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  3. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Morrow, Marvin S. (Kingston, TN)

    1994-01-01T23:59:59.000Z

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  4. LANSCE | Materials Test Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility Training Office Contact Administrative nav background Materials Test Station dotline Testing New Reactor Fuels that Reduce Radioactive Waste Mission Used...

  5. Fluorinated elastomeric materials

    DOE Patents [OSTI]

    Lagow, Richard J. (6204 Shadow Mountain, Austin, TX 78731); Dumitru, Earl T. (10116 Aspen St., Austin, TX 78758)

    1986-11-04T23:59:59.000Z

    This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.

  6. Fluorinated elastomeric materials

    DOE Patents [OSTI]

    Lagow, Richard J. (6204 Shadow Mountain, Austin, TX 78731); Dumitru, Earl T. (10116 Aspen St., Austin, TX 78758)

    1990-02-13T23:59:59.000Z

    This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.

  7. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, C.E.; Morrow, M.S.

    1994-07-19T23:59:59.000Z

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  8. Radiation Safety Training Materials

    Broader source: Energy.gov [DOE]

    The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

  9. DOE Automotive Lightweighting Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    materials for fiber reinforced composites. Until now, they have only been used in the automotive industry with thermoplastics and not as a matrix for fiber reinforced...

  10. Webinar: Materials Genome Initative

    Broader source: Energy.gov [DOE]

    Audio recording and text version of the Fuel Cell Technologies Office webinar titled "Materials Genome Initiative," originally presented on December 2, 2014.

  11. Hazardous Material Security (Maryland)

    Broader source: Energy.gov [DOE]

    All facilities processing, storing, managing, or transporting hazardous materials must be evaluated every five years for security issues. A report must be submitted to the Department of the...

  12. Materials and Metallurgy Materials Science and Metallurgical Engineering

    E-Print Network [OSTI]

    Provancher, William

    Materials and Metallurgy Materials Science and Metallurgical Engineering Objective Students "Rocks and Materials Science" Presentation. Review uses of rocks. Explain that engineers extract Engineers to efficiently and safely extract ore, Metallurgical Engineers to refine the copper, and Materials

  13. How to Use the Index & Grid Maps Each BioBlitz Zone has a map packet. The packets contain an index map and several grid (aerial) maps. In addition to identifying

    E-Print Network [OSTI]

    Columbia University

    How to Use the Index & Grid Maps Each BioBlitz Zone has a map packet. The packets contain an index map and several grid (aerial) maps. In addition to identifying species in the park, this year we would of the zone. This map shows which areas are covered by the grid maps. The black squares show the edge of each

  14. From Smart Materials to Cognitive Materials Requirements and Challenges

    E-Print Network [OSTI]

    Bremen, Universität

    From Smart Materials to Cognitive Materials ­ Requirements and Challenges Lutz Frommberger (lutz materials are materials that are either capa- ble of changing some of their properties according to external within the material itself. The latter is also called sensorial material (Lawo et. al., 2009). Recently

  15. Materials Science and Technology Mechanical and Materials Engineering

    E-Print Network [OSTI]

    Birmingham, University of

    Materials Science and Technology Metallurgy Mechanical and Materials Engineering Materials Science with Energy Engineering Materials Science with Business Management Course Prospectus School of Metallurgy for Metallurgy and Materials What difference will you make? #12;2 School of Metallurgy and Materials Contents

  16. Nanocrystalline Heterojunction Materials

    DOE Patents [OSTI]

    Elder, Scott H. (Portland, OR); Su, Yali (Richland, WA); Gao, Yufei (Blue Bell, PA); Heald, Steve M. (Downers Grove, IL)

    2004-02-03T23:59:59.000Z

    Mesoporous nanocrystalline titanium dioxide heterojunction materials and methods of making the same are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  17. Nanocrystalline heterojunction materials

    DOE Patents [OSTI]

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

    2003-07-15T23:59:59.000Z

    Mesoporous nanocrystalline titanium dioxide heterojunction materials are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  18. MULTISCALE PHENOMENA IN MATERIALS

    SciTech Connect (OSTI)

    A. BISHOP

    2000-09-01T23:59:59.000Z

    This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.

  19. Impacted material placement plans

    SciTech Connect (OSTI)

    Hickey, M.J.

    1997-01-29T23:59:59.000Z

    Impacted material placement plans (IMPP) are documents identifying the essential elements in placing remediation wastes into disposal facilities. Remediation wastes or impacted material(s) are those components used in the construction of the disposal facility exclusive of the liners and caps. The components might include soils, concrete, rubble, debris, and other regulatory approved materials. The IMPP provides the details necessary for interested parties to understand the management and construction practices at the disposal facility. The IMPP should identify the regulatory requirements from applicable DOE Orders, the ROD(s) (where a part of a CERCLA remedy), closure plans, or any other relevant agreements or regulations. Also, how the impacted material will be tracked should be described. Finally, detailed descriptions of what will be placed and how it will be placed should be included. The placement of impacted material into approved on-site disposal facilities (OSDF) is an integral part of gaining regulatory approval. To obtain this approval, a detailed plan (Impacted Material Placement Plan [IMPP]) was developed for the Fernald OSDF. The IMPP provides detailed information for the DOE, site generators, the stakeholders, regulatory community, and the construction subcontractor placing various types of impacted material within the disposal facility.

  20. MATERIAL TRACKING USING LANMAS

    SciTech Connect (OSTI)

    Armstrong, F.

    2010-06-07T23:59:59.000Z

    LANMAS is a transaction-based nuclear material accountability software product developed to replace outdated and legacy accountability systems throughout the DOE. The core underlying purpose of LANMAS is to track nuclear materials inventory and report transactions (movement, mixing, splitting, decay, etc.) to the Nuclear Materials Management and Safeguards System (NMMSS). While LANMAS performs those functions well, there are many additional functions provided by the software product. As a material is received onto a site or created at a site, its entire lifecycle can be tracked in LANMAS complete to its termination of safeguards. There are separate functions to track material movements between and within material balance areas (MBAs). The level of detail for movements within a MBA is configurable by each site and can be as high as a site designation or as detailed as building/room/rack/row/position. Functionality exists to track the processing of materials, either as individual items or by modeling a bulk process as an individual item to track inputs and outputs from the process. In cases where sites have specialized needs, the system is designed to be flexible so that site specific functionality can be integrated into the product. This paper will demonstrate how the software can be used to input material into an account and track it to its termination of safeguards.

  1. Detecting Illicit Nuclear Materials

    SciTech Connect (OSTI)

    Kouzes, Richard T.

    2005-09-01T23:59:59.000Z

    The threat that weapons of mass destruction might enter the United States has led to a number of efforts for the detection and interdiction of nuclear, radiological, chemical, and biological weapons at our borders. There have been multiple deployments of instrumentation to detect radiation signatures to interdict radiological material, including weapons and weapons material worldwide.

  2. ADVANCED MATERIALS Curriculum Nanomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP

    E-Print Network [OSTI]

    Pfeifer, Holger

    ADVANCED MATERIALS Curriculum Nanomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP Computational Methods in Materials Science 4 CP Lab Materials Science I 5 CP Science Chemistry Physics Engineering Nanomaterials Introductory Engineering 5 CP #12;

  3. Degrees in Metallurgy and Materials

    E-Print Network [OSTI]

    Birmingham, University of

    Degrees in Metallurgy and Materials Course outline School of Metallurgy and Materials Materials us? Dr Alessandro Mottura Undergraduate Admissions Tutor for Metallurgy and Materials What difference will you make? #12;Degrees in Metallurgy and Materials Understanding the properties of new materials

  4. Unmanned Aerial Vehicle (UAV) Dynamic-Tracking Directional Wireless Antennas for Low Powered Applications that Require Reliable Extended Range Operations in Time Critical Scenarios

    SciTech Connect (OSTI)

    Scott G. Bauer; Matthew O. Anderson; James R. Hanneman

    2005-10-01T23:59:59.000Z

    The proven value of DOD Unmanned Aerial Vehicles (UAVs) will ultimately transition to National and Homeland Security missions that require real-time aerial surveillance, situation awareness, force protection, and sensor placement. Public services first responders who routinely risk personal safety to assess and report a situation for emergency actions will likely be the first to benefit from these new unmanned technologies. ‘Packable’ or ‘Portable’ small class UAVs will be particularly useful to the first responder. They require the least amount of training, no fixed infrastructure, and are capable of being launched and recovered from the point of emergency. All UAVs require wireless communication technologies for real- time applications. Typically on a small UAV, a low bandwidth telemetry link is required for command and control (C2), and systems health monitoring. If the UAV is equipped with a real-time Electro-Optical or Infrared (EO/Ir) video camera payload, a dedicated high bandwidth analog/digital link is usually required for reliable high-resolution imagery. In most cases, both the wireless telemetry and real-time video links will be integrated into the UAV with unity gain omni-directional antennas. With limited on-board power and payload capacity, a small UAV will be limited with the amount of radio-frequency (RF) energy it transmits to the users. Therefore, ‘packable’ and ‘portable’ UAVs will have limited useful operational ranges for first responders. This paper will discuss the limitations of small UAV wireless communications. The discussion will present an approach of utilizing a dynamic ground based real-time tracking high gain directional antenna to provide extend range stand-off operation, potential RF channel reuse, and assured telemetry and data communications from low-powered UAV deployed wireless assets.

  5. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweighting Materials Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus Lightweighting Materials 2011 DOE Hydrogen and Fuel Cells...

  6. Digital Terrain Modeling Ayman F. Habib ENGO 573: Chapter 4

    E-Print Network [OSTI]

    Habib, Ayman

    Photography (Tropical) SPOT Satellite Aerial Photography (Urban) Satellite Stereo SAR (RADARSAT) Airborne orthogonally projected maps. · Procedure: ­ Interior orientation. · Calibration procedure. ­ Exterior a calibration procedure. #12;10 Digital Terrain Modeling Ayman F. Habib 19 Test Field for Camera Calibration

  7. ATS materials/manufacturing

    SciTech Connect (OSTI)

    Karnitz, M.A.; Wright, I.G.; Ferber, M.K. [and others

    1997-11-01T23:59:59.000Z

    The Materials/Manufacturing Technology subelement is a part of the base technology portion of the Advanced Turbine Systems (ATS) Program. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. The projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single crystal airfoil manufacturing technologies, materials characterization, and technology information exchange. This paper presents highlights of the activities during the past year. 12 refs., 24 figs., 4 tabs.

  8. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1988-06-20T23:59:59.000Z

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  9. Material Challenges and Perspectives

    SciTech Connect (OSTI)

    Choi, Daiwon; Wang, Wei; Yang, Zhenguo

    2011-12-14T23:59:59.000Z

    General history and principals of Li-ion battery, characterization techniques and terminology of its operation will be discussed and explained. Current Li-ion battery applications and comparison to other energy storage and conversion systems will be outlined. Chemistry, material and design of currently commercialized Li-ion batteries will be discussed including various electrode materials for cathodes and anodes. The electrode material candidates and its physical and chemical properties including crystal structure, capacity, cycling stability, cost and safety. Also, current limitations of Li-ion batteries will be discussed.

  10. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1989-05-23T23:59:59.000Z

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  11. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, Roger L. (Albuquerque, NM); Sylwester, Alan P. (Albuquerque, NM)

    1989-01-01T23:59:59.000Z

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  12. RADIOACTIVE MATERIALS SENSORS

    SciTech Connect (OSTI)

    Mayo, Robert M.; Stephens, Daniel L.

    2009-09-15T23:59:59.000Z

    Providing technical means to detect, prevent, and reverse the threat of potential illicit use of radiological or nuclear materials is among the greatest challenges facing contemporary science and technology. In this short article, we provide brief description and overview of the state-of-the-art in sensor development for the detection of radioactive materials, as well as an identification of the technical needs and challenges faced by the detection community. We begin with a discussion of gamma-ray and neutron detectors and spectrometers, followed by a description of imaging sensors, active interrogation, and materials development, before closing with a brief discussion of the unique challenges posed in fielding sensor systems.

  13. Fissile material detector

    DOE Patents [OSTI]

    Ivanov, Alexander I. (Dubna, RU); Lushchikov, Vladislav I. (Dubna, RU); Shabalin, Eugeny P. (Dubna, RU); Maznyy, Nikita G. (Dubna, RU); Khvastunov, Michael M. (Dubna, RU); Rowland, Mark (Alamo, CA)

    2002-01-01T23:59:59.000Z

    A detector for fissile materials which provides for integrity monitoring of fissile materials and can be used for nondestructive assay to confirm the presence of a stable content of fissile material in items. The detector has a sample cavity large enough to enable assay of large items of arbitrary configuration, utilizes neutron sources fabricated in spatially extended shapes mounted on the endcaps of the sample cavity, incorporates a thermal neutron filter insert with reflector properties, and the electronics module includes a neutron multiplicity coincidence counter.

  14. Critical Materials Hub

    Broader source: Energy.gov [DOE]

    Critical materials, including some rare earth elements that possess unique magnetic, catalytic, and luminescent properties, are key resources needed to manufacture products for the clean energy economy. These materials are so critical to the technologies that enable wind turbines, solar panels, electric vehicles, and energy-efficient lighting that DOE's 2010 and 2011 Critical Materials Strategy reported that supply challenges for five rare earth metals—dysprosium, neodymium, terbium, europium, and yttrium—could affect clean energy technology deployment in the coming years.1, 2

  15. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01T23:59:59.000Z

    xi Material CharacterizationThermoelectric Materials . . . . . . . . Graphene-Like5 Nanostructured Materials for Electrochemical Energy

  16. Materials at LANL

    SciTech Connect (OSTI)

    Taylor, Antoinette J [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Exploring the physics, chemistry, and metallurgy of materials has been a primary focus of Los Alamos National Laboratory since its inception. In the early 1940s, very little was known or understood about plutonium, uranium, or their alloys. In addition, several new ionic, polymeric, and energetic materials with unique properties were needed in the development of nuclear weapons. As the Laboratory has evolved, and as missions in threat reduction, defense, energy, and meeting other emerging national challenges have been added, the role of materials science has expanded with the need for continued improvement in our understanding of the structure and properties of materials and in our ability to synthesize and process materials with unique characteristics. Materials science and engineering continues to be central to this Laboratory's success, and the materials capability truly spans the entire laboratory - touching upon numerous divisions and directorates and estimated to include >1/3 of the lab's technical staff. In 2006, Los Alamos and LANS LLC began to redefine our future, building upon the laboratory's established strengths and promoted by strongly interdependent science, technology and engineering capabilities. Eight Grand Challenges for Science were set forth as a technical framework for bridging across capabilities. Two of these grand challenges, Fundamental Understanding of Materials and Superconductivity and Actinide Science. were clearly materials-centric and were led out of our organizations. The complexity of these scientific thrusts was fleshed out through workshops involving cross-disciplinary teams. These teams refined the grand challenge concepts into actionable descriptions to be used as guidance for decisions like our LDRD strategic investment strategies and as the organizing basis for our external review process. In 2008, the Laboratory published 'Building the Future of Los Alamos. The Premier National Security Science Laboratory,' LA-UR-08-1541. This document introduced three strategic thrusts that crosscut the Grand Challenges and define future laboratory directions and facilities: (1) Information Science and Technology enabl ing integrative and predictive science; (2) Experimental science focused on materials for the future; and (3) Fundamental forensic science for nuclear, biological, and chemical threats. The next step for the Materials Capability was to develop a strategic plan for the second thrust, Materials for the Future. within the context of a capabilities-based Laboratory. This work has involved extending our 2006-2007 Grand Challenge workshops, integrating materials fundamental challenges into the MaRIE definition, and capitalizing on the emerging materials-centric national security missions. Strategic planning workshops with broad leadership and staff participation continued to hone our scientific directions and reinforce our strength through interdependence. By the Fall of 2008, these workshops promoted our primary strength as the delivery of Predictive Performance in applications where Extreme Environments dominate and where the discovery of Emergent Phenomena is a critical. These planning efforts were put into action through the development of our FY10 LDRD Strategic Investment Plan where the Materials Category was defined to incorporate three central thrusts: Prediction and Control of Performance, Extreme Environments and Emergent Phenomena. As with all strategic planning, much of the benefit is in the dialogue and cross-fertilization of ideas that occurs during the process. By winter of 2008/09, there was much agreement on the evolving focus for the Materials Strategy, but there was some lingering doubt over Prediction and Control of Performance as one of the three central thrusts, because it overarches all we do and is, truly, the end goal for materials science and engineering. Therefore, we elevated this thrust within the overarching vision/mission and introduce the concept of Defects and Interfaces as a central thrust that had previously been implied but not clearly articulated.

  17. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-05-26T23:59:59.000Z

    To establish requirements and procedures for the management of nuclear materials within the Department of Energy (DOE). Cancels DOE 5660.1A. Canceled by DOE O 410.2.

  18. Nuclear Material Packaging Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-03-07T23:59:59.000Z

    The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. No cancellation. Certified 11-18-10.

  19. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

    2012-04-10T23:59:59.000Z

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  20. Nuclear material operations manual

    SciTech Connect (OSTI)

    Tyler, R.P.

    1981-02-01T23:59:59.000Z

    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion.

  1. Leadership Honors Application Materials

    E-Print Network [OSTI]

    Pantaleone, Jim

    1 Leadership Honors Application Materials Spring 2013 Purpose Leadership Honors are awarded to individuals upon graduation in order to recognize and honor their leadership contributions to the University of Alaska Anchorage while maintaining academic excellence. Leadership activities must enhance

  2. Leadership Honors Application Materials

    E-Print Network [OSTI]

    Pantaleone, Jim

    1 Leadership Honors Application Materials Fall 2009 Purpose Leadership Honors are awarded to individuals upon graduation in order to recognize and honor their leadership contributions to the University of Alaska Anchorage while maintaining academic excellence. Leadership activities must enhance

  3. Leadership Honors Application Materials

    E-Print Network [OSTI]

    Pantaleone, Jim

    1 Leadership Honors Application Materials Fall 2012 Purpose Leadership Honors are awarded to individuals upon graduation in order to recognize and honor their leadership contributions to the University of Alaska Anchorage while maintaining academic excellence. Leadership activities must enhance

  4. Leadership Honors Application Materials

    E-Print Network [OSTI]

    Pantaleone, Jim

    1 Leadership Honors Application Materials Spring 2012 Purpose Leadership Honors are awarded to individuals upon graduation in order to recognize and honor their leadership contributions to the University of Alaska Anchorage while maintaining academic excellence. Leadership activities must enhance

  5. Heavy Vehicle Propulsion Materials

    SciTech Connect (OSTI)

    Ray Johnson

    2000-01-31T23:59:59.000Z

    The objectives are to Provide Key Enabling Materials Technologies to Increase Energy Efficiency and Reduce Exhaust Emissions. The following goals are listed: Goal 1: By 3rd quarter 2002, complete development of materials enabling the maintenance or improvement of fuel efficiency {ge} 45% of class 7-8 truck engines while meeting the EPA/Justice Department ''Consent Decree'' for emissions reduction. Goal 2: By 4th quarter 2004, complete development of enabling materials for light-duty (class 1-2) diesel truck engines with efficiency over 40%, over a wide range of loads and speeds, while meeting EPA Tier 2 emission regulations. Goal 3: By 4th quarter 2006, complete development of materials solutions to enable heavy-duty diesel engine efficiency of 50% while meeting the emission reduction goals identified in the EPA proposed rule for heavy-duty highway engines.''

  6. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal...

  7. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17T23:59:59.000Z

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 410.2. Admin Chg 1 dated 4-10-2014, cancels DOE O 410.2.

  8. MATERIALS SCIENCE HEALTHCARE POLICY

    E-Print Network [OSTI]

    Falge, Eva

    for Polymer Research are paving the way to optimizing organic substances for use in solar cells, light-emitting diodes and memory chips, and are using molecular materials to develop electronic components

  9. Electrically conductive material

    DOE Patents [OSTI]

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07T23:59:59.000Z

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  10. Computational Chemical Materials Engineering

    E-Print Network [OSTI]

    Home Computational Chemical and Materials Engineering Tahir Cagin Chemical Engineering Department through processing for improving their performance for engineering applications · Use and develop with usable ­ Chemical ­ Electronic ­ Optical ­ Magnetic ­ Transport, thermal and mechanical properties

  11. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Wang, Xiqing

    2013-08-20T23:59:59.000Z

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  12. Critical Materials Workshop

    Broader source: Energy.gov [DOE]

    AMO hosted a public workshop on Tuesday, April 3, 2012 in Arlington, VA to provide background information on critical materials assessment, the current research within DOE related to critical...

  13. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng (Knoxville, TN); Wang, Xiqing (Oak Ridge, TN)

    2012-02-14T23:59:59.000Z

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  14. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO)

    1993-01-01T23:59:59.000Z

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  15. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, D.K.; Burrows, R.W.

    1993-04-13T23:59:59.000Z

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  16. Nano-composite materials

    DOE Patents [OSTI]

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25T23:59:59.000Z

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  17. Materials in design 

    E-Print Network [OSTI]

    Perata, Alfredo Ferando

    1970-01-01T23:59:59.000Z

    alloys have good machinability. Melding has two -25- critical factors, the weakness of aluminum alloys at high temperatures and oxidation. However, aluminum derives its corrosion ? resistance quality from this oxide, It has to removed before welding...-Ferrous Metals Copper alloys Aluminum Magnesium Lead Zinc Tin Non-Metallic Materials Wood Stone Brick Cement Cont rete Rubber Leather Asbestos Mica Ceramics Glass Engineering design has to have in consideration, the use to which the material...

  18. Biomimetic Hydrogel Materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn (Albany, CA), Mukkamala, Ravindranath (Houston, TX), Chen, Oing (Albany, CA), Hu, Hopin (Albuquerque, NM), Baude, Dominique (Creteil, FR)

    2003-04-22T23:59:59.000Z

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  19. Biomimetic hydrogel materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn (Albany, CA); Mukkamala, Ravindranath (Houston, TX); Chen, Qing (Albany, CA); Hu, Hopin (Albuquerque, NM); Baude, Dominique (Creteil, FR)

    2000-01-01T23:59:59.000Z

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  20. A Materials World Materials science and Engineering at the ANU

    E-Print Network [OSTI]

    A Materials World Materials science and Engineering at the ANU For a challenging and rewarding a career in materials science and engineering. Materials science is emerging as one of the most important. Researchers at ANU's Department of Electronic Materials Engineering are leading nanotube science

  1. BUILDING MATERIALS RECLAMATION PROGRAM

    SciTech Connect (OSTI)

    David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner

    2010-08-31T23:59:59.000Z

    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

  2. Panel 3 - material science

    SciTech Connect (OSTI)

    Sarrao, John L [Los Alamos National Laboratory; Yip, Sidney [MIT

    2010-01-01T23:59:59.000Z

    In the last decades, NNSA's national security challenge has evolved, and the role of simulation and computation has grown dramatically. The process of certifying nuclear weapons performance has changed from one based on integrated tests to science-based certification in which underground nuclear tests have been replaced by large-scale simulations, appropriately validated with fundamental experimental data. Further, the breadth of national security challenges has expanded beyond stewardship of a nuclear deterrent to a broad range of global and asymmetric threats. Materials challenges are central to the full suite of these national security challenges. Mission requirements demand that materials perform predictably in extreme environments -- high pressure, high strain rate, and hostile irradiation and chemical conditions. Considerable advances have been made in incorporating fundamental materials physics into integrated codes used for component certification. On the other hand, significant uncertainties still remain, and materials properties, especially at the mesoscale, are key to understanding uncertainties that remain in integrated weapons performance codes and that at present are treated as empirical knobs. Further, additional national security mission challenges could be addressed more robustly with new and higher performing materials.

  3. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Fort Smith quadrangle, Oklahoma, and Arkansas. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    The Fort Smith quadrangle in western Arkansas and eastern Oklahoma overlies thick Paleozoic sediments of the Arkoma Basin. These Paleozoics dominate surface exposure except where covered by Quaternary Alluvial materials. Examination of available literature shows no known uranium deposits (or occurrences) within the quadrangle. Seventy-five groups of uranium samples were defined as anomalies and are discussed briefly. None were considered significant, and most appeared to be of cultural origin. Magnetic data show character that suggest structural and/or lithologic complexity, but imply relatively deep-seated sources.

  4. CONCEPTUAL DIAGRAM OF ENGINEERED RUBBLE PILE AERIAL VIEW OF PROPOSED LOCATION FOR ENGINEERED RUBBLE PILE AT THE HAMMER FACILITY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r kiVP-^"^^?CONCEPTUAL DIAGRAM OF

  5. Packaging and Transfer of Hazardous Materials and Materials of...

    Broader source: Energy.gov (indexed) [DOE]

    PACKAGING AND TRANSFER OF HAZARDOUS MATERIALS AND MATERIALS OF NATIONAL SECURITY INTEREST Assessment Plan NNSANevada Site Office Facility Representative Division Performance...

  6. Porous material neutron detector

    DOE Patents [OSTI]

    Diawara, Yacouba (Oak Ridge, TN); Kocsis, Menyhert (Venon, FR)

    2012-04-10T23:59:59.000Z

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  7. Optimized nanoporous materials.

    SciTech Connect (OSTI)

    Braun, Paul V. (University of Illinois at Urbana-Champaign, Urbana, IL); Langham, Mary Elizabeth; Jacobs, Benjamin W.; Ong, Markus D.; Narayan, Roger J. (North Carolina State University, Raleigh, NC); Pierson, Bonnie E. (North Carolina State University, Raleigh, NC); Gittard, Shaun D. (North Carolina State University, Raleigh, NC); Robinson, David B.; Ham, Sung-Kyoung (Korea Basic Science Institute, Gangneung, South Korea); Chae, Weon-Sik (Korea Basic Science Institute, Gangneung, South Korea); Gough, Dara V. (University of Illinois at Urbana-Champaign, Urbana, IL); Wu, Chung-An Max; Ha, Cindy M.; Tran, Kim L.

    2009-09-01T23:59:59.000Z

    Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired by these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.

  8. Apparatus for dispensing material

    DOE Patents [OSTI]

    Sutter, Peter Werner (Beach, NY); Sutter, Eli Anguelova (Beach, NY)

    2011-07-05T23:59:59.000Z

    An apparatus capable of dispensing drops of material with volumes on the order of zeptoliters is described. In some embodiments of the inventive pipette the size of the droplets so dispensed is determined by the size of a hole, or channel, through a carbon shell encapsulating a reservoir that contains material to be dispensed. The channel may be formed by irradiation with an electron beam or other high-energy beam capable of focusing to a spot size less than about 5 nanometers. In some embodiments, the dispensed droplet remains attached to the pipette by a small thread of material, an atomic scale meniscus, forming a virtually free-standing droplet. In some embodiments the droplet may wet the pipette tip and take on attributes of supported drops. Methods for fabricating and using the pipette are also described.

  9. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23T23:59:59.000Z

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  10. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12T23:59:59.000Z

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  11. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

    2003-01-01T23:59:59.000Z

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  12. MATERIAL CONTROL ACCOUNTING INMM

    SciTech Connect (OSTI)

    Hasty, T.

    2009-06-14T23:59:59.000Z

    Since 1996, the Mining and Chemical Combine (MCC - formerly known as K-26), and the United States Department of Energy (DOE) have been cooperating under the cooperative Nuclear Material Protection, Control and Accounting (MPC&A) Program between the Russian Federation and the U.S. Governments. Since MCC continues to operate a reactor for steam and electricity production for the site and city of Zheleznogorsk which results in production of the weapons grade plutonium, one of the goals of the MPC&A program is to support implementation of an expanded comprehensive nuclear material control and accounting (MC&A) program. To date MCC has completed upgrades identified in the initial gap analysis and documented in the site MC&A Plan and is implementing additional upgrades identified during an update to the gap analysis. The scope of these upgrades includes implementation of MCC organization structure relating to MC&A, establishing material balance area structure for special nuclear materials (SNM) storage and bulk processing areas, and material control functions including SNM portal monitors at target locations. Material accounting function upgrades include enhancements in the conduct of physical inventories, limit of error inventory difference procedure enhancements, implementation of basic computerized accounting system for four SNM storage areas, implementation of measurement equipment for improved accountability reporting, and both new and revised site-level MC&A procedures. This paper will discuss the implementation of MC&A upgrades at MCC based on the requirements established in the comprehensive MC&A plan developed by the Mining and Chemical Combine as part of the MPC&A Program.

  13. Optical limiting materials

    DOE Patents [OSTI]

    McBranch, Duncan W. (Santa Fe, NM); Mattes, Benjamin R. (Santa Fe, NM); Koskelo, Aaron C. (Los Alamos, NM); Heeger, Alan J. (Santa Barbara, CA); Robinson, Jeanne M. (Los Alamos, NM); Smilowitz, Laura B. (Los Alamos, NM); Klimov, Victor I. (Los Alamos, NM); Cha, Myoungsik (Goleta, CA); Sariciftci, N. Serdar (Santa Barbara, CA); Hummelen, Jan C. (Groningen, NL)

    1998-01-01T23:59:59.000Z

    Optical limiting materials. Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO.sub.2) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400-1100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes.

  14. Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122 DOE Technologies|10Materials Materials

  15. Material Point Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMAR Os2010 TeppeiMaterialMaterial

  16. Materials Physics and Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | NationalMaterialsMPA Materials

  17. Supercapacitors specialities - Materials review

    SciTech Connect (OSTI)

    Obreja, Vasile V. N. [National Research and Development Institute for Microtechnologies (IMT-Bucuresti), Bucharest, 126A Erou Iancu Nicolae Street, 077190 (Romania)

    2014-06-16T23:59:59.000Z

    The electrode material is a key component for supercapacitor cell performance. As it is known, performance comparison of commercial available batteries and supercapacitors reveals significantly lower energy storage capability for supercapacitor devices. The energy density of commercial supercapacitor cells is limited to 10 Wh/kg whereas that of common lead acid batteries reaches 35-40 Wh/kg. For lithium ion batteries a value higher than 100 Wh/kg is easily available. Nevertheless, supercapacitors also known as ultracapacitors or electrochemical capacitors have other advantages in comparison with batteries. As a consequence, many efforts have been made in the last years to increase the storage energy density of electrochemical capacitors. A lot of results from published work (research and review papers, patents and reports) are available at this time. The purpose of this review is a presentation of the progress to date for the use of new materials and approaches for supercapacitor electrodes, with focus on the energy storage capability for practical applications. Many reported results refer to nanostructured carbon based materials and the related composites, used for the manufacture of experimental electrodes. A specific capacitance and a specific energy are seldom revealed as the main result of the performed investigation. Thus for nanoprous (activated) carbon based electrodes a specific capacitance up to 200-220 F/g is mentioned for organic electrolyte, whereas for aqueous electrolyte, the value is limited to 400-500 F/g. Significant contribution to specific capacitance is possible from fast faradaic reactions at the electrode-electrolyte interface in addition to the electric double layer effect. The corresponding energy density is limited to 30-50 Wh/kg for organic electrolyte and to 12-17 Wh/kg for aqueous electrolyte. However such performance indicators are given only for the carbon material used in electrodes. For a supercapacitor cell, where two electrodes and also other materials for cell assembling and packaging are used, the above mentioned values have to be divided by a factor higher than four. As a consequence, the specific energy of a prototype cell, hardly could exceed 10 Wh/kg because of difficulties with the existing manufacturing technology. Graphene based materials and carbon nanotubes and different composites have been used in many experiments reported in the last years. Nevertheless in spite of the outstanding properties of these materials, significant increase of the specific capacitance or of the specific energy in comparison with activated or nanoporous carbon is not achieved. Use of redox materials as metal oxides or conducting polymers in combination with different nanostructured carbon materials (nanocomposite electrodes) has been found to contribute to further increase of the specific capacitance or of the specific energy. Nevertheless, few results are reported for practical cells with such materials. Many results are reported only for a three electrode system and significant difference is possible when the electrode is used in a practical supercapacitor cell. Further improvement in the electrode manufacture and more experiments with supercapacitor cells with the known electrochemical storage materials are required. Device prototypes and commercial products with an energy density towards 15-20 Wh/kg could be realized. These may be a milestone for further supercapacitor device research and development, to narrow the storage energy gap between batteries and supercapacitors.

  18. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science The Quest for Efficiency in Thermoelectric Nanowires On February 26, 2015, in Materials Science, News, News & Events, Research & Capabilities Sandia researchers...

  19. Vibrational Damping of Composite Materials

    E-Print Network [OSTI]

    Biggerstaff, Janet M.

    2006-01-01T23:59:59.000Z

    the damping material and epoxy resin. The surface of theinfiltration of the epoxy resin into the damping materialthe damping material and resin (epoxy) is occurring and is

  20. Lead carbonate scintillator materials

    DOE Patents [OSTI]

    Derenzo, Stephen E. (Pinole, CA); Moses, William W. (Berkeley, CA)

    1991-01-01T23:59:59.000Z

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  1. Materials and Manufacturing

    E-Print Network [OSTI]

    Environmental Assurance Anne Meinhold Unprecedented Accomplishments in the Use of Aluminum-Lithium Alloy Preston is the solution. Other times, the design must accommodate the limitations of materials properties. The design requirements, and written procedures. Nondestructive testing depends on incident or input energy that interacts

  2. Action Plan Materials Science

    E-Print Network [OSTI]

    Fitze, Patrick

    sense, including all strata) has available to it a wide range of con- venient products which improve, improving companies' pros- pects and generating wealth without harming the environment. And allAction Plan 2010-2013 Materials Science Area EXECUTIVE SUMMARY #12;N.B.: If you require any further

  3. Identifying changes in tropical vegetation coverage productivity at Cueva Dos Ojos, Puerto Rico using IKONOS, ETM+, and OLI

    E-Print Network [OSTI]

    Gilbes, Fernando

    using ENVI software and images from IKONOS, ETM+, and OLI sensors and CIR (color infrared) aerial using IKONOS, ETM+, and OLI Sensors and CIR aerial photography Flora P. Sperberg Geology Department in the evaluation of the carbon isotope signature. Normalized Difference Vegetation Indices (NDVI) were calculated

  4. Materials Engineering Is Materials Engineering right for me?

    E-Print Network [OSTI]

    Harman, Neal.A.

    Materials Engineering Is Materials Engineering right for me? If you are interested in the development of new products and technologies then Materials Engineering is well worth considering for university study. A Materials Engineering degree programme will focus on aspects such as structure

  5. ALTERNATE MATERIALS IN DESIGN OF RADIOACTIVE MATERIAL PACKAGES

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2010-07-09T23:59:59.000Z

    This paper presents a summary of design and testing of material and composites for use in radioactive material packages. These materials provide thermal protection and provide structural integrity and energy absorption to the package during normal and hypothetical accident condition events as required by Title 10 Part 71 of the Code of Federal Regulations. Testing of packages comprising these materials is summarized.

  6. Thermodynamic estimation: Ionic materials

    SciTech Connect (OSTI)

    Glasser, Leslie, E-mail: l.glasser@curtin.edu.au

    2013-10-15T23:59:59.000Z

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy, lattice energy, enthalpy, Gibbs energy values are available.

  7. Aerial and ground-based inspections of mine sites in the Western U.S.-implications for on-site inspection overflights, under the CTBT

    SciTech Connect (OSTI)

    Heuze, F.E.

    1997-07-01T23:59:59.000Z

    The verification regime of the Comprehensive Test Ban Treaty (CTBT) provides for the possibility of On-Site Inspections (OSI`s) to resolve questions concerning suspicious events which may have been clandestine nuclear tests. Overflights by fixed-wing or rotary-wing aircraft, as part of an OSI, are permitted by the Treaty. These flights are intended to facilitate the narrowing of the inspection area, from an initial permissible 1000 km{sup 2}, and to help select the locations to deploy observers and ground-based sensors (seismic, radionuclides, . . .) Because of the substantial amount of seismicity generated by mining operations worldwide, it is expected that mine sites and mine districts would be prime candidates for OSI`S. To gain experience in this context, a number of aerial and ground-based mine site inspections have been performed in the Western U.S. by Lawrence Livermore National Laboratory since 1994. These inspections are part of a broad range of CTBT mining-related projects conducted by the U.S. Department of Energy and its National Laboratories. The various sites are described next, and inferences are made concerning CTBT OSI`S. All the mines are legitimate operations, with no implication whatsoever of any clandestine tests.

  8. Materials Department Annual Report 1992

    E-Print Network [OSTI]

    Materials Department Annual Report 1992 Published by the Materials Department Risø National and stone by Chr. Dahlgaard Larsen Materials Department Risø National Laboratory, Roskilde, Denmark Tel.: +45 46 77 46 77 Fax: +4542351173 #12;Abstract Selected activities ot the Materials Department at Riso

  9. Materials Department Annual Report 1991

    E-Print Network [OSTI]

    Materials Department Annual Report 1991 Published by the Materials Department Risø National, iron and stone by Chr. Dahlgaard Larsen Materials Department Risø National Laboratory, Roskilde, Denmark Tel.: +45 42 37 12 12 Fax: + 45 42 35 11 73 #12;Abstract Selected activities of the Materials

  10. Webinar: Hydrogen Compatibility of Materials

    Broader source: Energy.gov [DOE]

    Video recording of the webinar titled, Hydrogen Compatibility of Materials, originally presented on August 13, 2013.

  11. MATERIAL HANDLING, STORAGE, AND DISPOSAL

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Materials shall be stored in a manner that allows easy identification and access to labels, identification entering storage areas. All persons shall be in a safe position while materials are being loadedEM 385-1-1 XX Jun 13 14-1 SECTION 14 MATERIAL HANDLING, STORAGE, AND DISPOSAL 14.A MATERIAL

  12. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2013-07-23T23:59:59.000Z

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  13. Laser detection of material thickness

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    There is provided a method for measuring material thickness comprising: (a) contacting a surface of a material to be measured with a high intensity short duration laser pulse at a light wavelength which heats the area of contact with the material, thereby creating an acoustical pulse within the material: (b) timing the intervals between deflections in the contacted surface caused by the reverberation of acoustical pulses between the contacted surface and the opposite surface of the material: and (c) determining the thickness of the material by calculating the proportion of the thickness of the material to the measured time intervals between deflections of the contacted surface.

  14. Geothermal materials development activities

    SciTech Connect (OSTI)

    Kukacka, L.E.

    1993-06-01T23:59:59.000Z

    This ongoing R&D program is a part of the Core Research Category of the Department of Energy/Geothermal Division initiative to accelerate the utilization of geothermal resources. High risk materials problems that if successfully solved will result in significant reductions in well drilling, fluid transport and energy conversion costs, are emphasized. The project has already developed several advanced materials systems that are being used by the geothermal industry and by Northeastern Electric, Gas and Steam Utilities. Specific topics currently being addressed include lightweight C0{sub 2}-resistant well cements, thermally conductive scale and corrosion resistant liner systems, chemical systems for lost circulation control, elastomer-metal bonding systems, and corrosion mitigation at the Geysers. Efforts to enhance the transfer of the technologies developed in these activities to other sectors of the economy are also underway.

  15. Biodesulfurization of rubber materials

    SciTech Connect (OSTI)

    Torma, A.E. (EG and G Idaho, Inc., Idaho Falls, ID (USA)); Raghavan, D. (Illinois Univ., Urbana, IL (USA). Dept. of Materials Science and Engineering)

    1990-01-01T23:59:59.000Z

    One of the most challenging problems in municipal waste treatment is the recycling of polymeric waste materials. The present study has demonstrated the applicability of biotechnological principles in the desulfurization of rubber using shake flask and Warburg respirometric techniques. In terms of oxygen uptake and specific rate of oxygen uptake, it was found that the mixed culture of Thiobacillus ferrooxidans and Thiobacillus thiooxidans was more efficient in this process than the individual pure cultures of these bacteria. Furthermore, the mixed cultures resulted in ten times higher sulfur removals from rubber relative to those of sterile controls. Additional studies are needed to elucidate the mechanisms of biodesulfurization of rubber. It is expected that the development of this process may provide a solution to recycling of car tire materials. 32 refs., 4 figs., 3 tabs.

  16. Materials in design

    E-Print Network [OSTI]

    Perata, Alfredo Ferando

    1970-01-01T23:59:59.000Z

    the strength, hardness and wear resistance has been increased. S rin Materials Since in many cases equipment requires that springs have to operate properly at conditions of excessive vibration, corrosive environment, extremes temperatures. A great care has...) It is considered a good long wearing bearing metal where good bearing conditions are present once the design has been done very good. (Accurate filling, good oil clearance; good lubrication, non-corrosive oil). It can be used with hardened shafts. B ' g B Tin...

  17. Lead carbonate scintillator materials

    DOE Patents [OSTI]

    Derenzo, S.E.; Moses, W.W.

    1991-05-14T23:59:59.000Z

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  18. Hydrolysis of biomass material

    DOE Patents [OSTI]

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17T23:59:59.000Z

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  19. Scalable Routes to Efficient Thermoelectric Materials

    E-Print Network [OSTI]

    Feser, Joseph Patrick

    2010-01-01T23:59:59.000Z

    thermoelectric materials consisting of epitaxially-grownefficient thermoelectric materials," Nature, vol. 451, pp.superlattice thermoelectric materials and devices," Science,

  20. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and...

  1. Materials Synthesis and Characterization | Center for Functional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Synthesis and Characterization Facility materials synthesis The Materials Synthesis and Characterization Facility includes laboratories for producing nanostructured...

  2. Advanced Battery Materials Characterization: Success stories...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Battery Materials Characterization: Success stories from the High Temperature Materials Laboratory (HTML) User Program Advanced Battery Materials Characterization: Success...

  3. Materials Research in the Information Age

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Research in the Information Age Accelerating Advanced Material Development NERSC Science Gateway a 'Google of Material Properties' October 31, 2011 | Tags: Materials...

  4. Sandia National Laboratories: Light Creation Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TechnologiesLight Creation Materials Light Creation Materials Overview of SSL Light Creation Materials Different families of inorganic semiconductor materials can...

  5. Combinatorial sythesis of organometallic materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

    2002-07-16T23:59:59.000Z

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  6. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

    1999-01-01T23:59:59.000Z

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  7. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

    2001-01-01T23:59:59.000Z

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  8. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

    2002-02-12T23:59:59.000Z

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  9. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

    1999-12-21T23:59:59.000Z

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  10. Materials Data on VPO4 (SG:63) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02T23:59:59.000Z

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on Nd (SG:229) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02T23:59:59.000Z

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on VP (SG:194) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on P (SG:2) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on BPO4 (SG:152) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on Ge (SG:96) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02T23:59:59.000Z

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on Ge (SG:225) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on Ge (SG:148) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on Ge (SG:96) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on UGe2 (SG:63) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on UGe2 (SG:65) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on Ge (SG:69) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on Nd (SG:229) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on Tc (SG:194) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on Er (SG:229) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02T23:59:59.000Z

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on YB2 (SG:191) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02T23:59:59.000Z

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on La (SG:229) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02T23:59:59.000Z

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on Tb (SG:229) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02T23:59:59.000Z

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on Dy (SG:229) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02T23:59:59.000Z

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on YZn (SG:225) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02T23:59:59.000Z

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on Tm (SG:229) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02T23:59:59.000Z

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on Lu (SG:229) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02T23:59:59.000Z

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on B (SG:166) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02T23:59:59.000Z

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on Fe (SG:194) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02T23:59:59.000Z

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on YS (SG:225) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02T23:59:59.000Z

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on Nd (SG:225) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02T23:59:59.000Z

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on KC10 (SG:204) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02T23:59:59.000Z

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on Se (SG:148) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02T23:59:59.000Z

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on VPt2 (SG:71) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02T23:59:59.000Z

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on Ga (SG:139) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02T23:59:59.000Z

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on S (SG:221) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02T23:59:59.000Z

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on UAl2 (SG:227) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Cathode materials review

    SciTech Connect (OSTI)

    Daniel, Claus, E-mail: danielc@ornl.gov; Mohanty, Debasish, E-mail: danielc@ornl.gov; Li, Jianlin, E-mail: danielc@ornl.gov; Wood, David L., E-mail: danielc@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS6472 Oak Ridge, TN 37831-6472 (United States)

    2014-06-16T23:59:59.000Z

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  3. Immobilized lipid-bilayer materials

    DOE Patents [OSTI]

    Sasaki, Darryl Y. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Yamanaka, Stacey A. (Dallas, TX)

    2000-01-01T23:59:59.000Z

    A method for preparing encapsulated lipid-bilayer materials in a silica matrix comprising preparing a silica sol, mixing a lipid-bilayer material in the silica sol and allowing the mixture to gel to form the encapsulated lipid-bilayer material. The mild processing conditions allow quantitative entrapment of pre-formed lipid-bilayer materials without modification to the material's spectral characteristics. The method allows for the immobilization of lipid membranes to surfaces. The encapsulated lipid-bilayer materials perform as sensitive optical sensors for the detection of analytes such as heavy metal ions and can be used as drug delivery systems and as separation devices.

  4. Construction Material And Method

    DOE Patents [OSTI]

    Wagh, Arun S. (Orland Park, IL); Antink, Allison L. (Bolingbrook, IL)

    2006-02-21T23:59:59.000Z

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic. The ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  5. Optical limiting materials

    DOE Patents [OSTI]

    McBranch, D.W.; Mattes, B.R.; Koskelo, A.C.; Heeger, A.J.; Robinson, J.M.; Smilowitz, L.B.; Klimov, V.I.; Cha, M.; Sariciftci, N.S.; Hummelen, J.C.

    1998-04-21T23:59:59.000Z

    Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO{sub 2}) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400--1,100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes. 5 figs.

  6. Synthesis of refractory materials

    DOE Patents [OSTI]

    Holt, J.B.

    1983-08-16T23:59:59.000Z

    Refractory metal nitrides are synthesized during a self-propagating combustion process utilizing a solid source of nitrogen. For this purpose, a metal azide is employed, preferably NaN/sub 3/. The azide is combusted with Mg or Ca, and a metal oxide is selected from Groups III-A, IV-A, III-B, IV-B, or a rare earth metal oxide. The mixture of azide, Ca or Mg and metal oxide is heated to the mixture's ignition temperature. At that temperature the mixture is ignited and undergoes self-sustaining combustion until the starter materials are exhausted, producing the metal nitride.

  7. Critical Materials Strategy Summary

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.SpaceFluorControlsEnergy ReaffirmedCritical Materials

  8. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf NSEC »INNOVATIONFaces

  9. Ion Beam Materials Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center atdiffusivities in mesopores

  10. Material efficiency in construction

    E-Print Network [OSTI]

    Moynihan, Muiris

    2014-10-07T23:59:59.000Z

    , this generation must change its use of energy and materials. 1.1 The need to reduce carbon dioxide emissions The Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) states as #16;unequivocal#17; that the Earth's atmosphere and oceans... in order to save energy and carbon. University of Cambridge, Cambridge, UK. ISBN 978-0- 903428-32-3 3. Allwood, J.M., Cullen, J.M., Patel, A.C.H., Cooper, D.R.,Moynihan, M.C., Milford, R.L., Carruth, M.A. and McBrien, M. 2011. Prolonging our metal life #22...

  11. CRITICAL MATERIALS INSTITUTE PROJECTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.0 - HOISTING30, Home CRA

  12. Material Disposal Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMAR Os2010 TeppeiMaterial Disposal

  13. Material Safety Data Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMAR Os2010Material Safety Data Sheet

  14. Materials Under Extremes | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMARSecurityMaterialsMPA » MPA-11

  15. Materials in the news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMARSecurityMaterialsMPA » MPA-11News

  16. Materials Science Application Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | NationalMaterialsMPA

  17. Materials for the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition |Materials and

  18. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition |Materials anddata' for rapid

  19. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition |Materials anddata' for

  20. Multi Material Paradigm

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,OfficialProductsUptake andUser ManualTowardMulti Material

  1. HAZARDOUS MATERIALS Hazardous materials can be silent killers.

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    HAZARDOUS MATERIALS #12;Hazardous materials can be silent killers. Almost every household they may be found, and what to do, or not do, about hazardous material spills. #12;Ways that hazardous or eyes · Ingestion; swallowing · Injection; penetrating skin #12;The key to dealing with hazardous

  2. What materials can I recycle? Material Where Whose

    E-Print Network [OSTI]

    What materials can I recycle? Material Where Whose responsibility Batteries Chatham reception desk Individuals Clay Recycled in the workshop Users of the purchased material Cardboard Designated skip Recycled via swop bins in the studios and outside the fabric store Unwanted items to Grumpy ( Greater

  3. Optical polarizer material

    DOE Patents [OSTI]

    Ebbers, C.A.

    1999-08-31T23:59:59.000Z

    Several crystals have been identified which can be grown using standard single crystals growth techniques and which have a high birefringence. The identified crystals include Li.sub.2 CO.sub.3, LiNaCO.sub.3, LiKCO.sub.3, LiRbCO.sub.3 and LiCsCO.sub.3. The condition of high birefringence leads to their application as optical polarizer materials. In one embodiment of the invention, the crystal has the chemical formula LiK.sub.(1-w-x-y) Na.sub.(1-w-x-z) Rb.sub.(1-w-y-z) Cs.sub.(1-x-y-z) CO.sub.3, where w+x+y+z=1. In another embodiment, the crystalline material may be selected from a an alkali metal carbonate and a double salt of alkali metal carbonates, where the polarizer has a Wollaston configuration, a Glan-Thompson configuration or a Glan-Taylor configuration. A method of making an LiNaCO.sub.3 optical polarizer is described. A similar method is shown for making an LiKCO.sub.3 optical polarizer.

  4. Optical polarizer material

    DOE Patents [OSTI]

    Ebbers, Christopher A. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    Several crystals have been identified which can be grown using standard single crystals growth techniques and which have a high birefringence. The identified crystals include Li.sub.2 CO.sub.3, LiNaCO.sub.3, LiKCO.sub.3, LiRbCO.sub.3 and LiCsCO.sub.3. The condition of high birefringence leads to their application as optical polarizer materials. In one embodiment of the invention, the crystal has the chemical formula LiK.sub.(1-w-x-y) Na.sub.(1-w-x-z) Rb.sub.(1-w-y-z) Cs.sub.(1-x-y-z) CO.sub.3, where w+x+y+z=1. In another embodiment, the crystalline material may be selected from a an alkali metal carbonate and a double salt of alkali metal carbonates, where the polarizer has a Wollaston configuration, a Glan-Thompson configuration or a Glan-Taylor configuration. A method of making an LiNaCO.sub.3 optical polarizer is described. A similar method is shown for making an LiKCO.sub.3 optical polarizer.

  5. Laser Plasma Material Interactions

    SciTech Connect (OSTI)

    Schaaf, Peter; Carpene, Ettore [Universitaet Goettingen, II. Physikalisches Institut, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

    2004-12-01T23:59:59.000Z

    Surface treatment by means of pulsed laser beams in reactive atmospheres is an attractive technique to enhance the surface features, such as corrosion and wear resistance or the hardness. Many carbides and nitrides play an important role for technological applications, requiring the mentioned property improvements. Here we present a new promising fast, flexible and clean technique for a direct laser synthesis of carbide and nitride surface films by short pulsed laser irradiation in reactive atmospheres (e.g. methane, nitrogen). The corresponding material is treated by short intense laser pulses involving plasma formation just above the irradiated surface. Gas-Plasma-Surface reactions lead to a fast incorporation of the gas species into the material and subsequently the desired coating formation if the treatment parameters are chosen properly. A number of laser types have been used for that (Excimer Laser, Nd:YAG, Ti:sapphire, Free Electron Laser) and a number of different nitride and carbide films have been successfully produced. The mechanisms and some examples will be presented for Fe treated in nitrogen and Si irradiated in methane.

  6. STRUCTURAL ENGINEERING, MECHANICS AND MATERIALS

    E-Print Network [OSTI]

    Wang, Yuhang

    of companies worldwide; cladding effects on, and hybrid control of, the response of tall buildings Buildings · Masonry Structures · Nano/Microstructure of Cement-based Materials · Polymeric Composite Systems · Reliable Engineering Computing · Risk Analysis · Seismic Hazard Mitigation · Smart Materials

  7. Additive assembly of digital materials

    E-Print Network [OSTI]

    Ward, Jonathan (Jonathan Daniel)

    2010-01-01T23:59:59.000Z

    This thesis develops the use of additive assembly of press-fit digital materials as a new rapid-prototyping process. Digital materials consist of a finite set of parts that have discrete connections and occupy discrete ...

  8. DPC materials and corrosion environments

    SciTech Connect (OSTI)

    Ilgen, Anastasia G.; Bryan, Charles R.; Teich-McGoldrick, Stephanie; Hardin, Ernest

    2014-10-01T23:59:59.000Z

    This review focuses on the performance of basket materials that could be exposed to ground water over thousands of years, and prospective disposal overpack materials that could possibly be used to protect dual-purpose canisters (DPCs) in disposal environments.

  9. FURTHERING THE RECLAIMED MATERIALS EXPERIENCE

    E-Print Network [OSTI]

    Bartels, Robert A.

    2012-08-31T23:59:59.000Z

    A comprehensive study of the reclaimed materials industry and ways it could be improved from a management standpoint by working through a Design Management problem solving approach. Project Objectives: To improve the sourcing of reclaimed materials...

  10. Thermoelectric Materials, Devices and Systems:

    Broader source: Energy.gov (indexed) [DOE]

    -DRAFT - FOR OFFICIAL USE ONLY - DRAFT Thermoelectric Materials, Devices and Systems: 1 Technology Assessment 2 Contents 3 1. Thermoelectric Generation ......

  11. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass, Computational Modeling & Simulation, CRF, Energy, Energy Storage, Materials Science, News, News & Events, Nuclear Energy, Partnership, Renewable Energy, Research &...

  12. Webinar: Hydrogen Storage Materials Requirements

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

  13. Management of Transuranic Contaminated Material

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1982-09-30T23:59:59.000Z

    To establish guidelines for the generation, treatment, packaging, storage, transportation, and disposal of transuranic (TRU) contaminated material.

  14. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

    2007-12-04T23:59:59.000Z

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  15. Fast Track Dredged Material Decontamination

    E-Print Network [OSTI]

    Brookhaven National Laboratory

    Fast Track Dredged Material Decontamination Demonstration for the Port of New York and New Jersey Department of Energy Brookhaven National Laboratory Fast Track Dredged Material Decontamination Demonstration .............................................................................. 3 3.3 Relation to the U.S. Army Corps of Engineers-New York District Dredged Material Management

  16. Combinatorial synthesis of ceramic materials

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN) [Oak Ridge, TN; Walls, Claudia A. (Oak Ridge, TN) [Oak Ridge, TN; Boatner, Lynn A. (Oak Ridge, TN) [Oak Ridge, TN

    2010-02-23T23:59:59.000Z

    A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.

  17. Combinatorial synthesis of ceramic materials

    DOE Patents [OSTI]

    Lauf, Robert J.; Walls, Claudia A.; Boatner, Lynn A.

    2006-11-14T23:59:59.000Z

    A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.

  18. Frontiers of Fusion Materials Science

    E-Print Network [OSTI]

    migration Radiation damage accumulation kinetics · 1 D vs. 3D diffusion processes · ionization Insulators · Optical Materials *asterisk denotes Fusion Materials Task Group #12;Fusion Materials Sciences R Displacement cascades Quantification of displacement damage source term · Is the concept of a liquid valid

  19. Dry pulverized solid material pump

    DOE Patents [OSTI]

    Meyer, John W. (Palo Alto, CA); Bonin, John H. (Sunnyvale, CA); Daniel, Jr., Arnold D. (Alameda, CA)

    1984-07-31T23:59:59.000Z

    Apparatus is shown for substantially increasing the feed rate of pulverized material into a pressurized container. The apparatus includes a rotor that is mounted internal to the pressurized container. The pulverized material is fed into an annular chamber defined by the center of the rotor. A plurality of impellers are mounted within the annular chamber for imparting torque to the pulverized material.

  20. Materials Performance in USC Steam

    SciTech Connect (OSTI)

    G. R. Holcomb; J. Tylczak; G. H. Meier; N. M. Yanar

    2011-09-07T23:59:59.000Z

    Materials Performance in USC Steam: (1) pressure effects on steam oxidation - unique capability coming on-line; (2) hydrogen evolution - hydrogen permeability apparatus to determine where hydrogen goes during steam oxidation; and (3) NETL materials development - steam oxidation resource for NETL developed materials.

  1. Preparation of asymmetric porous materials

    DOE Patents [OSTI]

    Coker, Eric N. (Albuquerque, NM)

    2012-08-07T23:59:59.000Z

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  2. Inline evenflow material distributor for pneumatic material feed systems

    DOE Patents [OSTI]

    Thiry, Michael J. (Oakdale, CA)

    2007-02-20T23:59:59.000Z

    An apparatus for reducing clogs in a pneumatic material feed line, such as employed in abrasive waterjet machining systems, by providing an evenflow feed of material therethrough. The apparatus preferably includes a hollow housing defining a housing volume and having an inlet capable of connecting to an upstream portion of the pneumatic material feed line, an outlet capable of connecting to a downstream portion of the pneumatic material feed line, and an air vent located between the inlet and outlet for venting excess air pressure out from the housing volume. A diverter, i.e. an impingement object, is located at the inlet and in a path of incoming material from the upstream portion of the pneumatic material feed line, to break up clumps of ambient moisture-ridden material impinging on the diverter. And one or more filter screens is also preferably located in the housing volume to further break up clumps and provide filtering.

  3. Corrosion resistant ceramic materials

    DOE Patents [OSTI]

    Kaun, T.D.

    1996-07-23T23:59:59.000Z

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  4. Corrosion resistant ceramic materials

    DOE Patents [OSTI]

    Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

    1995-01-01T23:59:59.000Z

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  5. Corrosion resistant ceramic materials

    DOE Patents [OSTI]

    Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

    1996-01-01T23:59:59.000Z

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  6. Packaging - Materials review

    SciTech Connect (OSTI)

    Herrmann, Matthias [Hoppecke Advanced Battery Technology GmbH, 08056 Zwickau (Germany)

    2014-06-16T23:59:59.000Z

    Nowadays, a large number of different electrochemical energy storage systems are known. In the last two decades the development was strongly driven by a continuously growing market of portable electronic devices (e.g. cellular phones, lap top computers, camcorders, cameras, tools). Current intensive efforts are under way to develop systems for automotive industry within the framework of electrically propelled mobility (e.g. hybrid electric vehicles, plug-in hybrid electric vehicles, full electric vehicles) and also for the energy storage market (e.g. electrical grid stability, renewable energies). Besides the different systems (cell chemistries), electrochemical cells and batteries were developed and are offered in many shapes, sizes and designs, in order to meet performance and design requirements of the widespread applications. Proper packaging is thereby one important technological step for designing optimum, reliable and safe batteries for operation. In this contribution, current packaging approaches of cells and batteries together with the corresponding materials are discussed. The focus is laid on rechargeable systems for industrial applications (i.e. alkaline systems, lithium-ion, lead-acid). In principle, four different cell types (shapes) can be identified - button, cylindrical, prismatic and pouch. Cell size can be either in accordance with international (e.g. International Electrotechnical Commission, IEC) or other standards or can meet application-specific dimensions. Since cell housing or container, terminals and, if necessary, safety installations as inactive (non-reactive) materials reduce energy density of the battery, the development of low-weight packages is a challenging task. In addition to that, other requirements have to be fulfilled: mechanical stability and durability, sealing (e.g. high permeation barrier against humidity for lithium-ion technology), high packing efficiency, possible installation of safety devices (current interrupt device, valve, etc.), chemical inertness, cost issues, and others. Finally, proper cell design has to be considered for effective thermal management (i.e. cooling and heating) of battery packs.

  7. Long-Term Materials Test Program: materials exposure test plan

    SciTech Connect (OSTI)

    None

    1981-12-01T23:59:59.000Z

    The Long Term Materials Test Program is designed to identify promising corrosion resistant materials for coal-fired gas turbine applications. Resistance of materials to long term accelerated corrosion will be determined through realistic PFB environmental exposure of candidate turbine materials for up to 14,000 hours. Selected materials also will be evaluated for their ability to withstand the combined erosive and corrosive aspects of the PFB effluent. A pressurized fluidized bed combustor facility has been constructed at the General Electric Coal Utilization Research Laboratory at Malta, New York. The 12-inch diameter combustor will burn high sulfur coal with moderate-to-high chlorine and alkali levels and utilize dolomite as the sulfur sorbent. Hot gas cleanup is achieved using three stages of cyclone separators. Downstream of the cylone separators, a low velocity test section (approx. 30 ft/s) capable of housing 180 pin specimens 1/4'' diameter has been installed to assess the corrosion resistance of the various materials at three different temperatures ranging from 1300 to 1600/sup 0/F. Following the low velocity test section is a high velocity test section consisting of four cascades of airfoil shaped specimens, six specimens per cascade. This high velocity test section is being used to evaluate the combined effects of erosion and corrosion on the degradation of gas turbine materials at gas velocities of 800 to 1400 ft/s. This report summarizes the materials selection and materials exposure test plan for the Long Term Materials Test.

  8. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1998-09-08T23:59:59.000Z

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  9. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-09-08T23:59:59.000Z

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  10. Polyphosphazine-based polymer materials

    DOE Patents [OSTI]

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25T23:59:59.000Z

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  11. Fossil energy materials needs assessment

    SciTech Connect (OSTI)

    King, R.T.; Judkins, R.R. (comps.)

    1980-07-01T23:59:59.000Z

    An assessment of needs for materials of construction for fossil energy systems was prepared by ORNL staff members who conducted a literature search and interviewed various individuals and organizations that are active in the area of fossil energy technology. Critical materials problems associated with fossil energy systems are identified. Background information relative to the various technologies is given and materials research needed to enhance the viability and improve the economics of fossil energy processes is discussed. The assessment is presented on the basis of materials-related disciplines that impact fossil energy material development. These disciplines include the design-materials interface, materials fabrication technology, corrosion and materials compatibility, wear phenomena, ceramic materials, and nondestructive testing. The needs of these various disciplines are correlated with the emerging fossil energy technologies that require materials consideration. Greater emphasis is given to coal technology - particularly liquefaction, gasification, and fluidized bed combustion - than to oil and gas technologies because of the perceived inevitability of US dependence on coal conversion and utilization systems as a major part of our total energy production.

  12. Still Photography Throwdown: Silver Halide vs. Silicon

    E-Print Network [OSTI]

    Fairchild, Mark D.

    , or are they just more convenient and flexible? · Consumer/Prosumer Applications #12;Motivation #12;Systems · Film

  13. Blurring spatial limits : photography and spatial definition

    E-Print Network [OSTI]

    Rodríguez, Gustavo A. (Gustavo Adolfo Rodríguez Martin), 1974-

    2002-01-01T23:59:59.000Z

    The Image based space of vision has substituted functional space as a stage of contemporary life, the relationships between physical spaces are constantly being redefined by the change from function to image, forcing us ...

  14. Laser speckle photography for surface tampering detection

    E-Print Network [OSTI]

    Shih, YiChang

    2012-01-01T23:59:59.000Z

    It is often desirable to detect whether a surface has been touched, even when the changes made to that surface are too subtle to see in a pair of before and after images. To address this challenge, we introduce a new imaging ...

  15. Laser speckle photography for surface tampering detection

    E-Print Network [OSTI]

    Shih, YiChang

    It is often desirable to detect whether a surface has been touched, even when the changes made to that surface are too subtle to see in a pair of before and after images. To address this challenge, we introduce a new imaging ...

  16. Catalyzed Ceramic Burner Material

    SciTech Connect (OSTI)

    Barnes, Amy S., Dr.

    2012-06-29T23:59:59.000Z

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant period in accomplishing these objectives. Our work in the area of Pd-based, methane oxidation catalysts has led to the development of highly active catalysts with relatively low loadings of Pd metal using proprietary coating methods. The thermal stability of these Pd-based catalysts were characterized using SEM and BET analyses, further demonstrating that certain catalyst supports offer enhanced stability toward both PdO decomposition and/or thermal sintering/growth of Pd particles. When applied to commercially available fiber mesh substrates (both metallic and ceramic) and tested in an open-air burner, these catalyst-support chemistries showed modest improvements in the NOx emissions and radiant output compared to uncatalyzed substrates. More significant, though, was the performance of the catalyst-support chemistries on novel media substrates. These substrates were developed to overcome the limitations that are present with commercially available substrate designs and increase the gas-catalyst contact time. When catalyzed, these substrates demonstrated a 65-75% reduction in NOx emissions across the firing range when tested in an open air burner. In testing in a residential boiler, this translated into NOx emissions of <15 ppm over the 15-150 kBtu/hr firing range.

  17. Method for synthesizing powder materials

    SciTech Connect (OSTI)

    Buss, R.J.; Ho, P.

    1988-01-21T23:59:59.000Z

    A method for synthesizing ultrafine powder materials, for example, ceramic and metal powders, comprises admitting gaseous reactants from which the powder material is to be formed into a vacuum reaction chamber maintained at a pressure less than atmospheric and at a temperature less than about 400/degree/K (127/degree/C). The gaseous reactants are directed through a glow discharge provided in the vacuum reaction chamber to form the ultrafine powder material. 1 fig.

  18. Helpful links for materials transport, safety, etc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helpful links for materials transport, safety, etc. relating to experiment safety at the APS. Internal Reference Material: Transporting Hazardous Materials "Natural" radioactivity...

  19. Sandia National Laboratories: understanding of composite material...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of composite material behavior in realistic wind applications Composite-Materials Fatigue Database Updated On January 22, 2014, in Energy, Materials Science, News, News & Events,...

  20. PHASE TRANSFORMATIONS, STABILITY AND MATERIALS INTERACTIONS

    E-Print Network [OSTI]

    Morris, Jr., J.W.

    2010-01-01T23:59:59.000Z

    mechanisms of turbine materials in this environment, whichTurbines Research Opportunities: •Thermodynamics and kinetics of material-for designing improved materials. Gas turbines of the closed

  1. Materials Sciences and Engineering Program | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Sciences and Engineering Program SHARE BES Materials Sciences and Engineering Program The ORNL materials sciences and engineering program supported by the Department of...

  2. NUCLEAR MATERIALS PROGRESS REPORTS FOR 1980

    E-Print Network [OSTI]

    Olander, D.R.

    2010-01-01T23:59:59.000Z

    Ceramics", Progress in Material Science 21, 307 (1976}. S. -heating techniques in material processing. Thermal analysisIrreversible Thermodynamics in Materials Problems", in Mass

  3. On the fracture toughness of advanced materials

    E-Print Network [OSTI]

    Launey, Maximilien E.

    2009-01-01T23:59:59.000Z

    toughness of advanced materials ?? By Maximilien E. LauneyAbstract: Few engineering materials are limited by theirare manufactured from materials that are comparatively low

  4. Cybersecurity Awareness Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cybersecurity Awareness Materials Cybersecurity Awareness Materials The OCIO develops and distributes a variety of awareness material to be used during cyber awareness campaigns or...

  5. UESC Workshop Materials | Department of Energy

    Office of Environmental Management (EM)

    UESC Workshop Materials UESC Workshop Materials Presentation covers the UESC Workshop Materials and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG)...

  6. Materials Theory, Modeling and Simulation | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Characterization Materials Theory and Simulation Quantum Monte Carlo Density Functional Theory Monte Carlo Ab Initio Molecular Dynamics Chemical and Materials Theory...

  7. Disordered Materials Hold Promise for Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

  8. Chemistry of Organic Electronic Materials 6483-Fall

    E-Print Network [OSTI]

    Sherrill, David

    Chemistry of Organic Electronic Materials 6483- Fall Tuesdays organic materials. The discussion will include aspects of synthesis General introduction to the electronic structure of organic materials with connection

  9. Computational materials: Embedding Computation into the Everyday

    E-Print Network [OSTI]

    Thomsen, Mette Ramsgard; Karmon, Ayelet

    2009-01-01T23:59:59.000Z

    Computational materials: Embedding Computation into thepaper presents research into material design merging thean integrated part of our material surroundings. Rather than

  10. Chemical & Engineering Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical & Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the...

  11. Sandia National Laboratories: Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TechnologiesWavelength Conversion Materials Wavelength Conversion Materials Overview of SSL Wavelength Conversion Materials Rare-Earth Phosphors Inorganic phosphors doped with...

  12. Magnesium Research in the Automotive Lightweighting Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life Cycle Modeling of Propulsion Materials Overview of LightweightingMaterials: Past, Present and FutureMaterials Ionic Liquids as Novel Engine Lubricants or Lubricant...

  13. On the fracture toughness of advanced materials

    E-Print Network [OSTI]

    Launey, Maximilien E.

    2009-01-01T23:59:59.000Z

    is invariably a critical material parameter for many suchbulk) materials that we currently use in critical structuralsame as the critical crack size (a c ). In materials with a

  14. Sandia National Laboratories: wind turbine blade materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials Wind-Turbine Blade Materials and Reliability Progress On May 21, 2014, in Energy, Materials Science, News, News & Events, Partnership, Renewable Energy, Research &...

  15. Material-based design computation

    E-Print Network [OSTI]

    Oxman, Neri

    2010-01-01T23:59:59.000Z

    The institutionalized separation between form, structure and material, deeply embedded in modernist design theory, paralleled by a methodological partitioning between modeling, analysis and fabrication, resulted in ...

  16. Nuclear Materials Control and Accountability

    Broader source: Energy.gov (indexed) [DOE]

    June 2011 DOE STANDARD Nuclear Materials Control and Accountability U.S. Department of Energy AREA SANS Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public...

  17. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Participated in AMII to Support American-Made Wind-Turbine Blades On December 3, 2014, in Computational Modeling & Simulation, Energy, Materials Science, News, News &...

  18. Sandia National Laboratories: materials science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selected for Outstanding Engineer Award On December 10, 2014, in Energy, Materials Science, News, News & Events, Photovoltaic, Renewable Energy, Research & Capabilities, Solar...

  19. MULTIDISCIPLINARY FREE MATERIAL OPTIMIZATION 1 ...

    E-Print Network [OSTI]

    2009-10-18T23:59:59.000Z

    Nonlinear Anal. and Mech., Pitman, London, pages 136–212, 1979. [22] R. Werner. Free Material Optimization. PhD thesis, Institute of Applied Mathematics II, ...

  20. Toda Cathode Materials Production Facility

    Broader source: Energy.gov (indexed) [DOE]

    Cathode Materials Production Facility 2013 DOE Vehicle Technologies Annual Merit Review May 13-17, 2013 David Han, Yasuhiro Abe Toda America Inc. Project ID: ARRAVT017...