Sample records for material 2-m probe

  1. 2-M Probe Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformation 2-M ProbeCoso(Redirected

  2. Category:2-M Probe Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSLInformationMissouri:Catalyst2-M Probe Survey as exploration

  3. 2-M Probe At Desert Peak Area (Sladek, Et Al., 2007) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformation 2-M Probe At Desert Peak

  4. 2-M Probe At Flint Geothermal Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformation 2-M Probe At Desert

  5. 2-M Probe At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformation 2-M Probe At DesertFort

  6. 2-M Probe At Mcgee Mountain Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformation 2-M Probe At DesertFortMcgee

  7. 2-M Probe At Pilgrim Hot Springs Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformation 2-M Probe At

  8. 2-M Probe At Tungsten Mountain Area (Shevenell, Et Al., 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformation 2-M Probe AtInformation

  9. 2-M Probe Survey At Chena Geothermal Area (Wescott & Turner, 1982) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformation 2-M Probe

  10. 2-M Probe Survey At Coso Geothermal Area (1977) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformation 2-M ProbeCoso Geothermal

  11. 2-M Probe Survey At Dixie Valley Geothermal Area (Skord, Et Al., 2001) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformation 2-M ProbeCoso GeothermalOpen

  12. 2-M Probe Survey At Salt Wells Area (Skord, Et Al., 2011) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformation 2-M ProbeCoso

  13. Advanced Imaging and Ultra-fast Material Probing With Inverse...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging and Ultra-fast Material Probing With Inverse Compton Scattering A proposal to the Brookhaven Accelerator Test Facility Gerard Andonian, Alberto Bacci, Ubaldo...

  14. Probe for contamination detection in recyclable materials

    DOE Patents [OSTI]

    Taleyarkhan, Rusi

    2003-08-05T23:59:59.000Z

    A neutron detection system for detection of contaminants contained within a bulk material during recycling includes at least one neutron generator for neutron bombardment of the bulk material, and at least one gamma ray detector for detection of gamma rays emitted by contaminants within the bulk material. A structure for analyzing gamma ray data is communicably connected to the gamma ray detector, the structure for analyzing gamma ray data adapted. The identity and concentration of contaminants in a bulk material can also be determined. By scanning the neutron beam, discrete locations within the bulk material having contaminants can be identified. A method for recycling bulk material having unknown levels of contaminants includes the steps of providing at least one neutron generator, at least one gamma ray detector, and structure for analyzing gamma ray data, irradiating the bulk material with neutrons, and then determining the presence of at least one contaminant in the bulk material from gamma rays emitted from the bulk material.

  15. IBM Probes Material Capabilities at the ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and to understand how the ordering and filling of these orbitals change as the material goes through its phase transition," says Parkin. Parkin and his group of researchers...

  16. Development progress of the Materials Analysis and Particle Probe

    SciTech Connect (OSTI)

    Lucia, M., E-mail: mlucia@pppl.gov; Kaita, R.; Majeski, R.; Boyle, D. P.; Schmitt, J. C.; Onge, D. A. St. [Princeton Plasma Physics Laboratory (PPPL), Princeton, New Jersey 08543 (United States); Bedoya, F.; Allain, J. P. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois 61801 (United States)

    2014-11-15T23:59:59.000Z

    The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.

  17. Method for identifying and probing phase transitions in materials

    DOE Patents [OSTI]

    Asay, Blaine W. (Los Alamos, NM); Henson, Bryan F. (Los Alamos, NM); Sander, Robert K. (Los Alamos, NM); Robinson, Jeanne M. (Los Alamos, NM); Son, Steven F. (Los Alamos, NM); Dickson, Peter M. (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    The present invention includes a method for identifying and probing phase transitions in materials. A polymorphic material capable of existing in at least one non-centrosymmetric phase is interrogated with a beam of laser light at a chosen wavelength and frequency. A phase transition is induced in the material while it is interrogated. The intensity of light scattered by the material and having a wavelength equal to one half the wavelength of the interrogating laser light is detected. If the phase transition results in the production of a non-centrosymmetric phase, the intensity of this scattered light increases; if the phase transition results in the disappearance of a non-centrosymmetric phase, the intensity of this scattered light decreases.

  18. 2-M Probe Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind HometcdbInformation TeelsCorrectInformation

  19. Methods of use of semiconductor nanocrystal probes for treating a material

    DOE Patents [OSTI]

    Weiss, Shimon (Los Angeles, CA); Bruchez, Marcel (Belmont, CA); Alivisatos, Paul (Oakland, CA)

    2007-04-27T23:59:59.000Z

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  20. Calorimetric measurements of nuclear heating in small probes of plasma-facing materials

    SciTech Connect (OSTI)

    Kumar, A.; Abdou, M.A.; Youssef, M.Z. [Univ. of California, Los Angeles, CA (United States)] [and others

    1994-12-31T23:59:59.000Z

    Direct measurements of nuclear heating in small probes of materials subjected to D-T neutrons from an accelerator based source were initiated during 1989 under USDOE/JAERI collaborative program. A calorimetric technique was utilized to make these measurements. The probes of plasma facing materials, among others, were kept very close, {approximately}3 to {approximately}7 cm, to the neutron source inside an evacuated vacuum chamber. A typical probe measured 20 mm in diameter by 20 mm in length. Typical source intensity was {approximately}2 x 10{sup 12} n/s. The temperature changes in the probe medium were detected by thermal sensors spatially distributed in the probe. The thermal sensors included bead-thermistors, and platinum RTD`s. The change in resistance of a thermal sensor due to onset of nuclear heating was picked up by an automated data acquisition and control system that included a highly sensitive digital voltmeter that had a resolution of 100 nV in voltage range of 300 mV or less. Usually, an individual probe was subjected to spaced neutron pulses of time duration 3 m to 10 m. Two consecutive source neutron pulses were separated by a cooling interval of almost the same duration as that of a source pulse. This approach made it possible to clearly distinguish between the heating and drift phases of the probe medium, on one hand, and to ascertain and verify the reproducibility of measured heating rates from one neutron pulse to another, on the other hand.

  1. Ultrafast Material Science Probed Using Coherent X-ray Pulses from High-Harmonic

    E-Print Network [OSTI]

    Aeschlimann, Martin

    Chapter 7 Ultrafast Material Science Probed Using Coherent X-ray Pulses from High science have made it possible to generate x-ray pulses at the femto- and attosecond frontiers using either-ray pulses paves the way for a completely new generation of experiments that can capture the coupled dynamics

  2. Structure and Electrochemistry of LiNi1/3Co1/3-yMyMn1/3O2 (M=Ti, Al, Fe) Positive Electrode Materials

    SciTech Connect (OSTI)

    Wilcox, James; Patoux, Sebastien; Doeff, Marca

    2009-01-14T23:59:59.000Z

    A series of materials based on the LiNi1/3Co1/3-yMyMn1/3O2 (M = Ti,Al,Fe) system has been synthesized and examined structurally and electrochemically. It is found that the changes in electrochemical performance depend highly on the nature of the substituting atom and its effect on the crystal structure. Substitution with small amounts of Ti4+ (y = 1/12) leads to the formation of a high-capacity and high-rate positive electrode material. Iron substituted materials suffer from an increased antisite defect concentration and exhibit lower capacities and poor rate capabilities. Single-phase materials are found for LiNi1/3Co1/3-yAlyMn1/3O2 when y<_ 1/4 and all exhibit decreased capacities when cycled to 4.3 V. However, an increase in rate performance and cycle stability upon aluminum substitution is correlated with an improved lamellar structure.

  3. Pump-probe measurements of the thermal conductivity tensor for materials lacking in-plane symmetry

    SciTech Connect (OSTI)

    Feser, Joseph P. [Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716 (United States); Liu, Jun; Cahill, David G. [Department of Materials Science and Engineering, and Frederick-Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

    2014-10-15T23:59:59.000Z

    We previously demonstrated an extension of time-domain thermoreflectance (TDTR) which utilizes offset pump and probe laser locations to measure in-plane thermal transport properties of multilayers. However, the technique was limited to systems of transversely isotropic materials studied using axisymmetric laser intensities. Here, we extend the mathematics so that data reduction can be performed on non-transversely isotropic systems. An analytic solution of the diffusion equation for an N-layer system is given, where each layer has a homogenous but otherwise arbitrary thermal conductivity tensor and the illuminating spots have arbitrary intensity profiles. As a demonstration, we use both TDTR and time-resolved magneto-optic Kerr effect measurements to obtain thermal conductivity tensor elements of <110> ?-SiO{sub 2}. We show that the out-of-phase beam offset sweep has full-width half-maxima that contains nearly independent sensitivity to the in-plane thermal conductivity corresponding to the scanning direction. Also, we demonstrate a Nb-V alloy as a low thermal conductivity TDTR transducer layer that helps improve the accuracy of in-plane measurements.

  4. Mechanical-plowing-based high-speed patterning on hard material via advanced-control and ultrasonic probe vibration

    SciTech Connect (OSTI)

    Wang, Zhihua; Zou, Qingze, E-mail: qzzou@rci.rutgers.edu [Mechanical and Aerospace Engineering Department, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854 (United States)] [Mechanical and Aerospace Engineering Department, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854 (United States); Tan, Jun; Jiang, Wei [Electrical and Computer Engineering Department, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854 (United States)] [Electrical and Computer Engineering Department, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854 (United States)

    2013-11-15T23:59:59.000Z

    In this paper, we present a high-speed direct pattern fabrication on hard materials (e.g., a tungsten-coated quartz substrate) via mechanical plowing. Compared to other probe-based nanolithography techniques based on chemical- and/or physical-reactions (e.g., the Dip-pen technique), mechanical plowing is meritorious for its low cost, ease of process control, and capability of working with a wide variety of materials beyond conductive and/or soft materials. However, direct patterning on hard material faces two daunting challenges. First, the patterning throughput is ultimately hindered by the “writing” (plowing) speed, which, in turn, is limited by the adverse effects that can be excited/induced during high-speed, and/or large-range plowing, including the vibrational dynamics of the actuation system (the piezoelectric actuator, the cantilever, and the mechanical fixture connecting the cantilever to the actuator), the dynamic cross-axis coupling between different axes of motion, and the hysteresis and the drift effects related to the piezoelectric actuators. Secondly, it is very challenging to directly pattern on ultra-hard materials via plowing. Even with a diamond probe, the line depth of the pattern via continuous plowing on ultra-hard materials such as tungsten, is still rather small (<0.5 nm), particularly when the “writing” speed becomes high. To overcome these two challenges, we propose to utilize a novel iterative learning control technique to achieve precision tracking of the desired pattern during high-speed, large-range plowing, and introduce ultrasonic vibration of the probe in the normal (vertical) direction during the plowing process to enable direct patterning on ultra hard materials. The proposed approach was implemented to directly fabricate patterns on a mask with tungsten coating and quartz substrate. The experimental results demonstrated that a large-size pattern of four grooves (20 ?m in length with 300 nm spacing between lines) can be fabricated at a high speed of ?5 mm/s, with the line width and the line depth at ?95 nm and 2 nm, respectively. A fine pattern of the word “NANO” is also fabricated at the speed of ?5 mm/s.

  5. Electromagnetic methods for measuring materials properties of cylindrical rods and array probes for rapid flaw inspection

    SciTech Connect (OSTI)

    Sun, Haiyan

    2005-05-01T23:59:59.000Z

    The case-hardening process modifies the near-surface permeability and conductivity of steel, as can be observed through changes in alternating current potential drop (ACPD) along a rod. In order to evaluate case depth of case hardened steel rods, analytical expressions are derived for the alternating current potential drop on the surface of a homogeneous rod, a two-layered and a three-layered rod. The case-hardened rod is first modeled by a two-layer rod that has a homogeneous substrate with a single, uniformly thick, homogeneous surface layer, in which the conductivity and permeability values differ from those in the substrate. By fitting model results to multi-frequency ACPD experimental data, estimates of conductivity, permeability and case depth are found. Although the estimated case depth by the two-layer model is in reasonable agreement with the effective case depth from the hardness profile, it is consistently higher than the effective case depth. This led to the development of the three-layer model. It is anticipated that the new three-layered model will improve the results and thus makes the ACPD method a novel technique in nondestructive measurement of case depth. Another way to evaluate case depth of a case hardened steel rod is to use induction coils. Integral form solutions for an infinite rod encircled by a coaxial coil are well known, but for a finite length conductor, additional boundary conditions must be satisfied at the ends. In this work, calculations of eddy currents are performed for a two-layer conducting rod of finite length excited by a coaxial circular coil carrying an alternating current. The solution is found using the truncated region eigenfunction expansion (TREE) method. By truncating the solution region to a finite length in the axial direction, the magnetic vector potential can be expressed as a series expansion of orthogonal eigenfunctions instead of as a Fourier integral. Closed-form expressions are derived for the electromagnetic field in the presence of a finite a two-layer rod and a conductive tube. The results are in very good agreement with those obtained by using a 2D finite element code. In the third part, a new probe technology with enhanced flaw detection capability is described. The new probe can reduce inspection time through the use of multiple Hall sensors. A prototype Hall array probe has been built and tested with eight individual Hall sensor ICs and a racetrack coil. Electronic hardware was developed to interface the probes to an oscilloscope or an eddy current instrument. To achieve high spatial resolution and to limit the overall probe size, high-sensitivity Hall sensor arrays were fabricated directly on a wafer using photolithographic techniques and then mounted in their unencapsulated form. The electronic hardware was then updated to interface the new probes to a laptop computer.

  6. Probing Structure-Property Relationship of Energy Storage Materials Using Ex-Situ, In-Situ Dynamic Microscopy and Spectroscopy with High Spatial and Fast Temporal Resolution

    E-Print Network [OSTI]

    Probing Structure-Property Relationship of Energy Storage Materials Using Ex-Situ, In-Situ Dynamic, chemistry, and properties of energy storage materials Find general guiding principle for accelerated-situ chemical imaging and spectroscopic study of structure and chemical evolution of new energy storage

  7. The magnetic resonance force microscope: A new microscopic probe of magnetic materials

    SciTech Connect (OSTI)

    Hammel, P.C.; Zhang, Z. [Los Alamos National Lab., NM (United States); Midzor, M.; Roukes, M.L. [California Inst. of Tech., Pasadena, CA (United States); Wigen, P.E. [Ohio State Univ., Columbus, OH (United States); Childress, J.R. [Univ. of Florida, Gainesville, FL (United States)

    1997-08-06T23:59:59.000Z

    The magnetic resonance force microscope (MRFM) marries the techniques of magnetic resonance imaging (MRI) and atomic force microscopy (AFM), to produce a three-dimensional imaging instrument with high, potentially atomic-scale, resolution. The principle of the MRFM has been successfully demonstrated in numerous experiments. By virtue of its unique capabilities the MRFM shows promise to make important contributions in fields ranging from three-dimensional materials characterization to bio-molecular structure determination. Here the authors focus on its application to the characterization and study of layered magnetic materials; the ability to illuminate the properties of buried interfaces in such materials is a particularly important goal. While sensitivity and spatial resolution are currently still far from their theoretical limits, they are nonetheless comparable to or superior to that achievable in conventional MRI. Further improvement of the MRFM will involve operation at lower temperature, application of larger field gradients, introduction of advanced mechanical resonators and improved reduction of the spurious coupling when the magnet is on the resonator.

  8. An In-situ materials analysis particle probe (MAPP) diagnostic to study particle density control and hydrogenic fuel retention in NSTX

    SciTech Connect (OSTI)

    Allain, Jean Paul [University of Illinois at Urbana-Champaign] (ORCID:000000031348262X)

    2014-09-05T23:59:59.000Z

    A new materials analysis particle probe (MAPP) was designed, constructed and tested to develop understanding of particle control and hydrogenic fuel retention in lithium-based plasma-facing surfaces in NSTX. The novel feature of MAPP is an in-situ tool to probe the divertor NSTX floor during LLD and lithium-coating shots with subsequent transport to a post-exposure in-vacuo surface analysis chamber to measure D retention. In addition, the implications of a lithiated graphite-dominated plasma-surface environment in NSTX on LLD performance, operation and ultimately hydrogenic pumping and particle control capability are investigated in this proposal. MAPP will be an invaluable tool for erosion/redeposition simulation code validation.

  9. CH2M HILL Plateau Remediation Company have

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r k C o'IUHopper3 Environmental CH2M

  10. M2M Communications | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07) WindLowM2E Power Inc Jump to:M2M

  11. Cantilevered probe detector with piezoelectric element

    DOE Patents [OSTI]

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2013-04-30T23:59:59.000Z

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  12. Cantilevered probe detector with piezoelectric element

    DOE Patents [OSTI]

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2014-04-29T23:59:59.000Z

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  13. Cantilevered probe detector with piezoelectric element

    DOE Patents [OSTI]

    Adams, Jesse D. (Reno, NV); Sulchek, Todd A. (Oakland, CA); Feigin, Stuart C. (Reno, NV)

    2012-07-10T23:59:59.000Z

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  14. Cantilevered probe detector with piezoelectric element

    DOE Patents [OSTI]

    Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.

    2010-04-06T23:59:59.000Z

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  15. Spectrophotometric probe

    DOE Patents [OSTI]

    Prather, William S. (Augusta, GA); O'Rourke, Patrick E. (Martinez, GA)

    1994-01-01T23:59:59.000Z

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  16. Spectrophotometric probe

    DOE Patents [OSTI]

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02T23:59:59.000Z

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  17. Smart M2M Gateway based Architecture for M2M Device and Endpoint Soumya Kanti Datta, Christian Bonnet

    E-Print Network [OSTI]

    Gesbert, David

    of both ETSI and oneM2M standards. The internal structure of such a gateway along with its APIs and endpoints. The architecture is compliant with both ETSI and oneM2M standards recommendations. The resources of the gateway and APIs to manage the M2M devices, endpoints, their discovery and interaction with the mobile

  18. M2M for Smart Cities Gerd Ascheid

    E-Print Network [OSTI]

    M2M for Smart Cities Gerd Ascheid #12;Agenda What is a "Smart City"? Cellular System based M2M Cities and Communities Source: http://eu-smartcities.eu 3 #12;What Elements Make a City ,,Smart" ? Smart groups 4 #12;Important Topics for Building a Smart City Infrastructure Intelligent Networks Services

  19. 2-M Probe At Astor Pass Area (Kratt, Et Al., 2010) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind Hometcdb Home#MarketResearchReportsReference: 10

  20. 2-M Probe At Gabbs Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind Hometcdb Home#MarketResearchReportsReference:

  1. 2-M Probe At Hawthorne Area (Kratt, Et Al., 2010) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind Hometcdb Home#MarketResearchReportsReference:Kratt,

  2. 2-M Probe At Rhodes Marsh Area (Kratt, Et Al., 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind Hometcdb

  3. 2-M Probe At Teels Marsh Area (Kratt, Et Al., 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind HometcdbInformation Teels Marsh Area Exploration

  4. 2-M Probe At Teels Marsh Area (Shevenell, Et Al., 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind HometcdbInformation Teels Marsh Area

  5. 2-M Probe At The Needles Area (Kratt, Et Al., 2010) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind HometcdbInformation Teels Marsh

  6. 2-M Probe At Tungsten Mountain Area (Kratt, Et Al., 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind HometcdbInformation Teels MarshInformation

  7. 2-M Probe At Winnemucca Dry Lake Area (Kratt, Et Al., 2010) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind HometcdbInformation Teels

  8. 2-M Probe Survey At Coso Geothermal Area (1979) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind HometcdbInformation TeelsCorrect previously

  9. 2-M Probe Survey At Coso Geothermal Area (2007) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind HometcdbInformation TeelsCorrect

  10. 2-M Probe Survey At Salt Wells Area (Coolbaugh, Et Al., 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind HometcdbInformation TeelsCorrectInformation

  11. 2-M Probe At Alum Area (Kratt, Et Al., 2010) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki Home Jweers's picture SubmittedSoltech Jump31Et

  12. 2-M Probe At Columbus Salt Marsh Area (Kratt, Et Al., 2010) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki Home Jweers's picture SubmittedSoltech

  13. 2-M Probe At Gabbs Alkali Flat Area (Kratt, Et Al., 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki Home Jweers's picture

  14. 2-M Probe At Rhodes Marsh Area (Shevenell, Et Al., 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki Home Jweers's pictureInformation Rhodes

  15. 2-M Probe At Silver Peak Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki Home Jweers's pictureInformation

  16. 2-M Probe At Black Warrior Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource HistorykVOpenOpenDesignatedResistivityBlack

  17. 2-M Probe At Dead Horse Wells Area (Kratt, Et Al., 2010) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource

  18. Bounds on 2m/r for static perfect fluids

    E-Print Network [OSTI]

    J. Mark Heinzle

    2007-08-24T23:59:59.000Z

    For spherically symmetric relativistic perfect fluid models, the well-known Buchdahl inequality provides the bound $2 M/R \\leq 8/9$, where $R$ denotes the surface radius and $M$ the total mass of a solution. By assuming that the ratio $p/\\rho$ be bounded, where $p$ is the pressure, $\\rho$ the density of solutions, we prove a sharper inequality of the same type, which depends on the actual bound imposed on $p/\\rho$. As a special case, when we assume the dominant energy condition $p/\\rho \\leq 1$, we obtain $2 M/R \\leq 6/7$.

  19. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | NationalMaterials

  20. Rotating concave eddy current probe

    SciTech Connect (OSTI)

    Roach, Dennis P. (Albuquerque, NM); Walkington, Phil (Albuquerque, NM); Rackow, Kirk A. (Albuquerque, NM); Hohman, Ed (Albuquerque, NM)

    2008-04-01T23:59:59.000Z

    A rotating concave eddy current probe for detecting fatigue cracks hidden from view underneath the head of a raised head fastener, such as a buttonhead-type rivet, used to join together structural skins, such as aluminum aircraft skins. The probe has a recessed concave dimple in its bottom surface that closely conforms to the shape of the raised head. The concave dimple holds the probe in good alignment on top of the rivet while the probe is rotated around the rivet's centerline. One or more magnetic coils are rigidly embedded within the probe's cylindrical body, which is made of a non-conducting material. This design overcomes the inspection impediment associated with widely varying conductivity in fastened joints.

  1. INNOVATIVE EDDY CURRENT PROBE FOR MICRO DEFECTS

    SciTech Connect (OSTI)

    Santos, Telmo G.; Vilaca, Pedro; Quintino, Luisa [IDMEC, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Santos, Jorge dos [GKSS, Max-Planck-Street 1, D-21502 Geesthacht (Germany); Rosado, Luis [IST, UTL, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2010-02-22T23:59:59.000Z

    This paper reports the development of an innovative eddy current (EC) probe, and its application to micro-defects on the root of the Friction Stir Welding (FSW). The new EC probe presents innovative concept issues, allowing 3D induced current in the material, and a lift-off independence. Validation experiments were performed on aluminium alloys processed by FSW. The results clearly show that the new EC probe is able to detect and sizing surface defects about 60 microns depth.

  2. The 2m <= r property of spherically symmetric static spacetimes

    E-Print Network [OSTI]

    Marc Mars; M. M. Martin-Prats; Jose M. M. Senovilla

    2002-02-01T23:59:59.000Z

    We prove that all spherically symmetric static spacetimes which are both regular at r=0 and satisfying the single energy condition rho + p_r + p_t >= 0 cannot contain any black hole region (equivalently, they must satisfy 2m/r <= 1 everywhere). This result holds even when the spacetime is allowed to contain a finite number of matching hypersurfaces. This theorem generalizes a result by Baumgarte and Rendall when the matter contents of the space-time is a perfect fluid and also complements their results in the general non-isotropic case.

  3. Cybersecurity Capability Maturity Model (C2M2) | Department of...

    Office of Environmental Management (EM)

    additional reference material and implementation guidance specifically tailored for the electricity and oil and natural gas segments of the energy sector. The Energy Department...

  4. Integrated Optical Probes

    SciTech Connect (OSTI)

    Brent Frogget, Douglas DeVore, Vincent Romero, David Esquibel, and David Holtkamp

    2008-09-04T23:59:59.000Z

    Optical probes used in velocimetry measurements have typically been individual probes that collect data for a single diagnostic at a single point. These probes have been used in diagnostics such as VISAR, PDV, and radiometry, which measure surface velocity, temperature, and other characteristics. When separate probes are used for these measurements, the different diagnostic points measured must be significantly separated. We have developed integrated probes that collect data for multiple optical diagnostics; these probes measure points in close proximity.

  5. New Atomic Force Microscope Spectroscopy Probes Local Elasticity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Characterization New Atomic Force Microscope Spectroscopy Probes Local Elasticity March 04, 2015 Shown is a contact resonance frequency image after nano-oxidation of a...

  6. Center for Nanophase Materials Sciences | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in nanostructured materials. Fieldstechniques include scanning probe microscopy, neutron scattering, optical spectroscopy and soft-matter electron and helium ion...

  7. Structural and Magnetic Properties of MCl2 (M = Fe, Mn, Co): Acetonitrile Solvates

    SciTech Connect (OSTI)

    Pokhodnya,K.; Bonner, M.; DiPasquale, A.; Rheingold, A.; Her, J.; Stephens, P.; Park, J.; Kennon, B.; Arif, A.; Miller, J.

    2007-01-01T23:59:59.000Z

    M{sup II}Cl{sub 2} (M = Mn, Fe, Co) as their acetonitrile solvates were isolated, and their structural, spectroscopic, and magnetic properties were studied. MCl{sub 2}(NCMe){sub 2} (M = Fe, Mn) form 1-D chains of octahedral M{sup II} ions with four bridging chlorides and two axial MeCN's. The presence of an axial distortion for MFe causes a significant magnetic anisotropy that increases significantly below 150 K; however, {chi}{sub av} [=({chi}{sub {parallel}} + 2{chi}{sub {perpendicular}})/3] almost coincides with the value obtained on a polycrystalline sample. MnCl{sub 2}(NCMe){sub 2} is a paramagnet with a weak antiferromagnetic coupling. Annealing FeCl{sub 2}(NCMe){sub 2} at 55 {sup o}C forms the monosolvate of FeCl{sub 2}(NCMe) composition in which two chains collapse into a double chain with formation of Fe-Cl bonding such that half of the {mu}-Cl's becomes {mu}{sub 3}-Cl's. This material orders magnetically below {Tc} = 4.3 K. For M = Co, paramagnetic tetrahedral [CoCl{sub 3}(NCMe)]{sup -} anions are isolated.

  8. Hydrodynamic ultrasonic probe

    DOE Patents [OSTI]

    Day, Robert A. (Livermore, CA); Conti, Armond E. (San Jose, CA)

    1980-01-01T23:59:59.000Z

    An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.

  9. EERE Announces up to $2M for Clean Energy Supply Chain and Manufacturi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    up to 2M for Clean Energy Supply Chain and Manufacturing Competitiveness Analysis for Hydrogen and Fuel Cell Technologies EERE Announces up to 2M for Clean Energy Supply Chain...

  10. CHARACTERIZATION OF SIALON-TYPE MATERIALS

    E-Print Network [OSTI]

    Spencer, P.N.

    2010-01-01T23:59:59.000Z

    an Economical Refractory Material", Industrial Heating, 50-of Sialon-Type Materials Newman Spencer Lawrence BerkeleyEXPERIHENTAL PROCEDURES A. The Material L Ml H2 M3 and M4 B.

  11. Sustainability Data and Analytics in Cloud-Based M2M Systems

    E-Print Network [OSTI]

    Dustdar, Schahram

    consumption and GHG cal- culation) and maintaining M2M environments [e.g., monitoring failure of chillers

  12. Independent Activity Report, CH2M Hill Plateau Remediation Company- January 2011

    Broader source: Energy.gov [DOE]

    Review of the CH2M Hill Plateau Remediation Company Unreviewed Safety Question Procedure [ARPT-RL-2011-003

  13. CH2M HILL Plateau Remediation Company are

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r k C o'IUHopper3 Environmental

  14. Ultrafast scanning probe microscopy

    DOE Patents [OSTI]

    Weiss, Shimon (El Cerrito, CA); Chemla, Daniel S. (Kensington, CA); Ogletree, D. Frank (El Cerrito, CA); Botkin, David (San Francisco, CA)

    1995-01-01T23:59:59.000Z

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  15. Ultrafast scanning probe microscopy

    DOE Patents [OSTI]

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16T23:59:59.000Z

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  16. IBM Probes Material Capabilities at the ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen Storage inChang Curriculum Vitae'DirectionsIBM

  17. IBM Probes Material Capabilities at the ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen andHypernuclei in Hall CIn

  18. Voluntary Protection Program Onsite Review, CH2M WG LLC, Idaho Cleanup Project – March 2014

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether CH2M WG LLC, Idaho Cleanup Project is performing at a level deserving DOE-VPP Star recognition.

  19. Rigid spine reinforced polymer microelectrode array probe and method of fabrication

    DOE Patents [OSTI]

    Tabada, Phillipe; Pannu, Satinderpall S

    2014-05-27T23:59:59.000Z

    A rigid spine-reinforced microelectrode array probe and fabrication method. The probe includes a flexible elongated probe body with conductive lines enclosed within a polymeric material. The conductive lines connect microelectrodes found near an insertion end of the probe to respective leads at a connector end of the probe. The probe also includes a rigid spine, such as made from titanium, fixedly attached to the probe body to structurally reinforce the probe body and enable the typically flexible probe body to penetrate and be inserted into tissue, such as neural tissue. By attaching or otherwise fabricating the rigid spine to connect to only an insertion section of the probe body, an integrally connected cable section of the probe body may remain flexible.

  20. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2012-10-16T23:59:59.000Z

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  1. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon (Pinole, CA); Bruchez, Marcel (Newark, CA); Alivisatos, Paul (Oakland, CA)

    2011-12-06T23:59:59.000Z

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  2. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon (Pinole, CA); Bruchez, Marcel (Newark, CA); Alivisatos, Paul (Oakland, CA)

    2011-12-20T23:59:59.000Z

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  3. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2014-01-28T23:59:59.000Z

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  4. Directional intraoperative probe

    DOE Patents [OSTI]

    Majewski, Stanislaw; Popov, Vladimir; Loutts, Georgii

    2003-11-04T23:59:59.000Z

    An introperative surgical probe incorporating both a fiber optic imaging system and multi-element beta/gamma radiation directional indicating system is described.

  5. Deutsche Telekom and Cinterion Wireless Modules become M2M partners Dec 04, 2009

    E-Print Network [OSTI]

    Deutschmann, Rainer

    modules, have forged a strategic partnership. The cooperation focuses on the joint management of M2M in Deutsche Telekom's international M2M- strategy", says Rainer Deutschmann, Senior Vice President Mobile and technology. About Deutsche Telekom AG Deutsche Telekom is one of the world's leading integrated

  6. Latency Requirements in M2M Application Scenarios Project Manager: Raymond Knopp , Eurecom

    E-Print Network [OSTI]

    Gesbert, David

    communication in LTE/LTE-Advanced Reduce energy consumption for M2M devices Co-existence of M2M/Gaming traffics. Delay Analysis in MTS Network (Operator in Serbia) www.ict-lola.eu Contention-based random access

  7. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOE Patents [OSTI]

    Vo-Dinh, Tuan (Knoxville, TN)

    1995-01-01T23:59:59.000Z

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devises, in probe array devices.

  8. NANO FOUNTAIN PROBE AIDS DEVELOPMENT OF NEW THERAPEUTICS Horacio D. Espinosa, Department of Mechanical Engineering, Northwestern University

    E-Print Network [OSTI]

    Shull, Kenneth R.

    NANO FOUNTAIN PROBE AIDS DEVELOPMENT OF NEW THERAPEUTICS Horacio D. Espinosa, Department a novel nanoscale fluid delivery probe, called the Nano Fountain Probe, which enables studies to a dispensing tip. The Nano Fountain Probe has proven capable of delivering a variety of functional materials

  9. High-frequency probing diagnostic for Hall current plasma thrusters A. A. Litvak, Y. Raitses, and N. J. Fisch

    E-Print Network [OSTI]

    is restricted by sputtering of the probe material, which can produce a short circuit between the probe tipsHigh-frequency probing diagnostic for Hall current plasma thrusters A. A. Litvak, Y. Raitses, and N-matching circuit, was successfully built and calibrated. Through simultaneous high-frequency probing of the Hall

  10. Carbon nanotube based electromechanical probes

    E-Print Network [OSTI]

    Yaglioglu, Onnik, 1976-

    2007-01-01T23:59:59.000Z

    Electromechanical probing applications continuously require smaller pitches, faster manufacturing and lower electrical resistance. Conventional techniques, such as MEMS based cantilever probes have their shortcomings in ...

  11. Preliminary Notice of Violation, CH2M-Washington Group Idaho...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LLC - EA-2007-03 June 14, 2007 Issued to CH2M-Washington Group Idaho, LLC, related to Radiation Protection Program Deficiencies at the Radioactive Waste Management Complex -...

  12. Chemical sensing flow probe

    DOE Patents [OSTI]

    Laguna, George R. (Albuquerque, NM); Peter, Frank J. (Albuquerque, NM); Butler, Michael A. (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.

  13. Focus: DNA probes

    SciTech Connect (OSTI)

    Not Available

    1986-11-01T23:59:59.000Z

    Progress in the development of DNA probes for the identification and quantitation of specific genetic sequences in biological samples is reviewed. Current research efforts in the development of DNA probes for the diagnosis of a wide variety of bacterial, viral, and other infectious diseases, such as herpes simplex and cytomegalovirus, and inherited genetic diseases such as cystic fibrosis and sickle cell anemia are discussed. Progress in development of DNA probe assays for cancer diagnosis, detection of Salmonella food poisoning, tissue typing (detection of histocompatibility antigens), mutagen screening, and animal diseases, among other applications is included.

  14. Small ASM probes

    SciTech Connect (OSTI)

    Fritz, J.N.; Olinger, B.; Vorthman, J.E.; Wilder, L.

    1988-10-01T23:59:59.000Z

    A part of the ongoing effort to miniaturize the adjoint sensitivity method (ASM) probe, six small probes in different configurations were tested on a single experiment. The results of the different configurations are presented. The ASM probe is quite accurate and its performance is well understood in those situations where we have a relatively large area that has 1-D flow. Area is expensive and it is desirable to make measurements using a minimum of this resource. When we confine ourselves to a small area we get electromagnetic effects and perturbations in the hydrodynamic flows that were absent in experiments whose lateral extent was large enough to effectively eliminate these problems. We are forced toward magnet and coil configurations that are not ideal for best accuracy. In the experiment described in this report, we describe and report the results of six ASM probes that approach the goal of using less area. 2 refs., 23 figs., 2 tabs.

  15. On the design of heat-transfer probes

    SciTech Connect (OSTI)

    Brich, M.A.; Ganzha, V.L.; Saxena, S.C. [Univ. of Illinois, Chicago, IL (United States)] [Univ. of Illinois, Chicago, IL (United States)

    1997-03-01T23:59:59.000Z

    Saxena and coworkers have reported heat-transfer coefficient values for magnetofluidized beds using electrically heated heat-transfer probes. Here, a two-dimensional heat-transfer model is employed to investigate the influence of significant design features on measured parameters. Numerical calculations reveal that the thermal conductivity of the probe material has an insignificant contribution but the material of end caps and relative sizes and locations of the probe and heater appreciably influence the heat-transfer rates through end-conduction.

  16. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon (Pinole, CA); Bruchez, Jr., Marcel (Albany, CA); Alivisatos, Paul (Oakland, CA)

    2002-01-01T23:59:59.000Z

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in he probe, causing the emission of electromagnetic radiation. Further described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  17. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon (Pinole, CA); Bruchez, Jr., Marcel (Albany, CA); Alivisatos, Paul (Oakland, CA)

    2004-03-02T23:59:59.000Z

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe, causing the emission of electromagnetic radiation. Further described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  18. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2005-08-09T23:59:59.000Z

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  19. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2006-09-05T23:59:59.000Z

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  20. Convective heat flow probe

    DOE Patents [OSTI]

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09T23:59:59.000Z

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  1. Multispectral imaging probe

    DOE Patents [OSTI]

    Sandison, D.R.; Platzbecker, M.R.; Descour, M.R.; Armour, D.L.; Craig, M.J.; Richards-Kortum, R.

    1999-07-27T23:59:59.000Z

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector. 8 figs.

  2. Probing Mercury's Partnering Preferences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, informationPriority Firm Exchange . .ProbingProbing

  3. Smart Insulating Container with Anti-Theft Features by M2M Tracking

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    Smart Insulating Container with Anti-Theft Features by M2M Tracking Cheng-Ting Lee, Chun-Min ChangChen, Brucelai, TroyChiu}@itri.org.tw, pai.chou@gmail.com Abstract--This paper describes a smart insulating and responsive but also of low overhead. I. INTRODUCTION Smart insulating shipping containers are an important

  4. INELASTIC NEUTRON SCATTERING SELECTION RULES OF 03B1 HgI2 M. SIESKIND

    E-Print Network [OSTI]

    Boyer, Edmond

    899 INELASTIC NEUTRON SCATTERING SELECTION RULES OF 03B1 HgI2 M. SIESKIND Laboratoire de The inelastic neutron scattering selection rules of 03B1 HgI2 in the directions 0394, 03A3 and 039B are derived Abstracts 63.20D Introduction. - Inelastic neutron scattering is a powerful technique for the determination

  5. Logarithmic Fermi-liquid breakdown in NbFe2 M. Brando,1,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    temperature dependence of the Sommerfeld coefficient = C/T of the specific heat capacity, C, over nearly two temperature dependences of the resistivity and of the heat capacity over extended ranges in temperatureLogarithmic Fermi-liquid breakdown in NbFe2 M. Brando,1, W. J. Duncan,1 D. Moroni-Klementowicz,1 C

  6. A Novel Flexible Sinusoidal Probe for Chronic Extracellular Brain Recording

    E-Print Network [OSTI]

    Sohal, Harbaljit S; Jackson, Andrew; Baker, Stuart N; O'Neill, Anthony

    2015-01-01T23:59:59.000Z

    Current microelectrodes designed to record chronic neural activity suffer from recording instabilities due to the modulus mismatch between the electrode materials and the brain. We sought to address this by microfabricating a novel flexible neural probe. Our probe was fabricated from parylene-C with a WTi metal, using contact photolithography and reactive ion etching, with three design features to address this modulus mismatch: a sinusoidal shaft, a rounded tip and a polyimide anchoring ball. The anchor restricts movement of the electrode recording sites and the shaft accommodates the brain motion. We successfully patterned thick metal and parylene-C layers, with a reliable device release process leading to high functional yield and were able to sample stable neural activity for over 2 years with this probe. We have successfully optimized the fabrication process to produce a reliable probe with high functional yield. This novel reliably microfabricated probe can record stable neural activity for up to two yea...

  7. Visual probes and methods for placing visual probes into subsurface areas

    DOE Patents [OSTI]

    Clark, Don T.; Erickson, Eugene E.; Casper, William L.; Everett, David M.

    2004-11-23T23:59:59.000Z

    Visual probes and methods for placing visual probes into subsurface areas in either contaminated or non-contaminated sites are described. In one implementation, the method includes driving at least a portion of a visual probe into the ground using direct push, sonic drilling, or a combination of direct push and sonic drilling. Such is accomplished without providing an open pathway for contaminants or fugitive gases to reach the surface. According to one implementation, the invention includes an entry segment configured for insertion into the ground or through difficult materials (e.g., concrete, steel, asphalt, metals, or items associated with waste), at least one extension segment configured to selectively couple with the entry segment, at least one push rod, and a pressure cap. Additional implementations are contemplated.

  8. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon (Pinole, CA); Bruchez, Jr., Marcel (Albany, CA); Alivisatos, Paul (Oakland, CA)

    2008-01-01T23:59:59.000Z

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) an affinity molecule linked to the semiconductor nanocrystal. The semiconductor nanocrystal is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Exposure of the semiconductor nanocrystal to excitation energy will excite the semiconductor nanocrystal causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  9. Detecting Weld Zone Over Anticorrosion Painting by Rotating Uniform Eddy Current Probe

    SciTech Connect (OSTI)

    Hoshikawa, H.; Koyama, K.; Naruse, Y. [Nihon University, Izumicho Narashino Chiba 275-8575 (Japan)

    2005-04-09T23:59:59.000Z

    The authors have studied application of rotating uniform eddy current probe to detecting weld zone in steed material over anticorrosion painting. The probe detects not only weld position by the signal level but also weld direction by the signal phase. The experimental results have indicated that the probe provides a signal almost linear to its position with respect to weld zone center over the full width of weld. The signal of the probe is much less influenced by the painting thickness variation than that of the conventional differential pancake-coils probe.

  10. Regulation of Cdc25C by ERK-MAP Kinases during the G2/M Transition

    E-Print Network [OSTI]

    Kirschner, Marc W.

    Regulation of Cdc25C by ERK-MAP Kinases during the G2/M Transition Ruoning Wang,1,4 Guangan He,1 of ERK2, is a major Cdc25 phosphorylating kinase in extracts of M phase- arrested Xenopus eggs. In a mammalian cell line, ERK1/2 interacts with Cdc25C in interphase and phosphorylates Cdc25C at T48 in mitosis

  11. Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon (Pinole, CA); Bruchez, Jr., Marcel (Albany, CA); Alivisatos, Paul (Oakland, CA)

    1999-01-01T23:59:59.000Z

    A luminescent semiconductor nanocrystal compound is described which is capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation (luminescing) in a narrow wavelength band and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The luminescent semiconductor nanocrystal compound is linked to an affinity molecule to form an organo luminescent semiconductor nanocrystal probe capable of bonding with a detectable substance in a material being analyzed, and capable of emitting electromagnetic radiation in a narrow wavelength band and/or absorbing, scattering, or diffracting energy when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam. The probe is stable to repeated exposure to light in the presence of oxygen and/or other radicals. Further described is a process for making the luminescent semiconductor nanocrystal compound and for making the organo luminescent semiconductor nanocrystal probe comprising the luminescent semiconductor nanocrystal compound linked to an affinity molecule capable of bonding to a detectable substance. A process is also described for using the probe to determine the presence of a detectable substance in a material.

  12. Free vibrations of U-shaped atomic force microscope probes

    SciTech Connect (OSTI)

    Rezaei, E.; Turner, J. A., E-mail: jaturner@unl.edu [Mechanical and Materials Engineering, W342 Nebraska Hall, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States)

    2014-05-07T23:59:59.000Z

    Contact resonance atomic force microscope (AFM) methods have been used to quantify the elastic and viscoelastic properties of a variety of materials such as polymers, ceramics, biological materials, and metals with spatial resolution on the order of tens of nanometers. This approach involves measurement of the resonant frequencies of the AFM probe both for the free case and the case for which the tip is in contact with a sample. Vibration models of the probe and tip-sample contact models are then used to determine the sample properties from the frequency behavior and to create images of the sample properties. This work has been primarily focused on rectangular, single-beam probes for which the vibration models are relatively simple. Recently, U-shaped AFM probes have been developed to allow local heating of samples and the resonances of these probes are much more complex. In this article, a simplified analytical model of these U-shaped probes is described. This three beam model includes two beams clamped at one end and connected with a perpendicular cross beam at the other end. The beams are assumed only to bend in flexure and twist but their coupling allows a wide range of possible dynamic behavior. Results are presented for the first ten modes and the mode shapes are shown to have complex coupling between the flexure and twisting of the beams, particularly for the higher modes. All resonant frequency results are in good agreement with finite element results for the three probe designs and two values of thickness considered (all wavenumbers are within 3.0%). This work is anticipated to allow U-shaped probes to be used eventually for quantitative measurements of sample material properties during heating using a contact resonance approach.

  13. Experimental probes of axions

    SciTech Connect (OSTI)

    Chou, Aaron S.; /Fermilab

    2009-10-01T23:59:59.000Z

    Experimental searches for axions or axion-like particles rely on semiclassical phenomena resulting from the postulated coupling of the axion to two photons. Sensitive probes of the extremely small coupling constant can be made by exploiting familiar, coherent electromagnetic laboratory techniques, including resonant enhancement of transitions using microwave and optical cavities, Bragg scattering, and coherent photon-axion oscillations. The axion beam may either be astrophysical in origin as in the case of dark matter axion searches and solar axion searches, or created in the laboratory from laser interactions with magnetic fields. This note is meant to be a sampling of recent experimental results.

  14. Probing metal solidification nondestructively

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, informationPriority Firm ExchangeSynchrotronProbing

  15. Cybersecurity Capability Maturity Model (C2M2) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014Contributing DataDepartment of EnergyC2M2 Program »

  16. hnRNP L binds to CA repeats in the 3'UTR of bcl-2 mRNA

    SciTech Connect (OSTI)

    Lee, Dong-Hyoung; Lim, Mi-Hyun; Youn, Dong-Ye [Department of Biochemistry, College of Medicine, The Catholic University of Korea, 505 Banpo-Dong, Seocho-gu, Seoul 137-701 (Korea, Republic of)] [Department of Biochemistry, College of Medicine, The Catholic University of Korea, 505 Banpo-Dong, Seocho-gu, Seoul 137-701 (Korea, Republic of); Jung, Seung Eun [Department of Medical Science, The Graduate School, Yonsei University, Seoul (Korea, Republic of)] [Department of Medical Science, The Graduate School, Yonsei University, Seoul (Korea, Republic of); Ahn, Young Soo [Brain Korea 21 Project for Medical Science, Brain Research Institute, Department of Pharmacology, Yonsei University College of Medicine, Seoul (Korea, Republic of)] [Brain Korea 21 Project for Medical Science, Brain Research Institute, Department of Pharmacology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Tsujimoto, Yoshihide [Department of Medical Genetics, Laboratory of Molecular Genetics, Osaka University Medical School, Osaka (Japan)] [Department of Medical Genetics, Laboratory of Molecular Genetics, Osaka University Medical School, Osaka (Japan); Lee, Jeong-Hwa, E-mail: leejh@catholic.ac.kr [Department of Biochemistry, College of Medicine, The Catholic University of Korea, 505 Banpo-Dong, Seocho-gu, Seoul 137-701 (Korea, Republic of)] [Department of Biochemistry, College of Medicine, The Catholic University of Korea, 505 Banpo-Dong, Seocho-gu, Seoul 137-701 (Korea, Republic of)

    2009-05-08T23:59:59.000Z

    We previously reported that the CA-repeat sequence in the 3'-untranslated region (3'UTR) of bcl-2 mRNA is involved in the decay of bcl-2 mRNA. However, the trans-acting factor for the CA element in bcl-2 mRNA remains unidentified. The heterogeneous nuclear ribonucleoprotein L (hnRNP L), an intron splicing factor, has been reported to bind to CA repeats and CA clusters in the 3'UTR of several genes. We reported herein that the CA repeats of bcl-2 mRNA have the potential to form a distinct ribonuclear protein complex in cytoplasmic extracts of MCF-7 cells, as evidenced by RNA electrophoretic mobility shift assays (REMSA). A super-shift assay using the hnRNP L antibody completely shifted the complex. Immunoprecipitation with the hnRNP L antibody and MCF-7 cells followed by RT-PCR revealed that hnRNP L interacts with endogenous bcl-2 mRNA in vivo. Furthermore, the suppression of hnRNP L in MCF-7 cells by the transfection of siRNA for hnRNP L resulted in a delay in the degradation of RNA transcripts including CA repeats of bcl-2 mRNA in vitro, suggesting that the interaction between hnRNPL and CA repeats of bcl-2 mRNA participates in destabilizing bcl-2 mRNA.

  17. M2M Platform-as-a-Service for Sustainability Hong-Linh Truong and Schahram Dustdar

    E-Print Network [OSTI]

    Dustdar, Schahram

    sustainability measurements (e.g., electricity consumption and GHG calculation). Research effort so far has beenM2M Platform-as-a-Service for Sustainability Governance Hong-Linh Truong and Schahram Dustdar-based M2M systems. We describe a Platform-as-a-Service for sustainability governance that implements

  18. CCT: Connect and Control Things A Novel Mobile Application to Manage M2M Devices and Endpoints

    E-Print Network [OSTI]

    Gesbert, David

    -to-Machine (M2M) market [1, 2]. IoT has also opened new vistas in smart metering, smart grid, smart city applications for IoT ecosystems totally indispensable. For example, in smart homes, M2M devices [6] are able

  19. Porous Materials Porous Materials

    E-Print Network [OSTI]

    Berlin,Technische Universität

    1 Porous Materials x Porous Materials · Physical properties * Characteristic impedance p = p 0 e -jk xa- = vej[ ] p x - j ; Zc= p ve = c ka 0k = c 1-j #12;2 Porous Materials · Specific acoustic impedance Porous Materials · Finite thickness ­ blocked p e + -jk (x-d)a p e - jk (x-d)a d x #12

  20. STANDING WAVE PROBES FOR DIMENSIONAL METROLOGY OF LOW DENSITY FOAMS

    SciTech Connect (OSTI)

    Seugling, R M; Woody, S C; Bauza, M B

    2010-03-23T23:59:59.000Z

    Typically, parts and geometries of interest to LLNL are made from a combination of complex geometries and a wide array of different materials ranging from metals and ceramics to low density foams and plastic foils. These parts are combined to develop physics experiments for studying material properties, equation of state (EOS) and radiation transport. Understanding the dimensional uncertainty of the parts contained within an experiment is critical to the physical understanding of the phenomena being observed and represents the motivation for developing probe metrology capability that can address LLNL's unique problems. Standing wave probes were developed for measuring high aspect ratio, micrometer scaled features with nanometer resolution. Originally conceived of for the use in the automotive industry for characterizing fuel injector bores and similar geometries, this concept was investigated and improved for use on geometries and materials important to LLNL needs within target fabrication. As part of the original project, detailed understanding of the probe dynamics and interactions with the surface of the sample was investigated. In addition, the upgraded system was utilized for measuring fuel injector bores and micro-lenses as a means of demonstrating capability. This report discusses the use of the standing wave probe for measuring features in low density foams, 55 mg/cc SiO{sub 2} and 982 mg/cc (%6 relative density) copper foam respectively. These two foam materials represent a difficult metrology challenge because of their material properties and surface topography. Traditional non-contact metrology systems such as normal incident interferometry and/or confocal microscopy have difficulty obtaining a signal from the relatively absorptive characteristics of these materials. In addition to the foam samples, a solid copper and plastic (Rexolite{trademark}) sample of similar geometry was measured with the standing wave probe as a reference for both conductive and dielectric materials.

  1. Probing Multiparton Correlations at CEBAF

    E-Print Network [OSTI]

    Jianwei Qiu

    1998-08-08T23:59:59.000Z

    In this talk, I explore the possibilities of probing the multiparton correlation functions at CEBAF at its current energy and the energies with its future upgrades.

  2. Heat transfer probe

    DOE Patents [OSTI]

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10T23:59:59.000Z

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  3. Cosmological Probes for Supersymmetry

    E-Print Network [OSTI]

    Khlopov, Maxim

    2015-01-01T23:59:59.000Z

    The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs) are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY) models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.

  4. Construction and testing of a flue-gas corrosion probe

    SciTech Connect (OSTI)

    Federer, J.I.; McEvers, J.A.

    1990-08-01T23:59:59.000Z

    The selection of suitable materials for industrial, waste-heat- recovery systems requires assessment of corrosion of materials in various flue-gas environments. Such assessments involve exposing candidate materials to high-temperature flue gases and analyzing the effects of the exposure conditions. Because corrosion is related to flue-gas chemical composition and temperature, variations in temperature complicate the determination of corrosion rates and corrosion mechanisms. Conversely, a relatively constant temperature allows a more accurate determination of the effects of exposure conditions. For this reason, controlled-temperature flue-gas corrosion probes were constructed and tested for exposure tests of materials. A prototype probe consisted of a silicon carbide tube specimen, supporting hardware, and instrumentation for controlling temperature by internal heating and cooling. An advanced probe included other tubular specimens. Testing of the probes in an industrial-type furnace at a nominal flue-gas temperature of 1200{degree}C revealed that temperature control was inadequate. The cooling mode imposed a substantial axial-temperature gradient on the specimens; while the heating mode imposed a smaller gradient, the heating capacity was very limited. 10 refs., 10 figs., 2 tabs.

  5. A Review of Early-Time Optical Follow-ups with 2-m Robotic Telescopes

    E-Print Network [OSTI]

    A. Gomboc; C. Guidorzi; C. G. Mundell; A. Melandri; A. Monfardini; D. Bersier; M. F. Bode; D. Carter; S. Kobayashi; C. J. Mottram; R. J. Smith; I. A. Steele

    2006-12-28T23:59:59.000Z

    We summarise recent deep, rapid GRB follow-up observations using the RoboNet-1.0 network which comprises three fully-robotic 2-m telescopes, the Liverpool Telescope and the Faulkes Telescopes North and South. Observations begin automatically within minutes of receipt of a GRB alert and may continue for hours or days to provide well-sampled multi-colour light curves or deep upper limits. Our light curves show a variety of early afterglow behaviour, from smooth, simple or broken power laws to 'bumpy', for a wide range of optical brightness (from the unprecedented faint detections of GRB 060108 and GRB 060510B to classical bright ones). We discuss GRB 051111 as an example of how the combination of optical and X-ray light curves can provide insight into the circumburst environment, in particular the role played by intrinsic extinction soon after the burst.

  6. GRB optical and IR rapid follow-up with the 2 m Liverpool Robotic Telescope

    E-Print Network [OSTI]

    A. Gomboc; M. F. Bode; D. Carter; C. G. Mundell; A. M. Newsam; R. J. Smith; I. A. Steele

    2003-10-06T23:59:59.000Z

    The Liverpool Telescope, owned and operated by Liverpool John Moores University and situated at Roque de los Muchachos, La Palma, is the first 2-m, fully instrumented robotic telescope. We plan to use the LT in conjunction with Gamma Ray Observatories (HETE-2, INTEGRAL, Swift) to study GRB physics. A special over-ride mode will enable observations commencing less than a minute after the GRB alert, including optical and near infrared imaging and spectroscopy. These observations, together with systematic monitoring of the burst through the afterglow, will help to unravel the nature of prompt optical flashes, short bursts, optically dark bursts, redshift distribution, GRB - supernova connection and other questions related to the GRB phenomenon. In particular, the combination of aperture, instrumentation and rapid automated response makes the Liverpool Telescope excellently suited to the investigation of optically dark bursts and currently optically unstudied short bursts.

  7. Ris National Laboratory Materials Research Department

    E-Print Network [OSTI]

    : date / Revised version: date Send offprint requests to: A. Andreasen Present address: Materials. Department of Energy for hydrogen storage materials regarding hydrogen density and stabillity viz. H2 (m) > 6 from slow kinetics. Still, magnesium has been the subject of extensive research during the past decades

  8. Treating the case of incurable hysteresis in VO2 M. Gurvitcha,b

    E-Print Network [OSTI]

    Luryi, Serge

    , not easily reversible) change in a given material's property, e.g. resistivity, may be undesirable. In this paper we consider VO2, a material undergoing first order phase transition, and refer to an application-to-metal phase transition around 68 C[2] . In addition to resistivity, #12;2 other properties change in this 1-st

  9. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Print X-ray microscopy is powerful in that it can probe large volumes of material at high spatial resolution with...

  10. Fiberoptic probe and system for spectral measurements

    DOE Patents [OSTI]

    Dai, S.; Young, J.P.

    1998-10-13T23:59:59.000Z

    A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 12 figs.

  11. Scanning Probe AFM Compound Microscope | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probe AFM Compound Microscope Scanning Probe AFM Compound Microscope The atomic force microscope (AFM) compound microscope is designed primarily for fluorescence imaging in the...

  12. Long duration ash probe

    DOE Patents [OSTI]

    Hurley, J.P.; McCollor, D.P.; Selle, S.J.

    1994-07-26T23:59:59.000Z

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during soot blowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon. 8 figs.

  13. Long duration ash probe

    DOE Patents [OSTI]

    Hurley, John P. (Grand Forks, ND); McCollor, Don P. (Grand Forks, ND); Selle, Stanley J. (Grand Forks, MN)

    1994-01-01T23:59:59.000Z

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during sootblowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon.

  14. Optic probe for semiconductor characterization

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Denver, CO); Hambarian, Artak (Yerevan, AM)

    2008-09-02T23:59:59.000Z

    Described herein is an optical probe (120) for use in characterizing surface defects in wafers, such as semiconductor wafers. The optical probe (120) detects laser light reflected from the surface (124) of the wafer (106) within various ranges of angles. Characteristics of defects in the surface (124) of the wafer (106) are determined based on the amount of reflected laser light detected in each of the ranges of angles. Additionally, a wafer characterization system (100) is described that includes the described optical probe (120).

  15. Monitoring probe for groundwater flow

    DOE Patents [OSTI]

    Looney, B.B.; Ballard, S.

    1994-08-23T23:59:59.000Z

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  16. Monitoring probe for groundwater flow

    DOE Patents [OSTI]

    Looney, Brian B. (Aiken, SC); Ballard, Sanford (Albuquerque, NM)

    1994-01-01T23:59:59.000Z

    A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.

  17. The Automatic Real-Time GRB Pipeline of the 2-m Liverpool Telescope

    E-Print Network [OSTI]

    C. Guidorzi; A. Monfardini; A. Gomboc; C. J. Mottram; C. G. Mundell; I. A. Steele; D. Carter; M. F. Bode; R. J. Smith; S. N. Fraser; M. J. Burgdorf; A. M. Newsam

    2005-11-01T23:59:59.000Z

    The 2-m Liverpool Telescope (LT), owned by Liverpool John Moores University, is located in La Palma (Canary Islands) and operates in fully robotic mode. In 2005, the LT began conducting an automatic GRB follow-up program. On receiving an automatic GRB alert from a Gamma-Ray Observatory (Swift, INTEGRAL, HETE-II, IPN) the LT initiates a special override mode that conducts follow-up observations within 2-3 min of the GRB onset. This follow-up procedure begins with an initial sequence of short (10-s) exposures acquired through an r' band filter. These images are reduced, analyzed and interpreted automatically using pipeline software developed by our team called "LT-TRAP" (Liverpool Telescope Transient Rapid Analysis Pipeline); the automatic detection and successful identification of an unknown and potentially fading optical transient triggers a subsequent multi-color imaging sequence. In the case of a candidate brighter than r'=15, either a polarimetric (from 2006) or a spectroscopic observation (from 2007) will be triggered on the LT. If no candidate is identified, the telescope continues to obtain z', r' and i' band imaging with increasingly longer exposure times. Here we present a detailed description of the LT-TRAP and briefly discuss the illustrative case of the afterglow of GRB 050502a, whose automatic identification by the LT just 3 min after the GRB, led to the acquisition of the first early-time (< 1 hr) multi-color light curve of a GRB afterglow.

  18. Genetic Control of the Trigger for the G2/M Checkpoint

    SciTech Connect (OSTI)

    Hall, Eric J. [Columbia University] [Columbia University; Smilenov, Lubomir B. [Columbia University] [Columbia University; Young, Erik F. [Columbia University] [Columbia University

    2013-10-01T23:59:59.000Z

    The work undertaken in this project addressed two seminal areas of low dose radiation biology that are poorly understood and controversial. These areas are the challenge to the linear-no-threshold (LNT) paradigm at low doses of radiation and, the fundamental elements of radiation bystander effect biology Genetic contributions to low dose checkpoint engagement: The LNT paradigm is an extrapolation of known, measured cancer induction endpoints. Importantly, data for lower doses is often not available. Debatably, radiation protection standards have been introduced which are prudently contingent on the adherence of cancer risk to the established trend seen at higher doses. Intriguing findings from other labs have hinted at separate DNA damage response programs that engage at low or high levels of radiation. Individual radiation sensitivity commensurate with hemizygosity for a radiation sensitivity gene has been estimated at 1-2% in the U.S.. Careful interrogation of the DNA damage response at low doses of radiation became important and served as the basis for this grant. Several genes were tested in combinations to determine if combined haploinsufficiency for multiple radiosensitizing genes could render a cell more sensitive to lower levels of acute radiation exposure. We measured a classical radiation response endpoint, cell cycle arrest prior to mitosis. Mouse embryo fibroblasts were used and provided a uniform, rapidly dividing and genetically manipulable population of study. Our system did not report checkpoint engagement at acute doses of gamma rays below 100 mGy. The system did report checkpoint engagement reproducibly at 500 mGy establishing a threshold for activation between 100 and 500 mGy. Engagement of the checkpoint was ablated in cells nullizygous for ATM but was otherwise unperturbed in cells combinatorially haploinsufficient for ATM and Rad9, ATM and PTEN or PTEN and Rad9. Taken together, these experiments tell us that, in a sensitive fibroblast culture system, the engagement of the G2/M checkpoint only occurs at doses where most of the cells are bound for mitotic catastrophe. Further, compound haploinsufficiency of various radiosensitizing genes does not impact the threshold of activation. The experiments confirm a threshold of activation for the G2/M checkpoint, hinting at two separate radiation response programs acting below and above this threshold. Small RNA transfer in bystander effect biology: Small regulatory RNA molecules have now risen in prominence and utility. Specific examples are small interfering RNAs (siRNA) which are employed in cell level expression ablation projects and micro-RNAs (miRNA) which are a pool of short transcription products which serve to modulate the expression of other transcripts emerging from the genome in a meta-regulatory fine tuning of gene expression. The existing tenets of bystander effect radiation biology involve the communication of inflammatory mediators or direct intercellular communication of reactive oxygen/nitrogen species in cell-to-cell communicative organelles called gap junctions. By ablating gap junctions, reducing the ROS/inflammatory cytokine expression one can attenuate bystander effect signaling in cell culture systems. We hypothesized that miRNAs are a competent intercellular communication molecule and therefore a possible component of the bystander response. This view is supported by the observation that miRNA are secreted from cells in exosomes found in the circulation. This circulating pool reports disease type and severity in humans. We proposed use of microbeam irradiation technology at our facilities and enhancement of this capability with a new sorting technology which would allow us to sort irradiated and non-irradiated cells with absolute fidelity. Pursuing direct quantitative transfer assessment, we succeeded in designing and constructing a new add-on sorting appliance which harmonized with our existing instruments. The sorter allowed us to gently sort single fluorescently labeled cells. The plans for this appliance were published and are now

  19. Long-range spatial correlations in the turbulent edge plasma of the L-2M stellarator

    SciTech Connect (OSTI)

    Vasil’kov, D. G., E-mail: vasilkov@fpl.gpi.ru; Kholnov, Yu. V.; Shchepetov, S. V. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)] [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2013-08-15T23:59:59.000Z

    Long-range spatial correlations in the turbulent plasma of the L-2M stellarator were revealed experimentally, and their relation to the geometry of magnetic surfaces was analyzed (Plasma Phys. Control. Fusion 50, 045001 (2008)). The operation modes of the facility in which fast transport transitions in plasma are possible were studied. Upon these transitions, the turbulence level is found to decrease substantially. It is shown that long-range spatial correlations are typical of relatively narrow frequency ranges. In particular, before a transport transition, such frequency ranges are f ? 30–40 kHz and f ? 1–3 kHz. After the transition, long-range spatial correlations in the frequency range of f ? 30–40 kHz disappear due to a significant decrease in the turbulence level in this frequency range. At the same time, correlations in the low frequency range are retained and new correlations at frequencies of f ? 6-12 kHz occur. It is found that global electromagnetic oscillations in the frequency range of f ? 1–3 kHz are related to the m/n = 0/0 perturbation and its toroidal satellites (here, m and n are the poloidal and toroidal mode numbers, respectively). It is also shown that, after the transport transition, a three-dimensional localized electromagnetic mode at the frequency of the geodesic acoustic mode governed by the average magnetic field curvature is excited. At higher frequencies typical of a geodesic acoustic mode related to the three-dimensional curvature of the magnetic field, no long-range spatial correlations were observed both before and after the transport transition.

  20. Scanning probe characterization of novel semiconductor materials and devices

    E-Print Network [OSTI]

    Zhou, Xiaotian

    2007-01-01T23:59:59.000Z

    InGaN/GaN quantum wells by scanning capacitance microscopywell heterostructures by scanning capacitance microscopy”InGaN/GaN quantum wells by scanning capacitance microscopy”

  1. Ultrafast Probes for Dirac Materials | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item youThe DiscoveryFuels andTechnical Report:

  2. Recent results from the CMD-2 detector at the VEPP-2M collider

    SciTech Connect (OSTI)

    Solodov, E.P. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    1997-01-01T23:59:59.000Z

    The general-purpose detector CMD-2 is taking data at the Novosibirsk VEPP-2M e{sup -}e{sup -} collider in the energy range 360-1400 MeV, with luminosity of {approx} 5.0 x 10{sup 30} cm{sup -2} s{sup -1} for the {phi} resonance region. Data from {approx} 1500 nb{sup -1} of integrated luminosity around 1.02 GeV and {approx}500 nb{sup -1} in the 600-1000 MeV range have been collected and preliminary analyses performed. We present progress in studies of the {phi} meson and K{sub S}K{sub L} systems: (a) measurement of the {phi} meson parameters; (b) searches for {phi} rare decays. The new upper limits B({phi}{yields}{eta}{prime} {gamma}) < 2.4 x 10{sup -4}, B({phi} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}) < 1.0 x 10{sup -4}, and B({phi} {yields} f{sub 0}{gamma}) < 8 x 10{sup -4} have been obtained; (c) the study of the K{sub L} interactions in the CsI calorimeter; (d) with the help of 32,340 tagged K{sub S}, the semi-rare decay of K{sub S} {yields} {pi}{sup +}{pi}{sup -}{gamma} has been observed with a branching ratio of (1.82 {+-} 0.49)x10{sup -3}; and (e) selection of events with K{sub S}K{sub L} coupled decays and interactions. The regeneration cross section of the low moments K{sub L} was found to be {sigma}{sub reg}{sup Be} = 63 {+-} 19 mb. Data from the 600-1000 MeV energy range are used for high-accuracy measurement of the e{sup +}e{sup -} annihilation cross section, and the preliminary analysis is presented in this paper.

  3. Hand-held survey probe

    DOE Patents [OSTI]

    Young, Kevin L. (Idaho Falls, ID) [Idaho Falls, ID; Hungate, Kevin E. (Idaho Falls, ID) [Idaho Falls, ID

    2010-02-23T23:59:59.000Z

    A system for providing operational feedback to a user of a detection probe may include an optical sensor to generate data corresponding to a position of the detection probe with respect to a surface; a microprocessor to receive the data; a software medium having code to process the data with the microprocessor and pre-programmed parameters, and making a comparison of the data to the parameters; and an indicator device to indicate results of the comparison. A method of providing operational feedback to a user of a detection probe may include generating output data with an optical sensor corresponding to the relative position with respect to a surface; processing the output data, including comparing the output data to pre-programmed parameters; and indicating results of the comparison.

  4. Nuclear Physics with Electroweak Probes

    E-Print Network [OSTI]

    Omar Benhar

    2009-02-26T23:59:59.000Z

    In recent years, the italian theoretical Nuclear Physics community has played a leading role in the development of a unified approach, allowing for a consistent and fully quantitative description of the nuclear response to electromagnetic and weak probes. In this paper I review the main achievements in both fields, point out some of the open problems, and outline the most promising prospects.

  5. Handheld force-controlled ultrasound probe

    E-Print Network [OSTI]

    Gilbertson, Matthew Wright

    2010-01-01T23:59:59.000Z

    An hand-held force controlled ultrasound probe has been developed. The controller maintains a prescribed contact force between the probe and a patient's body. The device will enhance the diagnostic capability of free-hand ...

  6. Electron probe microanalysis in geoscience: a tutorial

    SciTech Connect (OSTI)

    Gooley, R.

    1981-01-01T23:59:59.000Z

    A tutorial on the history, theory and use of electron probe microanalysis in the geosciences is presented. (ACR)

  7. Probing Nanoscale Surface Enhanced Raman Scattering Fluctuation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Surface Enhanced Raman Scattering Fluctuation Dynamics using Correalted AFM and Confocal Ultramicroscopy. Probing Nanoscale Surface Enhanced Raman Scattering Fluctuation...

  8. Low-energy U(1) x USp(2M) gauge theory from simple high-energy gauge group

    E-Print Network [OSTI]

    Sven Bjarke Gudnason; Kenichi Konishi

    2010-05-17T23:59:59.000Z

    We give an explicit example of the embedding of a near BPS low-energy (U(1) x USp(2M))/Z_2 gauge theory into a high-energy theory with a simple gauge group and adjoint matter content. This system possesses degenerate monopoles arising from the high-energy symmetry breaking as well as non-Abelian vortices due to the symmetry breaking at low energies. These solitons of different codimensions are related by the exact homotopy sequences.

  9. 2M : un Espace de Conception pour l'Interaction Bi-Manuelle Gilles Bailly, Laurence Nigay

    E-Print Network [OSTI]

    Bailly, Gilles

    2M : un Espace de Conception pour l'Interaction Bi-Manuelle Gilles Bailly, Laurence Nigay Lab @ # 9G: @ 2 # 0 2 # 0 # # 1 0 H ;.-!4. I8 ! >A J > II8 * ? " # II8 +"! K KKKKK KKK KHKKHKKKK L8 II #12 ? # > # & 3 2 ' ## & 3 ' ! !( ( V # V V V 9AA: 3 3 ( # ! !( W 9X: # # W W # F & ' 1 # 9X: 3 · * 7 3 C

  10. Andrew A. Shapiro, Ph.D. Ph.D. Materials Science and Engineering

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Andrew A. Shapiro, Ph.D. EDUCATION Ph.D. Materials Science and Engineering University of California-SiO2." M.S. Materials Science and Engineering University of California, Los Angeles, 1989 Thesis Materials Science and Engineering 2000- 2005 Lecturer - Materials Science and Engineering 1998- 2000 Co

  11. Optical probe with reference fiber

    DOE Patents [OSTI]

    Da Silva, Luiz B. (Danville, CA); Chase, Charles L. (Dublin, CA)

    2006-03-14T23:59:59.000Z

    A system for characterizing tissue includes the steps of generating an emission signal, generating a reference signal, directing the emission signal to and from the tissue, directing the reference signal in a predetermined manner relative to the emission signal, and using the reference signal to compensate the emission signal. In one embodiment compensation is provided for fluctuations in light delivery to the tip of the probe due to cable motion.

  12. pH Meter probe assembly

    DOE Patents [OSTI]

    Hale, C.J.

    1983-11-15T23:59:59.000Z

    An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe. 1 fig.

  13. Covetic Materials

    Energy Savers [EERE]

    Can re-melt, dilute, alloy... Fabrication of Covetic Materials - Nanocarbon Infusion 3 4 Technical Approach Unusual Characteristics of Covetic Materials ("covalent" &...

  14. Surface-enhanced raman medical probes and system for disease diagnosis and drug testing

    DOE Patents [OSTI]

    Vo-Dinh, Tuan (Knoxville, TN)

    1999-01-01T23:59:59.000Z

    A probe for a surface-enhanced Raman scattering spectrometer includes a member of optically transmissive material for receiving the excitation radiation from a laser and for carrying the radiation emitted from a specimen to a detector. An end of the member for placing against the specimen has a coating that produces surface enhancement of the specimen during Raman scattering spectroscopic analysis. Specifically the coating is formed by a first layer of microparticles on the member and a metal layer over the first layer. The first layer may form a microstructure surface over which a metal layer is applied. Alternatively the coating may be a material containing microparticles of a metal. An optional layer of a material may be applied to the metal layer to concentrate onto the probe compounds of analytical interest onto the probe.

  15. Surface-enhanced Raman medical probes and system for disease diagnosis and drug testing

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1999-01-26T23:59:59.000Z

    A probe for a surface-enhanced Raman scattering spectrometer includes a member of optically transmissive material for receiving the excitation radiation from a laser and for carrying the radiation emitted from a specimen to a detector. An end of the member for placing against the specimen has a coating that produces surface enhancement of the specimen during Raman scattering spectroscopic analysis. Specifically the coating is formed by a first layer of microparticles on the member and a metal layer over the first layer. The first layer may form a microstructure surface over which a metal layer is applied. Alternatively the coating may be a material containing microparticles of a metal. An optional layer of a material may be applied to the metal layer to concentrate onto the probe compounds of analytical interest onto the probe. 39 figs.

  16. Probes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43 cPoints ofJanoschek

  17. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  18. Integrated use of burden profile probe and in-burden probe for gas flow control in the blast furnace

    SciTech Connect (OSTI)

    Bordemann, F.; Hartig, W.H. [AG der Dillinger Huettenweke, Dillingen (Germany); Grisse, H.J. [Dango and Dienenthal Siegen (Germany); Speranza, B.E. [Dango and Dienenthal, Inc., Highland, IN (United States)

    1995-12-01T23:59:59.000Z

    Gas flow in the blast furnace is one of the most important factors in controlling a furnace. It not only determines the production but also the fuel consumption and the campaign life. At Nos. 4 and 5 blast furnaces of ROGESA, probes are installed for detection of the burden profiles and of the gas flow distribution. For an optimum use of these probes a program system has been developed by ROGESA and Dango and Dienenthal. With this program system it is possible to analyze the operating condition of a blast furnace by means of a fuzzy logic analysis. In case of deviations from the defined desired condition, recommendations for corrective measures for the material distribution are made. Both furnaces are equipped with a bell-less top, a coal injection system, high-temperature hot blast stoves with heat recovery and a top gas pressure recovery turbine. Most of the time it is impossible to control all the required parameters. For this reason it is meaningful to measure the actual material distribution at the furnace top by means of a burden profile probe which permits quick and repeated measurements without any retroactive effects. The paper describes the instrumentation of the furnace, correlation of measuring methods, and a program system for analysis of measuring data.

  19. Transpiring purging access probe for particulate laden or hazardous environments

    DOE Patents [OSTI]

    VanOsdol, John G

    2013-12-03T23:59:59.000Z

    An access probe for remote-sensing access through a viewing port, viewing volume, and access port into a vessel. The physical boundary around the viewing volume is partially formed by a porous sleeve lying between the viewing volume and a fluid conduit. In a first mode of operation, a fluid supplied to the fluid conduit encounters the porous sleeve and flows through the porous material to maintain the viewing volume free of ash or other matter. When additional fluid force is needed to clear the viewing volume, the pressure of the fluid flow is increased sufficiently to slidably translate the porous sleeve, greatly increasing the flow into the viewing volume. The porous sleeve is returned to position by an actuating spring. The access probe thereby provides for alternate modes of operation based on the pressure of an actuating fluid.

  20. Microrheological Characterisation of Anisotropic Materials

    E-Print Network [OSTI]

    I A Hasnain; A M Donald

    2006-03-03T23:59:59.000Z

    We describe the measurement of anisotropic viscoelastic moduli in complex soft materials, such as biopolymer gels, via video particle tracking microrheology of colloid tracer particles. The use of a correlation tensor to find the axes of maximum anisotropy, and hence the mechanical director, is described. The moduli of an aligned DNA gel are reported, as a test of the technique; this may have implications for high DNA concentrations in vivo. We also discuss the errors in microrheological measurement, and describe the use of frequency space filtering to improve displacement resolution, and hence probe these typically high modulus materials.

  1. Entangled quantum probes for dynamical environmental noise

    E-Print Network [OSTI]

    Matteo A. C. Rossi; Matteo G. A. Paris

    2015-03-11T23:59:59.000Z

    We address the use of entangled qubits as quantum probes to characterize the dynamical noise induced by complex environments. In particular, we show that entangled probes improve estimation of the correlation time for a broad class of environmental noises compared to any sequential strategy involving single qubit preparation. The effect is present when the noise is faster than a threshold value, a regime which may always be achieved by tuning the coupling between the quantum probe and the environment inducing the noise. Our scheme exploits time-dependent sensitivity of quantum systems to decoherence and does not require dynamical control on the probes. We derive the optimal interaction time and the optimal probe preparation, showing that it corresponds to multiqubit GHZ states when entanglement is useful. We also show robustness of the scheme against depolarization or dephasing of the probe, and discuss simple measurements approaching optimal precision.

  2. Method and apparatus for probing relative volume fractions

    DOE Patents [OSTI]

    Jandrasits, W.G.; Kikta, T.J.

    1998-03-17T23:59:59.000Z

    A relative volume fraction probe particularly for use in a multiphase fluid system includes two parallel conductive paths defining therebetween a sample zone within the system. A generating unit generates time varying electrical signals which are inserted into one of the two parallel conductive paths. A time domain reflectometer receives the time varying electrical signals returned by the second of the two parallel conductive paths and, responsive thereto, outputs a curve of impedance versus distance. An analysis unit then calculates the area under the curve, subtracts the calculated area from an area produced when the sample zone consists entirely of material of a first fluid phase, and divides this calculated difference by the difference between an area produced when the sample zone consists entirely of material of the first fluid phase and an area produced when the sample zone consists entirely of material of a second fluid phase. The result is the volume fraction. 9 figs.

  3. Method and apparatus for probing relative volume fractions

    DOE Patents [OSTI]

    Jandrasits, Walter G. (Pittsburgh, PA); Kikta, Thomas J. (Upper St. Clair, PA)

    1998-01-01T23:59:59.000Z

    A relative volume fraction probe particularly for use in a multiphase fluid system includes two parallel conductive paths defining therebetween a sample zone within the system. A generating unit generates time varying electrical signals which are inserted into one of the two parallel conductive paths. A time domain reflectometer receives the time varying electrical signals returned by the second of the two parallel conductive paths and, responsive thereto, outputs a curve of impedance versus distance. An analysis unit then calculates the area under the curve, subtracts the calculated area from an area produced when the sample zone consists entirely of material of a first fluid phase, and divides this calculated difference by the difference between an area produced when the sample zone consists entirely of material of the first fluid phase and an area produced when the sample zone consists entirely of material of a second fluid phase. The result is the volume fraction.

  4. Methods of staining target chromosomal DNA employing high complexity nucleic acid probes

    DOE Patents [OSTI]

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Ol'li-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2006-10-03T23:59:59.000Z

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  5. Vision for the University of Connecticut Technology Park Materials Discovery, Product Design & Development

    E-Print Network [OSTI]

    Lozano-Robledo, Alvaro

    · Additive Manufacturing and Nanoscale Processing · Fuel Cells, Sustainable Energy & Energy Management & Development and Advanced Manufacturing: Partnering with Industry to Accelerate Manufacturing Innovation for the Tech Park which will house the Connecticut Collaboratory for Materials & Manufacturing (C2M2

  6. Facile synthesis, phase transition, optical switching and oxidation resistance properties of belt-like VO{sub 2}(A) and VO{sub 2}(M) with a rectangular cross section

    SciTech Connect (OSTI)

    Zhang, Yifu; Huang, Yanfen; Zhang, Juecheng; Wu, Weibing; Niu, Fei; Zhong, Yalan [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)] [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Liu, Xinghai, E-mail: liuxh@whu.edu.cn [School of Printing and Packaging, Wuhan University, Wuhan 430079 (China)] [School of Printing and Packaging, Wuhan University, Wuhan 430079 (China); Liu, Xin [School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)] [School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Huang, Chi, E-mail: chihuang@whu.edu.cn [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)] [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2012-08-15T23:59:59.000Z

    Highlights: ? Belt-like VO{sub 2}(A) with a rectangular cross section was synthesized. ? The formation mechanism of belt-like VO{sub 2}(A) was proposed. ? Belt-like VO{sub 2}(M) was prepared by the irreversible transformation of VO{sub 2}(A). ? VO{sub 2}(A) and VO{sub 2}(M) can be used as the optical switching materials. ? VO{sub 2}(A) and VO{sub 2}(M) have good oxidation resistance below 400 °C in air. -- Abstract: Belt-like VO{sub 2}(A) with a rectangular cross section (VA-RCS) was successfully synthesized using V{sub 2}O{sub 5}, H{sub 2}C{sub 2}O{sub 4}·2H{sub 2}O and H{sub 2}O as the starting materials by a facile hydrothermal approach. Some synthetic parameters, such as, the reaction time, reaction temperature and concentration of H{sub 2}C{sub 2}O{sub 4}·2H{sub 2}O, were systematically investigated to control the fabrication of belt-like VA-RCS. The formation mechanism of belt-like VA-RCS was proposed. Subsequently, belt-like VO{sub 2}(M) with a rectangular cross section (VM-RCS) was prepared by the irreversible transformation of VA-RCS at 700 °C for 2 h under the inert atmosphere. The phase transition temperature (T{sub c}) of VA-RCS and VM-RCS was evaluated by DSC test. The optical switching properties of VA-RCS and VM-RCS were studied by the variable-temperature infrared spectra, and it was found that the as-obtained VA-RCS and VM-RCS could be used as the optical switching materials. Furthermore, the oxidation resistance properties of VA-RCS and VM-RCS were investigated by TGA, indicating that they have good thermal stability and oxidation resistance below 400 °C in air.

  7. PROBING DENSE NUCLEAR MATTER VIA NUCLEAR COLLISIONS

    E-Print Network [OSTI]

    Stocker, H.

    2012-01-01T23:59:59.000Z

    University of California. LBL-12095 Probing Dense NuclearMatter Nuclear Collisions* v~a H. Stocker, M.Gyulassy and J. Boguta Nuclear Science Division Lawrence

  8. Sandia National Laboratories: scanning probe microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focus on stainless steels. Dr. An is an internationally recognized expert on scanning probe microscopy, such as atomic force microscopy and scanning ... Last Updated:...

  9. Complete information acquisition in scanning probe microscopy

    SciTech Connect (OSTI)

    Belianinov, Alex [ORNL; Kalinin, Sergei V [ORNL; Jesse, Stephen [ORNL

    2015-01-01T23:59:59.000Z

    In the last three decades, scanning probe microscopy (SPM) has emerged as a primary tool for exploring and controlling the nanoworld. A critical part of the SPM measurements is the information transfer from the tip-surface junction to a macroscopic measurement system. This process reduces the many degrees of freedom of a vibrating cantilever to relatively few parameters recorded as images. Similarly, the details of dynamic cantilever response at sub-microsecond time scales of transients, higher-order eigenmodes and harmonics are averaged out by transitioning to millisecond time scale of pixel acquisition. Hence, the amount of information available to the external observer is severely limited, and its selection is biased by the chosen data processing method. Here, we report a fundamentally new approach for SPM imaging based on information theory-type analysis of the data stream from the detector. This approach allows full exploration of complex tip-surface interactions, spatial mapping of multidimensional variability of material s properties and their mutual interactions, and SPM imaging at the information channel capacity limit.

  10. MERIT Pump/Probe Data OutlineOutline

    E-Print Network [OSTI]

    McDonald, Kirk

    MERIT Pump/Probe Data Analysis OutlineOutline The pump/probe program Particle detector response correction Pump/probe analysis results NFMCC Collaboration Meeting , LBNL, January 26, 2009 Ilias Efthymiopoulos - CERN #12;The pump/probe program #12;The pump/probe program Use of the CERN PS flexibility

  11. ADVANCED MATERIALS Membranes for Clean Water

    E-Print Network [OSTI]

    ADVANCED MATERIALS Membranes for Clean Water Objective This project provides measurement solutions that probe the surface and internal structure of polymer membranes used in water purification, and correlate that structure to the transport of water and other species through the membrane. Our methods are focused

  12. In-situ spectrophotometric probe

    DOE Patents [OSTI]

    Prather, W.S.

    1992-12-15T23:59:59.000Z

    A spectrophotometric probe is described for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and co-terminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focusing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid. 5 figs.

  13. Millimeter-wave active probe

    DOE Patents [OSTI]

    Majidi-Ahy, Gholamreza (Sunnyvale, CA); Bloom, David M. (Portola Valley, CA)

    1991-01-01T23:59:59.000Z

    A millimeter-wave active probe for use in injecting signals with frequencies above 50GHz to millimeter-wave and ultrafast devices and integrated circuits including a substrate upon which a frequency multiplier consisting of filter sections and impedance matching sections are fabricated in uniplanar transmission line format. A coaxial input and uniplanar 50 ohm transmission line couple an approximately 20 GHz input signal to a low pass filter which rolls off at approximately 25 GHz. An input impedance matching section couples the energy from the low pass filter to a pair of matched, antiparallel beam lead diodes. These diodes generate odd-numberd harmonics which are coupled out of the diodes by an output impedance matching network and bandpass filter which suppresses the fundamental and third harmonics and selects the fifth harmonic for presentation at an output.

  14. SECOND HARMONIC GENERATION OF Bi4Ti3O12 FILMS IN-SITU PROBING OF DOMAIN POLING IN Bi4Ti3O12 THIN

    E-Print Network [OSTI]

    Gopalan, Venkatraman

    SECOND HARMONIC GENERATION OF Bi4Ti3O12 FILMS IN-SITU PROBING OF DOMAIN POLING IN Bi4Ti3O12 THIN FILMS BY OPTICAL SECOND HARMONIC GENERATION YANIV BARAD, VENKATRAMAN GOPALAN Materials Research, of a ferroelectric Bi4Ti3O12 thin film using optical second harmonic generation as a probe. The ferroelectric

  15. Engineered materials for all-optical helicity-dependent magnetic switching

    E-Print Network [OSTI]

    Fainman, Yeshaiahu

    Engineered materials for all-optical helicity-dependent magnetic switching S. Mangin1,2 *, M we explore the optical manipulation of the magnetization in engineered magnetic materials. We of engineered magnetic materials and devices. We demonstrate that AO-HDS can be observed not only in selected RE

  16. The AFM was originally developed as an adaptation of another scanning probe microscopy technology, the scanning tunneling

    E-Print Network [OSTI]

    Van Vliet, Krystyn J.

    The AFM was originally developed as an adaptation of another scanning probe microscopy technology, the scanning tunneling microscope, to image nonconductive materials through direct physical contact between-scale displacement resolutions of the AFM enable the topographical scanning of mechanically compliant materials

  17. Optically pumped whispering-gallery mode lasing from 2-?m GaN micro-disks pivoted on Si

    SciTech Connect (OSTI)

    Zhang, Yiyun; Ma, Zetao; Zhang, Xuhui; Choi, H. W., E-mail: hwchoi@hku.hk [Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road (Hong Kong); Wang, T. [Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2014-06-02T23:59:59.000Z

    2-?m micro-disks containing InGaN/GaN quantum wells supported on a tiny Si nanotip are fabricated via microsphere lithography followed by dry and wet etch processes. The micro-disks are studied by photoluminescence at both room-temperature and 10?K. Optically pumped blue lasing at room-temperature is observed via whispering-gallery modes (WGMs) with a lasing threshold as low as 8.43 mJ/cm{sup 2}. Optical resonances in the micro-disks are studied through numerical computations and finite-difference time-domain simulations. The WGMs are further confirmed through the measured broadband transmission spectrum, whose transmission minima coincide well with predicted WGM frequencies.

  18. The Liverpool Telescope: Rapid follow-up observation of Targets of opportunity with a 2 m robotic telescope

    E-Print Network [OSTI]

    A. Gomboc; M. F. Bode; D. Carter; C. G. Mundell; A. M. Newsam; R. J. Smith; I. A. Steele

    2003-11-04T23:59:59.000Z

    The Liverpool Telescope, situated at Roque de los Muchachos Observatory, La Palma, Canaries, is the first 2-m, fully instrumented robotic telescope. It recently began observations. Among Liverpool Telescope's primary scientific goals is to monitor variable objects on all timescales from seconds to years. An additional benefit of its robotic operation is rapid reaction to unpredictable phenomena and their systematic follow up, simultaneous or coordinated with other facilities. The Target of Opportunity Programme of the Liverpool Telescope includes the prompt search for and observation of GRB and XRF counterparts. A special over-ride mode implemented for GRB/XRF follow-up enables observations commencing less than a minute after the alert, including optical and near infrared imaging and spectroscopy. In particular, the moderate aperture and rapid automated response make the Liverpool Telescope excellently suited to help solving the mystery of optically dark GRBs and for the investigation of currently unstudied short bursts and XRFs.

  19. Thermodynamics of D-brane Probes

    E-Print Network [OSTI]

    E. Kiritsis; T. R. Taylor

    1999-06-05T23:59:59.000Z

    We discuss the dynamics and thermodynamics of particle and D-brane probes moving in non-extremal black hole/brane backgrounds. When a probe falls from asymptotic infinity to the horizon, it transforms its potential energy into heat, $TdS$, which is absorbed by the black hole in a way consistent with the first law of thermodynamics. We show that the same remains true in the near-horizon limit, for BPS probes only, with the BPS probe moving from AdS infinity to the horizon. This is a quantitative indication that the brane-probe reaching the horizon corresponds to thermalization in gauge theory. It is shown that this relation provides a way to reliably compute the entropy away from the extremal limit (towards the Schwarzschild limit).

  20. Rugged fiber optic probe for raman measurement

    DOE Patents [OSTI]

    O'Rourke, Patrick E. (Martinez, GA); Toole, Jr., William R. (Aiken, SC); Nave, Stanley E. (Evans, GA)

    1998-01-01T23:59:59.000Z

    An optical probe for conducting light scattering analysis is disclosed. The probe comprises a hollow housing and a probe tip. A fiber assembly made up of a transmitting fiber and a receiving bundle is inserted in the tip. A filter assembly is inserted in the housing and connected to the fiber assembly. A signal line from the light source and to the spectrometer also is connected to the filter assembly and communicates with the fiber assembly. By using a spring-loaded assembly to hold the fiber connectors together with the in-line filters, complex and sensitive alignment procedures are avoided. The close proximity of the filter assembly to the probe tip eliminates or minimizes self-scattering generated by the optical fiber. Also, because the probe can contact the sample directly, sensitive optics can be eliminated.

  1. Protective shield for an instrument probe

    DOE Patents [OSTI]

    Johnsen, Howard A.; Ross, James R.; Birtola, Sal R.

    2004-10-26T23:59:59.000Z

    A shield is disclosed that is particularly useful for protecting exposed optical elements at the end of optical probes used in the analysis of hazardous emissions in and around an industrial environment from the contaminating effects of those emissions. The instant invention provides a hood or cowl in the shape of a right circular cylinder that can be fitted over the end of such optical probes. The hood provides a clear aperture through which the probe can perform unobstructed analysis. The probe optical elements are protected from the external environment by passing a dry gas through the interior of the hood and out through the hood aperture in sufficient quantity and velocity to prevent any significant mixing between the internal and external environments. Additionally, the hood is provided with a cooling jacket to lessen the potential for damaging the probe due to temperature excursions.

  2. Far-Infrared Dielectric Properties of Polar Liquids Probed by Femtosecond Terahertz Pulse Spectroscopy

    E-Print Network [OSTI]

    the microwave and the FIR regions; the motions that are probed at these frequencies bridge the gap between bulk to study gases,2 semiconductors,3 super- conductors,4 dielectrics,5 nonpolar liquids,6 and water.7 We are generated by the excitation of charge carriers in a semiconductor material with ultrashort pulses of above

  3. Scanning acoustic microscopy for mapping the microstructure of soft materials

    E-Print Network [OSTI]

    N. G. Parker; M. J. W. Povey

    2009-04-30T23:59:59.000Z

    Acoustics provides a powerful modality with which to 'see' the mechanical properties of a wide range of elastic materials. It is particularly adept at probing soft materials where excellent contrast and propagation distance can be achieved. We have constructed a scanning acoustic microscope capable of mapping the microstructure of such materials. We review the general principles of scanning acoustic microscopy and present new examples of its application in imaging biological matter, industrial materials and particulate systems.

  4. Corrosion probes for fireside monitoring in coal-fired boilers

    SciTech Connect (OSTI)

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, M.; Holcomb, Gordon R.

    2005-01-01T23:59:59.000Z

    Corrosion probes are being developed and combined with an existing measurement technology to provide a tool for assessing the extent of corrosion of metallic materials on the fireside in coal-fired boilers. The successful development of this technology will provide power plant operators the ability to (1) accurately monitor metal loss in critical regions of the boiler, such as waterwalls, superheaters, and reheaters; and (2) use corrosion rates as process variables. In the former, corrosion data could be used to schedule maintenance periods and in the later, processes can be altered to decrease corrosion rates. The research approach involves laboratory research in simulated environments that will lead to field tests of corrosion probes in coal-fired boilers. Laboratory research has already shown that electrochemically-measured corrosion rates for ash-covered metals are similar to actual mass loss corrosion rates. Electrochemical tests conducted using a potentiostat show the corrosion reaction of ash-covered probes at 500?C to be electrochemical in nature. Corrosion rates measured are similar to those from an automated corrosion monitoring system. Tests of corrosion probes made with mild steel, 304L stainless steel (SS), and 316L SS sensors showed that corrosion of the sensors in a very aggressive incinerator ash was controlled by the ash and not by the alloy content. Corrosion rates in nitrogen atmospheres tended to decrease slowly with time. The addition of oxygen-containing gases, oxygen and carbon dioxide to nitrogen caused a more rapid decrease in corrosion rate, while the addition of water vapor increased the corrosion rate.

  5. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1994-01-01T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  6. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1992-01-01T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  7. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1992-07-28T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  8. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1994-06-07T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  9. Critical Materials:

    Broader source: Energy.gov (indexed) [DOE]

    lighting. 14 (bottom) Criticality ratings of shortlisted raw 76 materials. 15 77 2. Technology Assessment and Potential 78 This section reviews the major trends within...

  10. RT in situ PCR detection of MART-1 and TRP-2 mRNA in formalin-fixed, paraffin-embedded tissues of melanoma and nevi.

    E-Print Network [OSTI]

    Itakura, Eijun; Huang, Rong-Rong; Wen, Duan-Ren; Paul, Eberhard; Wünsch, Peter H; Cochran, Alistair J

    2008-01-01T23:59:59.000Z

    Cochran AJ. Detection of tyrosinase mRNA in formalin-fixed,PM, Hearing VJ. A second tyrosinase- related protein, TRP-2,mRNA isoforms of the tyrosinase-related protein-2/DOPAchrome

  11. High Heat Flux Erosion of Carbon Fibre Composite Materials in the TEXTOR Tokamak*

    E-Print Network [OSTI]

    Harilal, S. S.

    ,. 1. * . High Heat Flux Erosion of Carbon Fibre Composite Materials in the TEXTOR Tokamak Erosion of Carbon Fibre composite Materials in the TEXTOR Tokamak H. Bolt, T. Scholz, J. Boedo*, KH. The materials tested were carbon fibre reinforced materials w"th and without Si-addition. The probe w

  12. High heat ux erosion of carbon bre composite materials in the TEXTOR tokamak

    E-Print Network [OSTI]

    Harilal, S. S.

    High heat ¯ux erosion of carbon ®bre composite materials in the TEXTOR tokamak H. Bolt a,*, T atoms [9±11]. In the work presented in this paper two composite materials, a pure carbon CFC and a CFC carbon ®bre reinforced materials with and without Si-addition. The probe with the material specimens

  13. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    DOE Patents [OSTI]

    Majewski, S.; Kross, B.J.; Zorn, C.J.; Majewski, L.A.

    1996-10-22T23:59:59.000Z

    An optimized examination system and method based on the Reverse Geometry X-Ray{trademark} (RGX{trademark}) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging. 5 figs.

  14. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    DOE Patents [OSTI]

    Majewski, Stanislaw (Grafton, VA); Kross, Brian J. (Yorktown, VA); Zorn, Carl J. (Yorktown, VA); Majewski, Lukasz A. (Grafton, VA)

    1996-01-01T23:59:59.000Z

    An optimized examination system and method based on the Reverse Geometry X-Ray.RTM. (RGX.RTM.) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging.

  15. Evaluation of the NDP (neutron diagnostic probe) system

    SciTech Connect (OSTI)

    Pentaleri, E.A.; Eisen, Y.Y.

    1990-12-01T23:59:59.000Z

    The neutron diagnostic probe (NDP), an explosive detection system developed by Consolidated Controls Corporation and based on the associated-alpha-particle technique, was evaluated. Although many problems were found with the prototype system that make it useless for most practical applications, the NDP system may be considered a successful proof-of-principle for the basic explosive detection system design. In addition to evaluating the design and performance of the present system, models were developed to estimate the performance that might reasonably be expected from full scale systems of different conceptual design. Specific examples involved various types of bulk and sheet explosives contained in a suitcase and a large crate. Also considered were the effects of innocuous materials surrounding explosives in different scenarios, including the deliberate use of shielding materials as a countermeasure to detection. 11 refs., 46 figs., 24 tabs.

  16. Probing Signal Design for Power System Identification

    SciTech Connect (OSTI)

    Pierre, John W.; Zhou, Ning; Tuffner, Francis K.; Hauer, John F.; Trudnowski, Daniel J.; Mittelstadt, William

    2010-05-31T23:59:59.000Z

    This paper investigates the design of effective input signals for low-level probing of power systems. In 2005, 2006, and 2008 the Western Electricity Coordinating Council (WECC) conducted four large-scale system wide tests of the western interconnected power system where probing signals were injected by modulating the control signal at the Celilo end of the Pacific DC intertie. A major objective of these tests is the accurate estimation of the inter-area electromechanical modes. A key aspect of any such test is the design of an effective probing signal that leads to measured outputs rich in information about the modes. This paper specifically studies low-level probing signal design for power-system identification. The paper describes the design methodology and the advantages of this new probing signal which was successfully applied during these tests. This probing input is a multi-sine signal with its frequency content focused in the range of the inter-area modes. The period of the signal is over two minutes providing high-frequency resolution. Up to 15 cycles of the signal are injected resulting in a processing gain of 15. The resulting system response is studied in the time and frequency domains. Because of the new probing signal characteristics, these results show significant improvement in the output SNR compared to previous tests.

  17. In-Situ Transmission Electron Microscopy Probing of Native Oxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing of Native Oxide and Artificial Layers on Silicon Nanoparticles for Lithium Ion In-Situ Transmission Electron Microscopy Probing of Native Oxide and Artificial...

  18. Quantitatively Probing the Al Distribution in Zeolites. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantitatively Probing the Al Distribution in Zeolites. Quantitatively Probing the Al Distribution in Zeolites. Abstract: The degree of substitution of Si4+ by Al3+ in the...

  19. Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach for Airborne Particle Analysis. Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach for Airborne...

  20. Scanning Probe Direct-Write of Germanium Nanostructures. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probe Direct-Write of Germanium Nanostructures. Scanning Probe Direct-Write of Germanium Nanostructures. Abstract: Bottom-up nanostructure synthesis has played a pivotal role in...

  1. Characterization of Fiber Optic CMM Probe System

    SciTech Connect (OSTI)

    K.W.Swallow

    2007-05-15T23:59:59.000Z

    This report documents a study completed on the fiber optic probe system that is a part of the Werth optical CMM. This study was necessary due to a lack of documentation from the vendor for the proper use and calibration of the fiber probe, and was performed in support of the Lithographie Galvanoformung Abformung (LIGA) development program at the FM&T. As a result of this study, a better understanding of the fiber optic probe has been developed, including guidelines for its proper use and calibration.

  2. Cermet materials

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID)

    2008-12-23T23:59:59.000Z

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  3. Composite material

    DOE Patents [OSTI]

    Hutchens, Stacy A. (Knoxville, TN); Woodward, Jonathan (Solihull, GB); Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN)

    2012-02-07T23:59:59.000Z

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  4. CH2M Hill Hanford Group, Inc. Standards and Requirements Identification Document (SRID) Requirements Management System and Requirements Specification

    SciTech Connect (OSTI)

    JOHNSON, A.L.

    2000-11-30T23:59:59.000Z

    The current Tank Farm Contractor (TFC) for the U. S. Department of Energy, Office of River Protection (ORP), River Protection Project (RPP), CH2M Hill Hanford Group, Inc. (CHG), will use a computer based requirements management system. The system will serve as a tool to assist in identifying, capturing, and maintaining the Standards/Requirements Identification Document (S/RID) requirements and links to implementing procedures and other documents. By managing requirements as one integrated set, CHG will be able to carry out its mission more efficiently and effectively. CHG has chosen the Dynamic Object Oriented Requirements System (DOORS{trademark}) as the preferred computer based requirements management system. Accordingly, the S/RID program will use DOORS{trademark}. DOORS{trademark} will replace the Environmental Requirements Management Interface (ERMI) system as the tool for S/RID data management. The DOORS{trademark} S/RID test project currently resides on the DOORSTM test server. The S/RID project will be migrated to the DOORS{trademark} production server. After the migration the S/RID project will be considered a production project and will no longer reside on the test server.

  5. Modulated microwave microscopy and probes used therewith

    DOE Patents [OSTI]

    Lai, Keji; Kelly, Michael; Shen, Zhi-Xun

    2012-09-11T23:59:59.000Z

    A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.

  6. Self-referencing remote optical probe

    DOE Patents [OSTI]

    O'Rourke, P.E.; Prather, W.S.; Livingston, R.R.

    1991-08-13T23:59:59.000Z

    A probe is described for remote spectrometric measurements of fluid samples having a hollow probe body with a sliding reflective plug therein and a lens at one end, ports for admitting and expelling the fluid sample and a means for moving the reflector so that reference measurement can be made with the reflector in a first position near the lens and a sample measurement can be made with the reflector away from the lens and the fluid sample between the reflector and the lens. Comparison of the two measurements will yield the composition of the fluid sample. The probe is preferably used for remote measurements and light is carried to and from the probe via fiber optic cables. 3 figures.

  7. Surface sampling concentration and reaction probe

    DOE Patents [OSTI]

    Van Berkel, Gary J; Elnaggar, Mariam S

    2013-07-16T23:59:59.000Z

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  8. Catheter based magnetic resonance compatible perfusion probe

    E-Print Network [OSTI]

    Toretta, Cara Lynne

    2007-01-01T23:59:59.000Z

    Neurosurgeons are using a thermal based technique to quantify brain perfusion. The thermal diffusion probe (TDP) technology measures perfusion in a relatively small volume of brain tissue. The neurosurgeon chooses the ...

  9. Scanning Probe AFM Compound Microscope | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a dye-sensitization system,... Tip-Enhanced Near-Field Raman Spectroscopy Probing Single Dye-Sensitized TiO2 Nanoparticles. The correlated metallic tip-enhanced Raman spectroscopy...

  10. Single Molecule Probes of Lipid Membrane Structure

    E-Print Network [OSTI]

    Livanec, Philip W.

    2009-12-14T23:59:59.000Z

    Biological membranes are highly heterogeneous structures that are thought to use this heterogeneity to organize and modify the function of membrane constituents. Probing membrane organization, structure, and changes therein ...

  11. Fiber optic probe for light scattering measurements

    DOE Patents [OSTI]

    Nave, Stanley E. (Evans, GA); Livingston, Ronald R. (Aiken, SC); Prather, William S. (Augusta, GA)

    1995-01-01T23:59:59.000Z

    A fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman-scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  12. Fiber optic probe for light scattering measurements

    DOE Patents [OSTI]

    Nave, S.E.; Livingston, R.R.; Prather, W.S.

    1993-01-01T23:59:59.000Z

    This invention is comprised of a fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman- scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  13. Material Symbols 

    E-Print Network [OSTI]

    Clark, Andy

    2006-01-01T23:59:59.000Z

    What is the relation between the material, conventional symbol structures that we encounter in the spoken and written word, and human thought? A common assumption, that structures a wide variety of otherwise competing ...

  14. Complex Materials

    ScienceCinema (OSTI)

    Cooper, Valentino

    2014-05-23T23:59:59.000Z

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  15. Evaluation of probes used to detect alpha radiation

    E-Print Network [OSTI]

    Sackett, Gregory Duane

    1995-01-01T23:59:59.000Z

    such probes were evaluated in this study, the 350A Alpha Probe of Dosimeter Corporation and the AB100 Scintillator Probe produced by Harshaw Bicron. As an additional comparison, a Ludlum Model 44-9 (Pancake) GM Probe was also evaluated, since it has served...

  16. Evaluation of probes used to detect alpha radiation 

    E-Print Network [OSTI]

    Sackett, Gregory Duane

    1995-01-01T23:59:59.000Z

    such probes were evaluated in this study, the 350A Alpha Probe of Dosimeter Corporation and the AB100 Scintillator Probe produced by Harshaw Bicron. As an additional comparison, a Ludlum Model 44-9 (Pancake) GM Probe was also evaluated, since it has served...

  17. Methods for radiation detection and characterization using a multiple detector probe

    DOE Patents [OSTI]

    Akers, Douglas William; Roybal, Lyle Gene

    2014-11-04T23:59:59.000Z

    Apparatuses, methods, and systems relating to radiological characterization of environments are disclosed. Multi-detector probes with a plurality of detectors in a common housing may be used to substantially concurrently detect a plurality of different radiation activities and types. Multiple multi-detector probes may be used in a down-hole environment to substantially concurrently detect radioactive activity and contents of a buried waste container. Software may process, analyze, and integrate the data from the different multi-detector probes and the different detector types therein to provide source location and integrated analysis as to the source types and activity in the measured environment. Further, the integrated data may be used to compensate for differential density effects and the effects of radiation shielding materials within the volume being measured.

  18. Field testing of a probe to measure fouling in an industrial flue gas stream

    SciTech Connect (OSTI)

    Sohal, M.S.

    1990-11-01T23:59:59.000Z

    The US Department of Energy, Office of Industrial Technology sponsors work in the area of measuring and mitigating fouling in heat exchangers. This report describes the design and fabrication of a gas-side fouling measuring device, and its testing in an industrial environment. The report gives details of the probe fabrication, material used, controllers, other instrumentation required for various measurements, and computer system needed for recording the data. The calibration constants for measuring the heat flux with the heat fluxmeter were determined. The report also describes the field test location, the tests performed, the data collected, and the data analysis. The conclusions of the tests performed were summarized. Although fouling deposits on the probe were minimal, the tests proved that the probe is capable of measuring the fouling in a harsh industrial environment. 17 refs., 19 figs., 5 tabs.

  19. Kinetics of local probe oxidation of ultrathin V, Nb, Ta, Ti, TiN, and W metal films

    SciTech Connect (OSTI)

    Sagunova, I. V., E-mail: pcfme@miee.ru; Shevyakov, V. I.; Gavrilov, S. A.; Belov, A. N. [Moscow Institute of Electronic Technology (Technical University) (Russian Federation)

    2010-12-15T23:59:59.000Z

    The specific features of the kinetics of local probe oxidation of ultrathin V, Nb, Ta, Ti, TiN, and W metal films are studied. It is established that the kinetics of the oxidation process depends on such properties of the material to be oxidized as the resistivity, the presence of a natural surface oxide film and its thickness, the relationship between the densities of the metal and oxide, and the electrochemical constant of the oxidation process. For the material that provides a high efficiency of formation of local insulator nanoregions, vanadium is chosen, since this metal exhibits the maximum rate of anodic probe oxidation.

  20. Serial and parallel Si, Ge, and SiGe direct-write with scanning probes and conducting stamps

    SciTech Connect (OSTI)

    Vasko, Stephanie E.; Kapetanovic, Adnan; Talla, Vamsi; Brasino, Michael D.; Zhu, Zihua; Scholl, Andreas; Torrey, Jessica D.; Rolandi, Marco

    2011-05-16T23:59:59.000Z

    Precise materials integration in nanostructures is fundamental for future electronic and photonic devices. We demonstrate Si, Ge, and SiGe nanostructure direct-write with deterministic size, geometry, and placement control. The biased probe of an atomic force microscope (AFM) reacts diphenylsilane or diphenylgermane to direct-write carbon-free Si, Ge, and SiGe nano and heterostructures. Parallel directwrite is available on large areas by substituting the AFM probe with conducting microstructured stamps. This facile strategy can be easily expanded to a broad variety of semiconductor materials through precursor selection.

  1. Rare-Earth Surface Alloying: A New Phase for GdAu2 M. J. Verstraete,1,2

    E-Print Network [OSTI]

    of the age, from electric cars to efficient light bulbs to very large wind turbines and future magnetic refrigeration, are made pos- sible by an unusual group of elements: the rare earths (REs). The rare earths materials very chal- lenging. The REs demonstrate varying magnetism, coordi- nation, oxidation states

  2. Holographic backgrounds from D-brane probes

    E-Print Network [OSTI]

    Micha Moskovic

    2015-01-09T23:59:59.000Z

    This thesis focuses on the derivation of holographic backgrounds from the field theory side, without using any supergravity equations of motion. Instead, we rely on the addition of probe D-branes to the stack of D-branes generating the background. From the field theory description of the probe branes, one can compute an effective action for the probes (in a suitable low-energy/near-horizon limit) by integrating out the background branes. Comparing this action with the generic probe D-brane action then allows to determine the holographic background dual to the considered field theory vacuum. In the first part, the required pre-requisites of field and string theory are recalled and this strategy to derive holographic backgrounds is explained in more detail on the basic case of D3-branes in flat space probed by a small number of D-instantons. The second part contains our original results, which have already appeared in arXiv:1301.3738, arXiv:1301.7062 and arXiv:1312.0621. We first derive the duals to three continuous deformations (Coulomb branch, $\\beta$ and non-commutative deformations) of N=4 super-Yang-Mills. We then derive the enhan\\c{c}on mechanism in a simple N=2 quiver gauge theory setup by using a fractional D-instanton as a probe and exploiting recent exact results on the Coulomb branch of N=2 quivers. Finally, we obtain the near-horizon D4-brane geometry by probing the D4-branes with a small number of D0-branes.

  3. Quantum probes for fractional Gaussian processes

    E-Print Network [OSTI]

    Matteo G. A. Paris

    2014-07-19T23:59:59.000Z

    We address the characterization of classical fractional random noise via quantum probes. In particular, we focus on estimation and discrimination problems involving the fractal dimension of the trajectories of a system subject to fractional Brownian noise. We assume that the classical degree of freedom exposed to the environmental noise is coupled to a quantum degree of freedom of the same system, e.g. its spin, and exploit quantum limited measurements on the spin part to characterize the classical fractional noise. More generally, our approach may be applied to any two-level system subject to dephasing perturbations described by fractional Brownian noise, in order to assess the precision of quantum limited measurements in the characterization of the external noise. In order to assess the performances of quantum probes we evaluate the Bures metric, as well as the Helstrom and the Chernoff bound, and optimize their values over the interaction time. We find that quantum probes may be successfully employed to obtain a reliable characterization of fractional Gaussian process when the coupling with the environment is weak or strong. In the first case decoherence is not much detrimental and for long interaction times the probe acquires information about the environmental parameters without being too much mixed. Conversely, for strong coupling, information is quickly impinged on the quantum probe and can effectively retrieved by measurements performed in the early stage of the evolution. In the intermediate situation, none of the two above effects take place: information is flowing from the environment to the probe too slowly compared to decoherence, and no measurements can be effectively employed to extract it from the quantum probe. The two regimes of weak- and strong-coupling are defined in terms of a threshold value of the coupling, which itself increases with the fractional dimension.

  4. Corrosion monitoring with hydrogen probes in the oilfield

    SciTech Connect (OSTI)

    Thomason, W.H.

    1984-05-01T23:59:59.000Z

    An overview of the application of hydrogen probes for corrosion monitoring in the oilfield is presented. The three basic types of hydrogen probes are described and their relative merits discussed. The construction and installation of a simple and inexpensive electrochemical hydrogen probe is described. Experiences with hydrogen probes in oilfield operations are discussed, and it is concluded from these experiences that production systems where hydrogen probes can provide useful corrosion data are limited.

  5. Using electrical resistance probes for moisture determination in switchgrass windrows

    SciTech Connect (OSTI)

    Chesser Jr., G. D.; Davis, J. D.; Purswell, J. L.; Lemus, R.

    2011-08-01T23:59:59.000Z

    Determining moisture levels in windrowed biomass is important for both forage producers and researchers. Energy crops such as switchgrass have been troublesome when using the standard methods set for electrical resistance meters. The objectives of this study were to i) develop the methodologies needed to measure MC in switchgrass using electrical resistance meters, ii) to determine the effects of pressure and probe orientation on MC measurement and iii) to generate MC calibration equations for electrical resistance meters using switchgrass in the senescence growth stage. Two meters (Meter 1, Farmex HT-PRO; Meter 2, Delmhorst F-2000) were selected based on commercial availability. A forage compression apparatus was designed and constructed with on-farm materials and methods to provide a simple system of applying pressure achievable by any forage producer or researcher in the field. Two trials were performed to test four levels of moisture contents (10, 20, 30, and 40%), five pressures (0, 1.68, 3.11, 4.55, 6.22 kN/m 2; 0, 35, 65, 95, 130 lb/ft 2), and two probe orientations (axial and transverse) in a 4x5x2 factorial design. Results indicated that meter accuracy increased as pressure increased. Regression models accounted for 91% and 81% of the variation for Meter 1 and Meter 2 at a pressure of 4.55 kN/m 2 (95 lb/ft 2) and a transverse probe orientation. Calibration equations were developed for both meters to improve moisture measurement accuracy for farmers and researchers in the field.

  6. Hardfacing material

    DOE Patents [OSTI]

    Branagan, Daniel J. (Iona, ID)

    2012-01-17T23:59:59.000Z

    A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  7. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMARSecurityMaterials Science Materials

  8. Pressure contact probe for resistivity measurements in the temperature range 77 K/lt//ital T//lt/200 K

    SciTech Connect (OSTI)

    Tritt, T. M.; Ehrlich, A. C.; Davis, H. S.

    1989-05-01T23:59:59.000Z

    We have designed and built a sample probe that is particularly well suited for measuring the resistivity and superconducting transition temperature /ital T//sub /ital c// of bulk high-/ital T//sub /ital c// materials of nonuniform shape, in the temperature range 77 K/lt//ital T//lt/200 K. The probe uses spring-loaded indium pressure contacts and allows electrical contact to be made without altering or contaminating the sample. The probe is relatively efficient because of its short turn-around time in mounting of samples and cylcing of temperature. The resistivity and /ital T//sub /ital c// of a bulk Y/sub 1/Ba/sub 2/Cu/sub 3/minus///sub /ital x//Ag/sub /ital x//O/sub 7/ sample was measured and the results compared with those from a more elaborate sample probe and Dewar system.

  9. Proceedings of "Optical Probes of Dynamics in Complex Environments"

    SciTech Connect (OSTI)

    Sension, R; Tokmakoff, A

    2008-04-01T23:59:59.000Z

    This document contains the proceedings from the symposium on Optical Probes of Dynamics in Complex Environments, which organized as part of the 235th National Meeting of the American Chemical Society in New Orleans, LA from April 6 to 10, 2008. The study of molecular dynamics in chemical reaction and biological processes using time ���������������resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time resolved spectroscopy is central to all of DOEs grand challenges for fundamental energy science. This symposium brought together leaders in the field of ultrafast spectroscopy, including experimentalists, theoretical chemists, and simulators, to discuss the most recent scientific and technological advances. DOE support for this conference was used to help young US and international scientists travel to the meeting. The latest technology in ultrafast infrared, optical, and xray spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  10. Materials compatibility.

    SciTech Connect (OSTI)

    Somerday, Brian P.

    2010-04-01T23:59:59.000Z

    Objectives are to enable development and implementation of codes and standards for H{sub 2} containment components: (1) Evaluate data on mechanical properties of materials in H{sub 2} gas - Technical Reference on Hydrogen Compatibility of Materials; (2) Generate new benchmark data on high-priority materials - Pressure vessel steels, stainless steels; and (3) Establish procedures for reliable materials testing - Sustained-load cracking, fatigue crack propagation. Summary of this presentation are: (1) Completed measurement of cracking thresholds (K{sub TH}) for Ni-Cr-Mo pressure vessel steels in high-pressure H{sub 2} gas - K{sub TH} measurements required in ASME Article KD-10 (2) Crack arrest test methods appear to yield non-conservative results compared to crack initiation test methods - (a) Proposal to insert crack initiation test methods in Article KD-10 will be presented to ASME Project Team on Hydrogen Tanks, and (b) Crack initiation methods require test apparatus designed for dynamic loading of specimens in H{sub 2} gas; and (3) Demonstrated ability to measure fatigue crack growth of pressure vessel steels in high-pressure H{sub 2} gas - (a) Fatigue crack growth data in H{sub 2} required in ASME Article KD-10, and (b) Test apparatus is one of few in U.S. or abroad for measuring fatigue crack growth in >100 MPa H{sub 2} gas.

  11. Gamma-ray blind beta particle probe

    DOE Patents [OSTI]

    Weisenberger, Andrew G. (Grafton, VA)

    2001-01-01T23:59:59.000Z

    An intra-operative beta particle probe is provided by placing a suitable photomultiplier tube (PMT), micro channel plate (MCP) or other electron multiplier device within a vacuum housing equipped with: 1) an appropriate beta particle permeable window; and 2) electron detection circuitry. Beta particles emitted in the immediate vicinity of the probe window will be received by the electron multiplier device and amplified to produce a detectable signal. Such a device is useful as a gamma insensitive, intra-operative, beta particle probe in surgeries where the patient has been injected with a beta emitting radiopharmaceutical. The method of use of such a device is also described, as is a position sensitive such device.

  12. Remote adjustable focus Raman spectroscopy probe

    DOE Patents [OSTI]

    Schmucker, John E. (Hurt, VA); Blasi, Raymond J. (Harrison City, PA); Archer, William B. (Bethel Park, PA)

    1999-01-01T23:59:59.000Z

    A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes a long working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translated the prove body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

  13. Scintillation probe with photomultiplier tube saturation indicator

    DOE Patents [OSTI]

    Ruch, Jeffrey F. (Bethel Park, PA); Urban, David J. (Glassport, PA)

    1996-01-01T23:59:59.000Z

    A photomultiplier tube saturation indicator is formed by supplying a supplemental light source, typically an light emitting diode (LED), adjacent to the photomultiplier tube. A switch allows the light source to be activated. The light is forwarded to the photomultiplier tube by an optical fiber. If the probe is properly light tight, then a meter attached to the indicator will register the light from the LED. If the probe is no longer light tight, and the saturation indicator is saturated, no signal will be registered when the LED is activated.

  14. FLOW SOURCES AND FORMATION LAWS OF SOLAR WIND N. A. LOTOVA1, V. N. OBRIDKO1, K. V. VLADIMIRSKII2, M. K. BIRD3 and

    E-Print Network [OSTI]

    Padmanabhan, Janardhan

    FLOW SOURCES AND FORMATION LAWS OF SOLAR WIND STREAMS N. A. LOTOVA1, V. N. OBRIDKO1, K. V. VLADIMIRSKII2, M. K. BIRD3 and P. JANARDHAN3, 1IZMIRAN, Troitsk, Moscow Region, 142190, Russia (e-mail: nlotova structure of the solar wind flow is studied in the main acceleration zone from 10 to 40 solar radii from

  15. Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy

    SciTech Connect (OSTI)

    Kalinin, Sergei V [ORNL; Rodriguez, Brian J [ORNL; Jesse, Stephen [ORNL; Karapetian, Edgar [ORNL; Mirman, B [Suffolk University, Boston; Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine

    2007-01-01T23:59:59.000Z

    Functionality of biological and inorganic systems ranging from nonvolatile computer memories and microelectromechanical systems to electromotor proteins and cellular membranes is ultimately based on the intricate coupling between electrical and mechanical phenomena. In the past decade, piezoresponse force microscopy (PFM) has been established as a powerful tool for nanoscale imaging, spectroscopy, and manipulation of ferroelectric and piezoelectric materials. Here, we give an overview of the fundamental image formation mechanism in PFM and summarize recent theoretical and technological advances. In particular, we show that the signal formation in PFM is complementary to that in the scanning tunneling microscopy (STM) and atomic force microscopy (AFM) techniques, and we discuss the implications. We also consider the prospect of extending PFM beyond ferroelectric characterization for quantitative probing of electromechanical behavior in molecular and biological systems and high-resolution probing of static and dynamic polarization switching processes in low-dimensional ferroelectric materials and heterostructures.

  16. Energy Materials & Processes | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Materials & Processes Overview Atmospheric Aerosol Systems Biosystem Dynamics & Design Energy Materials & Processes Terrestrial & Subsurface Ecosystems Energy Materials &...

  17. Probing nuclear matter with jet conversions

    E-Print Network [OSTI]

    Liu, W.; Fries, Rainer J.

    2008-01-01T23:59:59.000Z

    We discuss the flavor of leading jet partons as a valuable probe of nuclear matter. We point out that the coupling of jets to nuclear matter naturally leads to an alteration of jet chemistry even at high transverse momentum PT. In particular...

  18. Radiation Belt Storm Probes Ion Composition Experiment

    E-Print Network [OSTI]

    current produced the "bays" (decreases in the ground-level geomagnetic field) measured in magnetogram current" around Earth and its association with geomagnetic storms began in the early days of the twentieth Storm Probes (RBSP) spacecraft is the magnetosphere ring current instrument that will provide data

  19. Vertically aligned nanostructure scanning probe microscope tips

    DOE Patents [OSTI]

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19T23:59:59.000Z

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  20. Probe and method for DNA detection

    SciTech Connect (OSTI)

    Yeh, Hsin-Chih; Werner, James Henry; Sharma, Jaswinder Kumar; Martinez, Jennifer Suzanne

    2013-07-02T23:59:59.000Z

    A hybridization probe containing two linear strands of DNA lights up upon hybridization to a target DNA using silver nanoclusters that have been templated onto one of the DNA strands. Hybridization induces proximity between the nanoclusters on one strand and an overhang on the other strand, which results in enhanced fluorescence emission from the nanoclusters.

  1. Astrophysikalisches Institut Potsdam Probes of Dark Energy

    E-Print Network [OSTI]

    Astrophysikalisches Institut Potsdam Probes of Dark Energy using Cosmological Simulations Nonlinear component, called dark energy. This unknown energy causes the expansion of the universe to accelerate theoretical model of dark energy has been developed. Instead a number of models have been proposed that range

  2. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOE Patents [OSTI]

    Alfano, Robert R. (Bronx, NY); Wang, Wubao (Flushing, NY)

    2003-05-06T23:59:59.000Z

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. A low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic transaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively.

  3. Pump and probe waves in dynamic acousto-elasticity: Comprehensive description and comparison with nonlinear elastic theories

    E-Print Network [OSTI]

    - static stress).1 For isotropic materials, the speed of sound change with stress levels allows onePump and probe waves in dynamic acousto-elasticity: Comprehensive description and comparison with nonlinear elastic theories J. Rivie`re,1,a) G. Renaud,2 R. A. Guyer,1,b) and P. A. Johnson1 1 Earth

  4. Novel Anode Materials

    Broader source: Energy.gov (indexed) [DOE]

    silicon TBACl as supporting electrolyte Coin cells , Si vs Li metal in 1.2M LiPF 6 , EC:EMC electrode surface 1cm 2 , copper foam weight 60mg 1 st cycle voltage profile for...

  5. Alloy materials

    DOE Patents [OSTI]

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01T23:59:59.000Z

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  6. Construction material

    DOE Patents [OSTI]

    Wagh, Arun S. (Orland Park, IL); Antink, Allison L. (Bolingbrook, IL)

    2008-07-22T23:59:59.000Z

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  7. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) -PublicationsMaterials Science

  8. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | National NuclearMaterial Misfits

  9. Ultrafast pump-probe force microscopy with nanoscale resolution

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    Cerullo, “Confocal ultrafast pump-probe spectroscopy: A newand H. J. Maris, “Time-resolved pump-probe experiments withand U. Keller, “Femtosecond pump-porbe near-field optical

  10. acceleration probe studying: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23 24 25 Next Page Last Page Topic Index 1 Supernova Acceleration Probe: Studying Dark Energy with Type Ia Supernovae Astrophysics (arXiv) Summary: The Supernova Acceleration Probe...

  11. Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si

    SciTech Connect (OSTI)

    Murphy, Ryan D. [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, Ben [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Adams, David P. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Yalisove, Steven M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2013-09-30T23:59:59.000Z

    Ultrafast pump-probe microscopy has been used to investigate laser-induced periodic surface structure (LIPSS) formation on polished Si surfaces. A crater forms on the surface after irradiation by a 150 fs laser pulse, and a second, subsequent pulse forms LIPSS within the crater. Sequentially delayed images show that LIPSS with a periodicity slightly less than the fundamental laser wavelength of 780 nm appear on Si surfaces ?50 ps after arrival of the second pump laser pulse, well after the onset of melting. LIPSS are observed on the same timescale as material removal, suggesting that their formation involves material ejection.

  12. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15T23:59:59.000Z

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

  13. Probing Single-Molecule Protein Conformational Dynamics. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single-Molecule Protein Conformational Dynamics. Probing Single-Molecule Protein Conformational Dynamics. Abstract: Protein conformational fluctuations and dynamics, often...

  14. Test probe for surface mounted leadless chip carrier

    DOE Patents [OSTI]

    Meyer, Kerry L. (Raytown, MO); Topolewski, John (Lenexa, KS)

    1989-05-23T23:59:59.000Z

    A test probe for a surface mounted leadless chip carrier is disclosed. The probed includes specially designed connector pins which allow size reductions in the probe. A thermoplastic housing provides spring action to ensure good mechanical and electrical contact between the pins and the contact strips of a leadless chip carrier. Other features include flexible wires molded into the housing and two different types of pins alternately placed in the housing. These features allow fabrication of a smaller and simpler test probe.

  15. WIRELESS EDDY CURRENT PROBE FOR ENGINE HEALTH , B. Graubard1

    E-Print Network [OSTI]

    Dickerson, Julie A.

    WIRELESS EDDY CURRENT PROBE FOR ENGINE HEALTH MONITORING M. Reid1 , B. Graubard1 , R. J. Weber1 , J. The first prototype wireless eddy current (EC) probe for on-wing inspection was demonstrated in a F100 PW of safety significant propulsion system malfunctions. Data from 2 MHz Eddy Current probes was transmitted

  16. Can a Pump-probe Experiment be Simulated Efficiently?

    E-Print Network [OSTI]

    Kosloff, Ronnie

    Can a Pump-probe Experiment be Simulated Efficiently? Thesis Submitted for the Degree Doctor things in the world. #12;i ABSTRACT Measuring a quantum system disturbs its evolution. A pump-probe exper measurements. Modeling the evolution of observables in the pump-probe experiment is an essential ingredient

  17. Materials Characterization | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMAR Os2010Material Safety Electron

  18. Critical Materials Institute

    SciTech Connect (OSTI)

    Alex King

    2013-01-09T23:59:59.000Z

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  19. Critical Materials Institute

    ScienceCinema (OSTI)

    Alex King

    2013-06-05T23:59:59.000Z

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  20. Crystalline Nanoporous Frameworks: a Nanolaboratory for Probing Excitonic Device Concepts.

    SciTech Connect (OSTI)

    Allendorf, Mark D.; Azoulay, Jason; Ford, Alexandra Caroline [Sandia National Laboratories, Albuquerque, NM; Foster, Michael E.; El Gabaly Marquez, Farid; Leonard, Francois Leonard; Leong-Hau, Kirsty; Stavila, Vitalie; Talin, Albert Alec; Wong, Brian M.; Brumbach, Michael T. [Sandia National Laboratories, Albuquerque, NM; Van Gough, D.; Lambert, Timothy N. [Sandia National Laboratories, Albuquerque, NM; Rodriguez, Mark A. [Sandia National Laboratories, Albuquerque, NM; Spoerke, Erik David [Sandia National Laboratories, Albuquerque, NM; Wheeler, David R. [Sandia National Laboratories, Albuquerque, NM; Deaton, Joseph C.; Centrone, Andrea; Haney, Paul; Kinney, R.; Szalai, Veronika; Yoon, Heayoung P.

    2014-09-01T23:59:59.000Z

    Electro-optical organic materials hold great promise for the development of high-efficiency devices based on exciton formation and dissociation, such as organic photovoltaics (OPV) and organic light-emitting devices (OLEDs). However, the external quantum efficiency (EQE) of both OPV and OLEDs must be improved to make these technologies economical. Efficiency rolloff in OLEDs and inability to control morphology at key OPV interfaces both reduce EQE. Only by creating materials that allow manipulation and control of the intimate assembly and communication between various nanoscale excitonic components can we hope to first understand and then engineer the system to allow these materials to reach their potential. The aims of this proposal are to: 1) develop a paradigm-changing platform for probing excitonic processes composed of Crystalline Nanoporous Frameworks (CNFs) infiltrated with secondary materials (such as a complimentary semiconductor); 2) use them to probe fundamental aspects of excitonic processes; and 3) create prototype OPVs and OLEDs using infiltrated CNF as active device components. These functional platforms will allow detailed control of key interactions at the nanoscale, overcoming the disorder and limited synthetic control inherent in conventional organic materials. CNFs are revolutionary inorganic-organic hybrid materials boasting unmatched synthetic flexibility that allow tuning of chemical, geometric, electrical, and light absorption/generation properties. For example, bandgap engineering is feasible and polyaromatic linkers provide tunable photon antennae; rigid 1-5 nm pores provide an oriented, intimate host for triplet emitters (to improve light emission in OLEDs) or secondary semiconducting polymers (creating a charge-separation interface in OPV). These atomically engineered, ordered structures will enable critical fundamental questions to be answered concerning charge transport, nanoscale interfaces, and exciton behavior that are inaccessible in disordered systems. Implementing this concept also creates entirely new dimensions for device fabrication that could both improve performance, increase durability, and reduce costs with unprecedented control of over properties. This report summarizes the key results of this project and is divided into sections based on publications that resulted from the work. We begin in Section 2 with an investigation of light harvesting and energy transfer in a MOF infiltrated with donor and acceptor molecules of the type typically used in OPV devices (thiophenes and fullerenes, respectively). The results show that MOFs can provide multiple functions: as a light harvester, as a stabilizer and organizer or the infiltrated molecules, and as a facilitator of energy transfer. Section 3 describes computational design of MOF linker groups to accomplish light harvesting in the visible and facilitate charge separation and transport. The predictions were validated by UV-visible absorption spectroscopy, demonstrating that rational design of MOFs for light-harvesting purposes is feasible. Section 4 extends the infiltration concept discussed in Section to, which we now designate as %22Molecule%40MOF%22 to create an electrically conducting framework. The tailorability and high conductivity of this material are unprecedented, meriting publication in the journal Science and spawning several Technical Advances. Section 5 discusses processes we developed for depositing MOFs as thin films on substrates, a critical enabling technology for fabricating MOF-based electronic devices. Finally, in Section 6 we summarize results showing that a MOF thin film can be used as a sensitizer in a DSSC, demonstrating that MOFs can serve as active layers in excitonic devices. Overall, this project provides several crucial proofs-of- concept that the potential of MOFs for use in optoelectronic devices that we predicted several years ago [ 3 ] can be realized in practice.

  1. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals, accidentally spilled, or released. In addition to laboratory chemicals, hazardous materials may include common not involve highly toxic or noxious hazardous materials, a fire, or an injury requiring medical attention

  2. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up, or there is a small spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  3. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  4. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up personnel trained in Hazardous Material clean up or an appropriate spill kit is not available? Call 561

  5. Spectroscopic Characterization of Actinide Materials

    SciTech Connect (OSTI)

    Buck, Edgar C.; Clark, Dave L.; Caciuffo, Roberto; van der Laan, Gerrit

    2010-11-11T23:59:59.000Z

    Advanced spectroscopic techniques provide new and unique tools for unraveling the nature of the electronic structure of actinide materials. Inelastic neutron scattering experiments that address temporal aspects of lattice and magnetic fluctuations, probe electromagnetic multipole interactions and the coupling between electronic and vibrational degrees of freedom. Nuclear magnetic resonance clearly demonstrates different magnetic ground states at low temperature. Photoemission spectroscopies provide information on the occupied part of the electron density of states and have been used to investigate the momentum-resolved electronic structure and the topology of the Fermi surface in a variety of actinide compounds. Furthermore, x-ray absorption and electron energy-loss spectroscopies have been used to probe the relativistic nature, the occupation number, and the degree of localization of 5f electrons across the actinide series. More recently, element and edge-specific resonant and non-resonant inelastic x-ray scattering experiments have provided the opportunity of measuring elementary electronic excitations with higher resolution than traditional absorption techniques. Here, we will discuss the results obtained by most of these different spectroscopic techniques in studying the electronic and magnetic properties of selected actinide compounds, chosen as typical examples of systems with 5f electrons having an itinerant or a localized character, or lying near the localization-delocalization boundary.

  6. Ultrafast dynamic ellipsometry and spectroscopy of laser shocked materials

    SciTech Connect (OSTI)

    Bolme, Cynthia A [Los Alamos National Laboratory; Mc Grane, Shawn D [Los Alamos National Laboratory; Dang, Nhan C [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Moore, David S. [Los Alamos National Laboratory

    2011-01-20T23:59:59.000Z

    Ultrafast dynamic ellipsometry is used to measure the material motion and changes in the optical refractive index of laser shock compressed materials. This diagnostic has shown us that the ultrafast laser driven shocks are the same as shocks on longer timescales and larger length scales. We have added spectroscopic diagnostics of infrared absorption, ultra-violet - visible transient absorption, and femtosecond stimulated Raman scattering to begin probing the initiation chemistry that occurs in shock reactive materials. We have also used the femtosecond stimulated Raman scattering to measure the vibrational temperature of materials using the Stokes gain to anti-Stokes loss ratio.

  7. Link between laboratory and astrophysical radiative C Michaut1, E Falize1,2, C Cavet1, S Bouquet1,2, M Koenig3, T

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the radiative precursor, but the cooling function is slightly modified. In future experiments we will probe], we switch the cooling function by a equivalent system which represents the hal-00287806,version1. The equations including a cooling function P x are solved for any values of the exponents

  8. Probing Nano-Mechanical QED Effects

    E-Print Network [OSTI]

    Y. B. Gao; S. Yang; Yu-xi Liu; C. P. Sun; Franco Nori

    2009-02-15T23:59:59.000Z

    We propose and study an "intrinsic probing" approach, without introducing any external detector, to mimic cavity QED effects in a qubit-nanomechanical resonator system. This metallic nanomechanical resonator can act as an intrinsic detector when a weak driving current passes through it. The nanomechanical resonator acts as both the cavity and the detector. A cavity QED-like effect is demonstrated by the correlation spectrum of the electromotive force between the two ends of the nanomechanical resonator. Using the quantum regression theorem and perturbation theory, we analytically calculate the correlation spectrum. In the weak driving limit, we study the effect on the vacuum Rabi splitting of both the strength of the driving as well as the frequency-detuning between the charge qubit and the nanomechanical resonator. Numerical calculations confirm the validity of our intrinsic probing approach.

  9. Non-Contact Gaging with Laser Probe

    SciTech Connect (OSTI)

    Clinesmith, Mike

    2009-03-20T23:59:59.000Z

    A gage has been constructed using conventional (high end) components for the application of measuring fragile syntactic foam parts in a non-contact mode. Success with this approach has been achieved through a novel method of transferring (mapping) high accuracy local measurements of a coated aluminum master, taken on a Leitz Coordinate Measurement Machine (CMM), to the gage software system. The mapped data is then associated with local voltage readings from two (inner and outer) laser triangulating probes. This couples discreet laser probe offset and linearity characteristics to the measured master geometry. The gage software compares real part measured data against the master data to provide non-contact part inspection that results in a high accuracy and low uncertainty performance. Uncertainty from the part surface becomes the prevailing contributor to the gaging process. The gaging process provides a high speed, hands off measurement with nearly zero impedance.

  10. Regenerable activated bauxite adsorbent alkali monitor probe

    DOE Patents [OSTI]

    Lee, S.H.D.

    1992-12-22T23:59:59.000Z

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  11. Dielectric covered hairpin probe for its application in reactive plasmas

    SciTech Connect (OSTI)

    Gogna, G. S.; Gaman, C.; Turner, M. M. [NCPST, School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Karkari, S. K. [Institute for Plasma Research Center, Bhat Gandhinagar, Gujarat 382428 (India)

    2012-07-23T23:59:59.000Z

    The hairpin probe is a well known technique for measuring local electron density in low temperature plasmas. In reactive plasmas, the probe characteristics are affected by surface sputtering, contamination, and secondary electron emission. At higher densities, the plasma absorbs the entire electromagnetic energy of hairpin and hence limits the density measurements. These issues can be resolved by covering the hairpin surface with a thin layer of dielectric. In this letter, the dielectric contribution to the probe characteristics is incorporated in a theory which is experimentally verified. The dielectric covering improves the performance of probe and also allows the hairpin tip to survive in reactive plasma where classical electrical probes are easily damaged.

  12. MATERIALS MANAGEMENT MATERIALS MANAGEMENT -INVENTORY CONTROL

    E-Print Network [OSTI]

    Oliver, Douglas L.

    MATERIALS MANAGEMENT MATERIALS MANAGEMENT - INVENTORY CONTROL Record of Property Transferred from ______ ___________________________________ 2. DEAN (If Applies) ______ ___________________________________ 5. UNIVERSITY DIRECTOR OF MATERIALS MANAGEMENT ______ ___________________________________ 3. HOSPITAL DIRECTOR (If Applies) ______ IF YOU NEED

  13. Design and analysis of mismatch probes for long oligonucleotide microarrays

    SciTech Connect (OSTI)

    Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Zhou, Jizhong

    2008-08-15T23:59:59.000Z

    Nonspecific hybridization is currently a major concern with microarray technology. One of most effective approaches to estimating nonspecific hybridizations in oligonucleotide microarrays is the utilization of mismatch probes; however, this approach has not been used for longer oligonucleotide probes. Here, an oligonucleotide microarray was constructed to evaluate and optimize parameters for 50-mer mismatch probe design. A perfect match (PM) and 28 mismatch (MM) probes were designed for each of ten target genes selected from three microorganisms. The microarrays were hybridized with synthesized complementary oligonucleotide targets at different temperatures (e.g., 42, 45 and 50 C). In general, the probes with evenly distributed mismatches were more distinguishable than those with randomly distributed mismatches. MM probes with 3, 4 and 5 mismatched nucleotides were differentiated for 50-mer oligonucleotide probes hybridized at 50, 45 and 42 C, respectively. Based on the experimental data generated from this study, a modified positional dependent nearest neighbor (MPDNN) model was constructed to adjust the thermodynamic parameters of matched and mismatched dimer nucleotides in the microarray environment. The MM probes with four flexible positional mismatches were designed using the newly established MPDNN model and the experimental results demonstrated that the redesigned MM probes could yield more consistent hybridizations. Conclusions: This study provides guidance on the design of MM probes for long oligonucleotides (e.g., 50 mers). The novel MPDNN model has improved the consistency for long MM probes, and this modeling method can potentially be used for the prediction of oligonucleotide microarray hybridizations.

  14. Sampling probe for microarray read out using electrospray mass spectrometry

    DOE Patents [OSTI]

    Van Berkel, Gary J.

    2004-10-12T23:59:59.000Z

    An automated electrospray based sampling system and method for analysis obtains samples from surface array spots having analytes. The system includes at least one probe, the probe including an inlet for flowing at least one eluting solvent to respective ones of a plurality of spots and an outlet for directing the analyte away from the spots. An automatic positioning system is provided for translating the probe relative to the spots to permit sampling of any spot. An electrospray ion source having an input fluidicly connected to the probe receives the analyte and generates ions from the analyte. The ion source provides the generated ions to a structure for analysis to identify the analyte, preferably being a mass spectrometer. The probe can be a surface contact probe, where the probe forms an enclosing seal along the periphery of the array spot surface.

  15. Cone penetrometer fiber optic raman spectroscopy probe assembly

    DOE Patents [OSTI]

    Kyle, Kevin R. (Brentwood, CA); Brown, Steven B. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    A chemically and mechanically robust optical Raman spectroscopy probe assembly that can be incorporated in a cone penetrometer (CPT) for subsurface deployment. This assembly consists of an optical Raman probe and a penetrometer compatible optical probe housing. The probe is intended for in-situ chemical analysis of chemical constituents in the surrounding environment. The probe is optically linked via fiber optics to the light source and the detection system at the surface. A built-in broadband light source provides a strobe method for direct measurement of sample optical density. A mechanically stable sapphire window is sealed directly into the side-wall of the housing using a metallic, chemically resistant, hermetic seal design. This window permits transmission of the interrogation light beam and the resultant signal. The spectroscopy probe assembly is capable of accepting Raman, Laser induced Fluorescence, reflectance, and other optical probes with collimated output for CPT deployment.

  16. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  17. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  18. DWPF MATERIALS EVALUATION SUMMARY REPORT

    SciTech Connect (OSTI)

    Gee, T.; Chandler, G.; Daugherty, W.; Imrich, K.; Jankins, C.

    1996-09-12T23:59:59.000Z

    To better ensure the reliability of the Defense Waste Processing Facility (DWPF) remote canyon process equipment, a materials evaluation program was performed as part of the overall startup test program. Specific test programs included FA-04 ('Process Vessels Erosion/Corrosion Studies') and FA-05 (melter inspection). At the conclusion of field testing, Test Results Reports were issued to cover the various test phases. While these reports completed the startup test requirements, DWPF-Engineering agreed to compile a more detailed report which would include essentially all of the materials testing programs performed at DWPF. The scope of the materials evaouation programs included selected equipment from the Salt Process Cell (SPC), Chemical Process Cell (CPC), Melt Cell, Canister Decon Cell (CDC), and supporting facilities. The program consisted of performing pre-service baseline inspections (work completed in 1992) and follow-up inspections after completion of the DWPF cold chemical runs. Process equipment inspected included: process vessels, pumps, agitators, coils, jumpers, and melter top head components. Various NDE (non-destructive examination) techniques were used during the inspection program, including: ultrasonic testing (UT), visual (direct or video probe), radiography, penetrant testing (PT), and dimensional analyses. Finally, coupon racks were placed in selected tanks in 1992 for subsequent removal and corrosion evaluation after chemical runs.

  19. Functional Materials for Energy | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at...

  20. Oxygen as a site specific structural probe in neutron diffraction

    SciTech Connect (OSTI)

    Neuefeind, Joerg C [ORNL; Simonson, J Michael {Mike} [ORNL; Salmon, Phil [University of Bath; Zeidler, Anita [University of Bath; Fischer, Henry E [Institut Laue-Langevin (ILL); Rauch, Helmut [E141 Atominstitut der & #xD6; sterreichischen Universit& #xE4; ten,; Markland, Thomas [Columbia University; Lemmel, Hartmut [Technical University Vienna

    2011-01-01T23:59:59.000Z

    Oxygen is a ubiquitous element, playing an essential role in most scientific and technological disciplines, and is often incorporated within a structurally disordered material where examples include molten silicates in planetary science, glasses used for lasers and optical communication, and water in biological processes. Establishing the structure of a liquid or glassy oxide and thereby its relation to the functional properties of a material is not, however, a trivial task owing to the complexity associated with atomic disorder. Here we approach this challenge by measuring the bound coherent neutron scattering lengths of the oxygen isotopes with the sensitive technique of neutron interferometry. We find that there is a small but finite contrast of 0.204(6) fm between the scattering lengths of the isotope 18O and oxygen of natural isotopic abundance natO, contrary to tables of recommended values. This has enabled us to investigate the structure of both light and heavy water by exploiting, for the first time, the method of oxygen isotope substitution in neutron diffraction, thus circumventing many of the significant problems associated with more traditional methods in which hydrogen is substituted by deuterium. We find a difference of ~0.5% between the O-H and O-D intra-molecular bond distances which is much smaller than recent estimates based on diffraction data and is found to be in excellent agreement with path integral molecular dynamics simulations made with a flexible polarisable water model. Our results demonstrate the potential for using oxygen isotope substitution as a powerful and effective site specific probe in a plethora of materials, of pertinence as instrumentation at next generation neutron sources comes online

  1. Use of Ultrafast Dispersed Pump-Dump-Probe and Pump-Repump-Probe Spectroscopies to Explore the Light-Induced Dynamics of Peridinin in Solution

    E-Print Network [OSTI]

    van Stokkum, Ivo

    Use of Ultrafast Dispersed Pump-Dump-Probe and Pump-Repump-Probe Spectroscopies to Explore Form: NoVember 14, 2005 Optical pump-induced dynamics of the highly asymmetric carotenoid peridinin in methanol was studied by dispersed pump-probe, pump-dump-probe, and pump-repump-probe transient absorption

  2. Materials Project: A Materials Genome Approach

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ceder, Gerbrand (MIT); Persson, Kristin (LBNL)

    Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, this project has computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The computations predicted several new battery materials which were made and tested in the lab and are now being patented. By computing properties of all known materials, the Materials Project aims to remove guesswork from materials design in a variety of applications. Experimental research can be targeted to the most promising compounds from computational data sets. Researchers will be able to data-mine scientific trends in materials properties. By providing materials researchers with the information they need to design better, the Materials Project aims to accelerate innovation in materials research.[copied from http://materialsproject.org/about] You will be asked to register to be granted free, full access.

  3. Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections

    DOE Patents [OSTI]

    DiMambro, Joseph; Roach, Dennis P; Rackow, Kirk A; Nelson, Ciji L; Dasch, Cameron J; Moore, David G

    2013-02-12T23:59:59.000Z

    An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.

  4. Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections

    SciTech Connect (OSTI)

    DiMambro, Joseph (Placitas, NM); Roach, Dennis P. (Albuquerque, NM); Rackow, Kirk A. (Albuquerque, NM); Nelson, Ciji L. (Albuquerque, NM); Dasch, Cameron J. (Boomfield Hills, MI); Moore, David G. (Albuquerque, NM)

    2012-01-03T23:59:59.000Z

    An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.

  5. Dual harmonic Kelvin probe force microscopy at the graphene–liquid interface

    SciTech Connect (OSTI)

    Collins, Liam; Rodriguez, Brian J., E-mail: brian.rodriguez@ucd.ie [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Kilpatrick, Jason I.; Weber, Stefan A. L. [Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Vlassiouk, Ivan V. [Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Tselev, Alexander; Jesse, Stephen; Kalinin, Sergei V. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-03-31T23:59:59.000Z

    Kelvin probe force microscopy (KPFM) is a powerful technique for the determination of the contact potential difference (CPD) between an atomic force microscope tip and a sample under ambient and vacuum conditions. However, for many energy storage and conversion systems, including graphene-based electrochemical capacitors, understanding electrochemical phenomena at the solid–liquid interface is paramount. Despite the vast potential to provide fundamental insight for energy storage materials at the nanoscale, KPFM has found limited applicability in liquid environments to date. Here, using dual harmonic (DH)-KPFM, we demonstrate CPD imaging of graphene in liquid. We find good agreement with measurements performed in air, highlighting the potential of DH-KPFM to probe electrochemistry at the graphene–liquid interface.

  6. Eddy current probe with foil sensor mounted on flexible probe tip and method of use

    SciTech Connect (OSTI)

    Viertl, John R. M. (Niskayuna, NY); Lee, Martin K. (Niskayuna, NY)

    2001-01-01T23:59:59.000Z

    A pair of copper coils are embedded in the foil strip. A first coil of the pair generates an electromagnetic field that induces eddy currents on the surface, and the second coil carries a current influenced by the eddy currents on the surface. The currents in the second coil are analyzed to obtain information on the surface eddy currents. An eddy current probe has a metal housing having a tip that is covered by a flexible conductive foil strip. The foil strip is mounted on a deformable nose at the probe tip so that the strip and coils will conform to the surface to which they are applied.

  7. MATERIALS MANAGEMENT MATERIALS MANAGEMENT -INVENTORY CONTROL

    E-Print Network [OSTI]

    Oliver, Douglas L.

    MATERIALS MANAGEMENT MATERIALS MANAGEMENT - INVENTORY CONTROL NOTICE OF DESIGNATED DEPARTMENTAL OF MATERIALS MANAGEMENT ______ FURTHER INSTRUCTIONS 1. Include a copy of any relevant documents. 2. Item MATERIALS COORDINATOR ­ IC-8 Mail, Fax or PDF the entire package to: MC 2010 Fax: 679-4240 REFERENCE # DMC

  8. Mass Measurements of AGN from Multi-Lorentzian Models of X-ray Variability. I. Sampling Effects in Theoretical Models of the rms^2-M_BH Correlation

    E-Print Network [OSTI]

    Martin E. Pessah

    2006-10-11T23:59:59.000Z

    Recent X-ray variability studies suggest that the log of the square of the fractional rms variability amplitude, rms^2, seems to correlate with the log of the AGN black-hole mass, M_BH, with larger black holes being less variable for a fixed time interval. This has motivated the theoretical modeling of the rms^2-M_BH correlation with the aim of constraining AGN masses based on X-ray variability. A viable approach to addressing this problem is to assume an underlying power spectral density with a suitable mass dependence, derive the functional form of the rms^2-M_BH correlation for a given sampling pattern, and investigate whether the result is consistent with the observations. For simplicity, previous studies, inspired by the similarities shared by the timing properties of AGN and X-ray binaries, have explored model power spectral densities characterized by broken power laws. and ignored, in general, the distorting effects that the particular sampling pattern imprints in the observed power spectral density. Motivated by the latest timing results from X-ray binaries, obtained with RXTE, we propose that AGN broad-band noise spectra consist of a small number of Lorentzian components. This assumption allows, for the first time, to fully account for sampling effects in theoretical models of X-ray variability in an analytic manner. We show that, neglecting sampling effects when deriving the fractional rms from the model power spectral density can lead to underestimating it by a factor of up to 80% with respect to its true value for the typical sampling patterns used to monitor AGN. We discuss the implications of our results for the derivation of AGN masses using theoretical models of the rms^2-M_BH correlation. (Abridged)

  9. DREDGED MATERIAL EVALUATION AND

    E-Print Network [OSTI]

    DREDGED MATERIAL EVALUATION AND DISPOSAL PROCEDURES (USERS' MANUAL) Dredged Material Management 2009) Prepared by: Dredged Material Management Office US Army Corps of Engineers Seattle District #12........................................................................................2-1 2.2 The Dredged Material Evaluation Process

  10. Ballistic performance comparison of monolayer transition metal dichalcogenide MX{sub 2} (M = Mo, W; X = S, Se, Te) metal-oxide-semiconductor field effect transistors

    SciTech Connect (OSTI)

    Chang, Jiwon; Register, Leonard F.; Banerjee, Sanjay K. [Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States)

    2014-02-28T23:59:59.000Z

    We study the transport properties of monolayer MX{sub 2} (M?=?Mo, W; X?=?S, Se, Te) n- and p-channel metal-oxide-semiconductor field effect transistors (MOSFETs) using full-band ballistic non-equilibrium Green's function simulations with an atomistic tight-binding Hamiltonian with hopping potentials obtained from density functional theory. We discuss the subthreshold slope, drain-induced barrier lowering (DIBL), as well as gate-induced drain leakage (GIDL) for different monolayer MX{sub 2} MOSFETs. We also report the possibility of negative differential resistance behavior in the output characteristics of nanoscale monolayer MX{sub 2} MOSFETs.

  11. Nondegenerate parametric generation of 2.2-mJ, few-cycle 2.05-?m pulses using a mixed phase matching scheme

    SciTech Connect (OSTI)

    Xu, Guibao; Wandel, Scott F.; Jovanovic, Igor, E-mail: ijovanovic@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)] [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2014-02-15T23:59:59.000Z

    We describe the production of 2.2-mJ, ?6 optical-cycle-long mid-infrared laser pulses with a carrier wavelength of 2.05 ?m in a two-stage ?-BaB{sub 2}O{sub 4} nondegenerate optical parametric amplifier design with a mixed phase matching scheme, which is pumped by a standard Ti:sapphire chirped-pulse amplification system. It is demonstrated that relatively high pulse energies, short pulse durations, high stability, and excellent beam profiles can be obtained using this simple approach, even without the use of optical parametric chirped-pulse amplification.

  12. Materials Corrosion and Mitigation Strategies for APT: End of Year Report, FY '96

    E-Print Network [OSTI]

    Materials Corrosion and Mitigation Strategies for APT: End of Year Report, FY '96 R. Scott Lillard, Darryl P. Butt Materials Corrosion and Environmental Effects Laboratory MST-6, Metallurgy Los Alamos accomplishment in FY '96 was the design and fabrication of the corrosion probes to be used "In Beam" during

  13. Probing New Physics with Astrophysical Neutrinos

    E-Print Network [OSTI]

    Nicole F. Bell

    2008-11-06T23:59:59.000Z

    We review the prospects for probing new physics with neutrino astrophysics. High energy neutrinos provide an important means of accessing physics beyond the electroweak scale. Neutrinos have a number of advantages over conventional astronomy and, in particular, carry information encoded in their flavor degree of freedom which could reveal a variety of exotic neutrino properties. We also outline ways in which neutrino astrophysics can be used to constrain dark matter properties, and explain how neutrino-based limits lead to a strong general bound on the dark matter total annihilation cross-section.

  14. Tao Probing the End of the World

    E-Print Network [OSTI]

    Sung-Soo Kim; Masato Taki; Futoshi Yagi

    2015-06-25T23:59:59.000Z

    We introduce a new IIB 5-brane description for the E-string theory which is the world-volume theory on M5-brane probing the end of the world M9-brane. The E- string in the new realization is depicted as spiral 5-branes web equipped with the cyclic structure which is a key to uplifting to 6 dimensions. Utilizing the topological vertex to the 5-brane web configuration enables us to write down a combinatorial formula for the generating function of the E-string elliptic genera, namely the full partition function of topological strings on local 1/2 K3 surface.

  15. Tao Probing the End of the World

    E-Print Network [OSTI]

    Sung-Soo Kim; Masato Taki; Futoshi Yagi

    2015-04-14T23:59:59.000Z

    We introduce a new IIB 5-brane description for the E-string theory which is the world-volume theory on M5-brane probing the end of the world M9-brane. The E- string in the new realization is depicted as spiral 5-branes web equipped with the cyclic structure which is a key to uplifting to 6 dimensions. Utilizing the topological vertex to the 5-brane web configuration enables us to write down a combinatorial formula for the generating function of the E-string elliptic genera, namely the full partition function of topological strings on local 1/2 K3 surface.

  16. Quantitative WDS analysis using electron probe microanalyzer

    SciTech Connect (OSTI)

    Ul-Hamid, Anwar [Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia)]. E-mail: anwar@kfupm.edu.sa; Tawancy, Hani M. [Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia); Mohammed, Abdul-Rashid I. [Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia); Al-Jaroudi, Said S. [Saudi Aramco, P.O. Box 65, Tanajib 31311 (Saudi Arabia); Abbas, Nureddin M. [Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia)

    2006-04-15T23:59:59.000Z

    In this paper, the procedure for conducting quantitative elemental analysis by ZAF correction method using wavelength dispersive X-ray spectroscopy (WDS) in an electron probe microanalyzer (EPMA) is elaborated. Analysis of a thermal barrier coating (TBC) system formed on a Ni-based single crystal superalloy is presented as an example to illustrate the analysis of samples consisting of a large number of major and minor elements. The analysis was performed by known standards and measured peak-to-background intensity ratios. The procedure for using separate set of acquisition conditions for major and minor element analysis is explained and its importance is stressed.

  17. Probing the time dependence of dark energy

    SciTech Connect (OSTI)

    Barboza Edésio Jr, M. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, Rua Professor Antônio Campos s/n, Mossoró (Brazil); Alcaniz, J.S., E-mail: edesiobarboza@uern.br, E-mail: alcaniz@on.br [Departamento de Astronomia, Observatório Nacional, Rua General José Cristino 77, Rio de Janeiro (Brazil)

    2012-02-01T23:59:59.000Z

    A new method to investigate a possible time-dependence of the dark energy equation of state w is proposed. We apply this methodology to a combination of data involving one of the most recent type Ia supernova sample (SNLS3) along with the current baryon acoustic oscillation and H(z) measurements. We show that current observations cannot rule out a non-evolving dark energy component (dw/dz = 0). The approach developed here reduces considerably the so-called smearing effect on w determinations and may be useful to probe a possible evolving dark energy component when applied to upcoming observational data.

  18. Probes for anionic cell surface detection

    DOE Patents [OSTI]

    Smith, Bradley D.

    2013-03-05T23:59:59.000Z

    Embodiments of the present invention are generally directed to compositions comprising a class of molecular probes for detecting the presence of anionic cell surfaces. Embodiments include compositions that are enriched for these compositions and preparations, particularly preparations suitable for use as laboratory/clinical reagents and diagnostic indicators, either alone or as part of a kit. An embodiment of the invention provides for a highly selective agent useful in the discernment and identification of dead or dying cells, such as apoptotic cells, in a relatively calcium-free environment. An embodiment of the invention provides a selective agent for the identification of bacteria in a mixed population of bacterial cells and nonbacterial cells.

  19. Ionization probes of molecular structure and chemistry

    SciTech Connect (OSTI)

    Johnson, P.M. [State Univ. of New York, Stony Brook (United States)

    1993-12-01T23:59:59.000Z

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  20. Probing lepton number violation on three frontiers

    SciTech Connect (OSTI)

    Deppisch, Frank F. [Department of Physics and Astronomy, University College London (United Kingdom)

    2013-12-30T23:59:59.000Z

    Neutrinoless double beta decay constitutes the main probe for lepton number violation at low energies, motivated by the expected Majorana nature of the light but massive neutrinos. On the other hand, the theoretical interpretation of the (non-)observation of this process is not straightforward as the Majorana neutrinos can destructively interfere in their contribution and many other New Physics mechanisms can additionally mediate the process. We here highlight the potential of combining neutrinoless double beta decay with searches for Tritium decay, cosmological observations and LHC physics to improve the quantitative insight into the neutrino properties and to unravel potential sources of lepton number violation.

  1. MJC Probe Inc MPI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation,LushuiLyme,MDL JumpMJMJC Probe Inc

  2. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43Probing Organic Transistors

  3. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43Probing Organic

  4. Probing the Proton's Weak Side | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br BromineProbing the Proton's Weak Side

  5. Use of a fiber optic probe for organic species determination

    DOE Patents [OSTI]

    Ekechukwu, A.A.

    1996-12-10T23:59:59.000Z

    A fiber optic probe is described for remotely detecting the presence and concentration organic species in aqueous solutions. The probe includes a cylindrical housing with an organic species indicator, preferably diaminonaphthyl sulfonic acid adsorbed in a silica gel (DANS-modified gel), contained in the probe`s distal end. The probe admits aqueous solutions to the probe interior for mixing within the DANS-modified gel. An optical fiber transmits light through the DANS-modified gel while the indicator reacts with organic species present in the solution, thereby shifting the location of the fluorescent peak. The altered light is reflected to a receiving fiber that carries the light to a spectrophotometer or other analysis device. 5 figs.

  6. Electrical probe diagnostics for the laminar flame quenching distance

    SciTech Connect (OSTI)

    Karrer, Maxime; Makarov, Maxime [Renault Technocentre, 78288 Guyancourt Cedex (France); Bellenoue, Marc; Labuda, Sergei; Sotton, Julien [Laboratoire de Combustion et de Detonique, CNRS, 86961 Futuroscope Chasseneuil (France)

    2010-02-15T23:59:59.000Z

    A simplified theory, previously developed for the general case of weakly ionized gas flow, is used to predict electrical probe response when the flame is quenched on the probe surface. This theory is based on the planar model of space charge sheaths around the measuring electrode. For the flame quenching case, by assuming that the sheath thickness is comparable with the thermal boundary layer thickness, probe current can be related to flame quenching distance. The theoretical assumptions made to obtain the analytical formulation of probe current were experimentally proved by using direct visualization and high-frequency PIV. The direct visualization method was also used to validate the results of flame quenching distance values obtained with electrical probe. The electrical probe diagnostics have been verified for both head-on and sidewall flame quenching regimes and for stoichiometric methane/air and propane/air mixtures in a pressure range of 0.05-0.6 MPa. (author)

  7. Method for forming materials

    DOE Patents [OSTI]

    Tolle, Charles R. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Miller, Karen S. (Idaho Falls, ID)

    2009-10-06T23:59:59.000Z

    A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

  8. High-frequency Probing Diagnostic for Hall Current Plasma Thrusters

    SciTech Connect (OSTI)

    A.A. Litvak; Y. Raitses; N.J. Fisch

    2001-10-25T23:59:59.000Z

    High-frequency oscillations (1-100 MHz) in Hall thrusters have apparently eluded significant experimental scrutiny. A diagnostic setup, consisting of a single Langmuir probe, a special shielded probe connector-positioner, and an electronic impedance-matching circuit, was successfully built and calibrated. Through simultaneous high-frequency probing of the Hall thruster plasma at multiple locations, high-frequency plasma waves have been identified and characterized for various thruster operating conditions.

  9. Energy transfer characteristics of silicate glass doped with Er{sup 3+}, Tm{sup 3+}, and Ho{sup 3+} for ?2 ?m emission

    SciTech Connect (OSTI)

    Li, Ming; Liu, Xueqiang [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China) [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Guo, Yanyan [College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China)] [College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Hu, Lili [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)] [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhang, Junjie [College of Materials Science and Engineering, China Jiliang University, Hangzhou 310 018 (China)] [College of Materials Science and Engineering, China Jiliang University, Hangzhou 310 018 (China)

    2013-12-28T23:59:59.000Z

    A Er{sup 3+}/Tm{sup 3+}/Ho{sup 3+} tri-doped silicate glass with good thermal stability is prepared by melt-quenching method. Efficient ?2 ?m emission is observed under 808 nm laser excitation. It is found that the 2.0 ?m emission of Ho{sup 3+} can be enhanced under the excitation at 808 nm by incorporating Er{sup 3+} and Tm{sup 3+}. Based on the measurement of absorption spectra, the Judd–Ofelt intensity parameters, radiation emission probability, and branching ratio are calculated to evaluate the spectroscopic properties simultaneously. The maximum value of emission cross section of Ho{sup 3+} is 3.54 × 10{sup ?21} cm{sup 2} at 2008 nm. Additionally, the phonon assistance and the micro-parameters in the energy transfer process are quantitatively analyzed by using Dexter model. The energy transfer coefficient from Tm{sup 3+} to Ho{sup 3+} can reach as high as 21.44 × 10{sup ?40} cm{sup 6}/s, respectively. The emission property together with good thermal property indicates that Er{sup 3+}/Tm{sup 3+}/Ho{sup 3+} tri-doped silicate glass is a potential kind of laser glass for efficient 2 ?m laser.

  10. Constraining torsion with Gravity Probe B

    SciTech Connect (OSTI)

    Mao Yi; Guth, Alan H.; Cabi, Serkan [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Tegmark, Max [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); MIT Kavli Institute for Astrophysics and Space Research, Cambridge, Massachusetts 02139 (United States)

    2007-11-15T23:59:59.000Z

    It is well-entrenched folklore that all torsion gravity theories predict observationally negligible torsion in the solar system, since torsion (if it exists) couples only to the intrinsic spin of elementary particles, not to rotational angular momentum. We argue that this assumption has a logical loophole which can and should be tested experimentally, and consider nonstandard torsion theories in which torsion can be generated by macroscopic rotating objects. In the spirit of action=reaction, if a rotating mass like a planet can generate torsion, then a gyroscope would be expected to feel torsion. An experiment with a gyroscope (without nuclear spin) such as Gravity Probe B (GPB) can test theories where this is the case. Using symmetry arguments, we show that to lowest order, any torsion field around a uniformly rotating spherical mass is determined by seven dimensionless parameters. These parameters effectively generalize the parametrized post-Newtonian formalism and provide a concrete framework for further testing Einstein's general theory of relativity (GR). We construct a parametrized Lagrangian that includes both standard torsion-free GR and Hayashi-Shirafuji maximal torsion gravity as special cases. We demonstrate that classic solar system tests rule out the latter and constrain two observable parameters. We show that Gravity Probe B is an ideal experiment for further constraining nonstandard torsion theories, and work out the most general torsion-induced precession of its gyroscope in terms of our torsion parameters.

  11. Three-axis particle impact probe

    DOE Patents [OSTI]

    Fasching, George E. (Morgantown, WV); Smith, Jr., Nelson S. (Morgantown, WV); Utt, Carroll E. (Morgantown, WV)

    1992-01-01T23:59:59.000Z

    Three-axis particle impact probes detect particle impact vectors along x-, y-, and z-axes by spherical probe head mounted on the outer end of a shaft that is flexibly mounted in silicone rubber at the top of a housing so as to enable motion imparted to the head upon impact to be transmitted to a grounded electrode secured to the shaft within the housing. Excitable electrodes are mounted in the housing in a fixed position, spaced apart from the ground electrode and forming, with the ground electrode, capacitor pairs. Movement of the ground electrode results in changes in capacitance, and these difference in capacitance are used for measurement or derivation of momentum vectors along each of the three axes. In one embodiment, the ground electrode is mounted at the base of the shaft and is secured to a silicone rubber layer at the top of the housing, providing for cantilevered movement. In another embodiment, the shaft is mounted at its mid point in a flexible bushing so that it undergoes pivotal movement around that point.

  12. Fiber delivered probe for efficient CARS imaging of tissues

    E-Print Network [OSTI]

    Balu, Mihaela; Liu, Gangjun; Chen, Zhongping; Tromberg, Bruce J; Potma, Eric O

    2010-01-01T23:59:59.000Z

    probe based on microelectromechanical system mirror forbased on a microelectromechanical systems scanning mirror,”based on a microelectromechanical systems two-dimensional

  13. Probing the Dynamics of a Protein Hydrophobic Core by Deutron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamics of a Protein Hydrophobic Core by Deutron Solid-State Nuclear Magnetic Resonance Spectroscopy . Probing the Dynamics of a Protein Hydrophobic Core by Deutron Solid-State...

  14. Probing Ultrafast Solvation Dynamics with High Repetition-Rate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast X-Ray Spectroscopy as a Probe of Nonequilibrium Dynamics in Ruthenium Complexes The Electronic Origin of Photoinduced Strain Modifying Proteins to Combat Disease Higher...

  15. anisotropy probe wmap1: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: The Wilkinson Microwave Anisotropy Probe (WMAP) mapped the distribution of temperature and polarization over the entire sky in five microwave frequency bands. These...

  16. anisotropy probe wmapobservations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: The Wilkinson Microwave Anisotropy Probe (WMAP) mapped the distribution of temperature and polarization over the entire sky in five microwave frequency bands. These...

  17. anisotropy probe 5-yr: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: The Wilkinson Microwave Anisotropy Probe (WMAP) mapped the distribution of temperature and polarization over the entire sky in five microwave frequency bands. These...

  18. Probing Emissions of Military Cargo Aircraft: Description of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emissions of Military Cargo Aircraft: Description of a Joint Field Measurement Strategic Environmental Research and Probing Emissions of Military Cargo Aircraft: Description of a...

  19. New probe at EMSL observes interface kinetics | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    catalyze electrode surfaces and shuttle electrons externally, as in a microbial fuel cell. The E probe is available at EMSL. Read more from the PNNL Fundamental and...

  20. Probing the Degradation Mechanisms in Electrolyte Solutions for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Degradation Mechanisms in Electrolyte Solutions for Li-ion Batteries by In-Situ Transmission Electron Microscopy. Probing the Degradation Mechanisms in Electrolyte Solutions for...

  1. Probing attosecond electron dynamics at solid surfaces | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing attosecond electron dynamics at solid surfaces Wednesday, May 13, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Jrg Osterwalder, Department of Physics,...

  2. Development Of 2-Meter Soil Temperature Probes And Results Of...

    Open Energy Info (EERE)

    Temperature Probes And Results Of Temperature Survey Conducted At Desert Peak, Nevada, Usa Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  3. atom probe study: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using both APT and correlative microscopy techniques, a more complete understanding... Bennett, Samantha 2011-02-08 2 ATOM-PROBE TOMOGRAPHIC STUDY OF THE THREE-DIMENSIONAL...

  4. atom probe investigation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of both coherent and squeezed light. The stochastic master equations used in the analysis are expressed in terms of the Hamiltonian of the probed system and the interaction...

  5. Test probe for surface mounted leadless chip carrier

    DOE Patents [OSTI]

    Meyer, K.L.; Topolewski, J.

    1987-10-02T23:59:59.000Z

    A test probe for a surface mounted leadless chip carrier is disclosed. The probe includes specially designed connector pins which allow size reductions in the probe. A thermoplastic housing provides spring action to ensure good mechanical and electrical contact between the pins and the contact strips of a leadless chip carrier. Other features include flexible wires molded into the housing and two different types of pins alternately placed in the housing. These features allow fabrication of a smaller and simpler test probe. 1 fig.

  6. Probing Uranium's Mysteries | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43ProbingProbingProbingProbing

  7. THz Pump and X-Ray Probe Development at LCLS

    SciTech Connect (OSTI)

    Fisher, Alan S; /SLAC, LCLS; Durr, Hermann; /SIMES, Stanford /SLAC, PULSE; Lindenberg, Aaron; Stanford U., Materials Sci.Dept.; /SIMES, Stanford /SLAC, PULSE; Reis, David; /SIMES, Stanford /SLAC, PULSE /Stanford U., Dept. Appl. Phys.; Frisch, Josef; Loos, Henrik; Petree, Mark; /SLAC, LCLS; Daranciang, Dan; /Stanford U., Chem. Dept.; Fuchs, Matthias; /SLAC, PULSE; Ghimire, Shambhu; /SLAC, PULSE; Goodfellow, John; /Stanford U., Materials Sci. Dept.

    2011-11-08T23:59:59.000Z

    We report on measurements of broadband, intense, coherent transition radiation at terahertz frequencies, generated as the highly compressed electron bunches in Linear Coherent Light Source (LCLS) pass through a thin metal foil. The foil is inserted at 45{sup o} to the electron beam, 31 m downstream of the undulator. The THz emission passes downward through a diamond window to an optical table below the beamline. A fully compressed 350-pC bunch produces up to 0.5 mJ in a nearly half-cycle pulse of 50 fs FWHM with a spectrum peaking at 10 THz. We estimate a peak field at the focus of over 2.5 GV/m. A 20-fs Ti:sapphire laser oscillator has recently been installed for electro-optic measurements. We are developing plans to add an x-ray probe to this THz pump, by diffracting FEL x rays onto the table with a thin silicon crystal. The x rays would arrive with an adjustable time delay after the THz. This will provide a rapid start to user studies of materials excited by intense single-cycle pulses and will serve as a step toward a THz transport line for LCLS-II.

  8. Real space mapping of ionic diffusion and electrochemical activity in energy storage and conversion materials

    DOE Patents [OSTI]

    Kalinin, Sergei V; Balke, Nina; Kumar, Amit; Dudney, Nancy J; Jesse, Stephen

    2014-05-06T23:59:59.000Z

    A method and system for probing mobile ion diffusivity and electrochemical reactivity on a nanometer length scale of a free electrochemically active surface includes a control module that biases the surface of the material. An electrical excitation signal is applied to the material and induces the movement of mobile ions. An SPM probe in contact with the surface of the material detects the displacement of mobile ions at the surface of the material. A detector measures an electromechanical strain response at the surface of the material based on the movement and reactions of the mobile ions. The use of an SPM tip to detect local deformations allows highly reproducible measurements in an ambient environment without visible changes in surface structure. The measurements illustrate effective spatial resolution comparable with defect spacing and well below characteristic grain sizes of the material.

  9. Time-dependent dielectric breakdown measurements of porous organosilicate glass using mercury and solid metal probes

    SciTech Connect (OSTI)

    Pei, Dongfei; Nichols, Michael T.; Shohet, J. Leon, E-mail: shohet@engr.wisc.edu [Plasma Processing and Technology Laboratory, Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); King, Sean W.; Clarke, James S. [Intel Corporation, Hillsboro, Oregon 97124 (United States); Nishi, Yoshio [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2014-09-01T23:59:59.000Z

    Time-dependent dielectric breakdown (TDDB) is one of the major concerns for low-k dielectric materials. During plasma processing, low-k dielectrics are subjected to vacuum ultraviolet photon radiation and charged-particle bombardment. To examine the change of TDDB properties, time-to-breakdown measurements are made to porous SiCOH before and after plasma exposure. Significant discrepancies between mercury and solid-metal probes are observed and have been shown to be attributed to mercury diffusion into the dielectric porosities.

  10. Coherent THz electromagnetic radiation emission as a shock wave diagnostic and probe of ultrafast phase transformations

    SciTech Connect (OSTI)

    Reed, E J; Armstrong, M R; Kim, K Y; Glownia, J H; Howard, M; Piner, E; Roberts, J

    2009-06-30T23:59:59.000Z

    We present the first experimental observations of terahertz frequency radiation emitted when a terahertz frequency acoustic wave propagates past an interface between materials of differing piezoelectric coefficients. We show that this fundamentally new phenomenon can be used to probe structural properties of thin films. Then, we present molecular dynamics simulations showing that detectable THz frequency radiation can be emitted when a wurtzite structure crystal transforms to a rocksalt structure under shock compression on picosecond timescales. We show that information about the kinetics of the transformation is contained in the time-dependence of the THz field.

  11. Transporting particulate material

    DOE Patents [OSTI]

    Aldred, Derek Leslie (North Hollywood, CA); Rader, Jeffrey A. (North Hollywood, CA); Saunders, Timothy W. (North Hollywood, CA)

    2011-08-30T23:59:59.000Z

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  12. Reciprocal space XRD mapping with varied incident angle as a probe of structure variation within surface depth

    SciTech Connect (OSTI)

    Yang, Qiguang [Norfolk State University; Williams, Frances [Norfolk State University; Zhao, Xin [JLAB; Reece, Charles E. [JLAB; Krishnan, Mahadevan [AASC, San Leandro, California

    2013-09-01T23:59:59.000Z

    In this study, we used a differential-depth X-Ray diffraction Reciprocal Spacing Mapping (XRD RSM) technique to investigate the crystal quality of a variety of SRF-relevant Nb film and bulk materials. By choosing different X-ray probing depths, the RSM study successfully revealed evolution the of materials? microstructure after different materials processes, such as energetic condensation or surface polishing. The RSM data clearly measured the materials? crystal quality at different thickness. Through a novel differential-depth RSM technique, this study found: I. for a heteroepitaxy Nb film Nb(100)/MgO(100), the film thickening process, via a cathodic arc-discharge Nb ion deposition, created a near-perfect single crystal Nb on the surface?s top-layer; II. for a mechanically polished single-crystal bulk Nb material, the microstructure on the top surface layer is more disordered than that in-grain.

  13. Materials Science & Engineering

    E-Print Network [OSTI]

    Reisslein, Martin

    Materials Science & Engineering The development of new high-performance materials for energy Research in Niskayuna, NY. He received his BS and PhD in Materials Science and Engineering at MIT. For 22 and composition of materials at higher spatial resolution, with greater efficiency, and on real materials

  14. Chemical sensor with oscillating cantilevered probe

    DOE Patents [OSTI]

    Adams, Jesse D

    2013-02-05T23:59:59.000Z

    The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.

  15. Probing neutrinoless double beta decay with SNO+

    E-Print Network [OSTI]

    Evelina Arushanova; Ashley R. Back

    2015-05-01T23:59:59.000Z

    Probing neutrinoless double beta decay is one of the primary goals for SNO+, SNOLAB's multi-purpose neutrino detector. In order to achieve this goal the SNO detector has been adapted so that it can be filled with Te-loaded liquid scintillator. During the initial double beta phase the target loading is 0.3% natural Te, which equates to $\\sim790$ kg of double beta isotope. Estimating the sensitivity to neutrinoless double beta decay requires a well understood background model. For SNO+ this is provided by a comprehensive study considering all possible background contributions, whether they originate from within the liquid scintillator cocktail, the surrounding parts of the detector or other irreducible backgrounds. Given these considerations, for five years running in the initial phase, the expected sensitivity is $T_{1/2}^{0\

  16. Probing neutrinoless double beta decay with SNO+

    E-Print Network [OSTI]

    Arushanova, Evelina

    2015-01-01T23:59:59.000Z

    Probing neutrinoless double beta decay is one of the primary goals for SNO+, SNOLAB's multi-purpose neutrino detector. In order to achieve this goal the SNO detector has been adapted so that it can be filled with Te-loaded liquid scintillator. During the initial double beta phase the target loading is 0.3% natural Te, which equates to $\\sim790$ kg of double beta isotope. Estimating the sensitivity to neutrinoless double beta decay requires a well understood background model. For SNO+ this is provided by a comprehensive study considering all possible background contributions, whether they originate from within the liquid scintillator cocktail, the surrounding parts of the detector or other irreducible backgrounds. Given these considerations, for five years running in the initial phase, the expected sensitivity is $T_{1/2}^{0\

  17. Scanned probe characterization of semiconductor nanostructures

    E-Print Network [OSTI]

    Law, James Jeremy MacDonald

    2009-01-01T23:59:59.000Z

    mismatch between GaN and the growth substrate and arepreferred substrate for growth of GaN and related materials.involved in growing GaN on a sapphire substrate necessitate

  18. Synthesis and characterization of redox polymers of (M(4-vinyl-4 prime -methyl-2,2 prime -bipyridine) sub 3 )(PF sub 6 ) sub 2 (M = Ru, Os)

    SciTech Connect (OSTI)

    Bommarito, S.L.; Lowery-Bretz, S.P.; Abruna, H.D. (Cornell Univ., Ithaca, NY (United States))

    1992-02-05T23:59:59.000Z

    The authors have prepared polymers of (M(vbpy){sub 3}(PF{sub 6}){sub 2}) (M = Ru, Os) (vbpy = 4-vinyl-4{prime}-methyl-2,2{prime}-bipyridine) in solution via free-radical polymerization and fractionated them according to molecular weight using size exclusion chromatography. Different fractions have been characterized by electrochemical and spectroscopic means. The authors find that whereas for the osmium containing polymers the relative polymer size varies in proportion to the number of vinyl groups consumed during the polymerization reaction, the same is not true for the analogous ruthenium polymers. In addition, the emission energy of both the ruthenium and osmium polymers is also related to the concentration of residual vinyl groups in the polymer. Upon polymerization, there is a shift in the emission toward higher energies. Electrochemically determined diffusion coefficients are consistent with the relative size of the various fractions.

  19. Novel rotating field probe for inspection of tubes

    SciTech Connect (OSTI)

    Xin, J.; Tarkleson, E.; Lei, N.; Udpa, L.; Udpa, S. S. [Nondestructive Evaluation Laboratory, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824 (United States)

    2012-05-17T23:59:59.000Z

    Inspection of steam generator tubes in nuclear power plants is extremely critical for safe operation of the power plant. In the nuclear industry, steam generator tube inspection using eddy current techniques has evolved over the years from a single bobbin coil, to rotating probe coil (RPC) and array probe, in an attempt to improve the speed and reliability of inspection. The RPC probe offers the accurate spatial resolution but involves complex mechanical rotation. This paper presents a novel design of eddy current probes based on rotating fields produced by three identical coils excited by a balanced three-phase supply. The sensor thereby achieves rotating probe functionality by electronic means and eliminates the need for mechanical rotation. The field generated by the probe is largely radial that result in induced currents that flow circularly around the radial axis and rotating around the tube at a synchronous speed effectively producing induced eddy currents that are multidirectional. The probe will consequently be sensitive to cracks of all orientations in the tube wall. The finite element model (FEM) results of the rotating fields and induced currents are presented. A prototype probe is being built to validate simulation results.

  20. Parylene Coated Silicon Probes for Neural Prosthesis Ray Huang1*

    E-Print Network [OSTI]

    Andersen, Richard

    Parylene Coated Silicon Probes for Neural Prosthesis Ray Huang1* , Changlin Pang1 , Yu-Chong Tai1 electrodes. Keywords - parylene cable; neural prosthesis; silicon probe I. INTRODUCTION An important component of silicon neural prosthesis is the electrode array capable of recording neural activity from

  1. A new acoustic three dimensional intensity and energy density probe

    E-Print Network [OSTI]

    Boyer, Edmond

    A new acoustic three dimensional intensity and energy density probe F. Aymea , C. Carioub , M is a great advantage. In this frame, a new intensity acoustic probe has been developed to compute acoustic quantities which can be input data for energetic identification methods. 1 Introduction Noise matters

  2. Using relational databases to analyze Microarray probes and single nucleotide

    E-Print Network [OSTI]

    Rouchka, Eric

    Using relational databases to analyze Microarray probes and single nucleotide Polymorphisms Abhijit probes and sin- gle nucleotide polymorphisms Abhijit W. Phatak1 , and Eric C. Rouchka1,* 1 Department valuable in the study of single nucleotide polymor- phisms (SNPs). Aside from the physical use

  3. Extreme conditions during multibubble cavitation: Sonoluminescence as a spectroscopic probe

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    Extreme conditions during multibubble cavitation: Sonoluminescence as a spectroscopic probe Kenneth Cavitation MBSL Plasma a b s t r a c t We review recent work on the use of sonoluminescence (SL) to probe spectroscopically the conditions created during cavitation, both in clouds of collapsing bubbles (multibubble

  4. Structural Dynamics of a Catalytic Monolayer Probed by Ultrafast

    E-Print Network [OSTI]

    Fayer, Michael D.

    REPORTS Structural Dynamics of a Catalytic Monolayer Probed by Ultrafast 2D IR Vibrational Echoes in solutions. Here, we extend the technique to probing the interfacial dynamics and structure of a silica. The structural dynamics, as reported on by a carbonyl stretch vibration of the surface-bound complex, have

  5. Department of Materials Science &

    E-Print Network [OSTI]

    Acton, Scott

    Developing Leaders of Innovation Department of Materials Science & Engineering #12;At the University of Virginia, students in materials science, engineering physics and engineering science choose to tackle compelling issues in materials science and engineering or engineering science

  6. Nanostructured magnetic materials

    E-Print Network [OSTI]

    Chan, Keith T.

    2011-01-01T23:59:59.000Z

    Magnetism and Magnetic Materials Conference, Atlanta, GA (Nanostructured Magnetic Materials by Keith T. Chan Doctor ofinduced by a Si-based material occurs at a Si/Ni interface

  7. Shelving and Probe Efficiency in Trapped Ion Experiments

    E-Print Network [OSTI]

    Schacht, M

    2014-01-01T23:59:59.000Z

    A generalized probe sequence typical of trapped ion experiments using shelving is studied. Detection efficiency is analyzed for finite shelved state lifetimes and using multi-modal count distributions. Multi-modal distributions are more appropriate for measurements that use a small number of ions than the simple Poisson counting statistics usually considered and have a larger variance that may be significant in determining uncertainties and in making weighted fits. Optimal probe times and the resulting state detection efficiency and sensitivity are determined for arbitrary cooling rates, initial states and shelved state lifetimes, in terms of a probe coherence time {\\tau}p. A universal optimal probe time of tp ~ 0.43{\\tau}p is shown to give an almost optimal probe sensitivity for most systems.

  8. MATERIALS TRANSFER AGREEMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

  9. Materials at the Mesoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials at the Mesoscale 1663 Los Alamos science and technology magazine Latest Issue:January 2015 All Issues submit Materials at the Mesoscale Los Alamos's bold proposal to...

  10. UNCLASSIFIED Institute for Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute for Materials Science Lecture Series Dr Roger D Doherty M.A. D. Phil., Fellow TMS Emeritus Professor of Materials Science and Engineering, Drexel University,...

  11. Transporting Hazardous Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transporting Hazardous Materials The procedures given below apply to all materials that are considered to be hazardous by the U.S. Department of Transportation (DOT). Consult your...

  12. battery materials | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery materials battery materials Leads No leads are available at this time. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. Abstract: The...

  13. EMSL - Energy Materials & Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy Energy Materials and Processes focuses on the dynamic transformation mechanisms and physical and chemical properties at critical interfaces in catalysts and energy materials...

  14. Propulsion Materials Research Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Materials for Electric and Hybrid Drive Systems - Address materials issues impacting power electronics, motors, and other hybrid drive system components * Combustion System...

  15. Materials Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of these as mixed- material systems. Additionally, materials such as titanium, polycarbonate, acrylics, and metal matrix composites, and approaches to their use must be...

  16. Time-resolved electron thermal conduction by probing of plasma formation in transparent solids with high power subpicosecond laser pulses

    SciTech Connect (OSTI)

    Vu, B.T.V.

    1994-02-01T23:59:59.000Z

    This dissertation work includes a series of experimental measurements in a search for better understanding of high temperature (10{sup 4}-10{sup 6}K) and high density plasmas (10{sup 22}-10{sup 24}cm{sup {minus}3}) produced by irradiating a transparent solid target with high intensity (10{sup 13} - 10{sup 15}W/cm{sup 2}) and subpicosecond (10{sup {minus}12}-10{sup {minus}13}s) laser pulses. Experimentally, pump and probe schemes with both frontside (vacuum-plasma side) and backside (plasma-bulk material side) probes are used to excite and interrogate or probe the plasma evolution, thereby providing useful insights into the plasma formation mechanisms. A series of different experiments has been carried out so as to characterize plasma parameters and the importance of various nonlinear processes. Experimental evidence shows that electron thermal conduction is supersonic in a time scale of the first picosecond after laser irradiation, so fast that it was often left unresolved in the past. The experimental results from frontside probing demonstrate that upon irradiation with a strong (pump) laser pulse, a thin high temperature ({approximately}40eV) super-critical density ({approximately}10{sup 23}/cm{sup 3}) plasma layer is quickly formed at the target surface which in turn becomes strongly reflective and prevents further transmission of the remainder of the laser pulse. In the bulk region behind the surface, it is also found that a large sub-critical ({approximately}10{sup 18}/cm{sup 3}) plasma is produced by inverse Bremsstrahlung absorption and collisional ionization. The bulk underdense plasma is evidenced by large absorption of the backside probe light. A simple and analytical model, modified from the avalanche model, for plasma evolution in transparent materials is proposed to explain the experimental results. Elimination of the bulk plasma is then experimentally illustrated by using targets overcoated with highly absorptive films.

  17. Supporting Information Material Probing Structural and Motional Features of C-terminal Part of

    E-Print Network [OSTI]

    -Pucheta a, b, c , Monique Chan-Huot a, b, c, d, e , Luminita Duma a, b, c , Daniel Abergel a, b, c of inversion recovery time. For sample A, a major component from bulk and surface water signal ( H1/2 = 33 Hz

  18. Practical Issues for Atom Probe Tomography Analysis of III-Nitride Semiconductor Materials

    E-Print Network [OSTI]

    Tanga, Fengzai; Moodya, Michael P.; Martina, Tomas L.; Bagota, Paul A. J.; Kappersa, Menno J.; Oliver, Rachel A.

    2015-04-30T23:59:59.000Z

    study of Cu grains 385 (Kempshall, et al., 2001). In terms of binary III-nitrides, the metal–N bond length in the 386 wurtzite structure increases from AlN, to GaN and to InN (Ambacher, 1998), being 387 associated with corresponding bond energy of 2...

  19. Supplementary material for ACP manuscripts "A chemical probe technique for the determination of reactive halogen

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    and the sample was saturated with sodium sulfate and extracted twice with 5.0 mL of ethyl acetate. The extracts-linear inverse plots and the influence of allyl alcohol in bromide solutions The kinetic derivation that describes the non-linear inverse plots (e.g., Figure 2 in Part 1), and the effect that allyl alcohol has

  20. Neutron scattering as a probe of liquid crystal polymer-reinforced composite materials

    SciTech Connect (OSTI)

    Hjelm, R.P.; Douglas, E.P.; Benicewicz, B.C.; Langlois, D.A.

    1995-12-31T23:59:59.000Z

    This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This research project sought to obtain nanoscale and molecular level information on the mechanism of reinforcement in liquid crystal polymer (LCP)-reinforced composites, to realize molecular-reinforced LCP composites, and to test the validity of the concept of molecular reinforcement. Small-angle neutron scattering was used to study the structures in the ternary phase diagram of LCP with liquid crystal thermosets and solvent on length scales ranging from 1-100 nm. The goal of the scattering measurements is to understand the phase morphology and degree of segregation of the reinforcing and matrix components. This information helps elucidate the physics of self assembly in these systems. This work provides an experimental basis for a microengineering approach to composites of vastly improved properties.

  1. Probing materials damage at various depths by use of Time Reversal Elastic Nonlinearity Diagnostic

    E-Print Network [OSTI]

    , Los Alamos National Laboratory, MS D443, Los Alamos, NM 87545, USA d Electrical Power Research source. In this case the focus will occur at the receiver location. This is true with a single emitter Spectroscopy (NRUS) measurement for the same samples [4]. Refer to this paper for details about samples

  2. Light and Fast: Probing Carriers and Vibrations in 1D and 2D Materials |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest Newsbiomass toInsurance | NationalMIT-Harvard

  3. 29 Nov 2001 A. Bacchetta -Fragmentation to probe transversity 41 Two-pion fragmentation

    E-Print Network [OSTI]

    1 29 Nov 2001 A. Bacchetta - Fragmentation to probe transversity 41 Two-pion fragmentation M -- -- ++ 29 Nov 2001 A. Bacchetta - Fragmentation to probe transversity 42 Interference Nov 2001 A. Bacchetta - Fragmentation to probe transversity 43 Asymmetry for interference

  4. Data Mining Empowers the Generation of a Novel Class of Chromosome-specific DNA Probes

    E-Print Network [OSTI]

    Zeng, Hui

    2012-01-01T23:59:59.000Z

    eds. ), Zeng et al. : Data mining for probes Excerpta330. Zeng et al. : Data mining for probes 31. Fung J, WeierZeng et al. : Data mining for probes Data Mining Empowers

  5. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOE Patents [OSTI]

    Alfano, Robert R. (Bronx, NY); Wang, Wubao (Flushing, NY)

    2000-11-21T23:59:59.000Z

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. In accordance with the teachings of the invention, a low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic tansaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively. For example, it may also be used to diagnose diseases associated with the concentration of Raman-active constituents in urine, lymph and saliva It may be used to identify cancer in the breast, cervix, uterus, ovaries and the like by measuring the fingerprint excitation Raman spectra of these tissues. It may also be used to reveal the growing of tumors or cancers by measuring the levels of nitric oxide in tissue.

  6. Atom probe study of grain boundary segregation in technically pure molybdenum

    SciTech Connect (OSTI)

    Babinsky, K., E-mail: katharina.babinsky@stud.unileoben.ac.at [Montanuniversität Leoben, Department of Physical Metallurgy and Materials Testing, Franz-Josef Straße 18, 8700 Leoben (Austria); Weidow, J., E-mail: jonathan.weidow@chalmers.se [Chalmers University of Technology, Department of Applied Physics, 412 96 Gothenburg (Sweden); Knabl, W., E-mail: wolfram.knabl@plansee.com [PLANSEE SE, Metallwerk-Plansee-Straße 71, 6600 Reutte (Austria); Lorich, A., E-mail: alexander.lorich@plansee.com [PLANSEE SE, Metallwerk-Plansee-Straße 71, 6600 Reutte (Austria); Leitner, H., E-mail: harald.leitner@bohler-edelstahl.at [Montanuniversität Leoben, Department of Physical Metallurgy and Materials Testing, Franz-Josef Straße 18, 8700 Leoben (Austria); Primig, S., E-mail: sophie.primig@unileoben.ac.at [Montanuniversität Leoben, Department of Physical Metallurgy and Materials Testing, Franz-Josef Straße 18, 8700 Leoben (Austria)

    2014-01-15T23:59:59.000Z

    Molybdenum, a metal with excellent physical, chemical and high-temperature properties, is an interesting material for applications in lighting-technology, high performance electronics, high temperature furnace construction and coating technology. However, its applicability as a structural material is limited because of the poor oxidation resistance at high temperatures and a brittle-to-ductile transition around room temperature, which is influenced by the grain size and the content of interstitial impurities at the grain boundaries. Due to the progress of the powder metallurgical production during the last decades, the amount of impurities in the current quality of molybdenum has become so small that surface sensitive techniques are not applicable anymore. Therefore, the atom probe, which allows the detection of small amounts of impurities as well as their location, seems to be a more suitable technique. However, a site-specific specimen preparation procedure for grain boundaries in refractory metals with a dual focused ion beam/scanning electron microscope is still required. The present investigation describes the development and successful application of such a site-specific preparation technique for grain boundaries in molybdenum, which is significantly improved by a combination with transmission electron microscopy. This complimentary technique helps to improve the visibility of grain boundaries during the last preparation steps and to evidence the presence of grain and subgrain boundaries without segregants in atom probe specimens. Furthermore, in industrially processed and recrystallized molybdenum sheets grain boundary segregation of oxygen, nitrogen and potassium is successfully detected close to segregated regions which are believed to be former sinter pores. - Highlights: • First study of grain boundary segregation in molybdenum by atom probe • Site-specific preparation technique by FIB and TEM successfully developed • Grain boundary segregation of oxygen, nitrogen and potassium found • Segregation in former sinter-pores detected • Presence of grain boundaries without segregation evidenced.

  7. Strategies for Probing Nanometer-Scale Electrocatalysts: From Single Particles to Catalyst-Membrane Architectures

    SciTech Connect (OSTI)

    Korzeniewski, Carol

    2014-01-20T23:59:59.000Z

    The project primary objectives are to prepare and elucidate the promoting properties of materials that possess high activity for the conversion of hydrogen and related small molecules (water, oxygen, carbon monoxide and methanol) in polymer electrolyte fuel cells. One area of research has focused on the study of catalyst materials. Protocols were developed for probing the structure and benchmarking the activity of Pt and Pt bimetallic nanometer-scale catalyst against Pt single crystal electrode standards. A second area has targeted fuel cell membrane and the advancement of simple methods mainly based on vibrational spectroscopy that can be applied broadly in the study of membrane structure and transport properties. Infrared and Raman methods combined with least-squares data modeling were applied to investigate and assist the design of robust, proton conductive membranes, which resist reactant crossover.

  8. Development of a Scanning Probe Microscope and Studies of Graphene Grown on Copper

    E-Print Network [OSTI]

    Rasool, Haider Imad

    2012-01-01T23:59:59.000Z

    1: INTRODUCTION 1.1. BRIEF DISCUSSION OF SCANNING PROBEhighly stable electrochemical scanning probe microscope forincorporated it into a scanning probe microscope, performed

  9. Materials Science & Engineering

    E-Print Network [OSTI]

    Materials Science & Engineering In this presentation the role of materials in power generation and the person responsible for the integration of science and resources in the Materials Science & Technology University in Mexico City and a Ph.D. in Materials Engineering from Rensselaer Polytechnic Institute, Troy NY

  10. Coated ceramic breeder materials

    DOE Patents [OSTI]

    Tam, Shiu-Wing (Downers Grove, IL); Johnson, Carl E. (Elk Grove, IL)

    1987-01-01T23:59:59.000Z

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  11. HAZARDOUS MATERIALS EMERGENCY RESPONSE

    E-Print Network [OSTI]

    ANNEX Q HAZARDOUS MATERIALS EMERGENCY RESPONSE #12;ANNEX Q - HAZARDOUS MATERIALS EMERGENCY RESPONSE 03/10/2014 v.2.0 Page Q-1 PROMULGATION STATEMENT Annex Q: Hazardous Materials Emergency Response, and contents within, is a guide to how the University conducts a response specific to a hazardous materials

  12. UNDERGRADUATE Materials Science & Engineering

    E-Print Network [OSTI]

    Tipple, Brett

    UNDERGRADUATE HANDBOOK Materials Science & Engineering 2013 2014 #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

  13. Materials Science & Engineering

    E-Print Network [OSTI]

    Simons, Jack

    Materials Science & Engineering The University of Utah 2014-15 Undergraduate Handbook #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

  14. A Materials Facilities Initiative -

    E-Print Network [OSTI]

    A Materials Facilities Initiative - FMITS & MPEX D.L. Hillis and ORNL Team Fusion & Materials for Nuclear Systems Division July 10, 2014 #12;2 Materials Facilities Initiative JET ITER FNSF Fusion Reactor Challenges for materials: fluxes and fluence, temperatures 50 x divertor ion fluxes up to 100 x neutron

  15. University Materials Institute INTRODUCTION

    E-Print Network [OSTI]

    Escolano, Francisco

    University Materials Institute INTRODUCTION The University Materials Science Institute of Alicante the needed multidisciplinary character of the materials area. It is important to highlight the fact participate in the Materials Science PhD program which is imparted at the UA. Scientific research

  16. Dental Materials BIOMATERIALS

    E-Print Network [OSTI]

    Dental Materials BIOMATERIALS Our goal is to provide reference materials and clinically relevant measurement methods to facilitate a rational approach to dental materials design, thus enabling improvements in the clinical performance of dental materials. In particular, methods for determining long-term performance

  17. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  18. In-situ scanning probe microscopy of electrodeposited nickel.

    SciTech Connect (OSTI)

    Kelly, James J.; Dibble, Dean C.

    2004-10-01T23:59:59.000Z

    The performance characteristics and material properties such as stress, microstructure, and composition of nickel coatings and electroformed components can be controlled over a wide range by the addition of small amounts of surface-active compounds to the electroplating bath. Saccharin is one compound that is widely utilized for its ability to reduce tensile stress and refine grain size in electrodeposited nickel. While the effects of saccharin on nickel electrodeposition have been studied by many authors in the past, there is still uncertainty over saccharin's mechanisms of incorporation, stress reduction, and grain refinement. In-situ scanning probe microscopy (SPM) is a tool that can be used to directly image the nucleation and growth of thin nickel films at nanometer length scales to help elucidate saccharin's role in the development and evolution of grain structure. In this study, in-situ atomic force microscopy (AFM) and scanning tunneling microscopy (STM) techniques are used to investigate the effects of saccharin on the morphological evolution of thin nickel films. By observing mono-atomic height nickel island growth with and without saccharin present we conclude that saccharin has little effect on the nickel surface mobility during deposition at low overpotentials where the growth occurs in a layer-by-layer mode. Saccharin was imaged on Au(l11) terraces as condensed patches without resolved packing structure. AFM measurements of the roughness evolution of nickel films up to 1200 nm thick on polycrystalline gold indicate that saccharin initially increases the roughness and surface skewness of the deposit that at greater thickness becomes smoother than films deposited without saccharin. Faceting of the deposit morphology decreases as saccharin concentration increases even for the thinnest films that have 3-D growth.

  19. Constraining Torsion with Gravity Probe B

    E-Print Network [OSTI]

    Yi Mao; Max Tegmark; Alan Guth; Serkan Cabi

    2007-10-05T23:59:59.000Z

    It is well-entrenched folklore that torsion gravity theories predict observationally negligible torsion in the solar system, since torsion (if it exists) couples only to the intrinsic spin of elementary particles, not to rotational angular momentum. We argue that this assumption has a logical loophole which can and should be tested experimentally. In the spirit of action=reaction, if a rotating mass like a planet can generate torsion, then a gyroscope should also feel torsion. Using symmetry arguments, we show that to lowest order, the torsion field around a uniformly rotating spherical mass is determined by seven dimensionless parameters. These parameters effectively generalize the PPN formalism and provide a concrete framework for further testing GR. We construct a parametrized Lagrangian that includes both standard torsion-free GR and Hayashi- Shirafuji maximal torsion gravity as special cases. We demonstrate that classic solar system tests rule out the latter and constrain two observable parameters. We show that Gravity Probe B (GPB) is an ideal experiment for further constraining torsion theories, and work out the most general torsion-induced precession of its gyroscope in terms of our torsion parameters

  20. LISA as a dark energy probe

    E-Print Network [OSTI]

    K G Arun; Chandra Kant Mishra; Chris Van Den Broeck; B R Iyer; B S Sathyaprakash; Siddhartha Sinha

    2009-04-20T23:59:59.000Z

    Recently it was shown that the inclusion of higher signal harmonics in the inspiral signals of binary supermassive black holes (SMBH) leads to dramatic improvements in parameter estimation with the Laser Interferometer Space Antenna (LISA). In particular, the angular resolution becomes good enough to identify the host galaxy or galaxy cluster, in which case the redshift can be determined by electromagnetic means. The gravitational wave signal also provides the luminosity distance with high accuracy, and the relationship between this and the redshift depends sensitively on the cosmological parameters, such as the equation-of-state parameter $w=p_{\\rm DE}/\\rho_{\\rm DE}$ of dark energy. With a single binary SMBH event at $z < 1$ having appropriate masses and orientation, one would be able to constrain $w$ to within a few percent. We show that, if the measured sky location is folded into the error analysis, the uncertainty on $w$ goes down by an additional factor of 2-3, leaving weak lensing as the only limiting factor in using LISA as a dark energy probe.

  1. Methods of and apparatus for levitating an eddy current probe

    DOE Patents [OSTI]

    Stone, William J. (Kansas City, MO)

    1988-05-03T23:59:59.000Z

    An eddy current probe is supported against the force of gravity with an air earing while being urged horizontally toward the specimen being examined by a spring and displaced horizontally against the force of the spring pneumatically. The pneumatic displacement is accomplished by flowing air between a plenum chamber fixed with respect to the probe and the surface of the specimen. In this way, the surface of the specimen can be examined without making mechanical contact therewith while precisely controlling the distance at which the probe stands-off from the surface of the specimen.

  2. Broadband extreme ultraviolet probing of transient gratings in vanadium dioxide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sistrunk, Emily; Grilj, Jakob; Jeong, Jaewoo; Samant, Mahesh G.; Gray, Alexander X.; Dürr, Hermann A.; Parkin, Stuart S. P.; Gühr, Markus

    2015-01-01T23:59:59.000Z

    Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). We demonstrate a step on this path showing core-valence sensitivity in transient grating spectroscopy with EUV probing. We study the optically induced insulator-to-metal transition (IMT) of a VO? film with EUV diffraction from the optically excited sample. The VO? exhibits a change in the 3p-3d resonance of V accompanied by an acoustic response. Due to the broadband probing we are able to separate the two features.

  3. Probing Strain-Induced Changes in Electronic Structure with XMCD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43Probing OrganicProbingProbing

  4. Probing Strain-Induced Changes in Electronic Structure with XMCD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43ProbingProbingProbing

  5. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, Robert E. (Los Alamos, NM); Ramsey, David R. (Bothel, WA); Stampfer, Joseph F. (Santa Fe, NM); Macdonald, John M. (Santa Fe, NM)

    1998-01-01T23:59:59.000Z

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material.

  6. Quantifying object and material surface areas in residences

    SciTech Connect (OSTI)

    Hodgson, Alfred T.; Ming, Katherine Y.; Singer, Brett C.

    2005-01-05T23:59:59.000Z

    The dynamic behavior of volatile organic compounds (VOCs) in indoor environments depends, in part, on sorptive interactions between VOCs in the gas phase and material surfaces. Since information on the types and quantities of interior material surfaces is not generally available, this pilot-scale study was conducted in occupied residences to develop and demonstrate a method for quantifying surface areas of objects and materials in rooms. Access to 33 rooms in nine residences consisting of bathrooms, bedroom/offices and common areas was solicited from among research group members living in the East San Francisco Bay Area. A systematic approach was implemented for measuring rooms and objects from 300 cm{sup 2} and larger. The ventilated air volumes of the rooms were estimated and surface area-to-volume ratios were calculated for objects and materials, each segregated into 20 or more categories. Total surface area-to-volume ratios also were determined for each room. The bathrooms had the highest total surface area-to-volume ratios. Bedrooms generally had higher ratios than common areas consisting of kitchens, living/dining rooms and transitional rooms. Total surface area-to-volume ratios for the 12 bedrooms ranged between 2.3 and 4.7 m{sup 2} m{sup -3}. The importance of individual objects and materials with respect to sorption will depend upon the sorption coefficients for the various VOC/materials combinations. When combined, the highly permeable material categories, which may contribute to significant interactions, had a median ratio of about 0.5 m{sup 2} m{sup -3} for all three types of rooms.

  7. Cavitation rheology for soft materials Jessica A. Zimberlin, Naomi Sanabria-DeLong, Gregory N. Tew and Alfred J. Crosby*

    E-Print Network [OSTI]

    Tew, Gregory N.

    Cavitation rheology for soft materials Jessica A. Zimberlin, Naomi Sanabria-DeLong, Gregory N. Tew the modulus local to the site of cavitation, heterogeneities within a material can easily be probed systems. 2. Experimental 2.1 Cavitation rheology technique (CRT) Cavitation rheology involves quantifying

  8. Supporting Online Material Materials and Methods

    E-Print Network [OSTI]

    Wolfe, Cecily J.

    1 Supporting Online Material Materials and Methods (15) For all possible earthquake pairs. The parameters chosen for window length, filter bandpass, negative sidelobe identification, and cross-correlation threshold are appropriate for high-frequency earthquakes. In order to remove false positives or poor data

  9. SUPPORTING ONLINE MATERIAL Materials and Methods

    E-Print Network [OSTI]

    Newsome, William

    SUPPORTING ONLINE MATERIAL Materials and Methods Two adult male rhesus monkeys (Macaca mulatta with a head-holding device (S1), scleral search coil for monitoring eye position (S2) and a recording chamber monkeys remain actively engaged in experiments, so precise histological identification of recording sites

  10. Sensors & Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensors and Materials Argonne uses its materials and engineering expertise to develop, test, and deploy sensors and materials to detect nuclear and radiological materials, chemical...

  11. Lightweighting Materials | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL conducts lightweight materials research in several areas: materials development, properties and manufacturing, computational materials science, and multi-material enabling...

  12. Young Red Spheroidal Galaxies in the Hubble Deep Fields: Evidence for a Truncated IMF at ~2M_solar and a Constant Space Density to z~2

    E-Print Network [OSTI]

    Tom Broadhurst; Rychard J. Bouwens

    1999-03-08T23:59:59.000Z

    The optical-IR images of the Northern and Southern Hubble Deep Fields are used to measure the spectral and density evolution of early-type galaxies. The mean optical SED is found to evolve passively towards a mid F-star dominated spectrum by z ~ 2. We demonstrate with realistic simulations that hotter ellipticals would be readily visible if evolution progressed blueward and brightward at z > 2, following a standard IMF. The colour distributions are best fitted by a `red' IMF, deficient above ~2 M_solar and with a spread of formation in the range 1.5 3 Gyrs independent of its formation redshift. Regarding density evolution, we demonstrate that the sharp decline in numbers claimed at z > 1 results from a selection bias against distant red galaxies in the optical, where the flux is too weak for morphological classification, but is remedied with relatively modest IR exposures revealing a roughly constant space density to z ~ 2. We point out that the lack of high mass star-formation inferred here and the requirement of metals implicates cooling-flows of pre-enriched gas in the creation of the stellar content of spheroidal galaxies. Deep-field X-ray images will be very helpful to examine this possibility.

  13. Joining of dissimilar materials

    DOE Patents [OSTI]

    Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

    2012-10-16T23:59:59.000Z

    A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

  14. Functionalized apertures for the detection of chemical and biological materials

    DOE Patents [OSTI]

    Letant, Sonia E. (Livermore, CA); van Buuren, Anthony W. (Livermore, CA); Terminello, Louis J. (Danville, CA); Thelen, Michael P. (Danville, CA); Hope-Weeks, Louisa J. (Brentwood, CA); Hart, Bradley R. (Brentwood, CA)

    2010-12-14T23:59:59.000Z

    Disclosed are nanometer to micron scale functionalized apertures constructed on a substrate made of glass, carbon, semiconductors or polymeric materials that allow for the real time detection of biological materials or chemical moieties. Many apertures can exist on one substrate allowing for the simultaneous detection of numerous chemical and biological molecules. One embodiment features a macrocyclic ring attached to cross-linkers, wherein the macrocyclic ring has a biological or chemical probe extending through the aperture. Another embodiment achieves functionalization by attaching chemical or biological anchors directly to the walls of the apertures via cross-linkers.

  15. Probing the Electronic Structures of Low Oxidation-State Uranium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fluoride Molecules UFx- (x2-4). Probing the Electronic Structures of Low Oxidation-State Uranium Fluoride Molecules UFx- (x2-4). Abstract: We report the experimental observation...

  16. Probing the electronic structures of low oxidation-state uranium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    molecules UFx- (x2-4) . Probing the electronic structures of low oxidation-state uranium fluoride molecules UFx- (x2-4) . Abstract: We report the experimental observation...

  17. Scanning probe microscopy with inherent disturbance suppression using micromechanical systems

    E-Print Network [OSTI]

    Sparks, Andrew William, 1977-

    2005-01-01T23:59:59.000Z

    All scanning probe microscopes (SPMs) are affected by disturbances, or mechanical noise, in their environments which can limit their imaging resolution. This thesis introduces a general approach for suppressing out-of-plane ...

  18. Probing Valance and Core Excitons in Molecules by Coherent Multidimens...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are simulated. Time-domain experiments that employ sequences of attosecond x-ray pulses in order to probe electronic and nuclear dynamics in molecules are made possible by...

  19. Application of FRET probes in the analysis of neuronal plasticity

    E-Print Network [OSTI]

    Ueda, Yoshibumi

    Breakthroughs in imaging techniques and optical probes in recent years have revolutionized the field of life sciences in ways that traditional methods could never match. The spatial and temporal regulation of molecular ...

  20. Flexible high-temperature pH probe

    DOE Patents [OSTI]

    Bielawski, John C. (Scotia, NY); Outwater, John O. (Cambridge, MA); Halbfinger, George P. (Schenectady, NY)

    2003-04-22T23:59:59.000Z

    A flexible pH probe device is provided for use in hot water and other high temperature environments up to about 590.degree. F. The pH probe includes a flexible, inert tubular probe member, an oxygen anion conducting, solid state electrolyte plug located at the distal end of the tubular member, oxide powder disposed at the distal end of the tubular member; a metal wire extending along the tubular member and having a distal end in contact with the oxide powder so as to form therewith an internal reference electrode; and a compression fitting forming a pressure boundary seal around a portion of the tubular member remote from the distal end thereof. Preferably, the tubular member is made of polytetrafluoroethylene, and the solid state electrolyte plug is made of stabilized zirconia. The flexibility of the probe member enables placement of the electrode into the area of interest, including around corners, into confined areas and the like.

  1. Dynamic study of tunable stiffness scanning microscope probe

    E-Print Network [OSTI]

    Vega González, Myraida Angélica

    2005-01-01T23:59:59.000Z

    This study examines the dynamic characteristics of the in-plane tunable stiffness scanning microscope probe for an atomic force microscope (AFM). The analysis was carried out using finite element analysis (FEA) methods for ...

  2. Multi-probe robotic positioner for cryoablation in MRI

    E-Print Network [OSTI]

    Wu, Faye Y

    2012-01-01T23:59:59.000Z

    This thesis describes the design of a guidance device for faster and more accurate targeting of multiple probes during cryoablation and other percutaneous interventions performed in closed bore magnetic resonance (MR) ...

  3. Title of Document: NANOSCALE MANIPULATION, PROBING, AND ASSEMBLY USING MICROFLUIDIC

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of Document: NANOSCALE MANIPULATION, PROBING, AND ASSEMBLY USING MICROFLUIDIC FLOW along the wire. Together, these experiments illustrate the versatility of microfluidics MICROFLUIDIC FLOW CONTROL By Chad Ropp Dissertation submitted to the Faculty of the Graduate School

  4. Weak lensing flexion as a probe of galaxy cluster substructure

    E-Print Network [OSTI]

    Cain, Benjamin Martin

    2011-01-01T23:59:59.000Z

    Measuring galaxy cluster total masses and the amount of dark matter substructure within galaxy cluster haloes is a fundamental probe of the ACDM model of structure formation, as well as the interactions between baryonic ...

  5. Neural network calibration for miniature multi-hole pressure probes

    E-Print Network [OSTI]

    Vijayagopal, Rajesh

    1998-01-01T23:59:59.000Z

    A robust and accurate neural network based algorithm phics. for the calibration of miniature multi-hole pressure probes has been developed and a detailed description of its features and use is presented. The code that was developed was intended...

  6. Embrittlement of RPV steels; An atom probe tomography perspective

    SciTech Connect (OSTI)

    Miller, Michael K [ORNL; Russell, Kaye F [ORNL

    2007-01-01T23:59:59.000Z

    Atom probe tomography has played a key role in the understanding of the embrittlement of neutron irradiated reactor pressure vessel steels through the atomic level characterization of the microstructure. Atom probe tomography has been used to demonstrate the importance of the post weld stress relief treatment in reducing the matrix copper content in high copper alloys, the formation of {approx}-nm-diameter copper-, nickel-, manganese- and silicon-enriched precipitates during neutron irradiation in copper containing RPV steels, and the coarsening of these precipitates during post irradiation heat treatments. Atom probe tomography has been used to detect {approx}2-nm-diameter nickel-, silicon- and manganese-enriched clusters in neutron irradiated low copper and copper free alloys. Atom probe tomography has also been used to quantify solute segregation to, and precipitation on, dislocations and grain boundaries.

  7. Probing the size and environment induced phase transformation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the size and environment induced phase transformation in CdSe quantum dots. Probing the size and environment induced phase transformation in CdSe quantum dots. Abstract: The...

  8. Magnetic nanowire based high resolution magnetic force microscope probes

    E-Print Network [OSTI]

    Qin, Lu-Chang

    -resolution magnetic force microscope probes using preformed magnetic nanowires. Nickel and cobalt nanowires produced by electrodeposition were directly assembled onto the tip of a commercial atomic force microscope cantilever

  9. Development of Micromachined Probes for Bio-Nano Applications 

    E-Print Network [OSTI]

    Yapici, Murat K.

    2010-01-14T23:59:59.000Z

    of providing very fine, micro/nano scale interaction with matter; along with a broad range of applications made possible by incorporating MEMS sensing and actuation techniques. Micromachined probes consist of a well-defined tip structure that determines...

  10. Microfabricated Optical Sensor Probe for the Detection of Esophageal Cancer 

    E-Print Network [OSTI]

    Chinna Balareddy, Karthik Reddy

    2012-10-19T23:59:59.000Z

    spectrometry. The sensor probe consists of a lithographically patterned polymer waveguides chip and three micromachined positioning substrates and source/collection fibers to achieve 45 degree light incidence and collection of spatially resolved diffuse...

  11. Standard Quantum Limit for Probing Mechanical Energy Quantization

    E-Print Network [OSTI]

    Corbitt, Thomas R.

    We derive a standard quantum limit for probing mechanical energy quantization in a class of systems with mechanical modes parametrically coupled to external degrees of freedom. To resolve a single mechanical quantum, it ...

  12. Probing SZ Source Detection with Gasdynamical Simulations

    E-Print Network [OSTI]

    J. Richard Bond; Marcelo I. Ruetalo; James W. Wadsley; Michael D. Gladders

    2002-05-30T23:59:59.000Z

    The huge worldwide investment in CMB experiments should make the Sunyaev-Zeldovich (SZ) effect a key probe of the cosmic web in the near future. For the promise to be realized, substantial development of simulation and analysis tools to relate observation to theory is needed. The high nonlinearity and dissipative/feedback gas physics lead to highly non-Gaussian patterns that are much more difficult to analyze than Gaussian primary anisotropies for which the procedures are reasonably well developed. Historical forecasts for what CMB experiments might see used semi-analytic tools, including large scale map constructions, with localized and simplified pressure structures distributed on a point process of (clustered) sources. Hydro studies beyond individual cluster/supercluster systems were inadequate, but now large-volume simulations with high resolution are beginning to shift the balance. We illustrate this by applying ``Gasoline'' (parallelized Tree+SPH) computations to construct SZ maps and derive statistical measures. We believe rapid Monte Carlo simulations using parameterized templates centered on point processes informed by optical and other means on the observational side, and by hydro simulations on the theory side, should play an important role in pipelines to analyze the new SZ field data. We show that localized sources should dominate upcoming SZ experiments, identify sources in the maps under filtering and noise levels expected for these experiments, use the RCS photometric optical survey as an example of redshift localization, and discuss whether cosmic web patterns such as superclusters can be enhanced when such extra source information is supplied.

  13. Scanning probe microscopy studies of semiconductor surfaces

    SciTech Connect (OSTI)

    Weinberg, W.H. [Univ. of California, Santa Barbara, CA (United States)

    1996-10-01T23:59:59.000Z

    Recent work involving atomic force microscopy and scanning tunneling microscopy is discussed which involves strain-induced, self-assembling nanostructures in compound semiconductor materials. Specific examples include one-dimensional quantum wires of InAs grown by MBE on GaAs(001) and zero-dimensional quantum dots of InP grown by MOCVD on InGaP which is lattice matched to GaAs(001).

  14. Probing Compositeness with Higgs Boson Decays at the LHC

    E-Print Network [OSTI]

    Maria Hoffmann; Anna Kaminska; Rosy Nicolaidou; Stathes Paganis

    2014-10-28T23:59:59.000Z

    A method is proposed to directly probe the Higgs boson compositeness using the unique characteristics of a boosted Higgs boson produced in association with a weak gauge boson ($W^{\\pm},Z$). The discovery potential for the upcoming LHC running is presented, showing that compositeness scales up to 3 TeV can be probed at the LHC with an integrated luminosity of $\\mathcal{L}=3000$ fb$^{-1}$ collected at $\\sqrt{s}=13$ TeV.

  15. Complex quantum networks as structured environments: engineering and probing

    E-Print Network [OSTI]

    Johannes Nokkala; Fernando Galve; Roberta Zambrini; Sabrina Maniscalco; Jyrki Piilo

    2015-03-16T23:59:59.000Z

    We consider structured environments modeled by bosonic quantum networks and investigate the control and probing of their spectral density. We demonstrate how to engineer a desired spectral density by changing the network structure. We show that the spectral density can be very accurately detected via a locally immersed probe system for virtually any network configuration. We illustrate our findings presenting examples of spectral densities for networks of genuine complexity.

  16. Materials for breeding blankets

    SciTech Connect (OSTI)

    Mattas, R.F.; Billone, M.C.

    1995-09-01T23:59:59.000Z

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as Primary Blanket Materials, which have the greatest influence in determining the overall design and performance, and Secondary Blanket Materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified.

  17. Nondestructive material characterization

    DOE Patents [OSTI]

    Deason, Vance A. (Idaho Falls, ID); Johnson, John A. (Idaho Falls, ID); Telschow, Kenneth L. (Idaho Falls, ID)

    1991-01-01T23:59:59.000Z

    A method and apparatus for nondestructive material characterization, such as identification of material flaws or defects, material thickness or uniformity and material properties such as acoustic velocity. The apparatus comprises a pulsed laser used to excite a piezoelectric (PZ) transducer, which sends acoustic waves through an acoustic coupling medium to the test material. The acoustic wave is absorbed and thereafter reflected by the test material, whereupon it impinges on the PZ transducer. The PZ transducer converts the acoustic wave to electrical impulses, which are conveyed to a monitor.

  18. Technologies for detection of nuclear materials

    SciTech Connect (OSTI)

    DeVolpi, A.

    1996-03-30T23:59:59.000Z

    Detection of smuggled nuclear materials at transit points requires monitoring unknown samples in large closed packages. This review contends that high-confidence nuclear-material detection requires induced fission as the primary mechanism, with passive radiation screening in a complementary role. With the right equipment, even small quantities of nuclear materials are detectable with a high probability at transit points. The equipment could also be linked synergistically with detectors of other contrabond. For screening postal mail and packages, passive monitors are probably more cost-effective. When a suspicious item is detected, a single active probe could then be used. Until active systems become mass produced, this two-stage screening/interrogation role for active/passive equipment is more economic for cargo at border crossings. For widespread monitoring of nuclear smuggling, it will probably be necessary to develop a system for simultaneously detecting most categories of contraband, including explosives and illicit drugs. With control of nuclear materials at known storage sites being the first line of defense, detection capabilities at international borders could establish a viable second line of defense against smuggling.

  19. Deposition of lithium on a plasma edge probe in TFTR -- Behavior of lithium-painted walls interacting with edge plasmas

    SciTech Connect (OSTI)

    Hirooka, Y. [Univ. of California, San Diego, La Jolla, CA (United States); Ashida, K. [Toyama Univ. (Japan); Kugel, H. [Princeton Univ., NJ (United States)] [and others

    1998-05-01T23:59:59.000Z

    Recent observations have indicated that lithium pellet injection wall conditioning plays an important role in achieving the enhanced supershot regime in TFTR. However, little is understood about the behavior of lithium-coated limiter walls, interacting with edge plasmas. In the final campaign of TFTR, a cylindrical carbon fiber composite probe was inserted into the boundary plasma region and exposed to ohmically-heated deuterium discharges with lithium pellet injection. The ion-drift side probe surface exhibits a sign of codeposition of lithium, carbon, oxygen, and deuterium, whereas the electron side essentially indicates high-temperature erosion. It is found that lithium is incorporated in these codeposits in the form of oxide at the concentration of a few percent. In the electron side, lithium has been found to penetrate deeply into the probe material, presumably via rapid diffusion through interplane spaces in the graphite crystalline. Though it is not conclusive, materials mixing in the carbon and lithium system appears to be a key process in successful lithium wall conditioning.

  20. Design, simulation and analysis of a molecular nano-sensor operating at terahertz frequencies for energetic materials

    E-Print Network [OSTI]

    Shenoy, Sukesh

    2007-09-17T23:59:59.000Z

    properties at the nano level. Nanoparticle probes consisting of two gold particles with covalently bound oligonucleotides [7] have been used in a scanometric approach to sensing. When they encounter target strands, these probes undergo polymerization... 1 1. INTRODUCTION Nanotechnology and nanoscale materials are a new and are an exciting field of research. The unusual optical, electrical and mechanical properties coupled with inherently small sizes of nanoparticles provide an ability to make...

  1. Band excitation method applicable to scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen; Kalinin, Sergei V

    2013-05-28T23:59:59.000Z

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  2. Band excitation method applicable to scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen (Knoxville, TN) [Knoxville, TN; Kalinin, Sergei V. (Knoxville, TN) [Knoxville, TN

    2010-08-17T23:59:59.000Z

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  3. EC Transmission Line Materials

    SciTech Connect (OSTI)

    Bigelow, Tim S [ORNL

    2012-05-01T23:59:59.000Z

    The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH&CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. [Ref. 2] Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.

  4. INTERDISCIPLINARY MATERIALS SCIENCE GRADUATE PROGRAM IN MATERIALS SCIENCE

    E-Print Network [OSTI]

    Simaan, Nabil

    .m.satterwhite@vanderbilt.edu Interdisciplinary Graduate Program in Materials Science Vanderbilt University School of Engineering PMB 350106INTERDISCIPLINARY MATERIALS SCIENCE GRADUATE PROGRAM IN MATERIALS SCIENCE Materials advancements, faculty members from chemistry, physics, materials engineering, chemical engineering, electrical

  5. Materials Science & Engineering

    E-Print Network [OSTI]

    and Forensics team in the Polymers and Coatings Group, MST-7. He graduated from the University of Toledo, aerogels, carbon fiber composites, damaged materials, and low density materials examining defects

  6. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute for Material Science Who we are and what we do 2:23 Institute for Materials Science: Alexander V. Balatsky IMS is an interdisciplinary research and educational center...

  7. Electronic digital materials

    E-Print Network [OSTI]

    Langford, William Kai

    2014-01-01T23:59:59.000Z

    Digital materials are constructions assembled from a small number of types of discrete building blocks; they represent a new way of building functional, multi-material, three-dimensional structures. In this thesis, I focus ...

  8. Geopolymer Sealing Materials

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop and characterize field-applicable geopolymer temporary sealing materials in the laboratory and to transfer this developed material technology to geothermal drilling service companies as collaborators for field validation tests.

  9. Nanocomposites as thermoelectric materials

    E-Print Network [OSTI]

    Hao, Qing

    2010-01-01T23:59:59.000Z

    Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, ...

  10. Factors of material consumption

    E-Print Network [OSTI]

    Silva Díaz, Pamela Cristina

    2012-01-01T23:59:59.000Z

    Historic consumption trends for materials have been studied by many researchers, and, in order to identify the main drivers of consumption, special attention has been given to material intensity, which is the consumption ...

  11. Nanostructured composite reinforced material

    DOE Patents [OSTI]

    Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    2012-07-31T23:59:59.000Z

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  12. Thermoelectric materials -- New directions and approaches. Materials Research Society symposium proceedings, Volume 478

    SciTech Connect (OSTI)

    Tritt, T.M.; Kanatzidis, M.G.; Lyon, H.B. Jr.; Mahan, G.D. [eds.

    1997-07-01T23:59:59.000Z

    Thermoelectric materials are utilized in a wide variety of applications related to solid-state refrigeration or small-scale power generation. Thermoelectric cooling is an environmentally friendly method of small-scale cooling in specific applications such as cooling computer chips and laser diodes. Thermoelectric materials are used in a wide range of applications from beverage coolers to power generation for deep-space probes such as the Voyager missions. Over the past thirty years, alloys based on the Bi-Te systems {l{underscore}brace}(Bi{sub 1{minus}x}Sb{sub x}){sub 2} (Te{sub 1{minus}x}Se{sub x}){sub 3}{r{underscore}brace} and Si{sub 1{minus}x}Ge{sub x} systems have been extensively studied and optimized for their use as thermoelectric materials to perform a variety of solid-state thermoelectric refrigeration and power generation tasks. Despite this extensive investigation of the traditional thermoelectric materials, there is still a substantial need and room for improvement, and thus, entirely new classes of compounds will have to be investigated. Over the past two-to-three years, research in the field of thermoelectric materials has been undergoing a rapid rebirth. The enhanced interest in better thermoelectric materials has been driven by the need for much higher performance and new temperature regimes for thermoelectric devices in many applications. The essence of a good thermoelectric is given by the determination of the material's dimensionless figure of merit, ZT = ({alpha}{sup 2}{sigma}/{lambda})T, where {alpha} is the Seebeck coefficient, {sigma} the electrical conductivity and {lambda} the total thermal conductivity. The best thermoelectric materials have a value of ZT = 1. This ZT = 1 has been an upper limit for more than 30 years, yet no theoretical or thermodynamic reason exits for why it can not be larger. The focus of the symposium is embodied in the title, Thermoelectric Materials: New Directions and Approaches. Many of the researchers in the field believe that future advances in thermoelectric applications will come through research in new materials. The authors have many new methods of materials synthesis and much more rapid characterization of these materials than were available 20--30 years ago. They have tried to focus the symposium on new directions and new materials such as skutterudites, quantum well and superlattice structures, new metal chalcogenides, rare earth systems, and quasicrystals. Other new materials are also presented in these proceedings. Separate abstracts were prepared for all the papers in this volume.

  13. Filename: FVB Invo2 Forced 121061.CHP Probe Array Type: MG_U74Av2

    E-Print Network [OSTI]

    Betz, William J.

    121061.CHP Probe Array Type: MG_U74Av2 Algorithm: Statistical Probe Pair Thr: 8 Controls: Antisense.13 ______________________________________________________________________ ______________________________________________________________________ Filename: FVB Invo2 Forced 121062.CHP Probe Array Type: MG_U74Av2 Algorithm: Statistical Probe Pair Thr: 8

  14. Probing the Geometry and Interconnectivity of Pores in Organic Aerogels Using Hyperpolarized 129Xe NMR Spectroscopy

    SciTech Connect (OSTI)

    Moudrakovski, Igor L.; Wang, Li Q.; Baumann, T.; Satcher, J. H.; Exarhos, Gregory J.; Ratcliffe, C. I.; Ripmeester, J. A.

    2004-04-28T23:59:59.000Z

    Aerogels represent a class of novel open-pore materials with high surface area and nanometer pore sizes. They exhibit extremely low mass densities, low thermal conductivity, good acoustic insulation, and low dielectric constants. These materials have potential applications in catalysis, advanced separation techniques, energy storage, environmental remediation, and as insulating materials. Organic aerogels are stiffer and stronger than silica aerogels and are better insulators with higher thermal resistance. Resorcinol-Formaldehyde (RF) aerogels are typically prepared through the base-catalyzed sol-gel polymerization of resorcinol with formaldehyde in aqueous solution to produce gels, which are then dried in supercritical CO2.1,2 The [resorcinol]/ [catalyst] (R/C) ratio of the starting sol-gel solution has been determined to be the dominant factor that affects the properties of RF aerogels. Since the unique microstructures of aerogels are responsible for their unusual properties, characterizing the detailed porous structures and correlating them with the processing parameters are vital to establish rational design principles for novel organic aerogels with tailored properties. In this communication we report the first use of hyperpolarized (HP) 129Xe NMR to probe the geometry and interconnectivity of pores in RF aerogels and to correlate these with synthetic conditions. Our work demonstrates that HP 129Xe NMR is so far the only method for accurately measuring the free volume-to-surface-area (Vg/S) ratios for soft mesoporous materials without using any geometric models.

  15. VHTR Materials Overview

    SciTech Connect (OSTI)

    Wright, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-07-30T23:59:59.000Z

    The PowerPoint presentation was given at the DOE-NE Materials Crosscut Coordination Meeting, Tuesday, 30 July 2013.

  16. Research Councils UK materials

    E-Print Network [OSTI]

    Berzins, M.

    as completely new materials such as super-strong graphene, or developments of traditional materials such as graphene is still being realised, with the Research Councils investing in both the further exploitation to UK growth. For example, the 2004 `discovery' of wonder-material graphene sparked a host of global

  17. MATERIALS SCIENCE ENGINEERING

    E-Print Network [OSTI]

    California at Irvine, University of

    MATERIALS SCIENCE AND ENGINEERING GRADUATE MANUAL COLLEGE OF ENGINEERING UNIVERSITY OF CALIFORNIA AT BERKELEY October 23, 2013 #12;Materials Science and Engineering University of California at Berkeley Page 2 Subject Matter · Outcome of the Preliminary Exam #12;Materials Science and Engineering University

  18. MATERIALS SCIENCE AND ENGINEERING

    E-Print Network [OSTI]

    Knobloch,Jürgen

    MATERIALS SCIENCE AND ENGINEERING BACHELOR OF SCIENCE MASTER OF SCIENCE Get your own impression. Materials Science and Engineering in Ilmenau stands for: + a broad and practical university education Catòlica del Peru (PUCP) in Lima/Peru and to receive a double degree in Materials Science and Engineering

  19. Radioactive Materials License Commitments

    E-Print Network [OSTI]

    Radioactive Materials License Commitments for The University of Texas at Austin May 2009 July 2009 in the use of radioactive materials. In July 1963, the State of Texas granted The University of Texas at Austin a broad radioactive materials license for research, development and instruction. While this means

  20. Advanced neutron absorber materials

    DOE Patents [OSTI]

    Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

    2000-01-01T23:59:59.000Z

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  1. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    SciTech Connect (OSTI)

    Mehta, Apurva; Stanford Synchrotron Radiation Lightsource; Doeff, Marca M.; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J.; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C.; Conry, Thomas

    2013-04-30T23:59:59.000Z

    We describe the use of synchrotron X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) techniques to probe details of intercalation/deintercalation processes in electrode materials for Li ion and Na ion batteries. Both in situ and ex situ experiments are used to understand structural behavior relevant to the operation of devices.

  2. Apparatus for imaging liquid and dielectric materials with scanning polarization force microscopy

    DOE Patents [OSTI]

    Hu, Jun (Berkeley, CA); Ogletree, D. Frank (El Cerrito, CA); Salmeron, Miguel (El Cerrito, CA); Xiao, Xudong (Kowloon, CN)

    1998-01-01T23:59:59.000Z

    The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged.

  3. Method for imaging liquid and dielectric materials with scanning polarization force microscopy

    DOE Patents [OSTI]

    Hu, Jun (Berkeley, CA); Ogletree, D. Frank (El Cerrito, CA); Salmeron, Miguel (El Cerrito, CA); Xiao, Xudong (Kowloon, CN)

    1999-01-01T23:59:59.000Z

    The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged.

  4. Apparatus with moderating material for microwave heat treatment of manufactured components

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN)

    2011-05-10T23:59:59.000Z

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  5. Reduced Order Computational Methods for Electromagnetic Material Interrogation Using Pulsed Signals and Conductive

    E-Print Network [OSTI]

    Reduced Order Computational Methods for Electromagnetic Material Interrogation Using Pulsed Signals consider the interrogation by means of a pulsed planar electromagnetic wave of a dielectric slab properties by means of a non-invasive probes such as low energy electromag- netic pulses is desirable

  6. Local Polarization Dynamics in Ferroelectric Materials

    SciTech Connect (OSTI)

    Kalinin, Sergei V [ORNL; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine; Chen, L. Q. [Pennsylvania State University; Rodriguez, Brian J [ORNL

    2010-01-01T23:59:59.000Z

    Ferroelectrics and multiferroics have recently emerged as perspective materials for information technology and data storage applications. The combination of extremely narrow domain wall width and the capability to manipulate polarization by electric field opens the pathway towards ultrahigh (>10 TBit/in2) storage densities and small (sub-10 nm) feature sizes. The coupling between polarization and chemical and transport properties enables applications in ferroelectric lithography and electroresistive devices. The progress in these applications, as well as fundamental studies of polarization dynamics and the role of defects and disorder on domain nucleation and wall motion, requires the capability to probe these effects on the nanometer scale. In this review, we summarize recent progress in applications of Piezoresponse Force Microscopy (PFM) for imaging, manipulation, and spectroscopy of ferroelectric switching processes. We briefly introduce the principles and relevant instrumental aspects of PFM, with special emphasis on resolution and information limits. The local imaging studies of domain dynamics, including local switching and relaxation accessed through imaging experiments, and spectroscopic studies of polarization switching, are discussed in detail. Finally, we briefly review the recent progress on photochemical processes on ferroelectric surfaces, the role of surface adsorbates, and imaging and switching in liquids. Beyond classical applications, probing local bias-induced transition dynamics by PFM opens the pathway to studies of the influence of a single defect on electrochemical and solid state processes, thus providing model systems for batteries, fuel cells, and supercapacitor applications.

  7. Revisiting plasma hysteresis with an electronically compensated Langmuir probe

    SciTech Connect (OSTI)

    Srivastava, P. K.; Singh, S. K.; Awasthi, L. M.; Mattoo, S. K. [Institute for Plasma Research, Gandhinagar 382 428 (India)

    2012-09-15T23:59:59.000Z

    The measurement of electron temperature in plasma by Langmuir probes, using ramped bias voltage, is seriously affected by the capacitive current of capacitance of the cable between the probe tip and data acquisition system. In earlier works a dummy cable was used to balance the capacitive currents. Under these conditions, the measured capacitive current was kept less than a few mA. Such probes are suitable for measurements in plasma where measured ion saturation current is of the order of hundreds of mA. This paper reports that controlled balancing of capacitive current can be minimized to less than 20 {mu}A, allowing plasma measurements to be done with ion saturation current of the order of hundreds of {mu}A. The electron temperature measurement made by using probe compensation technique becomes independent of sweep frequency. A correction of {<=}45% is observed in measured electron temperature values when compared with uncompensated probe. This also enhances accuracy in the measurement of fluctuation in electron temperature as {delta}T{sub pk-pk} changes by {approx}30%. The developed technique with swept rate {<=}100 kHz is found accurate enough to measure both the electron temperature and its fluctuating counterpart. This shows its usefulness in measuring accurately the temperature fluctuations because of electron temperature gradient in large volume plasma device plasma with frequency ordering {<=}50 kHz.

  8. Laser fluorescence EEM probe for cone penetrometer pollution analysis

    SciTech Connect (OSTI)

    Lin, J.; Hart, S.J.; Taylor, T.A.; Kenny, J.E. [Tufts Univ., Medford, MA (United States). Dept. of Chemistry

    1995-12-31T23:59:59.000Z

    A laser-induced fluorescence (LIF) excitation-emission matrix (EEM) probe has been developed in the laboratory, and installed and tested in a cone penetrometer. The laser excitation system uses the fourth harmonic of a flashlamp-pumped Nd:YAG laser (at 266 nm) to pump a Raman shifter. Up to ten laser beams (in the wavelength region of 257 to 400 nm) from the Raman shifter are launched into optical fibers that are connected to the optical fibers of the cone penetrometer probe through standard connectors. In the probe head, the laser radiation is focused onto the outer surface of sapphire windows that are in contact with the soils. The fluorescence emission is collected by ten collection fibers that take the fluorescence to a detection system consisting of a spectrograph and a CCD detector. This probe allows real-time collection of LIF-EEMs of pollutants adsorbed on solids or dissolved in groundwater. LIF-EEMs provide a substantial amount of spectral information that can be used to determine the composition and quantity of pollutants in soils. This probe can be used to measure POL (petroleum, oil, lubricants), PAH (polycyclic aromatic hydrocarbons), and other fluorescent pollutants. The LIF-EEM instrument has been developed in the laboratory, and installed in a cone penetrometer truck for a field test at Hill Air Force Base, Utah. The experience of the test will be discussed.

  9. Analysis of cylindrical Langmuir probe using experiment and different theories

    SciTech Connect (OSTI)

    Hassouba, M. A., E-mail: hassouba@yahoo.com [Benha University, Physics Department, Faculty of Science (Egypt); Galaly, A. R. [Umm Al-Qura University, Engineering Science Department, Faculty of Community (Saudi Arabia)] [Umm Al-Qura University, Engineering Science Department, Faculty of Community (Saudi Arabia); Rashed, U. M. [Alazhar University, Physics Department, Faculty of Science (Egypt)] [Alazhar University, Physics Department, Faculty of Science (Egypt)

    2013-03-15T23:59:59.000Z

    Cylindrical probe data have been analyzed using different theories in order to determine some plasma parameters (electron temperature and electron and ion densities). Langmuir probe data are obtained in a cylindrical DC glow discharge in the positive column plasma at argon gas pressures varied from 0.5 to 6 Torr and at constant discharge current equal to 10 mA. The electron density has calculated from the electron current at the space potential and from Orbital Motion Limited (OML) collisionless theory. Ion density has obtained from the OML analysis of the ion saturation currents. In addition, the electron temperature has measured by three different methods using probe and electrons currents. The electron temperature T{sub e}, plasma density n{sub e}, and space potential V{sub s}, have been obtained from the measured single cylindrical probe I-V characteristic curves. The radial distribution of the electron temperature and plasma density along the glow discharge are measured and discussed. Using the collisionless theories by Langmuir cylindrical probe and up to several Torr argon gas pressures the differences between the values of electron temperature and electron and ion densities stay within reasonable error limits.

  10. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    van Thor, Jasper J.; Madsen, Anders

    2015-01-01T23:59:59.000Z

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/?I) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ?F,more »in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.« less

  11. Semiconductor Probes of Light Dark Matter

    E-Print Network [OSTI]

    Peter W. Graham; David E. Kaplan; Surjeet Rajendran; Matthew T. Walters

    2012-11-12T23:59:59.000Z

    Dark matter with mass below about a GeV is essentially unobservable in conventional direct detection experiments. However, newly proposed technology will allow the detection of single electron events in semiconductor materials with significantly lowered thresholds. This would allow detection of dark matter as light as an MeV in mass. Compared to other detection technologies, semiconductors allow enhanced sensitivity because of their low ionization energy around an eV. Such detectors would be particularly sensitive to dark matter with electric and magnetic dipole moments, with a reach many orders of magnitude beyond current bounds. Observable dipole moment interactions can be generated by new particles with masses as great as 1000 TeV, providing a window to scales beyond the reach of current colliders.

  12. Materials Science and Materials Chemistry for Large Scale Electrochemi...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid Materials Science and Materials Chemistry for Large Scale...

  13. FY 2009 Progress Report for Lightweighting Materials - 12. Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Lightweighting Materials - 12. Materials Crosscutting Research and Development The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction...

  14. 08-ERD-071 Final Report: New Molecular Probes and Catalysts for Bioenergy Research

    SciTech Connect (OSTI)

    Thelen, M P; Rowe, A A; Siebers, A K; Jiao, Y

    2011-03-07T23:59:59.000Z

    A major thrust in bioenergy research is to develop innovative methods for deconstructing plant cell wall polymers, such as cellulose and lignin, into simple monomers that can be biologically converted to ethanol and other fuels. Current techniques for monitoring a broad array of cell wall materials and specific degradation products are expensive and time consuming. To monitor various polymers and assay their breakdown products, molecular probes for detecting specific carbohydrates and lignins are urgently needed. These new probes would extend the limited biochemical techniques available, and enable realtime imaging of ultrastructural changes in plant cells. Furthermore, degradation of plant biomass could be greatly accelerated by the development of catalysts that can hydrolyze key cell wall polysaccharides and lignin. The objective of this project was to develop cheap and efficient DNA reagents (aptamers) used to detect and quantify polysaccharides, lignin, and relevant products of their breakdown. A practical goal of the research was to develop electrochemical aptamer biosensors, which could be integrated into microfluidic devices and used for high-throughput screening of enzymes or biological systems that degrade biomass. Several important model plant cell wall polymers and compounds were targeted for specific binding and purification of aptamers, which were then tested by microscopic imaging, circular dichroism, surface plasmon resonance, fluorescence anisotropy, and electrochemical biosensors. Using this approach, it was anticiated that we could provide a basis for more efficient and economically viable biofuels, and the technologies established could be used to design molecular tools that recognize targets sought in medicine or chemical and biological defense projects.

  15. Adjoint Monte Carlo Simulation of Fusion Product Activation Probe Experiment in ASDEX Upgrade tokamak

    E-Print Network [OSTI]

    Äkäslompolo, Simppa; Tardini, Giovanni; Kurki-Suonio, Taina

    2015-01-01T23:59:59.000Z

    The activation probe is a robust tool to measure flux of fusion products from a magnetically confined plasma. A carefully chosen solid sample is exposed to the flux, and the impinging ions transmute the material makig it radioactive. Ultra-low level gamma-ray spectroscopy is used post mortem to measure the activity and, thus, the number of fusion products. This contribution presents the numerical analysis of the first measurement in the ASDEX Upgrade tokamak, which was also the first experiment to measure a single discharge. The ASCOT suite of codes was used to perform adjoint/reverse Monte-Carlo calculations of the fusion products. The analysis facilitated, for the first time, a comparison of numerical and experimental values for absolutely calibrated flux. The results agree to within 40%, which can be considered remarkable considering the fact that all features of the plasma cannot be accounted in the simulations. Also an alternative probe orientation was studied. The results suggest that a better optimized...

  16. ADVANCED MATERIALS Curriculum Biomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP

    E-Print Network [OSTI]

    Pfeifer, Holger

    ADVANCED MATERIALS Curriculum Biomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP Computational Methods in Materials Science 4 CP Lab Materials Science I 5 CP Physical Chemistry 4 CP General Chemistry 2 CP Synthesis of Org. & Inorg. Materials 4 CP Introductory Solid

  17. Probe of New Physics using Precision Measurement of the Electron Magnetic Moment

    E-Print Network [OSTI]

    Amin Aboubrahim; Tarek Ibrahim; Pran Nath

    2014-05-06T23:59:59.000Z

    The anomalous magnetic moment of the electron is determined experimentally with an accuracy of $2.8\\times 10^{-13}$ and the uncertainty may decrease by an order of magnitude in the future. While the current data is in excellent agreement with the standard model, the possible future improvement in the error in $\\Delta a_e= a_e^{\\text{exp}}- a_e^{\\text{theory}}$ has recently drawn interest in the electron anomalous magnetic moment as a possible probe of new physics beyond the standard model. In this work we give an analysis of such physics in an extension of the minimal supersymmetric standard model with a vector multiplet. In the extended model the electroweak contribution to the anomalous magnetic moment of the electron include loop diagrams involving in addition to the exchange of W and Z, the exchange of charginos, sneutrinos and mirror sneutrinos, and the exchange of neutralinos, sleptons and mirror sleptons. The analysis shows that a contribution to the electron magnetic moment much larger than expected by $m_e^2/m_\\mu^2$ scaling of the deviation of the muon anomalous magnetic moment over the standard model prediction, i.e., $\\Delta a_\\mu = 3 \\times 10^{-9}$ as given by the Brookhaven experiment, can be gotten within the MSSM extension. Effects of CP violating phases in the extended MSSM model on the corrections to the supersymmetric electroweak contributions to $a_e$ are also investigated. The analysis points to the possibility of detection of new physics effects with modest improvement on the error in $\\Delta a_e= a_e^{\\text{exp}} - a_e^{\\text{theory}}$.

  18. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

    2012-05-15T23:59:59.000Z

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  19. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

    2010-07-13T23:59:59.000Z

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  20. Vibrational Damping of Composite Materials

    E-Print Network [OSTI]

    Biggerstaff, Janet M.

    2006-01-01T23:59:59.000Z

    Smart Structures and Materials, 3989:531- 538. Biggerstaff,2002. “Electroviscoelastic Materials As Active Dampers”,Smart Structures and Materials, 4695:345-350. Biggerstaff,

  1. Deformation Mechanisms in Nanocrystalline Materials

    E-Print Network [OSTI]

    Mohamed, Farghalli A.; Yang, Heather

    2010-01-01T23:59:59.000Z

    2010 METALLURGICAL AND MATERIALS TRANSACTIONS A 47. F.A.12. METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 41A,of Slip: Progress in Materials Science, Pergamon Press,

  2. Advanced Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials SHARE Advanced Materials ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of...

  3. Empirical tight-binding model for titanium phase transformations D. R. Trinkle,1,2 M. D. Jones,3,2 R. G. Hennig,4 S. P. Rudin,2 R. C. Albers,2 and J. W. Wilkins4

    E-Print Network [OSTI]

    Wilkins, John

    Empirical tight-binding model for titanium phase transformations D. R. Trinkle,1,2 M. D. Jones,3 published study of the titanium hexagonal close packed to omega transformation, a tight-binding model was developed for titanium that accurately reproduces the structural energies and elec- tron eigenvalues from

  4. Wide Bandgap Materials

    Broader source: Energy.gov (indexed) [DOE]

    Materials Madhu Chinthavali Oak Ridge National Laboratory May 15, 2012 Project ID: APE007 This presentation does not contain any proprietary, confidential, or otherwise restricted...

  5. Critical Materials Strategy Summary

    Broader source: Energy.gov (indexed) [DOE]

    in magnets, batteries, photovoltaic films and phosphors; environmentally sound mining and materials processing; and recycling. The eight programs and policies address...

  6. Radioactive Material Transportation Practices

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23T23:59:59.000Z

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  7. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17T23:59:59.000Z

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

  8. UESC Workshop Materials

    Broader source: Energy.gov (indexed) [DOE]

    Policy Act (NEPA) Detailed disposal requirements statement for hazardous materials related to the project are essential It is in the FAR Subpart 23.3. Acquisition...

  9. Geopolymer Sealing Materials

    Broader source: Energy.gov (indexed) [DOE]

    Geopolymer Sealing Materials PI : Dr. Tomas Butcher Presenter: Dr. Toshi Sugama Brookhaven National Laboratory May 18, 2010 This presentation does not contain any proprietary...

  10. Materials for MA 182.

    E-Print Network [OSTI]

    Materials for MA 182. INSTRUCTOR: Richard Penney. Office: MATH 822: Telephone: 494-1968: e-mail: rcp@math.purdue.edu: Office Hours: Mon, Tu, Fri,

  11. Layered Cathode Materials

    Broader source: Energy.gov (indexed) [DOE]

    Layered Cathode Materials presented by Michael Thackeray Chemical Sciences and Engineering Division, Argonne Annual Merit Review DOE Vehicle Technologies Program Washington, D.C....

  12. EMSL - battery materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery-materials en Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. http:www.emsl.pnl.govemslwebpublicationsmodeling-interfacial-glass-wa...

  13. Thermoelectric materials having porosity

    DOE Patents [OSTI]

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05T23:59:59.000Z

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  14. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Morrow, Marvin S. (Kingston, TN)

    1994-01-01T23:59:59.000Z

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  15. LANSCE | Materials Test Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility Training Office Contact Administrative nav background Materials Test Station dotline Testing New Reactor Fuels that Reduce Radioactive Waste Mission Used...

  16. Fluorinated elastomeric materials

    DOE Patents [OSTI]

    Lagow, Richard J. (6204 Shadow Mountain, Austin, TX 78731); Dumitru, Earl T. (10116 Aspen St., Austin, TX 78758)

    1986-11-04T23:59:59.000Z

    This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.

  17. Fluorinated elastomeric materials

    DOE Patents [OSTI]

    Lagow, Richard J. (6204 Shadow Mountain, Austin, TX 78731); Dumitru, Earl T. (10116 Aspen St., Austin, TX 78758)

    1990-02-13T23:59:59.000Z

    This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.

  18. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, C.E.; Morrow, M.S.

    1994-07-19T23:59:59.000Z

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  19. Radiation Safety Training Materials

    Broader source: Energy.gov [DOE]

    The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

  20. DOE Automotive Lightweighting Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    materials for fiber reinforced composites. Until now, they have only been used in the automotive industry with thermoplastics and not as a matrix for fiber reinforced...

  1. Webinar: Materials Genome Initative

    Broader source: Energy.gov [DOE]

    Audio recording and text version of the Fuel Cell Technologies Office webinar titled "Materials Genome Initiative," originally presented on December 2, 2014.

  2. Hazardous Material Security (Maryland)

    Broader source: Energy.gov [DOE]

    All facilities processing, storing, managing, or transporting hazardous materials must be evaluated every five years for security issues. A report must be submitted to the Department of the...

  3. Materials and Metallurgy Materials Science and Metallurgical Engineering

    E-Print Network [OSTI]

    Provancher, William

    Materials and Metallurgy Materials Science and Metallurgical Engineering Objective Students "Rocks and Materials Science" Presentation. Review uses of rocks. Explain that engineers extract Engineers to efficiently and safely extract ore, Metallurgical Engineers to refine the copper, and Materials

  4. Very high energy probes of the quark-gluon plasma

    SciTech Connect (OSTI)

    Ludlam, T.; Paige, F.; Madansky, L.

    1984-01-01T23:59:59.000Z

    Among the penetrating probes of nuclear matter the most frequently discussed have been those which involve the detection of photons or leptons with m/sub T/ approx. = P/sub T/ < 3 GeV. This is the expected range of emission from a hot, thermalized plasma of quarks and gluons. The suggestion has been made that in very high energy collisions of nuclei the properties of high P/sub T/ jets may also reflect the characteristics of the nuclear medium through which the parent partons have propagated just after the collision. In this note we expand on the possible uses of such a probe.

  5. Top polarization as a probe of new physics

    E-Print Network [OSTI]

    Rohini M Godbole; Saurabh D Rindani; Kumar Rao; Ritesh K Singh

    2010-04-16T23:59:59.000Z

    We investigate the effects of new physics scenarios containing a high mass vector resonance on top pair production at the LHC, using the polarization of the produced top. In particular we use kinematic distributions of the secondary lepton coming from top decay, which depends on top polarization, as it has been shown that the angular distribution of the decay lepton is insensitive to the anomalous tbW vertex and hence is a pure probe of new physics in top quark production. Spin sensitive variables involving the decay lepton are used to probe top polarization. Some sensitivity is found for the new couplings of the top.

  6. Probing Strain-Induced Changes in Electronic Structure with XMCD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43Probing OrganicProbing

  7. Probing Strain-Induced Changes in Electronic Structure with XMCD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43ProbingProbing Strain-Induced

  8. Probing Strain-Induced Changes in Electronic Structure with XMCD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43ProbingProbing

  9. Hot wire needle probe for in-reactor thermal conductivity measurement

    SciTech Connect (OSTI)

    JE Daw; JL Rempe; DL Knudson

    2012-08-01T23:59:59.000Z

    Thermal conductivity is a key property that must be known for proper design, test, and application of new fuels and structural materials in nuclear reactors. Thermal conductivity is highly dependent on the physical structure, chemical composition, and the state of the material. Typically, thermal conductivity changes that occur during irradiation are measured out-of-pile by Post Irradiated Examination (PIE) using a “cook and look” approach in hot-cells. Repeatedly removing samples from a test reactor to make out-of-pile measurements is expensive, has the potential to disturb phenomena of interest, and only provides understanding of the sample's end state at the time each measurement is made. There are also limited thermophysical property data for advanced fuels. Such data are needed for simulation design codes, the development of next generation reactors, and advanced fuels for existing nuclear plants. Being able to quickly characterize fuel thermal conductivity during irradiation can improve the fidelity of data, reduce costs of post-irradiation examinations, increase understanding of how fuels behave under irradiation, and confirm or improve existing thermal conductivity measurement techniques. This paper discusses recent efforts to develop and evaluate an in-pile thermal conductivity sensor based on a hot wire needle probe. Testing has been performed on samples with thermal conductivities ranging from 0.2 W/m-K to 22 W-m-K in temperatures ranging from 20 °C to 600 °C. Thermal conductivity values measured using the needle probe match data found in the literature to within 5% for samples tested at room temperature, 5.67% for low thermal conductivity samples tested at high temperatures, and 10% for high thermal conductivity samples tested at high temperatures. Experimental results also show that this sensor is capable of operating in various test conditions and of surviving long duration irradiations.

  10. ECO2M: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2, Including Super- and Sub-Critical Conditions, and Phase Change Between Liquid and Gaseous CO2

    SciTech Connect (OSTI)

    Pruess, K.

    2011-04-01T23:59:59.000Z

    ECO2M is a fluid property module for the TOUGH2 simulator (Version 2.0) that was designed for applications to geologic storage of CO{sub 2} in saline aquifers. It includes a comprehensive description of the thermodynamics and thermophysical properties of H{sub 2}O - NaCl - CO{sub 2} mixtures, that reproduces fluid properties largely within experimental error for temperature, pressure and salinity conditions in the range of 10 C {le} T {le} 110 C, P {le} 600 bar, and salinity from zero up to full halite saturation. The fluid property correlations used in ECO2M are identical to the earlier ECO2N fluid property package, but whereas ECO2N could represent only a single CO{sub 2}-rich phase, ECO2M can describe all possible phase conditions for brine-CO{sub 2} mixtures, including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO{sub 2}. This allows for seamless modeling of CO{sub 2} storage and leakage. Flow processes can be modeled isothermally or non-isothermally, and phase conditions represented may include a single (aqueous or CO{sub 2}-rich) phase, as well as two-and three-phase mixtures of aqueous, liquid CO{sub 2} and gaseous CO{sub 2} phases. Fluid phases may appear or disappear in the course of a simulation, and solid salt may precipitate or dissolve. TOUGH2/ECO2M is upwardly compatible with ECO2N and accepts ECO2N-style inputs. This report gives technical specifications of ECO2M and includes instructions for preparing input data. Code applications are illustrated by means of several sample problems, including problems that had been previously solved with TOUGH2/ECO2N.

  11. Phosphorus segregation in nanocrystalline Ni-3.6 at.% P alloy investigated with the tomographic atom probe (TAP)

    SciTech Connect (OSTI)

    Faerber, B.; Cadel, E.; Menand, A.; Schmitz, G.; Kirchheim, R.

    2000-02-09T23:59:59.000Z

    The microstructures of electroless plated and thermally aged nanocrystalline nickel-3.6 at.% phosphorus layers were investigated on an atomic scale with a tomographic atom probe (TAP). After heat treatments at 250 and 400 C, a continuous P-segregation in the grain boundaries of the nanocrystalline structure was directly proved for the first time. This segregation effect explains the comparatively high thermal stability of the material. Assuming the existence of a metastable equilibrium, a simple mass balance calculation, which uses experimentally determined data exclusively, makes it possible to predict grain sizes of other NiP alloys within the thermal stability region.

  12. Mechanical and thermal properties of h-MX{sub 2} (M?=?Cr, Mo, W; X?=?O, S, Se, Te) monolayers: A comparative study

    SciTech Connect (OSTI)

    Çak?r, Deniz, E-mail: deniz.cakir@uantwerpen.be; Peeters, François M., E-mail: francois.peeters@uantwerpen.be [Department of Physics, University of Antwerp, 2610 Antwerpen (Belgium); Sevik, Cem, E-mail: csevik@anadolu.edu.tr [Department of Mechanical Engineering, Faculty of Engineering, Anadolu University, Eskisehir TR 26555 (Turkey)

    2014-05-19T23:59:59.000Z

    Using density functional theory, we obtain the mechanical and thermal properties of MX{sub 2} monolayers (where M?=?Cr, Mo, W and X?=?O, S, Se, Te). The ?-centered phonon frequencies (i.e., A{sub 1}, A{sub 2}{sup ?}, E?, and E?), relative frequency values of A{sub 1}, and E? modes, and mechanical properties (i.e., elastic constants, Young modulus, and Poisson's ratio) display a strong dependence on the type of metal and chalcogenide atoms. In each chalcogenide (metal) group, transition-metal dichalcogenides (TMDCs) with W (O) atom are found to be much stiffer. Consistent with their stability, the thermal expansion of lattice constants for TMDCs with O (Te) is much slower (faster). Furthermore, in a heterostructure of these materials, the difference of the thermal expansion of lattice constants between the individual components becomes quite tiny over the whole temperature range. The calculated mechanical and thermal properties show that TMDCs are promising materials for heterostructures.

  13. From Smart Materials to Cognitive Materials Requirements and Challenges

    E-Print Network [OSTI]

    Bremen, Universität

    From Smart Materials to Cognitive Materials ­ Requirements and Challenges Lutz Frommberger (lutz materials are materials that are either capa- ble of changing some of their properties according to external within the material itself. The latter is also called sensorial material (Lawo et. al., 2009). Recently

  14. Materials Science and Technology Mechanical and Materials Engineering

    E-Print Network [OSTI]

    Birmingham, University of

    Materials Science and Technology Metallurgy Mechanical and Materials Engineering Materials Science with Energy Engineering Materials Science with Business Management Course Prospectus School of Metallurgy for Metallurgy and Materials What difference will you make? #12;2 School of Metallurgy and Materials Contents

  15. Measurement of effective sheath width around cutoff probe in low-pressure plasmas

    SciTech Connect (OSTI)

    Kim, D. W.; Oh, W. Y. [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)] [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); You, S. J., E-mail: sjyou@kriss.re.kr; Kim, J. H. [Center for Vacuum Technology, Korea Research Institute of Standards and Science, Daejeon 305-306 (Korea, Republic of)] [Center for Vacuum Technology, Korea Research Institute of Standards and Science, Daejeon 305-306 (Korea, Republic of); Chang, H. Y. [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)] [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

    2014-05-15T23:59:59.000Z

    Previous studies indicated that the measurement results of microwave probes can be improved by applying the adequate sheath width to their measurement models, and consequently the sheath width around the microwave probe tips has become very important information for microwave probe diagnostics. In this paper, we propose a method for measuring the argon plasma sheath width around the cutoff probe tips by applying the circuit model to the cutoff probe phase spectrum. The measured sheath width of the cutoff probe was found to be in good agreement with the floated sheath width calculated from the Child-Langmuir sheath law. The physical reasons for a discrepancy between the two measurements are also discussed.

  16. Nanocrystalline Heterojunction Materials

    DOE Patents [OSTI]

    Elder, Scott H. (Portland, OR); Su, Yali (Richland, WA); Gao, Yufei (Blue Bell, PA); Heald, Steve M. (Downers Grove, IL)

    2004-02-03T23:59:59.000Z

    Mesoporous nanocrystalline titanium dioxide heterojunction materials and methods of making the same are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  17. Nanocrystalline heterojunction materials

    DOE Patents [OSTI]

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

    2003-07-15T23:59:59.000Z

    Mesoporous nanocrystalline titanium dioxide heterojunction materials are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  18. MULTISCALE PHENOMENA IN MATERIALS

    SciTech Connect (OSTI)

    A. BISHOP

    2000-09-01T23:59:59.000Z

    This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.

  19. Impacted material placement plans

    SciTech Connect (OSTI)

    Hickey, M.J.

    1997-01-29T23:59:59.000Z

    Impacted material placement plans (IMPP) are documents identifying the essential elements in placing remediation wastes into disposal facilities. Remediation wastes or impacted material(s) are those components used in the construction of the disposal facility exclusive of the liners and caps. The components might include soils, concrete, rubble, debris, and other regulatory approved materials. The IMPP provides the details necessary for interested parties to understand the management and construction practices at the disposal facility. The IMPP should identify the regulatory requirements from applicable DOE Orders, the ROD(s) (where a part of a CERCLA remedy), closure plans, or any other relevant agreements or regulations. Also, how the impacted material will be tracked should be described. Finally, detailed descriptions of what will be placed and how it will be placed should be included. The placement of impacted material into approved on-site disposal facilities (OSDF) is an integral part of gaining regulatory approval. To obtain this approval, a detailed plan (Impacted Material Placement Plan [IMPP]) was developed for the Fernald OSDF. The IMPP provides detailed information for the DOE, site generators, the stakeholders, regulatory community, and the construction subcontractor placing various types of impacted material within the disposal facility.

  20. MATERIAL TRACKING USING LANMAS

    SciTech Connect (OSTI)

    Armstrong, F.

    2010-06-07T23:59:59.000Z

    LANMAS is a transaction-based nuclear material accountability software product developed to replace outdated and legacy accountability systems throughout the DOE. The core underlying purpose of LANMAS is to track nuclear materials inventory and report transactions (movement, mixing, splitting, decay, etc.) to the Nuclear Materials Management and Safeguards System (NMMSS). While LANMAS performs those functions well, there are many additional functions provided by the software product. As a material is received onto a site or created at a site, its entire lifecycle can be tracked in LANMAS complete to its termination of safeguards. There are separate functions to track material movements between and within material balance areas (MBAs). The level of detail for movements within a MBA is configurable by each site and can be as high as a site designation or as detailed as building/room/rack/row/position. Functionality exists to track the processing of materials, either as individual items or by modeling a bulk process as an individual item to track inputs and outputs from the process. In cases where sites have specialized needs, the system is designed to be flexible so that site specific functionality can be integrated into the product. This paper will demonstrate how the software can be used to input material into an account and track it to its termination of safeguards.