Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1995-09-25
To establish framework for an effective aviation program. Cancels DOE 5480.13A. Canceled by DOE O 440.2A.
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2000-12-08
To establish the framework for an effective aviation program, and reduce or eliminate accidental losses and injuries in Departmental and contractor aviation operations. It includes Change 1, Change 2, and Change3. (Cancels DOE 5480.13A) Canceled DOE O 440.2A.
ALS Ceramics Materials Research Advances Engine Performance
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics...
Aviation security cargo inspection queuing simulation model for material flow and accountability
Olama, Mohammed M; Allgood, Glenn O; Rose, Terri A; Brumback, Daryl L
2009-01-01
Beginning in 2010, the U.S. will require that all cargo loaded in passenger aircraft be inspected. This will require more efficient processing of cargo and will have a significant impact on the inspection protocols and business practices of government agencies and the airlines. In this paper, we develop an aviation security cargo inspection queuing simulation model for material flow and accountability that will allow cargo managers to conduct impact studies of current and proposed business practices as they relate to inspection procedures, material flow, and accountability.
IBM Probes Material Capabilities at the ALS
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
IBM Probes Material Capabilities at the ALS IBM Probes Material Capabilities at the ALS Print Wednesday, 12 February 2014 11:05 Vanadium dioxide, one of the few known materials that acts like an insulator at low temperatures but like a metal at warmer temperatures, is a somewhat futuristic material that could yield faster and much more energy-efficient electronic devices. Researchers from IBM's forward-thinking Spintronic Science and Applications Center (SpinAps) recently used the ALS to gain
IBM Probes Material Capabilities at the ALS
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
IBM Probes Material Capabilities at the ALS IBM Probes Material Capabilities at the ALS Print Wednesday, 12 February 2014 11:05 Vanadium dioxide, one of the few known materials that acts like an insulator at low temperatures but like a metal at warmer temperatures, is a somewhat futuristic material that could yield faster and much more energy-efficient electronic devices. Researchers from IBM's forward-thinking Spintronic Science and Applications Center (SpinAps) recently used the ALS to gain
ALS Ceramics Materials Research Advances Engine Performance
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
ALS Ceramics Materials Research Advances Engine Performance Print ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C. Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of
IBM Probes Material Capabilities at the ALS
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Researchers from IBM's forward-thinking Spintronic Science and Applications Center (SpinAps) recently used the ALS to gain greater insight into vanadium dioxide's unusual phase ...
ALS Ceramics Materials Research Advances Engine Performance
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
One of Ritchie's latest materials research projects is contributing to the evolution of jet engine performance, and hence has industry players heavily interested and invested. ...
Materials Data on Al (SG:225) by Materials Project
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Aviation Management and Safety
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2002-11-27
This directive establishes the framework for an efficient, effective, secure, and safe aviation program in the DOE and its contractor operations. Cancels DOE O 440.2A, Aviation, dated 3-8-02.
Aviation Management and Safety
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2002-11-27
To establish the framework for an efficient, effective, secure, and safe aviation program in the Department of Energy (DOE) and its contractor aviation operations. Cancels DOE O 440.2A. Canceled by DOE O 440.2C.
Aviation Management and Safety
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2002-03-02
To establish the framework for an efficient, effective, secure, and safe aviation program in the Department of Energy (DOE) and its contractor aviation operations. Cancels DOE O 440.2. Canceled by DOE O 440.2B.
Aviation Management and Safety
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2011-06-15
To establish a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operations. Cancels DOE O 440.2B.
Aviation Management and Safety
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2011-06-15
To establish a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operations. Supersedes DOE O 440.2B.
Federal Aviation Administration | Open Energy Information
Aviation Administration Jump to: navigation, search Logo: Federal Aviation Administration Name: Federal Aviation Administration Address: 800 Independence Ave., SW Place:...
aviation | National Nuclear Security Administration
National Nuclear Security Administration (NNSA)
aviation NNSA walks away with 3 Aviation Awards The DOE Headquarters Office of Aviation Management (OAM) awarded the following aviation management awards for performance in 2014. The NNSA, Office of Secure Transportation, Aviation Operations Division, Albuquerque, NM, has, for the second consecutive year, won the U.S. Department of
Ductile Ni.sub.3 Al alloys as bonding agents for ceramic materials
Tiegs, Terry N.; McDonald, Robert R.
1990-01-01
An improved ceramic-metal composite comprising a mixture of a ceramic material with a ductile intermetallic alloy, preferably Ni.sub.3 Al.
Ductile Ni[sub 3]Al alloys as bonding agents for ceramic materials in cutting tools
Tiegs, T.N.; McDonald, R.R.
1991-05-14
An improved ceramic-metal composite comprising a mixture of a ceramic material with a ductile intermetallic alloy, preferably Ni[sub 3]Al is disclosed. 2 figures.
Ductile Ni.sub.3 Al alloys as bonding agents for ceramic materials in cutting tools
Tiegs, Terry N.; McDonald, Robert R.
1991-01-01
An improved ceramic-metal composite comprising a mixture of a ceramic material with a ductile intermetallic alloy, preferably Ni.sub.3 Al.
Ductile Ni[sub 3]Al alloys as bonding agents for ceramic materials
Tiegs, T.N.; McDonald, R.R.
1990-04-24
An improved ceramic-metal composite is described comprising a mixture of a ceramic material with a ductile intermetallic alloy, preferably Ni[sub 3]Al. 2 figs.
DOE - Office of Legacy Management -- Bendix Aviation Corporation Kansas
Office of Legacy Management (LM)
City Plant - MO 06 Corporation Kansas City Plant - MO 06 FUSRAP Considered Sites Site: Bendix Aviation Corporation Kansas City Plant (MO.06) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Documents Related to Bendix Aviation Corporation Kansas City Plant
Anisotropic swelling and microcracking of neutron irradiated Ti3AlC2-Ti5Al2C3 materials
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Ang, Caen K.; Silva, Chinthaka M.; Shih, Chunghao Phillip; Koyanagi, Takaaki; Katoh, Yutai; Zinkle, Steven J.
2015-12-17
Mn + 1AXn (MAX) phase materials based on Tiâ€“Alâ€“C have been irradiated at 400 Â°C (673 K) with fission neutrons to a fluence of 2 Ã— 1025 n/m2 (E > 0.1 MeV), corresponding to ~ 2 displacements per atom (dpa). We report preliminary results of microcracking in the Al-containing MAX phase, which contained the phases Ti3AlC2 and Ti5Al2C3. Equibiaxial ring-on-ring tests of irradiated coupons showed that samples retained 10% of pre-irradiated strength. Volumetric swelling of up to 4% was observed. Phase analysis and microscopy suggest that anisotropic lattice parameter swelling caused microcracking. Lastly, variants of titanium aluminum carbide may bemoreÂ Â» unsuitable materials for irradiation at light water reactor-relevant temperatures.Â«Â less
Plaza, John; Holladay, John; Hallen, Rich
2014-10-23
Commercial airplanes really donâ€™t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energyâ€™s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.
Aviation Management | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Management Â» Aviation Management Aviation Management The Department of Energy, Aviation Program is the management function for all fleet aircraft and contracted aviation services for the Department. The program and its management personnel operate world-wide. To take advantage of the best communications and information services available, we have chosen the Net as one of our mainstays. The services provided from this page are designed to support our operating personnel. Except for our licensed
Aviation Fuels | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Research & Development Â» Demonstration & Market Transformation Â» Aviation Fuels Aviation Fuels A Navy plane in flight. The Bioenergy Technologies Office (BETO) sees the potential for biofuels produced for the aviation industry to help enable the growth of an advanced bioeconomy. Drop-in jet fuel replacements remain the only true alternative for the commercial aviation industry and the military, both facing ambitious near-term greenhouse gas reduction targets. BETO has been working with
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
on the way to the drip line .... 31 Al 28 Mg 32 Si 12 B + 18 O 30 Al* (-pn) 28 Mg 15 C + 18 O 33 Si* (-pn) 31 Al 16 N + 18 O 34 P* (-pn) 32 Si 15 C 10 7 s...
Materials Data on LiAlO2 (SG:115) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al2FeO4 (SG:74) by Materials Project
Kristin Persson
2014-09-30
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NaAlB14 (SG:74) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al2FeO4 (SG:156) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al2FeO4 (SG:8) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al2CdO4 (SG:227) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrAl2O4 (SG:178) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al5CuS8 (SG:216) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al(CN)3 (SG:113) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al2CdSe4 (SG:227) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al2CdSe4 (SG:82) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al2Se3 (SG:9) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Na8Al6Si6SO28 (SG:195) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on AlI3 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on AlSbI6 (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on AlP2I9 (SG:61) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on AlICl6 (SG:4) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sr(AlS2)2 (SG:70) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sr(AlCl4)2 (SG:61) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sr(AlPb)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-05-16
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ce3(Al3Ru)4 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-19
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sc(MnAl2)4 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on La5(AlBr)4 (SG:140) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(Al2Cr)4 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-21
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ho(Al2Fe)4 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ScAlAg2 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-22
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca3Al7Ag2 (SG:166) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiAlAg2 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on MnAlFe2 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-22
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al39Fe7Cu24 (SG:200) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on AlFe2 (SG:227) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TiAlFe2 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al2FeO4 (SG:227) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al2W (SG:181) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al12W (SG:204) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiAl(MoO4)2 (SG:2) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al9Ir2 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiAl2Ir (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Gd(Al2Cr)4 (SG:139) by Materials Project
Kristin Persson
2014-10-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiAlGeO4 (SG:148) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al(HO)3 (SG:2) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Na4Al3Si3HO13 (SG:161) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Li3AlH6 (SG:148) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on GdAl2 (SG:227) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al2CoO4 (SG:8) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on AlPO4 (SG:216) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CaScAlSiO6 (SG:14) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on AlPd5I2 (SG:139) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al2S3 (SG:169) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NbAlCl8 (SG:63) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al13(TlS7)3 (SG:8) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al2Te3 (SG:14) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al7(TlS4)3 (SG:4) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on MnAlCo2 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TaAlCo2 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ba5AlIr2O11 (SG:62) by Materials Project
Kristin Persson
2015-02-19
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sr5Al2F16 (SG:68) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al3Ni5 (SG:65) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CeAl3Pd2 (SG:191) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on MnAlRh2 (SG:225) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrAlBO4 (SG:56) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca4Al6WO16 (SG:217) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on AlCu3 (SG:225) by Materials Project
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiAl3 (SG:221) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CeAl5Ni2 (SG:71) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al(FeB)2 (SG:65) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TbAlPd (SG:189) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiAl2Pd (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Li2AlPd (SG:216) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LaAl3Pd2 (SG:191) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-19
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al2O3 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al2O3 (SG:33) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al2O3 (SG:8) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al2O3 (SG:60) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al2O3 (SG:167) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al5Co2 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Mg4AlSi6 (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ho2Al3Si2 (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al45Cr7 (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Dy2Al3Si2 (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tb2Al3Si2 (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on U2Al19Co6 (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-05-16
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on U2AlCo3 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-08
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on U2AlCo2 (SG:127) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-08
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TmAl3(BO3)4 (SG:155) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(AlC)4 (SG:87) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-07
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al2Hg3Cl8 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al2HgSe4 (SG:82) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ti3AlC (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Nb4AlC3 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-21
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sc2AlSi2 (SG:127) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ti3AlN (SG:221) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sc2Al3Ru (SG:194) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al(ReCu)2 (SG:127) by Materials Project
Kristin Persson
2015-03-08
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Y2Al (SG:62) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TiAl (SG:123) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PrAl (SG:221) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ce(MnAl2)4 (SG:139) by Materials Project
Kristin Persson
2015-03-08
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on AlRe (SG:221) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TiAl2 (SG:65) by Materials Project
Kristin Persson
2015-03-19
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Pr3AlC (SG:221) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ZrAl (SG:63) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TiAlAu (SG:194) by Materials Project
Kristin Persson
2015-03-08
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ce(Al2Fe)4 (SG:139) by Materials Project
Kristin Persson
2015-03-08
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al2P2H9NO11 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on AlBP2H5NO9 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al2P3(HO3)3 (SG:176) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on MgAl2P2(HO)18 (SG:2) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on DyAlNi (SG:189) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on AlFe2Ni (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on DyAl4Ni (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-22
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CeAl4Ni (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-26
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ErAl4Ni (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-22
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ho3(AlNi3)2 (SG:229) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ErAl2Ni (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-22
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th2AlH4 (SG:140) by Materials Project
Kristin Persson
2015-04-29
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on RbAl(H2N)4 (SG:85) by Materials Project
Kristin Persson
2015-04-29
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Zr6Al2CoH10 (SG:190) by Materials Project
Kristin Persson
2015-04-29
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Mg(AlS2)2 (SG:62) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al(HO)3 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al5Co2 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NdAl2 (SG:227) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2016-02-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(Al2Fe)4 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-21
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al5W (SG:182) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BaAl2O4 (SG:182) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al4(B2O5)3 (SG:146) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Er4(Al8Pt3)3 (SG:2) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Y(Al2Cr)4 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Y(Al2Cu)4 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Y(AlGe)2 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Y(MnAl2)4 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Y(Al2Fe)4 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Y(Al5Fe)2 (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Y(AlSi)2 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on MnAlCo2 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TaAlCo2 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Pu3Al (SG:123) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al3Os2 (SG:139) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on U2Al3Os (SG:194) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BeAl2O4 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sr2Al6O11 (SG:58) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrAl2O4 (SG:4) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on AlCuO2 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on AlTlF4 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ba3Al2F12 (SG:58) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on AlSiTe3 (SG:162) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sr(AlTe2)2 (SG:97) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ba(AlTe2)2 (SG:97) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
FAQS Reference Guide- Aviation Manager
Broader source: Energy.gov [DOE]
This reference guide addresses the competency statements in the January 2010 edition of DOE-STD-1164-2003 Chg 1, Aviation Safety Officer Functional Area Qualification Standard.
Baylor University - Renewable Aviation Fuels Development Center...
University - Renewable Aviation Fuels Development Center Jump to: navigation, search Name: Baylor University - Renewable Aviation Fuels Development Center Address: One Bear Place...
Patricia Hagerty, Aviation Program Analyst - Bio | Department...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Patricia Hagerty, Aviation Program Analyst - Bio HagertyPatPersonalProfile.pdf (10.55 KB) More Documents & Publications Ferrin Moore, Senior Aviation Policy Officer - Bio ...
Patricia Hagerty, Aviation Program Analyst
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
United States. Pat has two bachelor's degrees from the University of Montana; she is a certified general aviation private pilot and a Vietnam Era Veteran of the U.S. Coast Guard.
Broader source: Energy.gov (indexed) [DOE]
Lead Performers: -- Oak Ridge National Lab (ORNL) - Oak Ridge, TN -- Jacksonville State University - Jacksonville, AL -- University of Tennessee, Knoxville - Knoxville, TN -- Karpay Associations - Potomac, MD Partners: -- DOE Office of Weatherization and Intergovernmental Programs (OWIP) -- DOE Federal Energy Management Program (FEMP) -- PAE Design and Facility Management - Arlington, VA -- The University of Alabama - Tuscaloosa, AL DOE Funding: $175,000 in FY15; $1,014,000 to date Cost Share:
Aviation Manager | National Nuclear Security Administration | (NNSA)
National Nuclear Security Administration (NNSA)
Aviation Manager Joseph Ginanni Joseph Ginanni July 2009 U.S. General Services Administration (GSA) Federal Aviation Professional Award Aviation Manager Joseph Ginanni has received the U.S. General Services Administration (GSA) Federal Aviation Professional Award. Ginanni oversees the Aviation Services Department of the NNSA/NSO Remote Sensing Laboratory at Nellis and Andrews Air Force Bases. The program provides aerial support to the NNSA Office of Emergency Response, which protects people from
Aviation Management Professional Award Nomination for:
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Aviation Professional Nomination for Managerial/Official Award: Joseph M. Ginanni Aviation Manager US Department of Energy/National Nuclear Security Administration, Nevada Site Office Bio Joseph M. Ginanni Aviation Manager National Nuclear Security Administration Nevada Site Office Mr. Ginanni has worked for the Nevada Site Office (NSO) since 1991. For the past five years, he has served as the NSO Aviation Manager, managing and overseeing the Management and Operating contractor's aviation
DOE Federal Aviation Professional Awards | Department of Energy
DOE Federal Aviation Professional Awards DOE Federal Aviation Professional Awards PDF icon DOE Federal Aviation Professional Awards More Documents & Publications DOE Federal...
Low Carbon Aviation Committee Meeting
Broader source: Energy.gov [DOE]
The first committee meeting of the Propulsion and Energy Systems to Reduce Commercial Aviation Carbon Emissions Project will be held on June 2â€“3, 2015 at the National Academy of Sciences. BETO Director Jonathan Male will be speaking on a Department of Energy panel at the meeting, and Lead Analyst Zia Haq will be in attendance.
Oregon Department of Aviation | Open Energy Information
Aviation Jump to: navigation, search Name: Oregon Department of Aviation Abbreviation: ODA Address: 3040 25th St. SE Place: Salem, Oregon Zip: 97302 Phone Number: 503-378-4880...
Ferrin Moore, Senior Aviation Policy Officer
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Ferrin Moore Title: Senior Aviation Policy Officer Organization: Office of Aviation ... D.C. 20585 E-mail Address: Ferrin.Moore@hq.doe.gov Phone Number: Office: (202) ...
Progress in the material development of LiCaAlF sub 6 :Cr sup 3+ laser crystals
Michelle D. Shinn.; Chase, L.L.; Caird, J.A.; Payne, S.A.; Atherton, L.J.; Kway, W.L.
1990-03-01
High Cr{sup 3+} doping levels, up to 8 mole percent, and low losses have been obtained with the tunable solid-state laser material LiCaAlF{sub 6}:Cr{sup 3+} (Cr:LiCAF). Measurements and calculations show that high pumping and extraction efficiencies are possible with the improved material. 13 refs., 4 figs., 1 tab.
Aviation security: A system's perspective
Martin, J.P.
1988-01-01
For many years the aviation industry and airports operated with security methods and equipment common to most other large industrial complexes. At that time, the security systems primarily provided asset and property protection. However, soon after the first aircraft hijacking the focus of security shifted to emphasize the security requirements necessary for protecting the traveling public and the one feature of the aviation industry that makes it unique---the airplane. The airplane and its operation offered attractive opportunities for the homesick refugee, the mentally unstable person and the terrorist wanting to make a political statement. The airport and its aircraft were the prime targets requiring enhanced security against this escalated threat. In response, the FAA, airport operators and air carriers began to develop plans for increasing security and assigning responsibilities for implementation.
Theron L. Lewis
2002-05-28
This research presents a study of the hardness, electrical, and thermal properties AlMgB{sub 14} containing Al{sub 2}MgO{sub 4} spinel. This research also investigated how much Al{sub 2}MgO{sub 4} spinel consistently forms with AlMgB{sub 14}, if AlMgB{sub 14} materials can be produced by hot isostatic pressing (HIP), what effects TiC and TiB{sub 2} have on this composite material, and the importance of mechanical alloying. Included also is a study of the variation in hardness measurements and how they relate to SI units. Heretofore, all ultra-hard materials (hardness > 40 GPA) have been found to be cubic in structure, electrical insulators, and expensive; the behavior of AlMgB{sub 14}, which in certain specimens and compositions can have hardness values greater than 40 GPa, is therefore quite unusual since it is non-cubic, conductive, and moderate in cost. This offers an opportunity to investigate the relationship between hardness, thermal, and electrical properties from a new perspective. The main purpose of this project was to characterize the different properties of the AlMgB{sub 14} materials and to demonstrate that this material can be made in bulk. The technologies used for this study include microhardness measurement techniques, scanning electron microscopy, energy dispersive spectroscopy, x-ray diffraction spectroscopy, x-ray diffraction spectroscopy at different temperatures, optical microscopy, thermomechanical analysis, differential thermal analysis, 4-point probe resistivity, density techniques, Seebeck Effect, and Hall Effect. This research may lead to use of this material for applications where high abrasion resistance along with electrical conduction is needed. Also this research gave more information about a material that could have a great impact on industrial applications.
Alternative Aviation Fuel Workshop | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Alternative Aviation Fuel Workshop Alternative Aviation Fuel Workshop September 14, 2016 8:00AM EDT to September 15, 2016 1:00PM EDT Macon Marriott City Center 240 Coliseum Drive, Macon, GA 31217801 The aviation industry faces significant challenges to maintain growth while enhancing environmental sustainability. Alternative energy systems such as batteries, fuel cells, and natural gas are options for on-road, off-road, and marine engine applications, but these alternative fuels are not yet
Materials Data on Na4BeAlSi4ClO12 (SG:9) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Na3Al3Si3AgBrO12 (SG:9) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CaAl4Si2(HO6)2 (SG:9) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrAl3P2(HO2)7 (SG:160) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca2AlH10ClO8 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca3Ti2AlSi3O14F (SG:2) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca3TiAl2Si3O13F2 (SG:2) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrLa4TiAl4O15 (SG:51) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on AlP(H2O3)2 (SG:61) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on AlP(H2O3)2 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NaAlBP2H3O10 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Aviation Management Professional Award Nomination for: | Department of
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Energy Aviation Management Professional Award Nomination for: Aviation Management Professional Award Nomination for: Aviation Management Professional Award Nomination for: (43.97 KB) More Documents & Publications FAQS Reference Guide - Aviation Manager FAQS Reference Guide - Aviation Safety Officer Type B Accident Investigation Board Report of the April 23, 1997, Helicopter Accident at Raton Pass, Raton Pass, Colorado
Aviation Safety Officer, Functional Area Qualification Standard
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2010-01-20
The Aviation Safety Officer FAQS establishes common functional area competency requirements for all DOE aviation safety personnel who provide assistance, or direction, guidance, oversight, or evaluation of contractor technical activities that could impact the safe operation of DOEâ€™s facilities.
Aviation Manager Functional Area Qualification Standard
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2009-12-09
The Aviation Manager FAQS establishes common functional area competency requirements for all DOE Aviation Manager personnel who provide assistance, direction, guidance, oversight, or evaluation of contractor technical activities that could impact the safe operation of DOEâ€™s defense nuclear facilities.
Certification of alternative aviation fuels and blend components
Wilson III, George R. ); Edwards, Tim; Corporan, Edwin ); Freerks, Robert L. )
2013-01-15
Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend
BLM Fire and Aviation Office | Open Energy Information
Fire and Aviation Office Jump to: navigation, search Logo: BLM Fire and Aviation Office Name: BLM Fire and Aviation Office Address: 1849 C Street NW, Rm. 5665 Place: Washington, DC...
Ferrin Moore, Senior Aviation Policy Officer - Bio | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Ferrin Moore, Senior Aviation Policy Officer - Bio Ferrin Moore, Senior Aviation Policy Officer - Bio Ferrin_MoorePersonalProfile.pdf (22.23 KB) More Documents & Publications LopezPersonalProfile.pdf Patricia Hagerty, Aviation Program Analyst - Bio - FLIGHT -
Cullis, A.G.; Chew, N.G.; Whitehouse, C.R. ); Jacobson, D.C.; Poate, J.M.; Pearton, S.J.
1989-09-18
When AlAs/GaAs layer samples are subjected to Ar{sup +} ion bombardment at liquid-nitrogen temperature, it is shown that very different damage structures are produced in the two materials. While the GaAs is relatively easily amorphized, the AlAs is quite resistant to damage accumulation and remains crystalline for the ion doses employed in these investigations. Epitaxial regrowth of buried amorphous GaAs layers of thicknesses up to 150 nm can be induced by rapid thermal annealing. It is demonstrated that differences in the initial damage state have a strong influence upon the nature of lattice defects produced by annealing.
Nonstoichiometric material transfer in the pulsed laser deposition of LaAlO{sub 3}
Droubay, T. C.; Qiao, L.; Kaspar, T. C.; Engelhard, M. H.; Shutthanandan, V.; Chambers, S. A.
2010-09-20
Inequivalent angular distributions have been found for La and Al in the ablation plume from LaAlO{sub 3} single crystal targets using a KrF laser during pulsed laser deposition. Angular distributions and stoichiometries in the condensate were measured and reveal decidedly nonstoichiometric transfer from target to substrate over most of the angular range. Composition varied dramatically for plume angles parallel to the long axis of the laser spot with the on-axis position exhibiting a peak in the La/Al atom ratio at {approx}1.5. The distributions were more diffuse in the perpendicular direction. Stoichiometric LaAlO{sub 3} was found in the condensate only at an extreme off-axis position.
Non-stoichiometric material transfer in the pulsed laser deposition of LaAlO3
Droubay, Timothy C.; Qiao, Liang; Kaspar, Tiffany C.; Engelhard, Mark H.; Shutthanandan, V.; Chambers, Scott A.
2010-09-22
Inequivalent angular distributions have been found for La and Al in the ablation plume from LaAlO3 single crystal targets using a KrF laser during pulsed laser deposition. Angular distributions and stoichiometries in the condensate were measured and reveal decidedly non-stoichiometric transfer from target to substrate over most of the angular range. Composition varied dramatically for plume angles parallel to the long axis of the laser spot with the on-axis position exhibiting a peak in the La/Al atom ratio at ~1.5. The distributions were more diffuse in the perpendicular direction. Stoichiometric LaAlO3 was found in the condensate only at an extreme off-axis position.
Airlines & Aviation Alternative Fuels: Our Drive to Be Early...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters Plenary III: Early Market ...
Aviation Enterprises Ltd see Marine Current Turbines Ltd | Open...
Aviation Enterprises Ltd see Marine Current Turbines Ltd Jump to: navigation, search Name: Aviation Enterprises Ltd see Marine Current Turbines Ltd Region: United Kingdom Sector:...
FAQS Reference Guide - Aviation Manager | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
FAQS Reference Guide - Aviation Manager FAQS Reference Guide - Aviation Manager This reference guide addresses the competency statements in the January 2010 edition of...
Demonstration of alcohol as an aviation fuel
1996-07-01
A recently funded Southeastern Regional Biomass Energy Program (SERBEP) project with Baylor University will demonstrate the effectiveness of ethanols as an aviation fuel while providing several environmental and economic benefits. Part of this concern is caused by the petroleum industry. The basis for the petroleum industry to find an alternative aviation fuel will be dictated mainly by economic considerations. Three other facts compound the problem. First is the disposal of oil used in engines burning leaded fuel. This oil will contain too much lead to be burned in incinerators and will have to be treated as a toxic waste with relatively high disposal fees. Second, as a result of a greater demand for alkalites to be used in the automotive reformulated fuel, the costs of these components are likely to increase. Third, the Montreal Protocol will ban in 1998 the use of Ethyl-Di-Bromide, a lead scavenger used in leaded aviation fuel. Without a lead scavenger, leaded fuels cannot be used. The search for alternatives to leaded aviation fuels has been underway by different organizations for some time. As part of the search for alternatives, the Renewable Aviation Fuels Development Center (RAFDC) at Baylor University in Waco, Texas, has received a grant from the Federal Aviation Administration (FAA) to improve the efficiencies of ethanol powered aircraft engines and to test other non-petroleum alternatives to aviation fuel.
Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials
Zheng, Jianming; Gu, Meng; Xiao, Jie; Polzin, Bryant; Yan, Pengfei; Chen, Xilin; Wang, Chong M.; Zhang, Jiguang
2014-11-25
Li- and Mn-rich (LMR) material is a very promising cathode for lithium ion batteries because of their high theoretical energy density (~900 Wh kg-1) and low cost. However, their poor long-term cycling stability, voltage fade, and low rate capability are significant barriers hindered their practical applications. Surface coating, e.g. AlF3 coating, can significantly improve the capacity retention and enhance the rate capability. However, the fundamental mechanism of this improvement and the microstructural evolution related to the surface coating is still not well understood. Here, we report systematic studies of the microstructural changes of uncoated and AlF3-coated materials before and after cycling using aberration-corrected scanning/transmission electron microscopy and electron energy loss spectroscopy. The results reveal that surface coating can reduce the oxidation of electrolyte at high voltage, thus suppressing the accumulation of SEI layer on electrode particle surface. Surface coating also enhances structural stability of the surface region (especially the electrochemically transformed spinel-like phase), and protects the electrode from severe etching/corrosion by the acidic species in the electrolyte, therefore limiting the degradation of the material. Moreover, surface coating can alleviate the undesirable voltage fade by minimize layered-spinel phase transformation in the bulk region of the materials. These fundamental findings may also be widely applied to explain the functioning mechanism of other surface coatings used in a broad range of electrode materials.
A case for biofuels in aviation
1996-12-31
In the last 15 years, the technical and the economic feasibility of biomass based fuels for general aviation piston engines has been proven. Exhaustive ground and flight tests performed at the Renewable Aviation Fuels Development Center (RAFDC) using ethanol, ethanol/methanol blends, and ETBE have proven these fuels to be superior to aviation gasoline (avgas) in all aspects of performance except range. Two series of Lycoming engines have been certified. Record flights, including a transatlantic flight on pure ethanol, were made to demonstrate the reliability of the fuel. Aerobatic demonstrations with aircraft powered by ethanol, ethanol/methanol, and ETBE were flown at major airshows around the world. the use of bio-based fuels for aviation will benefit energy security, improve the balance of trade, domestic economy, and environmental quality. The United States has the resources to supply the aviation community`s needs with a domestically produced fuel using current available technology. The adoption of a renewable fuel in place of conventional petroleum-based fuels for aviation piston and turbine engines is long overdue.
Aviation Technology | GE Global Research
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Read More Ceramic Matrix Composites Improve Engine Efficiency Ceramic matrix composites (CMCs) are a breakthrough materials technology for jet engines that started at our Global ...
FAQS Reference Guide - Aviation Safety Officer | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Safety Officer FAQS Reference Guide - Aviation Safety Officer This reference guide addresses the competency statements in the January 2010 edition of DOE-STD-1164-2003 Chg 1, Aviation Safety Officer Functional Area Qualification Standard. Aviation Safety Officer Qualification Standard Reference Guide, March 2010 (848 KB) More Documents & Publications FAQS Reference Guide - Aviation Manager DOE-STD-1165-2003 DOE-STD-1164
Luo, Jinyong; Gao, Feng; Karim, Ayman M.; Xu, Pinghong; Browning, Nigel D.; Peden, Charles HF
2015-08-07
MgAlOx mixed oxides were employed as supports for potassium-based lean NOx traps (LNTs) targeted for high temperature applications. Effects of support compositions, K/Pt loadings, thermal aging and catalyst regeneration on NOx storage capacity were systematically investigated. The catalysts were characterized by XRD, NOx-TPD, TEM, STEM-HAADF and in-situ XAFS. The results indicate that MgAlOx mixed oxides have significant advantages over conventional gamma-Al2O3-supports for LNT catalysts, in terms of high temperature NOx trapping capacity and thermal stability. First, as a basic support, MgAlOx stabilizes stored nitrates (in the form of KNO3) to much higher temperatures than mildly acidic gamma-Al2O3. Second, MgAlOx minimizes Pt sintering during thermal aging, which is not possible for gamma-Al2O3 supports. Notably, combined XRD, in-situ XAFS and STEM-HAADF results indicate that Pt species in the thermally aged Pt/MgAlOx samples are finely dispersed in the oxide matrix as isolated atoms. This strong metal-support interaction stabilizes Pt and minimizes the extent of sintering. However, such strong interactions result in Pt oxidation via coordination with the support so that NO oxidation activity can be adversely affected after aging which, in turn, decreases NOx trapping ability for these catalysts. Interestingly, a high-temperature reduction treatment regenerates essentially full NOx trapping performance. In fact, regenerated Pt/K/MgAlOx catalyst exhibits much better NOx trapping performance than fresh Pt/K/Al2O3 LNTs over the entire temperature range investigated here. In addition to thermal aging, Pt/K loading effects were systemically studied over the fresh samples. The results indicate that NOx trapping is kinetically limited at low temperatures, while thermodynamically limited at high temperatures. A simple conceptual model was developed to explain the Pt and K loading effects on NOx storage. An optimized K loading, which allows balancing between the
Short term aging of LaNi{sub 4.25}Al{sub 0.75} tritide storage material
Holder, J.S.
1994-10-01
In support of the Tritium Facilities at the Savannah River Site (SRS), the Tritium Exposure Program (TEP) was initiated in 1986 to investigate the effects of tritium aging on metal hydride materials used in tritium processing applications. The primary material selected for tritium storage was the substituted LaNi{sub 5} alloy, LaNi{sub 4.25}Al{sub 0.75} (LANA.75). The substitution of Al for Ni served to lower the plateau pressure of the tritide, and to stabilize the material to cycling and tritium aging effects. The sub-atmospheric plateau pressure, of LANA.75 tritide at room temperature, made it a safe tritium storage medium, and the tritium aging effects were reduced from that of LaNi{sub 5} tritide, but not eliminated. LANA.75 tritides retain the {sup 3}He decay product of absorbed tritium in the metal lattice. As the concentration of {sup 3}He grows, the lattice becomes strained due to the insoluble species. This strain is manifest in tritium aging effects. These effects include (1) a decrease in the equilibrium plateau pressure, (2) an increase in the plateau slope, (3) a reduction in the reversible storage capacity, and (4) the evolution of a tritium heel. The long term aging effects have been studied over the years, however the short term (less than one year) tritium aging effects have not been investigated until now. The acquisition of desorption isotherms at more than one temperature allows the thermodynamic parameters of change in enthalpy, {Delta}H, and change in entropy, {Delta}S, for the {beta}-{alpha} phase transition of the metal tritide to be determined. These parameters are related to the equilibrium pressure, P, and the isothermal temperature, T, through the following relation: where R is the gas constant, and the factor of 1/2 yields results per mole of atomic tritium. A van`t Hoff plot of 1/2 Ln(P) versus 1/T may be fitted to a straight line, with the slope and intercept used to determine {Delta}H and {Delta}S through equation.
Capacity Utilization Study for Aviation Security Cargo Inspection Queuing System
Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E; Brumback, Daryl L
2010-01-01
In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number of cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system s ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.
Thermochemical Conversion Proceeses to Aviation Fuels
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
eere.energy.gov 1 Program Name or Ancillary Text eere.energy.gov Advanced Bio-basedJet Fuel Cost of Production Workshop Thermochemical Conversion Processes to Aviation Fuels John Holladay (PNNL) November 27, 2012 Energy Efficiency & Renewable Energy eere.energy.gov 2 * Building on the Approach previously described by Mary * Syngas routes from alcohols (sans Fischer-Tropsch) * Pyrolysis approaches (Lignocellulosics) - Fast Pyrolysis - Catalytic Fast Pyrolysis (in situ and ex situ) * Pyrolysis
Aware of the risks, the Federal Aviation
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Aware of the risks, the Federal Aviation Administration (FAA) in 2013 announced a new policy that calls for quantified analysis of potential ocular hazards from glint and glare for PV installations planned at airports-and other organizations are calling for similar analyses. Commercial ray-tracing tools can be used to model glare occurrences, but are expensive and complicated to set-up, placing a significant burden on companies seeking to comply with the FAA requirement. New Tool Helps Private
Greenhouse Gas Emissions from Aviation and Marine Transportation...
and Policies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies...
Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...
Gasoline and Diesel Fuel Update (EIA)
See footnotes at end of table. 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State 386 Energy Information...
Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...
Annual Energy Outlook [U.S. Energy Information Administration (EIA)]
Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...
Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...
U.S. Energy Information Administration (EIA) Indexed Site
Marketing Annual 1995 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...
Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...
Gasoline and Diesel Fuel Update (EIA)
Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...
Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel
U.S. Energy Information Administration (EIA) Indexed Site
District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale...
Life-Cycle Analysis of Alternative Aviation Fuels in GREET
Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.
2012-06-01
The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55â€“85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources â€” such as natural gas and coal â€” could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet
Life-cycle analysis of alternative aviation fuels in GREET
Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.
2012-07-23
The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet
Cost, R.C.
1958-07-15
A new high temperature brazing alloy is described that is particularly suitable for brazing iron-chromiumaluminum alloys. It consists of approximately 20% Cr, 6% Al, 10% Si, and from 1.5 to 5% phosphorus, the balance being iron.
Ang, Caen K.; Silva, Chinthaka M.; Shih, Chunghao Phillip; Koyanagi, Takaaki; Katoh, Yutai; Zinkle, Steven J.
2015-12-17
M_{n + 1}AX_{n} (MAX) phase materials based on Tiâ€“Alâ€“C have been irradiated at 400 Â°C (673 K) with fission neutrons to a fluence of 2 Ã— 10^{25} n/m^{2} (E > 0.1 MeV), corresponding to ~ 2 displacements per atom (dpa). We report preliminary results of microcracking in the Al-containing MAX phase, which contained the phases Ti_{3}AlC_{2} and Ti_{5}Al_{2}C_{3}. Equibiaxial ring-on-ring tests of irradiated coupons showed that samples retained 10% of pre-irradiated strength. Volumetric swelling of up to 4% was observed. Phase analysis and microscopy suggest that anisotropic lattice parameter swelling caused microcracking. Lastly, variants of titanium aluminum carbide may be unsuitable materials for irradiation at light water reactor-relevant temperatures.
,"U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels...
U.S. Energy Information Administration (EIA) Indexed Site
Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" ,"Click ... Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates",11,"Monthly"...
,"U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels...
U.S. Energy Information Administration (EIA) Indexed Site
Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" ,"Click ... Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates",11,"Monthly"...
MODELING AND PERFORMANCE EVALUATION FOR AVIATION SECURITY CARGO INSPECTION QUEUING SYSTEM
Allgood, Glenn O; Olama, Mohammed M; Rose, Terri A; Brumback, Daryl L
2009-01-01
Beginning in 2010, the U.S. will require that all cargo loaded in passenger aircraft be inspected. This will require more efficient processing of cargo and will have a significant impact on the inspection protocols and business practices of government agencies and the airlines. In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, and throughput. These metrics are performance indicators of the system s ability to service current needs and response capacity to additional requests. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures will reduce the overall cost and shipping delays associated with the new inspection requirements.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Materials Materials Access to Hopper Phase II (Cray XE6) If you are a current NERSC user, you are enabled to use Hopper Phase II. Use your SSH client to connect to Hopper II:...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Materials Materials Understanding and manipulating the most fundamental properties of materials can lead to major breakthroughs in solar power, reactor fuels, optical computing, telecommunications. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets Yu Seung Kim (left) and Kwan-Soo Lee (right) New class of fuel cells offer increased flexibility, lower cost A new class of fuel cells based on a newly discovered polymer-based material could bridge
DOE O 440.2C Aviation Management and Safety
Broader source: Energy.gov [DOE]
On June 15, 2011, the Department issued a Contractor Requirements Document (CRD) to the above listed Directive. This Directive establishes a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operation.
From Farm to Flight: Can Biofuels Green Aviation? | Argonne National...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
From Farm to Flight: Can Biofuels Green Aviation? July 25, 2016 8:30AM to July 29, 2016 ... In this Educational Programs workshop, teachers will explore: The problem: Can Biofuels ...
U.S. Aviation Gasoline Refiner Sales Volumes
Gasoline and Diesel Fuel Update (EIA)
Product: Aviation Gasoline Kerosene-Type Jet Fuel Propane (Consumer Grade) Kerosene No. 1 Distillate No. 2 Distillate No. 2 Diesel Fuel No. 2 Diesel, Ultra Low-Sulfur No. 2 Diesel, ...
NNSA walks away with 3 Aviation Awards | National Nuclear Security...
National Nuclear Security Administration (NNSA)
... This award is presented annually to the best Federal employee in a managerial position ... This award is presented annually to the best Federal or Contract employee in an aviation ...
DOE - Office of Legacy Management -- North American Aviation...
Office of Legacy Management (LM)
Letter; Wagoner to Riley; Subject: North American Aviation Information; March 3, 1995 CA.07-3 - AEC Memorandum; Smith to Dunlap; Subject: Depleted Uranium for NAA; October 15, 1951
Aviation Week Honors KCNSC Relocation | National Nuclear Security
National Nuclear Security Administration (NNSA)
Administration | (NNSA) Aviation Week Honors KCNSC Relocation Friday, November 13, 2015 - 6:15pm Kansas City National Security Campus Relocation Leader Brad Hughes, left, and NNSA Kansas City Field Office Site Manager Mark Holecek The Kansas City National Security Campus relocation project was recognized as an industry benchmark last week at the 12th annual Aviation Week Program Excellence Awards competition. Awards were presented Nov. 4 in Scottsdale, Arizona. The NSC's contractor,
Conry, Thomas E.; Mehta, Apurva; Cabana, Jordi; Doeff, Marca M.
2012-10-23
Single-phase LiNi{sub 0.45}Mn{sub 0.45}Co{sub 0.1-y}Al{sub y}O{sub 2} layered oxide materials with 0 {<=} y {<=} 0.10 were prepared using the glycine-nitrate combustion method. Al-substitution has a minimal effect on the defect concentration and rate capability of the materials, but raises the operating voltage and reduces the capacity fade of the materials during prolonged cycling compared to the unsubstituted system. In situ X-ray diffraction suggests the presence of Al has a significant structural impact during battery operation. It acts to limit the changes in lattice parameters observed during electrochemical charging and cycling of the materials. High-resolution X-ray diffraction reveals structural distortions in the transition metal layers of as-synthesized powders with high Al-contents, as well as a structural evolution seen in all materials after cycling.
Momodu, Damilola; Bello, Abdulhakeem; Dangbegnon, Julien; Barzeger, Farshad; Taghizadeh, Fatimeh; Fabiane, Mopeli; Manyala, Ncholu; Johnson, A. T. Charlie
2014-09-15
In this paper, we demonstrate excellent pseudo-capacitance behavior of nickel-aluminum double hydroxide microspheres (NiAl DHM) synthesized by a facile solvothermal technique using tertbutanol as a structure-directing agent on nickel foam-graphene (NF-G) current collector as compared to use of nickel foam current collector alone. The structure and surface morphology were studied by X-ray diffraction analysis, Raman spectroscopy and scanning and transmission electron microscopies respectively. NF-G current collector was fabricated by chemical vapor deposition followed by an ex situ coating method of NiAl DHM active material which forms a composite electrode. The pseudocapacitive performance of the composite electrode was investigated by cyclic voltammetry, constant charge–discharge and electrochemical impedance spectroscopy measurements. The composite electrode with the NF-G current collector exhibits an enhanced electrochemical performance due to the presence of the conductive graphene layer on the nickel foam and gives a specific capacitance of 1252 F g{sup ?1} at a current density of 1 A g{sup ?1} and a capacitive retention of about 97% after 1000 charge–discharge cycles. This shows that these composites are promising electrode materials for energy storage devices.
CRADA (AL-C-2009-02) Final Report: Phase I. Lanthanum-based Start Materials for Hydride Batteries
Gschneidner, Jr., Karl; Schmidt, Frederick; Frerichs, A. E.; Ament, Katherine A.
2013-05-01
The purpose of Phase I of this work is to focus on developing a La-based start material for making nickel-metal (lanthanum)-hydride batteries based on our carbothermic-silicon process. The goal is to develop a protocol for the manufacture of (La{sub 1-x}R{sub x})(Ni{sub 1-y}M{sub y})(Si{sub z}), where R is a rare earth metal and M is a non-rare earth metal, to be utilized as the negative electrode in nickel-metal hydride (NiMH) rechargeable batteries.
Zhang, Tianfu; Wang, Zhen; Li, Guoping; Luo, Yunjun
2015-10-15
A bottom-up approach combining soft template self-assembly with solâ€“gel process, was adopted to prepare the assembled Al/Fe{sub 2}O{sub 3} nanoenergetic materials, assembly-Al/Fe{sub 2}O{sub 3} sample. The other two unassembled Al/Fe{sub 2}O{sub 3}a nanoenergetic materials, solâ€“gelâ€“Al/Fe{sub 2}O{sub 3} sample and mixing-Al/Fe{sub 2}O{sub 3} sample, were prepared by solâ€“gel method and physical mixing method respectively. The assembly process within the preparation of the assembly-Al/Fe{sub 2}O{sub 3} sample was analyzed through the changes in the average hydrodynamic diameters of the particles and the micelles in solution. SEM, EDS and TEM tests were performed to demonstrate a significant improvement regarding to dispersity and arrangements of the Al and Fe{sub 2}O{sub 3} particles in the assembled samples, compared to that of the unassembled Al/Fe{sub 2}O{sub 3} samples. DSC test was employed to characterize the reactivity of the samples. The heat release of the assembled Al/Fe{sub 2}O{sub 3} sample was 2088 J/g, about 400 and 990 J/g more than that of the solâ€“gelâ€“Al/Fe{sub 2}O{sub 3} sample and mixing-Al/Fe{sub 2}O{sub 3} sample, respectively. - Graphical abstract: Modified aluminum (Al) nanoparticles with hydrophobic surface assembled into the Brij S10 micelle in Fe(III) sol, then the well dispersed system was transformed into Al/Fe{sub 2}O{sub 3} nanoenergetic materials with high reactivity. - Highlights: â€¢ An approach combining soft template self-assembly with solâ€“gel process was adopted. â€¢ The aggregation of Al nanoparticles in the final product was reduced significantly. â€¢ The reactivity of Al/Fe{sub 2}O{sub 3} nanoenergetic materials was improved to a large extent.
Li, Zheng; Chernova, Natasha A.; Feng, Jijun; Upreti, Shailesh; Omenya, Fredrick; Whittingham, M. Stanley
2015-10-15
The structures, electrochemical properties and thermal stability of Al-substituted lithium-excess oxides, Li{sub 1.2}Ni{sub 0.16} Mn{sub 0.56}Co{sub 0.08-y}Al{sub y}O{sub 2} (y = 0, 0.024, 0.048, 0.08), are reported, and compared to the stoichiometric compounds, LiNi{sub z}Mn{sub z}Co{sub 1-2z}O{sub 2}. A solid solution was found up to at least y = 0.06. Aluminum substitution improves the poor thermal stability while preserving the high energy density of lithium-excess oxides. However, these high manganese compositions are inferior to the lithium stoichiometric materials, LiNi{sub z}Mn{sub z}Co{sub 1-2z}O{sub 2} (z = 0.333, 0.4), in terms of both power and thermal stability.
Tang, Chiu-Chun [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Ling, D. C. [Department of Physics, Tamkang University, Tamsui Dist., New Taipei City 25137, Taiwan (China); Chi, C. C.; Chen, Jeng-Chung [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China)
2014-11-03
We have developed a highly tunable, narrow band far-infrared (FIR) photodetector which utilizes the characteristic merits of graphene and two-dimensional electron gas (2DEG) in GaAs/Al{sub x}Ga{sub 1?x}As heterostructure in the Quantum Hall states (QHS). The heterostructure surface is covered with chemical vapor-deposited graphene, which functions as a transparent top-gate to vary the electron density of the 2DEG. FIR response observed in the vicinity of integer QH regime can be effectively tuned in a wide range of 27–102?cm{sup ?1} with a bias voltage less than ?1?V. In addition, we have found that the presence of graphene can genuinely modulate the photoresponse. Our results demonstrate a promising direction for realizing a tunable long-wavelength FIR detector using QHS in GaAs 2DEG/ graphene composite material.