Sample records for mass number natural

  1. Particle Number & Particulate Mass Emissions Measurements on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies Particle Number & Particulate Mass Emissions Measurements on a 'Euro...

  2. Small numbers in supersymmetric theories of nature

    SciTech Connect (OSTI)

    Graesser, Michael L.

    1999-05-01T23:59:59.000Z

    The Standard Model of particle interactions is a successful theory for describing the interactions of quarks, leptons and gauge bosons at microscopic distance scales. Despite these successes, the theory contains many unsatisfactory features. The origin of particle masses is a central mystery that has eluded experimental elucidation. In the Standard Model the known particles obtain their mass from the condensate of the so-called Higgs particle. Quantum corrections to the Higgs mass require an unnatural fine tuning in the Higgs mass of one part in 10{sup {minus}32} to obtain the correct mass scale of electroweak physics. In addition, the origin of the vast hierarchy between the mass scales of the electroweak and quantum gravity physics is not explained in the current theory. Supersymmetric extensions to the Standard Model are not plagued by this fine tuning issue and may therefore be relevant in Nature. In the minimal supersymmetric Standard Model there is also a natural explanation for electroweak symmetry breaking. Supersymmetric Grand Unified Theories also correctly predict a parameter of the Standard Model. This provides non-trivial indirect evidence for these theories. The most general supersymmetric extension to the Standard Model however, is excluded by many physical processes, such as rare flavor changing processes, and the non-observation of the instability of the proton. These processes provide important information about the possible structure such a theory. In particular, certain parameters in this theory must be rather small. A physics explanation for why this is the case would be desirable. It is striking that the gauge couplings of the Standard Model unify if there is supersymmetry close to the weak scale. This suggests that at high energies Nature is described by a supersymmetric Grand Unified Theory. But the mass scale of unification must be introduced into the theory since it does not coincide with the probable mass scale of strong quantum gravity. The subject of this dissertation is both the phenomenology and model-building opportunities that may lie behind the small numbers that appear in supersymmetric extensions of the Standard Model.

  3. Mass-induced transition in fermion number

    SciTech Connect (OSTI)

    Aragao de Carvalho, C.; Pureza, J. M.

    1989-05-15T23:59:59.000Z

    We show that if we increase the mass of fermions in interaction with a topological (kink) scalar background in 1+1 dimensions, the fractional fermion number of the system will eventually vanish. The transition is sharp and corresponds to the disappearance of localized states from the spectrum of a Dirac operator which is exactly solvable. Possible applications to different physical systems are discussed.

  4. Natural occupation numbers: When do they vanish?

    E-Print Network [OSTI]

    Giesbertz, K J H

    2013-01-01T23:59:59.000Z

    The non-vanishing of the natural orbital occupation numbers of the one-particle density matrix of many-body systems has important consequences for the existence of a density matrix-potential mapping for nonlocal potentials in reduced density matrix functional theory and for the validity of the extended Koopmans' Theorem. On the basis of Weyl's theorem we give a connection between the differentiability properties of the ground state wave function and the rate at which the natural occupations approach zero when ordered as a descending series. We show, in particular, that the presence of a Coulomb cusp in the wave function leads, in general, to a power law decay of the natural occupations, whereas infinitely differentiable wave-functions typically have natural occupations that decay exponentially. We analyze for a number of explicit examples of two-particle systems that in case the wave function is non-analytic at its spatial diagonal (for instance, due to the presence of a Coulomb cusp) the natural orbital occu...

  5. Maine Natural Gas Number of Commercial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 07,755,432Commercial Consumers (Number

  6. Minnesota Natural Gas Number of Commercial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)Commercial Consumers (Number of Elements)

  7. Minnesota Natural Gas Number of Industrial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)Commercial Consumers (Number of

  8. Kansas Natural Gas Number of Residential Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessAprilResidential Consumers (Number of

  9. Tennessee Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade217523,552.1Residential Consumers (Number

  10. Wisconsin Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYearFuel5,266 6,090Industrial Consumers (Number

  11. Vermont Natural Gas Number of Commercial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreasesCommercial Consumers (Number of Elements)

  12. Vermont Natural Gas Number of Industrial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreasesCommercial Consumers (Number of

  13. Georgia Natural Gas Number of Industrial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPriceIndustrial Consumers (Number of

  14. Delaware Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0Cubic Feet)Delaware Natural7,541

  15. Universal neutrino mass hierarchy and cosmological baryon number asymmetry

    SciTech Connect (OSTI)

    Xing Zhizhong [CCAST (World Laboratory), P.O. Box 8730, Beijing 100080 (China); Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918 (4), Beijing 100039 (China)

    2004-10-01T23:59:59.000Z

    We conjecture that three light Majorana neutrinos and their right-handed counterparts may have a universal geometric mass hierarchy. Incorporating this phenomenological conjecture with the Fritzsch texture of lepton mass matrices in a simple seesaw mechanism, we show that it is possible to simultaneously account for current neutrino oscillation data and the cosmological baryon number asymmetry via leptogenesis.

  16. Number of Natural Gas Commercial Consumers

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0 1 2 3 4 5 Number of3

  17. Number of Natural Gas Industrial Consumers

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0 1 2 3 4 5 Number

  18. New Mexico Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New MexicoFeet) WorkingFeet)

  19. Oregon Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) DecadeYear JanYear Jan Feb

  20. Pennsylvania Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand CubicFuelDecade Year-0

  1. Maximum stellar mass versus cluster membership number revisited

    E-Print Network [OSTI]

    Th. Maschberger; C. J. Clarke

    2008-09-05T23:59:59.000Z

    We have made a new compilation of observations of maximum stellar mass versus cluster membership number from the literature, which we analyse for consistency with the predictions of a simple random drawing hypothesis for stellar mass selection in clusters. Previously, Weidner and Kroupa have suggested that the maximum stellar mass is lower, in low mass clusters, than would be expected on the basis of random drawing, and have pointed out that this could have important implications for steepening the integrated initial mass function of the Galaxy (the IGIMF) at high masses. Our compilation demonstrates how the observed distribution in the plane of maximum stellar mass versus membership number is affected by the method of target selection; in particular, rather low n clusters with large maximum stellar masses are abundant in observational datasets that specifically seek clusters in the environs of high mass stars. Although we do not consider our compilation to be either complete or unbiased, we discuss the method by which such data should be statistically analysed. Our very provisional conclusion is that the data is not indicating any striking deviation from the expectations of random drawing.

  2. Quark Number Susceptibility with Finite Quark Mass in Holographic QCD

    E-Print Network [OSTI]

    Kyung-il Kim; Youngman Kim; Shingo Takeuchi; Takuya Tsukioka

    2011-10-31T23:59:59.000Z

    We study the effect of a finite quark mass on the quark number susceptibility in the framework of holographic QCD. We work in a bottom-up model with a deformed AdS black hole and D3/D7 model to calculate the quark number susceptibility at finite temperature with/without a finite quark chemical potential. As expected the finite quark mass suppresses the quark number susceptibility. We find that at high temperatures $T\\ge 600$ MeV the quark number susceptibility of light quarks and heavy quarks are almost equal in the bottom-up model. This indicates that the heavy quark like charm contribution to thermodynamics of a QCD-like system may start to become significant at temperatures $T\\sim 600$ MeV. In D3/D7 model, we focus on the competition between the quark chemical potential, which enhances the quark number susceptibility, and the quark mass that suppresses the susceptibility. We observe that depending on the relative values of the quark mass and the quark chemical potential, the quark number susceptibility shows a diverging or converging behavior. We also calculate the chiral susceptibility in D3/D7 model to support the observation made with the quark number susceptibility.

  3. Occupation number-based energy functional for nuclear masses

    E-Print Network [OSTI]

    M. Bertolli; T. Papenbrock; S. Wild

    2011-10-19T23:59:59.000Z

    We develop an energy functional with shell-model occupations as the relevant degrees of freedom and compute nuclear masses across the nuclear chart. The functional is based on Hohenberg-Kohn theory with phenomenologically motivated terms. A global fit of the 17-parameter functional to nuclear masses yields a root-mean-square deviation of \\chi = 1.31 MeV. Nuclear radii are computed within a model that employs the resulting occupation numbers.

  4. 312 VOLUME 85 NUMBER 3 | MARCH 2009 | www.nature.com/cpt articles nature publishing group

    E-Print Network [OSTI]

    Lee, Keun Woo

    Division of Applied Life Sciences (BK21 Program), Environmental Biotechnology, National Core Research312 VOLUME 85 NUMBER 3 | MARCH 2009 | www.nature.com/cpt articles nature publishing group

  5. Stop-mass prediction in naturalness scenarios within MSSM-25

    E-Print Network [OSTI]

    Shehu S. AbdusSalam

    2014-10-11T23:59:59.000Z

    The "top-down" approach to minimal supersymmetric standard model (MSSM) phenomenology provides model-dependent indications for a natural stop mass. The approach is based on specific assumptions about the supersymmetry-breaking energy scale and parameters degeneracies. In order to determine robust predictions we update the stop-mass prediction within the MSSM with 25 parameters (MSSM-25) by including electroweak fine-tuning as "naturalness data" during the Bayesian fits of the parameters to experimental data. The approximately prior-independent results show that imposing naturalness, taken here to mean a 25% to 100% fine-tuning, predicts a 1-2 TeV stop mass. The posterior distributions for the neutralino-proton cross sections indicate better prospects for probing the associated neutralino cold dark matter (CDM) with future upgrades of the detection facilities.

  6. New Mexico Natural Gas Number of Commercial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New Mexico Natural Gas Number of

  7. New Mexico Natural Gas Number of Industrial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New Mexico Natural Gas Number ofIndustrial

  8. atomic mass number: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and relative number squeezing in dissociation of spatially inhomogeneous molecular condensates Physics Websites Summary: Atom-atom correlations and relative number squeezing in...

  9. Altered solar wind -magnetosphere interaction at low Mach numbers: coronal mass ejections

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Altered solar wind - magnetosphere interaction at low Mach numbers: coronal mass ejections Benoit fundamental alterations of the solar wind ­ magnetosphere interaction that occur during low Mach number solar wind. We first show that low Mach number solar wind conditions are often characteristic of coronal mass

  10. Fine scale modeling of wintertime aerosol mass, number, and size distributions in central California

    E-Print Network [OSTI]

    Jacobson, Mark

    Fine scale modeling of wintertime aerosol mass, number, and size distributions in central with the observed PM number and size distributions (with an NMB of -13.9%), indicating the importance of coagulation scale modeling of wintertime aerosol mass, number, and size distributions in central California, J

  11. THE COLLEGE OF NATURAL RESOURCES By the Numbers . . .

    E-Print Network [OSTI]

    Buckel, Jeffrey A.

    in the areas of bio-energy and natural resource sciences & policy to businesses, nonprofits and governmental Europe, south and east Asia, Australia, sub-Saharan Africa, and throughout Latin American

  12. ELECTROMAGNETIC NATURE OF THERMO-MECHANICAL MASS-ENERGY TRANSFER by M. KOSTIC PAGE 1 Electromagnetic Nature of Thermo-Mechanical Mass-Energy Transfer

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    ELECTROMAGNETIC NATURE OF THERMO-MECHANICAL MASS-ENERGY TRANSFER by M. KOSTIC PAGE 1 Electromagnetic Nature of Thermo-Mechanical Mass-Energy Transfer Milivoje M. Kostic1 Department of Mechanical to a sink system, since these thermo-mechanical phenomena are neither gravitational nor nuclear interactions

  13. MASS TRANSFER CONTROLLED REACTIONS IN PACKED BEDS AT LOW REYNOLDS NUMBERS

    E-Print Network [OSTI]

    Fedkiw, Peter S.

    2011-01-01T23:59:59.000Z

    Phase Mass Transfer 'in Fixed Beds at Low Reynolds Numbers,"Systems - In Particular in· Fixed Beds, Fluidized Beds andto a Sphere in a Fixed and Fluidized Bed," AIChE I. , Neale,

  14. Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals (Million Cubic Feet) Maryland Natural

  15. Mass spectrometry-guided genome mining of peptidic and glycosylated microbial natural products

    E-Print Network [OSTI]

    Kersten, Roland David

    mass spectrometry-guided genome mining approach for naturalBioactivity-guided genome mining identifies the lomaiviticinspectrometry and genome mining via short sequence tagging

  16. U.S. Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb(Million Barrels) NewNatural Gas

  17. U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb(Million Barrels) NewNatural

  18. U.S. Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb(Million Barrels) NewNaturalIndustrial

  19. U.S. Natural Gas Number of Commercial Consumers - Sales (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan Feb Mar Apr May Jun Jul Aug Sep (Number

  20. U.S. Natural Gas Number of Industrial Consumers - Sales (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan Feb Mar Apr May Jun Jul Aug (Number

  1. U.S. Natural Gas Number of Residential Consumers - Sales (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan Feb Mar Apr May Jun Jul Aug (Number

  2. Nature and Quantization of the Proton Mass: An Electromagnetic Model

    E-Print Network [OSTI]

    G. Sardin

    2005-12-14T23:59:59.000Z

    A method for quantization of the proton mass is here addressed, which provides a plausible explanation for the origin of mass and leads to the unification of mass and electric charge through their coupling. By means of an electromagnetic approach, the calculated mass of the proton closely approximates its experimental value and does so with dependence on a single parameter. That is to say, the proposed fundamental system provides a way to comprehend the source of mass as a property of the structure of elementary particles. It brings a new tool to the task of gaining insight into the proton mass and to unravelling the enigma of proton stability. The inner energy of elementary particles, or equivalently their mass, is surmised here to have electrodynamic roots, deriving from the dynamics of a single or pair of electric charge(s) shaping out their structure. Mass appears as the quantized balance of two inner energies which conform collapsing action and retentive reaction. Charge and mass are not taken as independent entities as in the traditional mode, instead mass appears as a by-product of the charge structural dynamics, as does the magnetic moment. The proposed model clearly requires a degree of willingness to consider possibilities not accounted for within the framework of the Standard Model. So, this proposal is addressed to those who are open to inspect a different look at the structure of elementary particles and disposed to compare the two approaches, standing out of doctrinal captivity.

  3. Construction of Oscillating Chemical Register Machines on Binary Numbers using Mass-Action Kinetics

    E-Print Network [OSTI]

    Hinze, Thomas

    of computation for controlling continuous species concentrations enhances the applicability of both modelling of three natural numbers illustrates the practicability of the design. 1 Introduction For more than 20 lead to error-prone computations [13]. We introduce a mod- ular design principle for pure chemical

  4. Probing the geometric nature of particles mass in graphene systems

    E-Print Network [OSTI]

    Donatello Dolce; Andrea Perali

    2014-03-13T23:59:59.000Z

    According to undulatory mechanics, the Compton periodicity, which is the intrinsic proper-time recurrence of a wave function, determines the mass of the corresponding elementary particles. This provides a geometric description of the rest mass which can be consistently applied to derive the effective mass spectrum and electronic properties of the elementary charge carriers in carbon nanotubes and other condensed matter systems. The Compton periodicity is determined by the boundary conditions associated to the curled-up dimension of carbon nanotubes or analogous constraints of the charge carrier wave function. This approach shows an interesting interplay between particle physics and relativistic space-time, as well as analogies with the Kaluza-Klein theory and Holography.

  5. Mass Spectrum and Number of Light Neutrinos: An Attempt of the Gauge Explanation

    E-Print Network [OSTI]

    Dyatlov, I T

    2009-01-01T23:59:59.000Z

    Symplectic flavour symmetry group Sp(n/2) (n is even) of n Majorana states does not allow for invariant Majorana masses. Only specific mass matrices with diagonal and nondiagonal elements are possible here. As a result of the spontaneous violation of flavour and chiral symmetries, a mass matrix could appear only for the number of flavours n = 6 and only together with R,L-symmetry violation (i.e., parity violation). The see-saw mechanism produces here three light and three heavy Dirac particles (neutrinos). The peculiarity of the observed light neutrino spectrum: two states located far from the third one, can be explained by certain simple properties of mass matrices appearing in Sp(3). The ordering of the states corresponds to normal mass hierarchy. Situation, when neutrino mass differences are significantly less than masses themselves, appears to be unrealizable here. Mixing angles for neutrinos can not be determined without understanding formation mechanisms for charged lepton spectrum and Majorana state we...

  6. Mass Spectrum and Number of Light Neutrinos: An Attempt of the Gauge Explanation

    E-Print Network [OSTI]

    I. T. Dyatlov

    2009-10-01T23:59:59.000Z

    Symplectic flavour symmetry group Sp(n/2) (n is even) of n Majorana states does not allow for invariant Majorana masses. Only specific mass matrices with diagonal and nondiagonal elements are possible here. As a result of the spontaneous violation of flavour and chiral symmetries, a mass matrix could appear only for the number of flavours n = 6 and only together with R,L-symmetry violation (i.e., parity violation). The see-saw mechanism produces here three light and three heavy Dirac particles (neutrinos). The peculiarity of the observed light neutrino spectrum: two states located far from the third one, can be explained by certain simple properties of mass matrices appearing in Sp(3). The ordering of the states corresponds to normal mass hierarchy. Situation, when neutrino mass differences are significantly less than masses themselves, appears to be unrealizable here. Mixing angles for neutrinos can not be determined without understanding formation mechanisms for charged lepton spectrum and Majorana state weak currents.

  7. CPT and lepton number violation in neutrino sector: Modified mass matrix and oscillation due to gravity

    E-Print Network [OSTI]

    Monika Sinha; Banibrata Mukhopadhyay

    2007-11-21T23:59:59.000Z

    We study the consequences of CPT and lepton number violation in neutrino sector. For CPT violation we take gravity with which neutrino and antineutrino couple differently. Gravity mixes neutrino and antineutrino in an unequal ratio to give two mass eigenstates. Lepton number violation interaction together with CPT violation gives rise to neutrino-antineutrino oscillation. Subsequently, we study the neutrino flavor mixing and oscillation under the influence of gravity. It is found that gravity changes flavor oscillation significantly which influences the relative abundance of different flavors in present universe. We show that the neutrinoless double beta decay rate is modified due to presence of gravity- the origin of CPT violation, as the mass of the flavor state is modified.

  8. PHYSICAL REVIEW D VOLUME 53,NUMBER 1 Measurement of the mass of the T lepton

    E-Print Network [OSTI]

    Olsen, Stephen L.

    PHYSICAL REVIEW D VOLUME 53,NUMBER 1 Measurement of the mass of the T lepton 1JANUARY 1996 J. Z,4 .I. Chen,5 S. J. Chen,l S. M. Chen,l Y. Chen,' Y. B. Chen,' Y. Q. Chen,' B. S. Cheng,' R. F. Cowan,e H. C. Cu&l X. Z. Cui,' H. L. Ding,' Z. Z. Du,' W. Dunwoodie,e X. L. Fan,' J. Fang, 1 C. S. Gao,' M

  9. A newsletter of the Kemp Natural Resources Station Volume 4, Number 1 -Spring 2003

    E-Print Network [OSTI]

    raised concern about the potential impacts on sustainable resource use. Such concern often spawnsA newsletter of the Kemp Natural Resources Station Volume 4, Number 1 - Spring 2003 (Continued, and many settlers inundated the area. The poor soils and short growing season caused many farms to fail

  10. OBESITY | VOLUME 18 NUMBER 3 | MARCH 2010 563 nature publishing group ARTICLES

    E-Print Network [OSTI]

    Reich, David

    OBESITY | VOLUME 18 NUMBER 3 | MARCH 2010 563 nature publishing group ARTICLES GENETICS INTRODUCTION Obesity is an important cause of morbidity and mortality worldwide, increasing the risk), physical inactivity, and excess caloric consumption can a ect an individual's risk of obesity (1). Although

  11. obesity | VOLUME 18 NUMBER 3 | MaRch 2010 489 nature publishing group articles

    E-Print Network [OSTI]

    Hammock, Bruce D.

    obesity | VOLUME 18 NUMBER 3 | MaRch 2010 489 nature publishing group articles integrative Physiology IntroductIon Obesity, a chronic inflammatory condition, is an increasingly important public health issue reaching epidemic proportions (1). Visceral obesity has been defined as an important ele- ment

  12. nature biotechnology volume 27 number 12 december 2009 1063 particularly widespread in Brazil,"saysAntonio

    E-Print Network [OSTI]

    Cai, Long

    nature biotechnology volume 27 number 12 december 2009 1063 particularly widespread in Brazil vaccines. For example, Brazil currently faces a widespread epidemic of dengue fever,with insect vectors any patents. Likewise,the tech transfer deal might extend to a vaccine against malaria or the develop

  13. 1128 volume 27 number 12 december 2009 nature biotechnology square meter per day of algae containing

    E-Print Network [OSTI]

    Cai, Long

    1128 volume 27 number 12 december 2009 nature biotechnology square meter per day of algae, such as triglycerides from algae or cellulosic biomass from higher plants, as feedstocks for biofuel production. The algal program sought to develop high-oil-content algae that grow at very fast rates. In our report

  14. 308 VOLUME 16 | NUMBER 3 | MARCH 2010 nature medicine l e t t e r S

    E-Print Network [OSTI]

    308 VOLUME 16 | NUMBER 3 | MARCH 2010 nature medicine l e t t e r S Osteoporosis is a disease whether hampering its biosynthesis could treat osteoporosis through an anabolic mechanism (that is osteoporosis in ovariectomized rodents because of an isolated increase in bone formation. These results provide

  15. The ordered distribution of natural numbers on the square root spiral

    E-Print Network [OSTI]

    Harry K. Hahn; Kay Schoenberger

    2007-12-13T23:59:59.000Z

    Natural numbers divisible by the same prime factor lie on defined spiral graphs which are running through the Square Root Spiral (also named as the Spiral of Theodorus or Wurzel Spirale or Einstein Spiral). Prime Numbers also clearly accumulate on such spiral graphs. And the square numbers 4, 9, 16, 25, 36,... form a highly three-symmetrical system of three spiral graphs, which divides the square-root-spiral into three equal areas. A mathematical analysis shows that these spiral graphs are defined by quadratic polynomials. Fibonacci number sequences also play a part in the structure of the Square Root Spiral. Fibonacci Numbers divide the Square Root Spiral into areas and angle sectors with constant proportions. These proportions are linked to the golden mean (or golden section), which behaves as a self-avoiding-walk-constant in the lattice-like structure of the square root spiral.

  16. Aerosol formation from high-velocity uranium drops: Comparison of number and mass distributions. Final report

    SciTech Connect (OSTI)

    Rader, D.J.; Benson, D.A.

    1995-05-01T23:59:59.000Z

    This report presents the results of an experimental study of the aerosol produced by the combustion of high-velocity molten-uranium droplets produced by the simultaneous heating and electromagnetic launch of uranium wires. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. As reported earlier, the resulting aerosol consists mainly of web-like chain agglomerates. A condensation nucleus counter was used to investigate the decay of the total particle concentration due to coagulation and losses. Number size distributions based on mobility equivalent diameter obtained soon after launch with a Differential Mobility Particle Sizer showed lognormal distributions with an initial count median diameter (CMD) of 0.3 {mu}m and a geometric standard deviation, {sigma}{sub g} of about 2; the CMD was found to increase and {sigma}{sub g} decrease with time due to coagulation. Mass size distributions based on aerodynamic diameter were obtained for the first time with a Microorifice Uniform Deposit Impactor, which showed lognormal distributions with mass median aerodynamic diameters of about 0.5 {mu}m and an aerodynamic geometric standard deviation of about 2. Approximate methods for converting between number and mass distributions and between mobility and aerodynamic equivalent diameters are presented.

  17. Probing the N = 32 shell closure below the magic proton number Z = 20: Mass measurements of the exotic isotopes 52,53K

    E-Print Network [OSTI]

    M. Rosenbusch; P. Ascher; D. Atanasov; C. Barbieri; D. Beck; K. Blaum; Ch. Borgmann; M. Breitenfeldt; R. B. Cakirli; A. Cipollone; S. George; F. Herfurth; M. Kowalska; S. Kreim; D. Lunney; V. Manea; P. Navrátil; D. Neidherr; L. Schweikhard; V. Somà; J. Stanja; F. Wienholtz; R. N. Wolf; K. Zuber

    2015-06-01T23:59:59.000Z

    The recently confirmed neutron-shell closure at N = 32 has been investigated for the first time below the magic proton number Z = 20 with mass measurements of the exotic isotopes 52,53K, the latter being the shortest-lived nuclide investigated at the online mass spectrometer ISOLTRAP. The resulting two-neutron separation energies reveal a 3 MeV shell gap at N = 32, slightly lower than for 52Ca, highlighting the doubly-magic nature of this nuclide. Skyrme-Hartree-Fock-Boguliubov and ab initio Gorkov-Green function calculations are challenged by the new measurements but reproduce qualitatively the observed shell effect.

  18. Transient Nature of Generalized Coulomb Gauge A Mathematical Key to Color Confinement and Mass-Gap

    E-Print Network [OSTI]

    Transient Nature of Generalized Coulomb Gauge ­ A Mathematical Key to Color Confinement and Mass to avoid non-locality of the action when generalized Coulomb gauge is imposed, the implementation of the non-abelian Gauss law for infinitesimal time-period over the space of gauge potentials in path

  19. Laser-Based Mass Spectrometric Determination of Aggregation Numbers for Petroleum-and Coal-Derived Asphaltenes

    E-Print Network [OSTI]

    Zare, Richard N.

    Laser-Based Mass Spectrometric Determination of Aggregation Numbers for Petroleum- and Coal: Petroleum- and coal-derived asphaltenes have been studied with three laser-based mass spectrometric-MS), in which a single laser desorbs and ionizes solid analytes from an activated surface; and laser desorption

  20. Neutrino masses and the number of neutrino species from WMAP and 2dFGRS

    E-Print Network [OSTI]

    Steen Hannestad

    2003-03-04T23:59:59.000Z

    We have performed a thorough analysis of the constraints which can be put on neutrino parameters from cosmological observations, most notably those from the WMAP satellite and the 2dF galaxy survey. For this data we find an upper limit on the sum of active neutrino mass eigenstates of \\sum m_nu < 1.0 eV (95% conf.), but this limit is dependent on priors. We find that the WMAP and 2dF data alone cannot rule out the evidence from neutrinoless double beta decay reported by the Heidelberg-Moscow experiment. In terms of the relativistic energy density in neutrinos or other weakly interacting species we find, in units of the equivalent number of neutrino species, N_nu, that N_nu = 4.0+3.0-2.1 (95% conf.). When BBN constraints are added, the bound on N_\

  1. The distribution of natural numbers divisible by 2,3,5,11,13 and 17 on the Square Root Spiral

    E-Print Network [OSTI]

    Harry K. Hahn

    2008-01-29T23:59:59.000Z

    The natural numbers divisible by the Prime Factors 2, 3, 5, 11, 13 and 17 lie on defined spiral graphs, which run through the Square Root Spiral. A mathematical analysis shows, that these spiral graphs are defined by specific quadratic polynomials. Basically all natural number which are divisible by the same prime factor lie on such spiral graphs. And these spiral graphs can be assigned to a certain number of Spiral Graph Systems, which have a defined spatial orientation to each other. This document represents a supplementation to my detailed introduction study to the Square Root Spiral, and it contains the missing diagrams and analyses, showing the distribution of the natural numbers divisible by 2, 3, 5, 11, 13 and 17 on the Square Root Spiral. My introduction study to the Square Root Spiral can be found in the arxiv-archive. The title of this study : The ordered distribution of the natural numbers on the Square Root Spiral.

  2. NATURE MEDICINE VOLUME 7 NUMBER 5 MAY 2001 521 It is time for the global donor community--

    E-Print Network [OSTI]

    NATURE MEDICINE · VOLUME 7 · NUMBER 5 · MAY 2001 521 COMMENTARY It is time for the global donor regress rather than progress. Immunization rates declined in many parts of the continent during the 1990s

  3. Natural Theories of Ultra-Low Mass PNGB's: Axions and Quintessence

    E-Print Network [OSTI]

    Christopher T. Hill; Adam K. Leibovich

    2002-06-06T23:59:59.000Z

    We consider the Wilson Line PNGB which arises in a U(1)^N gauge theory, abstracted from a latticized, periodically compactified extra dimension U(1). Planck scale breaking of the PNGB's global symmetry is suppressed, providing natural candidates for the axion and quintessence. We construct an explicit model in which the axion may be viewed as the 5th component of the U(1)_Y gauge field in a 1+4 latticized periodically compactified extra dimension. We also construct a quintessence PNGB model where the ultra-low mass arises from Planck-scale suppressed physics itself.

  4. Aspects of Neutrino Masses and Lepton-Number Violation in the light of the Super-Kamiokande data

    E-Print Network [OSTI]

    Smaragda Lola

    1999-03-01T23:59:59.000Z

    We discuss aspects of neutrino masses and lepton-number violation, in the light of the observations of Super-Kamiokande. As a first step, we use the data from various experiments, in order to obtain a phenomenological understanding of neutrino mass textures. We then investigate how the required patterns of neutrino masses and mixings are related to the flavour structure of the underlying theory. In supersymmetric extensions of the Standard Model, renormalisation group effects can have important implications: for small tanb, bottom-tau unification indicates the presence of significant muon-tau flavour mixing. The evolution of the neutrino mixing may be described by simple semi-analytic expressions, which confirm that, for large tanb, very small mixing at the GUT scale may be amplified to maximal mixing at low energies, and vice versa. Passing to specific models, we first discuss the predictions for neutrino masses in different GUT models (including superstring-embedded solutions). Imposing the requirement for successful leptogenesis may give additional constraints on the generic structure of the neutrino mass textures. Finally, we discuss direct ways to look for lepton-number violation in ultra-high energy neutrino interactions.

  5. Mass number dependence of the Skyrme-force-induced nuclear symmetry energy

    E-Print Network [OSTI]

    M. Rafalski; W. Satula; R. Wyss

    2005-11-04T23:59:59.000Z

    The global mass dependence of the nuclear symmetry energy and its two basic ingredients due to the mean-level spacing and effective strength of the isovector mean-potential is studied within the Skyrme-Hartree-Fock model. In particular, our study determines the ratio of the surface-to-volume contributions to the nuclear symmetry energy to be ~1.6 and reveals that contributions due to mean-level spacing and effective strength of the isovector mean-potential are almost equal after removing momentum-dependent effects by rescaling them with isoscalar and isovector effective masses, respectively.

  6. 1108 VOLUME 24 NUMBER 9 SEPTEMBER 2006 NATURE BIOTECHNOLOGY A framework for the use of genomics data

    E-Print Network [OSTI]

    Cai, Long

    1108 VOLUME 24 NUMBER 9 SEPTEMBER 2006 NATURE BIOTECHNOLOGY A framework for the use of genomicsClintock, Kerry L Dearfield & William H Farland The US Environmental Protection Agency is developing a new of genomics data for environmental applications. Four years ago, the US Environmental Protection Agency's (EPA

  7. Attempt at a gauge-theory-based explanation of the mass spectrum and number of light neutrinos

    SciTech Connect (OSTI)

    Dyatlov, I. T. [Russian Academy of Sciences, Petersburg Nuclear Physics Institute (Russian Federation)

    2009-12-15T23:59:59.000Z

    The symplectic group Sp(n/2) of invariance of flavors of n Majorana states (n is even) does not admit the existence of invariant Majorana masses. Only a specific mass matrix involving diagonal and off-diagonal elements is possible. A mass matrix as a result of spontaneous flavor- and chiral-symmetry breaking may appear here only in the case where the number of flavors is n = 6 and only together with spontaneous R- and L-symmetry violation-that is, parity violation. As a result, three light and three heavy Dirac particles (neutrinos) are present if the seesaw mechanism is operative. Special features of the observed spectrum of light neutrinos-in particular, the fact that two states are far off the third one-can be explained by simple properties of the mass matrices arising in Sp(3). The arrangement of states corresponds to an ordinary mass hierarchy. The mixing angles for physical neutrinos cannot be determined without understanding the mechanisms responsible for the formation of the charged-lepton spectrum and the weak current of Majorana states.

  8. Electromagnetic Nature of Thermo-Mechanical Mass-Energy Transfer Due to Photon Diffusive Re-Emission and Propagation

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Electromagnetic Nature of Thermo-Mechanical Mass-Energy Transfer Due to Photon Diffusive Re and the Physics law of forced interactions will be violated, since these thermo-mechanical phenomena are neither force interactions, namely all electro-chemical and thermo-mechanical phenomena, the latter as reasoned

  9. U.S. Natural Gas Number of Underground Storage Salt Caverns Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb(Million Barrels)of Elements)(Number of

  10. A theory of evolving natural constants embracing Einstein's theory of general relativity and Dirac's large number hypothesis

    E-Print Network [OSTI]

    H. W. Peng

    2004-01-27T23:59:59.000Z

    Taking a hint from Dirac's large number hypothesis, we note the existence of cosmic combined conservation laws that work to cosmologically long time. We thus modify or generalize Einstein's theory of general relativity with fixed gravitation constant $G$ to a theory for varying $G$, which can be applied to cosmology without inconsistency, where a tensor arising from the variation of G takes the place of the cosmological constant term. We then develop on this basis a systematic theory of evolving natural constants $m_{e},m_{p},e,\\hslash ,k_{B}$ by finding out their cosmic combined counterparts involving factors of appropriate powers of $G$ that remain truly constant to cosmologically long time. As $G$ varies so little in recent centuries, so we take these natural constants to be constant.

  11. An explicit SU(12) family and flavor unification model with natural fermion masses and mixings

    SciTech Connect (OSTI)

    Albright, Carl H. [Northern Illinois Univ., Dekalb, IL (United States); Feger, Robert P. [Vanderbilt Univ., Nashville, TN (United States); Kephart, Thomas W. [Vanderbilt Univ., Nashville, TN (United States)

    2012-07-01T23:59:59.000Z

    We present an SU(12) unification model with three light chiral families, avoiding any external flavor symmetries. The hierarchy of quark and lepton masses and mixings is explained by higher dimensional Yukawa interactions involving Higgs bosons that contain SU(5) singlet fields with VEVs about 50 times smaller than the SU(12) unification scale. The presented model has been analyzed in detail and found to be in very good agreement with the observed quark and lepton masses and mixings.

  12. Extracting the Mass Dependence and Quantum Numbers of Short-Range Correlated Pairs from A(e,e'p) and A(e,e'pp) Scattering

    E-Print Network [OSTI]

    Colle, C; Cosyn, W; Korover, I; Piasetzky, E; Ryckebusch, J; Weinstein, L B

    2015-01-01T23:59:59.000Z

    The nuclear mass dependence of the number of short-range correlated (SRC) proton-proton (pp) and proton-neutron (pn) pairs in nuclei is a sensitive probe of the dynamics of short-range pairs in the ground state of atomic nuclei. This work presents an analysis of electroinduced single-proton and two-proton knockout measurements off 12C, 27Al, 56Fe, and 208Pb in kinematics dominated by scattering off SRC pairs. The nuclear mass dependence of the observed A(e,e'pp)/12C(e,e'pp) cross-section ratios and the extracted number of pp- and pn-SRC pairs are much softer than the mass dependence of the total number of possible pairs. This is in agreement with a physical picture of SRC affecting predominantly nucleon-nucleon pairs in a nodeless relative-S state of the mean-field basis.

  13. Naturally fractured reservoirs contain a significant amount of the world oil reserves. A number of these reservoirs contain several

    E-Print Network [OSTI]

    Arbogast, Todd

    Summary Naturally fractured reservoirs contain a significant amount of the world oil reserves simulation of naturally fractured reservoirs is one of the most important, challenging, and computationally intensive problems in reservoir engineering. Parallel reservoir simulators developed for naturally fractured

  14. The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation

    E-Print Network [OSTI]

    Hiroyuki Abe; Junichiro Kawamura

    2014-06-23T23:59:59.000Z

    We study the mass of the lightest CP-even Higgs boson in the deflected mirage mediation that is a quite general framework of the mediation of supersymmetry breaking, incorporating the case where all of the modulus-, the anomaly- and the gauge-mediated contributions to the soft supersymmetry breaking parameters become sizable. We evaluate the degree of tuning the so-called mu parameter required for realizing a correct electroweak symmetry breaking and study how to accomplish both the observed Higgs boson mass and the relaxed fine-tuning. We identify the parameter space favored from such a perspective and show the superparticle mass spectrum with some input parameters inside the indicated region. The results here would be useful when we aim to prove the communication between the visible and the hidden sectors in supergravity and superstring models based on the recent observations.

  15. Improvement of industrial drying of natural rubber through analysis of heat and mass transfers

    SciTech Connect (OSTI)

    Naon, B.; Berthomieu, G.; Benet, J.C.; Saix, C. [Univ. Montpellier II (France). Laboratoire de Mecanique et Genie Civil

    1995-12-31T23:59:59.000Z

    An analysis is presented of convective drying of natural rubber in granule form. Exploitation of the mathematical model developed from analysis of internal transfers requires determination of the drying rate and the energy exchange coefficient between the material and the drying air. This was performed using a portable laboratory dryer at the production site, avoiding the problem of changes in the material during transport. Analysis of the drying kinetics of material in thin layers led to modelling the drying rate at the temperatures, rates and relative humidity values encountered in industrial dryers. The energy exchange coefficient was found by measurement of air and granule temperatures. Thick layer trials showed the suitability of the model for simulation of changes in moisture content and temperature of air and granules in a granular environment. The study as a whole led to the development of a computer program for simulating a zone dryer. This software can be used to optimize the management of an industrial natural rubber drying installation.

  16. On the Compton clock and the undulatory nature of particle mass in graphene systems

    E-Print Network [OSTI]

    Donatello Dolce; Andrea Perali

    2015-03-19T23:59:59.000Z

    In undulatory mechanics the rest mass of a particle is associated to a rest periodicity known as Compton periodicity. In carbon nanotubes the Compton periodicity is determined geometrically, through dimensional reduction, by the circumference of the curled-up dimension, or by similar spatial constraints to the charge carrier wave function in other condensed matter systems. In this way the Compton periodicity is effectively reduced by several order of magnitudes with respect to that of the electron, allowing for the possibility to experimentally test foundational aspects of quantum mechanics. We present a novel powerful formalism to derive the electronic properties of carbon nanotubes, in agreement with the results known in the literature, from simple geometric and relativistic considerations about the Compton periodicity as well as a dictionary of analogies between particle and graphene physics.

  17. The Cleveland MuseuM of naTural hisTorY nuMber 56 GEOLOGY AND PALEONTOLOGY OF LEMUDONG'O, KENYA

    E-Print Network [OSTI]

    Hlusko, Leslea J.

    The Cleveland MuseuM of naTural hisTorY nuMber 56 GEOLOGY AND PALEONTOLOGY OF LEMUDONG'O, KENYA HISTORY OF PALEONTOLOGICAL RESEARCH IN THE NAROK DISTRICT OF KENYA 1 Stanley H. Ambrose, Mwanzia David, A LATE MIOCENE TERRESTRIAL FOSSIL SITE IN SOUTHERN KENYA 38 Stanley H. Ambrose, Christopher J. Bell

  18. 1132 nature structural biology volume 6 number 12 december 1999 To be active, proteins must fold into well-defined three-dimen-

    E-Print Network [OSTI]

    Matouschek, Andreas

    precursor proteins normally lack all structure during import11, but some proteins assume their native formarticles 1132 nature structural biology · volume 6 number 12 · december 1999 To be active, proteins must fold into well-defined three-dimen- sional structures. However, unfolding of proteins is also

  19. Energy notes: Energy in natural processes and human consumption, some numbers H A&S 220c Fall 2004 19x2004

    E-Print Network [OSTI]

    Energy notes: Energy in natural processes and human consumption, some numbers H A&S 220c Fall 2004 consumption rate per capita U.S. 102 Electric razor 101 Energy Content of Fuels (in Joules) Energy Unit Joules person (Note: MWE is an abbreviation for megawatts-electrical output) Global Energy Consumption Global

  20. NATURE CELL BIOLOGY VOLUME 7 | NUMBER 1 | JANUARY 2005 1 E D I T O R I A L

    E-Print Network [OSTI]

    Cai, Long

    on the block will become an authoritative port of call for coveted bibliometric data. A limitation at present. Meanwhile, Elsevier has launched its own search powerhouse, Scopus (www.scopus.com; see Nature 428, 683. A numberoffactorscanconspiretoresultintherejectionofamanuscript; prominent among these are the novelty, scope and quality of the data. But it is important

  1. nature neuroscience volume 14 | number 8 | AuGuST 2011 947 n e w s an d v i e w s

    E-Print Network [OSTI]

    Gentner, Timothy

    nature neuroscience volume 14 | number 8 | AuGuST 2011 947 n e w s an d v i e w s 10. Seimiya, H Neurosci. 33, 193­201 (2010). 6. Jho, E.H. et al. Mol. Cell. Biol. 22, 1172­1183 (2002). 7. Azim, K. & Butt, E.B. III & Grinspan, J.B. Mol. Cell. Neurosci. 42, 255­265 (2009). 4. Tawk, M. et al. J. Neurosci

  2. Near-Infrared Properties of Moderate-Redshift Galaxy Clusters: Halo Occupation Number, Mass-to-Light Ratios and Omega(M)

    SciTech Connect (OSTI)

    Muzzin, Adam; Yee, H.K.C.; /Toronto U., Astron. Dept.; Hall, Patrick B.; /York U., Canada; Lin, Huan; /Fermilab

    2007-03-01T23:59:59.000Z

    Using K-band imaging for 15 of the Canadian Network for Observational Cosmology (CNOC1) clusters we examine the near-infrared properties of moderate-redshift (0.19 < z < 0.55) galaxy clusters. We find that the number of K-band selected cluster galaxies within R{sub 500} (the Halo Occupation Number, HON) is well-correlated with the cluster dynamical mass (M{sub 500}) and X-ray Temperature (T{sub x}); however, the intrinsic scatter in these scaling relations is 37% and 46% respectively. Comparison with clusters in the local universe shows that the HON-M{sub 500} relation does not evolve significantly between z = 0 and z {approx} 0.3. This suggests that if dark matter halos are disrupted or undergo significant tidal-stripping in high-density regions as seen in numerical simulations, the stellar mass within the halos is tightly bound, and not removed during the process. The total K-band cluster light (L{sub 200},K) and K-band selected richness (parameterized by B{sub gc,K}) are also correlated with both the cluster T{sub x} and M{sub 200}. The total (intrinsic) scatter in the L{sub 200,K}-M{sub 200} and B{sub gc,K}-M{sub 200} relations are 43%(31%) and 35%(18%) respectively and indicates that for massive clusters both L{sub 200,K} and B{sub gc,K} can predict M{sub 200} with similar accuracy as T{sub x}, L{sub x} or optical richness (B{sub gc}). Examination of the mass-to-light ratios of the clusters shows that similar to local clusters, the K-band mass-to-light ratio is an increasing function of halo mass. Using the K-band mass-to-light ratios of the clusters, we apply the Oort technique and find {Omega}{sub m,0} = 0.22 {+-} 0.02, which agrees well with recent combined concordance cosmology parameters, but, similar to previous cluster studies, is on the low-density end of preferred values.

  3. Electromagnetic Nature of Thermo-Mechanical Mass-Energy Transfer Due to Photon Diffusive Re-Emission and

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    , the mass-energy equivalence and the Physics law of forced interactions will be violated, since these thermo-mechanical phenomena are neither gravitational nor nuclear interactions. It is widely believed that thermal heat

  4. NACRE II: an update of the NACRE compilation of charged-particle-induced thermonuclear reaction rates for nuclei with mass number $A < 16$

    E-Print Network [OSTI]

    Yi Xu; Kohji Takahashi; Stephane Goriely; Marcel Arnould; Masahisa Ohta; Hiroaki Utsunomiya

    2013-10-26T23:59:59.000Z

    An update of the NACRE compilation [Angulo et al., Nucl. Phys. A 656 (1999) 3] is presented. This new compilation, referred to as NACRE II, reports thermonuclear reaction rates for 34 charged-particle induced, two-body exoergic reactions on nuclides with mass number $A<16$, of which fifteen are particle-transfer reactions and the rest radiative capture reactions. When compared with NACRE, NACRE II features in particular (1) the addition to the experimental data collected in NACRE of those reported later, preferentially in the major journals of the field by early 2013, and (2) the adoption of potential models as the primary tool for extrapolation to very low energies of astrophysical $S$-factors, with a systematic evaluation of uncertainties. As in NACRE, the rates are presented in tabular form for temperatures in the $10^{6}$ $\\simeq\\leq$ T $\\leq$ $10^{10}$ K range. Along with the 'adopted' rates, their low and high limits are provided. The new rates are available in electronic form as part of the Brussels Library (BRUSLIB) of nuclear data. The NACRE II rates also supersede the previous NACRE rates in the Nuclear Network Generator (NETGEN) for astrophysics. [http://www.astro.ulb.ac.be/databases.html.

  5. K{sub e4} decay as a source of information about the ?-particle mass and about the nature of spin-1 mesons

    SciTech Connect (OSTI)

    Shabalin, E. P., E-mail: shabalin@itep.ru [National Research Center Kurchatov Institute, Institute of Theoretical and Experimental Physics (Russian Federation)

    2014-12-15T23:59:59.000Z

    Data on the form factors for K{sub e4} decay make it possible to fix the value of a parameter that is not determined by the theory itself and which is contained in the Lagrangian for the system formed by 0{sup +} and 0{sup ?} mesons. This makes it possible to find the mass of the lightest ? meson: m? = 663 MeV. As for the nature of spin-1 mesons, which also contribute to the form factors for K{sub e4} decay, data on them give no way to interpret spin-1 mesons as gauge bosons of chiral theory.

  6. nature biotechnology volume 27 number 12 december 2009 1 half-life for indications when an extended residence time in the cir-

    E-Print Network [OSTI]

    Cai, Long

    and can complicate tight control over plasma Focus on synthetic biology This issue of Nature Biotechnology

  7. Discovering Mercury Protein Modifications in Whole Proteomes Using Natural Isotope Distributions Observed in Liquid Chromatography-Tandem Mass Spectrometry

    SciTech Connect (OSTI)

    Polacco, Benjamin J.; Purvine, Samuel O.; Zink, Erika M.; LaVoie, Stephen P.; Lipton, Mary S.; Summers, Anne O.; Miller, Susan M.

    2011-08-01T23:59:59.000Z

    The identification of peptides that result from post-translational modifications is critical for understanding normal pathways of cellular regulation as well as identifying damage from, or exposures to xenobiotics, i.e. the exposome. However, because of their low abundance in proteomes, effective detection of modified peptides by mass spectrometry (MS) typically requires enrichment to eliminate false identifications. We present a new method for confidently identifying peptides with mercury (Hg)-containing adducts that is based on the influence of mercury’s seven stable isotopes on peptide isotope distributions detected by high-resolution MS. Using a pure protein and E. coli cultures exposed to phenyl mercuric acetate, we show the pattern of peak heights in isotope distributions from primary MS single scans efficiently identified Hg adducts in data from chromatographic separation coupled with tandem mass spectrometry with sensitivity and specificity greater than 90%. Isotope distributions are independent of peptide identifications based on peptide fragmentation (e.g. by SEQUEST), so both methods can be combined to eliminate false positives. Summing peptide isotope distributions across multiple scans improved specificity to 99.4% and sensitivity above 95%, affording identification of an unexpected Hg modification. We also illustrate the theoretical applicability of the method for detection of several less common elements including the essential element, selenium, as selenocysteine in peptides.

  8. Naturalness redux

    E-Print Network [OSTI]

    Marco Fabbrichesi; Alfredo Urbano

    2015-04-21T23:59:59.000Z

    The idea of naturalness, as originally conceived, refers only to the finite renormalization of the Higgs boson mass induced by the introduction of heavier states. In this respect, naturalness is still a powerful heuristic principle in model building beyond the standard model whenever new massive states are coupled to the Higgs field. The most compelling case is provided by the generation of neutrino masses. In this paper we confront this problem from a new perspective. The right-handed sector responsible for the seesaw mechanism---which introduces a large energy threshold above the electroweak scale---is made supersymmetric to comply with naturalness while the standard model is left unchanged and non-supersymmetric. Cancellations necessary to the naturalness requirement break down only at two loops, thus offering the possibility to increase the right-handed neutrino mass scale up to one order of magnitude above the usual values allowed by naturalness. If also the weak boson sector of the standard model is made supersymmetric, cancellations break down at three loops and the scale of new physics can be further raised. In the type-I seesaw, this implementation provides right-handed neutrino masses that are natural and at the same time large enough to give rise to baryogenesis (via leptogenesis). The model contains a dark matter candidate and distinctive new physics in the leptonic sector.

  9. The neutron star mass distribution

    SciTech Connect (OSTI)

    Kiziltan, Bülent [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kottas, Athanasios; De Yoreo, Maria [Department of Applied Mathematics and Statistics, University of California, Santa Cruz, CA 95064 (United States); Thorsett, Stephen E., E-mail: bkiziltan@cfa.harvard.edu [Department of Astronomy and Astrophysics, University of California and UCO/Lick Observatory, Santa Cruz, CA 95064 (United States)

    2013-11-20T23:59:59.000Z

    In recent years, the number of pulsars with secure mass measurements has increased to a level that allows us to probe the underlying neutron star (NS) mass distribution in detail. We critically review the radio pulsar mass measurements. For the first time, we are able to analyze a sizable population of NSs with a flexible modeling approach that can effectively accommodate a skewed underlying distribution and asymmetric measurement errors. We find that NSs that have evolved through different evolutionary paths reflect distinctive signatures through dissimilar distribution peak and mass cutoff values. NSs in double NS and NS-white dwarf (WD) systems show consistent respective peaks at 1.33 M {sub ?} and 1.55 M {sub ?}, suggesting significant mass accretion (?m ? 0.22 M {sub ?}) has occurred during the spin-up phase. The width of the mass distribution implied by double NS systems is indicative of a tight initial mass function while the inferred mass range is significantly wider for NSs that have gone through recycling. We find a mass cutoff at ?2.1 M {sub ?} for NSs with WD companions, which establishes a firm lower bound for the maximum NS mass. This rules out the majority of strange quark and soft equation of state models as viable configurations for NS matter. The lack of truncation close to the maximum mass cutoff along with the skewed nature of the inferred mass distribution both enforce the suggestion that the 2.1 M {sub ?} limit is set by evolutionary constraints rather than nuclear physics or general relativity, and the existence of rare supermassive NSs is possible.

  10. Neutrino Masses

    E-Print Network [OSTI]

    Christian Weinheimer; Kai Zuber

    2013-09-04T23:59:59.000Z

    The various experiments on neutrino oscillation evidenced that neutrinos have indeed non-zero masses but cannot tell us the absolute neutrino mass scale. This scale of neutrino masses is very important for understanding the evolution and the structure formation of the universe as well as for nuclear and particle physics beyond the present Standard Model. Complementary to deducing constraints on the sum of all neutrino masses from cosmological observations two different methods to determine the neutrino mass scale in the laboratory are pursued: the search for neutrinoless double $\\beta$-decay and the direct neutrino mass search by investigating single $\\beta$-decays or electron captures. The former method is not only sensitive to neutrino masses but also probes the Majorana character of neutrinos and thus lepton number violation with high sensitivity. Currently quite a few experiments with different techniques are being constructed, commissioned or are even running, which aim for a sensitivity on the neutrino mass of {\\cal O}(100) meV. The principle methods and these experiments will be discussed in this short review.

  11. Mass, quark-number, and sqrt sNN dependence of the second andfourth flow harmonics in ultra-relativistic nucleus-nucleuscollisions

    SciTech Connect (OSTI)

    Abelev, B.I.; Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett,J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai,Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L.C.; Blyth, S.-L.; Bonner, B.E.; Botje, M.; Bouchet, J.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai,X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Castillo, J.; Catu,O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen,H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J.G.; Crawford,H.J.; Das, D.; Das, S.; Daugherity, M.; de Moura, M.M.; Dedovich, T.G.; DePhillips, M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Djawotho,P.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch,E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Ganti,M.S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.S.; Gorbunov, Y.G.; Gos,H.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guimaraes, K.S.F.F.; Guo,Y.; Gupta, N.; Gutierrez, T.D.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte,B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Horner, M.J.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Jacobs,P.; Jacobs, W.W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V.Yu.; Kim, B.C.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klein,S.R.; Kocoloski, A.; Koetke, D.D.; et al.

    2007-01-06T23:59:59.000Z

    We present STAR measurements of the azimuthal anisotropyparameter v_2 for pions, kaons, protons, Lambda, bar Lambda, Xi+bar Xi,and \\Omega + bar Omega, along with v_4 for pions, kaons, protons, andLambda + bar Lambda at mid-rapidity for Au+Au collisions at sqrt sNN=62.4and 200 GeV. The v_2(p_T) values for all hadron species at 62.4 GeV aresimilar to those observed in 130 and 200 GeV collisions. For observedkinematic ranges, v_2 values at 62.4, 130, and 200 GeV are as little as10 percent-15 percent larger than those in Pb+Pb collisions at sqrt s NN=17.3 GeV. At intermediate transverse momentum (p_T from 1.5-5 GeV/c),the 62.4 GeV v_2(p_T) and v_4(p_T) values are consistent with thequark-number scaling first observed at 200 GeV. A four-particle cumulantanalysis is used to assess the non-flow contributions to pions andprotons and some indications are found for a smaller non-flowcontribution to protons than pions. Baryon v_2 is larger than anti-baryonv_2 at 62.4 and 200 GeV perhaps indicating either that the initialspatial net-baryon distribution is anisotropic, that the mechanismleading to transport of baryon number from beam- to mid-rapidity enhancesv_2, or that anti-baryon and baryon annihilation is larger in thein-plane direction.

  12. A NEW SCALING RELATION FOR H II REGIONS IN SPIRAL GALAXIES: UNVEILING THE TRUE NATURE OF THE MASS-METALLICITY RELATION

    SciTech Connect (OSTI)

    Rosales-Ortega, F. F.; Diaz, A. I. [Departamento de Fisica Teorica, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Sanchez, S. F.; Iglesias-Paramo, J.; Vilchez, J. M.; Mast, D. [Instituto de Astrofisica de Andalucia (CSIC), Camino Bajo de Huetor s/n, Aptdo. 3004, E-18080 Granada (Spain); Bland-Hawthorn, J. [Sydney Institute for Astronomy, School of Physics A28, University of Sydney, NSW 2006 (Australia); Husemann, B., E-mail: frosales@cantab.net [Leibniz-Institut fuer Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2012-09-10T23:59:59.000Z

    We demonstrate the existence of a local mass, metallicity, star formation relation using spatially resolved optical spectroscopy of H II regions in the local universe. One of the projections of this distribution-the local mass-metallicity relation-extends over a wide range in this parameter space: three orders of magnitude in mass and a factor of eight in metallicity. We explain the new relation as the combined effect of the differential distributions of mass and metallicity in the disks of galaxies, and a selective star formation efficiency. We use this local relation to reproduce-with a noticeable agreement-the mass-metallicity relation seen in galaxies, and conclude that the latter is a scale-up integrated effect of a local relation, supporting the inside-out growth and downsizing scenarios of galaxy evolution.

  13. Iowa Natural Gas Number of Commercial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0 Year-1 Year-20Commercial

  14. Iowa Natural Gas Number of Industrial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0 Year-1

  15. Kansas Natural Gas Number of Commercial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYear Jan Feb Mar AprYear

  16. Kansas Natural Gas Number of Industrial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYear Jan Feb Mar

  17. Kentucky Natural Gas Number of Commercial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet) Year Jan

  18. Kentucky Natural Gas Number of Industrial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet) Year JanIndustrial

  19. Louisiana Natural Gas Number of Commercial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1569 0 0Year

  20. Louisiana Natural Gas Number of Industrial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1569 0 0YearIndustrial Consumers

  1. Maine Natural Gas Number of Industrial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 07,755,432Commercial Consumers

  2. Maryland Natural Gas Number of Commercial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.0 0.0YearCommercial Consumers

  3. Maryland Natural Gas Number of Industrial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.0 0.0YearCommercial

  4. Massachusetts Natural Gas Number of Commercial Consumers (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.04,0009,929Withdrawals

  5. Massachusetts Natural Gas Number of Industrial Consumers (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0

  6. Michigan Natural Gas Number of Commercial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3Exports (NoYear Jan FebFuelCommercial

  7. Michigan Natural Gas Number of Industrial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3Exports (NoYear Jan

  8. Mississippi Natural Gas Number of Commercial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet) Price AllFuelCommercial Consumers

  9. Mississippi Natural Gas Number of Industrial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet) Price AllFuelCommercial

  10. Missouri Natural Gas Number of Commercial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet)Same 2011Feet)

  11. Missouri Natural Gas Number of Industrial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet)Same 2011Feet)Industrial

  12. Montana Natural Gas Number of Commercial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic32,876 10,889Decade Year-0and Plant

  13. Montana Natural Gas Number of Industrial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic32,876 10,889Decade Year-0and

  14. Rhode Island Natural Gas Number of Commercial Consumers (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Yeara3,663 3,430Feet)

  15. Rhode Island Natural Gas Number of Industrial Consumers (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Yeara3,663

  16. South Carolina Natural Gas Number of Commercial Consumers (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndia (Million2,116CubicWithdrawals

  17. South Carolina Natural Gas Number of Industrial Consumers (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndia

  18. South Dakota Natural Gas Number of Commercial Consumers (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6 0.6WithdrawalsElements)

  19. South Dakota Natural Gas Number of Industrial Consumers (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6

  20. Tennessee Natural Gas Number of Commercial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S.Decade Year-0Fuel

  1. Tennessee Natural Gas Number of Industrial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S.Decade Year-0FuelIndustrial

  2. Texas Natural Gas Number of Commercial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubicSeparation 7,559Nov-14DecadeDecadeFueland

  3. Texas Natural Gas Number of Industrial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubicSeparation

  4. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f lFeet)

  5. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f lFeet)Elements)

  6. Alaska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B uYear JanSalesYear Janand

  7. Alaska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B uYear JanSalesYearIndustrial

  8. California Natural Gas Number of Residential Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear Jan Feb Mar Apr May Jun Jul

  9. Colorado Natural Gas Number of Residential Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecadeDecadeYear Jan Feb

  10. Connecticut Natural Gas Number of Residential Consumers (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21Company LevelInput

  11. Delaware Natural Gas Number of Residential Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21CompanySFoot) YearResidential

  12. Florida Natural Gas Number of Residential Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot) Year Jan Feb MarYear Jan Feb

  13. Georgia Natural Gas Number of Residential Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot) YearNet Withdrawals

  14. Hawaii Natural Gas Number of Residential Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200Decade Year-0Year Jan Feb

  15. Idaho Natural Gas Number of Residential Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200DecadeCubic1.IV.%

  16. Illinois Natural Gas Number of Residential Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess thanThousand CubicElements) Gas

  17. Indiana Natural Gas Number of Residential Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015Year Jan Feb Mar Apr

  18. Iowa Natural Gas Number of Residential Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015Year JanFoot)Residential

  19. Kentucky Natural Gas Number of Residential Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet) DecadeYear Jan FebYear

  20. Arizona Natural Gas Number of Commercial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14Decade Year-0

  1. Arizona Natural Gas Number of Industrial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14Decade Year-0Industrial Consumers

  2. Arkansas Natural Gas Number of Commercial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14Sales (Billion CubicFeet)

  3. Arkansas Natural Gas Number of Industrial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14Sales (Billion CubicFeet)Industrial

  4. California Natural Gas Number of Commercial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590Fuel Consumption (Million CubicCommercial

  5. California Natural Gas Number of Industrial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590Fuel Consumption (Million

  6. Colorado Natural Gas Number of Commercial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (MillionFeet) DecadeFuelCommercial

  7. Colorado Natural Gas Number of Industrial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (MillionFeet)

  8. Connecticut Natural Gas Number of Commercial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain,606,602andDecadeCommercial Consumers

  9. Connecticut Natural Gas Number of Industrial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain,606,602andDecadeCommercial

  10. Delaware Natural Gas Number of Commercial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0 Year-1Feet)

  11. Delaware Natural Gas Number of Industrial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0 Year-1Feet)Industrial Consumers

  12. Nebraska Natural Gas Number of Residential Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough, 2002Decade Year-0DecadeResidential

  13. Nevada Natural Gas Number of Residential Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough, 2002DecadeYear

  14. New Hampshire Natural Gas Number of Residential Consumers (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough,Cubic Foot)

  15. North Carolina Natural Gas Number of Residential Consumers (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear Jan Feb Mar Apr May1.878InputElements)

  16. North Dakota Natural Gas Number of Residential Consumers (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear Jan Feb Mar

  17. Ohio Natural Gas Number of Residential Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYear Jan Feb Mar Apr MayResidential

  18. Oklahoma Natural Gas Number of Residential Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYear JanYear Jan Feb MarResidential

  19. Oregon Natural Gas Number of Residential Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYearYear Jan Feb Mar Apr

  20. Pennsylvania Natural Gas Number of Residential Consumers (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYearYearDecade

  1. Rhode Island Natural Gas Number of Residential Consumers (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source:Additions to Capacity ForYear Jan Feb Mar Apr May

  2. Texas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May Jun1

  3. Utah Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear JanPropane, No.1Decade Year-0

  4. Vermont Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear JanPropane, No.1Decade6,393CommercialResidential

  5. Virginia Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYearFuel Consumption (Million Cubic

  6. Washington Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYearFuel Consumption0 0Feet) Lease and

  7. West Virginia Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYearFuel Consumption0Feet)9

  8. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year

  9. Alaska Natural Gas Number of Residential Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessedDecadeFeet)Residential

  10. Arizona Natural Gas Number of Residential Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year Jan Feb MarYearResidential

  11. Arkansas Natural Gas Number of Residential Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year% ofInputYear Jan Feb

  12. Washington Natural Gas Number of Commercial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58 810 0CubicFeet) Lease and

  13. Washington Natural Gas Number of Industrial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58 810 0CubicFeet) Lease

  14. West Virginia Natural Gas Number of Commercial Consumers (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58 810YearDecadeElements) Commercial

  15. West Virginia Natural Gas Number of Industrial Consumers (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58 810YearDecadeElements)

  16. Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear Jan 201151

  17. Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear Jan 201151Industrial

  18. Wyoming Natural Gas Number of Commercial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (BillionDecadeFeet)Commercial

  19. Wyoming Natural Gas Number of Industrial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments

  20. Utah Natural Gas Number of Commercial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion CubicYear Jan FebCommercial

  1. Utah Natural Gas Number of Industrial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion CubicYear Jan

  2. Virginia Natural Gas Number of Commercial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year JanDecade Year-0 Year-1 Year-2 Year-3Withdrawalsand

  3. Virginia Natural Gas Number of Industrial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year JanDecade Year-0 Year-1 Year-2

  4. Massachusetts Natural Gas Number of Residential Consumers (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubic Feet) Year Jan Feb

  5. Michigan Natural Gas Number of Residential Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubicDecade Year-0Year Jan Feb

  6. Minnesota Natural Gas Number of Residential Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department2ImportsResidential

  7. Mississippi Natural Gas Number of Residential Consumers (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale% ofElements) Gas

  8. Missouri Natural Gas Number of Residential Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off)

  9. Montana Natural Gas Number of Residential Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) Year Jan Feb MarYear Jan

  10. Florida Natural Gas Number of Commercial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb Mar Apr May Jun Jul

  11. Florida Natural Gas Number of Industrial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb Mar Apr May Jun JulIndustrial

  12. Georgia Natural Gas Number of Commercial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPrice

  13. Hawaii Natural Gas Number of Commercial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TO OBTAINCommercial Consumers

  14. Hawaii Natural Gas Number of Industrial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TO OBTAINCommercial

  15. Idaho Natural Gas Number of Commercial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-MonthExportsLease and

  16. Idaho Natural Gas Number of Industrial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-MonthExportsLease

  17. Illinois Natural Gas Number of Commercial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million381WithdrawalsCommercial

  18. Illinois Natural Gas Number of Industrial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption

  19. Indiana Natural Gas Number of Commercial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal ConsumptionperFeet)Commercial Consumers

  20. Indiana Natural Gas Number of Industrial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal ConsumptionperFeet)Commercial

  1. Nebraska Natural Gas Number of Commercial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (Million Cubic Feet) Nebraskaand

  2. Nebraska Natural Gas Number of Industrial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (Million Cubic Feet)

  3. Nevada Natural Gas Number of Commercial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (MillionYearNADecadeand Plant

  4. Nevada Natural Gas Number of Industrial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (MillionYearNADecadeand

  5. New Hampshire Natural Gas Number of Commercial Consumers (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan Feb MarElements)

  6. New Hampshire Natural Gas Number of Industrial Consumers (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan Feb

  7. Wyoming Natural Gas Number of Residential Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear JanFoot)YearYear

  8. South Carolina Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade Year-0 Year-1Elements) Residential

  9. South Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade Year-0TotalH

  10. North Carolina Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (MillionNine8InputElements)

  11. North Carolina Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals

  12. North Dakota Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996)McGuire"Feet)Feet) DecadeElements)

  13. North Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996)McGuire"Feet)Feet)Elements) Industrial

  14. Ohio Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul9 2010 2011 2012DecadeFueland

  15. Ohio Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul9 2010 2011Industrial Consumers

  16. Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May JunFeet) DecadeDecadeand Plant

  17. Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May JunFeet) DecadeDecadeandIndustrial

  18. Oregon Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYear Jan Feb Mar AprYearFuel

  19. Oregon Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYear Jan Feb Mar

  20. Pennsylvania Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYearAdditions (Million

  1. Pennsylvania Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYearAdditions (MillionElements) Gas

  2. Louisiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet)FuelDecade Year-0Input

  3. Maine Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet)FuelDecadePublication andWithdrawalsResidential

  4. Maryland Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals (Million Cubic Feet) Maryland

  5. Indiana Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0 0.0Decade4Year JanSame Month1,678,158

  6. Iowa Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0Base Gas)872,980 875,781

  7. Kansas Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYearDecade Year-0 Year-1853,125

  8. Kentucky Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet)YearSeparationYear

  9. Louisiana Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1569Decade886,084 889,570 893,400

  10. Maine Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 07,755,432Commercial10.99Maine

  11. Maryland Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.05.03057,521 1,067,807

  12. Massachusetts Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0Feet)Year Jan Feb Mar Apr236,480

  13. Michigan Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3Exports

  14. Minnesota Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)Commercial

  15. Mississippi Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet)Same Month443,025 437,715 436,840

  16. Missouri Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet)SameThousandYearBaseYear Jan

  17. Montana Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic32,876 10,889Decade03Decade Year-0253,122

  18. Rhode Island Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Yeara3,663(Million24,103 224,846

  19. South Carolina Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet) (MillionFeet)Year

  20. South Dakota Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6Feet) VehicleYear Jan

  1. Tennessee Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S.DecadeFuel2009YearYear

  2. Number of Natural Gas Residential Consumers

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0 1 2 3 4 5

  3. Arizona Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14DecadeDecade Year-0,128,264

  4. Arkansas Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame Month Previous Year556,746

  5. California Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590FuelDecade Year-00,515,162 10,510,950

  6. Colorado Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain,606,602 1,622,434 1,634,587 1,645,716

  7. Connecticut Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0 Year-1 Year-2 Year-3 Year-4487,320

  8. Washington Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58 810Year Jan Feb Mar AprSame

  9. West Virginia Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear Jan Feb

  10. Wisconsin Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYearVehicle Fuel Price

  11. Wyoming Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYearYear Jan Feb Mar

  12. Texas Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul AugDecadeDecade

  13. Utah Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion

  14. Vermont Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreasesCommercial Consumers35,929 37,242 38,047

  15. Virginia Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year JanDecade Year-0 Year-11,113,016 1,124,717 1,133,103

  16. Florida Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb Mar AprVented andDecade679,265

  17. Georgia Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear

  18. Hawaii Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TOTotal ConsumptionVehicle

  19. Idaho Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million Cubic

  20. Illinois Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption

  1. Nebraska Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (MillionYear Jan Feb MarDecade512,013

  2. Nevada Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan Feb Mar Apr MayYear

  3. New Hampshire Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan FebFeet)TotalYear

  4. New Jersey Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan1 0.2TotalDecade

  5. Alabama Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet)SalesYear Jan Feb Mar Apr May

  6. Alaska Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet)SalesYear JanFeet) Working119,039 120,124

  7. New York Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousand CubicSeparation 29 0Year Jan FebSame4,303,342

  8. North Carolina Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousand CubicSeparationTotal ConsumptionDecade,095,362

  9. North Dakota Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecade Year-0 Year-1 (MillionFeet)Feet) Year

  10. Number of Natural Gas Commercial Sales Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecade Year-0 Year-1(Million1. Capacity and43 43 4334

  11. Number of Natural Gas Commercial Transported Consumer

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecade Year-0 Year-1(Million1. Capacity and43 43

  12. Number of Natural Gas Industrial Sales Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecade Year-0 Year-1(Million1. Capacity and43 43129,119

  13. Number of Natural Gas Industrial Transported Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecade Year-0 Year-1(Million1. Capacity and43

  14. Number of Natural Gas Residential Sales Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecade Year-0 Year-1(Million1. Capacity and4360,267,648

  15. Number of Natural Gas Residential Transported Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecade Year-0 Year-1(Million1. Capacity

  16. Ohio Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecade Year-0Separation3,262,716 3,253,184 3,240,619

  17. Oklahoma Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecadeSales (Billion CubicDecadeSame MonthDecade923,650

  18. Permanent Home Number: Residential Number

    E-Print Network [OSTI]

    Viglas, Anastasios

    Permanent Home Number: Residential Number: Mobile: Please update my contact details. Signature nominated correspondence address as indicated below. Permanent Home Adress Residential Address Other Address (Must not be a PO Box) Residential Address (Must not be a PO Box) Other - Postal/Optional Address

  19. UNIT NUMBER:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    193 UNIT NUMBER: 197 UNIT NAME: CONCRETE RUBBLE PILE (30) REGULATORY STATUS: AOC LOCATION: Outside plant security fence, north of the plant on Big Bayou Creek on private property....

  20. Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanford’s 300 Area Uranium Plume January 2011 to January 2012

    SciTech Connect (OSTI)

    Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark S.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammond, Glenn E.; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Zheng, Chunmiao

    2012-03-05T23:59:59.000Z

    The Integrated Field Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex subsurface biogeochemical setting where groundwater and riverwater interact. A series of forefront science questions on reactive mass transfer motivates research. These questions relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated biogeochemical system. The project was initiated in February 2007, with CY 2007, CY 2008, CY 2009, and CY 2010 progress summarized in preceding reports. A project peer review was held in March 2010, and the IFRC project acted upon all suggestions and recommendations made in consequence by reviewers and SBR/DOE. These responses have included the development of 'Modeling' and 'Well-Field Mitigation' plans that are now posted on the Hanford IFRC web-site, and modifications to the IFRC well-field completed in CY 2011. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2011 including: (i) well modifications to eliminate well-bore flows, (ii) hydrologic testing of the modified well-field and upper aquifer, (iii) geophysical monitoring of winter precipitation infiltration through the U-contaminated vadose zone and spring river water intrusion to the IFRC, (iv) injection experimentation to probe the lower vadose zone and to evaluate the transport behavior of high U concentrations, (v) extended passive monitoring during the period of water table rise and fall, and (vi) collaborative down-hole experimentation with the PNNL SFA on the biogeochemistry of the 300 A Hanford-Ringold contact and the underlying redox transition zone. The modified well-field has functioned superbly without any evidence for well-bore flows. Beyond these experimental efforts, our site-wide reactive transport models (PFLOTRAN and eSTOMP) have been updated to include site geostatistical models of both hydrologic properties and adsorbed U distribution; and new hydrologic characterization measurements of the upper aquifer. These increasingly robust models are being used to simulate past and recent U desorption-adsorption experiments performed under different hydrologic conditions, and heuristic modeling to understand the complex functioning of the smear zone. We continued efforts to assimilate geophysical logging and 3D ERT characterization data into our site wide geophysical model, with significant and positive progress in 2011 that will enable publication in 2012. Our increasingly comprehensive field experimental results and robust reactive transport simulators, along with the field and laboratory characterization, are leading to a new conceptual model of U(VI) flow and transport in the IFRC footprint and the 300 Area in general, and insights on the microbiological community and associated biogeochemical processes influencing N, S, C, Mn, and Fe. Collectively these findings and higher scale models are providing a unique and unparalleled system-scale understanding of the biogeochemical function of the groundwater-river interaction zone.

  1. Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanford’s 300 Area Uranium Plume January 2010 to January 2011

    SciTech Connect (OSTI)

    Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark S.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammond, Glenn E.; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Ward, Anderson L.; Zheng, Chunmiao

    2011-02-01T23:59:59.000Z

    The Integrated Field Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex subsurface hydrogeologic setting where groundwater and riverwater interact. A series of forefront science questions on reactive mass transfer focus research. These questions relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated system. The project was initiated in February 2007, with CY 2007, CY 2008, and CY 2009 progress summarized in preceding reports. A project peer review was held in March 2010, and the IFRC project has responded to all suggestions and recommendations made in consequence by reviewers and SBR/DOE. These responses have included the development of “Modeling” and “Well-Field Mitigation” plans that are now posted on the Hanford IFRC web-site. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2010 including the quantification of well-bore flows in the fully screened wells and the testing of means to mitigate them; the development of site geostatistical models of hydrologic and geochemical properties including the distribution of U; developing and parameterizing a reactive transport model of the smear zone that supplies contaminant U to the groundwater plume; performance of a second passive experiment of the spring water table rise and fall event with a associated multi-point tracer test; performance of downhole biogeochemical experiments where colonization substrates and discrete water and gas samplers were deployed to the lower aquifer zone; and modeling of past injection experiments for model parameterization, deconvolution of well-bore flow effects, system understanding, and publication. We continued efforts to assimilate geophysical logging and 3D ERT characterization data into our site wide geophysical model, and have now implemented a new strategy for this activity to bypass an approach that was found unworkable. An important focus of CY 2010 activities has been infrastructure modification to the IFRC site to eliminate vertical well bore flows in the fully screened wells. The mitigation procedure was carefully evaluated and is now being implementated. A new experimental campaign is planned for early spring 2011 that will utilize the modified well-field for a U reactive transport experiment in the upper aquifer zone. Preliminary geophysical monitoring experiments of rainwater recharge in the vadose zone have been initiated with promising results, and a controlled infiltration experiment to evaluate U mobilization from the vadose zone is now under planning for the September 2011. The increasingly comprehensive field experimental results, along with the field and laboratory characterization, are leading to a new conceptual model of U(VI) flow and transport in the IFRC footprint and the 300 Area in general, and insights on the microbiological community and associated biogeochemical processes.

  2. Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanford’s 300 Area Uranium Plume

    SciTech Connect (OSTI)

    Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark E.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammon, Glenn; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Ward, Anderson L.; Zheng, Chunmiao

    2010-02-01T23:59:59.000Z

    The Integrated Field-Scale Subsurface Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex hydrogeologic setting where groundwater and riverwater interact. A series of forefront science questions on mass transfer are posed for research which relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated system. The project was initiated in February 2007, with CY 2007 and CY 2008 progress summarized in preceding reports. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2009 with completion of extensive laboratory measurements on field sediments, field hydrologic and geophysical characterization, four field experiments, and modeling. The laboratory characterization results are being subjected to geostatistical analyses to develop spatial heterogeneity models of U concentration and chemical, physical, and hydrologic properties needed for reactive transport modeling. The field experiments focused on: (1) physical characterization of the groundwater flow field during a period of stable hydrologic conditions in early spring, (2) comprehensive groundwater monitoring during spring to characterize the release of U(VI) from the lower vadose zone to the aquifer during water table rise and fall, (3) dynamic geophysical monitoring of salt-plume migration during summer, and (4) a U reactive tracer experiment (desorption) during the fall. Geophysical characterization of the well field was completed using the down-well Electrical Resistance Tomography (ERT) array, with results subjected to robust, geostatistically constrained inversion analyses. These measurements along with hydrologic characterization have yielded 3D distributions of hydraulic properties that have been incorporated into an updated and increasingly robust hydrologic model. Based on significant findings from the microbiologic characterization of deep borehole sediments in CY 2008, down-hole biogeochemistry studies were initiated where colonization substrates and spatially discrete water and gas samplers were deployed to select wells. The increasingly comprehensive field experimental results, along with the field and laboratory characterization, are leading to a new conceptual model of U(VI) flow and transport in the IFRC footprint and the 300 Area in general, and insights on the microbiological community and associated biogeochemical processes. A significant issue related to vertical flow in the IFRC wells was identified and evaluated during the spring and fall field experimental campaigns. Both upward and downward flows were observed in response to dynamic Columbia River stage. The vertical flows are caused by the interaction of pressure gradients with our heterogeneous hydraulic conductivity field. These impacts are being evaluated with additional modeling and field activities to facilitate interpretation and mitigation. The project moves into CY 2010 with ambitious plans for a drilling additional wells for the IFRC well field, additional experiments, and modeling. This research is part of the ERSP Hanford IFRC at Pacific Northwest National Laboratory.

  3. Riddle of the Neutrino Mass

    E-Print Network [OSTI]

    Smirnov, A Yu

    2015-01-01T23:59:59.000Z

    We discuss some known approaches and results as well as few new ideas concerning origins and nature of neutrino mass. The key issues include (i) connections of neutrino and charged fermions masses, relation between masses and mixing, energy scale of new physics behind neutrino mass where possibilities spread from the Planck and GUT masses down to a sub-eV scale. The data hint two different new physics involved in generation of neutrino mass. Determination of the CP phase as well as mass hierarchy can play important role in identification of new physics. It may happen that sterile neutrinos provide the key to resolve the riddle.

  4. Neutrino masses and Neutrinoless Double Beta Decay: Status and expectations

    E-Print Network [OSTI]

    Oliviero Cremonesi

    2010-02-07T23:59:59.000Z

    Two most outstanding questions are puzzling the world of neutrino Physics: the possible Majorana nature of neutrinos and their absolute mass scale. Direct neutrino mass measurements and neutrinoless double beta decay (0nuDBD) are the present strategy to solve the puzzle. Neutrinoless double beta decay violates lepton number by two units and can occurr only if neutrinos are massive Majorana particles. A positive observation would therefore necessarily imply a new regime of physics beyond the standard model, providing fundamental information on the nature of the neutrinos and on their absolute mass scale. After the observation of neutrino oscillations and given the present knowledge of neutrino masses and mixing parameters, a possibility to observe 0nuDBDD at a neutrino mass scale in the range 10-50 meV could actually exist. This is a real challenge faced by a number of new proposed projects. Present status and future perpectives of neutrinoless double-beta decay experimental searches is reviewed. The most important parameters contributing to the experimental sensitivity are outlined. A short discussion on nuclear matrix element calculations is also given. Complementary measurements to assess the absolute neutrino mass scale (cosmology and single beta decays) are also discussed.

  5. Naturalness and supersymmetry

    SciTech Connect (OSTI)

    Agashe, K [Lawrence Berkeley National Lab., CA (United States). Theoretical Physics Group

    1998-05-01T23:59:59.000Z

    In this thesis, the author argues that the supersymmetric Standard Model, while avoiding the fine tuning in electroweak symmetry breaking, requires unnaturalness/fine tuning in some (other) sector of the theory. For example, Baryon and Lepton number violating operators are allowed which lead to proton decay and flavor changing neutral currents. He studies some of the constraints from the latter in this thesis. He has to impose an R-parity for the theory to be both natural and viable. In the absence of flavor symmetries, the supersymmetry breaking masses for the squarks and sleptons lead to too large flavor changing neutral currents. He shows that two of the solutions to this problem, gauge mediation of supersymmetry breaking and making the scalars of the first two generations heavier than a few TeV, reintroduce fine tuning in electroweak symmetry breaking. He also constructs a model of low energy gauge mediation with a non-minimal messenger sector which improves the fine tuning and also generates required Higgs mass terms. He shows that this model can be derived from a Grand Unified Theory despite the non-minimal spectrum.

  6. Nuclear Masses in Astrophysics

    E-Print Network [OSTI]

    Christine Weber; Klaus Blaum; Hendrik Schatz

    2008-12-09T23:59:59.000Z

    Among all nuclear ground-state properties, atomic masses are highly specific for each particular combination of N and Z and the data obtained apply to a variety of physics topics. One of the most crucial questions to be addressed in mass spectrometry of unstable radionuclides is the one of understanding the processes of element formation in the Universe. To this end, accurate atomic mass values of a large number of exotic nuclei participating in nucleosynthesis are among the key input data in large-scale reaction network calculations. In this paper, a review on the latest achievements in mass spectrometry for nuclear astrophysics is given.

  7. Existence of long-lived isotopes of a superheavy element in natural Au

    E-Print Network [OSTI]

    A. Marinov; I. Rodushkin; A. Pape; Y. Kashiv; D. Kolb; R. Brandt; R. V. Gentry; H. W. Miller; L. Halicz; I. Segal

    2007-02-25T23:59:59.000Z

    Evidence for the existence of long-lived isotopes with atomic mass numbers 261 and 265 and abundance of (1-10)x10$^{-10}$ relative to Au has been found in a study of natural Au using an inductively coupled plasma - sector field mass spectrometer. The measured masses fit the predictions made for the masses of $^{261}$Rg and $^{265}$Rg (Z=111) and for some isotopes of nearby elements. The possibility that these isotopes belong to the recently discovered class of long-lived high spin super- and hyperdeformed isomeric states is discussed.

  8. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamos LaboratoryCertified Reference6-02-01Change Number

  9. ON STIRLING NUMBERS FOR COMPLEX ARGUMENTS AND HANKEL CONTOURS

    E-Print Network [OSTI]

    Prodinger, Helmut

    ON STIRLING NUMBERS FOR COMPLEX ARGUMENTS AND HANKEL CONTOURS provide a natural generalization of Stirling numbers for unrestricted complex values. Introduction Richmond and Merlini have introduced in [5] an extension of Stirling's subset numbers xy

  10. Microlens Mass Functions

    E-Print Network [OSTI]

    William D. Heacox

    2005-10-10T23:59:59.000Z

    A non-parametric statistical model is constructed to directly relate The distribution of observed microlens timescales to that of the mass Function of the population from which the lenses are drawn, corrected For observational selection based on timescales and event amplifications. Explicit distributions are derived for microlensing impact parameters and maximum amplifications; both are shown to be statistically independent of all other parameters in the problem, including lens mass. The model is used to demonstrate that the narrow range of microlens timescales observed toward the Large Magellanic Cloud (LMC) is probably not consistent with lensing by a widely distributed spheroidal population of large velocity dispersion, as expected of a dark halo; but is consistent with lensing within a rotating thick disk. Poor numerical conditioning on the statistical connection between lens masses and event timescales, and small number statistics, severely limit the mass function information obtainable from current microlensing surveys toward the LMC.

  11. 2007NaturePublishingGrouphttp://www.nature.com/naturemethods Higher-energy C-trap

    E-Print Network [OSTI]

    Cai, Long

    be efficiently fragmented by high-accuracy and full-mass-range tandem mass spectrometry (MS/MS) via higher-energy©2007NaturePublishingGrouphttp://www.nature.com/naturemethods Higher-energy C-trap dissociation Horning2 & Matthias Mann1 Peptide sequencing is the basis of mass spectrometry­driven proteomics. Here we

  12. Mass of Ne-16

    E-Print Network [OSTI]

    Woodward, C. J.; Tribble, Robert E.; Tanner, D. M.

    1983-01-01T23:59:59.000Z

    . E. Tribble, J. D. Cossairt, D. P. May, and R. A. Kenefick, Phys. Rev. C 16, 1835 (1977). 4E. Kashy, W. Benenson, D. Mueller, R. G. H. Robert- son, and D. R. Goosman, Phys. Rev. C 11, 1959 (1975). 5For a review of the various calculations, see Ref...PHYSICAL REVIEWER C VOLUME 27, NUMBER 1 Mass of ' Ne JANUARY 1983 C. J. Woodward, * R. E. Tribble, and D. M. Tanner Cyclotron Institute, Texas A&M University, College Station, Texas 77843 (Received 23 August 1982) The mass of ' Ne has been...

  13. Mass transfer andMass transfer and Mass transfer andMass transfer and

    E-Print Network [OSTI]

    Zevenhoven, Ron

    't be determined A correlation for Sherwood number (Sh) based on di i l l i b d l i Sh diff idimensional analysis for mass transfer with convection: I l f d fl d b (l b l )­ Internal forced flow: inside a tube (laminar A in fluid medium B in a flow with characteristic velocity and size characteristic d: kA = f(d, w, (= fluid

  14. Neutrino Masses and Flavor Oscillations

    E-Print Network [OSTI]

    Yifang Wang; Zhi-zhong Xing

    2015-04-23T23:59:59.000Z

    This essay is intended to provide a brief description of the peculiar properties of neutrinos within and beyond the standard theory of weak interactions. The focus is on the flavor oscillations of massive neutrinos, from which one has achieved some striking knowledge about their mass spectrum and flavor mixing pattern. The experimental prospects towards probing the absolute neutrino mass scale, possible Majorana nature and CP-violating effects will also be addressed.

  15. Neutrino Masses and Flavor Oscillations

    E-Print Network [OSTI]

    Wang, Yifang

    2015-01-01T23:59:59.000Z

    This essay is intended to provide a brief description of the peculiar properties of neutrinos within and beyond the standard theory of weak interactions. The focus is on the flavor oscillations of massive neutrinos, from which one has achieved some striking knowledge about their mass spectrum and flavor mixing pattern. The experimental prospects towards probing the absolute neutrino mass scale, possible Majorana nature and CP-violating effects will also be addressed.

  16. Heat distribution by natural convection

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01T23:59:59.000Z

    Natural convection can provide adequate heat distribution in many situtations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others or to reduce the number of heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures is predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Natural convective loops that can occur in buildings are described and a few design guidelines are presented.

  17. Copy number: Efficient algorithms for single- and multi-track copy number segmentation

    E-Print Network [OSTI]

    Nilsen, Gro; Liestøl, Knut; Loo, Peter Van; Moen Vollan, Hans Kristian; Eide, Marianne B; Rueda, Oscar M; Chin, Suet-Feung; Russell, Roslin; Baumbusch, Lars O; Caldas, Carlos; Børresen-Dale, Anne-Lise; Lingjærde, Ole Christian

    2012-11-04T23:59:59.000Z

    C, Shah SP, Chin SF et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012. doi:10.1038/nature10983. Mathiesen RR, Fjelldal R, Liestøl K et al. High resolution analysis of copy number... C, Shah SP, Chin SF et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012. doi:10.1038/nature10983. Mathiesen RR, Fjelldal R, Liestøl K et al. High resolution analysis of copy number...

  18. Natural Gas Exports from Iran

    Reports and Publications (EIA)

    2012-01-01T23:59:59.000Z

    This assessment of the natural gas sector in Iran, with a focus on Iran’s natural gas exports, was prepared pursuant to section 505 (a) of the Iran Threat Reduction and Syria Human Rights Act of 2012 (Public Law No: 112-158). As requested, it includes: (1) an assessment of exports of natural gas from Iran; (2) an identification of the countries that purchase the most natural gas from Iran; (3) an assessment of alternative supplies of natural gas available to those countries; (4) an assessment of the impact a reduction in exports of natural gas from Iran would have on global natural gas supplies and the price of natural gas, especially in countries identified under number (2); and (5) such other information as the Administrator considers appropriate.

  19. Neutrino Masses in Astroparticle Physics

    E-Print Network [OSTI]

    G. G. Raffelt

    2002-08-08T23:59:59.000Z

    The case for small neutrino mass differences from atmospheric and solar neutrino oscillation experiments has become compelling, but leaves the overall neutrino mass scale m_nu undetermined. The most restrictive limit of m_nu neutrinos. If solar neutrino oscillations indeed correspond to the favored large mixing angle MSW solution, then big-bang nucleosynthesis gives us a restrictive limit on all neutrino chemical potentials, removing the previous uncertainty of n_nu. Therefore, a possible future measurement of m_nu will directly establish the cosmic neutrino mass fraction Omega_nu. Cosmological neutrinos with sub-eV masses can play an interesting role for producing the highest-energy cosmic rays (Z-burst scenario). Sub-eV masses also relate naturally to leptogenesis scenarios of the cosmic baryon asymmetry. Unfortunately, the time-of-flight dispersion of a galactic or local-group supernova neutrino burst is not sensitive in the sub-eV range.

  20. Galaxy Cosmological Mass Function

    E-Print Network [OSTI]

    Amanda R. Lopes; Alvaro Iribarrem; Marcelo B. Ribeiro; William R. Stoeger

    2014-12-03T23:59:59.000Z

    We study the galaxy cosmological mass function (GCMF) in a semi-empirical relativistic approach using observational data provided by galaxy redshift surveys. Starting from the theory of Ribeiro & Stoeger (2003, arXiv:astro-ph/0304094) between the mass-to-light ratio, the selection function obtained from the luminosity function (LF) data and the luminosity density, the average luminosity $L$ and the average galactic mass $\\mathcal{M}_g$ are computed in terms of the redshift. $\\mathcal{M}_g$ is also alternatively estimated by a method that uses the galaxy stellar mass function (GSMF). Comparison of these two forms of deriving the average galactic mass allows us to infer a possible bias introduced by the selection criteria of the survey. We used the FORS Deep Field galaxy survey sample of 5558 galaxies in the redshift range $0.5 light ratio and its GSMF data. Assuming ${\\mathcal{M}_{g_0}} \\approx 10^{11} \\mathcal{M}_\\odot$ as the local value of the average galactic mass, the LF approach results in $L_{B} \\propto (1+z)^{(2.40 \\pm 0.03)}$ and $\\mathcal{M}_g \\propto (1+z)^{(1.1\\pm0.2)}$. However, using the GSMF results produces $\\mathcal{M}_g \\propto (1+z)^{(-0.58 \\pm 0.22)}$. We chose the latter result as it is less biased. We then obtained the theoretical quantities of interest, such as the differential number counts, to calculate the GCMF, which can be fitted by a Schechter function. The derived GCMF follows theoretical predictions in which the less massive objects form first, being followed later by more massive ones. In the range $0.5 < z < 2.0$ the GCMF has a strong variation that can be interpreted as a higher rate of galaxy mergers or as a strong evolution in the star formation history of these galaxies.

  1. Higher-Order Mass Defect Analysis for Mass Spectra of Complex Organic Mixtures

    SciTech Connect (OSTI)

    Roach, Patrick J.; Laskin, Julia; Laskin, Alexander

    2011-06-15T23:59:59.000Z

    Higher-order mass defect analysis is introduced as a unique formula assignment and visualization method for the analysis of complex mass spectra. This approach is an extension of the concepts of Kendrick mass transformation widely used for identification of homologous compounds differing only by a number of base units (e.g., CH2, H2, O, CH2O, etc.) in complex mixtures. We present an iterative renormalization routine for defining higher order homologous series and multidimensional clustering of mass spectral features. This approach greatly simplifies visualization of complex mass spectra and increases the number of chemical formulae that can be confidently assigned for given mass accuracy. The potential for using higher-order mass defects for data reduction and visualization is shown. Higher-order mass defect analysis is described and demonstrated through third-order analysis of a de-isotoped high-resolution mass spectrum of crude oil containing nearly 13,000 peaks.

  2. Neutrino mass, lepton number, and the origin of matter

    E-Print Network [OSTI]

    antiparticles? And many other things% Do neutrinos violate CP? #12;Neutrinoless Double Beta Decay W. Rodejohann? #12;Neutrinoless Double Beta Decay 1 sigma W. Rodejohann, 1206.2560 #12;14 F. Iachello #12;15 Regions

  3. Hyper Space Complex Number

    E-Print Network [OSTI]

    Shanguang Tan

    2007-04-23T23:59:59.000Z

    A new kind of numbers called Hyper Space Complex Numbers and its algebras are defined and proved. It is with good properties as the classic Complex Numbers, such as expressed in coordinates, triangular and exponent forms and following the associative and commutative laws of addition and multiplication. So the classic Complex Number is developed from in complex plane with two dimensions to in complex space with N dimensions and the number system is enlarged also.

  4. Mimicking Nature

    E-Print Network [OSTI]

    Wythe, Kathy

    2007-01-01T23:59:59.000Z

    into lakes and rivers, and the impact different water management decisions could have. ?We?re trying to mimic nature,? said Dr. Jeff Arnold, research leader and agricultural engineer for the Grassland Soil and Water Research Laboratory in Temple, part..., director of Texas A&M University?s Spatial Sciences Laboratory and professor in the Departments of Ecosystem Science and MIMICKING NATURE Computer model helps manage nation?s, world?s waters #2; Management, and Biological and Agricultural Engineering...

  5. Universal Expression for the Lowest Excitation Energy of Natural Parity Even Multipole States

    E-Print Network [OSTI]

    Doohwan Kim; Eunja Ha; Dongwoo Cha

    2007-10-08T23:59:59.000Z

    We present a new expression for the energy of the lowest collective states in even-even nuclei throughout the entire periodic table. Our empirical formula is extremely valid and holds universally for all of the natural parity even multipole states. This formula depends only on the mass number and the valence nucleon numbers with six parameters. These parameters are determined easily and unambiguously from the data for each multipole state. We discuss the validity of our empirical formula by comparing our results with those of other studies and also by estimating the average and the dispersion of the logarithmic errors of the calculated excitation energies with respect to the measured ones.

  6. WMAPping out Neutrino Masses

    E-Print Network [OSTI]

    Aaron Pierce; Hitoshi Murayama

    2003-10-28T23:59:59.000Z

    Recent data from from the Wilkinson Microwave Anisotropy Probe (WMAP) place important bounds on the neutrino sector. The precise determination of the baryon number in the universe puts a strong constraint on the number of relativistic species during Big-Bang Nucleosynthesis. WMAP data, when combined with the 2dF Galaxy Redshift Survey (2dFGRS), also directly constrain the absolute mass scale of neutrinos. These results impinge upon a neutrino oscillation interpretation of the result from the Liquid Scintillator Neutrino Detector (LSND). We also note that the Heidelberg--Moscow evidence for neutrinoless double beta decay is only consistent with the WMAP+2dFGRS data for the largest values of the nuclear matrix element.

  7. Mapping the core mass function to the initial mass function

    E-Print Network [OSTI]

    Guszejnov, David

    2014-01-01T23:59:59.000Z

    It has been shown that fragmentation within self-gravitating, turbulent molecular clouds ("turbulent fragmentation") can naturally explain the observed properties of protostellar cores, including the core mass function (CMF). Here, we extend recently-developed analytic models for turbulent fragmentation to follow the time-dependent hierarchical fragmentation of self-gravitating cores, until they reach effectively infinite density (and form stars). We show that turbulent fragmentation robustly predicts two key features of the IMF. First, a high-mass power-law scaling very close to the Salpeter slope, which is a generic consequence of the scale-free nature of turbulence and self-gravity. We predict the IMF slope (-2.3) is slightly steeper then the CMF slope (-2.1), owing to the slower collapse and easier fragmentation of large cores. Second, a turnover mass, which is set by a combination of the CMF turnover mass (a couple solar masses, determined by the `sonic scale' of galactic turbulence, and so weakly depend...

  8. An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles

    E-Print Network [OSTI]

    Yeh, Sonia

    2007-01-01T23:59:59.000Z

    579–594. IANGV, 1997. Natural Gas Vehicle Industry Positionmarket penetration of natural gas vehicles in Switzerland.of NGVs versus number of natural gas refueling stations in

  9. Relativistic theory of tidal Love numbers

    E-Print Network [OSTI]

    Taylor Binnington; Eric Poisson

    2009-09-16T23:59:59.000Z

    In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neutron star can be measured by Earth-based gravitational-wave detectors. We consider a spherical body deformed by an external tidal field, and provide precise and meaningful definitions for electric-type and magnetic-type Love numbers; and these are computed for polytropic equations of state. The theory applies to black holes as well, and we find that the relativistic Love numbers of a nonrotating black hole are all zero.

  10. THE MASS DISTRIBUTION OF SUBGIANT PLANET HOSTS

    SciTech Connect (OSTI)

    Lloyd, James P. [Department of Astronomy, Cornell University, Ithaca, NY (United States)

    2013-09-01T23:59:59.000Z

    High mass stars are hostile to Doppler measurements due to rotation and activity on the main-sequence, so RV searches for planets around massive stars have relied on evolved stars. A large number of planets have been found around evolved stars with M > 1.5 M{sub Sun }. To test the robustness of mass determinations, Lloyd compared mass distributions of planet hosting subgiants with distributions from integrating isochrones and concluded that it is unlikely the subgiant planet hosts are this massive, but rather that the mass inferences are systematically in error. The conclusions of Lloyd have been called in to question by Johnson et al., who show TRILEGAL-based mass distributions that disagree with the mass distributions in Lloyd, which they attribute to Malmquist bias. Johnson et al. argue that the very small spectroscopic observational uncertainties favor high masses, and there are a large number of high mass sub giants in RV surveys. However, in this Letter, it is shown that Malmquist bias does not impact the mass distributions, but the mass distribution is sensitive to Galaxy model. The relationship needed to reconcile the subgiant planet host masses with any model of the Galactic stellar population is implausible, and the conclusion of Lloyd that spectroscopic mass determinations of subgiants are likely to have been overestimated is robust.

  11. Heat distribution by natural convection

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01T23:59:59.000Z

    Natural convection can provide adequate heat distribution in many situations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others. Natural convection can also be used to reduce the number of auxiliary heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures are predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Experimental results are summarized based on the monitoring of 15 passive solar buildings which employ a wide variety of geometrical configurations including natural convective loops.

  12. Natural Predator

    E-Print Network [OSTI]

    Wythe, Kathy

    2006-01-01T23:59:59.000Z

    tx H2O | pg. 10 Natural Predator Story by Kathy Wythe Natural Predator Foreign beetle shows promise for controlling saltcedar In the northern part of the Texas Panhandle andalong the West Texas banks of the Colorado andPecos rivers, Texas... scientists are successfully intro- ducing a foreign beetle to help control an invasive and exotic water-thirsty plant. Saltcedar, or Tamarix, was introduced to the western United States in the 1800s from central Asia as an ornamental tree and planted...

  13. Use of a fictitious Marangoni number for natural convection simulation

    E-Print Network [OSTI]

    Arias, Francisco J.; Parks, Geoffrey T.

    2015-05-14T23:59:59.000Z

    , boilers, nuclear reactor systems, energy storage devices, etc. In the design of such systems numerical simulation using computational fluid dynamics (CFD) and experimental testing of prototypes are exten- sively used. However, these methods are not well... theory and to recent research outputs [5–14] and the book by Lappa [15] to obtain an overview of thermal convec- tion and the state of the art. II. THEORETICAL BACKGROUND A. The fictitious Marangoni approach (FMA) Let us start by considering the Navier...

  14. District of Columbia Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0CubicCubic Feet)Cubic--2,819 143,436

  15. U.S. Number of Natural Gas Consumers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial and Institutional UsersDecadeYear JanMonthYear

  16. Total Number of Existing Underground Natural Gas Storage Fields

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTop 100 Oil and GasTop

  17. Number of Existing Natural Gas Aquifers Storage Fields

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecade Year-0 Year-1(Million1. Capacity and43 43 43 43

  18. Number of Existing Natural Gas Depleted Fields Storage

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecade Year-0 Year-1(Million1. Capacity and43 43 43

  19. Number of Existing Natural Gas Salt Caverns Storage Fields

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecade Year-0 Year-1(Million1. Capacity and43 43 4334 35

  20. Hybrid textures in minimal seesaw mass matrices

    E-Print Network [OSTI]

    Srubabati Goswami; Subrata Khan; Atsushi Watanabe

    2009-06-30T23:59:59.000Z

    In the context of minimal seesaw framework, we study the implications of Dirac and Majorana mass matrices in which two rigid properties coexist, namely, equalities among mass matrix elements and texture zeros. In the first part of the study, we discuss general possibilities of the Dirac and Majorana mass matrices for neutrinos with such hybrid structures. We then classify the mass matrices into realistic textures which are compatible with global neutrino oscillation data and unrealistic ones which do not comply with the data. Among the large number of general possibilities, we find that only 6 patterns are consistent with the observations at the level of the most minimal number of free parameters. These solutions have only 2 adjustable parameters, so that all the mixing angles can be described in terms of the two mass differences or pure numbers. We analyze these textures in detail and discuss their impacts for future neutrino experiments and for leptogenesis.

  1. Naturalness and the neutrino matrix

    SciTech Connect (OSTI)

    Sayre, J. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801 (United States); Wiesenfeldt, S. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801 (United States); Institut fur Theoretische Teilchenphysik, Universitaet Karlsruhe, 76128 Karlsruhe (Germany)

    2008-03-01T23:59:59.000Z

    The observed pattern of neutrino mass splittings and mixing angles indicates that their family structure is significantly different from that of the charged fermions. We investigate the implications of these data for the fermion mass matrices in grand-unified theories with a type-I seesaw mechanism. We show that, with simple assumptions, naturalness leads to a strongly hierarchical Majorana mass matrix for heavy right-handed neutrinos and a partially cascade form for the Dirac neutrino matrix. We consider various model building scenarios which could alter this conclusion, and discuss their consequences for the construction of a natural model. We find that including partially lopsided matrices can aid us in generating a satisfying model.

  2. Multispecies weighted Hurwitz numbers

    E-Print Network [OSTI]

    Harnad, J

    2015-01-01T23:59:59.000Z

    The construction of hypergeometric 2D Toda $\\tau$-functions as generating functions for weighted Hurwitz numbers is extended to multispecies families. Both the enumerative geometrical significance of multispecies weighted Hurwitz numbers as weighted enumerations of branched coverings of the Riemann sphere and their combinatorial significance in terms of weighted paths in the Cayley graph of $S_n$ are derived. The particular case of multispecies quantum weighted Hurwitz numbers is studied in detail.

  3. Curvature and Tachibana numbers

    SciTech Connect (OSTI)

    Stepanov, Sergey E [Finance Academy under the Government of the Russian Federation, Moscow (Russian Federation)

    2011-07-31T23:59:59.000Z

    The aim of this paper is to define the rth Tachibana number t{sub r} of an n-dimensional compact oriented Riemannian manifold as the dimension of the space of conformally Killing r-forms, for r=1,2,...,n-1. We also describe properties of these numbers, by analogy with properties of the Betti numbers b{sub r} of a compact oriented Riemannian manifold. Bibliography: 25 titles.

  4. Pulsar Braking Index and Mass Accretion

    E-Print Network [OSTI]

    P. D. Morley

    1993-11-15T23:59:59.000Z

    I show that the braking index, $N$, a fundamental pulsar experimental quantity, naturally differs from the canonical value of 3 by terms which involve mass accretion. Using the measured values of $N$ for PSR1509-58 and PSR0531+21, I determine that for constant density neutron stars their present mass accretion rates are $(3.10\\pm.51)\\times10^{-5}$ M year$^{-1}$ and $(9.946\\pm.089)\\times10^{-5}$ M year$^{-1}$ respectively, where M is the mass of each pulsar. Finally, I demonstrate that mass accretion removes the outstanding problem of the origin of the big glitches of the Vela Pulsar.

  5. DOE/ID-Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of synthetic fuels from natural gas, cogeneration of electricity and steam, and oil shale and oil sand processing varies from 750 to 950C. Additional study is required to...

  6. DOE/ID-Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of primary energy resources in the forms of coal, natural gas, wind, uranium, and oil shale. Most of Wyoming's coal and gas resources are exported from the state in their...

  7. Energy or Mass and Interaction

    E-Print Network [OSTI]

    Gustavo R Gonzalez-Martin

    2010-07-19T23:59:59.000Z

    A review. Problems: 1-Many empirical parameters and large dimension number; 2-Gravitation and Electrodynamics are challenged by dark matter and energy. Energy and nonlinear electrodynamics are fundamental in a unified nonlinear interaction. Nuclear energy appears as nonlinear SU(2) magnetic energy. Gravitation and electromagnetism are unified giving Einstein's equation and a geometric energy momentum tensor. A solution energy in the newtonian limit gives the gravitational constant G. Outside of this limit G is variable. May be interpreted as dark matter or energy. In vacuum, known gravitational solutions are obtained. Electromagnetism is an SU(2) subgroup. A U(1) limit gives Maxwell's equations. Geometric fields determine a generalized Dirac equation and are the germ of quantum physics. Planck's h and of Einstein's c are given by the potential and the metric. Excitations have quanta of charge, flux and spin determining the FQHE. There are only three stable 1/2 spin fermions. Mass is a form of energy. The rest energies of the fermions give the proton/electron mass ratio. Potential excitations have energies equal to the weak boson masses allowing a geometric interpretation of Weinberg's angle. SU(2) gives the anomalous magnetic moments of proton, electron, neutron and generates nuclear range attractive potentials strong enough to produce the binding energies of the deuteron and other nuclides. Lepton and meson masses are due to topological excitations. The geometric mass spectrum is satisfactory. The proton has a triple structure. The alpha constant is a geometric number.

  8. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    SciTech Connect (OSTI)

    Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Tim; Binley, Andrew; Lane, John

    2014-01-16T23:59:59.000Z

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3-part research plan involving (1) development of computer codes and techniques to estimate mass-transfer parameters from time-lapse electrical data; (2) bench-scale experiments on synthetic materials and materials from cores from the Hanford 300 Area; and (3) field demonstration experiments at the DOE’s Hanford 300 Area. In a synergistic add-on to our workplan, we analyzed data from field experiments performed at the DOE Naturita Site under a separate DOE SBR grant, on which PI Day-Lewis served as co-PI. Techniques developed for application to Hanford datasets also were applied to data from Naturita. 1. Introduction The Department of Energy (DOE) faces enormous scientific and engineering challenges associated with the remediation of legacy contamination at former nuclear weapons production facilities. Selection, design and optimization of appropriate site remedies (e.g., pump-and-treat, biostimulation, or monitored natural attenuation) requires reliable predictive models of radionuclide fate and transport; however, our current modeling capabilities are limited by an incomplete understanding of multi-scale mass transfer—its rates, scales, and the heterogeneity of controlling parameters. At many DOE sites, long “tailing” behavior, concentration rebound, and slower-than-expected cleanup are observed; these observations are all consistent with multi-scale mass transfer [Haggerty and Gorelick, 1995; Haggerty et al., 2000; 2004], which renders pump-and-treat remediation and biotransformation inefficient and slow [Haggerty and Gorelick, 1994; Harvey et al., 1994; Wilson, 1997]. Despite the importance of mass transfer, there are significant uncertainties associated with controlling parameters, and the prevalence of mass transfer remains a point of debate [e.g., Hill et al., 2006; Molz et al., 2006] for lack of experimental methods to verify and measure it in situ or independently of tracer breakthrough. There is a critical need for new field-experimental techniques to measure mass transfer in-situ and estimate multi-scale and spatially variable mass-transfer parame

  9. Gauge Trimming of Neutrino Masses

    SciTech Connect (OSTI)

    Chen, Mu-Chun; /Fermilab /UC, Irvine; de Gouvea, Andre; /Northwestern U. /Fermilab; Dobrescu, Bogdan A.; /Fermilab

    2006-12-01T23:59:59.000Z

    We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses.

  10. Putting downward pressure on natural gas prices: The impact of renewable energy and energy efficiency

    E-Print Network [OSTI]

    Wiser, Ryan; Bolinger, Mark; St. Clair, Matthew

    2004-01-01T23:59:59.000Z

    rgy Can Help Ease the Natural Gas Crunch. Cambridge, Mass. :Modeling Forum (EMF). 2003. Natural Gas, Fuel Diversity andM. de Leon. 2003. Natural Gas and Energy Pr ice Volatility.

  11. Definitions Numbered Space

    E-Print Network [OSTI]

    Behmer, Spencer T.

    Definitions · Numbered Space ­ a single space marked with a number and reserved for a single permit 24/7 · Unnumbered Space ­ a space which can be used by any customer allowed to park in that lot. High Low Average Question 4: If I buy a staff permit for an UNNUMBERED* space in a non-gated surface

  12. Impact of Lepton Number Violation at the LHC on Models of Leptogenesis

    E-Print Network [OSTI]

    Frank F. Deppisch; Julia Harz

    2014-08-22T23:59:59.000Z

    The discovery of lepton number violation (LNV) at the LHC would have profound consequences for the viability of high-scale leptogenesis models. As an example, we discuss the case of observing a signal with two same-sign leptons, two jets and no missing energy. This would imply a large washout factor for the lepton number density in the early Universe, which leads to a significant constraint on any high-scale model for the generation of the observed baryon asymmetry. In a standard leptogenesis scenario, the corresponding washout factor would strongly decrease a pre-existing lepton asymmetry and thus would render leptogenesis models that generate a (B-L) asymmetry far above the LHC scale ineffective. Therefore, LHC searches focused on LNV processes without missing energy are powerful probes for high-scale leptogenesis models and correspondingly shed light on the nature of baryogenesis and neutrino masses.

  13. California Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear Jan Feb Mar Apr May Jun Jul Aug

  14. Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecadeDecadeYear Jan Feb Mar

  15. District of Columbia Natural Gas Number of Residential Consumers (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127 1,710,513June

  16. Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess thanThousand CubicElements) Gas and

  17. Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015Year Jan Feb Mar Apr MayYear

  18. Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril

  19. Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet) DecadeYear Jan FebYear Jan

  20. District of Columbia Natural Gas Number of Commercial Consumers (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0CubicCubic Feet)

  1. Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough, 2002Decade Year-0Decade

  2. Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough, 2002DecadeYear JanNElements)

  3. New Jersey Natural Gas Number of Residential Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough,Cubic

  4. New Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion Cubic Feet) Gas,DecadeYear Jan Feb Mar

  5. New Mexico Natural Gas Number of Residential Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion Cubic Feet) Gas,DecadeYear Jan Feb

  6. New York Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion CubicProductionFoot)InputDecade

  7. New York Natural Gas Number of Residential Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion CubicProductionFoot)InputDecadeResidential

  8. North Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear Jan Feb Mar AprYearofProductionYear

  9. Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYear Jan Feb Mar Apr May

  10. Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYear JanYear Jan Feb Mar

  11. Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYearYear Jan Feb Mar Apr MayYear

  12. Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYearYearDecade Year-0Decade

  13. Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade217523,552.1 TableAdditionsElements)

  14. Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May Jun1 1,030Decadeand

  15. U.S. Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb(Million Barrels)

  16. U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb(Million Barrels)of Elements) Acquifers

  17. Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear JanPropane, No.1Decade Year-0 Year-1Elements) Gas

  18. Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYearFuel Consumption (Million Cubic Feet)Elements) Gas

  19. West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYearFuel Consumption0Feet)9 2010Feet)

  20. Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) Year JanYearYear

  1. Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessedDecadeFeet)

  2. Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year Jan Feb MarYear

  3. Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year% ofInputYear Jan Feb Mar

  4. Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubicDecade Year-0Year Jan Feb Mar

  5. Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale% ofElements) Gas and

  6. Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale%73Thousand%YearYear

  7. Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) Year Jan Feb MarYear Jan Feb

  8. New Jersey Natural Gas Number of Commercial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan1 0.2 0.1Commercial Consumers

  9. New Jersey Natural Gas Number of Industrial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan1 0.2 0.1Commercial

  10. Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear JanFoot)YearYear Jan

  11. South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade Year-0TotalH BVElements)

  12. New York Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (Million Cubic Feet) New Yorkand

  13. New York Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (Million Cubic Feet) NewIndustrial

  14. Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet)FuelDecade Year-0Input Supplementaland

  15. U.S. Natural Gas Number of Commercial Consumers - Transported (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan Feb Mar Apr May Jun Jul Aug Sep

  16. U.S. Natural Gas Number of Industrial Consumers - Transported (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan Feb Mar Apr May Jun Jul Aug

  17. U.S. Natural Gas Number of Residential Consumers - Transported (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan Feb Mar Apr May Jun Jul Aug

  18. Super-Natural MSSM

    E-Print Network [OSTI]

    Du, Guangle; Nanopoulos, D V; Raza, Shabbar

    2015-01-01T23:59:59.000Z

    We point out that the electroweak fine-tuning problem in the supersymmetric Standard Models (SSMs) is mainly due to the high energy definition of the fine-tuning measure. We propose super-natural supersymmetry which has an order one high energy fine-tuning measure automatically. The key point is that all the mass parameters in the SSMs arise from a single supersymmetry breaking parameter. In this paper, we show that there is no supersymmetry electroweak fine-tuning problem explicitly in the Minimal SSM (MSSM) with no-scale supergravity and Giudice-Masiero (GM) mechanism. We demonstrate that the $Z$-boson mass, the supersymmteric Higgs mixing parameter $\\mu$ at the unification scale, and the sparticle spectrum can be given as functions of the universal gaugino mass $M_{1/2}$. Because the light stau is the lightest supersymmetric particle (LSP) in the no-scale MSSM, to preserve $R$ parity, we introduce a non-thermally generated axino as the LSP dark matter candidate. We estimate the lifetime of the light stau b...

  19. Natural Supersymmetry without Light Higgsinos

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cohen, T.; Kearney, J.; Luty, M. A.

    2015-04-01T23:59:59.000Z

    We present a mechanism that allows a large Higgsino mass without large fine-tuning. The Higgs is a pseudo Nambu-Goldstone boson (PNGB) of the global symmetry breaking pattern $SO(5) \\to SO(4)$. Because of the PNGB nature of the light Higgs, the $SO(5)$ invariant Higgsino mass does not directly contribute to the Higgs mass. Large couplings in the Higgs sector that spontaneously breaks $SO(5)$ minimize the tuning, and are also motivated by the requirements of generating a sufficiently large Higgs quartic coupling and of maintaining a natural approximate global $SO(5)$ symmetry. When these conditions are imposed, theories of this type predict heavymore »Higgsinos. This construction differs from composite Higgs models in that no new particles are introduced to form complete $SO(5)$ multiplets involving the top quark---the stop is the only top partner. Compatibility with Higgs coupling measurements requires cancelations among contributions to the Higgs mass squared parameter at the 10% level. An important implication of this construction is that the compressed region of stop and sbottom searches can still be natural.« less

  20. Natural Supersymmetry without Light Higgsinos

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cohen, T. [Princeton Univ., Princeton NJ, (United States); Kearney, J. [Fermi National Accelerator Laboratory, Batavia, IL, (United States); Luty, M. A. [University of California Davis, Davis, CA (United States)

    2015-04-01T23:59:59.000Z

    We present a mechanism that allows a large Higgsino mass without large fine-tuning. The Higgs is a pseudo Nambu-Goldstone boson (PNGB) of the global symmetry breaking pattern $SO(5) \\to SO(4)$. Because of the PNGB nature of the light Higgs, the $SO(5)$ invariant Higgsino mass does not directly contribute to the Higgs mass. Large couplings in the Higgs sector that spontaneously breaks $SO(5)$ minimize the tuning, and are also motivated by the requirements of generating a sufficiently large Higgs quartic coupling and of maintaining a natural approximate global $SO(5)$ symmetry. When these conditions are imposed, theories of this type predict heavy Higgsinos. This construction differs from composite Higgs models in that no new particles are introduced to form complete $SO(5)$ multiplets involving the top quark---the stop is the only top partner. Compatibility with Higgs coupling measurements requires cancelations among contributions to the Higgs mass squared parameter at the 10% level. An important implication of this construction is that the compressed region of stop and sbottom searches can still be natural.

  1. Halo occupation numbers and galaxy bias

    E-Print Network [OSTI]

    J. A. Peacock; R. E. Smith

    2000-06-30T23:59:59.000Z

    We propose a heuristic model that displays the main features of realistic theories for galaxy bias. We show that the low-order clustering statistics of the dark-matter distribution depend almost entirely on the locations and density profiles of dark-matter haloes. A hypothetical galaxy catalogue depends on (i) the efficiency of galaxy formation, as manifested by the halo occupation number -- the number of galaxies brighter than some sample limit contained in a halo of a given mass; (ii) the location of these galaxies within their halo. The first factor is constrained by the empirical luminosity function of groups. For the second factor, we assume that one galaxy marks the halo centre, with any remaining galaxies acting as satellites that trace the halo mass. These simple assumptions amount to a recipe for non-local bias, in which the probability of finding a galaxy is not a simple function of its local mass density. We have applied this prescription to some CDM models of current interest, and find that the predictions are close to the observed galaxy correlations for a flat $\\Omega=0.3$ model ($\\Lambda$CDM), but not for an $\\Omega=1$ model with the same power spectrum ($\\tau$CDM). This is an inevitable consequence of cluster normalization for the power spectra: cluster-scale haloes of given mass have smaller core radii for high $\\Omega$, and hence display enhanced small-scale clustering. Finally, the pairwise velocity dispersion of galaxies in the $\\Lambda$CDM model is lower than that of the mass, allowing cluster-normalized models to yield a realistic Mach number for the peculiar velocity field. This is largely due to the strong variation of galaxy-formation efficiency with halo mass that is required in this model.

  2. Metrics For Comparing Plasma Mass Filters

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2012-08-15T23:59:59.000Z

    High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter. __________________________________________________

  3. Metrics for comparing plasma mass filters

    SciTech Connect (OSTI)

    Fetterman, Abraham J.; Fisch, Nathaniel J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540 (United States)

    2011-10-15T23:59:59.000Z

    High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter.

  4. Spectroscopic Binary Mass Determination using Relativity

    E-Print Network [OSTI]

    Zucker, S; Zucker, Shay; Alexander, Tal

    2006-01-01T23:59:59.000Z

    High-precision radial-velocity techniques, which enabled the detection of extrasolar planets are now sensitive to relativistic effects in the data of spectroscopic binary stars (SBs). We show how these effects can be used to derive the absolute masses of the components of eclipsing single-lined SBs and double-lined SBs from Doppler measurements alone. High-precision stellar spectroscopy can thus substantially increase the number of measured sellar masses, thereby improving the mass-radius and mass-magnitude calibrations.

  5. Spectroscopic Binary Mass Determination using Relativity

    E-Print Network [OSTI]

    Shay Zucker; Tal Alexander

    2006-11-14T23:59:59.000Z

    High-precision radial-velocity techniques, which enabled the detection of extrasolar planets are now sensitive to relativistic effects in the data of spectroscopic binary stars (SBs). We show how these effects can be used to derive the absolute masses of the components of eclipsing single-lined SBs and double-lined SBs from Doppler measurements alone. High-precision stellar spectroscopy can thus substantially increase the number of measured stellar masses, thereby improving the mass-radius and mass-luminosity calibrations.

  6. Neutrino mass matrix

    SciTech Connect (OSTI)

    Strobel, E.L.

    1985-01-01T23:59:59.000Z

    Given the many conflicting experimental results, examination is made of the neutrino mass matrix in order to determine possible masses and mixings. It is assumed that the Dirac mass matrix for the electron, muon, and tau neutrinos is similar in form to those of the quarks and charged leptons, and that the smallness of the observed neutrino masses results from the Gell-Mann-Ramond-Slansky mechanism. Analysis of masses and mixings for the neutrinos is performed using general structures for the Majorana mass matrix. It is shown that if certain tentative experimental results concerning the neutrino masses and mixing angles are confirmed, significant limitations may be placed on the Majorana mass matrix. The most satisfactory simple assumption concerning the Majorana mass matrix is that it is approximately proportional to the Dirac mass matrix. A very recent experimental neutrino mass result and its implications are discussed. Some general properties of matrices with structure similar to the Dirac mass matrices are discussed.

  7. Ultra High Mass Range Mass Spectrometer System

    DOE Patents [OSTI]

    Reilly, Peter T. A. [Knoxville, TN

    2005-12-06T23:59:59.000Z

    Applicant's present invention comprises mass spectrometer systems that operate in a mass range from 1 to 10.sup.16 DA. The mass spectrometer system comprising an inlet system comprising an aerodynamic lens system, a reverse jet being a gas flux generated in an annulus moving in a reverse direction and a multipole ion guide; a digital ion trap; and a thermal vaporization/ionization detector system. Applicant's present invention further comprises a quadrupole mass spectrometer system comprising an inlet system having a quadrupole mass filter and a thermal vaporization/ionization detector system. Applicant's present invention further comprises an inlet system for use with a mass spectrometer system, a method for slowing energetic particles using an inlet system. Applicant's present invention also comprises a detector device and a method for detecting high mass charged particles.

  8. Effective Mass and Energy-Mass Relationship

    E-Print Network [OSTI]

    Viktor Ariel

    2012-05-14T23:59:59.000Z

    The particle effective mass is often a challenging concept in solid state physics due to the many different definitions of the effective mass that are routinely used. Also, the most commonly used theoretical definition of the effective mass was derived from the assumption of a parabolic energy-momentum relationship, E(p), and therefore should not be applied to non-parabolic materials. In this paper, we use wave-particle duality to derive a definition of the effective mass and the energy-mass approximation suitable for non-parabolic materials. The new energy-mass relationship can be considered a generalization of Einstein's E=mc^2 suitable for arbitrary E(p) and therefore applicable to solid state materials and devices. We show that the resulting definition of the effective mass seems suitable for non-paraboic solid state materials such as HgCdTe, GaAs, and graphene.

  9. Expectation values of flavor-neutrino numbers with respect to neutrino-source hadron states --Neutrino oscillations and decay probabilities--

    E-Print Network [OSTI]

    Fujii, Kanji

    2014-01-01T23:59:59.000Z

    On the basis of quantum field theory, we consider a unified description of various processes accompanied by neutrinos, namely weak decays and oscillation processes. The structures of the expectation values of flavor-neutrino numbers with respect to neutrino-source hadron state are investigated. Due to the smallness of neutrino masses, we naturally obtain the old (i.e. pre-mixing) formulas of decay probabilities. Together, it is shown that the oscillation formulas, similar to the usual ones, are applied irrespectively of the details of neutrino-producing processes. The derived oscillation formulas are the same in form as the usually used ones except for the oscillation length.

  10. Mass and fans in attached sunspaces

    SciTech Connect (OSTI)

    Jones, R.W.; McFarland, R.D.; Lazarus, G.S.

    1982-01-01T23:59:59.000Z

    The effect of thermal storage mass on the performance of an attached sunspace is investigated for a particular design in Boston. Mass in the sunspace and in the adjoining building are compared. Performance is evaluated in terms of temperature conditions in the sunspace and delivery of useful solar heat to the adjoining building. The dependence of the results on the manner of heat delivery is studied. Both natural convection and fan-forced air flow are included.

  11. Mass transfer at vertically oscillating surfaces

    SciTech Connect (OSTI)

    Gomaa, H.G. [Ontario Hydro Nuclear, Tiverton, Ontario (Canada); Landau, J. [Univ. of New Brunswick, Fredericton, NB (Canada); Tawell, A.M.A. [Technical Univ. of Nova Scotia, Halifax, NS (Canada)

    1996-12-31T23:59:59.000Z

    An analysis of mass transfer at vertically oscillating surfaces is presented. It takes into account the interaction between forced and natural convection and can be used under conditions where the fluid velocity outside the boundary layer changes direction. Because of the good agreement with experimental data, the model can explain the multi-fold increase in mass transfer coefficient obtained under oscillatory conditions. 8 refs., 3 figs.

  12. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N. (ed.)

    1985-05-01T23:59:59.000Z

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  13. NATURAL GAS MARKET ASSESSMENT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

  14. Natural attenuation: Chlorinated and recalcitrant compounds

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    Natural, or intrinsic, attenuation is an increasingly important component of site closure strategy. At first maligned as a do-nothing alternative, natural attenuation is now being recognized as a legitimate approach that can supplement and sometimes even supplant more costly approaches. Having gained more widespread acceptance as an option at hydrocarbon-contaminated sites, natural attenuation is now beginning to emerge as an option for sites contaminated with chlorinated solvents and other recalcitrant compounds such as MTBE. This book brings together the latest research and field applications, with chapters covering field characterization and monitoring, transformation processes, natural attenuation of MTBE, and a number of natural attenuation case studies.

  15. Mass spectrometric immunoassay

    DOE Patents [OSTI]

    Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

    2013-07-16T23:59:59.000Z

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  16. Mass spectrometric immunoassay

    DOE Patents [OSTI]

    Nelson, Randall W (Phoenix, AZ); Williams, Peter (Phoenix, AZ); Krone, Jennifer Reeve (Granbury, TX)

    2007-12-04T23:59:59.000Z

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  17. A number of organizations,

    E-Print Network [OSTI]

    installed solar electric systems on a number of the city's buildings, including the Chicago Center for Green Technology shown here. CityofChicago Aggregated Purchasing--A Clean Energy Strategy SOLAR TODAY Aggregated Purchasing--A Clean Energy Strategy by Lori A. Bird and Edward A. Holt #12;November/December 2002 35 Power

  18. ALARA notes, Number 8

    SciTech Connect (OSTI)

    Khan, T.A.; Baum, J.W.; Beckman, M.C. [eds.] [eds.

    1993-10-01T23:59:59.000Z

    This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the `tyranny` of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment.

  19. Probing lepton number violation on three frontiers

    SciTech Connect (OSTI)

    Deppisch, Frank F. [Department of Physics and Astronomy, University College London (United Kingdom)

    2013-12-30T23:59:59.000Z

    Neutrinoless double beta decay constitutes the main probe for lepton number violation at low energies, motivated by the expected Majorana nature of the light but massive neutrinos. On the other hand, the theoretical interpretation of the (non-)observation of this process is not straightforward as the Majorana neutrinos can destructively interfere in their contribution and many other New Physics mechanisms can additionally mediate the process. We here highlight the potential of combining neutrinoless double beta decay with searches for Tritium decay, cosmological observations and LHC physics to improve the quantitative insight into the neutrino properties and to unravel potential sources of lepton number violation.

  20. 1074 volume 27 number 12 december 2009 nature biotechnology Improving on nature

    E-Print Network [OSTI]

    Cai, Long

    ,"saysVerdezyneCSOStephen Picataggio. Cellulosic ethanol, produced from plant waste and other nonfood sources, offers a more attractive greenhouse gas emissions profile than its corn-derived counterpart, and the first com- mercial quantities of cellulosic ethanol are due to come online in 2010.One recent report indicates that some producers have either

  1. Imaging mass spectrometer with mass tags

    DOE Patents [OSTI]

    Felton, James S.; Wu, Kuang Jen; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2010-06-01T23:59:59.000Z

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  2. Imaging mass spectrometer with mass tags

    DOE Patents [OSTI]

    Felton, James S.; Wu, Kuang Jen J.; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2013-01-29T23:59:59.000Z

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  3. LSP Squark Decays at the LHC and the Neutrino Mass Hierarchy

    E-Print Network [OSTI]

    Zachary Marshall; Burt A. Ovrut; Austin Purves; Sogee Spinner

    2014-08-05T23:59:59.000Z

    The existence of R-parity in supersymmetric models can be naturally explained as being a discrete subgroup of gauged baryon minus lepton number (B-L). The most minimal supersymmetric B-L model triggers spontaneous R-parity violation, while remaining consistent with proton stability. This model is well-motivated by string theory and makes several interesting, testable predictions. Furthermore, R-parity violation contributes to neutrino masses, thereby connecting the neutrino sector to the decay of the lightest supersymmetric particle (LSP). This paper analyzes the decays of third generation squark LSPs into a quark and a lepton. In certain cases, the branching ratios into charged leptons reveal information about the neutrino mass hierarchy, a current goal of experimental neutrino physics, as well as the $\\theta_{23}$ neutrino mixing angle. Furthermore, optimization of leptoquark searches for this scenario is discussed. Using currently available data, the lower bounds on the third generation squarks are computed.

  4. Cauchy horizon singularity without mass inflation

    E-Print Network [OSTI]

    P. R. Brady; D. Nunez; S. Sinha

    1992-11-20T23:59:59.000Z

    A perturbed Reissner-Nordstr\\"om-de Sitter solution is used to emphasize the nature of the singularity along the Cauchy horizon of a charged spherically symmetric black hole. For these solutions, conditions may prevail under which the mass function is bounded and yet the curvature scalar $R_{\\alpha\\beta\\gamma\\delta} R^{\\alpha\\beta\\gamma\\delta}$ diverges.

  5. Statistical nature of cluster emission in nuclear liquid phase

    E-Print Network [OSTI]

    Y. G. Ma

    2002-03-23T23:59:59.000Z

    The emission of nuclear clusters is investigated within the framework of isospin dependent lattice gas model and classical molecular dynamics model. It is found that the emission of individual cluster which is heavier than proton is almost Poissonian except near the liquid gas phase transition point and the thermal scaling is observed by the linear Arrhenius plots which is made from the average multiplicity of each cluster versus the inverse of temperature in the nuclear liquid phase. It indicates of a statistical nature of such cluster emission in the models. The "emission barriers" which are the slopes of the Arrhenius plots are extracted as a function of the mass or charge number and fitted by the formula embodied with the contributions of the surface energy and Coulomb interaction. The possible influences of the source size, Coulomb interaction and "freeze-out" density and related physical implications are discussed.

  6. Neutrino mass matrix

    SciTech Connect (OSTI)

    Capps, R.H.; Strobel, E.L.

    1985-07-01T23:59:59.000Z

    It is assumed that the Dirac mass matrix for the neutrinos (..nu../sub e/,..nu../sub ..mu../,..nu../sub tau/) is similar in form to those for the quarks and charged leptons, and that the smallness of the observed ..nu.. masses results from the Gell-Mann--Ramond--Slansky mechanism. It is shown that if certain tentative experimental results concerning the ..nu.. masses and mixing angles are confirmed, significant limitations may be placed on the Majorana mass matrix. The most satisfactory simple assumption concerning the Majorana mass matrix is that it is approximately proportional to the Dirac mass matrix. Some general properties of the Dirac matrices are discussed.

  7. 2005NaturePublishingGrouphttp://www.nature.com/naturemedicine 4 VOLUME 11 | NUMBER 1 | JANUARY 2005 NATURE MEDICINE

    E-Print Network [OSTI]

    Cai, Long

    against the H5N1 strain.The powder may eliminate the restrictive need for cold storage. Progress.Thosevaccinesaren'tlicensedintheUS,but thecompanyhopestogainapprovalfromtheUS Food and Drug Administration by 2007. Pandemic fears hatch new methods in flu vaccine industry

  8. NSR Key Number Retrieval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key Number Retrieval Pease

  9. Natural fourth generation of leptons

    E-Print Network [OSTI]

    Oleg Antipin; Matti Heikinheimo; Kimmo Tuominen

    2009-09-14T23:59:59.000Z

    We consider implications of a fourth generation of leptons, allowing for the most general mass patterns for the fourth generation neutrino. We determine the constraints due to the precision electroweak measurements and outline the signatures to search for at the LHC experiments. As a concrete framework to apply these results we consider the minimal walking technicolor (MWTC) model where the matter content, regarding the electroweak quantum numbers, corresponds to a fourth generation.

  10. EMSL - Mass Spectrometry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mass-spectrometry Proteomics Capabilities High resolution and mass accuracy Fourier-transform ion cyclotron resonance (FT-ICR) spectrometers, from 6 Tesla (T) to 15T and 21T in...

  11. Mass Insertions vs. Mass Eigenstates calculations in Flavour Physics

    E-Print Network [OSTI]

    Dedes, A; Rosiek, J; Suxho, K; Tamvakis, K

    2015-01-01T23:59:59.000Z

    We present and prove a theorem of matrix analysis, the Flavour Expansion Theorem (or FET), according to which, an analytic function of a Hermitian matrix can be expanded polynomially in terms of its off-diagonal elements with coefficients being the divided differences of the analytic function and arguments the diagonal elements of the Hermitian matrix. The theorem is applicable in case of flavour changing amplitudes. At one-loop level this procedure is particularly natural due to the observation that every loop function in the Passarino-Veltman basis can be recursively expressed in terms of divided differences. FET helps to algebraically translate an amplitude written in mass eigenbasis into flavour mass insertions, without performing diagrammatic calculations in flavour basis. As a non-trivial application of FET up to a third order, we demonstrate its use in calculating strong bounds on the real parts of flavour changing mass insertions in the up- squark sector of the MSSM from neutron Electric Dipole Moment...

  12. Grant Application Package CFDA Number

    E-Print Network [OSTI]

    Talley, Lynne D.

    Grant Application Package CFDA Number: Opportunity Title: Offering Agency: Agency Contact: Opportunity Open Date: Opportunity Close Date: CFDA Description: Opportunity Number: Competition ID

  13. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R. (College Station, TX); Rodgers, John C. (Santa Fe, NM); Ortiz, Carlos A. (Bryan, TX); Nelson, David C. (Santa Fe, NM)

    1994-01-01T23:59:59.000Z

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  14. Grant Title: KNOWLEDGE DISSEMINATION CONFERENCE GRANTS PROGRAM ANNOUNCEMENT Funding Opportunity Number: CFDA Number(s) -93.243; Funding Opportunity Number -OA-08-002.

    E-Print Network [OSTI]

    Farritor, Shane

    Number: CFDA Number(s) - 93.243; Funding Opportunity Number - OA-08-002. Agency/Department: Department

  15. 13. Neutrino mixing 1 13. NEUTRINO MASS, MIXING, AND OSCILLATIONS

    E-Print Network [OSTI]

    13. Neutrino mixing 1 13. NEUTRINO MASS, MIXING, AND OSCILLATIONS Updated May 2012 by K. Nakamura have provided compelling evidences for oscillations of neutrinos caused by nonzero neutrino masses of neutrino oscillations, the phenomenology of neutrino mixing, the problem of the nature - Dirac or Majorana

  16. nature nanotechnology | VOL 5 | DECEMBER 2010 | www.nature.com/naturenanotechnology 825 correspondence

    E-Print Network [OSTI]

    Zhang, Minghua

    nature nanotechnology | VOL 5 | DECEMBER 2010 | www.nature.com/naturenanotechnology 825 purpose of publishing research papers in various areas of nanoscience and nanotechnology. Many­4 . This article will quantify the growth over time in the number of nanotechnology journals using three databases

  17. Regulation of natural monopolies

    E-Print Network [OSTI]

    Joskow, Paul L.

    2005-01-01T23:59:59.000Z

    This chapter provides a comprehensive overview of the theoretical and empirical literature on the regulation of natural monopolies. It covers alternative definitions of natural monopoly, regulatory goals, alternative ...

  18. Natural Gas Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue...

  19. Borrowing Nature's Polymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Borrowing Nature's Polymers 1663 Los Alamos science and technology magazine Latest Issue:January 2015 All Issues submit Borrowing Nature's Polymers Los Alamos scientists are...

  20. Natural Resources Districts (Nebraska)

    Broader source: Energy.gov [DOE]

    This statute establishes Natural Resources District, encompassing all of the area of the state, to conserve, protect, develop, and manage Nebraska's natural resources. These districts replace and...

  1. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  2. Natural Gas Rules (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

  3. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  4. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  5. Impact of Natural Gas Infrastructure on Electric Power Systems

    E-Print Network [OSTI]

    Fu, Yong

    Impact of Natural Gas Infrastructure on Electric Power Systems MOHAMMAD SHAHIDEHPOUR, FELLOW, IEEE of electricity has introduced new risks associated with the security of natural gas infrastructure on a sig the essence of the natural gas infrastructure for sup- plying the ever-increasing number of gas-powered units

  6. Momentum scale dependence of the net quark number fluctuations near chiral crossover

    E-Print Network [OSTI]

    Kenji Morita; Krzysztof Redlich

    2015-03-11T23:59:59.000Z

    We investigate properties of the net baryon number fluctuations near chiral crossover in a hot and dense medium of strongly interacting quarks. The chirally invariant quark-antiquark interactions are modeled by an effective quark-meson Lagrangian. To preserve remnants of criticality in the O(4) universality class, we apply the functional renormalization group method to describe thermodynamics near chiral crossover. Our studies are focused on the influence of the momentum cuts on the critical behavior of different cumulants of the net quark number fluctuations. We use the momentum scale dependence of the flow equation to examine how the suppression of the momentum modes in the infrared and ultraviolet regime modifies generic properties of fluctuations expected in the O(4) universality class. We show, that the pion mass $m_\\pi$ is a natural soft momentum scale at which cumulants are saturated at their critical values, whereas for scales larger than $2m_\\pi$ the characteristic O(4) structure of the higher order cumulants get lost. These results indicate, that when measuring fluctuations of the net baryon number in heavy ion collisions to search for a partial restoration of chiral symmetry or critical point, a special care have to be made when introducing kinematical cuts on the fluctuation measurements.

  7. The concrete theory of numbers: initial numbers and wonderful properties of numbers repunit

    E-Print Network [OSTI]

    Boris V. Tarasov

    2007-04-07T23:59:59.000Z

    In this work initial numbers and repunit numbers have been studied. All numbers have been considered in a decimal notation. The problem of simplicity of initial numbers has been studied. Interesting properties of numbers repunit are proved: $gcd(R_a, R_b) = R_{gcd(a,b)}$; $R_{ab}/(R_aR_b)$ is an integer only if $gcd(a,b) = 1$, where $a\\geq1$, $b\\geq1$ are integers. Dividers of numbers repunit, are researched by a degree of prime number.

  8. Top quark mass measurements

    SciTech Connect (OSTI)

    Hill, Christopher S.; /UC, Santa Barbara

    2004-12-01T23:59:59.000Z

    The top quark, with its extraordinarily large mass (nearly that of a gold atom), plays a significant role in the phenomenology of EWSB in the Standard Model. In particular, the top quark mass when combined with the W mass constrains the mass of the as yet unobserved Higgs boson. Thus, a precise determination of the mass of the top quark is a principal goal of the CDF and D0 experiments. With the data collected thus far in Runs 1 and 2 of the Tevatron, CDF and D0 have measured the top quark mass in both the lepton+jets and dilepton decay channels using a variety of complementary experimental techniques. The author presents an overview of the most recent of the measurements.

  9. MassMass transfer andtransfer and MassMass transfer andtransfer and

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Heat conductivity T'1 Heat flux h" (W/m2), local and overall heat transfer coeffients h1 Heat transfer coefficientcoefficient /1/1 Mass flow species A:interface a p A = A mol/s M f1 (L) 2 (G) Mass transfer rate per area: A = A/a = "A mol/(m2·s) 1 (L) 2 (G) xi C1.i M t f ffi i t k x C y 1.i AA !!! Mass transfer coefficients

  10. Mass and Heat Recovery

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01T23:59:59.000Z

    - 1 - MASS AND HEAT RECOVERY SYSTEM SALAH MAHMOUD HINDAWI DIRECTOR HINDAWI FOR ENGINEERING SERVICES & CONTRACTING NEW DAMIETTA , EGYPT ABSTRACT : In the last few years heat recovery was under spot . and in air conditioning fields... ) as a heat recovery . and I use the water as a mass recovery . The source of mass and heat recovery is the condensate water which we were dispose and connect it to the drain lines . THE BENEFIT OF THIS SYSTEM ARE : 1) Using the heat energy from...

  11. Multiple mass solvers

    E-Print Network [OSTI]

    B. Jegerlehner

    1997-08-29T23:59:59.000Z

    We present a general method to construct multiple mass solvers from standard algorithms. As an example, the BiCGstab-M algorithm is derived.

  12. EMSL - Mass Spectrometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MS) with high mass resolution (m&61636;m100,000). Solvent mixtures of acetonitrilewater and acetonitriletoluene were used to extract and ionize polar and non-polar...

  13. Natural Gas Exploration

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    . Exploration and extraction of natural gas from the Marcellus shale is a potentially valuable economic stimulus for landowners. You might be wondering how the nation's economic situation is affecting the market for naturalNatural Gas Exploration: A Landowners Guide to Financial Management Natural Gas Exploration

  14. Research Highlights Nature Nanotechnology

    E-Print Network [OSTI]

    Müller, Markus

    © 2009 APS Research Highlights Nature Nanotechnology Published online: 17 July 2009 | doi:10 perfect fluid. Phys. Rev. Lett. 103, 025301 (2009). | Article |1. Nature Nanotechnology ISSN 1748 : Nature Nanotechnology http://www.nature.com/nnano/reshigh/2009/0709/full/nnano.2009.222.html 1 of 1 18

  15. Double beta decay and neutrino mass models

    E-Print Network [OSTI]

    Helo, J C; Ota, T; Santos, F A Pereira dos

    2015-01-01T23:59:59.000Z

    Neutrinoless double beta decay allows to constrain lepton number violating extensions of the standard model. If neutrinos are Majorana particles, the mass mechanism will always contribute to the decay rate, however, it is not a priori guaranteed to be the dominant contribution in all models. Here, we discuss whether the mass mechanism dominates or not from the theory point of view. We classify all possible (scalar-mediated) short-range contributions to the decay rate according to the loop level, at which the corresponding models will generate Majorana neutrino masses, and discuss the expected relative size of the different contributions to the decay rate in each class. We also work out the phenomenology of one concrete 2-loop model in which both, mass mechanism and short-range diagram, might lead to competitive contributions, in some detail.

  16. Natural gas monthly

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

  17. Data Compression with Prime Numbers

    E-Print Network [OSTI]

    Gordon Chalmers

    2005-11-16T23:59:59.000Z

    A compression algorithm is presented that uses the set of prime numbers. Sequences of numbers are correlated with the prime numbers, and labeled with the integers. The algorithm can be iterated on data sets, generating factors of doubles on the compression.

  18. mass communication advertising &

    E-Print Network [OSTI]

    Finzi, Adrien

    mass communication advertising & public relations introduction. Graduate programs in the Department of Mass Communication, Advertising, and Public Relations provide an entry to a wide spectrum of careers in the communication industry. Classes, internships, site visits, and presentations by top professionals offer students

  19. The Origins of Mass

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-07T23:59:59.000Z

    The Higgs boson was discovered in July of 2012 and is generally understood to be the origin of mass. While those statements are true, they are incomplete. It turns out that the Higgs boson is responsible for only about 2% of the mass of ordinary matter. In this dramatic new video, Dr. Don Lincoln of Fermilab tells us the rest of the story.

  20. The Origins of Mass

    SciTech Connect (OSTI)

    Lincoln, Don

    2014-07-30T23:59:59.000Z

    The Higgs boson was discovered in July of 2012 and is generally understood to be the origin of mass. While those statements are true, they are incomplete. It turns out that the Higgs boson is responsible for only about 2% of the mass of ordinary matter. In this dramatic new video, Dr. Don Lincoln of Fermilab tells us the rest of the story.

  1. Absolute neutrino mass measurements

    SciTech Connect (OSTI)

    Wolf, Joachim [Karlsruhe Institute of Technology (KIT), IEKP, Postfach 3640, 76021 Karlsruhe (Germany)

    2011-10-06T23:59:59.000Z

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  2. Neutrinoless Double Beta Decay and Neutrino Masses

    E-Print Network [OSTI]

    Michael Duerr

    2012-06-04T23:59:59.000Z

    Neutrinoless double beta decay is a promising test for lepton number violating physics beyond the standard model of particle physics. There is a deep connection between this decay and the phenomenon of neutrino masses. In particular, we will discuss the relation between neutrinoless double beta decay and Majorana neutrino masses provided by the so-called Schechter--Valle theorem in a quantitative way. Furthermore, we will present an experimental cross check to discriminate neutrinoless double beta decay from unknown nuclear background using only one isotope, i.e., within one experiment.

  3. Neutrinoless double beta decay and neutrino masses

    SciTech Connect (OSTI)

    Duerr, Michael [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2012-07-27T23:59:59.000Z

    Neutrinoless double beta decay (0{nu}{beta}{beta}) is a promising test for lepton number violating physics beyond the standard model (SM) of particle physics. There is a deep connection between this decay and the phenomenon of neutrino masses. In particular, we will discuss the relation between 0{nu}{beta}{beta} and Majorana neutrino masses provided by the so-called Schechter-Valle theorem in a quantitative way. Furthermore, we will present an experimental cross check to discriminate 0{nu}{beta}{beta} from unknown nuclear background using only one isotope, i.e., within one experiment.

  4. Constraints on the formation mechanism of the planetary mass companion of 2MASS 1207334-393254

    E-Print Network [OSTI]

    G. Lodato; E. Delgado-Donate; C. J. Clarke

    2005-09-26T23:59:59.000Z

    In this paper we discuss the nature and the possible formation scenarios of the companion of the brown dwarf 2MASS 1207334-393254. We initially discuss the basic physical properties of this object and conclude that, although from its absolute mass ($5M_{\\rm Jup}$), it is a planetary object, in terms of its mass ratio $q$ and of its separation $a$ with respect to the primary brown dwarf, it is consistent with the statistical properties of binaries with higher primary mass. We then explore the possible formation mechanism for this object. We show that the standard planet formation mechanism of core accretion is far too slow to form this object within 10 Myr, the observed age of the system. On the other hand, the alternative mechanism of gravitational instability (proposed both in the context of planet and of binary formation) may, in principle, work and form a system with the observed properties.

  5. Neutrino mass matrices with one texture zero and a vanishing neutrino mass

    E-Print Network [OSTI]

    Gautam, Radha Raman; Gupta, Manmohan

    2015-01-01T23:59:59.000Z

    Assuming Majorana nature of neutrinos, we investigate the singular one texture zero neutrino mass matrices in the flavor basis. We find that for the normal mass ordering with $m_1=0$, all the six one texture zero classes are now ruled out at 3$\\sigma$ confidence level, whereas for inverted mass ordering with $m_3=0$ only four classes out of total six can accommodate the latest neutrino oscillation data at 3$\\sigma$ confidence level. Moreover, only two classes can accommodate the present data at 1$\\sigma$ confidence level. We examine the phenomenological implications of the allowed classes for the effective Majorana mass, Dirac and Majorana CP-violating phases. Working within the framework of type-I seesaw mechanism, we present simple discrete Abelian symmetry models leading to all the phenomenologically allowed classes.

  6. Neutrino mass matrices with one texture zero and a vanishing neutrino mass

    E-Print Network [OSTI]

    Radha Raman Gautam; Madan Singh; Manmohan Gupta

    2015-06-16T23:59:59.000Z

    Assuming Majorana nature of neutrinos, we investigate the singular one texture zero neutrino mass matrices in the flavor basis. We find that for the normal mass ordering with $m_1=0$, all the six one texture zero classes are now ruled out at 3$\\sigma$ confidence level, whereas for inverted mass ordering with $m_3=0$ only four classes out of total six can accommodate the latest neutrino oscillation data at 3$\\sigma$ confidence level. Moreover, only two classes can accommodate the present data at 1$\\sigma$ confidence level. We examine the phenomenological implications of the allowed classes for the effective Majorana mass, Dirac and Majorana CP-violating phases. Working within the framework of type-I seesaw mechanism, we present simple discrete Abelian symmetry models leading to all the phenomenologically allowed classes.

  7. Mass transfer effects in a gasification riser

    SciTech Connect (OSTI)

    Breault, Ronald W [U.S. DOE; Li, Tingwen [URS; Nicoletti, Phillip [URS

    2013-01-01T23:59:59.000Z

    In the development of multiphase reacting computational fluid dynamics (CFD) codes, a number of simplifications were incorporated into the codes and models. One of these simplifications was the use of a simplistic mass transfer correlation for the faster reactions and omission of mass transfer effects completely on the moderate speed and slow speed reactions such as those in a fluidized bed gasifier. Another problem that has propagated is that the mass transfer correlation used in the codes is not universal and is being used far from its developed bubbling fluidized bed regime when applied to circulating fluidized bed (CFB) riser reactors. These problems are true for the major CFD codes. To alleviate this problem, a mechanistic based mass transfer coefficient algorithm has been developed based upon an earlier work by Breault et al. This fundamental approach uses the local hydrodynamics to predict a local, time varying mass transfer coefficient. The predicted mass transfer coefficients and the corresponding Sherwood numbers agree well with literature data and are typically about an order of magnitude lower than the correlation noted above. The incorporation of the new mass transfer model gives the expected behavior for all the gasification reactions evaluated in the paper. At the expected and typical design values for the solid flow rate in a CFB riser gasifier an ANOVA analysis has shown the predictions from the new code to be significantly different from the original code predictions. The new algorithm should be used such that the conversions are not over predicted. Additionally, its behaviors with changes in solid flow rate are consistent with the changes in the hydrodynamics.

  8. Natural gas annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

  9. Nature/Culture/Seawater

    E-Print Network [OSTI]

    Helmreich, Stefan

    This essay considers seawater as a substance and symbol in anthropological and social theory. Seawater has occupied an ambiguous place with respect to anthropological categories of nature and culture. Seawater as nature ...

  10. Supervisory Natural Gas Analyst

    Broader source: Energy.gov [DOE]

    The Department of Energys Office of Fossil Energy, Office of Oil and Natural Gas, Office of Oil and Gas Global Security and Supply (FE) is responsible for regulating natural gas imports and exports...

  11. New Mexico Natural Gas Prices

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New Mexico Natural GasCubic2008 20092009

  12. New Mexico Natural Gas Prices

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New Mexico Natural GasCubic2008

  13. Masses of Fundamental Particles

    E-Print Network [OSTI]

    Hidezumi Terazawa

    2014-06-11T23:59:59.000Z

    In the original paper entitled, "Masses of Fundamental Particles"(arXiv:1109.3705v5, 10 Feb 2012), not only the masses of fundamental particles including the weak bosons, Higgs boson, quarks, and leptons, but also the mixing angles of quarks and those of neutrinos are all explained and/or predicted in the unified composite models of quarks and leptons successfully. In this addendum entitled, "Higgs Boson Mass in the Minimal Unified Subquark Model", it is emphasized that the Higgs boson mass is predicted to be about 130Gev in the minimal unified subquark model, which agrees well with the experimental values of 125-126GeV recently found by the ATLAS and CMS Collaborations at the LHC.

  14. Natural gas annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

  15. Natural Resources Research Institute

    E-Print Network [OSTI]

    Netoff, Theoden

    /Loll ThermoWood Hybrid Poplars Peat A boost for the peat industry Value in Minnesota peat deposits Natural che

  16. Natural gas annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-11-17T23:59:59.000Z

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

  17. HIGEE Mass Transfer

    E-Print Network [OSTI]

    Mohr, R. J.; Fowler, R.

    HIGEE MASS TRANSFER R.J. Mohr and R. Fowler GLITSCH, INC. Dallas, Texas ABSTRACT Distillation, absorption, and gas stripping have traditionally been performed in tall columns utilizing trays or packing. Columns perform satisfactorily... transfer system which utilizes a rotating bed of packing to achieve high efficiency separations, and consequent reduction in size and weight. INTRODUCTION HIGEE is probably one of the most interesting developments in mass transfer equipment made...

  18. Mass of Cu-57

    E-Print Network [OSTI]

    Gagliardi, Carl A.; Semon, D. R.; Tribble, Robert E.; Vanausdeln, L. A.

    1986-01-01T23:59:59.000Z

    the experimental and theoretical Coulomb displacement energies for similar cases in A =17 and 41 has been attributed~ to ground state correlations in the nuclear wave functions. It is in- teresting to examine the mass 57 mirror nuclei to investi- gate... indicated. Reference 9. 'Reference 7. Reference 6. 'This work. 34 MASS OF Cu 1665 the 3=57 Coulomb displacement energy, using radial wave functions obtained in a spherical Hartree-Fock cal- culation, assuming a closed Ni core, and including...

  19. Compendium of Experimental Cetane Numbers

    SciTech Connect (OSTI)

    Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

    2014-08-01T23:59:59.000Z

    This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

  20. Why everyone should know number theory Minhyong Kim

    E-Print Network [OSTI]

    Kim, Minhyong

    is number' is well-known. But my impression is that even practicing mathematicians are often not entirely (actually for good reasons). Going from the large to the small scale, according to quantum mechanics product in a natural way of many other Hilbert spaces. We can completely trace the evolution of (all

  1. VOlume 20 Number 3 2004 THE JOURNAL OF MARINE EDUCATION

    E-Print Network [OSTI]

    Carr, Mark H.

    VOlume 20 · Number 3 · 2004 THE JOURNAL OF MARINE EDUCATION MARINE PROTECTED AREAS 13 Zoning.g., Yellowstone, Yosemite) in which ecosystems are protected to preserve their natural biodiversity, ecological minimum portion of a stock and provide a "control area" which, when compared to less- protected

  2. Los Alamos science, Number 14

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    Nine authored articles are included covering: natural heat engine, photoconductivity, the Caribbean Basin, energy in Central America, peat, geothermal energy, and the MANIAC computer. Separate abstracts were prepared for the articles. (DLC)

  3. Number

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8 7 +New York, New

  4. Natural convection airflow measurement and theory

    SciTech Connect (OSTI)

    Balcomb, J.D.; Jones, G.F.; Yamaguchi, Kenjiro

    1984-01-01T23:59:59.000Z

    Natural convection is a major mechanism for heat distribution in many passive solar buildings, especially those with sunspaces. To better understand this mechanism, observations of air velocities and temperatures have been made in 13 different houses that encompass a wide variety of one- and two-story geometries. This paper extends previous reports. Results from one house are described in detail, and some generalizations are drawn from the large additional mass of data taken. A simple mathematical model is presented that describes the general nature of airflow and energy flow through an aperture.

  5. Neutrino Mass, Sneutrino Dark Matter and Signals of Lepton Flavor Violation in the MRSSM

    E-Print Network [OSTI]

    Kumar, Abhishek; Weiner, Neal

    2009-01-01T23:59:59.000Z

    We study the phenomenology of mixed-sneutrino dark matter in the Minimal R-Symmetric Supersymmetric Standard Model (MRSSM). Mixed sneutrinos fit naturally within the MRSSM, as the smallness (or absence) of neutrino Yukawa couplings singles out sneutrino A-terms as the only ones not automatically forbidden by R-symmetry. We perform a study of randomly generated sneutrino mass matrices and find that (i) the measured value of $\\Omega_{DM}$ is well within the range of typical values obtained for the relic abundance of the lightest sneutrino, (ii) with small lepton-number-violating mass terms $m_{nn}^{2} {\\tilde n} {\\tilde n}$ for the right-handed sneutrinos, random matrices satisfying the $\\Omega_{DM}$ constraint have a decent probability of satisfying direct detection constraints, and much of the remaining parameter space will be probed by upcoming experiments, (iii) the $m_{nn}^{2} {\\tilde n} {\\tilde n}$ terms radiatively generate appropriately small Majorana neutrino masses, with neutrino oscillation data favo...

  6. Brookhaven National Laboratory Number: Revision

    E-Print Network [OSTI]

    Ohta, Shigemi

    Brookhaven National Laboratory Number: Revision: PS-ESH-0057 01 Effective: Page 1 of 9 06 Chris Weilandics Signature on file Department ES&H Approval printed name Signature Date Lori Stiegler Signature on file #12;Number: PS-ESH-0057 Revision: 01 Effective: 06/08/12 Page 2 of 9 The only official

  7. EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...

    U.S. Energy Information Administration (EIA) Indexed Site

    Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Thirty Largest U.S. Interstate Natural...

  8. Neutrino Majorana Mass from Black Hole

    E-Print Network [OSTI]

    Yosuke Uehara

    2002-05-25T23:59:59.000Z

    We propose a new mechanism to generate the neutrino Majorana mass in TeV-scale gravity models. The black hole violates all non-gauged symmetries and can become the origin of lepton number violating processes. The fluctuation of higher-dimensional spacetime can result in the production of a black hole, which emits 2 neutrinos. If neutrinos are Majorana particles, this process is equivalent to the free propagation of a neutrino with the insertion of the black hole. From this fact, we derive the neutrino Majorana mass. The result is completely consistent with the recently observed evidence of neutrinoless double beta decay. And the obtained neutrino Majorana mass satisfies the constraint from the density of the neutrino dark matter, which affects the cosmic structure formation. Furthermore, we can explain the ultrahigh energy cosmic rays by the Z-burst scenario with it.

  9. The integration of engineering and architecture: A perspective on natural ventilation for the new San Francisco Federal Building

    SciTech Connect (OSTI)

    McConahey, Erin; Haves, Philip; Christ, Tim

    2002-05-31T23:59:59.000Z

    A description of the in-progress design of a new Federal Office Building for San Francisco is used to illustrate a number of issues arising in the design of large, naturally ventilated office buildings. These issues include the need for an integrated approach to design involving the architects, mechanical and structural engineers, lighting designers and specialist simulation modelers. In particular, the use of natural ventilation, and the avoidance of air-conditioning, depends on the high degree of exposed thermal mass made possible by the structural scheme and by the minimization of solar heat gains while maintaining the good daylighting that results from optimization of the fagade. Another issue was the need for a radical change in interior space planning in order to enhance the natural ventilation; all the individual enclosed offices are located along the central spine of each floorplate rather than at the perimeter. The role of integration in deterring the undermining of the design through value engineering is discussed. The comfort criteria for the building were established based on the recent extension to the ASHRAE comfort standard based on the adaptive model for naturally ventilated buildings. The building energy simulation program EnergyPlus was used to compare the performance of different natural ventilation strategies. The results indicate that, in the San Francisco climate, wind-driven ventilation provides sufficient nocturnal cooling to maintain comfortable conditions and that external chimneys do not provide significant additional ventilation at times when it when it would be beneficial.

  10. Radiative inverse seesaw neutrino mass and dark matter

    SciTech Connect (OSTI)

    Guo Gang [INPAC, Department of Physics and Shanghai Key Laboratory for Particle Physics and Cosmology Shanghai Jiao Tong University, Shanghai (China); He Xiaogang [INPAC, Department of Physics and Shanghai Key Laboratory for Particle Physics and Cosmology Shanghai Jiao Tong University, Shanghai (China) and Department of Physics, National Tsing Hua University, and NCTS, Hsinchu, Taiwan (China); Li Guannan [INPAC, Department of Physics and Shanghai Key Laboratory for Particle Physics and Cosmology Shanghai Jiao Tong University, Shanghai, Taiwan (China)

    2013-05-23T23:59:59.000Z

    Seesaw mechanism provides a natural explanation of light neutrino masses through suppression of heavy seesaw scale. In inverse seesaw models the seesaw scale can be much lower than that in the usual seesaw models. If terms inducing seesaw masses are further induced by loop corrections, the seesaw scale can be lowered to be in the range probed by experiments at the LHC without fine tuning. This talk, presented by X-G He, discuss models constructed in a recent preprint by us (arxiv:201207.6308) in which neutrino masses are generated at two loop level through inverse seesaw mechanism. These models also naturally have dark matter candidates. Although the recent data from Xenon100 put stringent constraint on the models, they can be consistent with data on neutrino masses, mixing, dark matter relic density and direct detection.

  11. Atomic mass compilation 2012

    SciTech Connect (OSTI)

    Pfeiffer, B., E-mail: bpfeiffe@uni-mainz.de [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Venkataramaniah, K. [Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam (India)] [Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam (India); Czok, U. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen (Germany)] [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen (Germany); Scheidenberger, C. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany) [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen (Germany)

    2014-03-15T23:59:59.000Z

    Atomic mass reflects the total binding energy of all nucleons in an atomic nucleus. Compilations and evaluations of atomic masses and derived quantities, such as neutron or proton separation energies, are indispensable tools for research and applications. In the last decade, the field has evolved rapidly after the advent of new production and measuring techniques for stable and unstable nuclei resulting in substantial ameliorations concerning the body of data and their precision. Here, we present a compilation of atomic masses comprising the data from the evaluation of 2003 as well as the results of new measurements performed. The relevant literature in refereed journals and reports as far as available, was scanned for the period beginning 2003 up to and including April 2012. Overall, 5750 new data points have been collected. Recommended values for the relative atomic masses have been derived and a comparison with the 2003 Atomic Mass Evaluation has been performed. This work has been carried out in collaboration with and as a contribution to the European Nuclear Structure and Decay Data Network of Evaluations.

  12. Mass and Weak Field Limit of Boson Stars in Brans Dicke Gravity

    E-Print Network [OSTI]

    A. W. Whinnett

    1999-06-14T23:59:59.000Z

    We study boson stars in Brans Dicke gravity and use them to illustrate some of the properties of three different mass definitions: the Schwarzschild mass, the Keplerian mass and the Tensor mass. We analyse the weak field limit of the solutions and show that only the Tensor mass leads to a physically reasonable definition of the binding energy. We examine numerically strong field $\\omega=-1$ solutions and show how, in this extreme case, the three mass values and the conserved particle number behave as a function of the central boson field amplitude. The numerical studies imply that for $\\omega=-1$, solutions with extremal Tensor mass also have extremal particle number. This is a property that a physically reasonable definition of the mass of a boson star must have, and we prove analytically that this is true for all values of $\\omega$. The analysis supports the conjecture that the Tensor mass uniquely describes the total energy of an asymptotically flat solution in BD gravity.

  13. Vanishing effective mass of the neutrinoless double beta decay including light sterile neutrinos

    E-Print Network [OSTI]

    Y. F. Li; Si-shuo Liu

    2011-11-28T23:59:59.000Z

    Light sterile neutrinos with masses at the sub-eV or eV scale are hinted by current experimental and cosmological data. Assuming the Majorana nature of these hypothetical particles, we discuss their effects in the neutrinoless double beta decay by exploring the implications of a vanishing effective Majorana neutrino mass. Allowed ranges of neutrino masses, mixing angles and Majorana CP-violating phases are illustrated in some instructive cases for both normal and inverted mass hierarchies of three active neutrinos.

  14. Simulation of naturally fractured reservoirs using empirical transfer function

    E-Print Network [OSTI]

    Tellapaneni, Prasanna Kumar

    2004-09-30T23:59:59.000Z

    This research utilizes the imbibition experiments and X-ray tomography results for modeling fluid flow in naturally fractured reservoirs. Conventional dual porosity simulation requires large number of runs to quantify transfer function parameters...

  15. OFFICE OF FOSSIL ENERGY NATURAL GAS DIVISION SERVICE LIST

    Energy Savers [EERE]

    appfergasIntraAuthReport.do?queryNameserviceListPrint&docketNumber14-96-LNG 13 OFFICE OF FOSSIL ENERGY NATURAL GAS DIVISION SERVICE LIST FE DOCKET NO: 14-96-LNG ...

  16. Study of airflow and thermal stratification in naturally ventilated rooms

    E-Print Network [OSTI]

    Menchaca Brandan, María Alejandra

    2012-01-01T23:59:59.000Z

    Natural ventilation (NV) can considerably contribute to reducing the cooling energy consumption of a building and increase occupant productivity, if correctly implemented. Such energy savings depend on the number of hours ...

  17. The Origin of Mass and the Feebleness of Gravity

    ScienceCinema (OSTI)

    Frank Wilczek

    2010-09-01T23:59:59.000Z

    BSA Distinguished Lecture presented by Frank Wilczek, co-winner of the 2004 Nobel Prize in Physics. Einstein's famous equation E=mc^2 asserts that energy and mass are different aspects of the same reality. The general public usually associates the equation with the idea that small amounts of mass can be converted into large amounts of energy, as in nuclear reactors and bombs. For physicists who study the basic nature of matter, however, the more important idea is just the opposite.

  18. Universal Characteristics of Fractal Fluctuations in Prime Number Distribution

    E-Print Network [OSTI]

    A. M. Selvam

    2008-11-12T23:59:59.000Z

    The frequency of occurrence of prime numbers at unit number spacing intervals exhibits selfsimilar fractal fluctuations concomitant with inverse power law form for power spectrum generic to dynamical systems in nature such as fluid flows, stock market fluctuations, population dynamics, etc. The physics of long-range correlations exhibited by fractals is not yet identified. A recently developed general systems theory visualises the eddy continuum underlying fractals to result from the growth of large eddies as the integrated mean of enclosed small scale eddies, thereby generating a hierarchy of eddy circulations, or an inter-connected network with associated long-range correlations. The model predictions are as follows: (i) The probability distribution and power spectrum of fractals follow the same inverse power law which is a function of the golden mean. The predicted inverse power law distribution is very close to the statistical normal distribution for fluctuations within two standard deviations from the mean of the distribution. (ii) Fractals signify quantumlike chaos since variance spectrum represents probability density distribution, a characteristic of quantum systems such as electron or photon. (ii) Fractal fluctuations of frequency distribution of prime numbers signify spontaneous organisation of underlying continuum number field into the ordered pattern of the quasiperiodic Penrose tiling pattern. The model predictions are in agreement with the probability distributions and power spectra for different sets of frequency of occurrence of prime numbers at unit number interval for successive 1000 numbers. Prime numbers in the first 10 million numbers were used for the study.

  19. EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins...

    U.S. Energy Information Administration (EIA) Indexed Site

    Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural...

  20. Survey of lepton number violation via effective operators

    SciTech Connect (OSTI)

    Gouvea, Andre de; Jenkins, James [Northwestern University, Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)

    2008-01-01T23:59:59.000Z

    We survey 129 lepton number violating effective operators, consistent with the minimal standard model gauge group and particle content, of mass dimension up to and including 11. Upon requiring that each one radiatively generates the observed neutrino masses, we extract an associated characteristic cutoff energy scale which we use to calculate other observable manifestations of these operators for a number of current and future experimental probes, concentrating on lepton number violating phenomena. These include searches for neutrinoless double-beta decay and rare meson, lepton, and gauge boson decays. We also consider searches at hadron/lepton collider facilities in anticipation of the CERN LHC and the future ILC. We find that some operators are already disfavored by current data, while more are ripe to be probed by next-generation experiments. We also find that our current understanding of lepton mixing disfavors a subset of higher dimensional operators. While neutrinoless double-beta decay is the most promising signature of lepton number violation for the majority of operators, a handful is best probed by other means. We argue that a combination of constraints from various independent experimental sources will help to pinpoint the ''correct'' model of neutrino mass, or at least aid in narrowing down the set of possibilities.

  1. A Survey of Lepton Number Violation Via Effective Operators

    E-Print Network [OSTI]

    Andre de Gouvea; James Jenkins

    2007-08-09T23:59:59.000Z

    We survey 129 lepton number violating effective operators, consistent with the minimal Standard Model gauge group and particle content, of mass dimension up to and including eleven. Upon requiring that each one radiatively generates the observed neutrino masses, we extract an associated characteristic cutoff energy scale which we use to calculate other observable manifestations of these operators for a number of current and future experimental probes, concentrating on lepton number violating phenomena. These include searches for neutrinoless double-beta decay and rare meson, lepton, and gauge boson decays. We also consider searches at hadron/lepton collider facilities in anticipation of the LHC and the future ILC. We find that some operators are already disfavored by current data, while more are ripe to be probed by next-generation experiments. We also find that our current understanding of lepton mixing disfavors a subset of higher dimensional operators. While neutrinoless double-beta decay is the most promising signature of lepton number violation for the majority of operators, a handful is best probed by other means. We argue that a combination of constraints from various independent experimental sources will help to pinpoint the ``correct'' model of neutrino mass, or at least aid in narrowing down the set of possibilities.

  2. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-12-05T23:59:59.000Z

    To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.

  3. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-27T23:59:59.000Z

    The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.

  4. The Jacobi-Stirling Numbers

    E-Print Network [OSTI]

    Andrews, George E; Gawronski, Wolfgang; Littlejohn, Lance L

    2011-01-01T23:59:59.000Z

    The Jacobi-Stirling numbers were discovered as a result of a problem involving the spectral theory of powers of the classical second-order Jacobi differential expression. Specifically, these numbers are the coefficients of integral composite powers of the Jacobi expression in Lagrangian symmetric form. Quite remarkably, they share many properties with the classical Stirling numbers of the second kind which, as shown in LW, are the coefficients of integral powers of the Laguerre differential expression. In this paper, we establish several properties of the Jacobi-Stirling numbers and its companions including combinatorial interpretations thereby extending and supplementing known contributions to the literature of Andrews-Littlejohn, Andrews-Gawronski-Littlejohn, Egge, Gelineau-Zeng, and Mongelli.

  5. 2n-Dimensional Models with Topological Mass Generation

    E-Print Network [OSTI]

    Shinichi Deguchi; Satoshi Hayakawa

    2008-02-06T23:59:59.000Z

    The 4-dimensional model with topological mass generation that has recently been presented by Dvali, Jackiw and Pi [G. Dvali, R. Jackiw, and S.-Y. Pi, Phys. Rev. Lett. 96, 081602 (2006), hep-th/0610228] is generalized to any even number of dimensions. As in the 4-dimensional model, the 2n-dimensional model describes a mass-generation phenomenon due to the presence of the chiral anomaly. In addition to this model, new 2n-dimensional models with topological mass generation are proposed, in which a Stueckelberg-type mass term plays a crucial role in the mass generation. The mass generation of a pseudoscalar field such as the eta-prime meson is discussed within this framework.

  6. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    SciTech Connect (OSTI)

    Jason M. Keith

    2005-02-01T23:59:59.000Z

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  7. ALUMNI NEWSLETTER Number 5 (2002)

    E-Print Network [OSTI]

    and Geochemical Research. As I write, we are in the process of taking delivery and installing 5 new mass spectrometers that will make EOS a world leader in the application of stable and radiogenic isotopes undergraduate (Kurt Grimm) and graduate teaching (Lori Kennedy). Curriculum reform is ongoing and this year

  8. ALUMNI NEWSLETTER Number 7 (2004)

    E-Print Network [OSTI]

    five mass spectrometers. As you may recall from the last Newsletter, we officially opened the Pacific Samarasekera), and the B.C. Minister of Energy and Mines (Richard Neufeld). Our undergraduate courses. If, like me, your undergraduate days ended many decades ago, it is difficult to appreciate

  9. Warner College of Natural Resources Warner College of Natural

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    , and scientific investigation of renewable and nonrenewable natural resources. Programs include the study of everyWarner College of Natural Resources Warner College of Natural Resources Office in Natural Resources, and Conservation Biology Forestry Geology Natural Resource Recreation and Tourism Natural Resources Management

  10. Natural gas annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-10-01T23:59:59.000Z

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

  11. Liquefied Natural Gas (Iowa)

    Broader source: Energy.gov [DOE]

    This document adopts the standards promulgated by the National Fire Protection Association as rules for the transportation, storage, handling, and use of liquefied natural gas. The NFPA standards...

  12. Natural Heritage Program (Missouri)

    Broader source: Energy.gov [DOE]

    Natural Heritage Reviews are conducted by the Missouri Department of Conservation on request in order to assess proposed project sites and adjacent lands. Reviews determine whether potential...

  13. Natural gas dehydration apparatus

    DOE Patents [OSTI]

    Wijmans, Johannes G; Ng, Alvin; Mairal, Anurag P

    2006-11-07T23:59:59.000Z

    A process and corresponding apparatus for dehydrating gas, especially natural gas. The process includes an absorption step and a membrane pervaporation step to regenerate the liquid sorbent.

  14. Turbulence and turbulent mixing in natural fluids

    E-Print Network [OSTI]

    Gibson, Carl H

    2010-01-01T23:59:59.000Z

    Turbulence and turbulent mixing in natural fluids begins with big bang turbulence powered by spinning combustible combinations of Planck particles and Planck antiparticles. Particle prograde accretion on a spinning pair releases 42% of the particle rest mass energy to produce more fuel for turbulent combustion. Negative viscosity and negative turbulence stresses work against gravity, creating mass-energy and space-time from the vacuum. Turbulence mixes cooling temperatures until a quark-gluon strong-force SF freeze-out. Gluon-viscosity anti-gravity ({\\Lambda}SF) exponentially inflates the fireball to preserve big bang turbulence information at scales larger than ct as the first fossil turbulence. Cosmic microwave background CMB temperature anisotropies show big bang turbulence fossils along with fossils of weak plasma turbulence triggered (10^12 s) as plasma viscous forces permit gravitational fragmentation on supercluster to galaxy mass scales (10^13 s). Turbulent morphologies and viscous-turbulent lengths a...

  15. Residential Thermal Mass Construction

    E-Print Network [OSTI]

    Thieken, J. S.

    1988-01-01T23:59:59.000Z

    The southwest has long known the value of building homes with high mass materials. The ancient Pueblo Indians found that by using "adobe" they could capture the energy necessary to survive the harsh desert climate. Our ancestors knew that a heavy...

  16. The New Element Californium (Atomic Number 98)

    DOE R&D Accomplishments [OSTI]

    Seaborg, G. T.; Thompson, S. G.; Street, K. Jr.; Ghiroso, A.

    1950-06-19T23:59:59.000Z

    Definite identification has been made of an isotope of the element with atomic number 98 through the irradiation of Cm{sup 242} with about 35-Mev helium ions in the Berkeley Crocker Laboratory 60-inch cyclotron. The isotope which has been identified has an observed half-life of about 45 minutes and is thought to have the mass number 244. The observed mode of decay of 98{sup 244} is through the emission of alpha-particles, with energy of about 7.1 Mev, which agrees with predictions. Other considerations involving the systematics of radioactivity in this region indicate that it should also be unstable toward decay by electron capture. The chemical separation and identification of the new element was accomplished through the use of ion exchange adsorption methods employing the resin Dowex-50. The element 98 isotope appears in the eka-dysprosium position on elution curves containing berkelium and curium as reference points--that is, it precedes berkelium and curium off the column in like manner that dysprosium precedes terbium and gadolinium. The experiments so far have revealed only the tripositive oxidation state of eka-dysprosium character and suggest either that higher oxidation states are not stable in aqueous solutions or that the rates of oxidation are slow. The successful identification of so small an amount of an isotope of element 98 was possible only through having made accurate predictions of the chemical and radioactive properties.

  17. Models of Neutrino Mass with a Low Cutoff Scale

    E-Print Network [OSTI]

    Hooman Davoudiasl; Ryuichiro Kitano; Graham D. Kribs; Hitoshi Murayama

    2005-02-18T23:59:59.000Z

    In theories with a low quantum gravity scale, global symmetries are expected to be violated, inducing excessive proton decay or large Majorana neutrino masses. The simplest cure is to impose discrete gauge symmetries, which in turn make neutrinos massless. We construct models that employ these gauge symmetries while naturally generating small neutrino masses. Majorana (Dirac) neutrino masses are generated through the breaking of a discrete (continuous) gauge symmetry at low energies, e.g., 2 keV to 1 GeV. The Majorana case predicts \\Delta N_\

  18. What is a Natural SUSY scenario?

    E-Print Network [OSTI]

    Casas, J Alberto; Robles, Sandra; Rolbiecki, Krzysztof; Zaldivar, Bryan

    2014-01-01T23:59:59.000Z

    The idea of "Natural SUSY", understood as a supersymmetric scenario where the fine-tuning is as mild as possible, is a reasonable guide to explore supersymmetric phenomenology. In this paper, we re-examine this issue including several improvements, such as the mixing of the fine-tuning conditions for different soft terms and the presence of potential extra fine-tunings that must be combined with the electroweak one. We give tables and plots that allow to easily evaluate the fine-tuning and the corresponding naturalness bounds for any theoretical model defined at any high-energy (HE) scale. Then, we analyze in detail the complete fine-tuning bounds for the unconstrained MSSM, defined at any HE scale. We show that Natural SUSY does {\\em not} demand light stops. Actually, an average stop mass below 800~GeV is disfavored, though one of the stops might be very light. Regarding phenomenology, the most stringent upper bound from naturalness is the one on the gluino mass, which typically sets the present level fine-t...

  19. Simulation and Cryogenic Experiments of Natural Convection for the Titan Montgolfiere

    E-Print Network [OSTI]

    Dabiri, John O.

    = gap width M = molar mass Nu = Nusselt number Pr = Prandtl number _Q = heat input ~Q = nondimensional heat input R = universal gas constant Ra = Rayleigh number Ra = modified Rayleigh number by a double-walled design is simple and effective means of increasing the buoyancy for a given heat input [2

  20. Natural Intrinsic Geometrical Symmetries

    E-Print Network [OSTI]

    Haesen, Stefan; 10.3842/SIGMA.2009.086

    2009-01-01T23:59:59.000Z

    A proposal is made for what could well be the most natural symmetrical Riemannian spaces which are homogeneous but not isotropic, i.e. of what could well be the most natural class of symmetrical spaces beyond the spaces of constant Riemannian curvature, that is, beyond the spaces which are homogeneous and isotropic, or, still, the spaces which satisfy the axiom of free mobility.