Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mass difference measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Measurement of D* photoproduction at three different centre-of-mass energies at HERA  

E-Print Network [OSTI]

The photoproduction of $D^{*\\pm}$ mesons has been measured with the ZEUS detector at HERA at three different ep centre-of-mass energies, $\\sqrt{s}$, of 318, 251 and 225 GeV. For each data set, $D^*$ mesons were required to have transverse momentum, $p_T^{D^*}$, and pseudorapidity, $\\eta^{D^*}$, in the ranges $1.9 < p_T^{D^*} < 20$ GeV and $|\\eta^{D^*}|<1.6$. The events were required to have a virtuality of the incoming photon, $Q^2$, of less than 1 GeV$^2$. The dependence on $\\sqrt{s}$ was studied by normalising to the high-statistics measurement at $\\sqrt{s} =318$ GeV. This led to the cancellation of a number of systematic effects both in data and theory. Predictions from next-to-leading-order QCD describe the $\\sqrt{s}$ dependence of the data well.

ZEUS Collaboration; H. Abramowicz; I. Abt; L. Adamczyk; M. Adamus; R. Aggarwal; S. Antonelli; O. Arslan; V. Aushev; Y. Aushev; O. Bachynska; A. N. Barakbaev; N. Bartosik; O. Behnke; J. Behr; U. Behrens; A. Bertolin; S. Bhadra; I. Bloch; V. Bokhonov; E. G. Boos; K. Borras; I. Brock; R. Brugnera; A. Bruni; B. Brzozowska; P. J. Bussey; A. Caldwell; M. Capua; C. D. Catterall; J. Chwastowski; J. Ciborowski; R. Ciesielski; A. M. Cooper-Sarkar; M. Corradi; F. Corriveau; G. D'Agostini; R. K. Dementiev; R. C. E. Devenish; G. Dolinska; V. Drugakov; S. Dusini; J. Ferrando; J. Figiel; B. Foster; G. Gach; A. Garfagnini; A. Geiser; A. Gizhko; L. K. Gladilin; O. Gogota; Yu. A. Golubkov; J. Grebenyuk; I. Gregor; G. Grzelak; O. Gueta; M. Guzik; W. Hain; G. Hartner; D. Hochman; R. Hori; Z. A. Ibrahim; Y. Iga; M. Ishitsuka; A. Iudin; F. Januschek; I. Kadenko; S. Kananov; T. Kanno; U. Karshon; M. Kaur; P. Kaur; L. A. Khein; D. Kisielewska; R. Klanner; U. Klein; N. Kondrashova; O. Kononenko; Ie. Korol; I. A. Korzhavina; A. Kotanski; U. Kotz; N. Kovalchuk; H. Kowalski; O. Kuprash; M. Kuze; B. B. Levchenko; A. Levy; V. Libov; S. Limentani; M. Lisovyi; E. Lobodzinska; W. Lohmann; B. Lohr; E. Lohrmann; A. Longhin; D. Lontkovskyi; O. Yu. Lukina; J. Maeda; I. Makarenko; J. Malka; J. F. Martin; S. Mergelmeyer; F. Mohamad Idris; K. Mujkic; V. Myronenko; K. Nagano; A. Nigro; T. Nobe; D. Notz; R. J. Nowak; K. Olkiewicz; Yu. Onishchuk; E. Paul; W. Perlanski; H. Perrey; N. S. Pokrovskiy; A. S. Proskuryakov; M. Przybycien; A. Raval; P. Roloff; I. Rubinsky; M. Ruspa; V. Samojlov; D. H. Saxon; M. Schioppa; W. B. Schmidke; U. Schneekloth; T. Schorner-Sadenius; J. Schwartz; L. M. Shcheglova; R. Shevchenko; O. Shkola; I. Singh; I. O. Skillicorn; W. Slominski; V. Sola; A. Solano; A. Spiridonov; L. Stanco; N. Stefaniuk; A. Stern; T. P. Stewart; P. Stopa; J. Sztuk-Dambietz; D. Szuba; J. Szuba; E. Tassi; T. Temiraliev; K. Tokushuku; J. Tomaszewska; A. Trofymov; V. Trusov; T. Tsurugai; M. Turcato; O. Turkot; T. Tymieniecka; A. Verbytskyi; O. Viazlo; R. Walczak; W. A. T. Wan Abdullah; K. Wichmann; M. Wing; G. Wolf; S. Yamada; Y. Yamazaki; N. Zakharchuk; A. F. Zarnecki; L. Zawiejski; O. Zenaiev; B. O. Zhautykov; N. Zhmak; D. S. Zotkin

2014-09-11T23:59:59.000Z

2

Measurement of D* photoproduction at three different centre-of-mass energies at HERA  

E-Print Network [OSTI]

The cross sections for the photoproduction of $D^*$ mesons have been measured with the ZEUS detector at HERA at three different ep centre-of-mass energies, $\\sqrt{s}$, of 318, 251 and 225 GeV. For each data set, $D^*$ mesons were required to have transverse momentum, $p_T^{D^*}$, and pseudorapidity, $\\eta^{D^*}$, in the ranges $1.9 < p_T^{D^*} < 20$ GeV and $|\\eta^{D^*}|<1.6$. The events were required to have a virtuality of the incoming photon, $Q^2$, of less than 1 GeV$^2$. The dependence on $\\sqrt{s}$ was studied by normalising to the high-statistics measurement at $\\sqrt{s} =318$ GeV. This led to the cancellation of a number of systematic effects both in data and theory. Predictions from next-to-leading-order QCD describe the $\\sqrt{s}$ dependence of the data well.

Abramowicz, H; Adamczyk, L; Adamus, M; Aggarwal, R; Antonelli, S; Arslan, O; Aushev, V; Aushev, Y; Bachynska, O; Barakbaev, A N; Bartosik, N; Behnke, O; Behr, J; Behrens, U; Bertolin, A; Bhadra, S; Bloch, I; Bokhonov, V; Boos, E G; Borras, K; Brock, I; Brugnera, R; Bruni, A; Brzozowska, B; Bussey, P J; Caldwell, A; Capua, M; Catterall, C D; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cooper-Sarkar, A M; Corradi, M; Corriveau, F; D'Agostini, G; Dementiev, R K; Devenish, R C E; Dolinska, G; Drugakov, V; Dusini, S; Ferrando, J; Figiel, J; Foster, B; Gach, G; Garfagnini, A; Geiser, A; Gizhko, A; Gladilin, L K; Gogota, O; Golubkov, Yu A; Grebenyuk, J; Gregor, I; Grzelak, G; Gueta, O; Guzik, M; Hain, W; Hartner, G; Hochman, D; Hori, R; Ibrahim, Z A; Iga, Y; Ishitsuka, M; Iudin, A; Januschek, F; Kadenko, I; Kananov, S; Kanno, T; Karshon, U; Kaur, M; Kaur, P; Khein, L A; Kisielewska, D; Klanner, R; Klein, U; Kondrashova, N; Kononenko, O; Korol, Ie; Korzhavina, I A; Kotanski, A; Kotz, U; Kovalchuk, N; Kowalski, H; Kuprash, O; Kuze, M; Levchenko, B B; Levy, A; Libov, V; Limentani, S; Lisovyi, M; Lobodzinska, E; Lohmann, W; Lohr, B; Lohrmann, E; Longhin, A; Lontkovskyi, D; Lukina, O Yu; Maeda, J; Makarenko, I; Malka, J; Martin, J F; Mergelmeyer, S; Idris, F Mohamad; Mujkic, K; Myronenko, V; Nagano, K; Nigro, A; Nobe, T; Notz, D; Nowak, R J; Olkiewicz, K; Onishchuk, Yu; Paul, E; Perlanski, W; Perrey, H; Pokrovskiy, N S; Proskuryakov, A S; Przybycien, M; Raval, A; Roloff, P; Rubinsky, I; Ruspa, M; Samojlov, V; Saxon, D H; Schioppa, M; Schmidke, W B; Schneekloth, U; Schorner-Sadenius, T; Schwartz, J; Shcheglova, L M; Shevchenko, R; Shkola, O; Singh, I; Skillicorn, I O; Slominski, W; Sola, V; Solano, A; Spiridonov, A; Stanco, L; Stefaniuk, N; Stern, A; Stewart, T P; Stopa, P; Sztuk-Dambietz, J; Szuba, D; Szuba, J; Tassi, E; Temiraliev, T; Tokushuku, K; Tomaszewska, J; Trofymov, A; Trusov, V; Tsurugai, T; Turcato, M; Turkot, O; Tymieniecka, T; Verbytskyi, A; Viazlo, O; Walczak, R; Abdullah, W A T Wan; Wichmann, K; Wing, M; Wolf, G; Yamada, S; Yamazaki, Y; Zakharchuk, N; Zarnecki, A F; Zawiejski, L; Zenaiev, O; Zhautykov, B O; Zhmak, N; Zotkin, D S

2014-01-01T23:59:59.000Z

3

Measurement of the mass difference m(B{sup 0})-m(B{sup +})  

SciTech Connect (OSTI)

Using 230x10{sup 6} BB events recorded with the BABAR detector at the e{sup +}e{sup -} storage rings PEP-II, we reconstruct approximately 4100 B{sup 0}{yields}J/{psi}K{sup +}{pi}{sup -} and 9930 B{sup +}{yields}J/{psi}K{sup +} decays with J/{psi}{yields}{mu}{sup +}{mu}{sup -} and e{sup +}e{sup -}. From the measured B-momentum distributions in the e{sup +}e{sup -} rest frame, we determine the mass difference m(B{sup 0})-m(B{sup +})=(+0.33{+-}0.05{+-}0.03) MeV/c{sup 2}.

Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V. [Laboratoire de Physique des Particules, IN2P3/CNRS et Universite de Savoie, F-74941 Annecy-Le-Vieux (France); Tico, J. Garra; Grauges, E. [Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona (Spain); Lopez, L.; Palano, A.; Pappagallo, M. [Universita di Bari, Dipartimento di Fisica and INFN, I-70126 Bari (Italy); Eigen, G.; Stugu, B.; Sun, L. [University of Bergen, Institute of Physics, N-5007 Bergen (Norway); Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J. [Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720 (United States)] (and others)

2008-07-01T23:59:59.000Z

4

Absolute neutrino mass measurements  

SciTech Connect (OSTI)

The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

Wolf, Joachim [Karlsruhe Institute of Technology (KIT), IEKP, Postfach 3640, 76021 Karlsruhe (Germany)

2011-10-06T23:59:59.000Z

5

Top quark mass measurements  

SciTech Connect (OSTI)

The top quark, with its extraordinarily large mass (nearly that of a gold atom), plays a significant role in the phenomenology of EWSB in the Standard Model. In particular, the top quark mass when combined with the W mass constrains the mass of the as yet unobserved Higgs boson. Thus, a precise determination of the mass of the top quark is a principal goal of the CDF and D0 experiments. With the data collected thus far in Runs 1 and 2 of the Tevatron, CDF and D0 have measured the top quark mass in both the lepton+jets and dilepton decay channels using a variety of complementary experimental techniques. The author presents an overview of the most recent of the measurements.

Hill, Christopher S.; /UC, Santa Barbara

2004-12-01T23:59:59.000Z

6

Top quark mass measurements  

SciTech Connect (OSTI)

Preliminary results on the measurement of the top quark mass at the Tevatron Collider are presented. In the dilepton decay channel, the CDF Collaboration measures m{sub t} = 175.0{sub -16.9}{sup +17.4}(stat.){+-}8.4(syst.) GeV/c{sup 2}, using a sample of {approx} 126 pb{sup -1} of proton-antiproton collision data at {radical}s = 1.96 TeV (Run II). In the lepton plus jets channel, the CDF Collaboration measures 177.5{sub -9.4}{sup +12.7}(stat.) {+-} 7.1(syst.) GeV/c{sup 2}, using a sample of {approx} 102 pb{sup -1} at {radical}s = 1.96 TeV. The D0 Collaboration has newly applied a likelihood technique to improve the analysis of {approx} 125 pb{sup -1} of proton-antiproton collisions at {radical}s = 1.8 TeV (Run I), with the result: m{sub t} = 180.1 {+-} 3.6(stat.) {+-}3.9(syst.) GeV/c{sup 2}. The latter is combined with all the measurements based on the data collected in Run I to yield the most recent and comprehensive experimental determination of the top quark mass: m{sub t} = 178.0 {+-} 2.7(stat.) {+-} 3.3(syst.) GeV/c{sup 2}.

L. Cerrito

2004-07-16T23:59:59.000Z

7

Measurement of the mass difference between top and anti-top quarks in pp collisions at ?s = 7 TeV using the ATLAS detector  

E-Print Network [OSTI]

A measurement of the mass difference between top and anti-top quarks is presented. In a 4.7 fb[superscript ?1] data sample of proton–proton collisions at ?s = 7 TeV recorded with the ATLAS detector at the LHC, events ...

Taylor, Frank E.

8

Electromagnetic mass difference on the lattice  

E-Print Network [OSTI]

We calculate electromagnetic mass difference of mesons using a method proposed by Duncan {\\it et al}. The RG-improved gauge action and the non-compact Abelian gauge action are employed to generate configurations. Quark propagators in the range of $m_{PS}/m_{V}=0.76-0.51$ are obtained with the meanfield-improved clover quark action. Chiral and continuum extrapolations are performed and the results are compared with experiments. Finite size effects are also examined. Quark masses are extracted from the measured spectrum. Our preliminary values for light quark masses are $m_{u}^{\\bar{MS}}(\\mu =2 {GeV}) = 3.03(19)$ MeV, $m_{d}^{\\bar{MS}}(\\mu = 2 {GeV}) = 4.44(28)$ MeV, $m_{s}^{\\bar{MS}}(\\mu = 2 {GeV}) = 99.2(52)$ MeV.

Yusuke Namekawa; Yoshio Kikukawa

2005-09-24T23:59:59.000Z

9

Particle Number & Particulate Mass Emissions Measurements on...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies Particle Number & Particulate Mass Emissions Measurements on a 'Euro...

10

Experiments for the absolute neutrino mass measurement  

E-Print Network [OSTI]

Experimental results and perspectives of different methods to measure the absolute mass scale of neutrinos are briefly reviewed. The mass sensitivities from cosmological observations, double beta decay searches and single beta decay spectroscopy differ in sensitivity and model dependance. Next generation experiments in the three fields reach the sensitivity for the lightest mass eigenstate of $m_1<0.2eV$, which will finally answer the question if neutrino mass eigenstates are degenerate. This sensitivity is also reached by the only model-independent approach of single beta decay (KATRIN experiment). For higher sensitivities on cost of model-dependance the neutrinoless double beta decay search and cosmological observation have to be applied. Here, in the next decade sensitivities are approached with the potential to test inverted hierarchy models.

Markus Steidl

2009-06-02T23:59:59.000Z

11

Measurement of the Top Quark Mass With 2012 CMS Data  

E-Print Network [OSTI]

The mass of the top quark was an active topic of research at CMS using 2011 data, and remains so as the 2012 data analysis campaign proceeds. Here we discuss some of the earliest results on the top mass using 2012 sqrt(s) = 8 TeV CMS data, including measurements of the top mass from semileptonic t\\bar{t} decays and the lifetime of the B-hadron, as well as a measurement of the top-antitop mass difference.

Richard Nally

2014-09-01T23:59:59.000Z

12

Top-mass measurements from D0  

SciTech Connect (OSTI)

We present three recent analyses (Abstracts 169, 170 and 174) of the mass of the top quark (M{sub t}) using top-antitop candidate events collected by the D0 experiment at the Fermilab Tevatron Collider: (i) a 3.6 events/fb sample of data in the lepton+jets channel analyzed to extract a precision value of M{sub t} using the 'Matrix-Element' (ME) method, wherein each event probability is calculated from the differential production cross section as a function of M{sub t} and the overall jet energy scale, with the latter constrained by the two jets from W decay into q{prime}{bar q}, (ii) a first measurement of the mass difference between top and antitop quarks as a check of CPT invariance in the quark sector, also based on the ME method in lepton+jets channels, and corresponding to a 1 event/fb data sample, and (iii) measurements of M{sub t} in dilepton final states (updated to 3.6 events/fb), based on 'matrix' weighting, 'neutrino' weighting and the ME method, which rely, respectively, on the likelihood of observing the events in data for a range of assumed M{sub t} values, distributions generated from event weights that compare calculated and reconstructed missing transverse energies, and event probabilities based on the leading-order differential cross section as a function of assumed M{sub t}. In addition, we provide a combination of recent top-mass measurements from D0.

Ferbel, T.; /Rochester U. /Maryland U.

2009-01-01T23:59:59.000Z

13

Precision measurement of a particle mass at the linear collider  

SciTech Connect (OSTI)

Precision measurement of the stop mass at the ILC is done in a method based on cross-sections measurements at two different center-of-mass energies. This allows to minimize both the statistical and systematic errors. In the framework of the MSSM, a light stop, compatible with electro-weak baryogenesis, is studied in its decay into a charm jet and neutralino, the Lightest Supersymmetric Particle (LSP), as a candidate of dark matter. This takes place for a small stop-neutralino mass difference.

Milstene, C.; /Fermilab; Freitas, A.; /Zurich U.; Schmitt, M.; /Northwestern U.; Sopczak, A.; /Lancaster U.

2007-06-01T23:59:59.000Z

14

MEASURING THE MASS DISTRIBUTION IN GALAXY CLUSTERS  

SciTech Connect (OSTI)

Cluster mass profiles are tests of models of structure formation. Only two current observational methods of determining the mass profile, gravitational lensing, and the caustic technique are independent of the assumption of dynamical equilibrium. Both techniques enable the determination of the extended mass profile at radii beyond the virial radius. For 19 clusters, we compare the mass profile based on the caustic technique with weak lensing measurements taken from the literature. This comparison offers a test of systematic issues in both techniques. Around the virial radius, the two methods of mass estimation agree to within {approx}30%, consistent with the expected errors in the individual techniques. At small radii, the caustic technique overestimates the mass as expected from numerical simulations. The ratio between the lensing profile and the caustic mass profile at these radii suggests that the weak lensing profiles are a good representation of the true mass profile. At radii larger than the virial radius, the extrapolated Navarro, Frenk and White fit to the lensing mass profile exceeds the caustic mass profile. Contamination of the lensing profile by unrelated structures within the lensing kernel may be an issue in some cases; we highlight the clusters MS0906+11 and A750, superposed along the line of sight, to illustrate the potential seriousness of contamination of the weak lensing signal by these unrelated structures.

Geller, Margaret J. [Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138 (United States)] [Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138 (United States); Diaferio, Antonaldo [Dipartimento di Fisica, Universita degli Studi di Torino, via P. Giuria 1, I-10125 Torino (Italy)] [Dipartimento di Fisica, Universita degli Studi di Torino, via P. Giuria 1, I-10125 Torino (Italy); Rines, Kenneth J. [Department of Physics and Astronomy, Western Washington University, Bellingham, WA 98225 (United States)] [Department of Physics and Astronomy, Western Washington University, Bellingham, WA 98225 (United States); Serra, Ana Laura, E-mail: mgeller@cfa.harvard.edu, E-mail: diaferio@ph.unito.it, E-mail: kenneth.rines@wwu.edu, E-mail: serra@to.infn.it [INAF, Osservatorio Astronomico di Torino, via Osservatorio 20, I-10025 Pino Torinese (Italy)

2013-02-10T23:59:59.000Z

15

Mass measurements near the $r$-process path using the Canadian Penning Trap mass spectrometer  

E-Print Network [OSTI]

The masses of 40 neutron-rich nuclides from Z = 51 to 64 were measured at an average precision of $\\delta m/m= 10^{-7}$ using the Canadian Penning Trap mass spectrometer at Argonne National Laboratory. The measurements, of fission fragments from a $^{252}$Cf spontaneous fission source in a helium gas catcher, approach the predicted path of the astrophysical $r$ process. Where overlap exists, this data set is largely consistent with previous measurements from Penning traps, storage rings, and reaction energetics, but large systematic deviations are apparent in $\\beta$-endpoint measurements. Differences in mass excess from the 2003 Atomic Mass Evaluation of up to 400 keV are seen, as well as systematic disagreement with various mass models.

J. Van Schelt; D. Lascar; G. Savard; J. A. Clark; S. Caldwell; A. Chaudhuri; J. Fallis; J. P. Greene; A. F. Levand; G. Li; K. S. Sharma; M. G. Sternberg; T. Sun; B. J. Zabransky

2012-04-09T23:59:59.000Z

16

Measurement of the W boson mass  

SciTech Connect (OSTI)

The authors present a measurement of the W boson mass in W {yields} e{nu} decays using 1 fb{sup -1} of data collected with the D0 detector during Run II of the Fermilab Tevatron collider. With a sample of 499830 W {yields} e{nu} candidate events, they measure M{sub W} = 80.401 {+-} 0.043 GeV. This is the most precise measurement from a single experiment.

Abazov, Victor Mukhamedovich; /Dubna, JINR; Abbott, Braden Keim; /Oklahoma U.; Abolins, Maris A.; /Michigan State U.; Acharya, Bannanje Sripath; /Tata Inst.; Adams, Mark Raymond; /Illinois U., Chicago; Adams, Todd; /Florida State U.; Aguilo, Ernest; /Alberta U. /Simon Fraser U. /York U., Canada /McGill U.; Ahsan, Mahsana; /Kansas State U.; Alexeev, Guennadi D.; /Dubna, JINR; Alkhazov, Georgiy D.; /St. Petersburg, INP; Alton, Andrew K.; /Michigan U. /Augustana Coll., Sioux Falls /Northeastern U.

2009-08-01T23:59:59.000Z

17

Mass and Lifetime Measurements in Storage Rings  

SciTech Connect (OSTI)

Masses of nuclides covering a large area of the chart of nuclides can be measured in storage rings where many ions circulate at the same time. In this paper the recent progress in the analysis of Schottky mass spectrometry data is presented as well as the technical improvements leading to higher accuracy for isochronous mass measurements with a time-of-flight detector. The high sensitivity of the Schottky method down to single ions allows to measure lifetimes of nuclides by observing mother and daughter nucleus simultaneously. In this way we investigated the decay of bare and H-like 140Pr. As we could show the lifetime can be even shortened compared to those of atomic nuclei despite of a lower number of electrons available for internal conversion or electron capture.All these techniques will be implemented with further improvements at the storage rings of the new FAIR facility at GSI in the future.

Weick, H.; Beckert, K.; Beller, P.; Bosch, F.; Dimopoulou, C.; Kozhuharov, C.; Kurcewicz, J.; Mazzocco, M.; Nociforo, C.; Nolden, F.; Steck, M.; Sun, B.; Winkler, M. [Gesellschaft fuer Schwerionenforschung mbH, 64291 Darmstadt (Germany); Brandau, C.; Chen, L.; Geissel, H.; Knoebel, R.; Litvinov, S. A.; Litvinov, Yu. A.; Scheidenberger, C. [Gesellschaft fuer Schwerionenforschung mbH, 64291 Darmstadt (Germany); II. Phys. Institut, Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany)] (and others)

2007-05-22T23:59:59.000Z

18

Opportunistic Mass Measurements at the Holifield Radioactive Ion Beam Facility  

SciTech Connect (OSTI)

A technique for measuring mass differences has been developed at the Holifield Radioactive Ion Beam Facility (HRIBF) that requires no specialized equipment. Mass differences are measured as position differences between known and unknown-mass isobars, dispersed at the image of the energy-analyzing magnet following the 25MV tandem post-accelerator, and identified by an energy-loss measurement. The technique has been demonstrated on neutron-rich 77 79Cu and 83 86Ge isotopes produced using the isotope separator online (ISOL) method with the 238U(p,fission) reaction, where a mass accuracy of 500 keV was achieved. These nuclides are well suited to the measurement technique, as they readily migrate out of the production target and to the ion source and comprise the most neutron-rich elements of the isobarically mixed beam. Because modest precision mass values can be obtained with only a few tens of counts of the nuclide of interest among orders of magnitude more of the isobaric neighbors closer to stability, the sensitivity of this technique makes it appropriate for initial mass measurements far from stability.

Hausladen, Paul [ORNL; Beene, James R [ORNL; Galindo-Uribarri, Alfredo {nmn} [ORNL; Larochelle, Y [University of Tennessee, Knoxville (UTK); Liang, J Felix [ORNL; Mueller, Paul Edward [ORNL; Shapira, Dan [ORNL; Stracener, Daniel W [ORNL; Thomas, J. S. [Rutgers University; Varner Jr, Robert L [ORNL; Wollnik, Hermann [ORNL

2006-01-01T23:59:59.000Z

19

Decay Oscillations in Electron Capture and the Neutrino Mass Difference  

E-Print Network [OSTI]

Quantum mechanical theory disallows the model that has been used to infer the neutrino mass difference from the reported "GSI oscillations" in the rates of decay of hydrogen-like ions by electron capture. It has not been proved that the existence of mass-difference-dependent oscillations conflicts with quantum mechanics but no consistent quantum mechanical model has been shown to predict them.

Murray Peshkin

2014-03-17T23:59:59.000Z

20

Top quark mass measurement using the template method at CDF  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We present a measurement of the top quark mass in the lepton+jets and dilepton channels of tt? decays using the template method. The data sample corresponds to an integrated luminosity of 5.6 fb-1 of pp? collisions at Tevatron with ?s = 1.96 TeV, collected with the CDF II detector. The measurement is performed by constructing templates of three kinematic variables in the lepton+jets and two kinematic variables in the dilepton channel. The variables are two reconstructed top quark masses from different jets-to-quarks combinations and the invariant mass of two jets from the W decay in the lepton+jets channel, and a reconstructed top quark mass and mT2, a variable related to the transverse mass in events with two missing particles, in the dilepton channel. The simultaneous fit of the templates from signal and background events in the lepton+jets and dilepton channels to the data yields a measured top quark mass of Mtop = 172.1±1.1 (stat)±0.9 (syst) GeV/c2.

Aaltonen, T [Helsinki Inst. of Phys.; Alvarez Gonzalez, B [Oviedo U.; Cantabria Inst. of Phys.; Amerio, S [INFN, Padua; Amidei, D [Michigan U.; Anastassov, A [Northwestern U.; Annovi, A [Frascati; Antos, J [Comenius U.; Apollinari, G [Fermilab; Appel, J A [Fermilab; Apresyan, A [Purdue U.; Arisawa, T [Waseda U.; Dubna, JINR

2011-06-03T23:59:59.000Z

Note: This page contains sample records for the topic "mass difference measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

BEAM RELATED SYSTEMATICS IN HIGGS BOSON MASS MEASUREMENT  

E-Print Network [OSTI]

BEAM RELATED SYSTEMATICS IN HIGGS BOSON MASS MEASUREMENT A.RASPEREZA DESY, Notkestrasse 85, D­22607#erential luminosity spectrum measurements and beam energy spread on the precision of the Higgs boson mass measurement possible impact of the beam related systematic errors on the Higgs boson mass measurement is discussed

22

Neutron-proton mass difference in isospin asymmetric nuclear matter  

E-Print Network [OSTI]

Isospin-breaking effects in the baryonic sector are studied in the framework of a medium-modified Skyrme model. The neutron-proton mass difference in infinite, asymmetric nuclear matter is discussed. In order to describe the influence of the nuclear environment on the skyrmions, we include energy-dependent charged and neutral pion optical potentials in the s- and p-wave channels. The present approach predicts that the neutron-proton mass difference is mainly dictated by its strong part and that it strongly decreases in neutron matter.

Ulf-G. Meißner; A. M. Rakhimov; A. Wirzba; U. T. Yakhshiev

2007-05-24T23:59:59.000Z

23

BEAM RELATED SYSTEMATICS IN HIGGS BOSON MASS MEASUREMENT  

E-Print Network [OSTI]

BEAM RELATED SYSTEMATICS IN HIGGS BOSON MASS MEASUREMENT A.RASPEREZA DESY, Notkestrasse 85, D-22607 and differential luminosity spectrum measurements and beam energy spread on the precision of the Higgs boson mass such as Higgs boson mass, decay branching fractions and production rate. However, most of these studies did

24

LCPHSM2001054 Measurement of the Higgs Boson Mass  

E-Print Network [OSTI]

LC­PHSM­2001­054 Measurement of the Higgs Boson Mass and Cross Section with a Linear e + e \\Gamma for the measurement of the Higgs boson mass and produc­ tion cross section. An integrated luminosity of 500 fb \\Gamma1 is assumed. For Higgs boson masses of 120, 150 and 180 GeV the uncertainty on the Higgs boson mass

25

Enthalpy and mass flowrate measurements for two-phase geothermal...  

Open Energy Info (EERE)

Enthalpy and mass flowrate measurements for two-phase geothermal production by Tracer dilution techniques Jump to: navigation, search OpenEI Reference LibraryAdd to library...

26

New formula for proton-neutron mass difference  

SciTech Connect (OSTI)

A new formula is presented, allowing the computation of the proton-neutron mass difference without the knowledge of the subtraction function in the dispersion integral. The Born terms contribute with the correct sign. The integral over the deep-inelastic region is finite whenever the Weinberg--'t Hooft mechanism is operative, and gives a small value. The net result is in very good agreement with the experimental value.

Kimel, I.

1983-05-01T23:59:59.000Z

27

Charged Kaon Mass Measurement using the Cherenkov Effect  

SciTech Connect (OSTI)

The two most recent and precise measurements of the charged kaon mass use X-rays from kaonic atoms and report uncertainties of 14 ppm and 22 ppm yet differ from each other by 122 ppm. We describe the possibility of an independent mass measurement using the measurement of Cherenkov light from a narrow-band beam of kaons, pions, and protons. This technique was demonstrated using data taken opportunistically by the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory which recorded beams of protons, kaons, and pions ranging in momentum from +37 GeV/c to +63 GeV/c. The measured value is 491.3 {+-} 1.7 MeV/c{sup 2}, which is within 1.4{sigma} of the world average. An improvement of two orders of magnitude in precision would make this technique useful for resolving the ambiguity in the X-ray data and may be achievable in a dedicated experiment.

Graf, N.; /Indiana U.; Lebedev, A.; /Harvard U., Phys. Dept.; Abrams, R.J.; /Michigan U.; Akgun, U.; Aydin, G.; /Iowa U.; Baker, W.; /Fermilab; Barnes, P.D., Jr.; /LLNL, Livermore; Bergfeld, T.; /South Carolina U.; Beverly, L.; /Fermilab; Bujak, A.; /Purdue U.; Carey, D.; /Fermilab /Virginia U. /Iowa U.

2009-09-01T23:59:59.000Z

28

Measurement of the charged kaon mass with the MIPP RICH  

SciTech Connect (OSTI)

The currently accepted value of the charged kaon mass is 493.677 {+-} 0.013 MeV (26 ppm). It is a weighted average of six measurements, most of which use kaonic atom X-ray energy techniques. The two most recent and precise results dominate the average but differ by 122 ppm. Inconsistency in the data set needs to be resolved, preferably using independent techniques. One possibility uses the Cherenkov effect. A measurement of the charged kaon mass using this technique is presented. The data was taken with the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory using a tagged beam of protons, kaons, and pions ranging in momentum from 37 GeV/c to 63 GeV/c. The measured value is 491.3 {+-} 1.7 MeV. This is within 1.4{sigma} of the current value. An improvement in precision by a factor of 35 would make this technique competitive for resolving the ambiguity in the X-ray data.

Graf, Nicholas J.; /Indiana U.

2008-08-01T23:59:59.000Z

29

Charge dependent relation between the masses of different generations and Neutrino masses  

E-Print Network [OSTI]

Despite the enormous achievements, the Standard model of Particle physics can not be consider as complete theory of fundamental interactions. Among other things, it can not describe the gravitational interaction and it depends on 19 parameters. The Standard model includes 12 fermions (matter elementary particles with spin $\\frac{1}{2}$) which are divided in three generations, groups with same interactions but different masses. Each generation can be classified into two leptons (with electric charges $Q=-1$, electron-like and $Q=0$, neutrino) and two quarks (with electric charges $Q=-\\frac{1}{3}$, down-type and $Q=\\frac{2}{3}$, up-type). However, the understanding of the relationship between generations and ratio of masses of different generations are unknown. Here we show that there exists the simple relation between masses of different generations which depend only on the electric charges for $Q=-1,\\, \\, Q=-\\frac{1}{3}$ and $Q=\\frac{2}{3}$. It is in pretty good agreement with experimental data. Assuming that the same relation valid for $Q=0$, we are able to calculate neutrino masses. Therefore, our results could pave the way for further investigations beyond Standard model.

Branislav Sazdovic

2015-01-29T23:59:59.000Z

30

Charge dependent relation between the masses of different generations and Neutrino masses  

E-Print Network [OSTI]

Despite the enormous achievements, the Standard model of Particle physics can not be consider as complete theory of fundamental interactions. Among other things, it can not describe the gravitational interaction and it depends on 19 parameters. The Standard model includes 12 fermions (matter elementary particles with spin $\\frac{1}{2}$) which are divided in three generations, groups with same interactions but different masses. Each generation can be classified into two leptons (with electric charges $Q=-1$, electron-like and $Q=0$, neutrino) and two quarks (with electric charges $Q=-\\frac{1}{3}$, down-type and $Q=\\frac{2}{3}$, up-type). However, the understanding of the relationship between generations and ratio of masses of different generations are unknown. Here we show that there exists the simple relation between masses of different generations which depend only on the electric charges for $Q=-1,\\, \\, Q=-\\frac{1}{3}$ and $Q=\\frac{2}{3}$. It is in pretty good agreement with experimental data. Assuming that...

Sazdovic, Branislav

2015-01-01T23:59:59.000Z

31

atomic mass measurement: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with small uncertainty allows us to predict properties of the as-yet-unobserved Higgs boson. This paper presents the status of the measurements of the top quark mass. A. P....

32

atomic mass measurements: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with small uncertainty allows us to predict properties of the as-yet-unobserved Higgs boson. This paper presents the status of the measurements of the top quark mass. A. P....

33

Measuring Gaugino Soft Phases and the LSP Mass At Fermilab  

E-Print Network [OSTI]

Once superpartners are discovered at colliders, the next challenge will be to determine the parameters of the supersymmetric Lagrangian. We illustrate how the relative phases of the gluino, SU(2), and U(1) gauginos and the Higgsino mass parameter mu can be measured at a hadron collider without ad hoc assumptions about the underlying physics, focusing on Fermilab. We also discuss how the gluino and LSP masses can be measured.

S. Mrenna; G. L. Kane; Lian-Tao Wang

1999-10-25T23:59:59.000Z

34

The high-mass stellar IMF in different environments  

E-Print Network [OSTI]

The massive-star IMF is found to be invariable. However, integrated IMFs probably depend on galactic mass.

Pavel Kroupa

2006-09-12T23:59:59.000Z

35

Time-of-Flight Mass Measurements of Exotic Nuclei  

SciTech Connect (OSTI)

Atomic masses play an important role in nuclear physics and astrophysics. The need of experimental mass values for unstable nuclides has triggered the development of a wide range of mass measurement techniques, with devices installed at many laboratories around the world. We have implemented a time-of-flight magnetic-rigidity (TOF-B ) technique at the National Superconducting Cyclotron Laboratory (NSCL) that includes a position measurement for magnetic rigidity corrections and uses the A1900 separator and the S800 spectrograph. We performed a successful first experiment measuring masses of neutron-rich isotopes in the region of Z 20 30, important for calculations of processes occurring in the crust of accreting neutron stars. The masses of 16 nuclei were determined, for 61V, 63Cr, 66Mn, and 74Ni for the first time, with atomic mass excesses of 30.510(890) MeV, 35.280(650) MeV, 36.900(790) MeV, and 49.210(990) MeV, respectively. The mass resolution achieved was 1.8 10 4.

Matos, M. [Michigan State Univ./JINA/Louisiana State University; Estrade, A. [Michigan State Univ./JINA/LSU/Saint Mary's Univ./GSI Darmstadt, GE; Schatz, H. [Michigan State Univ./JINA; Bazin, D. [Michigan State University, East Lansing; Famiano, M. [Western Michigan University, Kalamazoo; Gade, A. [Michigan State University, East Lansing; George, S. [NSCL, Michigan State University, East Lansing; Lynch, W. G. [NSCL, Michigan State Univ./JINA; Meisel, Z. [NSCL, Michigan State Univ./JINA; Portillo, M. [NSCL, Michigan State University, East Lansing; Rogers, A. [NSCL, Michigan State Univ./JINA; Shapira, Dan [ORNL; Stolz, A. [Michigan State University, East Lansing; Wallace, M. [Los Alamos National Laboratory (LANL); Yurkon, J. [NSCL, Michigan State University, East Lansing

2012-01-01T23:59:59.000Z

36

Nuclear symmetry energy at subnormal densities from measured nuclear masses  

E-Print Network [OSTI]

The symmetry energy coefficients for nuclei with mass number A=20~250 are extracted from more than 2000 measured nuclear masses. With the semi-empirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

Min Liu; Ning Wang; Zhuxia Li; Fengshou Zhang

2010-11-17T23:59:59.000Z

37

Direct mass measurements beyond the proton drip-line  

E-Print Network [OSTI]

First on-line mass measurements were performed at the SHIPTRAP Penning trap mass spectrometer. The masses of 18 neutron-deficient isotopes in the terbium-to-thulium region produced in fusion-evaporation reactions were determined with relative uncertainties of about $7\\cdot 10^{-8}$, nine of them for the first time. Four nuclides ($^{144, 145}$Ho and $^{147, 148}$Tm) were found to be proton-unbound. The implication of the results on the location of the proton drip-line is discussed by analyzing the one-proton separation energies.

C. Rauth; D. Ackermann; K. Blaum; M. Block; A. Chaudhuri; S. Eliseev; R. Ferrer; D. Habs; F. Herfurth; F. P. Hessberger; S. Hofmann; H. -J. Kluge; G. Maero; A. Martin; G. Marx; M. Mukherjee; J. B. Neumayr; W. R. Plass; W. Quint; S. Rahaman; D. Rodriguez; C. Scheidenberger; L. Schweikhard; P. G. Thirolf; G. Vorobjev; C. Weber; Z. Di

2007-01-22T23:59:59.000Z

38

A Precision Measurement of the Mass of the Top Quark  

E-Print Network [OSTI]

The Standard Model of particle physics contains about two dozen parameters - such as particle masses - whose origins are still unknown and cannot be predicted, but whose values are constrained through their interactions. In particular, the masses of the top (t) quark (M_t) and W boson constrain the mass of the long-hypothesized, but thus far not observed, Higgs boson. A precise measurement of the top-quark mass can therefore point to where to look for the Higgs, and indeed whether the hypothesis of a SM Higgs is consistent with experimental data. Since top quarks are produced in pairs and decay in only ~10^-24 s into various final states, reconstructing their mass from their decay products is very challenging. Here we report a technique that extracts far more information from each top-quark event and yields a greatly improved precision on the top mass of 5.3 GeV/c^2, compared to previous measurements. When our new result is combined with our published measurement in a complementary decay mode and with the onl...

Abazov, V M; Abdesselam, A; Abolins, M; Abramov, V; Acharya, B S; Adams, D L; Adams, M; Ahmed, S N; Alexeev, G D; Alton, A; Alves, G A; Arnoud, Y; Avila, C; Babintsev, V V; Babukhadia, L; Bacon, Trevor C; Baden, A; Baffioni, S; Baldin, B Yu; Balm, P W; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beaudette, F; Begel, M; Belyaev, A; Beri, S B; Bernardi, G; Bertram, I; Besson, A; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Bhattacharjee, M; Blazey, G; Blekman, F; Blessing, S; Böhnlein, A; Bozhko, N; Bolton, T A; Borcherding, F; Bos, K; Bose, T; Brandt, A; Briskin, G; Brock, R; Brooijmans, G; Bross, A; Buchholz, D; Bühler, M; Büscher, V; Burtovoi, V S; Butler, J M; Canelli, F; Carvalho, W; Casey, D; Castilla-Valdez, H; Chakraborty, D; Chan, K M; Chekulaev, S V; Cho, D K; Choi, S; Chopra, S; Claes, D; Clark, A R; Connolly, B; Cooper, W E; Coppage, D; Crepe-Renaudin, S; Cummings, M A C; Cutts, D; Da Motta, H; Davis, G A; De, K; De Jong, S J; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doulas, S; Dudko, L V; Duflot, L; Dugad, S R; Duperrin, A; Dyshkant, A; Edmunds, D; Ellison, J; Eltzroth, J T; Elvira, V D; Engelmann, R; Eno, S; Eppley, G; Ermolov, P; Eroshin, O V; Estrada, J; Evans, H; Evdokimov, V N; Ferbel, T; Filthaut, F; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gallas, E; Galjaev, A N; Gao, M; Gavrilov, V; Genik, R J; Genser, K; Gerber, C E; Gershtein, Yu; Ginther, G; Gómez, B; Goncharov, P I; Gounder, K; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Grinstein, S; Groer, L; Grünendahl, S; Grünewald, M W; Gurzhev, S N; Gutíerrez, G; Gutíerrez, P; Hadley, N J; Haggerty, H; Hagopian, S; Hagopian, V; Hall, R E; Han, C; Hansen, S; Hauptman, J M; Hebert, C; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Huang, J; Huang, Y; Iashvili, I; Illingworth, R; Ito, A S; Jaffré, M; Jain, S; Jesik, R; Johns, K; Johnson, M; Jonckheere, A; Jöstlein, H; Juste, A; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Karmanov, D; Karmgard, D; Kehoe, R; Kesisoglou, S; Khanov, A; Kharchilava, A I; Klima, B; Kohli, J M; Kostritskii, A V; Kotcher, J; Kothari, B; Kozelov, A V; Kozlovskii, E A; Krane, J; Krishnaswamy, M R; Krivkova, P; Krzywdzinski, S; Kubantsev, M A; Kuleshov, S; Kulik, Y; Kunori, S; Kupco, A; Kuznetsov, V E; Landsberg, G L; Lee, W M; Leflat, A; Lehner, F; Leonidopoulos, C; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J; Lipton, R; Lucotte, A; Lueking, L; Lundstedt, C; Luo, C; Maciel, A K A; Madaras, R J; Malyshev, V L; Manankov, V; Mao, H S; Marshall, T; Martin, M I; Mattingly, S E K; Mayorov, A A; McCarthy, R; McMahon, T; Melanson, H L; Melnitchouk, A S; Merkin, M; Merritt, K W; Miao, C; Miettinen, H; Mihalcea, D; Mokhov, N V; Mondal, N K; Montgomery, H E; Moore, R W; Mutaf, Y D; Nagy, E; Narain, M; Narasimham, V S; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Nomerotski, A; Nunnemann, T; O'Neil, D; Oguri, V; Oshima, N; Padley, P; Papageorgiou, K; Parashar, N; Partridge, R; Parua, N; Patwa, A; Peters, O; Petroff, P; Piegaia, R; Pope, B G; Prosper, H B; Protopopescu, S D; Przybycien, M B; Qian, J; Rajagopalan, S; Rapidis, P A; Reay, N W; Reucroft, S; Ridel, M; Rijssenbeek, M; Rizatdinova, F K; Rockwell, T; Royon, C; Rubinov, P; Ruchti, R; Sabirov, B M; Sajot, G; Santoro, A F S; Sawyer, L; Schamberger, R D; Schellman, H; Schwartzman, A; Shabalina, E; Shivpuri, R K; Shpakov, D; Shupe, M; Sidwell, R A; Simák, V; Sirotenko, V I; Slattery, P F; Smith, R P; Snow, G R; Snow, J; Snyder, S; Solomon, J; Song, Y; Sorin, V; Sosebee, M; Sotnikova, N; Soustruznik, K; Souza, M; Stanton, N R; Steinbruck, G; Stoker, D; Stolin, V; Stone, A; Stoyanova, D A; Strang, M A; Strauss, M; Strovink, M; Stutte, L; Sznajder, A; Talby, M; Taylor, W; Tentindo-Repond, S; Trippe, T G; Turcot, A S; Tuts, P M; Van Kooten, R; Vaniev, V; Varelas, N; Villeneuve-Séguier, F; Volkov, A A; Vorobev, A P; Wahl, H D; Wang, Z M; Warchol, J; Watts, G; Wayne, M; Weerts, H; White, A; Whiteson, D; Wijngaarden, D A; Willis, S; Wimpenny, S J; Womersley, J; Wood, D R; Xu, Q; Yamada, R; Yasuda, T; Yatsunenko, Y A; Yip, K; Yu, J; Zanabria, M; Zhang, X; Zhou, B; Zhou, Z; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G; Zylberstejn, A

2004-01-01T23:59:59.000Z

39

Measurements of the top quark mass at the tevatron  

E-Print Network [OSTI]

The mass of the top quark (\\mtop) is a fundamental parameter of the standard model (SM). Currently, its most precise measurements are performed by the CDF and D0 collaborations at the Fermilab Tevatron $p\\bar p$ collider at a centre-of-mass energy of $\\sqrt s=1.96 \\TeV$. We review the most recent of those measurements, performed on data samples of up to 8.7 \\fb\\ of integrated luminosity. The Tevatron combination using up to 5.8 fb$^{-1}$ of data results in a preliminary world average top quark mass of $m_{\\rm top} = 173.2 \\pm 0.9$ GeV. This corresponds to a relative precision of about 0.54%. We conclude with an outlook of anticipated precision the final measurement of \\mtop at the Tevatron.

Brandt, Oleg

2012-01-01T23:59:59.000Z

40

Measurements of the top quark mass at the tevatron  

E-Print Network [OSTI]

The mass of the top quark (\\mtop) is a fundamental parameter of the standard model (SM). Currently, its most precise measurements are performed by the CDF and D0 collaborations at the Fermilab Tevatron $p\\bar p$ collider at a centre-of-mass energy of $\\sqrt s=1.96 \\TeV$. We review the most recent of those measurements, performed on data samples of up to 8.7 \\fb\\ of integrated luminosity. The Tevatron combination using up to 5.8 fb$^{-1}$ of data results in a preliminary world average top quark mass of $m_{\\rm top} = 173.2 \\pm 0.9$ GeV. This corresponds to a relative precision of about 0.54%. We conclude with an outlook of anticipated precision the final measurement of \\mtop at the Tevatron.

Oleg Brandt; for the CDF Collaboration; for the D0 Collaboration

2012-04-04T23:59:59.000Z

Note: This page contains sample records for the topic "mass difference measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Intracellular Water Exchange for Measuring the Dry Mass, Water Mass and Changes in Chemical Composition of Living Cells  

E-Print Network [OSTI]

We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell’s buoyant ...

Cermak, Nathan

42

Microwave measurement of the mass of frozen hydrogen pellets  

DOE Patents [OSTI]

A nondestructive apparatus and method for measuring the mass of a moving object, based on the perturbation of the dielectric character of a resonant microwave cavity caused by the object passing through the cavity. An oscillator circuit is formed with a resonant cavity in a positive feedback loop of a microwave power amplifier. The moving object perturbs the resonant characteristics of the cavity causing a shift in the operating frequency of the oscillator proportional to the ratio of the pellet volume to the volume of the cavity. Signals from the cavity oscillation are mixed with a local oscillator. Then the IF frequency from the mixer is measured thereby providing a direct measurement of pellet mass based upon known physical properties and relationships. This apparatus and method is particularly adapted for the measurement of frozen hydrogen pellets.

Talanker, Vera (Golden, CO); Greenwald, Martin (Belmont, MA)

1990-01-01T23:59:59.000Z

43

Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters  

SciTech Connect (OSTI)

Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3-part research plan involving (1) development of computer codes and techniques to estimate mass-transfer parameters from time-lapse electrical data; (2) bench-scale experiments on synthetic materials and materials from cores from the Hanford 300 Area; and (3) field demonstration experiments at the DOE’s Hanford 300 Area. In a synergistic add-on to our workplan, we analyzed data from field experiments performed at the DOE Naturita Site under a separate DOE SBR grant, on which PI Day-Lewis served as co-PI. Techniques developed for application to Hanford datasets also were applied to data from Naturita. 1. Introduction The Department of Energy (DOE) faces enormous scientific and engineering challenges associated with the remediation of legacy contamination at former nuclear weapons production facilities. Selection, design and optimization of appropriate site remedies (e.g., pump-and-treat, biostimulation, or monitored natural attenuation) requires reliable predictive models of radionuclide fate and transport; however, our current modeling capabilities are limited by an incomplete understanding of multi-scale mass transfer—its rates, scales, and the heterogeneity of controlling parameters. At many DOE sites, long “tailing” behavior, concentration rebound, and slower-than-expected cleanup are observed; these observations are all consistent with multi-scale mass transfer [Haggerty and Gorelick, 1995; Haggerty et al., 2000; 2004], which renders pump-and-treat remediation and biotransformation inefficient and slow [Haggerty and Gorelick, 1994; Harvey et al., 1994; Wilson, 1997]. Despite the importance of mass transfer, there are significant uncertainties associated with controlling parameters, and the prevalence of mass transfer remains a point of debate [e.g., Hill et al., 2006; Molz et al., 2006] for lack of experimental methods to verify and measure it in situ or independently of tracer breakthrough. There is a critical need for new field-experimental techniques to measure mass transfer in-situ and estimate multi-scale and spatially variable mass-transfer parame

Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Tim; Binley, Andrew; Lane, John

2014-01-16T23:59:59.000Z

44

Mass Measurement Using Energy Spectra in Three-body Decays  

E-Print Network [OSTI]

In previous works we have demonstrated how the energy distribution of massless decay products in two body decays can be used to measure the mass of decaying particles. In this work we show how such results can be generalized to the case of multi-body decays. The key ideas that allow us to deal with multi-body final states are an extension of our previous results to the case of massive decay products and the factorization of the multi-body phase space. The mass measurement strategy that we propose is distinct from alternative methods because it does not require an accurate reconstruction of the entire event, as it does not involve, for instance, the missing transverse momentum, but rather requires measuring only the visible decay products of the decay of interest. To demonstrate the general strategy, we study a supersymmetric model wherein pair-produced gluinos each decay to a stable neutralino and a bottom quark-antiquark pair via an off-shell bottom squark. The combinatorial background stemming from the indistinguishable visible final states on both decay sides can be treated by an "event mixing" technique, the performance of which is discussed in detail. Taking into account dominant backgrounds, we are able to show that the mass of the gluino and, in favorable cases, that of the neutralino can be determined by this mass measurement strategy.

Kaustubh Agashe; Roberto Franceschini; Doojin Kim; Kyle Wardlow

2015-03-12T23:59:59.000Z

45

Precision Top-Quark Mass Measurements at CDF  

SciTech Connect (OSTI)

We present a precision measurement of the top-quark mass using the full sample of Tevatron {radical}s = 1.96 TeV proton-antiproton collisions collected by the CDF II detector, corresponding to an integrated luminosity of 8.7 fb{sup -1}. Using a sample of t{bar t} candidate events decaying into the lepton+jets channel, we obtain distributions of the top-quark masses and the invariant mass of two jets from the W boson decays from data. We then compare these distributions to templates derived from signal and background samples to extract the top-quark mass and the energy scale of the calorimeter jets with in situ calibration. The likelihood fit of the templates from signal and background events to the data yields the single most-precise measurement of the top-quark mass, mtop = 172.85 {+-} 0.71 (stat) {+-} 0.85 (syst) GeV/c{sup 2}.

Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.; /Oviedo U. /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U. /Fermilab; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Appel, J.A.; /Fermilab; Arisawa, T.; /Waseda U.; Artikov, A.; /Dubna, JINR /Texas A-M

2012-07-01T23:59:59.000Z

46

Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters  

SciTech Connect (OSTI)

Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3-part research plan involving (1) development of computer codes and techniques to estimate mass-transfer parameters from time-lapse electrical data; (2) bench-scale experiments on synthetic materials and materials from cores from the Hanford 300 Area; and (3) field demonstration experiments at the DOE’s Hanford 300 Area. In a synergistic add-on to our workplan, we analyzed data from field experiments performed at the DOE Naturita Site under a separate DOE SBR grant, on which PI Day-Lewis served as co-PI. Techniques developed for application to Hanford datasets also were applied to data from Naturita.

Day-Lewis, Frederick David [U.S. Geological Survey; Singha, Kamini [Colorado School of Mines; Johnson, Timothy C. [Pacific Northwest National Laboratory; Haggerty, Roy [Oregon State; Binley, Andrew [Lancaster University; Lane, John W. [US Geological Survey

2014-11-25T23:59:59.000Z

47

Top-quark mass measurement using events with missing transverse energy and jets at CDF  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We present a measurement of the top-quark mass with tt? events using a data sample corresponding to an integrated luminosity of 5.7 fb -1 of pp? collisions at the Fermilab Tevatron with ?s = 1.96 TeV and collected by the CDF II Detector. We select events having no identified charged leptons, large missing transverse energy, and four, five, or six jets with at least one jet containing a secondary vertex consistent with the decay of a b quark. This analysis considers events from the semileptonic tt? decay channel, including events that contain tau leptons, which are usually not included in the top-quark mass measurements. The measurement uses as kinematic variables the invariant mass of two jets consistent with the mass of the W boson, and the invariant masses of two different three-jet combinations. We fit the data to signal templates of varying top-quark masses and background templates, and measure a top-quark mass of Mtop = 172.3 ± 2.4 (stat) ± 1.0 (syst) GeV/c2.

Aaltonen, T; Alvarez Gonzalez, B; Amerio, S; Anastassov, A; Amidei, D; Antos, J; Annovi, A

2013-07-01T23:59:59.000Z

48

Top-quark mass measurement using events with missing transverse energy and jets at CDF  

SciTech Connect (OSTI)

We present a measurement of the top-quark mass with tt? events using a data sample corresponding to an integrated luminosity of 5.7 fb -1 of pp? collisions at the Fermilab Tevatron with ?s = 1.96 TeV and collected by the CDF II Detector. We select events having no identified charged leptons, large missing transverse energy, and four, five, or six jets with at least one jet containing a secondary vertex consistent with the decay of a b quark. This analysis considers events from the semileptonic tt? decay channel, including events that contain tau leptons, which are usually not included in the top-quark mass measurements. The measurement uses as kinematic variables the invariant mass of two jets consistent with the mass of the W boson, and the invariant masses of two different three-jet combinations. We fit the data to signal templates of varying top-quark masses and background templates, and measure a top-quark mass of Mtop = 172.3 ± 2.4 (stat) ± 1.0 (syst) GeV/c2.

Aaltonen, T; Alvarez Gonzalez, B; Amerio, S; Anastassov, A; Amidei, D; Antos, J; Annovi, A

2013-07-01T23:59:59.000Z

49

Ultra-low Q values for neutrino mass measurements  

SciTech Connect (OSTI)

We investigate weak nuclear decays with extremely small kinetic energy release (Q value) and thus extremely good sensitivity to the absolute neutrino mass scale. In particular, we consider decays into excited daughter states, and we show that partial ionization of the parent atom can help to tune Q values to << 1 keV. We discuss several candidate isotopes undergoing {beta}{sup {+-}}, bound state {beta}, or electron capture decay, and come to the conclusion that a neutrino mass measurement using low-Q decays might only be feasible if no ionization is required, and if future improvements in isotope production technology, nuclear mass spectroscopy, and atomic structure calculations are possible. Experiments using ions, however, are extremely challenging due to the large number of ions that must be stored. New precision data on nuclear excitation levels could help to identify further isotopes with low-Q decay modes and possibly less challenging requirements.

Kopp, Joachim; /Heidelberg, Max Planck Inst. /Fermilab; Merle, Alexander; /Heidelberg, Max Planck Inst.

2009-11-01T23:59:59.000Z

50

Determination of iodine to compliment mass spectrometric measurements  

SciTech Connect (OSTI)

The dose of iodine-129 to facility personnel and the general public as a result of past, present, and future activities at DOE sites is of continuing interest, WINCO received about 160 samples annually in a variety of natural matrices, including snow, milk, thyroid tissue, and sagebrush, in which iodine-129 is determined in order to evaluate this dose, Currently, total iodine and the isotopic ratio of iodine-127 to iodine-129 are determined by mass spectrometry. These two measurements determine the concentration of iodine-129 in each sample, These measurements require at least 16 h of mass spectrometer operator time for each sample. A variety of methods are available which concentrate and determine small quantities of iodine. Although useful, these approaches would increase both time and cost. The objective of this effort was to determine total iodine by an alternative method in order to decrease the load on mass spectrometry by 25 to 50%. The preparation of each sample for mass spectrometric analysis involves a common step--collection of iodide on an ion exchange bed. This was the focal point of the effort since the results would be applicable to all samples.

Hohorst, F.A.

1994-11-01T23:59:59.000Z

51

Shapiro delay measurement of a two solar mass neutron star  

E-Print Network [OSTI]

Neutron stars are composed of the densest form of matter known to exist in our universe, and thus provide a unique laboratory for exploring the properties of cold matter at super-nuclear density. Measurements of the masses or radii of these objects can strongly constrain the neutron-star matter equation of state, and consequently the interior composition of neutron stars. Neutron stars that are visible as millisecond radio pulsars are especially useful in this respect, as timing observations of the radio pulses provide an extremely precise probe of both the pulsar's motion and the surrounding space-time metric. In particular, for a pulsar in a binary system, detection of the general relativistic Shapiro delay allows us to infer the masses of both the neutron star and its binary companion to high precision. Here we present radio timing observations of the binary millisecond pulsar PSR J1614-2230, which show a strong Shapiro delay signature. The implied pulsar mass of 1.97 +/- 0.04 M_sun is by far the highest yet measured with such certainty, and effectively rules out the presence of hyperons, bosons, or free quarks at densities comparable to the nuclear saturation density.

Paul Demorest; Tim Pennucci; Scott Ransom; Mallory Roberts; Jason Hessels

2010-10-27T23:59:59.000Z

52

MEASURING IMAGES: DIFFERENCES, QUALITY AND Garrett M. Johnson  

E-Print Network [OSTI]

MEASURING IMAGES: DIFFERENCES, QUALITY AND APPEARANCE Garrett M. Johnson M.S. Color Science (1998 The Ph.D. Degree Dissertation of Garrett M. Johnson has been examined and approved by the dissertation of Thesis: MEASURING IMAGES: DIFFERENCES, QUALITY, AND APPEARANCE I, Garrett M. Johnson, hereby grant

Zanibbi, Richard

53

arXiv:hepex/0505096 Measurement of the Higgs Boson Mass  

E-Print Network [OSTI]

################ arXiv:hep­ex/0505096 v1 30 May 2005 Measurement of the Higgs Boson Mass for the measurement of the Higgs boson mass. An integrated luminosity of 500 fb 1 is assumed. For Higgs boson masses of 120, 150 and 180 GeV the uncertainty on the Higgs boson mass measurement is estimated to be 40, 65

54

Mass Measurement Using Energy Spectra in Three-body Decays  

E-Print Network [OSTI]

In previous works we have demonstrated how the energy distribution of massless decay products in two body decays can be used to measure the mass of decaying particles. In this work we show how such results can be generalized to the case of multi-body decays. The key ideas that allow us to deal with multi-body final states are an extension of our previous results to the case of massive decay products and the factorization of the multi-body phase space. The mass measurement strategy that we propose is distinct from alternative methods because it does not require an accurate reconstruction of the entire event, as it does not involve, for instance, the missing transverse momentum, but rather requires measuring only the visible decay products of the decay of interest. To demonstrate the general strategy, we study a supersymmetric model wherein pair-produced gluinos each decay to a stable neutralino and a bottom quark-antiquark pair via an off-shell bottom squark. The combinatorial background stemming from the indi...

Agashe, Kaustubh; Kim, Doojin; Wardlow, Kyle

2015-01-01T23:59:59.000Z

55

Measuring the neutrino mass from future wide galaxy cluster catalogues  

SciTech Connect (OSTI)

We present forecast errors on a wide range of cosmological parameters obtained from a photometric cluster catalogue of a future wide-field Euclid-like survey. We focus in particular on the total neutrino mass as constrained by a combination of the galaxy cluster number counts and correlation function. For the latter we consider only the shape information and the Baryon Acoustic Oscillations (BAO), while marginalising over the spectral amplitude and the redshift space distortions. In addition to the cosmological parameters of the standard ?CDM+? model we also consider a non-vanishing curvature, and two parameters describing a redshift evolution for the dark energy equation of state. For completeness, we also marginalise over a set of ''nuisance'' parameters, representing the uncertainties on the cluster mass determination. We find that combining cluster counts with power spectrum information greatly improves the constraining power of each probe taken individually, with errors on cosmological parameters being reduced by up to an order of magnitude. In particular, the best improvements are for the parameters defining the dynamical evolution of dark energy, where cluster counts break degeneracies. Moreover, the resulting error on neutrino mass is at the level of ?(M{sub ?}) ? 0.9 eV, comparable with that derived from present Ly? forest measurements and Cosmic Microwave background (CMB) data in the framework of a non-flat Universe. Further adopting Planck priors and reducing the number of free parameters to a ?CDM+? cosmology allows to place constraints on the total neutrino mass of ?(M{sub ?}) ? 0.08 eV, close to the lower bound enforced by neutrino oscillation experiments. Finally, in the optimistic case where uncertainties in the calibration of the mass-observable relation were so small to be neglected, the combination of Planck priors with cluster counts and power spectrum would constrain the total neutrino mass down to ?(M{sub ?}) ? 0.034 eV, i.e. the minimum neutrino mass predicted by oscillation experiments would be detected in a ?CDM framework. We thus show that galaxy clusters from future wide galaxy surveys will be an excellent tool for studying cosmology and fundamental physics.

Carbone, Carmelita; Moscardini, Lauro; Cimatti, Andrea [Dipartimento di Astronomia, Alma Mater Studiorum-Universitŕ di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Fedeli, Cosimo, E-mail: carmelita.carbone@unibo.it, E-mail: cosimo.fedeli@astro.ufl.edu, E-mail: lauro.moscardini@unibo.it, E-mail: a.cimatti@unibo.it [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States)

2012-03-01T23:59:59.000Z

56

A PRECISE MASS MEASUREMENT OF THE INTERMEDIATE-MASS BINARY PULSAR PSR J1802 - 2124  

SciTech Connect (OSTI)

PSR J1802 - 2124 is a 12.6 ms pulsar in a 16.8 hr binary orbit with a relatively massive white dwarf (WD) companion. These properties make it a member of the intermediate-mass class of binary pulsar (IMBP) systems. We have been timing this pulsar since its discovery in 2002. Concentrated observations at the Green Bank Telescope, augmented with data from the Parkes and Nancay observatories, have allowed us to determine the general relativistic Shapiro delay. This has yielded pulsar and WD mass measurements of 1.24 +- 0.11 M{sub sun} and 0.78 +- 0.04 M{sub sun} (68% confidence), respectively. The low mass of the pulsar, the high mass of the WD companion, the short orbital period, and the pulsar spin period may be explained by the system having gone through a common-envelope phase in its evolution. We argue that selection effects may contribute to the relatively small number of known IMBPs.

Ferdman, R. D.; Cognard, I.; Desvignes, G.; Theureau, G. [Station de Radioastronomie de Nancay, Observatoire de Paris, 18330 Nancay (France); Stairs, I. H. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada); Kramer, M. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121, Bonn (Germany); McLaughlin, M. A.; Lorimer, D. R. [Department of Physics, West Virginia University, Morgantown, WV 26505 (United States); Nice, D. J. [Physics Department, Bryn Mawr College, Bryn Mawr, PA 19010 (United States); Manchester, R. N.; Hobbs, G. [Australia Telescope National Facility, CSIRO, Epping, NSW 1710 (Australia); Lyne, A. G.; Faulkner, A. [Jodrell Bank Centre for Astrophysics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL (United Kingdom); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Possenti, A. [INAF, Osservatorio Astronomico di Cagliari, Loc. Poggio dei Pini, 09012 Capoterra (Italy); Demorest, P. B. [National Radio Astronomy Observatory, Charlottesville, VA 22901 (United States); Backer, D. C., E-mail: robert.ferdman@obs-nancay.f [Department of Astronomy and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720 (United States)

2010-03-10T23:59:59.000Z

57

Fission Yield Measurements by Inductively Coupled Plasma Mass-Spectrometry  

SciTech Connect (OSTI)

Correct prediction of the fission products inventory in irradiated nuclear fuels is essential for accurate estimation of fuel burnup, establishing proper requirements for spent fuel transportation and storage, materials accountability and nuclear forensics. Such prediction is impossible without accurate knowledge of neutron induced fission yields. Unfortunately, the accuracy of the fission yields reported in the ENDF/B-VII.0 library is not uniform across all of the data and much of the improvement is desired for certain isotopes and fission products. We discuss our measurements of cumulative fission yields in nuclear fuels irradiated in thermal and fast reactor spectra using Inductively Coupled Plasma Mass Spectrometry.

Irina Glagolenko; Bruce Hilton; Jeffrey Giglio; Daniel Cummings; Karl Grimm; Richard McKnight

2009-11-01T23:59:59.000Z

58

Shapiro delay measurement of a two solar mass neutron star  

E-Print Network [OSTI]

Neutron stars are composed of the densest form of matter known to exist in our universe, and thus provide a unique laboratory for exploring the properties of cold matter at super-nuclear density. Measurements of the masses or radii of these objects can strongly constrain the neutron-star matter equation of state, and consequently the interior composition of neutron stars. Neutron stars that are visible as millisecond radio pulsars are especially useful in this respect, as timing observations of the radio pulses provide an extremely precise probe of both the pulsar's motion and the surrounding space-time metric. In particular, for a pulsar in a binary system, detection of the general relativistic Shapiro delay allows us to infer the masses of both the neutron star and its binary companion to high precision. Here we present radio timing observations of the binary millisecond pulsar PSR J1614-2230, which show a strong Shapiro delay signature. The implied pulsar mass of 1.97 +/- 0.04 M_sun is by far the highest y...

Demorest, Paul; Ransom, Scott; Roberts, Mallory; Hessels, Jason; 10.1038/nature09466

2010-01-01T23:59:59.000Z

59

Measuring the Density Fluctuation From the Cluster Gas Mass Function  

E-Print Network [OSTI]

We investigate the gas mass function of clusters of galaxies to measure the density fluctuation spectrum on cluster scales. The baryon abundance confined in rich clusters is computed from the gas mass function and compared with the mean baryon density in the universe which is predicted by the Big Bang Nucleosynthesis. This baryon fraction and the slope of the gas mass function put constraints on $\\sigma_8$, the rms linear fluctuation on scales of $8h^{-1}\\Mpc$, and the slope of the fluctuation spectrum, where $h$ is the Hubble constant in units of 100 $\\kms \\oMpc$. We find $\\sigma_8 = 0.80 \\pm 0.15$ and $n \\sim -1.5$ for $0.5 \\le h \\le 0.8$, where we assume that the density spectrum is approximated by a power law on cluster scales: $\\sigma(r) \\propto r^{-{3+n\\over{2}}}$. Our value of $\\sigma_8$ is independent of the density parameter, $\\Omega_0$, and thus we can estimate $\\Omega_0$ by combining $\\sigma_8$ obtained in this study with those from $\\Omega_0$-dependent analyses to date. We find that $\\sigma_8(\\Omega_0)$ derived from the cluster abundance such as the temperature function gives $\\Omega_0 \\sim 0.5$ while $\\sigma_8(\\Omega_0)$ measured from the peculiar velocity field of galaxies gives $\\Omega_0 \\sim 0.2-1$, depending on the technique used to analyze peculiar velocity data. Constraints are also derived for open, spatially flat, and tilted Cold Dark Matter models and for Cold + Hot Dark Matter models.

Kazuhiro Shimasaku

1997-01-27T23:59:59.000Z

60

Partial discharge measurements on a high voltage direct current mass impregnated paper cable  

SciTech Connect (OSTI)

Partial discharge measurement has been a good tool for the quality assurance of cables under alternating voltage. With the growing interest in High Voltage Direct Current cables it seems therefore logical to extend this technique for use at direct voltage. The paper describes this technique as used on a HVDC cable with mass impregnated paper. The different phases of operation (no load, full load, cooling phase, etc.) are characterized by a different discharge behavior. Special attention is given to the dangerous cooling phase. Models have been developed which can explain the discharge patterns that were measured. This paper gives an insight in the electrical behavior of a HVDC cable with mass impregnated paper insulation.

Jeroense, M.J.P. [NKF KABEL B.V., Delft (Netherlands); Kreuger, F.H. [Delft Univ. of Technology (Netherlands)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "mass difference measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Low-level 14C measurements and Accelerator Mass Spectrometry  

SciTech Connect (OSTI)

Accelerator Mass Spectrometry (AMS) and isotope enrichment were used in 1991 to estimate that the 14C content of methane in natural gas was {<=}1.6x10-18 of the total carbon. The low content of 14C in underground hydrocarbons was verified later in the remarkable results from the Borexino test scintillation counter for solar neutrino studies. Since then studies of the 14C background problem have demonstrated that much of the background originally observed in the AMS measurements can, in principle, be eliminated. However, many difficulties and other backgrounds are to be faced as the limit for AMS is pushed still further towards possibly a ratio of < 10-21. These will be discussed.

Litherland, A.E.; Beukens, R.P.; Zhao, X.-L.; Kieser, W.E. [IsoTrace Laboratory, University of Toronto, Toronto, ON, M5S 1A7 (Canada); Gove, H.E. [IsoTrace Laboratory, University of Toronto, Toronto, ON, M5S 1A7 (Canada); Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627-0171 (United States)

2005-09-08T23:59:59.000Z

62

Extending Penning trap mass measurements with SHIPTRAP to the heaviest elements  

SciTech Connect (OSTI)

Penning-trap mass spectrometry of radionuclides provides accurate mass values and absolute binding energies. Such mass measurements are sensitive indicators of the nuclear structure evolution far away from stability. Recently, direct mass measurements have been extended to the heavy elements nobelium (Z=102) and lawrencium (Z=103) with the Penning-trap mass spectrometer SHIPTRAP. The results probe nuclear shell effects at N=152. New developments will pave the way to access even heavier nuclides.

Block, M.; Ackermann, D.; Herfurth, F.; Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Blaum, K. [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg, Germany and Ruprecht-Karls-Universitaet, 69120 Heidelberg (Germany); Droese, C.; Marx, G.; Schweikhard, L. [Ernst-Moritz-Arndt-Universitaet, 17487 Greifswald (Germany); Duellmann, Ch. E. [Johannes Gutenberg-Universitaet, 55099 Mainz, Germany and GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt, Germany and Helmholtz-Institut Mainz, 55099 Mainz (Germany); Eibach, M. [Ruprecht-Karls-Universitaet, 69120 Heidelberg, Germany and Johannes Gutenberg-Universitaet, 55099 Mainz (Germany); Eliseev, S. [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Haettner, E.; Plass, W. R.; Scheidenberger, C. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt, Germany and Justus-Liebig-Universitaet, 35392 Giessen (Germany); Hessberger, F. P. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt, Germany and Helmholtz-Institut Mainz, 55099 Mainz (Germany); Ramirez, E. Minaya [Helmholtz-Institut Mainz, 55099 Mainz, Germany and GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Nesterenko, D. [Petersburg Nuclear Physics Institute, Gatchina, 188300 St. Petersburg (Russian Federation); and others

2013-03-19T23:59:59.000Z

63

Measurement of the top quark mass using the invariant mass of lepton pairs in soft muon b-tagged events  

E-Print Network [OSTI]

We present the first measurement of the mass of the top quark in a sample of tt? ???? bb? qq? events (where ?=e,?) selected by identifying jets containing a muon candidate from the semileptonic decay of heavy-flavor hadrons ...

Bauer, Gerry P.

64

ISOLTRAP mass measurements of exotic nuclides at m/m = 10-8 , G. Bollend  

E-Print Network [OSTI]

. ISOLTRAP has so far been used to measure the masses of close to 300 radionuclides across the chart of nuclides, which are included in the recent Atomic-Mass Evaluation (AME2003) [5], with the exception

Paris-Sud XI, Université de

65

E-Print Network 3.0 - absolute mass measurements Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mass of neutrinos and determining their Majorana... -free measurement of neutrinoless double-beta decay (0) in 120 kg of 76 Ge with the goal of determining the neutrino... mass....

66

Measurement of the W boson mass using large rapidity electrons  

E-Print Network [OSTI]

extract the W boson mass M(W) by fitting the transverse mass and transverse electron and neutrino momentum spectra from a sample of 11 089 W? e? decay candidates. We use a sample of 1687 dielectron events, mostly due to Z? ee decays, to constrain our model...

Baringer, Philip S.; Coppage, Don; Hebert, C.

2000-10-12T23:59:59.000Z

67

Introduction to direct neutrino mass measurements and KATRIN  

E-Print Network [OSTI]

The properties of neutrinos and especially their rest mass play an important role at the intersections of cosmology, particle physics and astroparticle physics. At present there are two complementary approaches to address this topic in laboratory experiments. The search for neutrinoless double beta decay probes whether neutrinos are Majorana particles and determines an effective neutrino mass value. On the other hand experiments such as MARE, KATRIN and the recently proposed Project 8 will investigate the spectral shape of beta-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Here, because of neutrino flavour mixing, the neutrino mass appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. It combines an ultra-luminous molecular windowless gaseous tritium source with an integrating high-resolution spectrometer of MAC-E filter type. It will investigate the neutrino rest mass with 0.2 eV/c (90% C.L.) sensitivity and allow beta spectroscopy close to the tritium endpoint at 18.6 keV with unprecedented precision.

Thomas Thümmler; for the KATRIN Collaboration

2010-12-10T23:59:59.000Z

68

Prospects to Measure the Higgs Boson Mass and Cross Section in ee-->ZH Using the Recoil Mass Spectrum  

E-Print Network [OSTI]

The process ee-->ZH allows to measure the Higgs boson in the recoil mass spectrum against the Z boson without any assumptions on the Higgs boson decay. We performed a full simulation and reconstruction of ee-->ZH using the MOKKA and MARLIN packages describing the LDC detector. The Z is reconstructed from its decays into electrons and muons. The mass of the Higgs boson is set to 120 GeV. Assuming a centre-of-mass energy of 250 GeV and an integrated luminosity of 50/fb the Higgs boson mass and the Higgs-strahlung cross section can be measured with a precision of 120 MeV and 9%, respectively.

W. Lohmann; M. Ohlerich; A. Raspereza; A. Schälicke

2007-10-13T23:59:59.000Z

69

Measurement of the Higgs Boson Mass with a Linear e+e- Collider  

E-Print Network [OSTI]

The potential of a linear e+e- collider operated at a centre-of-mass energy of 350 GeV is studied for the measurement of the Higgs boson mass. An integrated luminosity of 500 fb-1 is assumed. For Higgs boson masses of 120, 150 and 180 GeV the uncertainty on the Higgs boson mass measurement is estimated to be 40, 65 and 70 MeV, respectively. The effects of beam related systematics, namely a bias in the beam energy measurement, the beam energy spread and the luminosity spectrum due to beamstrahlung, on the precision of the Higgs boson mass measurement are investigated. In order to keep the systematic uncertainty on the Higgs boson mass well below the level of the statistical error, the beam energy measurement must be controlled with a relative precision better than 10-4.

P. Garcia-Abia; W. Lohmann; A. Raspereza

2005-05-30T23:59:59.000Z

70

Mass ejection from neutron star mergers: different components and expected radio signals  

E-Print Network [OSTI]

In addition to producing a strong gravitational signal, a short gamma-ray burst (GRB), and a compact remnant, neutron star mergers eject significant masses at significant kinetic energies. This mass ejection takes place via dynamical mass ejection and a GRB jet but other processes have also been suggested: a shock-breakout material, a cocoon resulting from the interaction of the jet with other ejecta, and viscous and neutrino driven winds from the central remnant or the accretion disk. The different components of the ejected masses include up to a few percent of a solar mass, some of which is ejected at relativistic velocities. The interaction of these ejecta with the surrounding interstellar medium will produce a long lasting radio flare, in a similar way to GRB afterglows or to radio supernovae. The relative strength of the different signals depends strongly on the viewing angle. An observer along the jet axis or close to it will detect a strong signal at a few dozen days from the radio afterglow (or the or...

Hotokezaka, Kenta

2015-01-01T23:59:59.000Z

71

A precise Higgs mass measurement at the ILC and test beam data analyses  

E-Print Network [OSTI]

for the Higgs boson mass measurement, while the cross section could be measured to 5%; if we make some assumptions about the Higgs boson's decay, for example a Standard Model Higgs boson with a dominant invisible

Boyer, Edmond

72

Non-empirical nuclear energy functionals, pairing gaps and odd-even mass differences  

E-Print Network [OSTI]

First, we briefly outline some aspects of the starting project to design non-empirical energy functionals based on low-momentum vacuum interactions and many-body perturbation theory. Second, we present results obtained within an approximation of such a scheme where the pairing part of the energy density functional is constructed at first order in the nuclear plus Coulomb two-body interaction. We discuss in detail the physics of the odd-even mass staggering and the necessity to compute actual odd-even mass differences to analyze it meaningfully.

T. Duguet; T. Lesinski

2009-07-06T23:59:59.000Z

73

$ ^T)) \\ ^ / f l \\ Rise-M-2597 of Mass and Velocity Measurements  

E-Print Network [OSTI]

in flight without use of optical equipment has been tested. The mass is measured by a microwave system, control of density profile, diagnostic purposes, etc.. In any case it is imports it to be able to measureh- $ ^T)) \\ ^ / f l \\ Rise-M-2597 of Mass and Velocity Measurements on Pellets in Flight

74

Measurement of low radioactivity background in a high voltage cable by high resolution inductively coupled plasma mass spectrometry  

SciTech Connect (OSTI)

The measurement of naturally occurring low level radioactivity background in a high voltage (HV) cable by high resolution inductively coupled plasma mass spectrometry (HR ICP MS) is presented in this work. The measurements were performed at the Chemistry Service of the Gran Sasso National Laboratory. The contributions to the radioactive background coming from the different components of the heterogeneous material were separated. Based on the mass fraction of the cable, the whole contamination was calculated. The HR ICP MS results were cross-checked by gamma ray spectroscopy analysis that was performed at the low background facility STELLA (Sub Terranean Low Level Assay) of the LNGS underground lab using HPGe detectors.

Vacri, M. L. di; Nisi, S.; Balata, M. [Gran Sasso National Laboratory, Chemistry Service, SS 17bis km 18.910, 67100 Assergi (Aq) (Italy)] [Gran Sasso National Laboratory, Chemistry Service, SS 17bis km 18.910, 67100 Assergi (Aq) (Italy)

2013-08-08T23:59:59.000Z

75

Measurement of the Top Quark Mass Simultaneously in Dilepton and Lepton + Jets Decay Channels  

SciTech Connect (OSTI)

The authors present the first measurement of the top quark mass using simultaneously data from two decay channels. They use a data sample of {radical}s = 1.96 TeV collisions with integrated luminosity of 1.9 fb{sup -1} collected by the CDF II detector. They select dilepton and lepton + jets channel decays of t{bar t} pairs and reconstruct two observables in each topology. They use non-parametric techniques to derive probability density functions from simulated signal and background samples. The observables are the reconstructed top quark mass and the scalar sum of transverse energy of the event in the dilepton topology and the reconstructed top quark mass and the invariant mass of jets from the W boson decay in lepton + jets channel. They perform a simultaneous fit for the top quark mass and the jet energy scale which is constrained in situ by the hadronic W boson resonance from the lepton + jets channel. Using 144 dilepton candidate events and 332 lepton + jets candidate events they measure: M{sub top} = 171.9 {+-} 1.7 (stat. + JES) {+-} 1.1 (other sys.) GeV/c{sup 2} = 171.9 {+-} 2.0 GeV/c{sup 2}. The measurement features a robust treatment of the systematic uncertainties, correlated between the two channels and develops techniques for a future top quark mass measurement simultaneously in all decay channels. Measurements of the W boson mass and the top quark mass provide a constraint on the mass of the yet unobserved Higgs boson. The Higgs boson mass implied by measurement presented here is higher than Higgs boson mass implied by previously published, most precise CDF measurements of the top quark mass in lepton + jets and dilepton channels separately.

Fedorko, Wojciech T.; /Chicago U.

2008-09-01T23:59:59.000Z

76

Method for single-cell mass and electrophoretic mobility measurement  

E-Print Network [OSTI]

Analysis of single cells using flow cytometry techniques has created a wealth of knowledge about cellular phenomena that could not be obtained by population average measurements. As these techniques are integrated with ...

Dextras, Philip

2010-01-01T23:59:59.000Z

77

Measurement of the lifetimes of B meson mass eigenstates  

E-Print Network [OSTI]

In this dissertation, we present the results of the average lifetime measurements in ..., ..., and ... decays, as well as the results of a time-dependent angular analysis of ... and ... decays. The time-dependent angular ...

Anikeev, Konstantin

2004-01-01T23:59:59.000Z

78

Measurement of Mass and Spin of Black Holes with QPOs  

E-Print Network [OSTI]

There are now four low mass X-ray binaries with black holes which show twin resonant-like HFQPOs. Similar QPOs might have been found in Sgr A*. I review the power spectral density distributions of the three X-ray flares and the six NIR flares published for Sgr A* so far, in order to look for more similarities than just the frequencies between the microquasar black holes and Sgr A*. The three X-ray flares of Sgr A* are re-analysed in an identical way and white noise probabilities from their power density distributions are given for the periods reported around 1100 s. Progress of the resonant theory using the anomalous orbital velocity effect is summarized.

B. Aschenbach

2007-10-18T23:59:59.000Z

79

Extraction of the symmetry energy coefficients from the masses differences of isobaric nuclei  

E-Print Network [OSTI]

The nuclear symmetry energy coefficients of finite nuclei are extracted by using the differences between the masses of isobaric nuclei. Based on the masses of more than 2400 nuclei with $A=9-270$, we investigate the model dependence in the extraction of symmetry energy coefficient. We find that the extraction of the symmetry energy coefficients is strongly correlated with the forms of the Coulomb energy and the mass dependence of the symmetry energy coefficient adopted. The values of the extracted symmetry energy coefficients increase by about 2 MeV for heavy nuclei when the Coulomb correction term is involved. We obtain the bulk symmetry energy coefficient $S_0=28.26\\pm1.3$ MeV and the surface-to-volume ratio $\\kappa=1.26\\pm 0.25 $ MeV if assuming the mass dependence of symmetry energy coefficient $a_{\\rm sym}(A)=S_0(1-\\kappa/A^{1/3})$, and $S_0=32.80\\pm1.7$ MeV, $\\kappa=2.82\\pm0.57$ MeV when $a_{\\rm sym}(A)=S_0 (1+\\kappa/A^{1/3})^{-1}$ is adopted.

Junlong Tian; Haitao Cui; Kuankuan Zheng; Ning Wang

2014-03-28T23:59:59.000Z

80

MASS MEASUREMENT UNCERTAINTY FOR PLUTONIUM ALIQUOTS ASSAYED BY CONTROLLED-POTENTIAL COULOMETRY  

SciTech Connect (OSTI)

Minimizing plutonium measurement uncertainty is essential to nuclear material control and international safeguards. In 2005, the International Organization for Standardization (ISO) published ISO 12183 'Controlled-potential coulometric assay of plutonium', 2nd edition. ISO 12183:2005 recommends a target of {+-}0.01% for the mass of original sample in the aliquot because it is a critical assay variable. Mass measurements in radiological containment were evaluated and uncertainties estimated. The uncertainty estimate for the mass measurement also includes uncertainty in correcting for buoyancy effects from air acting as a fluid and from decreased pressure of heated air from the specific heat of the plutonium isotopes.

Holland, M.; Cordaro, J.

2009-03-18T23:59:59.000Z

Note: This page contains sample records for the topic "mass difference measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

First Results from the CARIBU Facility: Mass Measurements on the r-Process Path  

E-Print Network [OSTI]

The Canadian Penning Trap mass spectrometer has made mass measurements of 33 neutron-rich nuclides provided by the new Californium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne National Laboratory. The studied region includes the 132Sn double shell closure and ranges in Z from In to Cs, with Sn isotopes measured out to A = 135, and the typical measurement precision is at the 100 ppb level or better. The region encompasses a possible major waiting point of the astrophysical r process, and the impact of the masses on the r process is shown through a series of simulations. These first-ever simulations with direct mass information on this waiting point show significant increases in waiting time at Sn and Sb in comparison with commonly used mass models, demonstrating the inadequacy of existing models for accurate r-process calculations.

J. Van Schelt; D. Lascar; G. Savard; J. A. Clark; P. F. Bertone; S. Caldwell; A. Chaudhuri; 1 A. F. Levand; G. Li; G. E. Morgan; R. Orford; R. E. Segel; K. S. Sharma; M. G. Sternberg

2013-07-01T23:59:59.000Z

82

MEASURING THE ULTIMATE HALO MASS OF GALAXY CLUSTERS: REDSHIFTS AND MASS PROFILES FROM THE HECTOSPEC CLUSTER SURVEY (HeCS)  

SciTech Connect (OSTI)

The infall regions of galaxy clusters represent the largest gravitationally bound structures in a {Lambda}CDM universe. Measuring cluster mass profiles into the infall regions provides an estimate of the ultimate mass of these halos. We use the caustic technique to measure cluster mass profiles from galaxy redshifts obtained with the Hectospec Cluster Survey (HeCS), an extensive spectroscopic survey of galaxy clusters with MMT/Hectospec. We survey 58 clusters selected by X-ray flux at 0.1 < z < 0.3. The survey includes 22,680 unique MMT/Hectospec redshifts for individual galaxies; 10,145 of these galaxies are cluster members. For each cluster, we acquired high signal-to-noise spectra for {approx}200 cluster members and a comparable number of foreground/background galaxies. The cluster members trace out infall patterns around the clusters. The members define a very narrow red sequence. We demonstrate that the determination of velocity dispersion is insensitive to the inclusion of bluer members (a small fraction of the cluster population). We apply the caustic technique to define membership and estimate the mass profiles to large radii. The ultimate halo mass of clusters (the mass that remains bound in the far future of a {Lambda}CDM universe) is on average (1.99 {+-} 0.11)M{sub 200}, a new observational cosmological test in essential agreement with simulations. Summed profiles binned in M{sub 200} and in L{sub X} demonstrate that the predicted Navarro-Frenk-White form of the density profile is a remarkably good representation of the data in agreement with weak lensing results extending to large radius. The concentration of these summed profiles is also consistent with theoretical predictions.

Rines, Kenneth [Department of Physics and Astronomy, Western Washington University, Bellingham, WA 98225 (United States)] [Department of Physics and Astronomy, Western Washington University, Bellingham, WA 98225 (United States); Geller, Margaret J.; Kurtz, Michael J. [Smithsonian Astrophysical Observatory, 60 Garden Street, MS 20, Cambridge, MA 02138 (United States)] [Smithsonian Astrophysical Observatory, 60 Garden Street, MS 20, Cambridge, MA 02138 (United States); Diaferio, Antonaldo, E-mail: kenneth.rines@wwu.edu, E-mail: diaferio@ph.unito.it [Dipartimento di Fisica, Universita di Torino, Torino (Italy)] [Dipartimento di Fisica, Universita di Torino, Torino (Italy)

2013-04-10T23:59:59.000Z

83

Ice Mass Balance Buoy: An Instrument to Measure and Attribute Changes in Ice Thickness  

E-Print Network [OSTI]

Ice Mass Balance Buoy: An Instrument to Measure and Attribute Changes in Ice Thickness Jacqueline A the Ice Mass Balance buoy (IMB) in response to the need for monitoring changes in the thickness of the Arctic sea ice cover. The IMB is an autonomous, ice-based system. IMB buoys provide a time series of ice

Geiger, Cathleen

84

Human vitamin B12 absorption measurement by accelerator mass spectrometry using specifically  

E-Print Network [OSTI]

Human vitamin B12 absorption measurement by accelerator mass spectrometry using specifically for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94551 is the suspected cause. The test involves ingestion of a physiological quantity of B12 labeled with gamma

California at Davis, University of

85

Measurements of Volatile Organic Compounds Using Proton Transfer Reaction - Mass Spectrometry during the MILAGRO 2006 Campaign  

E-Print Network [OSTI]

Volatile organic compounds (VOCs) were measured by proton transfer reaction – mass spectrometry (PTR-MS) on a rooftop in the urban mixed residential and industrial area North Northeast of downtown Mexico City as part of ...

Fortner, E. C.

86

New Mass and Lifetime Measurements of $^{152}$Sm Projectile Fragments with Time-Resolved Schottky Mass Spectrometry  

E-Print Network [OSTI]

The FRS-ESR facilities at GSI provide unique conditions for precision measurements with stored exotic nuclei over a large range in the chart of nuclides. In the present experiment the exotic nuclei were produced via fragmentation of $^{152}$Sm projectiles in a thick beryllium target at 500-600 MeV/u, separated in-flight with the fragment separator FRS, and injected into the storage-cooler ring ESR. Mass and lifetime measurements have been performed with bare and few-electron ions. The experiment and first results will be presented in this contribution.

Yu. A. Litvinov; F. Bosch; H. Geissel; H. Weick; K. Beckert; P. Beller; D. Boutin; C. Brandau; L. Chen; O. Klepper; R. Knöbel; C. Kozhuharov; J. Kurcewicz; S. A. Litvinov; M. Mazzocco; G. Münzenberg; C. Nociforo; F. Nolden; W. Plaß; C. Scheidenberger; M. Steck; B. Sun; M. Winkler

2005-09-15T23:59:59.000Z

87

Apparatus for passive removal of subsurface contaminants and mass flow measurement  

DOE Patents [OSTI]

A system for improving the Baroball valve and a method for retrofitting an existing Baroball valve. This invention improves upon the Baroball valve by reshaping the interior chamber of the valve to form a flow meter measuring chamber. The Baroball valve sealing mechanism acts as a rotameter bob for determining mass flow rate through the Baroball valve. A method for retrofitting a Baroball valve includes providing static pressure ports and connecting a measuring device, to these ports, for measuring the pressure differential between the Baroball chamber and the well. A standard curve of nominal device measurements allows the mass flow rate to be determined through the retrofitted Baroball valve.

Jackson, Dennis G. (Augusta, GA); Rossabi, Joseph (Aiken, SC); Riha, Brian D. (Augusta, GA)

2003-07-15T23:59:59.000Z

88

Precision measurement of the mass and lifetime of the $?_b^0$ baryon  

E-Print Network [OSTI]

Using a proton-proton collision data sample corresponding to an integrated luminosity of 3 fb$^{-1}$ collected by LHCb at center-of-mass energies of 7 and 8 TeV, about 3800 $\\Xi_b^0\\to\\Xi_c^+\\pi^-$, $\\Xi_c^+\\to pK^-\\pi^+$ signal decays are reconstructed. From this sample, the first measurement of the $\\Xi_b^0$ baryon lifetime is made, relative to that of the $\\Lambda_b^0$ baryon. The mass differences $M(\\Xi_b^0)-M(\\Lambda_b^0)$ and $M(\\Xi_c^+)-M(\\Lambda_c^+)$ are also measured with precision more than four times better than the current world averages. The resulting values are $\\frac{\\tau_{\\Xi_b^0}}{\\tau_{\\Lambda_b^0}} = 1.006\\pm0.018\\pm0.010$, $M(\\Xi_b^0) - M(\\Lambda_b^0) = 172.44\\pm0.39\\pm0.17 MeV/c^2$, $M(\\Xi_c^+) - M(\\Lambda_c^+) = 181.51\\pm0.14\\pm0.10 MeV/c^2$, where the first uncertainty is statistical and the second is systematic. The relative rate of $\\Xi_b^0$ to $\\Lambda_b^0$ baryon production is measured to be $\\frac{f_{\\Xi_b^0}}{f_{\\Lambda_b^0}}\\frac{{\\cal{B}}(\\Xi_b^0\\to\\Xi_c^+\\pi^-)}{{\\cal{B}}(\\Lambda_b^0\\to\\Lambda_c^+\\pi^-)}\\frac{{\\cal{B}}(\\Xi_c^+\\to pK^-\\pi^+)}{{\\cal{B}}(\\Lambda_c^+\\to pK^-\\pi^+)} = (1.88\\pm0.04\\pm0.03)\\times10^{-2}$, where the first factor is the ratio of fragmentation fractions, $b\\to\\Xi_b^0$ relative to $b\\to\\Lambda_b^0$. Relative production rates as functions of transverse momentum and pseudorapidity are also presented.

LHCb collaboration; R. Aaij; B. Adeva; M. Adinolfi; A. Affolder; Z. Ajaltouni; S. Akar; J. Albrecht; F. Alessio; M. Alexander; S. Ali; G. Alkhazov; P. Alvarez Cartelle; A. A. Alves Jr; S. Amato; S. Amerio; Y. Amhis; L. An; L. Anderlini; J. Anderson; R. Andreassen; M. Andreotti; J. E. Andrews; R. B. Appleby; O. Aquines Gutierrez; F. Archilli; A. Artamonov; M. Artuso; E. Aslanides; G. Auriemma; M. Baalouch; S. Bachmann; J. J. Back; A. Badalov; V. Balagura; W. Baldini; R. J. Barlow; C. Barschel; S. Barsuk; W. Barter; V. Batozskaya; V. Battista; A. Bay; L. Beaucourt; J. Beddow; F. Bedeschi; I. Bediaga; S. Belogurov; K. Belous; I. Belyaev; E. Ben-Haim; G. Bencivenni; S. Benson; J. Benton; A. Berezhnoy; R. Bernet; M. -O. Bettler; M. van Beuzekom; A. Bien; S. Bifani; T. Bird; A. Bizzeti; P. M. Bjřrnstad; T. Blake; F. Blanc; J. Blouw; S. Blusk; V. Bocci; A. Bondar; N. Bondar; W. Bonivento; S. Borghi; A. Borgia; M. Borsato; T. J. V. Bowcock; E. Bowen; C. Bozzi; T. Brambach; J. van den Brand; J. Bressieux; D. Brett; M. Britsch; T. Britton; J. Brodzicka; N. H. Brook; H. Brown; A. Bursche; G. Busetto; J. Buytaert; S. Cadeddu; R. Calabrese; M. Calvi; M. Calvo Gomez; A. Camboni; P. Campana; D. Campora Perez; A. Carbone; G. Carboni; R. Cardinale; A. Cardini; H. Carranza-Mejia; L. Carson; K. Carvalho Akiba; G. Casse; L. Cassina; L. Castillo Garcia; M. Cattaneo; Ch. Cauet; R. Cenci; M. Charles; Ph. Charpentier; S. Chen; S. -F. Cheung; N. Chiapolini; M. Chrzaszcz; K. Ciba; X. Cid Vidal; G. Ciezarek; P. E. L. Clarke; M. Clemencic; H. V. Cliff; J. Closier; V. Coco; J. Cogan; E. Cogneras; P. Collins; A. Comerma-Montells; A. Contu; A. Cook; M. Coombes; S. Coquereau; G. Corti; M. Corvo; I. Counts; B. Couturier; G. A. Cowan; D. C. Craik; M. Cruz Torres; S. Cunliffe; R. Currie; C. D'Ambrosio; J. Dalseno; P. David; P. N. Y. David; A. Davis; K. De Bruyn; S. De Capua; M. De Cian; J. M. De Miranda; L. De Paula; W. De Silva; P. De Simone; D. Decamp; M. Deckenhoff; L. Del Buono; N. Déléage; D. Derkach; O. Deschamps; F. Dettori; A. Di Canto; H. Dijkstra; S. Donleavy; F. Dordei; M. Dorigo; A. Dosil Suárez; D. Dossett; A. Dovbnya; K. Dreimanis; G. Dujany; F. Dupertuis; P. Durante; R. Dzhelyadin; A. Dziurda; A. Dzyuba; S. Easo; U. Egede; V. Egorychev; S. Eidelman; S. Eisenhardt; U. Eitschberger; R. Ekelhof; L. Eklund; I. El Rifai; Ch. Elsasser; S. Ely; S. Esen; H. -M. Evans; T. Evans; A. Falabella; C. Färber; C. Farinelli; N. Farley; S. Farry; RF Fay; D. Ferguson; V. Fernandez Albor; F. Ferreira Rodrigues; M. Ferro-Luzzi; S. Filippov; M. Fiore; M. Fiorini; M. Firlej; C. Fitzpatrick; T. Fiutowski; M. Fontana; F. Fontanelli; R. Forty; O. Francisco; M. Frank; C. Frei; M. Frosini; J. Fu; E. Furfaro; A. Gallas Torreira; D. Galli; S. Gallorini; S. Gambetta; M. Gandelman; P. Gandini; Y. Gao; J. Garofoli; J. Garra Tico; L. Garrido; C. Gaspar; R. Gauld; L. Gavardi; G. Gavrilov; E. Gersabeck; M. Gersabeck; T. Gershon; Ph. Ghez; A. Gianelle; S. Giani'; V. Gibson; L. Giubega; V. V. Gligorov; C. Göbel; D. Golubkov; A. Golutvin; A. Gomes; H. Gordon; C. Gotti; M. Grabalosa Gándara; R. Graciani Diaz; L. A. Granado Cardoso; E. Graugés; G. Graziani; A. Grecu; E. Greening; S. Gregson; P. Griffith; L. Grillo; O. Grünberg; B. Gui; E. Gushchin; Yu. Guz; T. Gys; C. Hadjivasiliou; G. Haefeli; C. Haen; S. C. Haines; S. Hall; B. Hamilton; T. Hampson; X. Han; S. Hansmann-Menzemer; N. Harnew; S. T. Harnew; J. Harrison; T. Hartmann; J. He; T. Head; V. Heijne; K. Hennessy; P. Henrard; L. Henry; J. A. Hernando Morata; E. van Herwijnen; M. Heß; A. Hicheur; D. Hill; M. Hoballah; C. Hombach; W. Hulsbergen; P. Hunt; N. Hussain; D. Hutchcroft; D. Hynds; M. Idzik; P. Ilten; R. Jacobsson; A. Jaeger; J. Jalocha; E. Jans; P. Jaton; A. Jawahery; F. Jing; M. John; D. Johnson; C. R. Jones; C. Joram; B. Jost; N. Jurik; M. Kaballo; S. Kandybei; W. Kanso; M. Karacson; T. M. Karbach; S. Karodia; M. Kelsey; I. R. Kenyon; T. Ketel; B. Khanji; C. Khurewathanakul; S. Klaver; O. Kochebina; M. Kolpin; I. Komarov; R. F. Koopman; P. Koppenburg; M. Korolev; A. Kozlinskiy; L. Kravchuk; K. Kreplin; M. Kreps; G. Krocker; P. Krokovny; F. Kruse; W. Kucewicz; M. Kucharczyk; V. Kudryavtsev; K. Kurek; T. Kvaratskheliya; V. N. La Thi; D. Lacarrere; G. Lafferty; A. Lai; D. Lambert; R. W. Lambert; E. Lanciotti; G. Lanfranchi; C. Langenbruch; B. Langhans; T. Latham; C. Lazzeroni; R. Le Gac; J. van Leerdam; J. -P. Lees; R. Lefčvre; A. Leflat; J. Lefrançois; S. Leo; O. Leroy; T. Lesiak; B. Leverington; Y. Li; M. Liles; R. Lindner; C. Linn; F. Lionetto; B. Liu; G. Liu; S. Lohn; I. Longstaff; J. H. Lopes; N. Lopez-March; P. Lowdon; H. Lu; D. Lucchesi; H. Luo; A. Lupato; E. Luppi; O. Lupton; F. Machefert; I. V. Machikhiliyan; F. Maciuc; O. Maev; S. Malde; G. Manca; G. Mancinelli; J. Maratas; J. F. Marchand; U. Marconi; C. Marin Benito; P. Marino; R. Märki; J. Marks

2014-07-16T23:59:59.000Z

89

Measuring the Higgs boson mass in dileptonic W-boson decays at hadron colliders  

E-Print Network [OSTI]

ar X iv :0 90 2. 48 64 v2 [ he p- ph ] 22 Ju l 2 00 9 Cavendish-HEP-09/04 Measuring the Higgs boson mass in dileptonic W -boson decays at hadron colliders Alan J. Barr,1, ? Ben Gripaios,2, † and Christopher G. Lester3, ‡ 1Denys Wilkinson... measurements of the Higgs boson mass using the decay h ? W+W?, followed by the leptonic decay of each W -boson, will be performed by fitting the shape of a distribution that is sensitive to the Higgs mass. We demonstrate that the variable most commonly used...

Barr, Alan; Gripaios, Ben; Lester, Christopher G

2009-01-01T23:59:59.000Z

90

Method and apparatus for measuring the mass flow rate of a fluid  

DOE Patents [OSTI]

A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.

Evans, Robert P. (Idaho Falls, ID); Wilkins, S. Curtis (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Blotter, Jonathan D. (Pocatello, ID)

2002-01-01T23:59:59.000Z

91

Measurement of the W Boson Mass With the Collider Detector at Fermilab  

E-Print Network [OSTI]

Measurement of the W Boson Mass With the Collider Detector at Fermilab A thesis presented by Andrew With the Collider Detector at Fermilab Andrew Scott Gordon Thesis Advisor: Melissa Franklin Abstract We measure at Fermilab from pp collisions at ps = 1800 GeV. The data weretaken from January 1994 through July 1995

Weitz, David

92

Effects of finite volume on the KL-KS mass difference  

E-Print Network [OSTI]

Phenomena that involve two or more on-shell particles are particularly sensitive to the effects of finite volume and require special treatment when computed using lattice QCD. In this paper we generalize the results of Luescher, and Lellouch and Luescher, which determine the leading order effects of finite volume on the two-particle spectrum and two-particle decay amplitudes to determine the finite-volume effects in the second order mixing of the K0 and anti-K0 states. We extend the methods of Kim, Sachrajda and Sharpe to provide a direct, uniform treatment of these three, related, finite-volume corrections. In particular, the leading, finite-volume corrections to the KL-KS mass difference Delta M_K and the CP violating parameter epsilon_K are determined, including the potentially large effects which can arise from the near degeneracy of the kaon mass and the energy of a finite-volume, two-pion state.

Christ, Norman H; Martinelli, Guido; Sachrajda, Christopher T

2015-01-01T23:59:59.000Z

93

Effects of finite volume on the KL-KS mass difference  

E-Print Network [OSTI]

Phenomena that involve two or more on-shell particles are particularly sensitive to the effects of finite volume and require special treatment when computed using lattice QCD. In this paper we generalize the results of Luescher, and Lellouch and Luescher, which determine the leading order effects of finite volume on the two-particle spectrum and two-particle decay amplitudes to determine the finite-volume effects in the second order mixing of the K0 and anti-K0 states. We extend the methods of Kim, Sachrajda and Sharpe to provide a direct, uniform treatment of these three, related, finite-volume corrections. In particular, the leading, finite-volume corrections to the KL-KS mass difference Delta M_K and the CP violating parameter epsilon_K are determined, including the potentially large effects which can arise from the near degeneracy of the kaon mass and the energy of a finite-volume, two-pion state.

Norman H. Christ; Xu Feng; Guido Martinelli; Christopher T. Sachrajda

2015-04-05T23:59:59.000Z

94

Measurement of the Higgs Boson Mass in Decays into Four Leptons with the ATLAS Detector  

E-Print Network [OSTI]

This master thesis presents a measurement of the mass of the observed Higgs boson candidate in the decay channel $H \\rightarrow ZZ^* \\rightarrow \\ell^+\\ell^-\\ell^{'+}\\ell^{'-}$, with $\\ell,\\ell' = e$ or $\\mu$. The result is based on the full 2011 and 2012 proton-proton collision dataset recorded with the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of $4.5~\\mathrm{fb}^{-1}$ and $20.3~\\mathrm{fb}^{-1}$ at a center-of-mass energy of $\\sqrt{s} = 7~\\mathrm{TeV}$ and $8~\\mathrm{TeV}$, respectively. The mass is measured to be $m_H = 124.58 ^{+0.53}_{-0.47}{\\rm{~(stat)~}}\\pm0.06{\\rm{~(syst)~}} ~\\mathrm{GeV}$ using an analytical parametrization of the expected mass distribution on an event-by-event basis.

Röhrig, Rainer

95

Assessment of molecular effects on neutrino mass measurements from tritium beta decay  

E-Print Network [OSTI]

The beta decay of molecular tritium currently provides the highest sensitivity in laboratory-based neutrino mass measurements. The upcoming Karlsruhe Tritium Neutrino (KATRIN) experiment will improve the sensitivity to 0.2 eV, making a percent-level quantitative understanding of molecular effects essential. The modern theoretical calculations available for neutrino-mass experiments agree with spectroscopic data. Moreover, when neutrino-mass experiments performed in the 1980s with gaseous tritium are re-evaluated using these modern calculations, the extracted neutrino mass-squared values are consistent with zero instead of being significantly negative. On the other hand, the calculated molecular final-state branching ratios are in tension with dissociation experiments performed in the 1950s. We re-examine the theory of the final-state spectrum of molecular tritium decay and its effect on the determination of the neutrino mass, with an emphasis on the role of the vibrational- and rotational-state distribution i...

Bodine, L I; Robertson, R G H

2015-01-01T23:59:59.000Z

96

Accurate correction of magnetic field instabilities for high-resolution isochronous mass measurements in storage rings  

E-Print Network [OSTI]

Isochronous mass spectrometry (IMS) in storage rings is a successful technique for accurate mass measurements of short-lived nuclides with relative precision of about $10^{-5}-10^{-7}$. Instabilities of the magnetic fields in storage rings are one of the major contributions limiting the achievable mass resolving power, which is directly related to the precision of the obtained mass values. A new data analysis method is proposed allowing one to minimise the effect of such instabilities. The masses of the previously measured at the CSRe $^{41}$Ti, $^{43}$V, $^{47}$Mn, $^{49}$Fe, $^{53}$Ni and $^{55}$Cu nuclides were re-determined with this method. An improvement of the mass precision by a factor of $\\sim 1.7$ has been achieved for $^{41}$Ti and $^{43}$V. The method can be applied to any isochronous mass experiment irrespective of the accelerator facility. Furthermore, the method can be used as an on-line tool for checking the isochronous conditions of the storage ring.

P. Shuai; H. S. Xu; Y. H. Zhang; Yu. A. Litvinov; M. Wang; X. L. Tu; K. Blaum; X. H. Zhou; Y. J. Yuan; G. Audi; X. L. Yan; X. C. Chen; X. Xu; W. Zhang; B. H. Sun; T. Yamaguchi; R. J. Chen; C. Y. Fu; Z. Ge; W. J. Huang; D. W. Liu; Y. M. Xing; Q. Zeng

2014-07-13T23:59:59.000Z

97

Precise measurement of the top-quark mass from lepton+jets events at D0  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We report a measurement of the mass of the top quark in lepton+jets final states of pp&3772; ? tt? data corresponding to 2.6 fb-1 of integrated luminosity collected at the D0 experiment at the Fermilab Tevatron Collider. Using a matrix element method, we combine an in situ jet energy calibration with the standard jet energy scale derived in studies of ? + jet and dijet events and employ a novel flavor-dependent jet response correction to measure a top-quark mass of mt = 176.01 ± 1.64 GeV. Combining this result with a previous result obtained on an independent data set, we measure a top-quark mass of mt = 174.94 ± 1.49 GeV for a total integrated luminosity of 3.6 fb-1.

Abazov, Victor Mukhamedovich [Dubna, JINR; Abbott, Braden Keim [Oklahoma U.; Acharya, Bannanje Sripath [Tata Inst.; Adams, Mark Raymond [Illinois U., Chicago; Adams, Todd [Florida State U.; Alexeev, Guennadi D [Dubna, JINR; Alkhazov, Georgiy D [St. Petersburg, INP; Alton, Andrew K [Michigan U.; Augustana Coll., Sioux Falls; Alverson, George O [Northeastern U.; Alves, Gilvan Augusto [Rio de Janeiro, CBPF; Ancu, Lucian Stefan [Nijmegen U.; Fermilab

2011-08-09T23:59:59.000Z

98

Precise measurement of the top-quark mass from lepton+jets events at D0  

SciTech Connect (OSTI)

We report a measurement of the mass of the top quark in lepton+jets final states of pp&3772; ? tt? data corresponding to 2.6 fb-1 of integrated luminosity collected at the D0 experiment at the Fermilab Tevatron Collider. Using a matrix element method, we combine an in situ jet energy calibration with the standard jet energy scale derived in studies of ? + jet and dijet events and employ a novel flavor-dependent jet response correction to measure a top-quark mass of mt = 176.01 ± 1.64 GeV. Combining this result with a previous result obtained on an independent data set, we measure a top-quark mass of mt = 174.94 ± 1.49 GeV for a total integrated luminosity of 3.6 fb-1.

Abazov, Victor Mukhamedovich [Dubna, JINR; Abbott, Braden Keim [Oklahoma U.; Acharya, Bannanje Sripath [Tata Inst.; Adams, Mark Raymond [Illinois U., Chicago; Adams, Todd [Florida State U.; Alexeev, Guennadi D [Dubna, JINR; Alkhazov, Georgiy D [St. Petersburg, INP; Alton, Andrew K [Michigan U.; Augustana Coll., Sioux Falls; Alverson, George O [Northeastern U.; Alves, Gilvan Augusto [Rio de Janeiro, CBPF; Ancu, Lucian Stefan [Nijmegen U.; Fermilab

2011-08-09T23:59:59.000Z

99

Integrated Measurement of the Mass and Surface Charge of Discrete Microparticles Using a  

E-Print Network [OSTI]

averages over multiple particles. Hence, accuracy in estimating the particle's charge, which is dependent measurement and that of the size measure- ment, because they have inherently different optimum orifice lengths

Manalis, Scott

100

Quantization of Differences Between Atomic and Nuclear Rest Masses and Selforganization of Atoms and Nuclei  

E-Print Network [OSTI]

We come to conclusion that the all atomic models based either on the Newton equation and the Kepler laws or on the Maxwell equations or on the Schrodinger and Dirac equations achieved reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principle(s) which is(are) not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in whole system - nuclei+atoms+condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies then corresponding ones on free constituents.We were able to quantize phenomenologically (numerology) the first time the differences between atomic and nuclear rest masses according to the formula (in MeV/$c^{2}$) $\\Delta M=0.0076294*n_{1}*2^{n_{2}}, n_{1}=1,2,3,..., n_{2}=1,\\pm2,\\pm4,\\pm8,... $. Note that this quantization rule is justified for atoms and nuclei with different $A, N$ and $Z$ and the nuclei and atoms represent a coherent synch...

Gareev, F A

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mass difference measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Quantization of Differences Between Atomic and Nuclear Rest Masses and Selforganization of Atoms and Nuclei  

E-Print Network [OSTI]

We come to the conclusion that all atomic models based on either the Newton equation and the Kepler laws, or the Maxwell equations, or the Schrodinger and Dirac equations are in reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principle(s) which is (are) not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in the whole system - nuclei+atoms+condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies than the corresponding ones on free constituents. We were able to quantize phenomenologically the first time the differences between atomic and nuclear rest masses by the formula (in MeV/$c^{2}$) $\\Delta M=\\frac{n_{1}}{n_{2}}*0.0076294, n_{i}=1,2,3,...$ Note that this quantization rule is justified for atoms and nuclei with different $A, N$ and $Z$ and the nuclei and atoms represent a coherent synchronized systems - a complex of coupled oscillators (resonators). The cooperative resonance synchronization mechanisms are responsible for explanation of how the electron volt world can influence the nuclear mega electron volt world. It means that we created new possibilities for inducing and controlling nuclear reactions by atomic processes.

F. A. Gareev; I. E. Zhidkova

2006-11-15T23:59:59.000Z

102

Precise measurement of the $W$-boson mass with the CDF II detector  

SciTech Connect (OSTI)

We have measured the W-boson mass M{sub W} using data corresponding to 2.2 fb{sup -1} of integrated luminosity collected in p{bar p} collisions at {radical}s = 1.96 TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470 126 W {yields} e{nu} candidates and 624 708 W {yields} {mu}{nu} candidates yield the measurement M{sub W} = 80 387 {+-} 12{sub stat} {+-} 15{sub syst} = 80 387 {+-} 19 MeV/c{sup 2}. This is the most precise measurement of the W-boson mass to date and significantly exceeds the precision of all previous measurements combined.

Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.; /Oviedo U. /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U. /Fermilab; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Appel, J.A.; /Fermilab; Arisawa, T.; /Waseda U.; Artikov, A.; /Dubna, JINR /Texas A-M

2012-03-01T23:59:59.000Z

103

Enthalpy and mass flowrate measurements for two-phase geothermal production by Tracer dilution techniques  

SciTech Connect (OSTI)

A new technique has been developed for the measurement of steam mass flowrate, water mass flowrate and total enthalpy of two-phase fluids produced from geothermal wells. The method involves precisely metered injection of liquid and vapor phase tracers into the two-phase production pipeline and concurrent sampling of each phase downstream of the injection point. Subsequent chemical analysis of the steam and water samples for tracer content enables the calculation of mass flowrate for each phase given the known mass injection rates of tracer. This technique has now been used extensively at the Coso geothermal project, owned and operated by California Energy Company. Initial validation of the method was performed at the Roosevelt Hot Springs geothermal project on wells producing to individual production separators equipped with orificeplate flowmeters for each phase.

Hirtz, Paul; Lovekin, Jim; Copp, John; Buck, Cliff; Adams, Mike

1993-01-28T23:59:59.000Z

104

Measurement of the top quark mass in the dilepton channel using m[subscript T2] at CDF  

E-Print Network [OSTI]

We present measurements of the top quark mass using m[subscript T2], a variable related to the transverse mass in events with two missing particles. We use the template method applied to tt? dilepton events produced in ...

Bauer, Gerry P.

105

FermilabPub97/172E Measurement of the Top Quark Mass Using Dilepton Events  

E-Print Network [OSTI]

collaboration has performed a measurement of the top quark mass m t based on six candidate events. We obtain m t = 168:4 \\Sigma 12:3 (stat) \\Sigma 3:7 (sys) GeV/c 2 , consistent with the measurement:0 \\Sigma 7:5 GeV/c 2 . Typeset using REVT E X \\Lambda Authors listed on the following page. Submitted

106

The Measurement of Trace Emissions and Combustion Characteristics for a Mass Fire  

E-Print Network [OSTI]

32 The Measurement of Trace Emissions and Combustion Characteristics for a Mass Fire Ronald A of emissions from biomass burning on global climate. While the burning of biomass constitutes a large fraction of world emis- sions, there are insufficient data on the combustion efficiency, emission factors, and trace

107

A precise measurement of the $W$-boson mass with the Collider Detector at Fermilab  

E-Print Network [OSTI]

We present a measurement of the $W$-boson mass, $M_W$, using data corresponding to 2.2/fb of integrated luminosity collected in ppbar collisions at $\\sqrt{s}$ = 1.96 TeV with the CDF II detector at the Fermilab Tevatron. The selected sample of 470126 $W\\to e\

T. Aaltonen; S. Amerio; D. Amidei; A. Anastassov; A. Annovi; J. Antos; G. Apollinari; J. A. Appel; T. Arisawa; A. Artikov; J. Asaadi; W. Ashmanskas; B. Auerbach; A. Aurisano; F. Azfar; W. Badgett; T. Bae; A. Barbaro-Galtieri; V. E. Barnes; B. A. Barnett; J. Guimaraes da Costa; P. Barria; P. Bartos; M. Bauce; F. Bedeschi; D. Beecher; S. Behari; G. Bellettini; J. Bellinger; D. Benjamin; A. Beretvas; A. Bhatti; I. Bizjak; K. R. Bland; B. Blumenfeld; A. Bocci; A. Bodek; D. Bortoletto; J. Boudreau; A. Boveia; L. Brigliadori; C. Bromberg; E. Brucken; J. Budagov; H. S. Budd; K. Burkett; G. Busetto; P. Bussey; P. Butti; A. Buzatu; A. Calamba; S. Camarda; M. Campanelli; F. Canelli; B. Carls; D. Carlsmith; R. Carosi; S. Carrillo; B. Casal; M. Casarsa; A. Castro; P. Catastini; D. Cauz; V. Cavaliere; M. Cavalli-Sforza; A. Cerri; L. Cerrito; Y. C. Chen; M. Chertok; G. Chiarelli; G. Chlachidze; K. Cho; D. Chokheli; A. Clark; C. Clarke; M. E. Convery; J. Conway; M. Corbo; M. Cordelli; C. A. Cox; D. J. Cox; M. Cremonesi; D. Cruz; J. Cuevas; R. Culbertson; N. d'Ascenzo; M. Datta; P. de Barbaro; L. Demortier; M. Deninno; M. D'Errico; F. Devoto; A. Di Canto; B. Di Ruzza; J. R. Dittmann; S. Donati; M. D'Onofrio; M. Dorigo; A. Driutti; K. Ebina; R. Edgar; A. Elagin; R. Erbacher; S. Errede; B. Esham; R. Eusebi; S. Farrington; J. P. Fernández Ramos; R. Field; G. Flanagan; R. Forrest; M. Franklin; J. C. Freeman; H. Frisch; Y. Funakoshi; C. Galloni; A. F. Garfinkel; P. Garosi; H. Gerberich; E. Gerchtein; S. Giagu; V. Giakoumopoulou; K. Gibson; C. M. Ginsburg; N. Giokaris; P. Giromini; G. Giurgiu; V. Glagolev; D. Glenzinski; M. Gold; D. Goldin; A. Golossanov; G. Gomez; G. Gomez-Ceballos; M. Goncharov; O. González López; I. Gorelov; A. T. Goshaw; K. Goulianos; E. Gramellini; S. Grinstein; C. Grosso-Pilcher; R. C. Group; S. R. Hahn; J. Y. Han; F. Happacher; K. Hara; M. Hare; R. F. Harr; T. Harrington-Taber; K. Hatakeyama; C. Hays; J. Heinrich; M. Herndon; A. Hocker; Z. Hong; W. Hopkins; S. Hou; R. E. Hughes; U. Husemann; M. Hussein; J. Huston; G. Introzzi; M. Iori; A. Ivanov; E. James; D. Jang; B. Jayatilaka; E. J. Jeon; S. Jindariani; M. Jones; K. K. Joo; S. Y. Jun; T. R. Junk; M. Kambeitz; T. Kamon; P. E. Karchin; A. Kasmi; Y. Kato; W. Ketchum; J. Keung; B. Kilminster; D. H. Kim; H. S. Kim; J. E. Kim; M. J. Kim; S. H. Kim; S. B. Kim; Y. J. Kim; Y. K. Kim; N. Kimura; M. Kirby; K. Knoepfel; K. Kondo; D. J. Kong; J. Konigsberg; A. V. Kotwal; M. Kreps; J. Kroll; M. Kruse; T. Kuhr; M. Kurata; A. T. Laasanen; S. Lammel; M. Lancaster; K. Lannon; G. Latino; H. S. Lee; J. S. Lee; S. Leo; S. Leone; J. D. Lewis; A. Limosani; E. Lipeles; A. Lister; H. Liu; Q. Liu; T. Liu; S. Lockwitz; A. Loginov; D. Lucchesi; A. Lucŕ; J. Lueck; P. Lujan; P. Lukens; G. Lungu; J. Lys; R. Lysak; R. Madrak; P. Maestro; S. Malik; G. Manca; A. Manousakis-Katsikakis; L. Marchese; F. Margaroli; P. Marino; M. Martínez; K. Matera; M. E. Mattson; A. Mazzacane; P. Mazzanti; R. McNulty; A. Mehta; P. Mehtala; C. Mesropian; T. Miao; D. Mietlicki; A. Mitra; H. Miyake; S. Moed; N. Moggi; C. S. Moon; R. Moore; M. J. Morello; A. Mukherjee; Th. Muller; P. Murat; M. Mussini; J. Nachtman; Y. Nagai; J. Naganoma; I. Nakano; A. Napier; J. Nett; C. Neu; T. Nigmanov; L. Nodulman; S. Y. Noh; O. Norniella; E. Nurse; L. Oakes; S. H. Oh; Y. D. Oh; I. Oksuzian; T. Okusawa; R. Orava; L. Ortolan; C. Pagliarone; E. Palencia; P. Palni; V. Papadimitriou; W. Parker; G. Pauletta; M. Paulini; C. Paus; T. J. Phillips; G. Piacentino; E. Pianori; J. Pilot; K. Pitts; C. Plager; L. Pondrom; S. Poprocki; K. Potamianos; A. Pranko; F. Prokoshin; F. Ptohos; G. Punzi; N. Ranjan; I. Redondo Fernández; P. Renton; M. Rescigno; T. Riddick; F. Rimondi; L. Ristori; A. Robson; T. Rodriguez; S. Rolli; M. Ronzani; R. Roser; J. L. Rosner; F. Ruffini; A. Ruiz; J. Russ; V. Rusu; W. K. Sakumoto; Y. Sakurai; L. Santi; K. Sato; V. Saveliev; A. Savoy-Navarro; P. Schlabach; E. E. Schmidt; T. Schwarz; L. Scodellaro; F. Scuri; S. Seidel; Y. Seiya; A. Semenov; F. Sforza; S. Z. Shalhout; T. Shears; R. Shekhar; P. F. Shepard; M. Shimojima; M. Shochet; A. Simonenko; K. Sliwa; J. R. Smith; F. D. Snider; H. Song; V. Sorin; R. St. Denis; M. Stancari; O. Stelzer-Chilton; D. Stentz; J. Strologas; Y. Sudo; A. Sukhanov; S. Sun; I. Suslov; K. Takemasa; Y. Takeuchi; J. Tang; M. Tecchio; I. Shreyber-Tecker; P. K. Teng; J. Thom; E. Thomson; V. Thukral; D. Toback; S. Tokar; K. Tollefson; T. Tomura; D. Tonelli; S. Torre; D. Torretta; P. Totaro; M. Trovato; F. Ukegawa; S. Uozumi; F. Vázquez; G. Velev; C. Vellidis; C. Vernieri; M. Vidal; R. Vilar; J. Vizán; M. Vogel; G. Volpi; P. Wagner; R. Wallny; S. M. Wang; D. Waters; W. C. Wester III; D. Whiteson; A. B. Wicklund; S. Wilbur; H. H. Williams; J. S. Wilson; P. Wilson; B. L. Winer; P. Wittich; S. Wolbers; H. Wolfe; T. Wright; X. Wu; Z. Wu; K. Yamamoto; D. Yamato; T. Yang; U. K. Yang

2014-04-29T23:59:59.000Z

108

Measurement of the W boson mass using electrons at large rapidities  

E-Print Network [OSTI]

We report a measurement of the W boson mass based on an integrated luminosity of 82 pb(-1) from collisions at root s = 1.8 TeV recorded in 1994-1995 by the D0 detector at the Fermilab Tevatron. We identify ...

Baringer, Philip S.

2000-01-01T23:59:59.000Z

109

Precision Measurement of the Mass and Lifetime of the ?[? over b] Baryon  

E-Print Network [OSTI]

We report on measurements of the mass and lifetime of the ?[- over b] baryon using about 1800 ?[- over b] decays reconstructed in a proton-proton collision data set corresponding to an integrated luminosity of 3.0??fb[superscript ...

Aaij, R.

110

Mass dependence of balance energy for different N/Z ratio  

E-Print Network [OSTI]

We present the study for the mass dependence of E$_{bal}$ for various N/Z ratios covering pure symmetric systems to highly neutron-rich ones.

Aman D. Sood

2011-09-28T23:59:59.000Z

111

Effect of fluctuation measures on the uncertainty relations between two observables: Different measures lead to opposite conclusions  

SciTech Connect (OSTI)

We show within a very simple framework that different measures of fluctuations lead to uncertainty relations resulting in contradictory conclusions. More specifically we focus on Tsallis and Renyi entropic uncertainty relations and we get that the minimum joint uncertainty states for some fluctuation measures are the maximum joint uncertainty states of other fluctuation measures, and vice versa.

Luis, Alfredo [Departamento de Optica, Facultad de Ciencias Fisicas, Universidad Complutense, E-28040 Madrid (Spain)

2011-09-15T23:59:59.000Z

112

Neutron-Proton Mass Difference in Nuclear Matter and in Finite Nuclei and the Nolen-Schiffer Anomaly  

E-Print Network [OSTI]

The neutron-proton mass difference in (isospin asymmetric) nuclear matter and finite nuclei is studied in the framework of a medium-modified Skyrme model. The proposed effective Lagrangian incorporates both the medium influence of the surrounding nuclear environment on the single nucleon properties and an explicit isospin-breaking effect in the mesonic sector. Energy-dependent charged and neutral pion optical potentials in the s- and p-wave channels are included as well. The present approach predicts that the neutron-proton mass difference is mainly dictated by its strong part and that it markedly decreases in neutron matter. Furthermore, the possible interplay between the effective nucleon mass in finite nuclei and the Nolen-Schiffer anomaly is discussed. In particular, we find that a correct description of the properties of mirror nuclei leads to a stringent restriction of possible modifications of the nucleon's effective mass in nuclei.

Ulf-G. Meißner; A. M. Rakhimov; A. Wirzba; U. T. Yakhshiev

2009-12-29T23:59:59.000Z

113

Measurement of the top quark mass in lepton+jets events with secondary vertex tagging  

SciTech Connect (OSTI)

A measurement of the top quark mass with the matrix element method in the lepton + jets final state in D0 Run II is presented. Events with single isolated energetic charged lepton (electron or muon), exactly four calorimeter jets, and significant missing transverse energy are selected. Probabilities used to discriminate between signal and background are assumed to be proportional to differential cross-sections, calculated using event kinematics and folding in object resolutions and parton distribution functions. The event likelihoods constructed using these probabilities are varied with the top quark mass, m{sub t}, and the jet energy scale, JES, to give the smallest possible combined statistical + JES uncertainty.

Harrington, Robert Duane; /Northeastern U.

2007-02-01T23:59:59.000Z

114

Final Report: Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters  

SciTech Connect (OSTI)

Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3-part research plan involving (1) development of computer codes and techniques to estimate mass-transfer parameters from time-lapse electrical data; (2) bench-scale experiments on synthetic materials and materials from cores from the Hanford 300 Area; and (3) field demonstration experiments at the DOE’s Hanford 300 Area. In a synergistic add-on to our workplan, we analyzed data from field experiments performed at the DOE Naturita Site under a separate DOE SBR grant, on which PI Day-Lewis served as co-PI. Techniques developed for application to Hanford datasets also were applied to data from Naturita.

Haggerty, Roy; Day-Lewis, Fred; Singha, Kamini; Johnson, Timothy; Binley, Andrew; Lane, John

2014-03-20T23:59:59.000Z

115

THE NGC 300 TRANSIENT: AN ALTERNATIVE METHOD FOR MEASURING PROGENITOR MASSES  

SciTech Connect (OSTI)

We present an alternative technique for measuring the precursor masses of transient events in stars undergoing late stage stellar evolution. We use the well-established techniques of stellar population modeling to age-date the stars surrounding the site of the recent transient event in NGC 300 (NGC 300 OT2008-1). The surrounding stars must share a common turnoff mass with the transient, since almost all stars form in stellar clusters that remain physically associated for periods longer than the lifetime of the most massive stars. We find that the precursor of NGC 300 OT2008-1 is surrounded by stars that formed in a single burst between 8 and 13 Myr ago, with 70% confidence. The transient was therefore likely to be due to a progenitor whose mass falls between the main sequence turnoff mass (12-17 M{sub sun}) and the maximum stellar mass (16-25 M{sub sun}) found for isochrones bounding this age range. We characterize the general applicability of this technique in identifying precursor masses of historic and future transients and supernovae (SNe), noting that it requires neither precursor imaging nor sub-arcsecond accuracy in the position of the transient. It is also based on the well-understood physics of the main sequence, and thus may be a more reliable source of precursor masses than fitting evolutionary tracks to precursor magnitudes. We speculate that if the progenitor mass is {approx}>17 M {sub sun}, there may be a connection between optical transients such as NGC 300 OT2008-1 and the missing type II-P SNe, known as the 'red supergiant problem'.

Gogarten, Stephanie M.; Dalcanton, Julianne J.; Murphy, Jeremiah W.; Williams, Benjamin F.; Gilbert, Karoline [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Dolphin, Andrew, E-mail: stephanie@astro.washington.ed [Raytheon, 1151 E. Hermans Rd., Tucson, AZ 85706 (United States)

2009-09-20T23:59:59.000Z

116

Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.  

SciTech Connect (OSTI)

Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg equivalents. AMS provides an sensitive, accurate and precise method of measuring drug compounds in biological matrices.

Keck, B D; Ognibene, T; Vogel, J S

2010-02-05T23:59:59.000Z

117

A METHOD FOR MEASURING (SLOPES OF) THE MASS PROFILES OF DWARF SPHEROIDAL GALAXIES  

SciTech Connect (OSTI)

We introduce a method for measuring the slopes of mass profiles within dwarf spheroidal (dSph) galaxies directly from stellar spectroscopic data and without adopting a dark matter halo model. Our method combines two recent results: (1) spherically symmetric, equilibrium Jeans models imply that the product of half-light radius and (squared) stellar velocity dispersion provides an estimate of the mass enclosed within the half-light radius of a dSph stellar component, and (2) some dSphs have chemodynamically distinct stellar subcomponents that independently trace the same gravitational potential. We devise a statistical method that uses measurements of stellar positions, velocities, and spectral indices to distinguish two dSph stellar subcomponents and to estimate their individual half-light radii and velocity dispersions. For a dSph with two detected stellar subcomponents, we obtain estimates of masses enclosed at two discrete points in the same mass profile, immediately defining a slope. Applied to published spectroscopic data, our method distinguishes stellar subcomponents in the Fornax and Sculptor dSphs, for which we measure slopes {Gamma} {identical_to} {Delta}log M/{Delta}log r = 2.61{sup +0.43}{sub -0.37} and {Gamma} = 2.95{sup +0.51}{sub -0.39}, respectively. These values are consistent with 'cores' of constant density within the central few hundred parsecs of each galaxy and rule out 'cuspy' Navarro-Frenk-White (NFW) profiles (dlog M/dlog r {<=} 2 at all radii) with a significance {approx}> 96% and {approx}> 99%, respectively. Tests with synthetic data indicate that our method tends systematically to overestimate the mass of the inner stellar subcomponent to a greater degree than that of the outer stellar subcomponent, and therefore to underestimate the slope {Gamma} (implying that the stated NFW exclusion levels are conservative).

Walker, Matthew G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Penarrubia, Jorge, E-mail: mwalker@cfa.harvard.edu [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB30HA (United Kingdom)

2011-11-20T23:59:59.000Z

118

Assessment of molecular effects on neutrino mass measurements from tritium beta decay  

E-Print Network [OSTI]

The beta decay of molecular tritium currently provides the highest sensitivity in laboratory-based neutrino mass measurements. The upcoming Karlsruhe Tritium Neutrino (KATRIN) experiment will improve the sensitivity to 0.2 eV, making a percent-level quantitative understanding of molecular effects essential. The modern theoretical calculations available for neutrino-mass experiments agree with spectroscopic data. Moreover, when neutrino-mass experiments performed in the 1980s with gaseous tritium are re-evaluated using these modern calculations, the extracted neutrino mass-squared values are consistent with zero instead of being significantly negative. On the other hand, the calculated molecular final-state branching ratios are in tension with dissociation experiments performed in the 1950s. We re-examine the theory of the final-state spectrum of molecular tritium decay and its effect on the determination of the neutrino mass, with an emphasis on the role of the vibrational- and rotational-state distribution in the ground electronic state. General features can be reproduced quantitatively from considerations of kinematics and zero-point motion. We summarize the status of validation efforts and suggest means for resolving the apparent discrepancy in dissociation rates.

L. I. Bodine; D. S. Parno; R. G. H. Robertson

2015-02-12T23:59:59.000Z

119

Precise measurement of the top quark mass in the dilepton channel at D0  

E-Print Network [OSTI]

We measure the top quark mass (mt) in ppbar collisions at a center of mass energy of 1.96 TeV using dilepton ttbar->W+bW-bbar->l+nubl-nubarbbar events, where l denotes an electron, a muon, or a tau that decays leptonically. The data correspond to an integrated luminosity of 5.4 fb-1 collected with the D0 detector at the Fermilab Tevatron Collider. We obtain mt = 174.0 +- 1.8(stat) +- 2.4(syst) GeV, which is in agreement with the current world average mt = 173.3 +- 1.1 GeV. This is currently the most precise measurement of mt in the dilepton channel.

D0 Collaboration; V. M. Abazov; B. Abbott; B. S. Acharya; M. Adams; T. Adams; G. D. Alexeev; G. Alkhazov; A. Alton; G. Alverson; G. A. Alves; L. S. Ancu; M. Aoki; M. Arov; A. Askew; B. Ĺsman; O. Atramentov; C. Avila; J. BackusMayes; F. Badaud; L. Bagby; B. Baldin; D. V. Bandurin; S. Banerjee; E. Barberis; P. Baringer; J. Barreto; J. F. Bartlett; U. Bassler; V. Bazterra; S. Beale; A. Bean; M. Begalli; M. Begel; C. Belanger-Champagne; L. Bellantoni; S. B. Beri; G. Bernardi; R. Bernhard; I. Bertram; M. Besançon; R. Beuselinck; V. A. Bezzubov; P. C. Bhat; V. Bhatnagar; G. Blazey; S. Blessing; K. Bloom; A. Boehnlein; D. Boline; E. E. Boos; G. Borissov; T. Bose; A. Brandt; O. Brandt; R. Brock; G. Brooijmans; A. Bross; D. Brown; J. Brown; X. B. Bu; M. Buehler; V. Buescher; V. Bunichev; S. Burdin; T. H. Burnett; C. P. Buszello; B. Calpas; E. Camacho-Pérez; M. A. Carrasco-Lizarraga; B. C. K. Casey; H. Castilla-Valdez; S. Chakrabarti; D. Chakraborty; K. M. Chan; A. Chandra; G. Chen; S. Chevalier-Théry; D. K. Cho; S. W. Cho; S. Choi; B. Choudhary; S. Cihangir; D. Claes; J. Clutter; M. Cooke; W. E. Cooper; M. Corcoran; F. Couderc; M. -C. Cousinou; A. Croc; D. Cutts; A. Das; G. Davies; K. De; S. J. de Jong; E. De La Cruz-Burelo; F. Déliot; M. Demarteau; R. Demina; D. Denisov; S. P. Denisov; S. Desai; C. Deterre; K. DeVaughan; H. T. Diehl; M. Diesburg; A. Dominguez; T. Dorland; A. Dubey; L. V. Dudko; D. Duggan; A. Duperrin; S. Dutt; A. Dyshkant; M. Eads; D. Edmunds; J. Ellison; V. D. Elvira; Y. Enari; H. Evans; A. Evdokimov; V. N. Evdokimov; G. Facini; T. Ferbel; F. Fiedler; F. Filthaut; W. Fisher; H. E. Fisk; M. Fortner; H. Fox; S. Fuess; A. Garcia-Bellido; V. Gavrilov; P. Gay; W. Geng; D. Gerbaudo; C. E. Gerber; Y. Gershtein; G. Ginther; G. Golovanov; A. Goussiou; P. D. Grannis; S. Greder; H. Greenlee; Z. D. Greenwood; E. M. Gregores; G. Grenier; Ph. Gris; J. -F. Grivaz; A. Grohsjean; S. Grünendahl; M. W. Grünewald; T. Guillemin; F. Guo; G. Gutierrez; P. Gutierrez; A. Haas; S. Hagopian; J. Haley; L. Han; K. Harder; A. Harel; J. M. Hauptman; J. Hays; T. Head; T. Hebbeker; D. Hedin; H. Hegab; A. P. Heinson; U. Heintz; C. Hensel; I. Heredia-De La Cruz; K. Herner; G. Hesketh; M. D. Hildreth; R. Hirosky; T. Hoang; J. D. Hobbs; B. Hoeneisen; M. Hohlfeld; Z. Hubacek; N. Huske; V. Hynek; I. Iashvili; R. Illingworth; A. S. Ito; S. Jabeen; M. Jaffré; D. Jamin; A. Jayasinghe; R. Jesik; K. Johns; M. Johnson; D. Johnston; A. Jonckheere; P. Jonsson; J. Joshi; A. W. Jung; A. Juste; K. Kaadze; E. Kajfasz; D. Karmanov; P. A. Kasper; I. Katsanos; R. Kehoe; S. Kermiche; N. Khalatyan; A. Khanov; A. Kharchilava; Y. N. Kharzheev; D. Khatidze; M. H. Kirby; J. M. Kohli; A. V. Kozelov; J. Kraus; S. Kulikov; A. Kumar; A. Kupco; T. Kur?a; V. A. Kuzmin; J. Kvita; S. Lammers; G. Landsberg; P. Lebrun; H. S. Lee; S. W. Lee; W. M. Lee; J. Lellouch; L. Li; Q. Z. Li; S. M. Lietti; J. K. Lim; D. Lincoln; J. Linnemann; V. V. Lipaev; R. Lipton; Y. Liu; Z. Liu; A. Lobodenko; M. Lokajicek; R. Lopes de Sa; H. J. Lubatti; R. Luna-Garcia; A. L. Lyon; A. K. A. Maciel; D. Mackin; R. Madar; R. Magańa-Villalba; S. Malik; V. L. Malyshev; Y. Maravin; J. Martínez-Ortega; R. McCarthy; C. L. McGivern; M. M. Meijer; A. Melnitchouk; D. Menezes; P. G. Mercadante; M. Merkin; A. Meyer; J. Meyer; F. Miconi; N. K. Mondal; G. S. Muanza; M. Mulhearn; E. Nagy; M. Naimuddin; M. Narain; R. Nayyar; H. A. Neal; J. P. Negret; P. Neustroev; S. F. Novaes; T. Nunnemann; G. Obrant; J. Orduna; N. Osman; J. Osta; G. J. Otero y Garzón; M. Padilla; A. Pal; N. Parashar; V. Parihar; S. K. Park; J. Parsons; R. Partridge; N. Parua; A. Patwa; B. Penning; M. Perfilov; K. Peters; Y. Peters; K. Petridis; G. Petrillo; P. Pétroff; R. Piegaia; J. Piper; M. -A. Pleier; P. L. M. Podesta-Lerma; V. M. Podstavkov; P. Polozov; A. V. Popov; M. Prewitt; D. Price; N. Prokopenko; S. Protopopescu; J. Qian; A. Quadt; B. Quinn; M. S. Rangel; K. Ranjan; P. N. Ratoff; I. Razumov; P. Renkel; M. Rijssenbeek; I. Ripp-Baudot; F. Rizatdinova; M. Rominsky; A. Ross; C. Royon; P. Rubinov; R. Ruchti; G. Safronov; G. Sajot; P. Salcido; A. Sánchez-Hernández; M. P. Sanders; B. Sanghi; A. S. Santos; G. Savage; L. Sawyer; T. Scanlon; R. D. Schamberger; Y. Scheglov; H. Schellman; T. Schliephake; S. Schlobohm; C. Schwanenberger; R. Schwienhorst; J. Sekaric; H. Severini; E. Shabalina; V. Shary; A. A. Shchukin; R. K. Shivpuri; V. Simak; V. Sirotenko; P. Skubic; P. Slattery; D. Smirnov; K. J. Smith; G. R. Snow; J. Snow; S. Snyder; S. Söldner-Rembold; L. Sonnenschein; K. Soustruznik; J. Stark; V. Stolin; D. A. Stoyanova; M. Strauss; D. Strom; L. Stutte; L. Suter; P. Svoisky; M. Takahashi; A. Tanasijczuk; W. Taylor; M. Titov; V. V. Tokmenin; Y. -T. Tsai; D. Tsybychev; B. Tuchming; C. Tully; L. Uvarov; S. Uvarov; S. Uzunyan; R. Van Kooten; W. M. van Leeuwen; N. Varelas; E. W. Varnes

2011-08-28T23:59:59.000Z

120

Measurement of the Moments of the Hadronic Invariant Mass Distribution in Semileptonic Beta Decays  

SciTech Connect (OSTI)

Using 180 pb{sup -1} of data collected with the CDF II detector at the Tevatron, we measure the first two moments of the hadronic invariant mass-squared distribution in charmed semileptonic B decays. From these we determine the non-perturbative Heavy Quark Effective Theory parameters {Lambda} and {lambda}{sub 1} used to relate the B meson semileptonic branching ratio to the CKM matrix element |V{sub cb}|.

Acosta, D.; The CDF Collaboration TITLE=Measuremen

2005-03-13T23:59:59.000Z

Note: This page contains sample records for the topic "mass difference measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

mTGen: mass scale measurements in pair-production at colliders  

E-Print Network [OSTI]

ar X iv :0 70 8. 10 28 v4 [ he p- ph ] 6 A ug 20 09 Cavendish-HEP-2007-05 PACS: 13.85.Hd 13.85.-t 11.30.Pb 11.80.Cr 12.60.-i mTGen : Mass scale measurements in pair-production at colliders Christopher G. Lester† and Alan J. Barr‡ † Cavendish...

Lester, Christopher G; Barr, Alan

2007-01-01T23:59:59.000Z

122

Sparse signal reconstruction from polychromatic X-ray CT measurements via mass attenuation discretization  

SciTech Connect (OSTI)

We propose a method for reconstructing sparse images from polychromatic x-ray computed tomography (ct) measurements via mass attenuation coefficient discretization. The material of the inspected object and the incident spectrum are assumed to be unknown. We rewrite the Lambert-Beer’s law in terms of integral expressions of mass attenuation and discretize the resulting integrals. We then present a penalized constrained least-squares optimization approach for reconstructing the underlying object from log-domain measurements, where an active set approach is employed to estimate incident energy density parameters and the nonnegativity and sparsity of the image density map are imposed using negative-energy and smooth ?{sub 1}-norm penalty terms. We propose a two-step scheme for refining the mass attenuation discretization grid by using higher sampling rate over the range with higher photon energy, and eliminating the discretization points that have little effect on accuracy of the forward projection model. This refinement allows us to successfully handle the characteristic lines (Dirac impulses) in the incident energy density spectrum. We compare the proposed method with the standard filtered backprojection, which ignores the polychromatic nature of the measurements and sparsity of the image density map. Numerical simulations using both realistic simulated and real x-ray ct data are presented.

Gu, Renliang; Dogandži?, Aleksandar [Iowa State University, Center for Nondestructive Evaluation, 1915 Scholl Road, Ames, IA 50011 (United States)

2014-02-18T23:59:59.000Z

123

A Method for the Precision Mass Measurement of the Stop Quark at the International Linear Collider  

SciTech Connect (OSTI)

Many supersymmetric models predict new particles within the reach of the next generation of colliders. For an understanding of the model structure and the mechanism(s) of symmetry breaking, it is important to know the masses of the new particles precisely. In this article the measurement of the mass of the scalar partner of the top quark (stop) at an e+e- collider is studied. A relatively light stop is motivated by attempts to explain electroweak baryogenesis and can play an important role in dark matter relic density. A method is presented which makes use of cross-section measurements near the pair-production threshold as well as at higher center-of-mass energies. It is shown that this method not only increases the statistical precision, but also greatly reduces the systematic uncertainties, which can be important. Numerical results are presented, based on a realistic event simulation, for two signal selection strategies: using conventional selection cuts, and using an Iterative Discriminant Analysis (IDA). Our studies indicate that a precision of {Delta}m{tilde t}{sub 1} = 0.42 GeV can be achieved, representing a major improvement over previous studies. While the analysis of stops is particularly challenging due to the possibility of stop hadronization, the general procedure could be applied to the mass measurement of other particles as well. We also comment on the potential of the IDA to discover a stop quark in this scenario, and we revisit the accuracy of the theoretical predictions for the neutralino relic density

Freitas, Ayres; /Chicago U. /Argonne /Zurich U.; Milstene, Caroline; /Fermilab /Wayne State U.; Schmitt, Michael; /Northwestern U.; Sopczak, Andre; /Lancaster U.

2008-06-01T23:59:59.000Z

124

Ion fragmentation in an electrospray ionization mass spectrometer interface with different gases  

E-Print Network [OSTI]

in the gas phase. However, particularly in multi- component samples, this may not be enough to unambigu predicts that the degree of ion fragmentation increases with increasing mass of the curtain gas. However with argon and krypton is caused by condensation of the gases within the free jet expansion between

Chen, David D.Y.

125

High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors  

SciTech Connect (OSTI)

We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/{Delta}m > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH{sub 3}.

Andersen, T.; Jensen, R.; Christensen, M. K.; Chorkendorff, I. [Department of Physics, Danish National Research Foundation's Center for Individual Nanoparticle Functionality (CINF), Technical University of Denmark, Building 312, DK-2800 Kgs. Lyngby (Denmark); Pedersen, T.; Hansen, O. [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech Building 345 East, DK-2800 Kgs. Lyngby (Denmark)

2012-07-15T23:59:59.000Z

126

A measurement of the top quark mass with a matrix element method  

SciTech Connect (OSTI)

The authors present a measurement of the mass of the top quark. The event sample is selected from proton-antiproton collisions, at 1.96 TeV center-of-mass energy, observed with the CDF detector at Fermilab's Tevatron. They consider a 318 pb{sup -1} dataset collected between March 2002 and August 2004. They select events that contain one energetic lepton, large missing transverse energy, exactly four energetic jets, and at least one displaced vertex b tag. The analysis uses leading-order t{bar t} and background matrix elements along with parameterized parton showering to construct event-by-event likelihoods as a function of top quark mass. From the 63 events observed with the 318 pb{sup -1} dataset they extract a top quark mass of 172.0 {+-} 2.6(stat) {+-} 3.3(syst) GeV/c{sup 2} from the joint likelihood. The mean expected statistical uncertainty is 3.2 GeV/c{sup 2} for m{sub t} = 178 GTeV/c{sup 2} and 3.1 GeV/c{sup 2} for m{sub t} = 172.5 GeV/c{sup 2}. The systematic error is dominated by the uncertainty of the jet energy scale.

Gibson, Adam Paul; /UC, Berkeley

2006-12-01T23:59:59.000Z

127

Systematic errors in the measurement of neutrino masses due to baryonic feedback processes: Prospects for stage IV lensing surveys  

E-Print Network [OSTI]

We examine the importance of baryonic feedback effects on the matter power spectrum on small scales, and the implications for the precise measurement of neutrino masses through gravitational weak lensing. Planned large galaxy surveys such as the Large Synoptic Sky Telescope (LSST) and Euclid are expected to measure the sum of neutrino masses to extremely high precision, sufficient to detect non-zero neutrino masses even in the minimal mass normal hierarchy. We show that weak lensing of galaxies while being a very good probe of neutrino masses, is extremely sensitive to baryonic feedback processes. We use publicly available results from the Overwhelmingly Large Simulations (OWLS) project to investigate the effects of active galactic nuclei feedback, the nature of the stellar initial mass function, and gas cooling rates, on the measured weak lensing shear power spectrum. Using the Fisher matrix formalism and priors from CMB+BAO data, we show that when one does not account for feedback, the measured neutrino mass may be substantially larger or smaller than the true mass, depending on the dominant feedback mechanism, with the mass error |\\Delta m_nu| often exceeding the mass m_nu itself. We also consider gravitational lensing of the cosmic microwave background (CMB) and show that it is not sensitive to baryonic feedback on scales l < 2000, although CMB experiments that aim for sensitivities sigma(m_nu) < 0.02 eV will need to include baryonic effects in modeling the CMB lensing potential. A combination of CMB lensing and galaxy lensing can help break the degeneracy between neutrino masses and baryonic feedback processes. We conclude that future large galaxy lensing surveys such as LSST and Euclid can only measure neutrino masses accurately if the matter power spectrum can be measured to similar accuracy.

Aravind Natarajan; Andrew R. Zentner; Nicholas Battaglia; Hy Trac

2014-09-04T23:59:59.000Z

128

Precision Measurement of the Mass of the Top Quark in p anti-p Collisions  

SciTech Connect (OSTI)

We report a measurement of the mass of the top quark (m{sub top}) in p{bar p} collisions at a center of mass energy of 1.96 TeV. The analysis is based on p{bar p}{yields}t{bar t}{yields} lepton+jets data recorded with the D0 detector at the Fermilab Tevatron Collider. Events were preselected in the e+jets (913 events/pb of data) and in the {mu}+jets (871 events/pb of data) channels. These were analyzed through a comparison of the matrix element for the production and decay of the t{bar t} states with data, using a likelihood method and 'tagged' b quarks from the t {yields} Wb decays.

Garcia, Carlos A.; /Rochester U.; ,

2007-01-01T23:59:59.000Z

129

In situ global method for measurement of oxygen demand and mass transfer  

SciTech Connect (OSTI)

Two aerobic microorganisms, Saccharomycopsis lipolytica and Brevibacterium lactofermentum, have been used in a study of mass transfer and oxygen uptake from a global perspective using a closed gas system. Oxygen concentrations in the gas and liquid were followed using oxygen electrodes, and the results allowed for easy calculation of in situ oxygen transport. The cell yields on oxygen for S. lipolytica and B. lactofermentum were 1.01 and 1.53 g/g respectively. The mass transfer coefficient was estimated as 10 h{sup {minus}1} at 500 rpm for both fermentations. The advantages with this method are noticeable since the use of model systems may be avoided, and the in situ measurements of oxygen demand assure reliable data for scale-up.

Klasson, K.T. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.; Lundbaeck, K.M.O.; Clausen, E.C.; Gaddy, J.L. [Univ. of Arkansas, Fayetteville, AR (United States). Dept. of Chemical Engineering

1997-05-01T23:59:59.000Z

130

Measurement of beauty and charm production in deep inelastic scattering at HERA and measurement of the beauty-quark mass  

E-Print Network [OSTI]

The production of beauty and charm quarks in ep interactions has been studied with the ZEUS detector at HERA for exchanged four-momentum squared 5 energy and pseudorapidity were measured and compared with next-to-leading-order QCD calculations. The beauty and charm contributions to the proton structure functions were extracted from the double-differential cross section as a function of x and Q^2. The running beauty-quark mass, m_b at the scale m_b, was determined from a QCD fit at next-to-leading order to HERA data for the first time and found to be 4.07 \\pm 0.14 (fit} ^{+0.01}_{-0.07} (mod.) ^{+0.05}_{-0.00} (param.) ^{+0.08}_{-0.05} (theo) GeV.

ZEUS collaboration; H. Abramowicz; I. Abt; L. Adamczyk; M. Adamus; R. Aggarwal; S. Antonelli; O. Arslan; V. Aushev; Y. Aushev; O. Bachynska; A. N. Barakbaev; N. Bartosik; O. Behnke; J. Behr; U. Behrens; A. Bertolin; S. Bhadra; I. Bloch; V. Bokhonov; E. G. Boos; K. Borras; I. Brock; R. Brugnera; A. Bruni; B. Brzozowska; P. J. Bussey; A. Caldwell; M. Capua; C. D. Catterall; J. Chwastowski; J. Ciborowski; R. Ciesielski; A. M. Cooper-Sarkar; M. Corradi; F. Corriveau; G. D'Agostini; R. K. Dementiev; R. C. E. Devenish; G. Dolinska; V. Drugakov; S. Dusini; J. Ferrando; J. Figiel; B. Foster; G. Gach; A. Garfagnini; A. Geiser; A. Gizhko; L. K. Gladilin; O. Gogota; Yu. A. Golubkov; J. Grebenyuk; I. Gregor; G. Grzelak; O. Gueta; M. Guzik; W. Hain; G. Hartner; D. Hochman; R. Hori; Z. A. Ibrahim; Y. Iga; M. Ishitsuka; A. Iudin; F. Januschek; I. Kadenko; S. Kananov; T. Kanno; U. Karshon; M. Kaur; P. Kaur; L. A. Khein; D. Kisielewska; R. Klanner; U. Klein; N. Kondrashova; O. Kononenko; Ie. Korol; I. A. Korzhavina; A. Kota?ski; U. Kötz; N. Kovalchuk; H. Kowalski; O. Kuprash; M. Kuze; B. B. Levchenko; A. Levy; V. Libov; S. Limentani; M. Lisovyi; E. Lobodzinska; W. Lohmann; B. Löhr; E. Lohrmann; A. Longhin; D. Lontkovskyi; O. Yu. Lukina; J. Maeda; I. Makarenko; J. Malka; J. F. Martin; S. Mergelmeyer; F. Mohamad Idris; K. Mujkic; V. Myronenko; K. Nagano; A. Nigro; T. Nobe; D. Notz; R. J. Nowak; K. Olkiewicz; Yu. Onishchuk; E. Paul; W. Perla?ski; H. Perrey; N. S. Pokrovskiy; A. S. Proskuryakov; M. Przybycie?; A. Raval; P. Roloff; I. Rubinsky; M. Ruspa; V. Samojlov; D. H. Saxon; M. Schioppa; W. B. Schmidke; U. Schneekloth; T. Schörner-Sadenius; J. Schwartz; L. M. Shcheglova; R. Shehzadi; R. Shevchenko; O. Shkola; I. Singh; I. O. Skillicorn; W. S?omi?ski; V. Sola; A. Solano; A. Spiridonov; L. Stanco; N. Stefaniuk; A. Stern; T. P. Stewart; P. Stopa; J. Sztuk-Dambietz; D. Szuba; J. Szuba; E. Tassi; T. Temiraliev; K. Tokushuku; J. Tomaszewska; A. Trofymov; V. Trusov; T. Tsurugai; M. Turcato; O. Turkot; T. Tymieniecka; A. Verbytskyi; O. Viazlo; R. Walczak; W. A. T. Wan Abdullah; K. Wichmann; M. Wing; G. Wolf; S. Yamada; Y. Yamazaki; N. Zakharchuk; A. F. ?arnecki; L. Zawiejski; O. Zenaiev; B. O. Zhautykov; N. Zhmak; D. S. Zotkin

2014-10-21T23:59:59.000Z

131

A new method of alpha ray measurement using a Quadrupole Mass Spectrometer  

E-Print Network [OSTI]

We propose a new method of alpha($\\alpha$)-ray measurement that detects helium atoms with a Quadrupole Mass Spectrometer(QMS). A demonstration is undertaken with a plastic-covered $^{241}$Am $\\alpha$-emitting source to detect $\\alpha$-rays stopped in the capsule. We successfully detect helium atoms that diffuse out of the capsule by accumulating them for one to 20 hours in a closed chamber. The detected amount is found to be proportional to the accumulation time. Our method is applicable to probe $\\alpha$-emitting radioactivity in bulk material.

Y. Iwata; Y. Inoue; M. Minowa

2007-04-16T23:59:59.000Z

132

New precision mass measurements of neutron-rich calcium and potassium isotopes and three-nucleon forces  

E-Print Network [OSTI]

We present precision Penning-trap mass measurements of neutron-rich calcium and potassium isotopes in the vicinity of neutron number N=32. Using the TITAN system the mass of $^{51}$K was measured for the first time, and the precision of the $^{51,52}$Ca mass values were improved significantly. The new mass values show a dramatic increase of the binding energy compared to those reported in the atomic mass evaluation. In particular, $^{52}$Ca is more bound by 1.74 MeV, and the behavior with neutron number deviates substantially from the tabulated values. An increased binding was predicted recently based on calculations that include three-nucleon (3N) forces. We present a comparison to improved calculations, which agree remarkably with the evolution of masses with neutron number, making neutron-rich calcium isotopes an exciting region to probe 3N forces at neutron-rich extremes.

A. T. Gallant; J. C. Bale; T. Brunner; U. Chowdhury; S. Ettenauer; A. Lennarz; D. Robertson; V. V. Simon; A. Chaudhuri; J. D. Holt; A. A. Kwiatkowski; E. Mané; J. Menéndez; B. E. Schultz; M. C. Simon; C. Andreoiu; P. Delheij; M. R. Pearson; H. Savajols; A. Schwenk; J. Dilling

2012-04-09T23:59:59.000Z

133

Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements  

SciTech Connect (OSTI)

Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that both fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm uses knowledge of the true signal peaks derived from the encoded data and allows for both artifacts and noise to be removed with high confidence, decreasing the likelihood of false identifications in subsequent data processing. The result is that IMS-MS can be applied to increase measurement sensitivity while avoiding artifacts that have previously limited its utility.

Prost, Spencer A.; Crowell, Kevin L.; Baker, Erin Shammel; Ibrahim, Yehia M.; Clowers, Brian H.; Monroe, Matthew E.; Anderson, Gordon A.; Smith, Richard D.; Payne, Samuel H.

2014-12-01T23:59:59.000Z

134

Measurement of the Top Quark Mass at CDF Using the Template Method in the Lepton + Jets Channel  

SciTech Connect (OSTI)

A measurement of the top quark mass in p{bar p} collisions at {radical}s = 1.96 TeV is presented. The analysis uses a template method, in which the overconstrained kinematics of the Lepton+Jets channel of the t{bar t} system are used to measure a single quantity, the reconstructed top quark mass, that is strongly correlated with the true top quark mass. in addition, the dijet mass of the hadronically decaying W boson is used to constrain in situ the uncertain jet energy scale in the CDF detector. Two-dimensional probability density functions are derived using a kernel density estimate-based machinery. Using 1.9 fb{sup -1} of data, the top quark mass is measured to be 171.8{sub -1.9}{sup +1.9}(stat.) {+-} 1.0(syst.)GeV/c{sup 2}.

Adelman, Jahred A.; /Chicago U.

2008-05-01T23:59:59.000Z

135

Accelerator Mass Spectrometry Measurements of Plutonium in Sediment and Seawater from the Marshall Islands  

SciTech Connect (OSTI)

During the summer 2000, I was given the opportunity to work for about three months as a technical trainee at Lawrence Livermore National Laboratory, or LLNL as I will refer to it hereafter. University of California runs this Department of Energy laboratory, which is located 70 km east of San Francisco, in the small city of Livermore. This master thesis in Radioecology is based on the work I did here. LLNL, as a second U.S.-facility for development of nuclear weapons, was built in Livermore in the beginning of the 1950's (Los Alamos in New Mexico was the other one). It has since then also become a 'science center' for a number of areas like magnetic and laser fusion energy, non-nuclear energy, biomedicine, and environmental science. The Laboratory's mission has changed over the years to meet new national needs. The following two statements were found on the homepage of LLNL (http://www.llnl.gov), at 2001-03-05, where also information about the laboratory and the scientific projects that takes place there, can be found. 'Our primary mission is to ensure that the nation's nuclear weapons remain safe, secure, and reliable and to prevent the spread and use of nuclear weapons worldwide'. 'Our goal is to apply the best science and technology to enhance the security and well-being of the nation and to make the world a safer place.' The Marshall Islands Dose Assessment and Radioecology group at the Health and Ecological Assessments division employed me, and I also worked to some extent with the Centre for Accelerator Mass Spectrometry (CAMS) group. The work I did at LLNL can be divided into two parts. In the first part Plutonium (Pu) measurements in sediments from the Rongelap atoll in Marshall Islands, using Accelerator Mass Spectrometry (AMS) were done. The method for measuring these kinds of samples is well understood at LLNL since soil samples have been measured with AMS for Pu in the past. Therefore it was the results that were of main interest and not the technique. The second part was to take advantage of AMS's very high sensitivity by measure the Pu-concentrations in small volumes (0.04-1 L) of seawater. The technique for using AMS at Pu-measurements in seawater is relatively new and the main task for me was to find out a method that could work in practice. The area where the sediment samples and the water samples were collected are high above background levels for many radionuclides, including Pu, because of the detonation of the nuclear bomb code-named Castle Bravo, in 1954.

Leisvik, M; Hamilton, T

2001-08-01T23:59:59.000Z

136

HOLMES - The Electron Capture Decay of 163Ho to Measure the Electron Neutrino Mass with sub-eV sensitivity  

E-Print Network [OSTI]

The European Research Council has recently funded HOLMES, a new experiment to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the decay of 163Ho. The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with beta spectrometers. This measurement was proposed in 1982 by A. De Rujula and M. Lusignoli, but only recently the detector technological progress allowed to design a sensitive experiment. HOLMES will deploy a large array of low temperature microcalorimeters with implanted 163Ho nuclei. The resulting mass sensitivity will be as low as 0.4 eV. HOLMES will be an important step forward in the direct neutrino mass measurement with a calorimetric approach as an alternative to spectrometry. It will also establish the potential of this approach to extend the sensitivity down to 0.1 eV. We outline here the project with its technical challenges and perspectives.

B. Alpert; M. Balata; D. Bennett; M. Biasotti; C. Boragno; C. Brofferio; V. Ceriale; D. Corsini; M. De Gerone; R. Dressler; M. Faverzani; E. Ferri; J. Fowler; F. Gatti; A. Giachero; J. Hays-Wehle; S. Heinitz; G. Hilton; U. Koester; M. Lusignoli; M. Maino; J. Mates; S. Nisi; R. Nizzolo; A. Nucciotti; G. Pessina; G. Pizzigoni; A. Puiu; S. Ragazzi; C. Reintsema; M. Ribeiro Gomes; D. Schmidt; D. Schumann; M. Sisti; D. Swetz; F. Terranova; J. Ullom

2015-02-10T23:59:59.000Z

137

HOLMES - The Electron Capture Decay of 163Ho to Measure the Electron Neutrino Mass with sub-eV sensitivity  

E-Print Network [OSTI]

The European Research Council has recently funded HOLMES, a new experiment to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the decay of 163Ho. The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with beta spectrometers. This measurement was proposed in 1982 by A. De Rujula and M. Lusignoli, but only recently the detector technological progress allowed to design a sensitive experiment. HOLMES will deploy a large array of low temperature microcalorimeters with implanted 163Ho nuclei. The resulting mass sensitivity will be as low as 0.4 eV. HOLMES will be an important step forward in the direct neutrino mass measurement with a calorimetric approach as an alternative to spectrometry. It will also establish the potential of this approach to extend the sensitivity down to 0.1 eV. We outline here the project with its technical challenges and perspectives.

B. Alpert; M. Balata; D. Bennett; M. Biasotti; C. Boragno; C. Brofferio; V. Ceriale; D. Corsini; P. K. Day; M. De Gerone; R. Dressler; M. Faverzani; E. Ferri; J. Fowler; F. Gatti; A. Giachero; J. Hays-Wehle; S. Heinitz; G. Hilton; U. Koester; M. Lusignoli; M. Maino; J. Mates; S. Nisi; R. Nizzolo; A. Nucciotti; G. Pessina; G. Pizzigoni; A. Puiu; S. Ragazzi; C. Reintsema; M. Ribeiro Gomes; D. Schmidt; D. Schumann; M. Sisti; D. Swetz; F. Terranova; J. Ullom

2015-03-17T23:59:59.000Z

138

HOLMES - The Electron Capture Decay of 163Ho to Measure the Electron Neutrino Mass with sub-eV sensitivity  

E-Print Network [OSTI]

The European Research Council has recently funded HOLMES, a new experiment to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the decay of 163Ho. The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with beta spectrometers. This measurement was proposed in 1982 by A. De Rujula and M. Lusignoli, but only recently the detector technological progress allowed to design a sensitive experiment. HOLMES will deploy a large array of low temperature microcalorimeters with implanted 163Ho nuclei. The resulting mass sensitivity will be as low as 0.4 eV. HOLMES will be an important step forward in the direct neutrino mass measurement with a calorimetric approach as an alternative to spectrometry. It will also establish the potential of this approach to extend the sensitivity down to 0.1 eV. We outline here the project with its technical challenges and perspectives.

B. Alpert; M. Balata; D. Bennett; M. Biasotti; C. Boragno; C. Brofferio; V. Ceriale; D. Corsini; M. De Gerone; R. Dressler; M. Faverzani; E. Ferri; J. Fowler; F. Gatti; A. Giachero; J. Hays-Wehle; S. Heinitz; G. Hilton; U. Koester; M. Lusignoli; M. Maino; J. Mates; S. Nisi; R. Nizzolo; A. Nucciotti; G. Pessina; G. Pizzigoni; A. Puiu; S. Ragazzi; C. Reintsema; M. Ribeiro Gomes; D. Schmidt; D. Schumann; M. Sisti; D. Swetz; F. Terranova; J. Ullom

2014-12-16T23:59:59.000Z

139

Measurement of Ultra-Low Potassium Contaminations with Accelerator Mass Spectrometry  

E-Print Network [OSTI]

Levels of trace radiopurity in active detector materials is a subject of major concern in low-background experiments. Among the radio-isotopes, $\\k40$ is one of the most abundant and yet whose signatures are difficult to reject. Procedures were devised to measure trace potassium concentrations in the inorganic salt CsI as well as in organic liquid scintillator (LS) with Accelerator Mass Spectrometry (AMS), giving, respectively, the $\\k40$-contamination levels of $\\sim 10^{-10}$ and $\\sim 10^{-13}$ g/g. Measurement flexibilities and sensitivities are improved over conventional methods. The projected limiting sensitivities if no excess of potassium signals had been observed over background are $8 \\times 10^{-13}$ g/g and $3 \\times 10^{-17}$ g/g for the CsI and LS, respectively. Studies of the LS samples indicate that the radioactive contaminations come mainly in the dye solutes, while the base solvents are orders of magnitude cleaner. The work demonstrate the possibilities of measuring naturally-occurring isotopes with the AMS techniques.

K. J. Dong

2007-05-01T23:59:59.000Z

140

Measurement of Ultra-Low Potassium Contaminations with Accelerator Mass Spectrometry  

E-Print Network [OSTI]

Levels of trace radiopurity in active detector materials is a subject of major concern in low-background experiments. Among the radio-isotopes, $\\k40$ is one of the most abundant and yet whose signatures are difficult to reject. Procedures were devised to measure trace potassium concentrations in the inorganic salt CsI as well as in organic liquid scintillator (LS) with Accelerator Mass Spectrometry (AMS), giving, respectively, the $\\k40$-contamination levels of $\\sim 10^{-10}$ and $\\sim 10^{-13}$ g/g. Measurement flexibilities and sensitivities are improved over conventional methods. The projected limiting sensitivities if no excess of potassium signals had been observed over background are $8 \\times 10^{-13}$ g/g and $3 \\times 10^{-17}$ g/g for the CsI and LS, respectively. Studies of the LS samples indicate that the radioactive contaminations come mainly in the dye solutes, while the base solvents are orders of magnitude cleaner. The work demonstrate the possibilities of measuring naturally-occurring isoto...

Dong, K J

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mass difference measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Separation Of Uranium And Plutonium Isotopes For Measurement By Multi Collector Inductively Coupled Plasma Mass Spectroscopy  

SciTech Connect (OSTI)

Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with {sup 233}U and {sup 242}Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA{reg_sign} column coupled to a UTEVA{reg_sign} column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of {sup 234}U/{sup 235}U, {sup 238}U/{sup 235}U, {sup 236}U/{sup 235}U, and {sup 240}Pu/{sup 239}Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.

Martinelli, R E; Hamilton, T F; Williams, R W; Kehl, S R

2009-03-29T23:59:59.000Z

142

Air/water subchannel measurements of the equilibrium quality and mass-flux distribution in a rod bundle. [BWR  

SciTech Connect (OSTI)

Subchannel measurements were performed in order to determine the equilibrium quality and mass flux distribution in a four rod bundle, using air/water flow. An isokinetic technique was used to sample the flow in the center, side and corner subchannels of this test section. Flow rates of the air and water in each sampled subchannel were measured. Experiments were performed for two test-section-average mass fluxes (0.333x10/sup 6/ and 0.666x10/sup 6/ lb/sub m//h-ft/sup 2/), and the test-section-average quality was varied from 0% to 0.54% for each mass flux. Single-phase liquid, bubbly, slug and churn-turbulent two-phase flow regimes were achieved. The observed data trends agreed with previous diabatic measurements in which the center subchannel had the highest quality and mass flux, while the corner subchannel had the lowest.

Sterner, R.W.; Lahey, R.T. Jr.

1983-07-01T23:59:59.000Z

143

PDF uncertainties on the W boson mass measurement from the lepton transverse momentum distribution  

E-Print Network [OSTI]

We study the charged current Drell-Yan process and we evaluate the proton parton densities uncertainties on the lepton transverse momentum distribution and their impact on the determination of the W-boson mass. We consider the global PDF sets CT10, MSTW2008CPdeut, NNPDF2.3, NNPDF3.0, MMHT2014, and apply the PDF4LHC recipe to combine the individual results, obtaining an uncertainty on MW that ranges between +-18 and +-24 MeV, depending on the final state, collider energy and kind. We discuss the dependence of the uncertainty on the acceptance cuts and the role of the individual parton densities in the final result. We remark that some PDF sets predict an uncertainty on MW of O(10 MeV); this encouraging result is spoiled, in the combined analysis of the different sets, by an important spread of the central values predicted by each group.

Bozzi, Giuseppe; Vicini, Alessandro

2015-01-01T23:59:59.000Z

144

Nuclear Resonance Fluorescence to Measure Plutonium Mass in Spent Nuclear Fuel  

SciTech Connect (OSTI)

The Next Generation Safeguard Initiative (NGSI) of the U.S Department of Energy is supporting a multi-lab/university collaboration to quantify the plutonium (Pu) mass in spent nuclear fuel (SNF) assemblies and to detect the diversion of pins with non-destructive assay (NDA) methods. The following 14 NDA techniques are being studied: Delayed Neutrons, Differential Die-Away, Differential Die-Away Self-Interrogation, Lead Slowing Down Spectrometer, Neutron Multiplicity, Passive Neutron Albedo Reactivity, Total Neutron (Gross Neutron), X-Ray Fluorescence, {sup 252}Cf Interrogation with Prompt Neutron Detection, Delayed Gamma, Nuclear Resonance Fluorescence, Passive Prompt Gamma, Self-integration Neutron Resonance Densitometry, and Neutron Resonance Transmission Analysis. Understanding and maturity of the techniques vary greatly, ranging from decades old, well-understood methods to new approaches. Nuclear Resonance Fluorescence (NRF) is a technique that had not previously been studied for SNF assay or similar applications. Since NRF generates isotope-specific signals, the promise and appeal of the technique lies in its potential to directly measure the amount of a specific isotope in an SNF assay target. The objectives of this study were to design and model suitable NRF measurement methods, to quantify capabilities and corresponding instrumentation requirements, and to evaluate prospects and the potential of NRF for SNF assay. The main challenge of the technique is to achieve the sensitivity and precision, i.e., to accumulate sufficient counting statistics, required for quantifying the mass of Pu isotopes in SNF assemblies. Systematic errors, considered a lesser problem for a direct measurement and only briefly discussed in this report, need to be evaluated for specific instrument designs in the future. Also, since the technical capability of using NRF to measure Pu in SNF has not been established, this report does not directly address issues such as cost, size, development time, nor concerns related to the use of Pu in measurement systems. This report discusses basic NRF measurement concepts, i.e., backscatter and transmission methods, and photon source and {gamma}-ray detector options in Section 2. An analytical model for calculating NRF signal strengths is presented in Section 3 together with enhancements to the MCNPX code and descriptions of modeling techniques that were drawn upon in the following sections. Making extensive use of the model and MCNPX simulations, the capabilities of the backscatter and transmission methods based on bremsstrahlung or quasi-monoenergetic photon sources were analyzed as described in Sections 4 and 5. A recent transmission experiment is reported on in Appendix A. While this experiment was not directly part of this project, its results provide an important reference point for our analytical estimates and MCNPX simulations. Used fuel radioactivity calculations, the enhancements to the MCNPX code, and details of the MCNPX simulations are documented in the other appendices.

Ludewigt, Bernhard A; Quiter, Brian J.; Ambers, Scott D.

2011-01-14T23:59:59.000Z

145

Charge and frequency resolved isochronous mass spectrometry in storage rings: First direct mass measurement of the short-lived neutron-deficient $^{51}$Co nuclide  

E-Print Network [OSTI]

Revolution frequency measurements of individual ions in storage rings require sophisticated timing detectors. One of common approaches for such detectors is the detection of secondary electrons released from a thin foil due to penetration of the stored ions. A new method based on the analysis of intensities of secondary electrons was developed which enables determination of the charge of each ion simultaneously with the measurement of its revolution frequency. Although the mass-over-charge ratios of $^{51}$Co$^{27+}$ and $^{34}$Ar$^{18+}$ ions are almost identical, and therefore, the ions can not be resolved in a storage ring, by applying the new method the mass excess of the short-lived $^{51}$Co is determined for the first time to be ME($^{51}$Co)=-27342(48) keV. Shell-model calculations in the $fp$-shell nuclei compared to the new data indicate the need to include isospin-nonconserving forces.

P. Shuai; H. S. Xu; X. L. Tu; Y. H. Zhang; B. H. Sun; Yu. A. Litvinov; X. L. Yan; K. Blaum; M. Wang; X. H. Zhou; J. J. He; Y. Sun; K. Kaneko; Y. J. Yuan; J. W. Xia; J. C. Yang; G. Audi; X. C. Chen; G. B. Jia; Z. G. Hu; X. W. Ma; R. S. Mao; B. Mei; Z. Y. Sun; S. T. Wang; G. Q. Xiao; X. Xu; T. Yamaguchi; Y. Yamaguchi; Y. D. Zang; H. W. Zhao; T. C. Zhao; W. Zhang; W. L. Zhan

2014-04-08T23:59:59.000Z

146

Measurement of the Higgs Boson Mass from the H ? ?? and H ? ZZ* ? 4? Channels in pp Collisions at Center-of-Mass Energies of 7 and 8 TeV with the ATLAS Detector  

E-Print Network [OSTI]

An improved measurement of the mass of the Higgs boson is derived from a combined fit to the reconstructed invariant mass spectra of the decay channels H ? ?? and H ? ZZ[superscript ?] ? 4?. The analysis uses the pp collision ...

Taylor, Frank E.

147

Measurement of the W Boson Mass with the D0 Run II Detector using the Electron P(T) Spectrum  

SciTech Connect (OSTI)

This thesis is a description of the measurement of the W boson mass using the D0 Run II detector with 770 pb{sup -1} of p{bar p} collision data. These collisions were produced by the Tevatron at {radical}s = 1.96 TeV between 2002 and 2006. We use a sample of W {yields} e{nu} and Z {yields} ee decays to determine the W boson mass with the transverse momentum distribution of the electron and the transverse mass distribution of the boson. We measure M{sub W} = XXXXX {+-} 37 (stat.) {+-} 26 (sys. theo.) {+-} 51 (sys. exp.) MeV = XXXXX {+-} 68 MeV with the transverse momentum distribution of the electron and M{sub W} = XXXXX {+-} 28 (stat.) {+-} 17 (sys. theo.) {+-} 51 (sys. exp.) MeV = XXXXX {+-} 61 MeV with the transverse mass distribution.

Andeen, Timothy R., Jr.; /Northwestern U.

2008-06-01T23:59:59.000Z

148

A Measurement of the Top Quark Mass in the Dilepton Decay Channel at CDF II  

E-Print Network [OSTI]

, Stephen Miller, Fred Niell, Tom Schwarz, Tom Wright and Alexei Varganov. The top group and top mass group

Quigg, Chris

149

Measurement of the off-shell Higgs boson signal strength in the high mass ZZ and WW final states with the ATLAS detector  

E-Print Network [OSTI]

This poster is focused on the indirect measurement of the Higgs boson width through the constraints on the off-shell Higgs coupling in the high mass region using the H->4l decay channel. The production cross section for the off-shell Higgs boson with decay into vector bosons is proportional to the product of the couplings squared for production and decay. Unlike the on-shell cross section, this observable is independent of the total Higgs width. Therefore, the ratio of the on and off-shell couplings provides an indirect measurement on the total Higgs width. Two different versions of the posters (CONF note and paper results) are provided.

Calandri, Alessandro; The ATLAS collaboration

2015-01-01T23:59:59.000Z

150

A comparison of option prices under different pricing measures in a stochastic volatility model  

E-Print Network [OSTI]

A comparison of option prices under different pricing measures in a stochastic volatility model with correlation Vicky Henderson Princeton University David Hobson § University of Bath Sam Howison ¶ University option prices in an incomplete stochastic volatility model with correlation. In a general setting, we

Howison, Sam

151

Implications of the KamLAND Measurement on the Lepton Flavor Mixing Matrix and the Neutrino Mass Matrix  

E-Print Network [OSTI]

We explore some important implications of the KamLAND measurment on the lepton flavor mixing matrix $V$ and the neutrino mass matrix $M$. The model-independent constraints on nine matrix elements of $V$ are obtained to a reasonable degree of accuracy. We find that nine two-zero textures of $M$ are compatible with current experimental data, but two of them are only marginally allowed. Instructive predictions are given for the absolute neutrino masses, Majorana phases of CP violation, effective masses of the tritium beta decay and neutrinoless double beta decay.

Wan-lei Guo; Zhi-zhong Xing

2002-12-10T23:59:59.000Z

152

DIFFERENTIAL EMISSION MEASURE ANALYSIS OF MULTIPLE STRUCTURAL COMPONENTS OF CORONAL MASS EJECTIONS IN THE INNER CORONA  

SciTech Connect (OSTI)

In this paper, we study the temperature and density properties of multiple structural components of coronal mass ejections (CMEs) using differential emission measure (DEM) analysis. The DEM analysis is based on the six-passband EUV observations of solar corona from the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory. The structural components studied include the hot channel in the core region (presumably the magnetic flux rope of the CME), the bright loop-like leading front (LF), and coronal dimming in the wake of the CME. We find that the presumed flux rope has the highest average temperature (>8 MK) and density ({approx}1.0 Multiplication-Sign 10{sup 9} cm{sup -3}), resulting in an enhanced emission measure over a broad temperature range (3 {<=} T(MK) {<=} 20). On the other hand, the CME LF has a relatively cool temperature ({approx}2 MK) and a narrow temperature distribution similar to the pre-eruption coronal temperature (1 {<=} T(MK) {<=} 3). The density in the LF, however, is increased by 2%-32% compared with that of the pre-eruption corona, depending on the event and location. In coronal dimmings, the temperature is more broadly distributed (1 {<=} T(MK) {<=} 4), but the density decreases by {approx}35%-{approx}40%. These observational results show that: (1) CME core regions are significantly heated, presumably through magnetic reconnection; (2) CME LFs are a consequence of compression of ambient plasma caused by the expansion of the CME core region; and (3) the dimmings are largely caused by the plasma rarefaction associated with the eruption.

Cheng, X.; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Zhang, J. [School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 (United States); Saar, S. H., E-mail: xincheng@nju.edu.cn, E-mail: jzhang7@gmu.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2012-12-10T23:59:59.000Z

153

Top Quark Mass Measurement in the Lepton plus Jets Channel Using a Modified Matrix Element Method  

SciTech Connect (OSTI)

The authors report a measurement of the top quark mass, m{sub t}, obtained from p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector. They analyze a sample corresponding to an integrated luminosity of 1.9 rfb{sup -1}. They select events with an electron or muon, large missing transverse energy, and exactly four high-energy jets in the central region of the detector, at least one of which is tagged as coming from a b quark. They calculate a signal likelihood using a matrix element integration method, where the matrix element is modified by using effective propagators to take into account assumptions on event kinematics. The event likelihood is a function of m{sub t} and a parameter JES that determines in situ the calibration of the jet energies. They use a neural network discriminant to distinguish signal from background events. They also apply a cut on the peak value of each event likelihood curve to reduce the contribution of background and badly reconstructed events. Using the 318 events that pass all selection criteria, they find m{sub t} = 172.7 {+-} 1.8 (stat. + JES) {+-} 1.2(syst.) GeV/c{sup 2}.

Aaltonen, T.; /Helsinki Inst. of Phys.; Adelman, J.; /Chicago U., EFI; Akimoto, T.; /Tsukuba U.; Alvarez Gonzalez, B.; /CSIC, Catalunya; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U.; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Apresyan, A.; /Purdue U. /Waseda U.

2008-12-01T23:59:59.000Z

154

Measurements of heat and mass transfer coefficients during absorption of water vapor by lithium bromide and (Li,K,Na)NO sub 3 mixtures  

SciTech Connect (OSTI)

A knowledge of heat and mass transfer coefficients in heat pump fluids, plays an important role in the design of absorption machines. Heat and mass transfer coefficients as well as subcooling are measured for absorption of water vapor in (Li, K, Na)No{sub 3} and Lithium Bromide (LiBr) mixtures.The rate of absorption of water vapor is obtained from the difference in concentration of mixtures between inlet and outlet streams across the absorber. In situ concentrations of aqueous salt mixtures over temperature ranges between 80 to 135 {degrees}C were calculated from density measurements. This technique of measurement is a reliable and convenient but not a very accurate ({plus minus}0.8 wt% salt) method of measuring the in situ salt concentration. Results show that the subcooling at the absorber exit is not only a property of the fluid, but depends strongly on the process conditions. The subcooling in LiBr mixtures without additive is shown to vary between 2.2 and 24.3 {degrees}C and the film heat transfer coefficient between 1365.2 and 801.1 W/m{sup 2}.K respectively, depending upon process conditions. These empirical results will prove to be of value to heat pump manufacturers because they have a strong bearing on costs and performance. Heat and mass transfer coefficients in aqueous salt solutions ate presented as a function of dimensionless numbers. 12 refs., 3 figs., 4 tabs.

Zaltash, A.; Ally, M.R.; Linkous, R.L.; Klatt, L.N.

1991-01-01T23:59:59.000Z

155

Pinning down the mechanism of neutrinoless double beta decay with measurements in different nuclei  

E-Print Network [OSTI]

A measurement of neutrinoless double beta decay in one isotope does not allow to determine the underlying physics mechanism. We discuss the discrimination of mechanisms for neutrinoless double beta decay by comparing ratios of half life measurements for different isotopes. Six prominent examples for specific new physics contributions to neutrinoless double beta decay are analyzed. We find that the change in corresponding ratios of half lives varies from 60% for supersymmetric models up to a factor of 5-20 for extra-dimensional and left-right-symmetric mechanisms.

F. Deppisch; H. Päs

2007-06-25T23:59:59.000Z

156

Pinning Down the Mechanism of Neutrinoless Double {beta} Decay with Measurements in Different Nuclei  

SciTech Connect (OSTI)

A measurement of neutrinoless double beta decay in one isotope does not allow us to determine the underlying physics mechanism. We discuss the discrimination of mechanisms for neutrinoless double beta decay by comparing ratios of half-life measurements for different isotopes. Six prominent examples for specific new physics contributions to neutrinoless double beta decay are analyzed. We find that the change in corresponding ratios of half lives varies from 60% for supersymmetric models up to a factor of 5-20 for extra-dimensional and left-right-symmetric mechanisms.

Deppisch, Frank [Deutsches Elektronen-Synchrotron (DESY), D-22603 Hamburg (Germany); Paes, Heinrich [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487 (United States)

2007-06-08T23:59:59.000Z

157

Measurements of NaI(Tl) electron response: comparison of different samples  

SciTech Connect (OSTI)

This paper measures the sample to sample variation in the light yield proportionality of NaI(Tl), and so explores whether this is an invariant characteristic of the material or whether it depends on the chemical and physical properties of the tested samples. We report on the electron response of nine crystals of NaI(Tl), differing in shape, volume, age, manufacturer and quality. The proportionality has been measured at the SLYNCI facility in the energy range between 3.5 to 460 keV. We observe that while samples produced by the same manufacturer at approximately the same time have virtually identical electron response curves, there are significant sample to sample variations among crystals produced by different manufacturers or at different times. In an effort to correlate changes in the electron response with details of the scintillation mechanism, we characterized other scintillation properties, including the gamma response and the x-ray excited emission spectra and decay times, for the nine crystals. While sample to sample differences in these crystals were observed, we have been unable to identify the underlying fundamental mechanisms that are responsible for these differences.

Hull, Giulia; Choong, Woon-Seng; Moses, William W.; Bizarri, Gregory; Valentine, John D.; Payne, Stephen A.; Cherepy, Nerine J.; Reutter, Bryan W.

2008-12-10T23:59:59.000Z

158

Toward understanding of differences in current cloud retrievals of ARM ground-based measurements  

SciTech Connect (OSTI)

Accurate observations of cloud microphysical properties are needed for evaluating and improving the representation of cloud processes in climate models and better estimate of the Earth radiative budget. However, large differences are found in current cloud products retrieved from ground-based remote sensing measurements using various retrieval algorithms. Understanding the differences is an important step to address uncertainties in the cloud retrievals. In this study, an in-depth analysis of nine existing ground-based cloud retrievals using ARM remote sensing measurements is carried out. We place emphasis on boundary layer overcast clouds and high level ice clouds, which are the focus of many current retrieval development efforts due to their radiative importance and relatively simple structure. Large systematic discrepancies in cloud microphysical properties are found in these two types of clouds among the nine cloud retrieval products, particularly for the cloud liquid and ice particle effective radius. Note that the differences among some retrieval products are even larger than the prescribed uncertainties reported by the retrieval algorithm developers. It is shown that most of these large differences have their roots in the retrieval theoretical bases, assumptions, as well as input and constraint parameters. This study suggests the need to further validate current retrieval theories and assumptions and even the development of new retrieval algorithms with more observations under different cloud regimes.

Zhao C.; Dunn M.; Xie, S.; Klein, S. A.; Protat, A.; Shupe, M. D.; McFarlane, S. A.; Comstock, J. M.; Delanoë, J.; Deng, M.; Hogan, R. J.; Huang, D.; Jensen, M. P.; Mace, G. G.; McCoy, R.; O’Connor, E. J.; Turner, D. D.; Wang, Z.

2012-05-30T23:59:59.000Z

159

Ice Mass Balance Buoys: A tool for measuring and attributing changes in the thickness of the Arctic sea ice cover  

E-Print Network [OSTI]

Ice Mass Balance Buoys: A tool for measuring and attributing changes in the thickness of the Arctic sea ice cover Jacqueline A. Richter-Menge1 , Donald K. Perovich1 , Bruce C. Elder1 , Keran Claffey1 Abstract Recent observational and modeling studies indicate that the Arctic sea ice cover is undergoing

Rigor, Ignatius G.

160

Measurement of the high-mass Drell-Yan cross section and limits on quark-electron compositeness scales  

E-Print Network [OSTI]

We present a measurement of the Drell-Yan cross section at high dielectron invariant mass using 120 pb(-1) of data collected in p (p) over bar, collisions at root s = 1.8TeV by the D0 Collaboration during 1992-1996. No ...

Baringer, Philip S.

1999-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "mass difference measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

PHYSICAL REVIEW C 81, 014607 (2010) Fission fragment mass and energy distributions as a function of incident neutron energy measured  

E-Print Network [OSTI]

, and Nuclear Engineering, NES 1-25, 110 8th Street, Troy, New York 12180, USA 2 Los Alamos National Lab, Los; published 19 January 2010) A new method of measuring fission fragment mass and energy distributions as a function of incident neutron energy are necessary for accurate, detailed neutronics calculations for new

Danon, Yaron

162

X-ray Spectral Measurements of the Most Massive Stars: Stellar Wind Mass-Loss Rates and Shock Physics  

E-Print Network [OSTI]

X-ray Spectral Measurements of the Most Massive Stars: Stellar Wind Mass-Loss Rates and Shock/Themes: Significant technological advances in X-ray astronomy have driven discovery over the last few decades. New. The priorities at Swarthmore have allowed me to do careful work on the small number of X-ray spectral datasets

Cohen, David

163

Atmospheric Amines and Ammonia Measured with a Chemical Ionization Mass Spectrometer (CIMS)  

SciTech Connect (OSTI)

We report ambient measurements of amines and ammonia with a fast response chemical ionization mass spectrometer (CIMS) in a Southeastern U.S. forest in Alabama and a moderately polluted Midwestern site during the summer. In the Alabama forest, mostly C3-amines (from pptv to tens of pptv) and ammonia (up to 2 ppbv) were detected on a daily basis. C3-amines and ammonia showed similar diurnal trends and temperature and wind direction dependences, and were not associated with transported CO and SO2 plumes. Consistent with temperature dependences, amine and ammonia in the gas and aerosol phases showed opposite diurnal trends, indicating gas-to-particle partitioning of amines and ammonia. Temperature dependences also imply reversible processes of amines and ammonia evaporation from soil surfaces in daytime and deposition of amines and ammonia to soil surfaces at nighttime. Various amines (C1-C6) at the pptv level were observed in the transported biomass burning plumes, showing that biomass burning can be a substantial source of amines in the Southeast U.S. At the moderately polluted Kent site, higher concentrations of amines (C1-C6, from pptv to tens of pptv) and ammonia (up to 6 ppbv) were detected. Diurnal variations of C1- to C3-amines and ammonia were correlated with the ambient temperature. C4- to C6-amines showed abrupt increases during the nighttime, suggesting that they were emitted from local sources. These abundant amines and ammonia may in part explain the frequent new particle formation events reported from Kent. Lower amine concentrations at the rural forested site highlight the importance of constraining anthropogenic sources of amines.

You, Y.; Kanawade, V. P.; de Gouw, J. A.; Guenther, Alex B.; Madronich, Sasha; Sierra-Hernandez, M. R.; Lawler, M.; Smith, James N.; Takahama, S.; Ruggeri, G.; Koss, A.; Olson, K.; Baumann, K.; Weber, R. J.; Nenes, A.; Guo, H.; Edgerton, Eric S.; Porcelli, L.; Brune, W. H.; Goldstein, Allen H.; Lee, S.-H

2014-11-19T23:59:59.000Z

164

A Space Weather Information Service Based Upon Remote and In-Situ Measurements of Coronal Mass Ejections Heading for Earth  

E-Print Network [OSTI]

The Earth's magnetosphere is formed as a consequence of interaction between the planet's magnetic field and the solar wind, a continuous plasma stream from the Sun. A number of different solar wind phenomena have been studied over the past forty years with the intention of understanding and forecasting solar behavior. One of these phenomena in particular, Earth-bound interplanetary coronal mass ejections (CMEs), can significantly disturb the Earth's magnetosphere for a short time and cause geomagnetic storms. This publication presents a mission concept consisting of six spacecraft that are equally spaced in a heliocentric orbit at 0.72 AU. These spacecraft will monitor the plasma properties, the magnetic field's orientation and magnitude, and the 3D-propagation trajectory of CMEs heading for Earth. The primary objective of this mission is to increase space weather (SW) forecasting time by means of a near real-time information service, that is based upon in-situ and remote measurements of the aforementioned CM...

Ritter, Birgit; Miles, Oscar; Rußwurm, Michael; Scully, Stephen; Roldán, Andrés; Hartkorn, Oliver; Jüstel, Peter; Réville, Victor; Lupu, Sorina; Ruffenach, Alexis

2015-01-01T23:59:59.000Z

165

Toward Understanding of Differences in Current Cloud Retrievals of ARM Ground-based Measurements  

SciTech Connect (OSTI)

Accurate observations of cloud microphysical properties are needed for evaluating and improving the representation of cloud processes in climate models. However, large differences are found in current cloud products retrieved from ground-based remote sensing measurements using various retrieval algorithms. Understanding the differences is an important step to address uncertainties in the cloud retrievals. In this study, an in-depth analysis of nine existing ground-based cloud retrievals using ARM remote sensing measurements is carried out. We place emphasize on boundary layer overcast clouds and high level ice clouds, which are the focus of many current retrieval development efforts due to their radiative importance and relatively simple structure. Large systematic discrepancies in cloud microphysical properties are found in these two types of clouds among the nine cloud retrieval products, particularly for the cloud liquid and ice effective radius. It is shown that most of these large differences have their roots in the retrieval algorithms used by these cloud products, including the retrieval theoretical bases, assumptions, as well as input and constraint parameters. This study suggests the need to further validate current retrieval theories and assumptions and even the development of new retrieval algorithms with more observations under different cloud regimes.

Zhao, Chuanfeng; Xie, Shaocheng; Klein, Stephen A.; Protat, Alain; Shupe, Matthew D.; McFarlane, Sally A.; Comstock, Jennifer M.; Delanoe, Julien; Deng, Min; Dunn, Maureen; Hogan, Robin; Huang, Dong; Jensen, Michael; Mace, Gerald G.; McCoy, Renata; O'Conner, Ewan J.; Turner, Dave; Wang, Zhien

2012-05-30T23:59:59.000Z

166

Feasibility of Measuring the Cosmological Constant [LAMBDA] and Mass Density [Omega] using Type Ia Supernovae  

E-Print Network [OSTI]

at z = 1. uncertainty for supernovae at z = 1. mR Adding theMass Density .Q Using Type Ia Supernovae A. Goobar and S.Density Q Using Type Ia Supernovae Ariel Goobar l and Saul

Goobar, A.

2008-01-01T23:59:59.000Z

167

Laser Measurements of the Density Shifts of Resonance Lines in Antiprotonic Helium Atoms and Stringent Constraint on the Antiproton Charge and Mass  

E-Print Network [OSTI]

Laser Measurements of the Density Shifts of Resonance Lines in Antiprotonic Helium Atoms and Stringent Constraint on the Antiproton Charge and Mass

Torii, H A; Hori, Masaki; Ishikawa, T; Morita, N; Kumakura, M; Sugai, I; Yamazaki, T; Ketzer, B; Hartmann, F J; Von Egidy, T; Pohl, R; Maierl, C; Horváth, D; Eades, John; Widmann, E

1998-01-01T23:59:59.000Z

168

Differences between measured and linearly interpolated synoptic variables over a 12-h period during AVE IV  

E-Print Network [OSTI]

, Z4 April 1975. (after Fucik and Turner, 1975). 590 440 1D 1Dy ~ m 9 soo 530 560 18~ 530 I 22 ? g --' I / '3 22 0 590 20 338 530 16 850 mb 4 4 090 8 m 2D ? ? ? 6 ( ', -k 5 150 8 I '30 ~ 8O '4 210 210 700 BIb Fig. 6. (Cont3nued...DIFFERENCES BETWEEN MEASURED AND LINEARLY INTERPOLATED SYNOPTIC VARIABLES OVER A 12-h PERIOD DURING AVE IV A Thesis by LEONARD RAYMOND DUPUIS Submitted to the Graduate College of Texas A&M University in partial ful. fillment...

Dupuis, Leonard Raymond

1979-01-01T23:59:59.000Z

169

Crucial test for covariant density functional theory with new and accurate mass measurements from Sn to Pa  

E-Print Network [OSTI]

The covariant density functional theory with the point-coupling interaction PC-PK1 is compared with new and accurate experimental masses in the element range from 50 to 91. The experimental data are from a mass measurement performed with the storage ring mass spectrometry at GSI [Chen et al., Nucl. Phys. A 882, 71 (2012)]. Although the microscopic theory contains only 11 parameters, it agrees well with the experimental data. The comparison is characterized by a rms deviation of 0.859 MeV. For even-even nuclei, the theory agrees within about 600 keV. Larger deviations are observed in this comparison for the odd-A and odd-odd nuclei. Improvements and possible reasons for the deviations are discussed in this contribution as well.

P. W. Zhao; L. S. Song; B. Sun; H. Geissel; J. Meng

2012-12-31T23:59:59.000Z

170

Measurable neutrino mass scale in A{sub 4}xSU(5)  

SciTech Connect (OSTI)

We propose a supersymmetric A{sub 4}xSU(5) model of quasidegenerate neutrinos which predicts the effective neutrino mass m{sub ee} relevant for neutrinoless double beta decay to be proportional to the neutrino mass scale, thereby allowing its determination approximately independently of unknown Majorana phases. Such a natural quasidegeneracy is achieved by using A{sub 4} family symmetry (as an example of a non-Abelian family symmetry with real triplet representations) to enforce a contribution to the neutrino mass matrix proportional to the identity. Tribimaximal neutrino mixing as well as quark CP violation with {alpha}{approx_equal}90 deg. d a leptonic CP phase {delta}{sub MNS{approx_equal}}90 deg. arise from the breaking of the A{sub 4} family symmetry by the vacuum expectation values of four 'flavon' fields pointing in specific postulated directions in flavor space.

Antusch, S.; Spinrath, M. [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, D-80805 Muenchen (Germany); King, Stephen F. [School of Physics and Astronomy, University of Southampton, SO17 1BJ Southampton (United Kingdom)

2011-01-01T23:59:59.000Z

171

Measurement of the Top-Quark Mass in the All-Hadronic Channel using the full CDF data set  

E-Print Network [OSTI]

The top-quark mass M_top is measured using top quark-antiquark pairs produced in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV and decaying into a fully hadronic final state. The full data set collected with the CDFII detector at the Fermilab Tevatron Collider, corresponding to an integrated luminosity of 9.3 fb-1, is used. Events are selected that have six to eight jets, at least one of which is identified as having originated from a b quark. In addition, a multivariate algorithm, containing multiple kinematic variables as inputs, is used to discriminate signal events from background events due to QCD multijet production. Templates for the reconstructed top-quark mass are combined in a likelihood fit to measure M_top with a simultaneous calibration of the jet-energy scale. A value of M_top = 175.07+- 1.19(stat)+1.55-1.58(syst) GeV/c^2 is obtained for the top-quark mass.

CDF Collaboration; T. Aaltonen; S. Amerio; D. Amidei; A. Anastassov; A. Annovi; J. Antos; G. Apollinari; J. A. Appel; T. Arisawa; A. Artikov; J. Asaadi; W. Ashmanskas; B. Auerbach; A. Aurisano; F. Azfar; W. Badgett; T. Bae; A. Barbaro-Galtieri; V. E. Barnes; B. A. Barnett; P. Barria; P. Bartos; M. Bauce; F. Bedeschi; S. Behari; G. Bellettini; J. Bellinger; D. Benjamin; A. Beretvas; A. Bhatti; K. R. Bland; B. Blumenfeld; A. Bocci; A. Bodek; D. Bortoletto; J. Boudreau; A. Boveia; L. Brigliadori; C. Bromberg; E. Brucken; J. Budagov; H. S. Budd; K. Burkett; G. Busetto; P. Bussey; P. Butti; A. Buzatu; A. Calamba; S. Camarda; M. Campanelli; F. Canelli; B. Carls; D. Carlsmith; R. Carosi; S. Carrillo; B. Casal; M. Casarsa; A. Castro; P. Catastini; D. Cauz; V. Cavaliere; M. Cavalli-Sforza; A. Cerri; L. Cerrito; Y. C. Chen; M. Chertok; G. Chiarelli; G. Chlachidze; K. Cho; D. Chokheli; A. Clark; C. Clarke; M. E. Convery; J. Conway; M. Corbo; M. Cordelli; C. A. Cox; D. J. Cox; M. Cremonesi; D. Cruz; J. Cuevas; R. Culbertson; N. d'Ascenzo; M. Datta; P. de Barbaro; L. Demortier; L. Marchese; M. Deninno; F. Devoto; M. D'Errico; A. Di Canto; B. Di Ruzza; J. R. Dittmann; M. D'Onofrio; S. Donati; M. Dorigo; A. Driutti; K. Ebina; R. Edgar; A. Elagin; R. Erbacher; S. Errede; B. Esham; S. Farrington; J. P. Fernández Ramos; R. Field; G. Flanagan; R. Forrest; M. Franklin; J. C. Freeman; H. Frisch; Y. Funakoshi; C. Galloni; A. F. Garfinkel; P. Garosi; H. Gerberich; E. Gerchtein; S. Giagu; V. Giakoumopoulou; K. Gibson; C. M. Ginsburg; N. Giokaris; P. Giromini; G. Giurgiu; V. Glagolev; D. Glenzinski; M. Gold; D. Goldin; A. Golossanov; G. Gomez; G. Gomez-Ceballos; M. Goncharov; O. González López; I. Gorelov; A. T. Goshaw; K. Goulianos; E. Gramellini; S. Grinstein; C. Grosso-Pilcher; R. C. Group; J. Guimaraes da Costa; S. R. Hahn; J. Y. Han; F. Happacher; K. Hara; M. Hare; R. F. Harr; T. Harrington-Taber; K. Hatakeyama; C. Hays; J. Heinrich; M. Herndon; A. Hocker; Z. Hong; W. Hopkins; S. Hou; R. E. Hughes; U. Husemann; M. Hussein; J. Huston; G. Introzzi; M. Iori; A. Ivanov; E. James; D. Jang; B. Jayatilaka; E. J. Jeon; S. Jindariani; M. Jones; K. K. Joo; S. Y. Jun; T. R. Junk; M. Kambeitz; T. Kamon; P. E. Karchin; A. Kasmi; Y. Kato; W. Ketchum; J. Keung; B. Kilminster; D. H. Kim; H. S. Kim; J. E. Kim; M. J. Kim; S. B. Kim; S. H. Kim; Y. K. Kim; Y. J. Kim; N. Kimura; M. Kirby; K. Knoepfel; K. Kondo; D. J. Kong; J. Konigsberg; A. V. Kotwal; M. Kreps; J. Kroll; M. Kruse; T. Kuhr; M. Kurata; A. T. Laasanen; S. Lammel; M. Lancaster; K. Lannon; G. Latino; H. S. Lee; J. S. Lee; S. Leo; S. Leone; J. D. Lewis; A. Limosani; E. Lipeles; A. Lister; H. Liu; Q. Liu; T. Liu; S. Lockwitz; A. Loginov; A. Lucŕ; D. Lucchesi; J. Lueck; P. Lujan; P. Lukens; G. Lungu; J. Lys; R. Lysak; R. Madrak; P. Maestro; S. Malik; G. Manca; A. Manousakis-Katsikakis; F. Margaroli; P. Marino; M. Martínez; K. Matera; M. E. Mattson; A. Mazzacane; P. Mazzanti; R. McNulty; A. Mehta; P. Mehtala; C. Mesropian; T. Miao; D. Mietlicki; A. Mitra; H. Miyake; S. Moed; N. Moggi; C. S. Moon; R. Moore; M. J. Morello; A. Mukherjee; Th. Muller; P. Murat; M. Mussini; J. Nachtman; Y. Nagai; J. Naganoma; I. Nakano; A. Napier; J. Nett; C. Neu; T. Nigmanov; L. Nodulman; S. Y. Noh; O. Norniella; L. Oakes; S. H. Oh; Y. D. Oh; I. Oksuzian; T. Okusawa; R. Orava; L. Ortolan; C. Pagliarone; E. Palencia; P. Palni; V. Papadimitriou; W. Parker; G. Pauletta; M. Paulini; C. Paus; T. J. Phillips; G. Piacentino; E. Pianori; J. Pilot; K. Pitts; C. Plager; L. Pondrom; S. Poprocki; K. Potamianos; F. Prokoshin; A. Pranko; F. Ptohos; G. Punzi; N. Ranjan; I. Redondo Fernández; P. Renton; M. Rescigno; F. Rimondi; L. Ristori; A. Robson; T. Rodriguez; S. Rolli; M. Ronzani; R. Roser; J. L. Rosner; F. Ruffini; A. Ruiz; J. Russ; V. Rusu; W. K. Sakumoto; Y. Sakurai; L. Santi; K. Sato; V. Saveliev; A. Savoy-Navarro; P. Schlabach; E. E. Schmidt; T. Schwarz; L. Scodellaro; F. Scuri; S. Seidel; Y. Seiya; A. Semenov; F. Sforza; S. Z. Shalhout; T. Shears; P. F. Shepard; M. Shimojima; M. Shochet; I. Shreyber-Tecker; A. Simonenko; K. Sliwa; J. R. Smith; F. D. Snider; V. Sorin; H. Song; M. Stancari; R. St. Denis; D. Stentz; J. Strologas; Y. Sudo; A. Sukhanov; I. Suslov; K. Takemasa; Y. Takeuchi; J. Tang; M. Tecchio; P. K. Teng; J. Thom; E. Thomson; V. Thukral; D. Toback; S. Tokar; K. Tollefson; T. Tomura; D. Tonelli; S. Torre; D. Torretta; P. Totaro; M. Trovato; F. Ukegawa; S. Uozumi; F. Vázquez; G. Velev; C. Vellidis; C. Vernieri; M. Vidal; R. Vilar; J. Vizán; M. Vogel; G. Volpi; P. Wagner; R. Wallny; S. M. Wang; D. Waters; W. C. Wester III; D. Whiteson; A. B. Wicklund; S. Wilbur; H. H. Williams; J. S. Wilson; P. Wilson; B. L. Winer; P. Wittich; S. Wolbers; H. Wolfe; T. Wright; X. Wu; Z. Wu; K. Yamamoto; D. Yamato; T. Yang; U. K. Yang; Y. C. Yang; W. -M. Yao; G. P. Yeh; K. Yi; J. Yoh; K. Yorita; T. Yoshida; G. B. Yu

2014-10-08T23:59:59.000Z

172

Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters Final Report to the Subsurface Biogeochemical Research Program  

SciTech Connect (OSTI)

. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Our study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3-part research plan involving (1) development of computer codes and techniques to estimate mass-transfer parameters from time-lapse electrical data; (2) bench-scale experiments on synthetic materials and materials from cores from the Hanford 300 Area; and (3) field demonstration experiments at the DOE’s Hanford 300 Area.

Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Timothy; Binley, Andrew; Lane, John

2014-03-10T23:59:59.000Z

173

Strong and Weak Lensing United III: Measuring the Mass Distribution of the Merging Galaxy Cluster 1E0657-56  

SciTech Connect (OSTI)

The galaxy cluster 1E0657-56 (z = 0.296) is remarkably well-suited for addressing outstanding issues in both galaxy evolution and fundamental physics. We present a reconstruction of the mass distribution from both strong and weak gravitational lensing data. Multi-color, high-resolution HST ACS images allow detection of many more arc candidates than were previously known, especially around the subcluster. Using the known redshift of one of the multiply imaged systems, we determine the remaining source redshifts using the predictive power of the strong lens model. Combining this information with shape measurements of ''weakly'' lensed sources, we derive a high-resolution, absolutely-calibrated mass map, using no assumptions regarding the physical properties of the underlying cluster potential. This map provides the best available quantification of the total mass of the central part of the cluster. We also confirm the result from Clowe et al. (2004, 2006a) that the total mass does not trace the baryonic mass.

Bradac, Marusa; Clowe, Douglas; Gonzalez, Anthony H.; Marshall, Phil; Forman, William; Jones, Christine; Markevitch, Maxim; Randall, Scott; Schrabback, Tim; Zaritsky,; /KIPAC, Menlo Park /Bonn, Inst. Astrophys. /Arizona U., Astron. Dept. - Steward Observ. /Florida U. /Harvard-Smithsonian Ctr. Astrophys.

2006-09-27T23:59:59.000Z

174

Tracing the geometry around a massive, axisymmetric body to measure, through gravitational waves, its mass moments and electromagnetic moments  

E-Print Network [OSTI]

The geometry around a rotating massive body, which carries charge and electrical currents, could be described by its multipole moments (mass moments, mass-current moments, electric moments, and magnetic moments). When a small body is orbiting this massive body, it will move on geodesics, at least for a time interval that is short with respect to the characteristic time of the binary due to gravitational radiation. By monitoring the waves emitted by the small body we are actually tracing the geometry of the central object, and hence, in principle, we can infer all its multipole moments. This paper is a generalization of previous similar results by Ryan. The fact that the electromagnetic moments of spacetime can be measured demonstrates that one can obtain information about the electromagnetic field purely from gravitational wave analysis. Additionally, these measurements could be used as a test of the no-hair theorem for black holes.

T. P. Sotiriou; T. A. Apostolatos

2004-10-25T23:59:59.000Z

175

Precision Measurement of the Mass and Lifetime of the ?[0 over b] Baryon  

E-Print Network [OSTI]

Using a proton-proton collision data sample corresponding to an integrated luminosity of 3??fb[superscript ?1] collected by LHCb at center-of-mass energies of 7 and 8 TeV, about 3800 ?0b??+c??, ?+c?pK??+ signal decays are ...

Counts, Ian Thomas Hunt

176

Precision Measurement of the X(3872) Mass in J/ psi pi + pi - Decays  

E-Print Network [OSTI]

We present an analysis of the mass of the X(3872) reconstructed via its decay to J/??[superscript +]?[superscript -] using 2.4??fb[superscript -1] of integrated luminosity from pp? collisions at ?s=1.96??TeV, collected ...

Xie, Si

177

Measurement of Trace I-129 Concentrations in CsI Powder and Organic Liquid Scintillator with Accelerator Mass Spectrometry  

E-Print Network [OSTI]

Levels of trace radiopurity in active detector materials is a subject of major concern in low-background experiments. Procedures were devised to measure trace concentrations of I-129 in the inorganic salt CsI as well as in organic liquid scintillator with Accelerator Mass Spectrometry (AMS) which leads to improvement in sensitivities by several orders of magnitude over other methods. No evidence of their existence in these materials were observed. Limits of scintillator, respectively, were derived.These are the first results in a research program whose goals are to develop techniques to measure trace radioactivity in detector materials by AMS.

K. J. Dong

2005-12-01T23:59:59.000Z

178

Measurement of Trace $^{129}I$ Concentrations in CsI Powder and Organic Liquid Scintillator with Accelerator Mass Spectrometry  

E-Print Network [OSTI]

Levels of trace radiopurity in active detector materials is a subject of major concern in low-background experiments. Procedures were devised to measure trace concentrations of I-129 in the inorganic salt CsI as well as in organic liquid scintillator with Accelerator Mass Spectrometry (AMS) which leads to improvement in sensitivities by several orders of magnitude over other methods. No evidence of their existence in these materials were observed. Limits of scintillator, respectively, were derived.These are the first results in a research program whose goals are to develop techniques to measure trace radioactivity in detector materials by AMS.

Dong, K J

2007-01-01T23:59:59.000Z

179

Measurement of the top quark mass using template methods on dilepton events in p anti-p collisions at s**(1/2) = 1.96-TeV  

SciTech Connect (OSTI)

The authors describe a measurement of the top quark mass from events produced in p{bar p} collisions at a center-of-mass energy of 1.96 TeV, using the Collider Detector at Fermilab. They identify t{bar t} candidates where both W bosons from the top quarks decay into leptons (e{nu}, {mu}{nu}, or {tau}{nu}) from a data sample of 360 pb{sup -1}. The top quark mass is reconstructed in each event separately by three different methods, which draw upon simulated distributions of the neutrino pseudorapidity, t{bar t} longitudinal momentum, or neutrino azimuthal angle in order to extract probability distributions for the top quark mass. For each method, representative mass distributions, or templates, are constructed from simulated samples of signal and background events, and parameterized to form continuous probability density functions. A likelihood fit incorporating these parameterized templates is then performed on the data sample masses in order to derive a final top quark mass. Combining the three template methods, taking into account correlations in their statistical and systematic uncertainties, results in a top quark mass measurement of 170.1 {+-} 6.0(stat.) {+-} 4.1(syst.) GeV/c{sup 2}.

Abulencia, A.; Acosta, D.; Adelman, Jahred A.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; /Taiwan, Inst.

2006-02-01T23:59:59.000Z

180

Nuclear Resonance Fluorescence to Measure Plutonium Mass in Spent Nuclear Fuel  

E-Print Network [OSTI]

and Nuclear Recoil . . . . . . . . . . . . . . . . . . . . .2 Quantitative Measurements using NRF 2.1 Nuclear ResonanceFuture Work A Transmission Nuclear Resonance Fluorescence

Ludewigt, Bernhard A

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mass difference measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Mass Measurements of Proton-Rich Nuclei Fe-50 and Ni-54  

E-Print Network [OSTI]

, and target thicknesses determined the Q-value scales shown in Fig. 2. The resulting Q values and mass excesses (all in MeV) are Q("Fe) =-50..95+0.06, M(SOFe) =-34.48+0.06 and Q("Ni) = -50.19+0.05, M("Ni) =-39.21 +0.05, with the mass results based on a... Station, Texas 77843 {Received 6 December 1976) The reactions "Fe{'He,'He)' Fe and "Ni{'He,'He)"Ni have been observed at an incident a energy of 110 MeV. The reaction Q values are found to be Q{ Fe) = ?50.95 + 0.06 MeV and Q{' Ni) = ?50.19 + 0.05 Me...

Tribble, Robert E.; Cossairt, J. D.; May, D. P.; Kenefick, R. A.

1977-01-01T23:59:59.000Z

182

Manifold and method of batch measurement of Hg-196 concentration using a mass spectrometer  

DOE Patents [OSTI]

A sample manifold and method of its use has been developed so that milligram quantities of mercury can be analyzed mass spectroscopically to determine the .sup.196 Hg concentration to less than 0.02 atomic percent. Using natural mercury as a standard, accuracy of .+-.0.002 atomic percent can be obtained. The mass spectrometer preferably used is a commercially available GC/MS manufactured by Hewlett Packard. A novel sample manifold is contained within an oven allowing flow rate control of Hg into the MS. Another part of the manifold connects to an auxiliary pumping system which facilitates rapid clean up of residual Hg in the manifold. Sample cycle time is about 1 hour.

Grossman, Mark W. (Belmont, MA); Evans, Roger (N. Hampton, NH)

1991-01-01T23:59:59.000Z

183

Manifold and method of batch measurement of Hg-196 concentration using a mass spectrometer  

DOE Patents [OSTI]

A sample manifold and method of its use has been developed so that milligram quantities of mercury can be analyzed mass spectroscopically to determine the [sup 196]Hg concentration to less than 0.02 atomic percent. Using natural mercury as a standard, accuracy of [+-]0.002 atomic percent can be obtained. The mass spectrometer preferably used is a commercially available GC/MS manufactured by Hewlett Packard. A novel sample manifold is contained within an oven allowing flow rate control of Hg into the MS. Another part of the manifold connects to an auxiliary pumping system which facilitates rapid clean up of residual Hg in the manifold. Sample cycle time is about 1 hour. 8 figures.

Grossman, M.W.; Evans, R.

1991-11-26T23:59:59.000Z

184

Can we constrain interior structure of rocky exoplanets from mass and radius measurements?  

E-Print Network [OSTI]

We present an inversion method based on Bayesian analysis to constrain the interior structure of terrestrial exoplanets, in the form of chemical composition of the mantle and core size. Specifically, we identify what parts of the interior structure of terrestrial exoplanets can be determined from observations of mass, radius, and stellar elemental abundances. We perform a full probabilistic inverse analysis to formally account for observational and model uncertainties and obtain confidence regions of interior structure models. This enables us to characterize how model variability depends on data and associated uncertainties. We test our method on terrestrial solar system planets and find that our model predictions are consistent with independent estimates. Furthermore, we apply our method to synthetic exoplanets up to 10 Earth masses and up to 1.7 Earth radii as well as to exoplanet Kepler-36b. Importantly, the inversion strategy proposed here provides a framework for understanding the level of precision requ...

Dorn, Caroline; Heng, Kevin; Alibert, Yann; Connolly, James A D; Benz, Willy; Tackley, Paul

2015-01-01T23:59:59.000Z

185

THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. III. MEASURING AGES AND MASSES OF PARTIALLY RESOLVED STELLAR CLUSTERS  

SciTech Connect (OSTI)

The apparent age and mass of a stellar cluster can be strongly affected by stochastic sampling of the stellar initial mass function (IMF), when inferred from the integrated color of low-mass clusters ({approx}<10{sup 4} M {sub Sun }). We use simulated star clusters to show that these effects are minimized when the brightest, rapidly evolving stars in a cluster can be resolved, and the light of the fainter, more numerous unresolved stars can be analyzed separately. When comparing the light from the less luminous cluster members to models of unresolved light, more accurate age estimates can be obtained than when analyzing the integrated light from the entire cluster under the assumption that the IMF is fully populated. We show the success of this technique first using simulated clusters, and then with a stellar cluster in M31. This method represents one way of accounting for the discrete, stochastic sampling of the stellar IMF in less massive clusters and can be leveraged in studies of clusters throughout the Local Group and other nearby galaxies.

Beerman, Lori C.; Johnson, L. Clifton; Fouesneau, Morgan; Dalcanton, Julianne J.; Weisz, Daniel R.; Williams, Ben F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Seth, Anil C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Bianchi, Luciana C. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Caldwell, Nelson [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Gouliermis, Dimitrios A. [Zentrum fuer Astronomie, Institut fuer Theoretische Astrophysik, Universitaet Heidelberg, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Kalirai, Jason S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Larsen, Soren S. [Department of Astrophysics, IMAPP, Radboud University Nijmegen, P.O. Box 9010, NL-6500 GL Nijmegen (Netherlands); Melbourne, Jason L. [Caltech Optical Observatories, Division of Physics, Mathematics and Astronomy, Mail Stop 301-17, California Institute of Technology, Pasadena, CA 91125 (United States); Rix, Hans-Walter [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Skillman, Evan D., E-mail: beermalc@astro.washington.edu [Department of Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)

2012-12-01T23:59:59.000Z

186

Constraining the strangeness content of the nucleon by measuring the $?$ meson mass shift in nuclear matter  

E-Print Network [OSTI]

The behavior of the $\\phi$ meson at finite density is studied, making use of a QCD sum rule approach in combination with the maximum entropy method. It is demonstrated that a possible mass shift of the $\\phi$ in nuclear matter is strongly correlated to the strangeness content of the nucleon, which is proportional to the strange sigma term, $\\sigma_{sN} = m_s \\langle N | \\overline{s}s | N \\rangle$. Our results furthermore show that, depending on the value of $\\sigma_{sN}$, the $\\phi$ meson could receive both a positive or negative mass shift at nuclear matter density. We find that these results depend only weakly on potential modifications of the width of the $\\phi$ meson peak and on assumptions made on the behavior of four-quark condensates at finite density. To check the stability of our findings, we take into account several higher order corrections to the operator product expansion, including $\\alpha_s$-corrections, terms of higher order in the strange quark mass and terms of higher twist that have not been considered in earlier works.

Philipp Gubler; Keisuke Ohtani

2015-02-07T23:59:59.000Z

187

Measurements of NaI:Tl Electron Response using SLYNCI: Comparison of Different Samples  

SciTech Connect (OSTI)

This paper measures the sample to sample variation in the light yield non-proportionality of NaI:Tl, and so explores whether this is an invariant characteristic of the material or whether it is dependent on the chemical and physical properties of tested sample. In this work we report on the electron response of nine crystals of NaI(Tl), differing in shape, volume, age, manufacturer and quality. The non-proportionality has been measured at the SLYNCI facility in the energy range between 3.5 to 460 keV. The Scintillation Light Yield Non-proportionality Characterization Instrument (SLYNCI) is a next generation Compton Coincidence device, explicitly designed to study the 'non-proportionality' of the electron response in scintillators and the contribution of this effect to the intrinsic energy resolution. We also discuss the gamma response, x-ray excited emission spectra and decay times for the nine crystals, in order to provide a complete characterization of their physical properties and determine whether the mechanism of scintillation varies between samples.

Hull, G; Choong, W; Moses, W W; Bizarri, G; Valentine, J D; Payne, S A; Cherepy, N; Reutter, B W

2007-11-12T23:59:59.000Z

188

Measurement of the Top Quark Mass using Dilepton Events and a Neutrino Weighting Algorithm with the D0 Experiment at the Tevatron (Run II)  

SciTech Connect (OSTI)

Elementary particle physics raises questions that are several thousand years old. What are the fundamental components of matter and how do they interact? These questions are linked to the question of what happened in the very first moments after the creation of the universe. Modern physics systematically tests nature to find answers to these and other fundamental questions. Precise theories are developed that describe various phenomena and at the same time are reduced to a few basic principals of nature. Simplification and reduction have always been guiding concepts of physics. The interplay between experimental data and theoretical descriptions led to the Standard Model of elementary particle physics. It summarizes the laws of nature and is one of most precise descriptions of nature achieved by mankind. Despite the great success of the Standard Model it is not the ultimate theory of everything. Models beyond the Standard Model try to unify all interactions in one grand unified theory. The number of free parameters is attempted to be reduced. Gravity is attempted to be incorporated. Extensions to the Standard Model like supersymmetry address the so-called hierarchy problem. Precision measurements are the key for searches of new particles and new physics. A powerful tool of experimental particle physics are particle accelerators. They provide tests of the Standard Model at smallest scales. New particles are produced and their properties are investigated. In 1995 the heaviest known elementary particle, called top quark, has been discovered at Fermilab. It differs from all other lighter quarks due to the high mass and very short lifetime. This makes the top quark special and an interesting object to be studied. A rich program of top physics at Fermilab investigates whether the top quark is really the particle as described by the Standard Model. The top quark mass is a free parameter of the theory that has been measured precisely. This thesis presents a precise measurement of the top quark mass by the D0 experiment at Fermilab in the dilepton final states. The comparison of the measured top quark masses in different final states allows an important consistency check of the Standard Model. Inconsistent results would be a clear hint of a misinterpretation of the analyzed data set. With the exception of the Higgs boson, all particles predicted by the Standard Model have been found. The search for the Higgs boson is one of the main focuses in high energy physics. The theory section will discuss the close relationship between the physics of the Higgs boson and the top quark.

Meyer, Joerg; /Bonn U.

2007-01-01T23:59:59.000Z

189

Measurement of the Mass of the W Boson in $e^+ e^-$ collisions using the Fully Leptonic Channel  

E-Print Network [OSTI]

A novel method of determining the mass of the W boson in the W+W- -> lnu lnu channel is presented and applied to 667pb^-1 of data recorded at the center-of- mass energies in the range 183-207 GeV with the OPAL detector at LEP. The Measured energies of charged leptons and the results of a new procedure based on an approximate kinematic reconstruction of the events are combined to give: Mw=80.41+-0.41+-0.13 GeV, when the first error is statistical and the second is systematic. The systematic error is dominated by the uncertainty on the lepton energy, which is calibrated using data, and the parameterization of the variables used in the fitting, which is obtained using Monte Carlo events. Both of these are limited by statistics.

Abbiendi, G; Ĺkesson, P F; Alexander, Gideon; Allison, J; Anagnostou, G; Anderson, K J; Asai, S; Axen, D A; Azuelos, Georges; Bailey, I; Barberio, E; Barlow, R J; Batley, J Richard; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, Siegfried; Biebel, O; Bloodworth, Ian J; Boeriu, O; Bock, P; Bonacorsi, D; Boutemeur, M; Braibant, S; Brigliadori, L; Brown, R M; Büsser, K; Burckhart, H J; Cammin, J; Campana, S; Carnegie, R K; Caron, B; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Cohen, I; Csilling, Akos; Cuffiani, M; Dado, S; Dallavalle, G M; Dallison, S; de Roeck, A; De Wolf, E A; Desch, Klaus; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, Franco Luigi; Feld, L; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Fürtjes, A; Gagnon, P; Gary, J W; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Gruwé, M; Günther, P O; Sen-Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harder, K; Harel, A; Harin-Dirac, M; Hauschild, M; Hauschildt, J; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Hensel, C; Herten, G; Heuer, R D; Hill, J C; Hoffman, K; Homer, R James; Horváth, D; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jones, C R; Jovanovic, P; Junk, T R; Kanaya, N; Kanzaki, J; Karapetian, G V; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kim, D H; Klein, K; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Kokott, T P; Komamiya, S; Kormos, L L; Kowalewski, R V; Krämer, T; Kress, T; Krieger, P; Von Krogh, J; Krop, D; Kühl, T; Kupper, M; Kyberd, P; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Layter, J G; Leins, A; Lellouch, Daniel; Letts, J; Levinson, L; Lillich, J; Littlewood, C; Lloyd, S L; Loebinger, F K; Lü, J; Ludwig, J; Macchiolo, A; MacPherson, A L; Mader, W; Marcellini, S; Marchant, T E; Martin, A J; Martin, J P; Masetti, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McMahon, T J; McPherson, R A; Meijers, F; Méndez-Lorenzo, P; Menges, W; Merritt, F S; Mes, H; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Moed, S; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Neal, H A; Nisius, R; O'Neale, S W; Oh, A; Okpara, A N; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Patrick, G N; Pilcher, J E; Pinfold, James L; Plane, D E; Poli, B; Polok, J; Pooth, O; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Rick, Hartmut; Roney, J M; Rosati, S; Rozen, Y; Runge, K; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sarkisyan-Grinbaum, E; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Skuja, A; Smith, A M; Sobie, Randall J; Söldner-Rembold, S; Spagnolo, S; Spanó, F; Stahl, A; Stephens, K; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Taylor, R J; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Tran, P; Trefzger, T M; Tricoli, A; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vachon, B; Vollmer, C F; Vannerem, P; Verzocchi, M; Voss, H; Vossebeld, Joost Herman; Waller, D; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wetterling, D; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Zacek, V; Zer-Zion, D

2003-01-01T23:59:59.000Z

190

First Use of High Charge States for Mass Measurements of Short-lived Nuclides in a Penning Trap  

E-Print Network [OSTI]

Penning trap mass measurements of short-lived nuclides have been performed for the first time with highly-charged ions (HCI), using the TITAN facility at TRIUMF. Compared to singly-charged ions, this provides an improvement in experimental precision that scales with the charge state q. Neutron-deficient Rb-isotopes have been charge bred in an electron beam ion trap to q = 8 - 12+ prior to injection into the Penning trap. In combination with the Ramsey excitation scheme, this unique setup creating low energy, highly-charged ions at a radioactive beam facility opens the door to unrivalled precision with gains of 1-2 orders of magnitude. The method is particularly suited for short-lived nuclides such as the superallowed {\\beta} emitter 74Rb (T1/2 = 65 ms). The determination of its atomic mass and an improved QEC-value are presented.

S. Ettenauer; M. C. Simon; A. T. Gallant; T. Brunner; U. Chowdhury; V. V. Simon; M. Brodeur; A. Chaudhuri; E. Mané; C. Andreoiu; G. Audi; J. R. Crespo López-Urrutia; P. Delheij; G. Gwinner; A. Lapierre; D. Lunney; M. R. Pearson; R. Ringle; J. Ullrich; J. Dilling

2011-09-15T23:59:59.000Z

191

On-shell constrained $M_2$ variables with applications to mass measurements and topology disambiguation  

E-Print Network [OSTI]

We consider a class of on-shell constrained mass variables that are 3+1 dimensional generalizations of the Cambridge $M_{T2}$ variable and that automatically incorporate various assumptions about the underlying event topology. The presence of additional on-shell constraints causes their kinematic distributions to exhibit sharper endpoints than the usual $M_{T2}$ distribution. We study the mathematical properties of these new variables, e.g., the uniqueness of the solution selected by the minimization over the invisible particle 4-momenta. We then use this solution to reconstruct the masses of various particles along the decay chain. We propose several tests for validating the assumed event topology in missing energy events from new physics. The tests are able to determine: 1) whether the decays in the event are two-body or three-body, 2) if the decay is two-body, whether the intermediate resonances in the two decay chains are the same, and 3) the exact sequence in which the visible particles are emitted from each decay chain.

Won Sang Cho; James S. Gainer; Doojin Kim; Konstantin T. Matchev; Filip Moortgat; Luc Pape; Myeonghun Park

2015-03-25T23:59:59.000Z

192

PHYSICAL REVIEW E 85, 061201 (2012) Temperature-difference-driven mass transfer through the vapor from a cold to a warm liquid  

E-Print Network [OSTI]

.1103/PhysRevE.85.061201 PACS number(s): 05.70.Np, 05.70.Ln, 64.70.fm I. INTRODUCTION ConditionsPHYSICAL REVIEW E 85, 061201 (2012) Temperature-difference-driven mass transfer through the vapor. The interfacial jumps allow unexpected transport phenomena, such as the inverted temperature profile [Pao, Phys

Struchtrup, Henning

193

A Method of Mass Measurement in Black Hole Binaries Using Timing and High Resolution X-ray Spectroscopy  

E-Print Network [OSTI]

In X-ray binaries, several percent of the compact object luminosity is intercepted by the surface of the normal companion and re-radiated through Compton reflection and the K-fluorescence. This reflected emission follows the variability of the compact object with a delay approximately equal to the orbital radius divided by the speed of light. This provides the possibility of measuring the orbital radius and thus substantially refining the compact object mass determination compared to using optical data alone. We demonstrate that it may be feasible to measure the time delay between the direct and reflected emission using cross-correlation of the light curves observed near the Kalpha line and above the K-edge of neutral iron. In the case of Cyg X-1, the time delay measurement is feasible with a 300--1000 ksec observation by a telescope with a 1000 cm^2 effective area near 6.4 keV and with a ~5eV energy resolution. With longer exposures, it may be possible to obtain mass constraints even if an X-ray source in the binary system lacks an optical counterpart.

A. Vikhlinin

1999-06-09T23:59:59.000Z

194

Neutron to proton mass difference, parton distribution functions and baryon resonances from dynamics on the Lie group u(3)  

E-Print Network [OSTI]

We present a hamiltonian structure on the Lie group u(3) to describe the baryon spectrum. The ground state is identified with the proton. From this single fit we calculate approximately the relative neutron to proton mass shift to within half a percentage of the experimental value. From the same fit we calculate the nucleon and delta resonance spectrum with correct grouping and no missing resonances. For specific spin eigenfunctions we calculate the delta to nucleon mass ratio to within one percent. Finally we derive parton distribution functions that compare well with those for the proton valence quarks. The distributions are generated by projecting the proton state to space via the exterior derivative on u(3). We predict scarce neutral flavour singlets which should be visible in neutron diffraction dissociation experiments or in invariant mass spectra of protons and negative pions in B-decays and in photoproduction on neutrons. The presence of such singlet states distinguishes experimentally the present model from the standard model as does the prediction of the neutron to proton mass splitting. Conceptually the Hamiltonian may describe an effective phenomenology or more radically describe interior dynamics implying quarks and gluons as projections from u(3) which we then call allospace.

Ole L. Trinhammer

2011-09-22T23:59:59.000Z

195

Ultra High Energy Cosmic Rays: the present position and the need for mass composition measurements  

E-Print Network [OSTI]

The present situation with regard to experimental data on ultra high-energy cosmic rays is briefly reviewed. Whilst detailed knowledge of the shape of the energy spectrum is still lacking, it is clear that events above 10^20 eV do exist. Evidence for clustering of the directions of some of the highest energy events remains controversial. Clearly, more data are needed and these will come from the southern branch of the Pierre Auger Observatory in the next few years. What is evident is that our knowledge of the mass composition of cosmic rays is deficient at all energies above 10^18 eV. It must be improved if we are to discover the origin of the highest energy cosmic rays. The major part of the paper is concerned with this problem: it is argued that there is no compelling evidence to support the common assumption that cosmic rays of the highest energies are protons.

A. A. Watson

2003-12-18T23:59:59.000Z

196

Fuel nitrogen release during black liquor pyrolysis; Part 1: Laboratory measurements at different conditions  

SciTech Connect (OSTI)

Fuel nitrogen release during black liquor pyrolysis is high. There is only minor release during the drying stage. Ammonia is the main fixed nitrogen species formed. The rate of fixed nitrogen release increases with increasing temperature. The level of fixed nitrogen released by birch liquor is almost twice the level for pine liquor. Assuming complete conversion to NO, fixed nitrogen yields gave NO concentrations near typically measured values for flue gases in full scale recovery boilers. The purpose of this work was to gain more detailed information about the behavior of the fuel nitrogen in black liquor combustion. The work focused on the pyrolysis or devolatilization of the combustion process. Devolatilization is the stage at which the majority (typically 50--80%) of the liquor organics release from a fuel particle or droplet as gaseous species due to the rapid destruction of the organic macromolecules in the liquor. In this paper, the authors use the terms devolatilization and pyrolysis interchangeably with no difference in their meaning.

Aho, K.; Vakkilainen, E. (A. Ahistrom Corp., Varkaus (Finland)); Hupa, M. (Abo Akademi Univ., Turku (Finland). Chemical Engineering Dept.)

1994-05-01T23:59:59.000Z

197

CDF measurement of the top quark mass in the lepton + jets channel using the multivariate template method  

SciTech Connect (OSTI)

The authors measure the mass of the top quark using 162 pb{sup -1} of data collected by the CDF experiment at FNAL in Run II. The decay chain t{bar t} {yields} bq{bar q}{bar b}lv is studied using a novel technique called the Multivariate Template Method (MTM). Using this technique they obtain a result of M{sub top} = 179.6{sub -6.3}{sup +6.4} {+-} 6.8 GeV/c{sup 2} for the top quark.

Freeman, John; /Fermilab

2004-12-01T23:59:59.000Z

198

Extinction of the N=20 neutron-shell closure for 32Mg examined by direct mass measurements  

E-Print Network [OSTI]

The 'island of inversion' around $^{32}$Mg is one of the most important paradigm for studying the disappearance of the stabilizing 'magic' of a shell closure. We present the first Penning-trap mass measurements of the exotic nuclides $^{29-31}$Na and $^{30-34}$Mg, which allow a precise determination of the empirical shell gap for $^{32}$Mg. The new value of 1.10(3) MeV is the lowest observed shell gap for any nuclide with a canonical magic number.

A. Chaudhuri; C. Andreoiu; T. Brunner; U. Chowdhury; S. Ettenauer; A. T. Gallant; G. Gwinner; A. A. Kwiatkowski; A. Lennarz; D. Lunney; T. D. Macdonald; B. E. Schultz; M. C. Simon; V. V. Simon; J. Dilling

2013-10-09T23:59:59.000Z

199

Mass changes in NSTX Surface Layers with Li Conditioning as Measured by Quartz Microbalances  

SciTech Connect (OSTI)

Dynamic retention, lithium deposition, and the stability of thick deposited layers were measured by three quartz crystal microbalances (QMB) deployed in plasma shadowed areas at the upper and lower divertor and outboard midplane in the National Spherical Torus Experiment (NSTX). Deposition of 185 {micro}/g/cm{sup 2} over 3 months in 2007 was measured by a QMB at the lower divertor while a QMB on the upper divertor, that was shadowed from the evaporator, received an order of magnitude less deposition. During helium glow discharge conditioning both neutral gas collisions and the ionization and subsequent drift of Li{sup +} interrupted the lithium deposition on the lower divertor. We present calculations of the relevant mean free paths. Occasionally strong variations in the QMB frequency were observed of thick lithium films suggesting relaxation of mechanical stress and/or flaking or peeling of the deposited layers.

C.H. Skinner, H.W. Kugel, A. L. Roquemore, PS. Krstic and A. Beste

2008-06-09T23:59:59.000Z

200

Measurement of the top quark mass in $p \\bar{p}$ collisions using events with two leptons  

SciTech Connect (OSTI)

We present a measurement of the top quark mass (m{sub t}) in p{bar p} collisions at {radical}s = 1.96 TeV using t{bar t} events with two leptons (ee, e{mu} or {mu}{mu}) in the final state in 4.3 fb{sup -1} of data collected with the D0 detector at the Fermilab Tevatron collider. We analyze the kinematically underconstrained dilepton events by integrating over the neutrino rapidity distributions. We reduce the dominant systematic uncertainties from jet energy calibration using a correction obtained from t{bar t} {yields} {ell} + jets events. We also correct jets in simulated events to replicate the quark flavor dependence of the jet response in data. In combination with our previous analysis, we measure m{sub t} = 174.0 {+-} 2.4(stat) {+-} 1.4(syst) GeV.

Abazov, Victor Mukhamedovich; /Dubna, JINR; Abbott, Braden Keim; /Oklahoma U.; Acharya, Bannanje Sripath; /Tata Inst.; Adams, Mark Raymond; /Illinois U., Chicago; Adams, Todd; /Florida State U.; Alexeev, Guennadi D.; /Dubna, JINR; Alkhazov, Georgiy D.; /St. Petersburg, INP; Alton, Andrew K.; /Michigan U. /Augustana Coll., Sioux Falls; Alverson, George O.; /Northeastern U.; Aoki, Masato; /Fermilab; Askew, Andrew Warren; /Florida State U. /Stockholm U.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mass difference measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey  

E-Print Network [OSTI]

The large-scale structure in the distribution of galaxies is thought to arise from the gravitational instability of small fluctuations in the initial density field of the universe. A key test of this hypothesis is that superclusters of galaxies in the process of formation should generate systematic infall of other galaxies. This would be evident in the pattern of recessional velocities, causing an anisotropy in the inferred spatial clustering of galaxies. Here we report a precise measurement of this clustering, using the redshifts of more than 141,000 galaxies from the two-degree-field galaxy redshift survey. We determine the parameter beta = Omega^{0.6}/b = 0.43 +- 0.07, where Omega is the total mass-density parameter and b is a measure of the `bias' of the luminous galaxies in the survey. Combined with the anisotropy of the cosmic microwave background, our results favour a low-density universe with Omega approximately 0.3.

J. A. Peacock; S. Cole; P. Norberg; C. M. Baugh; J. Bland-Hawthorn; T. Bridges; R. D. Cannon; M. Colless; C. Collins; W. Couch; G. Dalton; K. Deeley; R. De Propris; S. P. Driver; G. Efstathiou; R. S. Ellis; C. S. Frenk; K. Glazebrook; C. Jackson; O. Lahav; I. Lewis; S. Lumsden; S. Maddox; W. J. Percival; B. A. Peterson; I. Price; W. Sutherland; K. Taylor

2001-03-09T23:59:59.000Z

202

Molecular line intensities as measures of cloud masses - II. Conversion factors for specific galaxy types  

E-Print Network [OSTI]

We present theoretically-established values of the CO-to-H2 and C-to-H2 conversion factors that may be used to estimate the gas masses of external galaxies. We consider four distinct galaxy types, represented by M51, NGC 6946, M82 and SMC N27. The physical parameters that best represent the conditions within the molecular clouds in each of the galaxy types are estimated using a chi^2 analysis of several observed atomic fine structure and CO rotational lines. This analysis is explored over a wide range of density, radiation field, extinction, and other relevant parameters. Using these estimated physical conditions in methods that we have previously established, CO-to-H2 conversion factors are then computed for CO transitions up to J=9-8. For the conventional CO(1-0) transition, the computed conversion factor varies significantly below and above the canonical value for the Milky Way in the four galaxy types considered. Since atomic carbon emission is now frequently used as a probe of external galaxies, we also present, for the first time, the C-to-H2 conversion factor for this emission in the four galaxy types considered.

T. A. Bell; S. Viti; D. A. Williams

2007-04-19T23:59:59.000Z

203

Upgraded D[O] calorimeter electronics for short Tevatron bunch space and the effect of pile-up on the W mass measurement  

SciTech Connect (OSTI)

The high luminosity and short bunch spacing time of the upgraded Tevatron force the calorimeter to replace a significant part of the present electronics. The W mass measurement was used to study the pile-up effects.

Lokos, S.

1992-11-01T23:59:59.000Z

204

Measuring the luminosity and virial black hole mass dependence of quasar-galaxy clustering at z ~ 0.8  

E-Print Network [OSTI]

We study the dependence of quasar clustering on quasar luminosity and black hole mass by measuring the angular overdensity of photometrically selected galaxies imaged by WISE about z $\\sim$ 0.8 quasars from SDSS. By measuring the quasar-galaxy cross-correlation function and using photometrically selected galaxies, we achieve a higher density of tracer objects and a more sensitive detection of clustering than measurements of the quasar autocorrelation function. We test models of quasar formation and evolution by measuring the luminosity dependence of clustering amplitude. We find a significant overdensity of WISE galaxies about z $\\sim$ 0.8 quasars at 0.2--6.4 h$^{-1}$ Mpc in projected comoving separation. We find no appreciable increase in clustering amplitude with quasar luminosity across a decade in luminosity, and a power-law fit between luminosity and clustering amplitude gives an exponent of $-$0.01 $\\pm$ 0.06 (1 $\\sigma$ errorbar). We also fail to find a significant relationship between clustering ampli...

Krolewski, Alex G

2015-01-01T23:59:59.000Z

205

EA Systems Examples Induction and Recursion Length Measuring the Universe Analysis Number systems of different lengths,  

E-Print Network [OSTI]

EA Systems Examples Induction and Recursion Length Measuring the Universe Analysis Number systems of Mathematics University of Bristol April 21, 2008 Richard.Pettigrew@bris.ac.uk Natural number systems and infinitesimal analysis #12;EA Systems Examples Induction and Recursion Length Measuring the Universe Analysis

Forster, T.E.

206

MEASUREMENT OF THE RADIUS OF NEUTRON STARS WITH HIGH SIGNAL-TO-NOISE QUIESCENT LOW-MASS X-RAY BINARIES IN GLOBULAR CLUSTERS  

SciTech Connect (OSTI)

This paper presents the measurement of the neutron star (NS) radius using the thermal spectra from quiescent low-mass X-ray binaries (qLMXBs) inside globular clusters (GCs). Recent observations of NSs have presented evidence that cold ultra dense matter-present in the core of NSs-is best described by ''normal matter'' equations of state (EoSs). Such EoSs predict that the radii of NSs, R{sub NS}, are quasi-constant (within measurement errors, of {approx}10%) for astrophysically relevant masses (M{sub NS}>0.5 M{sub Sun }). The present work adopts this theoretical prediction as an assumption, and uses it to constrain a single R{sub NS} value from five qLMXB targets with available high signal-to-noise X-ray spectroscopic data. Employing a Markov chain Monte-Carlo approach, we produce the marginalized posterior distribution for R{sub NS}, constrained to be the same value for all five NSs in the sample. An effort was made to include all quantifiable sources of uncertainty into the uncertainty of the quoted radius measurement. These include the uncertainties in the distances to the GCs, the uncertainties due to the Galactic absorption in the direction of the GCs, and the possibility of a hard power-law spectral component for count excesses at high photon energy, which are observed in some qLMXBs in the Galactic plane. Using conservative assumptions, we found that the radius, common to the five qLMXBs and constant for a wide range of masses, lies in the low range of possible NS radii, R{sub NS}=9.1{sup +1.3}{sub -1.5} km (90%-confidence). Such a value is consistent with low-R{sub NS} equations of state. We compare this result with previous radius measurements of NSs from various analyses of different types of systems. In addition, we compare the spectral analyses of individual qLMXBs to previous works.

Guillot, Sebastien; Rutledge, Robert E. [Department of Physics, McGill University, 3600 rue University, Montreal, QC, H2X-3R4 (Canada); Servillat, Mathieu [Laboratoire AIM (CEA/DSM/IRFU/SAp, CNRS, Universite Paris Diderot), CEA Saclay, Bat. 709, F-91191 Gif-sur-Yvette (France); Webb, Natalie A., E-mail: guillots@physics.mcgill.ca, E-mail: rutledge@physics.mcgill.ca [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France)

2013-07-20T23:59:59.000Z

207

Precision Measurement of the Mass of the $D^{*0}$ Meson and the Binding Energy of the $X(3872)$ Meson as a $D^0\\overline{D^{*0}}$ Molecule  

E-Print Network [OSTI]

A precision measurement of the mass difference between the $D^0$ and $D^{*0}$ mesons has been made using 316~pb$^{-1}$ of $e^{+}e^{-}$ annihilation data taken at $\\sqrt{s}=4170$~MeV using the CLEO-c detector. We obtain $\\Delta M \\equiv M(D^{*0})-M(D^0) =142.007\\pm0.015$(stat)~$\\pm$~0.014(syst)~MeV, as the average for the two decays, $D^0\\to K^-\\pi^+$ and $D^0\\to K^-\\pi^+\\pi^-\\pi^+$. The new measurement of $\\Delta M$ leads to $M(D^{*0})=2006.850\\pm0.049$~MeV, and the currently most precise measurement of the binding energy of the ``exotic'' meson X(3872) if interpreted as a $D^0D^{*0}$ hadronic molecule, $E_{b}(\\text{X}(3872))\\equiv M(D^0D^{*0})-M(\\text{X}(3872))=3\\pm192$ keV.

Tomaradze, A; Xiao, T; Seth, Kamal K

2015-01-01T23:59:59.000Z

208

Prediction and measurement of transient responses of first difference based chaos control for 1-dimensional maps  

E-Print Network [OSTI]

Chaotic behavior can be produced from difference equations with unstable fixed points. Difference equations can be used for algorithms to control the chaotic behavior by perturbing a system parameter using feedback based on the first difference of the system value. This results in a system of nonlinear first order difference equations whose stable fixed point is the controlled chaotic behavior. Basing the feedback on the first difference produces distinctly different transient responses than when basing feedback on the error from the fixed point. Analog electronic circuits provide the experimental system for testing the chaos control algorithm. The circuits are low-cost, relatively easy to construct, and therefore provide a useful transition towards more specialized real-world applications. Here we present predictions and experimental results for the transient responses of a first difference based feedback control method applied to a chaotic finite difference 1-dimensional map. The experimental results are in good agreement with predictions, showing a variety of behaviors for the transient response, including erratic appearing non-steady convergence.

Edward H. Hellen; J. Keith Thomas

2010-01-14T23:59:59.000Z

209

Validating mass spectrometry measurements of nuclear materials via a non-contact volume analysis method of ion sputter craters  

SciTech Connect (OSTI)

A combination of secondary ion mass spectrometry, optical profilometry and a statistically-driven algorithm was used to develop a non-contact volume analysis method to validate the useful yields of nuclear materials. The volume analysis methodology was applied to ion sputter craters created in silicon and uranium substrates sputtered by 18.5 keV O- and 6.0 keV Ar+ ions. Sputter yield measurements were determined from the volume calculations and were shown to be comparable to Monte Carlo calculations and previously reported experimental observations. Additionally, the volume calculations were used to determine the useful yields of Si+, SiO+ and SiO2+ ions from the silicon substrate and U+, UO+ and UO2+ ions from the uranium substrate under 18.5 keV O- and 6.0 keV Ar+ ion bombardment. This work represents the first steps toward validating the interlaboratory and cross-platform performance of mass spectrometry for the analysis of nuclear materials.

Willingham, David G.; Naes, Benjamin E.; Fahey, Albert J.

2015-01-01T23:59:59.000Z

210

X-ray and Sunyaev-Zel'dovich Effect Measurements of the Gas Mass Fraction in Galaxy Clusters  

E-Print Network [OSTI]

We present gas mass fractions of 38 massive galaxy clusters spanning redshifts from 0.14 to 0.89, derived from Chandra X-ray data and OVRO/BIMA interferometric Sunyaev-Zel'dovich Effect measurements. We use three models for the gas distribution: (1) an isothermal beta-model fit jointly to the X-ray data at radii beyond 100 kpc and to all of the SZE data,(2) a non-isothermal double beta-model fit jointly to all of the X-ray and SZE data, and (3) an isothermal beta-model fit only to the SZE spatial data. We show that the simple isothermal model well characterizes the intracluster medium (ICM) outside of the cluster core in clusters with a wide range of morphological properties. The X-ray and SZE determinations of mean gas mass fractions for the 100 kpc-cut isothermal beta-model are fgas(X-ray)=0.110 +0.003-0.003 +0.006-0.018 and fgas(SZE)=0.116 +0.005-0.005 +0.009-0.026, where uncertainties are statistical followed by systematic at 68% confidence. For the non-isothermal double beta-model, fgas(X-ray)=0.119 +0.0...

LaRoque, S J; Carlstrom, J; Dawson, K; Joy, M; Nagai, D; Reese, E

2006-01-01T23:59:59.000Z

211

The performance check between whole building thermal performance criteria and exterior wall measured clear wall R-value, thermal bridging, thermal mass, and airtightness  

SciTech Connect (OSTI)

At the last IEA Annex 32 meeting it was proposed that the annex develop the links between level 1 (the whole building performance) and level 2 (the envelope system). This paper provides a case study of just that type of connection. An exterior wall mockup is hot box tested and modeled in the laboratory. Measurements of the steady state and dynamic behavior of this mockup are used as the basis to define the thermal bridging, thermal mass benefit and air tightness of the whole wall system. These level two performance characteristics are related to the whole building performance. They can be analyzed by a finite difference modeling of the wall assembly. An equivalent wall theory is used to convert three dimensional heat flow to one dimensional terms that capture thermal mass effects, which in turn are used in a common whole building simulation model. This paper illustrates a performance check between the thermal performance of a Massive ICF (Insulating Concrete Form) wall system mocked up (level 2) and Whole Building Performance criteria (level 1) such as total space heating and cooling loads (thermal comfort).

Kosny, J.; Christian, J.E.; Desjarlais, A.O. [Oak Ridge National Lab., TN (United States). Buildings Technology Center; Kossecka, E. [Polish Academy of Sciences (Poland); Berrenberg, L. [American Polysteel Forms (United States)

1998-06-01T23:59:59.000Z

212

Measurement and Interpretation of Moments of the Combined Hadronic Mass and Energy Spectrum in Inclusive Semileptonic B-Meson Decays  

SciTech Connect (OSTI)

This thesis presents first measurements of moments of the hadronic n{sub X}{sup 2} distribution measured in inclusive semileptonic decays of B mesons to final states containing a charm quark, B {yields} X{sub c}{ell}{nu}. The variable n{sub X}{sup 2} is a combination of the invariant mass of the charmed meson m{sub X}, its energy in the B-meson rest-frame E{sub X;BRF}, and a constant {tilde {Lambda}} = 0.65 GeV, n{sub X}{sup 2} = m{sub X}{sup 2}c{sup 4}-2{tilde {Lambda}}E{sub X,BRF} + {tilde {Lambda}}{sup 2}. The moments with k = 2,4,6 are measured as proposed by theory to constrain assumptions made in the theoretical description of inclusive observables in semileptonic B-meson decays. This description uses Heavy Quark Expansion (HQE), an effective QCD combined with an Operator Product Expansion. The measurement is based on a sample of 231.6 million e{sup +}e{sup -} {yields} {Upsilon}(4S) {yields} B{bar B} events recorded with the BABAR experiment at the PEP-II e{sup +}e{sup -}-storage rings at SLAC. We reconstruct the semileptonic decay by identifying a charged lepton in events tagged by a fully reconstructed hadronic decay of the second B meson. Correction procedures are derived from Monte Carlo simulations to ensure an unbiased measurement of the moments of the n{sub X}{sup 2} distribution. All moments are measured requiring minimum lepton momenta between 0.8 GeV/c and 1.9 GeV/c in the rest frame of the B meson. Performing a simultaneous fit to the measured moments up to order k = 6 combined with other measurements of moments of the lepton-energy spectrum in decays B {yields} X{sub c}{ell}{nu} and moments of the photon-energy spectrum in decays B {yields} X{sub s}{gamma}, we determine the quark-mixing parameter |V{sub cb}|, the bottom and charm quark masses, the semileptonic branching fraction {Beta}(B {yields} X{sub c}{ell}{nu}), and four non-perturbative heavy quark parameters. Using HQE calculations in the kinetic scheme up to order 1/m{sub b}{sup 3} we find |V{sub cb}| = (41.65 {+-} 0.43 {+-} 0.40 {+-} 0.58) {center_dot} 10{sup -3} and m{sub b} = (4.570 {+-} 0.033 {+-} 0.043) GeV/c{sup 2}, where the first uncertainty refers to experimental contributions, the second to uncertainties in the HQE, and the third to theoretical uncertainties in the calculations of the semileptonic decay rate {Lambda}(B {yields} X{sub c}{ell}{nu}). All obtained results are consistent with previous determinations. The inclusion of the moments decreases the uncertainty on the HQE parameters {mu}{sub {pi}}{sup 2} and {rho}{sub D}{sup 3}. Furthermore, the theoretical treatment of higher order corrections in the HQE used for the moments has been verified with these new measurements.

Klose, Verena; /Dresden, Tech. U.

2011-08-12T23:59:59.000Z

213

Analyzing Nuclear Fuel Cycles from Isotopic Ratios of Waste Products Applicable to Measurement by Accelerator Mass Spectrometry  

SciTech Connect (OSTI)

An extensive study was conducted to determine isotopic ratios of nuclides in spent fuel that may be utilized to reveal historical characteristics of a nuclear reactor cycle. This forensic information is important to determine the origin of unknown nuclear waste. The distribution of isotopes in waste products provides information about a nuclear fuel cycle, even when the isotopes of uranium and plutonium are removed through chemical processing. Several different reactor cycles of the PWR, BWR, CANDU, and LMFBR were simulated for this work with the ORIGEN-ARP and ORIGEN 2.2 codes. The spent fuel nuclide concentrations of these reactors were analyzed to find the most informative isotopic ratios indicative of irradiation cycle length and reactor design. Special focus was given to long-lived and stable fission products that would be present many years after their creation. For such nuclides, mass spectrometry analysis methods often have better detection limits than classic gamma-ray spectroscopy. The isotopic ratios {sup 151}Sm/{sup 146}Sm, {sup 149}Sm/{sup 146}Sm, and {sup 244}Cm/{sup 246}Cm were found to be good indicators of fuel cycle length and are well suited for analysis by accelerator mass spectroscopy.

Biegalski, S R; Whitney, S M; Buchholz, B

2005-08-24T23:59:59.000Z

214

POSITIONING USING TIME-DIFFERENCE OF ARRIVAL MEASUREMENTS Fredrik Gustafsson and Fredrik Gunnarsson  

E-Print Network [OSTI]

's (0.4, 0.6 and 0.9 scale units, respectively). · Electronic warfare, where the problem) measurements occurs in a range of ap- plications from wireless communication networks to elec- tronic warfare time is unknown, or it can be unknown, as is the case in electronic war- fare. In either case, i cannot

Gustafsson, Fredrik

215

Measuring the validity of two continuous performance tests: different parameters and scoring indices  

E-Print Network [OSTI]

compared with a population of children and adolescents exhibiting ADHD and normal controls. Major findings were as follows: (a) the CCPT-II and GDS measures were not able to separate children with ADHD from normal controls; (b) individual variables from...

Homack, Susan Rae

2006-10-30T23:59:59.000Z

216

Measurement of the top-quark mass in the lepton+jets channel using a matrix element technique with the CDF II detector  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

A measurement of the top-quark mass is presented using Tevatron data from proton-antiproton collisions at center-of-mass energy ?s = 1.96 TeV collected with the CDF II detector. Events are selected from a sample of candidates for production of tt? pairs that decay into the lepton+jets channel. The top-quark mass is measured with an unbinned maximum likelihood method where the event probability density functions are calculated using signal and background matrix elements, as well as a set of parameterized jet-to-parton transfer functions. The likelihood function is maximized with respect to the top-quark mass, the signal fraction in the sample, and a correction to the jet energy scale (JES) calibration of the calorimeter jets. The simultaneous measurement of the JES correction ({Delta}{sub JES}) amounts to an additional in situ jet energy calibration based on the known mass of the hadronically decaying W boson. Using the data sample of 578 lepton+jets candidate events, corresponding to 3.2 fb-1 of integrated luminosity, the top-quark mass is measured to be mt = 172.4± 1.4 (stat + ?JES) ± 1.3 (syst) GeV/c2.

Aaltonen, T [Helsinki Inst. of Phys.; Alvarez Gonzalez, B [Oviedo U., Cantabria Inst. of Phys.; Amerio, S [INFN, Padua; Amidei, D [Michigan U.; Anastassov, A [Northwestern U.; Annovi, A [Frascati

2011-10-14T23:59:59.000Z

217

Measurement of the top-quark mass in the lepton+jets channel using a matrix element technique with the CDF II detector  

SciTech Connect (OSTI)

A measurement of the top-quark mass is presented using Tevatron data from proton-antiproton collisions at center-of-mass energy ?s = 1.96 TeV collected with the CDF II detector. Events are selected from a sample of candidates for production of tt? pairs that decay into the lepton+jets channel. The top-quark mass is measured with an unbinned maximum likelihood method where the event probability density functions are calculated using signal and background matrix elements, as well as a set of parameterized jet-to-parton transfer functions. The likelihood function is maximized with respect to the top-quark mass, the signal fraction in the sample, and a correction to the jet energy scale (JES) calibration of the calorimeter jets. The simultaneous measurement of the JES correction ({Delta}{sub JES}) amounts to an additional in situ jet energy calibration based on the known mass of the hadronically decaying W boson. Using the data sample of 578 lepton+jets candidate events, corresponding to 3.2 fb-1 of integrated luminosity, the top-quark mass is measured to be mt = 172.4± 1.4 (stat + ?JES) ± 1.3 (syst) GeV/c2.

Aaltonen, T [Helsinki Inst. of Phys.; Alvarez Gonzalez, B [Oviedo U., Cantabria Inst. of Phys.; Amerio, S [INFN, Padua; Amidei, D [Michigan U.; Anastassov, A [Northwestern U.; Annovi, A [Frascati

2011-10-14T23:59:59.000Z

218

Quantification of absorption, retention and elimination of two different oral doses of vitamin A in Zambian boys using accelerator mass spectrometry  

SciTech Connect (OSTI)

A recent survey indicated that high-dose vitamin A supplements (HD-VAS) had no apparent effect on vitamin A (VA) status of Zambian children <5 y of age. To explore possible reasons for the lack of response to HD-VAS among Zambian children, we quantified the absorption, retention, and urinary elimination of either a single HDVAS (60 mg) or a smaller dose of stable isotope (SI)-labeled VA (5 mg), which was used to estimate VA pool size, in 3-4 y old Zambian boys (n = 4 for each VA dose). A 25 nCi tracer dose of [{sup 14}C{sub 2}]-labeled VA was co-administered with the HD-VAS or SI-labeled VA, and 24-hr stool and urine samples were collected for 3 and 7 consecutive days, respectively, and 24-hr urine samples at 4 later time points. Accelerator Mass Spectrometry (AMS) was used to measure the cumulative excretion of {sup 14}C in stool and urine 3d after dosing to estimate, respectively, absorption and retention of the VAS and SI-labeled VA. The urinary elimination rate (UER) was estimated by plotting {sup 14}C in urine vs. time, and fitting an exponential equation to the data. Estimates of mean absorption, retention and the UER were 83.8 {+-} 7.1%, 76.3 {+-} 6.7%, and 1.9 {+-} 0.6%/d, respectively, for the HD-VAS and 76.5 {+-} 9.5%, 71.1 {+-} 9.4%, and 1.8 {+-} 1.2%/d, respectively for the smaller dose of SI-labeled VA. Estimates of absorption, retention and the UER did not differ by size of the VA dose administered (P=0.26, 0.40, 0.88, respectively). Estimated absorption and retention were negatively associated with reported fever (P=0.011) and malaria (P =0.010). HD-VAS and SI-labeled VA were adequately absorbed, retained and utilized in apparently healthy Zambian preschool-age boys, although absorption and retention may be affected by recent infections.

Aklamati, E K; Mulenga, M; Dueker, S R; Buchholz, B A; Peerson, J M; Kafwembe, E; Brown, K H; Haskell, M J

2009-10-12T23:59:59.000Z

219

Measurement of the inclusive jet cross section in proton-antiproton collisions at the center-of-mass energy of 1.96 TeV  

SciTech Connect (OSTI)

This thesis studies the high-energy collisions of protons and antiprotons. The data used in the measurement were collected during 2004-2005 with the D0 detector at the Tevatron Collider of the Fermi National Accelerator Laboratory and correspond to 0.7 fb{sup -1} of integrated luminosity. High energy hadron collisions usually produce collimated sprays of particles called jets. The energy of the jets is measured using a liquid Argon-Uranium calorimeter and the production angle is determined with the help of silicon microstrip and scintillating fiber trackers. The inclusive jet cross section in proton-antiproton collisions is measured as a function of jet transverse momentum p{sub T} in six bins of jet rapidity at the center-of-mass energy {radical}s = 1.96 TeV. The measurement covers jet transerve momenta from 50 GeV up to 600 GeV and jet rapidities up to |y| = 2.4. The data are collected using a set of seven single jet triggers. Event and jet cuts are applied to remove non-physical backgrounds and cosmic-ray interactions. The data are corrected for jet energy calibration, cut and trigger efficiencies and finite jet p{sub T} resolution. The corrections are determined from data and the methods are tested with Monte Carlo simulation. The main experimental challenges in the measurement are the calibration of jet energies and the determination of the jet p{sub T} resolution. New methods are developed for the jet energy calibration that take into account physical differences between the {gamma}+jet and dijet calibration samples arising from quark and gluon jet differences. The uncertainty correlations are studied and provided as a set of uncertainty sources. The production of particle jets in hadron collisions is described by the theory of quantum chromodynamics (QCD). When the transverse jet momentum is large, the contributions from long-distance physics processes are small and the production rates of jets can be predicted by perturbative QCD. The inclusive jet cross section in p{bar p} collisions at large p{sub T} is directly sensitive to the strong coupling constant ({alpha}{sub s}) and the parton distribution functions (PDFs) of the proton. This measurement can be used to constrain the PDFs, in particular the gluon PDF at high proton momentum fraction x, and to look for quark substructure at the TeV scale. The data are compared to the theory predictions with perturbative QCD in the next-to-leading order precision and a good agreement between data and theory is observed.

Voutilainen, Mikko Antero; /Helsinki Inst. of Phys. /Helsinki U. of Tech. /Nebraska U. /Saclay

2008-07-01T23:59:59.000Z

220

Assessing Long-Term Wind Conditions by Combining Different Measure-Correlate-Predict Algorithms: Preprint  

SciTech Connect (OSTI)

This paper significantly advances the hybrid measure-correlate-predict (MCP) methodology, enabling it to account for variations of both wind speed and direction. The advanced hybrid MCP method uses the recorded data of multiple reference stations to estimate the long-term wind condition at a target wind plant site. The results show that the accuracy of the hybrid MCP method is highly sensitive to the combination of the individual MCP algorithms and reference stations. It was also found that the best combination of MCP algorithms varies based on the length of the correlation period.

Zhang, J.; Chowdhury, S.; Messac, A.; Hodge, B. M.

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "mass difference measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Note: Emittance measurements of intense pulsed proton beam for different pulse length and repetition rate  

SciTech Connect (OSTI)

The high intensity ion source (SILHI), in operation at CEA-Saclay, has been used to produce a 90 mA pulsed proton beam with pulse length and repetition rates suitable for the European Spallation Source (ESS) linac. Typical r-r{sup '} rms normalized emittance values smaller than 0.2{pi} mm mrad have been measured for operation in pulsed mode (0.01 < duty cycle < 0.15 and 1 ms < pulse duration < 10 ms) that are relevant for the design update of the Linac to be used at the ESS in Lund.

Miracoli, R. [ESS Bilbao, Vizcaya (Spain); INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Gammino, S.; Celona, L.; Mascali, D. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Castro, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Universita degli studi di Catania, Dipartimento di Fisica e Astronomia, V. S. Sofia 64, 95123 Catania (Italy); Gobin, R.; Delferriere, O.; Adroit, G.; Senee, F. [CEA-IRFU, Gif sur Yvette Cedex (France); Ciavola, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); CNAO, Str. Pr. Campeggi, Pavia (Italy)

2012-05-15T23:59:59.000Z

222

The Efficacy of SEER as a Seasonal Performance Measure for Different Climates  

E-Print Network [OSTI]

: Difference Between Detailed Simulation and: Detailed Simulation Bin Calculations Bin-Calc SEER Nominal SEER Buffalo 11.94 12.13 1.6% -1.7% Portland 11.75 12.03 2.4% -0.1% Madison 11.68 11.95 2.3% 0.5% Chicago 11.63 11.93 2.6% 0.9% Detroit 11... - Buffalo 2 - Portland 3 - Madison 4 - Chicago 5 - Detroit 6 - Wilmington 7 - New_York_City 8 - San_Francisco 9 - Fresno 10 - Pittsburgh 11 - Memphis 12 - Atlanta 13 - Phoenix...

Henderson, H. I.; Sachs, H. M.

2006-01-01T23:59:59.000Z

223

What does a measurement of mass and/or radius of a neutron star constrain: Equation of state or gravity?  

E-Print Network [OSTI]

Neutron stars (NSs) are thought to be excellent laboratories for determining the equation of state (EoS) of cold dense matter. Their strong gravity suggests that they can also be used to constrain gravity models. The mass and radius (M-R) of a NS both depend on the choice of EoS and gravity, meaning that NSs cannot be simultaneously good laboratories for both of these questions. A measurement of M-R would constrain the less well known physics input. The assumption that M-R measurements can be used to constrain EoS-presumes general relativity (GR) is the ultimate model of gravity in the classical regime. We calculate the radial profile of compactness and curvature (square root of the full contraction of the Weyl tensor) within a NS and determine the domain not probed by the Solar System tests of GR. We find that, except for a tiny sphere of radius less than a millimeter at the center, the curvature is several orders of magnitude above the values present in Solar System tests. The compactness is beyond the solar surface value for r>10 m, and increases by 5 orders of magnitude towards the surface. With the density being only an order of magnitude higher than that probed by nuclear scattering experiments, our results suggest that the employment of GR as the theory of gravity describing the hydrostatic equilibrium of NSs is a rather remarkable extrapolation from the regime of tested validity, as opposed to that of EoS models. Our larger ignorance of gravity within NSs suggests that a measurement of M-R constrains gravity rather than EoS, and given that EoS has yet to be determined by nucleon scattering experiments, M-R measurements cannot tightly constrain the gravity models either. Near the surface the curvature and compactness attain their largest values, while EoS in this region is fairly well known. This renders the crust as the best site to look for deviations from GR.

Kazim Yavuz Ek?i; Can Güngör; Murat Metehan Türko?lu

2014-04-15T23:59:59.000Z

224

Radiation environment simulations at the Tevatron, studies of the beam profile and measurement of the Bc meson mass  

SciTech Connect (OSTI)

The description of a computer simulation of the CDF detector at Fermilab and the adjacent accelerator parts is detailed, with MARS calculations of the radiation background in various elements of the model due to the collision of beams and machine-related losses. Three components of beam halo formation are simulated for the determination of the principal source of radiation background in CDF due to beam losses. The effect of a collimator as a protection for the detector is studied. The simulation results are compared with data taken by a CDF group. Studies of a 150 GeV Tevatron proton beam are performed to investigate the transverse diffusion growth and distribution. A technique of collimator scan is used to scrape the beam under various experimental conditions, and computer programs are written for the beam reconstruction. An average beam halo growth speed is given and the potential of beam tail reconstruction using the collimator scan is evaluated. A particle physics analysis is conducted in order to detect the B{sub c} {yields} J/{psi}{pi} decay signal with the CDF Run II detector in 360 pb{sup -1} of data. The cut variables and an optimization method to determine their values are presented along with a criterion for the detection threshold of the signal. The mass of the B{sub c} meson is measured with an evaluation of the significance of the signal.

Nicolas, Ludovic Y.

2005-09-01T23:59:59.000Z

225

Measurement of the w boson mass at the Collider Detector at Fermilab from a fit to the transverse momentum spectrum of the muon  

SciTech Connect (OSTI)

This thesis describes a measurement of the W boson mass from a fit to the transverse momentum spectrum of the muon in W decay. In past measurements this technique was used as a cross-check, however, now presents the best method in terms of systematic uncertainty. We discuss all sources of systematic uncertainty with emphasis on those to which the muon p{sub T} measurement is particularly sensitive, specifically, those associated with modeling the production and decay of W bosons. The data were collected with the CDF II detector between March 2002 and September 2003 and correspond to an integrated luminosity of (191 {+-} 11) pb{sup -1}. We measure the W mass to be (80.316 {+-} 0.066{sub stat.} {+-} 0.051{sub syst.}) GeV/c{sup 2} = (80.316 {+-} 0.083) GeV/c{sup 2}.

Vollrath, Ian Eberhard; /Toronto U.

2007-01-01T23:59:59.000Z

226

Measurement of the double differential diject mass cross section in pp(bar) collisions at sqrt(s) = 1.96 TeV  

SciTech Connect (OSTI)

This thesis presents the analysis of the double differential dijet mass cross section, measured at the D0 detector in Batavia, IL, using p{bar p} collisions at a center of mass energy of {radical}s = 1.96 TeV. The dijet mass was calculated using the two highest p{sub T} jets in the event, with approximately 0.7 fb{sup -1} of data collected between 2004 and 2005. The analysis was presented in bins of dijet mass (M{sub JJ}) and rapidity (y), and extends the measurement farther in M{sub JJ} and y than any previous measurement. Corrections due to detector effects were calculated using a Monte Carlo simulation and applied to data. The errors on the measurement consist of statistical and systematic errors, of which the Jet Energy Scale was the largest. The final result was compared to next-to-leading order theory and good agreement was found. These results may be used in the determination of the proton parton distribution functions and to set limits on new physics.

Rominsky, Mandy Kathleen; /Oklahoma U.

2009-07-01T23:59:59.000Z

227

Measurements of B[subscript c][superscript +] Production and Mass with the B[subscript c][superscript +]?J/??[superscript +] Decay  

E-Print Network [OSTI]

Measurements of B[subscript c][superscript +] production and mass are performed with the decay mode B[subscript c][superscript +]?J/??[superscript +] using 0.37??fb[superscript -1] of data collected in pp collisions at ...

Williams, Michael

228

Measurement of the top quark mass at CDF using the "neutrino phi weighting" template method on a lepton plus isolated track sample  

E-Print Network [OSTI]

We present a measurement of the top quark mass with tt? dilepton events produced in pp? collisions at the Fermilab Tevatron (?s=1.96??TeV) and collected by the CDF II detector. A sample of 328 events with a charged ...

Choudalakis, Georgios

229

PROPER MOTIONS OF THE ARCHES CLUSTER WITH KECK LASER GUIDE STAR ADAPTIVE OPTICS: THE FIRST KINEMATIC MASS MEASUREMENT OF THE ARCHES  

SciTech Connect (OSTI)

We report the first detection of the intrinsic velocity dispersion of the Arches cluster-a young ({approx}2 Myr), massive (10{sup 4} M{sub Sun }) starburst cluster located only 26 pc in projection from the Galactic center. This was accomplished using proper motion measurements within the central 10'' Multiplication-Sign 10'' of the cluster, obtained with the laser guide star adaptive optics system at Keck Observatory over a three-year time baseline (2006-2009). This uniform data set results in proper motion measurements that are improved by a factor {approx}5 over previous measurements from heterogeneous instruments. By careful, simultaneous accounting of the cluster and field contaminant distributions as well as the possible sources of measurement uncertainties, we estimate the internal velocity dispersion to be 0.15 {+-} 0.01 mas yr{sup -1}, which corresponds to 5.4 {+-} 0.4 km s{sup -1} at a distance of 8.4 kpc. Projecting a simple model for the cluster onto the sky to compare with our proper motion data set, in conjunction with surface density data, we estimate the total present-day mass of the cluster to be M(r < 1.0 pc) = 1.5{sup +0.74}{sub -0.60} Multiplication-Sign 10{sup 4} M{sub Sun }. The mass in stars observed within a cylinder of radius R (for comparison to photometric estimates) is found to be M(R < 0.4 pc) = 0.90{sup +0.40}{sub -0.35} Multiplication-Sign 10{sup 4} M{sub Sun} at formal 3{sigma} confidence. This mass measurement is free from assumptions about the mass function of the cluster, and thus may be used to check mass estimates from photometry and simulation. Photometric mass estimates assuming an initially Salpeter mass function ({Gamma}{sub 0} = 1.35, or {Gamma} {approx} 1.0 at present, where dN/d(log M){proportional_to}M{sup {Gamma}}) suggest a total cluster mass M{sub cl} {approx} (4-6) Multiplication-Sign 10{sup 4} M{sub Sun} and projected mass ({approx} 2 {<=} M(R < 0.4 pc) {<=} 3) Multiplication-Sign 10{sup 4} M{sub Sun }. Photometric mass estimates assuming a globally top-heavy or strongly truncated present-day mass function (PDMF; with {Gamma} {approx} 0.6) yield mass estimates closer to M(R < 0.4 pc) {approx} 1-1.2 Multiplication-Sign 10{sup 4} M{sub Sun }. Consequently, our results support a PDMF that is either top-heavy or truncated at low mass, or both. Collateral benefits of our data and analysis include: (1) cluster membership probabilities, which may be used to extract a clean-cluster sample for future photometric work; (2) a refined estimate of the bulk motion of the Arches cluster with respect to the field, which we find to be 172 {+-} 15 km s{sup -1}, which is slightly slower than suggested by previous measurements using one epoch each with the Very Large Telescope and the Keck telescope; and (3) a velocity dispersion estimate for the field itself, which is likely dominated by the inner Galactic bulge and the nuclear disk.

Clarkson, W. I. [Division of Astronomy and Astrophysics, University of California, Los Angeles, Physics and Astronomy Building, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Ghez, A. M.; Morris, M. R.; Yelda, S. [Department of Astronomy, Indiana University, Bloomington, 727 East 3rd Street, Swain West 319, Bloomington, IN 47405-7105 (United States); Lu, J. R. [Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822-1839 (United States); Stolte, A. [Argelander Institut fuer Astronomie, Universitaet Bonn, Auf dem Huegel 71, 53121 Bonn (Germany); McCrady, N. [Department of Physics and Astronomy, University of Montana, 32 Campus Drive, No. 1080, Missoula, MT 59812 (United States); Do, T., E-mail: wiclarks@indiana.edu [Department of Physics and Astronomy, University of California, Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697-4575 (United States)

2012-06-01T23:59:59.000Z

230

Measurement of the Top Quark Mass by Dynamical Likelihood Method using the Lepton + Jets Events with the Collider Detector at Fermilab  

SciTech Connect (OSTI)

We have measured the top quark mass with the dynamical likelihood method. The data corresponding to an integrated luminosity of 1.7fb{sup -1} was collected in proton antiproton collisions at a center of mass energy of 1.96 TeV with the CDF detector at Fermilab Tevatron during the period March 2002-March 2007. We select t{bar t} pair production candidates by requiring one high energy lepton and four jets, in which at least one of jets must be tagged as a b-jet. In order to reconstruct the top quark mass, we use the dynamical likelihood method based on maximum likelihood method where a likelihood is defined as the differential cross section multiplied by the transfer function from observed quantities to parton quantities, as a function of the top quark mass and the jet energy scale(JES). With this method, we measure the top quark mass to be 171.6 {+-} 2.0 (stat.+ JES) {+-} 1.3(syst.) = 171.6 {+-} 2.4 GeV/c{sup 2}.

Kubo, Taichi; /Tsukuba U.

2008-02-01T23:59:59.000Z

231

Neutron interferometric measurement of the scattering length difference between the triplet and singlet states of n-$^3$He  

E-Print Network [OSTI]

We report a determination of the n-$^3$He scattering length difference $\\Delta b^{\\prime} = b_{1}^{\\prime}-b_{0}^{\\prime} = $ ($-5.411$ $\\pm$ $0.031$ (statistical) $\\pm$ $0.039$ (systematic)) fm between the triplet and singlet states using a neutron interferometer. This revises our previous result $\\Delta b^{\\prime} = $ (-5.610 $\\pm$ $0.027$ (statistical) $\\pm$ $0.032$ (systematic) fm obtained using the same technique in 2008. This revision is due to a re-analysis of the 2008 experiment that includes a more robust treatment of the phase shift caused by magnetic field gradients near the $^3$He cell. Furthermore, we more than doubled our original data set from 2008 by acquiring six months of additional data in 2013. Both the new data set and a re-analysis of the older data are in good agreement. Scattering lengths of low Z isotopes are valued for use in few-body nuclear effective field theories, provide important tests of modern nuclear potential models and in the case of $^3$He aid in the interpretation of neutron scattering from quantum liquids. The difference $\\Delta b^{\\prime}$ was determined by measuring the relative phase shift between two incident neutron polarizations caused by the spin-dependent interaction with a polarized $^3$He target. The target $^3$He gas was sealed inside a small, flat windowed glass cell that was placed in one beam path of the interferometer. The relaxation of $^3$He polarization was monitored continuously with neutron transmission measurements. The neutron polarization and spin flipper efficiency were determined separately using $^3$He analyzers and two different polarimetry analysis methods. A summary of the measured scattering lengths for n-$^3$He with a comparison to nucleon interaction models is given.

M. G. Huber; M. Arif; W. C. Chen; T. R. Gentile; D. S. Hussey; T. C. Black; D. A. Pushin; C. B. Shahi; F. E. Wietfeldt; L. Yang

2014-09-30T23:59:59.000Z

232

Multiwavelength Monitoring of the Dwarf Seyfert 1 Galaxy NGC 4395. I. A Reverberation-Based Measurement of the Black Hole Mass  

E-Print Network [OSTI]

A reverberation-mapping program on NGC 4395, the least-luminous known Seyfert 1 galaxy, undertaken with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope, yields a measurement of the mass of the central black hole of 360,000 solar masses. The observations consist of two visits of 5 orbits each, in 2004 April and July. During each of these visits, the UV continuum varied by at least 10% (rms) and only C IV 1549 showed corresponding variations large enough to reliably determine the emission-line lag, which was measured to be of order one hour for both visits. The size of the C IV-emitting region is about a factor of three smaller than expected if the slope of the broad-line region radius-luminosity relationship is identical to that for the H-beta emission line. NGC 4395 is underluminous even for its small black hole mass; the Eddington ratio of 0.0012 is lower than that of any other active galactic nucleus for which a black hole mass measurement has been made by emission-line reverberation.

Bradley M. Peterson; Misty C. Bentz; Louis-Benoit Desroches; Alexei V. Filippenko; Luis C. Ho; Shai Kaspi; Ari Laor; Dan Maoz; Edward C. Moran; Richard W. Pogge; Alice C. Quillen

2005-12-15T23:59:59.000Z

233

Measurements of the Higgs boson mass and width in the four-lepton final state and electron reconstruction in the CMS experiment at the LHC  

E-Print Network [OSTI]

This thesis document reports measurements of the mass and width of the new boson re- cently discovered at the Large Hadron Collider (LHC), candidating to be the Standard Model Higgs boson. The analysis uses proton-proton collision data recorded by the Compact Muon Solenoid (CMS) detector at the LHC, corresponding to integrated luminosities of $5.1~fb^{?1}$ at $7~$TeV center of mass energy and $19.7~fb^{?1}$ at $8~$TeV center of mass energy. Set of events selecting Higgs boson via the $H\\to ZZ$ decay channel, where both $Z$ bosons decay to electron or muon lepton pairs, is used for the Higgs boson properties measurements. A precise measurement of its mass has been performed and gives $125.6\\pm0.4\\mbox{(stat)}\\pm0.2\\mbox{(syst)}~$GeV. Constraints on the Higgs boson width were established using its off-shell production and decay to a pair of $Z$ bosons, where one $Z$ boson decays to an electron or muon pair, and the other to an electron, muon, or neutrino pair. The obtained result is an upper limit on the Hi...

Dalchenko, Mykhailo; Charlot, Claude

234

Measurement of the Top Quark Mass at D0 Run II with the Matrix Element Method in the Lepton+Jets Final State  

SciTech Connect (OSTI)

The mass of the top quark is a fundamental parameter of the Standard Model. Its precise knowledge yields valuable insights into unresolved phenomena in and beyond the Standard Model. A measurement of the top quark mass with the matrix element method in the lepton+jets final state in D0 Run II is presented. Events are selected requiring an isolated energetic charged lepton (electron or muon), significant missing transverse energy, and exactly four calorimeter jets. For each event, the probabilities to originate from the signal and background processes are calculated based on the measured kinematics, the object resolutions and the respective matrix elements. The jet energy scale is known to be the dominant source of systematic uncertainty. The reference scale for the mass measurement is derived from Monte Carlo events. The matrix element likelihood is defined as a function of both, m{sub top} and jet energy scale JES, where the latter represents a scale factor with respect to the reference scale. The top mass is obtained from a two-dimensional correlated fit, and the likelihood yields both the statistical and jet energy scale uncertainty. Using a dataset of 320 pb{sup -1} of D0 Run II data, the mass of the top quark is measured to be: m{sub top}{sup {ell}+jets} = 169.5 {+-} 4.4(stat. + JES){sub -1.6}{sup +1.7}(syst.) GeV; m{sub top}{sup e+jets} = 168.8 {+-} 6.0(stat. + JES){sub -1.9}{sup +1.9}(syst.) GeV; m{sub top}{sup {mu}+jets} = 172.3 {+-} 9.6(stat.+JES){sub -3.3}{sup +3.4}(syst.) GeV. The jet energy scale measurement in the {ell}+jets sample yields JES = 1.034 {+-} 0.034, suggesting good consistency of the data with the simulation. The measurement forecasts significant improvements to the total top mass uncertainty during Run II before the startup of the LHC, as the data sample will grow by a factor of ten and D0's tracking capabilities will be employed in jet energy reconstruction and flavor identification.

Schieferdecker, Philipp; /Munich U.; ,

2005-08-01T23:59:59.000Z

235

Measurement of ww + wz production cross section and study of the dijet mass spectrum in the lnu + jets final state at CDF  

SciTech Connect (OSTI)

We present the measurement of the WW and WZ production cross section in p{bar p} collisions at {radical}s = 1.96 TeV, in a final state consisting of an electron or muon, neutrino and jets. The data analyzed were collected by the CDF II detector at the Tevatron collider and correspond to 4.3 fb{sup -1} of integrated luminosity. The analysis uses a fit to the dijet mass distribution to extract the diboson contribution. We observe 1582 {+-} 275(stat.) {+-} 107(syst.) diboson candidate events and measure a cross section of {sigma}{sub WW/WZ} = 18.1 {+-} 3.3(stat.) {+-} 2.5(syst.) pb, consistent with the Standard Model prediction of 15.9 {+-} 0.9 pb. The best fit to the dijet mass of the known components shows a good agreement with the data except for the [120, 160] GeV/c{sup 2} mass range, where an excess is observed. We perform detailed checks of our background model and study the significance of the excess, assuming an additional gaussian component with a width compatible with the expected dijet mass resolution. A standard {Delta}{sub {chi}}{sup 2} test of the presence of the additional component, returns a p-value of 4.2 x 10{sup -4} when standard sources of systematics are considered, corresponding to a significance of 3.3{sigma}.

Cavaliere, Viviana; /Siena U.

2010-12-01T23:59:59.000Z

236

Mass and lifetime measurements of bottom and charm baryons in $p\\bar p$ collisions at $\\sqrt{s}= 1.96 TeV  

E-Print Network [OSTI]

We report on mass and lifetime measurements of several ground state charmed and bottom baryons, using a data sample corresponding to 9.6 $\\textrm{fb}^{-1}$ from $p\\bar p$ collisions at $\\sqrt{s}=1.96$ TeV, and recorded with the Collider Detector at Fermilab. Baryon candidates are reconstructed from data collected with an online event selection designed for the collection of long-lifetime heavy-flavor decay products and a second event selection designed to collect $J/\\psi \\rightarrow \\mu^+ \\, \\mu^-$ candidates. First evidence for the process $\\Omega_b^- \\rightarrow \\Omega_c^0 \\, \\pi^-$ is presented with a significance of $3.3\\sigma$. We measure the following baryon masses: \\begin{eqnarray} M(\\Xi_c^{0}) = 2470.85\\pm0.24(stat)\\pm0.55(syst) \\, MeV/c^2, \

CDF Collaboration; T. Aaltonen; S. Amerio; D. Amidei; A. Anastassov; A. Annovi; J. Antos; G. Apollinari; J. A. Appel; T. Arisawa; A. Artikov; J. Asaadi; W. Ashmanskas; B. Auerbach; A. Aurisano; F. Azfar; W. Badgett; T. Bae; A. Barbaro-Galtieri; V. E. Barnes; B. A. Barnett; P. Barria; P. Bartos; M. Bauce; F. Bedeschi; S. Behari; G. Bellettini; J. Bellinger; D. Benjamin; A. Beretvas; A. Bhatti; K. R. Bland; B. Blumenfeld; A. Bocci; A. Bodek; D. Bortoletto; J. Boudreau; A. Boveia; L. Brigliadori; C. Bromberg; E. Brucken; J. Budagov; H. S. Budd; K. Burkett; G. Busetto; P. Bussey; P. Butti; A. Buzatu; A. Calamba; S. Camarda; M. Campanelli; F. Canelli; B. Carls; D. Carlsmith; R. Carosi; S. Carrillo; B. Casal; M. Casarsa; A. Castro; P. Catastini; D. Cauz; V. Cavaliere; M. Cavalli-Sforza; A. Cerri; L. Cerrito; Y. C. Chen; M. Chertok; G. Chiarelli; G. Chlachidze; K. Cho; D. Chokheli; A. Clark; C. Clarke; M. E. Convery; J. Conway; M. Corbo; M. Cordelli; C. A. Cox; D. J. Cox; M. Cremonesi; D. Cruz; J. Cuevas; R. Culbertson; N. d'Ascenzo; M. Datta; P. de Barbaro; L. Demortier; L. Marchese; M. Deninno; F. Devoto; M. D'Errico; A. Di Canto; B. Di Ruzza; J. R. Dittmann; M. D'Onofrio; S. Donati; M. Dorigo; A. Driutti; K. Ebina; R. Edgar; A. Elagin; R. Erbacher; S. Errede; B. Esham; S. Farrington; J. P. Fernández Ramos; R. Field; G. Flanagan; R. Forrest; M. Franklin; J. C. Freeman; H. Frisch; Y. Funakoshi; C. Galloni; A. F. Garfinkel; P. Garosi; H. Gerberich; E. Gerchtein; S. Giagu; V. Giakoumopoulou; K. Gibson; C. M. Ginsburg; N. Giokaris; P. Giromini; G. Giurgiu; V. Glagolev; D. Glenzinski; M. Gold; D. Goldin; A. Golossanov; G. Gomez; G. Gomez-Ceballos; M. Goncharov; O. González López; I. Gorelov; A. T. Goshaw; K. Goulianos; E. Gramellini; S. Grinstein; C. Grosso-Pilcher; R. C. Group; J. Guimaraes da Costa; S. R. Hahn; J. Y. Han; F. Happacher; K. Hara; M. Hare; R. F. Harr; T. Harrington-Taber; K. Hatakeyama; C. Hays; J. Heinrich; M. Herndon; A. Hocker; Z. Hong; W. Hopkins; S. Hou; R. E. Hughes; U. Husemann; M. Hussein; J. Huston; G. Introzzi; M. Iori; A. Ivanov; E. James; D. Jang; B. Jayatilaka; E. J. Jeon; S. Jindariani; M. Jones; K. K. Joo; S. Y. Jun; T. R. Junk; M. Kambeitz; T. Kamon; P. E. Karchin; A. Kasmi; Y. Kato; W. Ketchum; J. Keung; B. Kilminster; D. H. Kim; H. S. Kim; J. E. Kim; M. J. Kim; S. B. Kim; S. H. Kim; Y. K. Kim; Y. J. Kim; N. Kimura; M. Kirby; K. Knoepfel; K. Kondo; D. J. Kong; J. Konigsberg; A. V. Kotwal; M. Kreps; J. Kroll; M. Kruse; T. Kuhr; M. Kurata; A. T. Laasanen; S. Lammel; M. Lancaster; K. Lannon; G. Latino; H. S. Lee; J. S. Lee; S. Leo; S. Leone; J. D. Lewis; A. Limosani; E. Lipeles; A. Lister; H. Liu; Q. Liu; T. Liu; S. Lockwitz; A. Loginov; A. Lucŕ; D. Lucchesi; J. Lueck; P. Lujan; P. Lukens; G. Lungu; J. Lys; R. Lysak; R. Madrak; P. Maestro; S. Malik; G. Manca; A. Manousakis-Katsikakis; F. Margaroli; P. Marino; M. Martínez; K. Matera; M. E. Mattson; A. Mazzacane; P. Mazzanti; R. McNulty; A. Mehta; P. Mehtala; C. Mesropian; T. Miao; D. Mietlicki; A. Mitra; H. Miyake; S. Moed; N. Moggi; C. S. Moon; R. Moore; M. J. Morello; A. Mukherjee; Th. Muller; P. Murat; M. Mussini; J. Nachtman; Y. Nagai; J. Naganoma; I. Nakano; A. Napier; J. Nett; C. Neu; T. Nigmanov; L. Nodulman; S. Y. Noh; O. Norniella; L. Oakes; S. H. Oh; Y. D. Oh; I. Oksuzian; T. Okusawa; R. Orava; L. Ortolan; C. Pagliarone; E. Palencia; P. Palni; V. Papadimitriou; W. Parker; G. Pauletta; M. Paulini; C. Paus; T. J. Phillips; G. Piacentino; E. Pianori; J. Pilot; K. Pitts; C. Plager; L. Pondrom; S. Poprocki; K. Potamianos; F. Prokoshin; A. Pranko; F. Ptohos; G. Punzi; N. Ranjan; I. Redondo Fernández; P. Renton; M. Rescigno; F. Rimondi; L. Ristori; A. Robson; T. Rodriguez; S. Rolli; M. Ronzani; R. Roser; J. L. Rosner; F. Ruffini; A. Ruiz; J. Russ; V. Rusu; W. K. Sakumoto; Y. Sakurai; L. Santi; K. Sato; V. Saveliev; A. Savoy-Navarro; P. Schlabach; E. E. Schmidt; T. Schwarz; L. Scodellaro; F. Scuri; S. Seidel; Y. Seiya; A. Semenov; F. Sforza; S. Z. Shalhout; T. Shears; P. F. Shepard; M. Shimojima; M. Shochet; I. Shreyber-Tecker; A. Simonenko; K. Sliwa; J. R. Smith; F. D. Snider; V. Sorin; H. Song; M. Stancari; R. St. Denis; D. Stentz; J. Strologas; Y. Sudo; A. Sukhanov; I. Suslov; K. Takemasa; Y. Takeuchi; J. Tang; M. Tecchio; P. K. Teng; J. Thom; E. Thomson; V. Thukral; D. Toback; S. Tokar; K. Tollefson; T. Tomura; D. Tonelli; S. Torre; D. Torretta; P. Totaro; M. Trovato; F. Ukegawa; S. Uozumi; F. Vázquez; G. Velev; C. Vellidis; C. Vernieri; M. Vidal; R. Vilar; J. Vizán; M. Vogel; G. Volpi; P. Wagner; R. Wallny; S. M. Wang; D. Waters; W. C. Wester III; D. Whiteson; A. B. Wicklund; S. Wilbur; H. H. Williams; J. S. Wilson; P. Wilson; B. L. Winer; P. Wittich; S. Wolbers; H. Wolfe; T. Wright; X. Wu; Z. Wu; K. Yamamoto; D. Yamato; T. Yang; U. K. Yang; Y. C. Yang; W. -M. Yao; G. P. Yeh; K. Yi; J. Yoh; K. Yorita; T. Yoshida; G. B. Yu

2014-03-31T23:59:59.000Z

237

A Measurement of the Top Quark Mass with the D0 Detector at s**(1/2) = 1.96-TeV using the Matrix Element Method  

SciTech Connect (OSTI)

Using a data set of 158 and 169 pb{sup -1} of D0 Run-II data in the electron and muon plus jets channel, respectively, the top quark mass has been measured using the Matrix Element Method. The method and its implementation are described. Its performance is studied in Monte Carlo using ensemble tests and the method is applied to the Moriond 2004 data set.

Kroeninger, Kevin Alexander; /Bonn U.

2004-04-01T23:59:59.000Z

238

Measurements of the top - anti-top Production Cross Section at s**(1/2) = 1.96-TeV and Top Mass in the Dielectron Channel  

SciTech Connect (OSTI)

The first measurement of the top-antitop production cross section in proton-antiproton collisions at {radical}s = 1.96 TeV using 243 pb{sup -1} of data collected with the D0 detector at Fermilab is presented. In this analysis, only the dielectron final state is considered. Five events are observed, and 0.93 background events are expected. The measured cross section, after accounting for the expected branching ratio to the dielectron channel, is {sigma}{sub t{bar t}} = 14.9{sub -7.0}{sup +9.4}(stat){sub -1.8}{sup +2.5}(syst) {+-} 1.0 (lumi) pb, which agrees with the predicted cross section for top quarks with a mass of 175 GeV. In addition, a first-pass at a measurement of the top mass using the neutrino-weighting method is presented. This measurement is also performed in the dielectron channel using the five events observed in the cross section measurement.

Kozminski, Joseph Francis

2005-05-01T23:59:59.000Z

239

Measurements of the exclusive decays of the Upsilon(5S) to B meson final states and improved B-s(*) mass measurement  

E-Print Network [OSTI]

Using 420 pb(-1) of data collected on the Upsilon(5S) resonance with the CLEO III detector, we reconstruct B mesons in 25 exclusive decay channels to measure or set upper limits on the decay rate of Upsilon(5S) into B meson final states. We measure...

Besson, David Zeke

2006-04-01T23:59:59.000Z

240

A Measurement of the mass of the Top Quark in the di-lepton channels using the D0 Detector at Fermilab  

SciTech Connect (OSTI)

This dissertation describes a measurement of the mass of the top quark using events consistent with the hypothesis t{bar t} {yields} bW{sup +} {bar b}W{sup -} {yields} bl{sup +}{nu}{bar b}l{sup -}{bar {nu}}, where (l=e,{mu}). The events are obtained from nearly 230 pb{sup -1} of p{bar p} collision data collected by the D0 experiment between 2002 and 2004 during Run II. In this decay channel two neutrinos remain undetected. Extraction of the mass of the top quark by kinematic reconstruction is not possible because the event is under-constrained. Therefore, a dynamical likelihood method is developed to obtain the mass of the top quark. The mass of top quark obtained from the candidate events selected in the di-electron channel and the e{mu} channel is: 154.1 {sup +14.2}{sub -12.8}(stat.) {+-}6.6 (syst.) GeV.

Fatakia, Sarosh Noshir; /Boston U.; ,

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mass difference measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Applications of High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Secondary Organic Aerosols  

SciTech Connect (OSTI)

The applicability of high resolution electrospray ionization mass spectrometry (HR ESI-MS) to measurements of the average oxygen to carbon ratio (O/C) in organic aerosols was investigated. Solutions with known average O/C containing up to 10 standard compounds representative of secondary organic aerosol (SOA) were analyzed and corresponding electrospray ionization efficiencies were quantified. The assumption of equal ionization efficiency commonly used in estimating O/C ratios of organic aerosols was found to be reasonably accurate. We found that the accuracy of the measured O/C ratios increases by averaging the values obtained from both (+) and (-) modes. A correlation was found between the ratio of the ionization efficiencies in the positive and negative ESI modes with the octanol-water partition constant, and more importantly, with the compound's O/C. To demonstrate the utility of this correlation for estimating average O/C values of unknown mixtures, we analyzed the ESI (+) and ESI (-) data for SOA produced by oxidation of limonene and isoprene and compared to online O/C measurements using an aerosol mass spectrometer (AMS). This work demonstrates that the accuracy of the HR ESI-MS methods is comparable to that of the AMS, with the added benefit of molecular identification of the aerosol constituents.

Bateman, Adam P.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey

2012-07-02T23:59:59.000Z

242

Pulsar Braking Index and Mass Accretion  

E-Print Network [OSTI]

I show that the braking index, $N$, a fundamental pulsar experimental quantity, naturally differs from the canonical value of 3 by terms which involve mass accretion. Using the measured values of $N$ for PSR1509-58 and PSR0531+21, I determine that for constant density neutron stars their present mass accretion rates are $(3.10\\pm.51)\\times10^{-5}$ M year$^{-1}$ and $(9.946\\pm.089)\\times10^{-5}$ M year$^{-1}$ respectively, where M is the mass of each pulsar. Finally, I demonstrate that mass accretion removes the outstanding problem of the origin of the big glitches of the Vela Pulsar.

P. D. Morley

1993-11-15T23:59:59.000Z

243

Masses of Fe-61 and Fe-62  

E-Print Network [OSTI]

PHYSICAL RKVIK% C VO LUMK 15, N UMBKB, 5 Masses of 'Fe and Fef MA Y 1977 J. D. Cossairt, R. E. Tribble, * and R. A. Kenefick Cyclotron Institute, Texas A AM University, College Station, Texas 77843 (Received 4 October 1976) The mass excesses... of 'Fe and Fe have been measured using the Ni(a, Be) 'Fe and Ni("B,"N) Fe reactions. The mass excesses obtained are M( 'Fe) = ?58.92 ~ 0.02 MeV and M("Fe) = ?58.85 + 0.07 MeV. The results are consistent with recent predictions from two different mass...

Cossairt, J. D.; Tribble, Robert E.; Kenefick, R. A.

1977-01-01T23:59:59.000Z

244

Atom localization and center-of-mass wave-function determination via multiple simultaneous quadrature measurements RID A-5077-2009  

E-Print Network [OSTI]

Technology, G-5, Islamabad, Pakistan 2Max-Planck-Institut f?r Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany 3Institute for Quantum Studies and Department of Physics, Texas A&M University, College Station, Texas 77843, USA 4Texas A&M University... at Qatar, Education City, P.O. Box 23874, Doha, Qatar #1;Received 5 December 2006; published 8 May 2007#2; We discuss localization and center-of-mass wave-function measurement of a quantum particle using multiple simultaneous dispersive interactions...

Evers, Joerg; Qamar, Shahid; Zubairy, M. Suhail

2007-01-01T23:59:59.000Z

245

Accelerator Mass Spectrometric (AMS) Measurements of Plutonium Activity Concentrations and 240Pu/239Pu Atom Ratios In Soil Extracts Supplied by the Carlsbad Environmental Monitoring & Research Center  

SciTech Connect (OSTI)

Plutonium-239 ({sup 239}Pu) and plutonium-239+240 ({sup 239+240}Pu) activities concentrations and {sup 240}Pu/{sup 239}Pu atom ratios are reported for a series of chemically purified soil extracts received from the Carlsbad Environmental Monitoring & Research Center (CEMRC) in New Mexico. Samples were analyzed without further purification at the Lawrence Livermore National Laboratory (LLNL) using accelerator mass spectrometry (AMS). This report also includes a brief description of the AMS system and internal laboratory procedures used to ensure the quality and reliability of the measurement data.

Hamilton, T F; Brown, T A; Marchetti, A A; Martinelli, R E; Kehl, S R

2005-02-28T23:59:59.000Z

246

Implications of the measurement of pulsars with two solar masses for quark matter in compact stars and HIC. A NJL model case study  

E-Print Network [OSTI]

The precise measurement of the high masses of the pulsars PSR J1614-2230 (M_{1614}=1.97 +- 0.04 solar masses) and PSR J0348-0432 (M_{0348}=2.01 +- 0.04 solar masses) provides an important constraint for the equation of state of cold, dense matter and is suited to give interesting insights regarding the nature and existence of the possible phase transition to deconfined quark matter in the cores of neutron stars. We analyze the stability and composition of compact star sequences for a class of hybrid nuclear - quark-matter equations of state. The quark matter phase is described in the framework of a standard color superconducting 3-flavor Nambu-Jona-Lasinio model and the hadronic phase is given by the Dirac-Brueckner-Hartree-Fock equation of state for the Bonn-A potential. The phase transition is obtained by a Maxwell construction. Within this model setup we aim to constrain otherwise not strictly fixed parameters of the NJL model, namely the coupling strengths in the vector meson and diquark interaction chann...

Klahn, T; ?astowiecki, R

2013-01-01T23:59:59.000Z

247

A measurement of the top quark mass in 1.96 TeV proton-antiproton collisions using a novel matrix element method  

SciTech Connect (OSTI)

A measurement of the top quark mass in t{bar t} {yields} l + jets candidate events, obtained from p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector, is presented. The measurement approach is that of a matrix element method. For each candidate event, a two dimensional likelihood is calculated in the top pole mass and a constant scale factor, 'JES', where JES multiplies the input particle jet momenta and is designed to account for the systematic uncertainty of the jet momentum reconstruction. As with all matrix elements techniques, the method involves an integration using the Standard Model matrix element for tt production and decay. however, the technique presented is unique in that the matrix element is modified to compensate for kinematic assumptions which are made to reduce computation time. Background events are dealt with through use of an event observable which distinguishes signal from background, as well as through a cut on the value of an event's maximum likelihood. Results are based on a 955 pb{sup -1} data sample, using events with a high-p{sub T} lepton and exactly four high-energy jets, at least one of which is tagged as coming from a b quark; 149 events pass all the selection requirements. They find M{sub meas} = 169.8 {+-} 2.3(stat.) {+-} 1.4(syst.) GeV/c{sup 2}.

Freeman, John C.; /LBL, Berkeley

2007-12-01T23:59:59.000Z

248

A Measurement of the Top Quark Mass in 1.96 TeV Proton-Antiproton Collisions Using a Novel Matrix Element Method  

SciTech Connect (OSTI)

A measurement of the top quark mass in t{bar t} {yields} l + jets candidate events, obtained from p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector, is presented. The measurement approach is that of a matrix element method. For each candidate event, a two dimensional likelihood is calculated in the top pole mass and a constant scale factor, 'JES', where JES multiplies the input particle jet momenta and is designed to account for the systematic uncertainty of the jet momentum reconstruction. As with all matrix element techniques, the method involves an integration using the Standard Model matrix element for t{bar t} production and decay. However, the technique presented is unique in that the matrix element is modified to compensate for kinematic assumptions which are made to reduce computation time. Background events are dealt with through use of an event observable which distinguishes signal from background, as well as through a cut on the value of an event's maximum likelihood. Results are based on a 955 pb{sup -1} data sample, using events with a high-p{sub T} lepton and exactly four high-energy jets, at least one of which is tagged as coming from a b quark; 149 events pass all the selection requirements. They find M{sub meas} = 169.8 {+-} 2.3(stat.) {+-} 1.4(syst.) GeV/c{sup 2}.

CDF Collaboration; Freeman, John; Freeman, John

2007-09-30T23:59:59.000Z

249

A more accurate and penetrating method to measure the enrichment and mass of UF6 storage containers using passive neutron self-interrogation  

SciTech Connect (OSTI)

This paper describes an unattended mode neutron measurement that can provide the enrichment of the uranium in UF{sub 6} cylinders. The new passive neutron measurement provides better penetration into the uranium mass than prior gamma-ray enrichment measurement methods. The Passive Neutron Enrichment Monitor (PNEM) provides a new measurement technique that uses passive neutron totals and coincidence counting together with neutron self-interrogation to measure the enrichment in the cylinders. The measurement uses the neutron rates from two detector pods. One of the pods has a bare polyethylene surface next to the cylinder and the other polyethylene surface is covered with Cd to prevent thermal neutrons from returning to the cylinder. The primary neutron source from the enriched UF{sub 6} is the alpha-particle decay from the {sub 234}U that interacts with the fluorine to produce random neutrons. The singles neutron counting rate is dominated by the {sub 234}U neutrons with a minor contribution from the induced fissions in the {sub 235}U. However, the doubles counting rate comes primarily from the induced fissions (i.e., multiplication) in the {sub 235}U in enriched uranium. The PNEM concept makes use of the passive neutrons that are initially produced from the {sub 234}U reactions that track the {sub 235}U enrichment during the enrichment process. The induced fission reactions from the thermal-neutron albedo are all from the {sub 235}U and provide a measurement of the {sub 235}U. The Cd ratio has the desirable feature that all of the thermal-neutron-induced fissions in {sub 235}U are independent of the original neutron source. Thus, the ratio is independent of the uranium age, purity, and prior reactor history.

Menlove, Howard O [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

250

Systematic Uncertainties in the Spectroscopic Measurements of Neutron-Star Masses and Radii from Thermonuclear X-ray Bursts. III. Absolute Flux Calibration  

E-Print Network [OSTI]

Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826-238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE/PCA as well as by XMM-Newton EPIC-pn and RXTE/PCA, we quantify the degree of uncertainty in the flux calibration by assessing the differences between the measured fluxes during bursts. We find that the RXTE/PCA and the Chandra gratings measurements agree with each other within their formal uncertainties, increasing our confidence in these flux measurements. In contrast, XMM-Newton EPIC-pn measures 14.0$\\pm$0.3% less flux than the RXTE/PCA. This is consistent with the previously reported discrepancy with the flux measurements of EPIC-pn, compared to EPIC-MOS1, MOS2 and ACIS-S detectors. We also address the calibration uncertainty in the RXTE/PCA int...

Guver, Tolga; Marshall, Herman; Psaltis, Dimitrios; Guainazzi, Matteo; Diaz-Trigo, Maria

2015-01-01T23:59:59.000Z

251

Test of the Conserved Vector Current Hypothesis by beta-ray Angular Distribution Measurement in the Mass-8 System  

E-Print Network [OSTI]

The beta-ray angular correlations for the spin alignments of 8Li and 8B have been observed in order to test the conserved vector current (CVC) hypothesis. The alignment correlation terms were combined with the known beta-alpha-angular correlation terms to determine all the matrix elements contributing to the correlation terms. The weak magnetism term, 7.5\\pm0.2, deduced from the beta-ray correlation terms was consistent with the CVC prediction 7.3\\pm0.2, deduced from the analog-gamma-decay measurement based on the CVC hypothesis. However, there was no consistent CVC prediction for the second-forbidden term associated with the weak vector current. The experimental value for the second-forbidden term was 1.0 \\pm 0.3, while the CVC prediction was 0.1 \\pm 0.4 or 2.1 \\pm 0.5.

T. Sumikama; K. Matsuta; T. Nagatomo; M. Ogura; T. Iwakoshi; Y. Nakashima; H. Fujiwara; M. Fukuda; M. Mihara; K. Minamisono; T. Yamaguchi; T. Minamisono

2011-05-09T23:59:59.000Z

252

Properties of jets measured from tracks in proton-proton collisions at center-of-mass energy ?s=7 TeV with the ATLAS detector  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Jets are identified and their properties studied in center-of-mass energy ?s=7??TeV proton-proton collisions at the Large Hadron Collider using charged particles measured by the ATLAS inner detector. Events are selected using a minimum bias trigger, allowing jets at very low transverse momentum to be observed and their characteristics in the transition to high-momentum fully perturbative jets to be studied. Jets are reconstructed using the anti-kt algorithm applied to charged particles with two radius parameter choices, 0.4 and 0.6. An inclusive charged jet transverse momentum cross section measurement from 4 GeV to 100 GeV is shown for four ranges in rapidity extending to 1.9 and corrected to charged particle-level truth jets. The transverse momenta and longitudinal momentum fractions of charged particles within jets are measured, along with the charged particle multiplicity and the particle density as a function of radial distance from the jet axis. Comparison of the data with the theoretical models implemented in existing tunings of Monte Carlo event generators indicates reasonable overall agreement between data and Monte Carlo. These comparisons are sensitive to Monte Carlo parton showering, hadronization, and soft physics models.

Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Ĺkesson, T.?P.?A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Ĺsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarăes da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.

2011-09-01T23:59:59.000Z

253

Joint X-Ray and Optical Measurements of the Mass Distribution of the Distant Galaxy Cluster CLJ 0152.7-1357  

E-Print Network [OSTI]

We present joint X-ray and optical observations of the high redshift (z~0.83) lensing cluster CLJ0152.7-1357 made with the Chandra X-ray Observatory and the Keck telescope. We confirm the existence of significant substructure at both X-ray and optical wavelengths in the form of two distinct clumps, whose temperatures are 6.6(-1.5,+2.4) keV and 5.7(-1.6,+2.9) keV, respectively. The X-ray surface brightness profiles of the two clumps can be fitted by either a single beta-model or an NFW-like profile; the latter giving better fits to the central regions. We find that the X-ray derived mass of this cluster is in good agreement with independent lensing measurements. While its appearance indicates that the cluster has not reached a dynamical equilibrium state, its X-ray luminosity L_x, temperature T and dynamical mass M are consistent with the well-defined L_x-T and M-T relations for low-redshift galaxy clusters, which suggests that the dynamical properties of the clusters have remained almost unchanged since z~0.8.

Zhi-Ying Huo; Sui-Jian Xue; Haiguang Xu; Gordon Squires; Piero Rosati

2003-12-06T23:59:59.000Z

254

Measurement of the top quark mass and top-antitop production cross section from dilepton events at the Collider Detector at Fermilab  

E-Print Network [OSTI]

We present an analysis of dilepton events originating from top-antitop production in proton-antiproton collisions at sqrt{s}=1.8 TeV at the Fermilab Tevatron Collider. The sample corresponds to an integrated luminosity of 109+-7 pb^{-1}. We observe 9 candidate events, with an estimated background of 2.4+-0.5 events. We determine the mass of the top quark to be M_top = 161+-17(stat.)+-10(syst.) GeV/c^2. In addition we measure a top-antitop production cross section of 8.2+4.4-3.4 pb (where M_top = 175 GeV/c^2 has been assumed for the acceptance estimate).

CDF collaboration

1998-02-18T23:59:59.000Z

255

Estimation of measured control rod worths in Fast Breeder Test Reactor -- Effect of different delayed neutron parameters  

SciTech Connect (OSTI)

Control rod worths have been measured by the inverse kinetics method in the small PuC-UC core of the Fast Breeder Test Reactor at Kalpakkam. Delayed neutron fractional yields based on Tuttle`s data, ENDF/B-VI data, and the full summation approach of Brady and England have been used to get measured control rod worths. Unreasonably large reductions in control rod worths are obtained by the ENDF/B-VI data. It is suspected that the procedure, of normalizing fractional yields obtained by the summation approach to earlier evaluated total yields, is inconsistent.

Mohanakrishnan, P.; Reddy, C.P.; Gopalakrishnan, V.; Arul, J. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Reactor Physics Div.

1996-03-01T23:59:59.000Z

256

Customer satisfaction for beef: home-use tests and objective measures to evaluate three retail cuts at different quality levels  

E-Print Network [OSTI]

, participated in a six-week home-use test of the three cuts and four quality grade levels completing a questionnaire for each steak evaluated. Trained sensory panel and Wamer-Bratzler shear force determination (WBS) provided objective measures for each subprimal...

Neely, Tracey Renee

2012-06-07T23:59:59.000Z

257

Methods for recalibration of mass spectrometry data  

DOE Patents [OSTI]

Disclosed are methods for recalibrating mass spectrometry data that provide improvement in both mass accuracy and precision by adjusting for experimental variance in parameters that have a substantial impact on mass measurement accuracy. Optimal coefficients are determined using correlated pairs of mass values compiled by matching sets of measured and putative mass values that minimize overall effective mass error and mass error spread. Coefficients are subsequently used to correct mass values for peaks detected in the measured dataset, providing recalibration thereof. Sub-ppm mass measurement accuracy has been demonstrated on a complex fungal proteome after recalibration, providing improved confidence for peptide identifications.

Tolmachev, Aleksey V. (Richland, WA); Smith, Richard D. (Richland, WA)

2009-03-03T23:59:59.000Z

258

Characterization of condenser microphones under different environmental conditions for accurate speed of sound measurements with acoustic resonators  

SciTech Connect (OSTI)

Condenser microphones are more commonly used and have been extensively modeled and characterized in air at ambient temperature and static pressure. However, several applications of interest for metrology and physical acoustics require to use these transducers in significantly different environmental conditions. Particularly, the extremely accurate determination of the speed of sound in monoatomic gases, which is pursued for a determination of the Boltzmann constant k by an acoustic method, entails the use of condenser microphones mounted within a spherical cavity, over a wide range of static pressures, at the temperature of the triple point of water (273.16 K). To further increase the accuracy achievable in this application, the microphone frequency response and its acoustic input impedance need to be precisely determined over the same static pressure and temperature range. Few previous works examined the influence of static pressure, temperature, and gas composition on the microphone's sensitivity. In this work, the results of relative calibrations of 1/4 in. condenser microphones obtained using an electrostatic actuator technique are presented. The calibrations are performed in pure helium and argon gas at temperatures near 273 K and in the pressure range between 10 and 600 kPa. These experimental results are compared with the predictions of a realistic model available in the literature, finding a remarkable good agreement. The model provides an estimate of the acoustic impedance of 1/4 in. condenser microphones as a function of frequency and static pressure and is used to calculate the corresponding frequency perturbations induced on the normal modes of a spherical cavity when this is filled with helium or argon gas.

Guianvarc'h, Cecile; Pitre, Laurent [Laboratoire Commun de Metrologie LNE/Cnam, 61 rue du Landy, 93210 La Plaine Saint Denis (France); Gavioso, Roberto M.; Benedetto, Giuliana [Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Turin (Italy); Bruneau, Michel [Laboratoire d'Acoustique de l'Universite du Maine UMR CNRS 6613, av. Olivier Messiaen, 72085 Le Mans Cedex 9 (France)

2009-07-15T23:59:59.000Z

259

Quark Masses: An Environmental Impact Statement  

E-Print Network [OSTI]

We investigate worlds that lie on a slice through the parameter space of the Standard Model over which quark masses vary. We allow as many as three quarks to participate in nuclei, while fixing the mass of the electron and the average mass of the lightest baryon flavor multiplet. We classify as "congenial" worlds that satisfy the environmental constraint that the quark masses allow for stable nuclei with charges one, six, and eight, making organic chemistry possible. Whether a congenial world actually produces observers depends on a multitude of historical contingencies, beginning with primordial nucleosynthesis, which we do not explore. Such constraints may be independently superimposed on our results. Environmental constraints such as the ones we study may be combined with information about the a priori distribution of quark masses over the landscape of possible universes to determine whether the measured values of the quark masses are determined environmentally, but our analysis is independent of such an anthropic approach. We estimate baryon masses as functions of quark masses and nuclear masses as functions of baryon masses. We check for the stability of nuclei against fission, strong particle emission, and weak nucleon emission. For two light quarks with charges 2/3 and -1/3, we find a band of congeniality roughly 29 MeV wide in their mass difference. We also find another, less robust region of congeniality with one light, charge -1/3 quark, and two heavier, approximately degenerate charge -1/3 and 2/3 quarks. No other assignment of light quark charges yields congenial worlds with two baryons participating in nuclei. We identify and discuss the region in quark-mass space where nuclei would be made from three or more baryon species.

Robert L. Jaffe; Alejandro Jenkins; Itamar Kimchi

2009-04-03T23:59:59.000Z

260

Algorithm for Screening Phasor Measurement Unit Data for Power System Events and Categories and Common Characteristics for Events Seen in Phasor Measurement Unit Relative Phase-Angle Differences and Frequency Signals  

SciTech Connect (OSTI)

A network of multiple phasor measurement units (PMU) was created, set up, and maintained at the University of Texas at Austin to obtain actual power system measurements for power system analysis. Power system analysis in this report covers a variety of time ranges, such as short- term analysis for power system disturbances and their effects on power system behavior and long- term power system behavior using modal analysis. The first objective of this report is to screen the PMU data for events. The second objective of the report is to identify and describe common characteristics extracted from power system events as measured by PMUs. The numerical characteristics for each category and how these characteristics are used to create selection rules for the algorithm are also described. Trends in PMU data related to different levels and fluctuations in wind power output are also examined.

Allen, A.; Santoso, S.; Muljadi, E.

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "mass difference measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Targeted Peptide Measurements in Biology and Medicine: Best Practices for Mass Spectrometry-based Assay Development Using a Fit-for-Purpose Approach  

SciTech Connect (OSTI)

Adoption of targeted mass spectrometry (MS) approaches such as multiple reaction monitoring (MRM) to study biological and biomedical questions is well underway in the proteomics community. Successful application depends on the ability to generate reliable assays that uniquely and confidently identify target peptides in a sample. Unfortunately, there is a wide range of criteria being applied to say that an assay has been successfully developed. There is no consensus on what criteria are acceptable and little understanding of the impact of variable criteria on the quality of the results generated. Publications describing targeted MS assays for peptides frequently do not contain sufficient information for readers to establish confidence that the tests work as intended or to be able to apply the tests described in their own labs. Guidance must be developed so that targeted MS assays with established performance can be made widely distributed and applied by many labs worldwide. To begin to address the problems and their solutions, a workshop was held at the National Institutes of Health with representatives from the multiple communities developing and employing targeted MS assays. Participants discussed the analytical goals of their experiments and the experimental evidence needed to establish that the assays they develop work as intended and are achieving the required levels of performance. Using this “fit-for-purpose” approach, the group defined three tiers of assays distinguished by their performance and extent of analytical characterization. Computational and statistical tools useful for the analysis of targeted MS results were described. Participants also detailed the information that authors need to provide in their manuscripts to enable reviewers and readers to clearly understand what procedures were performed and to evaluate the reliability of the peptide or protein quantification measurements reported. This paper presents a summary of the meeting and recommendations. Molecular & Cellular Proteomics 13: 10.1074/mcp.M113.036095, 907–917, 2014.

Carr, Steven A.; Abbateillo, Susan E.; Ackermann, Bradley L.; Borchers, Christoph H.; Domon, Bruno; Deutsch, Eric W.; Grant, Russel; Hoofnagle, Andrew N.; Huttenhain, Ruth; Koomen, John M.; Liebler, Daniel; Liu, Tao; MacLean, Brendan; Mani, DR; Mansfield, Elizabeth; Neubert, Hendrik; Paulovich, Amanda G.; Reiter, Lukas; Vitek, Olga; Aebersold, Ruedi; Anderson, Leigh N.; Bethem, Robert; Blonder, Josip; Boja, Emily; Botelho, Julianne; Boyne, Michael; Bradshaw, Ralph A.; Burlingame, Alma S.; Chan, Daniel W.; Keshishian, Hasmik; Kuhn, Eric; Kingsinger, Christopher R.; Lee, Jerry S.; Lee, Sang-Won; Moritz, Robert L.; Oses-Prieto, Juan; Rifai, Nader; Ritchie, James E.; Rodriguez, Henry; Srinivas, Pothur R.; Townsend, Reid; Van Eyk , Jennifer; Whiteley, Gordon; Wiita, Arun; Weintraub, Susan

2014-01-14T23:59:59.000Z

262

PLANET HUNTERS. VII. DISCOVERY OF A NEW LOW-MASS, LOW-DENSITY PLANET (PH3 C) ORBITING KEPLER-289 WITH MASS MEASUREMENTS OF TWO ADDITIONAL PLANETS (PH3 B AND D)  

E-Print Network [OSTI]

We report the discovery of one newly confirmed planet (P = 66.06 days, R [subscript P] = 2.68 ± 0.17 R [subscript ?]) and mass determinations of two previously validated Kepler planets, Kepler-289 b (P = 34.55 days, R ...

Schmitt, Joseph R.

263

Observables in Neutrino Mass Spectroscopy Using Atoms  

E-Print Network [OSTI]

The process of collective de-excitation of atoms in a metastable level into emission mode of a single photon plus a neutrino pair, called radiative emission of neutrino pair (RENP), is sensitive to the absolute neutrino mass scale, to the neutrino mass hierarchy and to the nature (Dirac or Majorana) of massive neutrinos. We investigate how the indicated neutrino mass and mixing observables can be determined from the measurement of the corresponding continuous photon spectrum taking the example of a transition between specific levels of the Yb atom. The possibility of determining the nature of massive neutrinos and, if neutrinos are Majorana fermions, of obtaining information about the Majorana phases in the neutrino mixing matrix, is analyzed in the cases of normal hierarchical, inverted hierarchical and quasi-degenerate types of neutrino mass spectrum. We find, in particular, that the sensitivity to the nature of massive neutrinos depends critically on the atomic level energy difference relevant in the RENP.

D. N. Dinh; S. T. Petcov; N. Sasao; M. Tanaka; M. Yoshimura

2012-09-21T23:59:59.000Z

264

Phenomenology of Absolute Neutrino Masses  

E-Print Network [OSTI]

The phenomenology of absolute neutrino masses is reviewed, focusing on tritium beta decay, cosmological measurements and neutrinoless double-beta decay.

Carlo Giunti

2004-12-11T23:59:59.000Z

265

Mass measurements in the vicinity of the rp-process and the nu p-process paths with JYFLTRAP and SHIPTRAP  

E-Print Network [OSTI]

The masses of very neutron-deficient nuclides close to the astrophysical rp- and nu p-process paths have been determined with the Penning trap facilities JYFLTRAP at JYFL/Jyv\\"askyl\\"a and SHIPTRAP at GSI/Darmstadt. Isotopes from yttrium (Z = 39) to palladium (Z = 46) have been produced in heavy-ion fusion-evaporation reactions. In total 21 nuclides were studied and almost half of the mass values were experimentally determined for the first time: 88Tc, 90-92Ru, 92-94Rh, and 94,95Pd. For the 95Pdm, (21/2^+) high-spin state, a first direct mass determination was performed. Relative mass uncertainties of typically $\\delta m / m = 5 \\times 10^{-8}$ were obtained. The impact of the new mass values has been studied in nu p-process nucleosynthesis calculations. The resulting reaction flow and the final abundances are compared to those obtained with the data of the Atomic Mass Evaluation 2003.

C. Weber; V. -V. Elomaa; R. Ferrer; C. Fröhlich; D. Ackermann; J. Äystö; G. Audi; L. Batist; K. Blaum; M. Block; A. Chaudhuri; M. Dworschak; S. Eliseev; T. Eronen; U. Hager; J. Hakala; F. Herfurth; F. P. Heßberger; S. Hofmann; A. Jokinen; A. Kankainen; H. -J. Kluge; K. Langanke; A. Martín; G. Martínez-Pinedo; M. Mazzocco; I. D. Moore; J. B. Neumayr; Yu. N. Novikov; H. Penttilä; W. R. Plaß; A. V. Popov; S. Rahaman; T. Rauscher; C. Rauth; J. Rissanen; D. Rodríguez; A. Saastamoinen; C. Scheidenberger; L. Schweikhard; D. M. Seliverstov; T. Sonoda; F. -K. Thielemann; P. G. Thirolf; G. K. Vorobjev

2008-08-29T23:59:59.000Z

266

Riddle of the Neutrino Mass  

E-Print Network [OSTI]

We discuss some known approaches and results as well as few new ideas concerning origins and nature of neutrino mass. The key issues include (i) connections of neutrino and charged fermions masses, relation between masses and mixing, energy scale of new physics behind neutrino mass where possibilities spread from the Planck and GUT masses down to a sub-eV scale. The data hint two different new physics involved in generation of neutrino mass. Determination of the CP phase as well as mass hierarchy can play important role in identification of new physics. It may happen that sterile neutrinos provide the key to resolve the riddle.

Smirnov, A Yu

2015-01-01T23:59:59.000Z

267

Measurement of Event Shapes in Proton-Antiproton Collisions at Center-of-Mass Energy 1.96 TeV  

SciTech Connect (OSTI)

A study of event shape observables in proton-antiproton collisions at {radical}s = 1.96 TeV is presented. The data for this analysis were recorded by the CDF II detector at the Tevatron collider. The variables studied are the transverse thrust and thrust minor, both defined in the plane perpendicular to the beam direction. The observables are measured using energies from unclustered calorimeter cells. In addition to studies of the differential distributions, we present the dependence of event shape mean values on the leading jet transverse energy. Data are compared with pythia Tune A and to resummed parton level predictions that were matched to fixed order results at NLO accuracy (NLO+NLL). Predictions from pythia Tune A agree fairly well with the data. However, the underlying event contributes significantly to these observables, making it difficult to make direct comparisons to the NLO+NLL predictions, which do not account for the underlying event. To overcome this difficulty, we introduce a new observable, a weighted difference of the mean values of the thrust and thrust minor, which is less sensitive to the underlying event, allowing for a comparison with NLO+NLL. Both pythia Tune A and the NLO+NLL calculations agree well within the 20% theoretical uncertainty with the data for this observable, indicating that perturbative QCD successfully describes shapes of the hadronic final states.

Aaltonen, T.; Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.; /Oviedo U. /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U.; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Appel, J.A.; /Fermilab; Apresyan, A.; /Purdue U. /Waseda U. /Dubna, JINR

2011-03-01T23:59:59.000Z

268

Linear electric field mass spectrometry  

DOE Patents [OSTI]

A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

McComas, D.J.; Nordholt, J.E.

1992-12-01T23:59:59.000Z

269

W Boson Mass Working Group Report  

SciTech Connect (OSTI)

The W boson mass working group discussed the current status of the W boson mass measurement and the prospects for improving on LEP and Tevatron measurements at the LHC.

Kilgore, W.; Kilgore, W.

2010-06-14T23:59:59.000Z

270

Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings  

SciTech Connect (OSTI)

Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

2009-07-15T23:59:59.000Z

271

Measurement of Hadronic Event Shapes and Jet Substructure in Proton-Proton Collisions at 7.0 TeV Center-of-Mass Energy with the ATLAS Detector at the Large Hadron Collider  

SciTech Connect (OSTI)

This thesis presents the first measurement of 6 hadronic event shapes in proton-proton collisions at a center-of-mass energy of {radical}s = 7 TeV using the ATLAS detector at the Large Hadron Collider. Results are presented at the particle-level, permitting comparisons to multiple Monte Carlo event generator tools. Numerous tools and techniques that enable detailed analysis of the hadronic final state at high luminosity are described. The approaches presented utilize the dual strengths of the ATLAS calorimeter and tracking systems to provide high resolution and robust measurements of the hadronic jets that constitute both a background and a signal throughout ATLAS physics analyses. The study of the hadronic final state is then extended to jet substructure, where the energy flow and topology within individual jets is studied at the detector level and techniques for estimating systematic uncertainties for such measurements are commissioned in the first data. These first substructure measurements in ATLAS include the jet mass and sub-jet multiplicity as well as those concerned with multi-body hadronic decays and color flow within jets. Finally, the first boosted hadronic object observed at the LHC - the decay of the top quark to a single jet - is presented.

Miller, David Wilkins

2012-03-20T23:59:59.000Z

272

Fourier transform mass spectrometry of high-mass biomolecules  

SciTech Connect (OSTI)

In this report the authors present an overview of the use of FTMS for the analysis of large biomolecules, with emphasis on recent developments in coupling ESI and MALDI with FTMS. A simple description of the principles of FTMS operation and experimental factors that are relevant to the examination of large molecules are also presented. The examples represent state-of-the-art capabilities of FTMS. On the basis of early reports, it is apparent that the applications of FTMS for the analysis of biopolymers will expand rapidly in the near future. Although many different types of mass analyzers are compatible with FAB, ESI, and MALDI, FTMS has exhibited particular potential for high sensitivity, accurate mass measurement, high-mass resolution, and structural characterization of large biopolymers. The recent results obtained with both ESI-FTMS and MALDI-FTMS are very exciting with respect to both fundamental advances in the capabilities of FTMS and potential applications in the biochemical laboratory. 63 refs., 6 figs., 1 tab.

Buchanan, M.V.; Hettich, R.L. (Oak Ridge National Lab., TN (United States))

1993-03-01T23:59:59.000Z

273

Investigation of structure and properties of the Nb rods manufactured by different deformation and heat treatment regimes in mass production conditions for the Nb{sub 3}Sn strands  

SciTech Connect (OSTI)

From 2009 the mass production of the Nb{sub 3}Sn strands for ITER with the yield of several tens of tons per year operates at JSC Chepetsky Mechanical Plant (Glazov, Russia). In order to enhance the stability of output characteristics of the produced Nb{sub 3}Sn strands, to increase the Nb filaments dimensional homogeneity the manufacture regimes improvement of the used semiproducts such as Nb rods intended for the superconducting filaments formation in the finished strands has been carried out. In the work the investigations of the Nb rheological behavior, the influence of heat treatment in the wide temperature range from 700 to 1300 °C on the predeformed Nb rods structure and mechanical properties have been performed. Different production routes of the Nb rods, including such operations like forging, extrusion and drawing combined with the recrystallization annealings, were used. Composite Nb{sub 3}Sn strands have been produced and their electrophysical properties have been tested. For the first time influence of the niobium rods manufacture regimes on the current carrying capacity of the industrial Nb{sub 3}Sn strands has been investigated.

Abdyukhanov, I. M.; Vorobieva, A. E.; Alekseev, M. V.; Mareev, K. A.; Dergunova, E. A.; Peredkova, T. N. [JSC Bochvar High-Technology Research Institute of Inorganic Materials, 5a Rogova St., Moscow, 123060 (Russian Federation); Shikov, A. K. [NRC Kurchatov Institute, 1 Akademika Kurchatova Sq., Moscow, 123182 (Russian Federation); Utkin, K. V.; Vorobieva, A. V.; Kharkovsky, D. N. [JSC Chepetsky Mechanical Plant, 7 Belova St., Glazov, 427620 (Russian Federation)

2014-01-27T23:59:59.000Z

274

Measurement of $d\\sigma/dy$ of Drell-Yan $e^+e^-$ pairs in the $Z$ Mass Region from $p\\bar{p}$ Collisions at $\\sqrt{s}=1.96$ TeV  

SciTech Connect (OSTI)

We report on a CDF measurement of the total cross section and rapidity distribution, d{sigma}/dy, for q{bar q} {yields} {gamma}{sup *}/Z {yields} e{sup +} e {sup -} events in the Z boson mass region (66 < M {sub ee} < 116 GeV/c {sub 2}) produced in p{bar p} collisions at {radical}s = 1.96 TeV with 2.1 fb{sup -1} of integrated luminosity. The measured cross section of 257 {+-} 16pb and d{sigma}/dy distribution are compared with Next-to-Leading-Order (NLO) and Next-to-Next-to-Leading-Order (NNLO) QCD theory predictions with CTEQ and MRST/MSTW parton distribution functions (PDFs). There is good agreement between the experimental total cross section and d{sigma}/dy measurements with theoretical calcualtion with the most recent NNLO PDFs.

Aaltonen, Timo Antero; /Helsinki Inst. of Phys.; Adelman, Jahred A.; /Chicago U., EFI; Gonzalez, Barbara Alvarez; /Cantabria Inst. of Phys.; Amerio, Silvia; /Padua U., CISAS; Amidei, Dante E.; /Michigan U. /INFN, Padua; Anastassov, Anton Iankov; /Northwestern U.; Annovi, Alberto; /Frascati; Antos, Jaroslav; /Comenius U.; Apollinari, Giorgio; /Fermilab; Appel, Jeffrey A.; /Fermilab; Apresyan, Artur; /Purdue U. /Waseda U.

2010-03-01T23:59:59.000Z

275

A Measurement of the production cross section of top-antitop pairs in proton-antiproton collisions at a center of mass of 1.96 TeV using secondary vertex b-tagging.  

SciTech Connect (OSTI)

A measurement of the t{bar t} pair production cross section is presented using 162 pb{sup -1} of data collected by the CDF experiment during Run II at the Tevatron. t{bar t} events in the lepton+jets channel are isolated by identifying electrons and muons, reconstructing jets and transverse missing energy, and identifying b jets with a secondary vertex tagging algorithm. The efficiency of the algorithm is measured in a control sample using a novel technique that is less dependent on the simulation. For a top quark mass of 175 GeV/c{sup 2}, a cross section of {sigma}{sub t{bar t}} = 5.6{sub -1.1}{sup +1.2}(stat.){sub -0.6}{sup +0.9}(syst.)pb is measured.

Bachacou, Henri

2004-12-01T23:59:59.000Z

276

A bolometric measurement of the antineutrino mass C. Arnaboldi, C. Bro erio, O. Cremonesi, E. Fiorini, C. Lo Bianco, A. Nucciotti,  

E-Print Network [OSTI]

stimulated by the evidence of a non zero value of #1;m 2 #23; detected in searches on solar and atmospheric measurements where all the energy re- leased in the decay is recorded, appear therefore com- plementary

277

Commissioning Measurements and Experience Obtained from the Installation of a Fissile Mass Flow monitor in the URAL Electrochemical Integrated Plant (UEIP) in Novouralsk  

SciTech Connect (OSTI)

The Blend Down Monitoring System (BDMS) equipment sent earlier to the Ural Electrochemical Integrated Plant (UEIP) at Novouralsk, Russia, was installed and implemented successfully on February 2, 1999. The BDMS installation supports the highly enriched uranium (HEU) Transparency Implementation Program for material subject to monitoring under the HEU purchase agreement between the United States of America (USA) and the Russian Federation (RF). The BDMS consists of the Oak Ridge National Laboratory (ORNL) Fissile (uranium-235) Mass Flow Monitor (FMFM) and the Los Alamos National Laboratory (LANL) Enrichment Monitor (EM). Two BDMS?s for monitoring the Main and Reserve HEU blending process lines were installed at UEIP. Independent operation of the FMFM Main and FMFM Reserve was successfully demonstrated for monitoring the fissile mass flow as well as the traceability of HEU to the product low enriched uranium. The FMFM systems failed when both systems were activated during the calibration phase due to a synchronization problem between the systems. This operational failure was caused by the presence of strong electromagnetic interference (EMI) in the blend point. The source-modulator shutter motion of the two FMFM systems was not being properly synchronized because of EMI producing a spurious signal on the synchronization cable connecting the two FMFM cabinets. The signature of this failure was successfully reproduced at ORNL after the visit. This unexpected problem was eliminated by a hardware modification and software improvements during a recent visit (June 9-11, 1999) to UEIP, and both systems are now operating as expected.

March-Leuba, J.; Mastal, E.; Powell, D.; Sumner, J.; Uckan, T.; Vines, V.

1999-07-25T23:59:59.000Z

278

Review of concurrent mass emission and opacity measurements for coal-burning utility and industrial boilers. Final report Aug 79-Feb 80  

SciTech Connect (OSTI)

The report gives results of concurrent particulate emissions and opacity measurements based on visual observations and/or in-stack transmissometry for more than 400 compliance, acceptance, or experimental tests on coal-fired utility and industrial boilers. The sampling, which includes a capacity range of a few to several hundred megawatts and typical firing methods (pulverized, stoker, and cyclone), in most cases reflects flyash control by electrostatic precipitation, although filters or mechanical collectors were used at a few installations. All opacity measurements were standardized to their equivalent values for a 4 m (13.0 ft) diameter stack before being compared with their corresponding particulate emissions, the latter expressed as actual grams per cubic meter. No discernible correlations applicable to all sources were observed, although some modest (but apparently significant) correlations were noted on an individual source basis. Report findings were sufficiently encouraging to warrant further analyses relating to in-stack transmissometer measurements.

Brennan, R.J.; Dennis, R.; Roeck, D.R.

1980-03-01T23:59:59.000Z

279

In situ measurements of Krypton in Xenon gas with a quadrupole mass spectrometer following a cold-trap at a temporarily reduced pumping speed  

E-Print Network [OSTI]

A new method for measuring trace amounts of krypton in xenon using a cold trap with a residual gas analyzer has been developed, which achieves an increased sensitivity by temporarily reducing the pumping speed while expending a minimal amount of xenon. By partially closing a custom built butterfly valve between the measurement chamber and the turbomolecular pump, a sensitivity of 40 ppt has been reached. This method has been tested on an ultra-pure gas sample from Air Liquide with an unknown intrinsic krypton concentration, yielding a krypton concentration of $330 \\pm 200$ ppt.

Ethan Brown; Stephan Rosendahl; Christian Huhmann; Christian Weinheimer; Hans Kettling

2012-12-20T23:59:59.000Z

280

Electron Effective Mass in Graphene  

E-Print Network [OSTI]

The particle effective mass in graphene is a challenging concept because the commonly used theoretical expression is mathematically divergent. In this paper, we use basic principles to present a simple theoretical expression for the effective mass that is suitable for both parabolic and non-parabolic isotropic materials. We demonstrate that this definition is consistent with the definition of the cyclotron effective mass, which is one of the common methods for effective mass measurement in solid state materials. We apply the proposed theoretical definition to graphene and demonstrate linear dependence of the effective mass on momentum, as confirmed by experimental cyclotron resonance measurements. Therefore, the proposed definition of the effective mass can be used for non-parabolic materials such as graphene.

Viktor Ariel; Amir Natan

2012-08-12T23:59:59.000Z

Note: This page contains sample records for the topic "mass difference measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Atomic mass compilation 2012  

SciTech Connect (OSTI)

Atomic mass reflects the total binding energy of all nucleons in an atomic nucleus. Compilations and evaluations of atomic masses and derived quantities, such as neutron or proton separation energies, are indispensable tools for research and applications. In the last decade, the field has evolved rapidly after the advent of new production and measuring techniques for stable and unstable nuclei resulting in substantial ameliorations concerning the body of data and their precision. Here, we present a compilation of atomic masses comprising the data from the evaluation of 2003 as well as the results of new measurements performed. The relevant literature in refereed journals and reports as far as available, was scanned for the period beginning 2003 up to and including April 2012. Overall, 5750 new data points have been collected. Recommended values for the relative atomic masses have been derived and a comparison with the 2003 Atomic Mass Evaluation has been performed. This work has been carried out in collaboration with and as a contribution to the European Nuclear Structure and Decay Data Network of Evaluations.

Pfeiffer, B., E-mail: bpfeiffe@uni-mainz.de [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Venkataramaniah, K. [Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam (India)] [Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam (India); Czok, U. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen (Germany)] [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen (Germany); Scheidenberger, C. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany) [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen (Germany)

2014-03-15T23:59:59.000Z

282

Implications of different supersymmetry breaking patterns for the spectrum and decay of neutralinos and charginos  

SciTech Connect (OSTI)

We consider different patterns of supersymmetry breaking gaugino mass parameters, and implications of these patterns for the phenomenology of neutralinos and charginos in models of low-energy supersymmetry. We outline a general procedure for obtaining approximate values for the neutralino masses relevant for our analysis, and describe the constraints on the gaugino mass parameters which follow from the present experimental limits on the mass of the lightest chargino. We evaluate an upper bound on the mass of the lightest neutralino that follows from the structure of the mass matrix in the studied patterns. Using the experimental lower limit for the chargino mass, we examine the lower bound for the neutralino masses. Using a sum rule for the squared masses of charginos and neutralinos, we discuss how to distinguish between different models for the supersymmetry breaking. We discuss in detail the decay modes of neutralinos and charginos. Our analysis shows that by measuring the masses and decay properties of the neutralinos, one can distinguish between different patterns of supersymmetry breaking in the gaugino sector. We then compare the dark matter characteristics that arise in different models for the supersymmetry breaking gaugino mass parameters.

Huitu, Katri; Tiitola, Paavo [Department of Physics / Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki (Finland); Laamanen, Jari [Theoretical High Energy Physics, Radboud University Nijmegen, P.O. Box 9010, NL-6500 GL Nijmegen (Netherlands); Institut fuer Physik, Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Pandita, P. N. [Department of Physics, North Eastern Hill University, Shillong 793 022 (India)

2010-12-01T23:59:59.000Z

283

Measurement of elemental speciation by liquid chromatography -- inductively coupled plasma mass spectrometry (LC-ICP-MS) with the direct injection nebulizer (DIN)  

SciTech Connect (OSTI)

This thesis is divided into 4 parts: elemental speciation, speciation of mercury and lead compounds by microbore column LC-ICP-MS with direct injection nebulization, spatially resolved measurements of size and velocity distributions of aerosol droplets from a direct injection nebulizer, and elemental speciation by anion exchange and size exclusion chromatography with detection by ICP-MS with direct injection nebulization. Tabs, figs, refs.

Shum, S.

1993-05-01T23:59:59.000Z

284

Measurement of d sigma/dy of Drell-Yan e+ e- pairs in the Z Mass Region from p anti-p Collisions at s88(1/2) = 1.96-TeV  

SciTech Connect (OSTI)

We report on a CDF measurement of the total cross section and rapidity distribution, d{sigma}/dy, for q{bar q} {yields} {gamma}*/Z {yields} e{sup +}e{sup -} events in the Z boson mass region (66 < M{sub ee} < 116 GeV/c{sup 2}) produced in p{bar p} collisions at {radical}s = 1.96 TeV with 2.1 fb{sup -1} of integrated luminosity. The measured cross section of 256 {+-} 16 pb and d{sigma}/dy distribution are compared with Next-to-Leading-Order and Next-to-Next-to-Leading-Order QCD theory predictions with CTEQ and MRST parton distribution functions (PDFs). There is good agreement between data and theory except at large rapidity for which further tuning of PDF models may be needed.

Aaltonen, T.; /Helsinki Inst. of Phys.; Adelman, J.; /Chicago U., EFI; Akimoto, T.; /Tsukuba U.; Alvarez Gonzalez, B.; /Cantabria Inst. of Phys.; Amerio, S.; /Padua U. /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U.; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Apresyan, A.; /Purdue U. /Waseda U.

2009-08-01T23:59:59.000Z

285

A measurement of. Delta. sigma. sub L (np), the difference between neutron-proton total cross sections in pure longitudinal spin states  

SciTech Connect (OSTI)

A measurement off {Delta}{sigma}{sub L}(np), the difference between neutron-proton total cross sections in pure longitudinal spin states, is described. The results will help determine the isospin-zero (I = 0) scattering amplitudes, which are not well known above laboratory energies of 500 MeV, whereas the isospin-one (I = 1) amplitudes are fairly well-determined to 1 GeV. Data points were taken at the Los Alamos Meson Physics Facility (LAMPF) at Los Alamos, New Mexico, for five neutron beam energies: 484, 568, 634,720 and 788 MeV; they are the first in this energy range. Polarized neutrons were produced by charge-exchange of polarized protons on a liquid deuterium target (LD{sub 2}). Large-volume neutron counters detected the neutrons that passed through a polarized proton target. The counters subtended a range of solid angles large enough to allow extrapolation of the scattered neutrons to 0{degree}. Two modifications to the LAMPF accelerator system which were made for this work are described. They included a beam buncher,'' which modified the normal rf-time structure of the proton beam and allowed for the selection of peak-energy neutrons by time-of-flight means, and a computerized beam steering program, which reduced systematic effects due to beam motion at the LD{sub 2} target. The experimental values of {Delta}{sigma}{sub L}(np) are found to be consistent with other np data, including preliminary data from SIN and Saclay, but not with some results from Argonne which used a polarized proton beam and a polarized deuteron target. The I = 0 component was extracted from {Delta}{sigma}{sub L}(np) using existing pp data (I = 1), with the unexpected result that {Delta}{sigma}{sub L}(I = 0) was found to be essentially identical in shape to {Delta}{sigma}{sub L}(I = 1). The significance of this is not yet understood.

Beddo, M.E.

1990-10-01T23:59:59.000Z

286

Applications of High-Resolution Electrospray Ionization Mass...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Applications of High-Resolution Electrospray Ionization Mass...

287

Absolute Values of Neutrino Masses: Status and Prospects  

E-Print Network [OSTI]

Compelling evidences in favor of neutrino masses and mixing obtained in the last years in Super-Kamiokande, SNO, KamLAND and other neutrino experiments made the physics of massive and mixed neutrinos a frontier field of research in particle physics and astrophysics. There are many open problems in this new field. In this review we consider the problem of the absolute values of neutrino masses, which apparently is the most difficult one from the experimental point of view. We discuss the present limits and the future prospects of beta-decay neutrino mass measurements and neutrinoless double-beta decay. We consider the important problem of the calculation of nuclear matrix elements of neutrinoless double-beta decay and discuss the possibility to check the results of different model calculations of the nuclear matrix elements through their comparison with the experimental data. We discuss the upper bound of the total mass of neutrinos that was obtained recently from the data of the 2dF Galaxy Redshift Survey and other cosmological data and we discuss future prospects of the cosmological measurements of the total mass of neutrinos. We discuss also the possibility to obtain information on neutrino masses from the observation of the ultra high-energy cosmic rays (beyond the GZK cutoff). Finally, we review the main aspects of the physics of core-collapse supernovae, the limits on the absolute values of neutrino masses from the observation of SN1987A neutrinos and the future prospects of supernova neutrino detection.

S. M. Bilenky; C. Giunti; J. A. Grifols; E. Masso

2003-03-27T23:59:59.000Z

288

Measurement of Higgs boson production in the diphoton decay channel in $pp$ collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector  

E-Print Network [OSTI]

A measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 5.4 fb$^{-1}$ of proton-proton collisions data at $\\sqrt{s}=7$ TeV and 20.3 fb$^{-1}$ at $\\sqrt{s}=8$ TeV collected by the ATLAS detector at the Large Hadron Collider. The number of observed Higgs boson decays to diphotons divided by the corresponding Standard Model prediction, called the signal strength, is found to be $\\mu = 1.17 \\pm 0.27$ at the value of the Higgs boson mass measured by ATLAS, $m_{H}$ = 125.4 GeV. The analysis is optimized to measure the signal strengths for individual Higgs boson production processes at this value of $m_{H}$. They are found to be $\\mu_{\\mathrm{ggF}} = 1.32 \\pm 0.38$, $\\mu_{\\mathrm{VBF}} = 0.8 \\pm 0.7$, $\\mu_{{WH}} = 1.0 \\pm 1.6 $, $\\mu_{{ZH}} = 0.1 ^{+3.7}_{-0.1} $, $\\mu_{{t\\bar{t}H}} = 1.6 ^{+2.7}_{-1.8} $, for Higgs boson production through gluon fusion, vector-boson fusion, and in association with a $W$ or $Z$ boson or a top-quark pair, respectively. Compared with the previously published ATLAS analysis, the results reported here also benefit from a new energy calibration procedure for photons and the subsequent reduction of the systematic uncertainty on the diphoton mass resolution. No significant deviations from the predictions of the Standard Model are found.

ATLAS Collaboration

2014-09-09T23:59:59.000Z

289

Measurement of spin-dependent total cross-section difference $??_T$ in neutron-proton scattering at 16 MeV  

E-Print Network [OSTI]

A new measurement of $\\Delta\\sigma_T$ for polarized neutrons transmitted through a polarized proton target at 16.2 MeV has been made. A polarized neutron beam was obtained from the $^{3}\\rm{H}(d,\\vec n)^{4}\\rm{He}$ reaction; proton polarization over 90\\% was achieved in a frozen spin target of 20 cm$^3$ volume. The measurement yielded the value $\\Delta\\sigma_T=(-126\\pm21\\pm14)$ mb. The result of a simple phase shift analysis for the $^3S_1-^3D_1$ mixing parameter $\\epsilon_1$ is presented and compared with the theoretical potential model predictions.

J. Broz; J. Cerny; Z. Dolezal; G. M. Gurevich M. Jirasek; P. Kubik; A. A. Lukhanin; J. Svejda; I. Wilhelm; N. S. Borisov; Yu. M. Kazarinov B. A. Khachaturov; E. S. Kuzmin; V. N. Matafonov; A. B. Neganov; I. L. Pisarev; Yu. A. Plis; Yu. A. Usov; M. Rotter; B. Sedlak

1995-07-28T23:59:59.000Z

290

LHC Higgs boson mass combination  

E-Print Network [OSTI]

A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the $H \\rightarrow \\gamma\\gamma$ and $H \\rightarrow ZZ\\rightarrow 4\\ell$ decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is $m_{H} = 125.09\\pm0.21\\,\\mathrm{(stat.)}\\pm0.11\\,\\mathrm{(syst.)}~\\mathrm{GeV}$.

Adye, Tim; The ATLAS collaboration

2015-01-01T23:59:59.000Z

291

THE LUMINOSITY AND MASS FUNCTIONS OF LOW-MASS STARS IN THE GALACTIC DISK. II. THE FIELD  

E-Print Network [OSTI]

We report on new measurements of the luminosity function (LF) and mass function (MF) of field low-mass dwarfs derived from Sloan Digital Sky Survey Data Release 6 photometry. The analysis incorporates ~15 million low-mass ...

Bochanski, John J.

292

A Residual Mass Ballistic Testing Method to Compare Armor Materials or Components (Residual Mass Ballistic Testing Method)  

SciTech Connect (OSTI)

A statistics based ballistic test method is presented for use when comparing multiple groups of test articles of unknown relative ballistic perforation resistance. The method is intended to be more efficient than many traditional methods for research and development testing. To establish the validity of the method, it is employed in this study to compare test groups of known relative ballistic performance. Multiple groups of test articles were perforated using consistent projectiles and impact conditions. Test groups were made of rolled homogeneous armor (RHA) plates and differed in thickness. After perforation, each residual projectile was captured behind the target and its mass was measured. The residual masses measured for each test group were analyzed to provide ballistic performance rankings with associated confidence levels. When compared to traditional V50 methods, the residual mass (RM) method was found to require fewer test events and be more tolerant of variations in impact conditions.

Benjamin Langhorst; Thomas M Lillo; Henry S Chu

2014-05-01T23:59:59.000Z

293

Mass Transportation on the Earth Ludovic Rifford  

E-Print Network [OSTI]

Mass Transportation on the Earth Ludovic Rifford Universit´e de Nice - Sophia Antipolis & Institut Universitaire de France UPV/EHU Ludovic Rifford Mass Transportation on the Earth #12;The framework Let M Rifford Mass Transportation on the Earth #12;Transport maps Let µ0 and µ1 be probability measures on M. We

Rifford, Ludovic

294

Standardized Total Average Toxicity Score: A Scale- and Grade-Independent Measure of Late Radiotherapy Toxicity to Facilitate Pooling of Data From Different Studies  

SciTech Connect (OSTI)

Purpose: The search for clinical and biologic biomarkers associated with late radiotherapy toxicity is hindered by the use of multiple and different endpoints from a variety of scoring systems, hampering comparisons across studies and pooling of data. We propose a novel metric, the Standardized Total Average Toxicity (STAT) score, to try to overcome these difficulties. Methods and Materials: STAT scores were derived for 1010 patients from the Cambridge breast intensity-modulated radiotherapy trial and 493 women from University Hospitals of Leicester. The sensitivity of the STAT score to detect differences between patient groups, stratified by factors known to influence late toxicity, was compared with that of individual endpoints. Analysis of residuals was used to quantify the effect of these covariates. Results: In the Cambridge cohort, STAT scores detected differences (p < 0.00005) between patients attributable to breast volume, surgical specimen weight, dosimetry, acute toxicity, radiation boost to tumor bed, postoperative infection, and smoking (p < 0.0002), with no loss of sensitivity over individual toxicity endpoints. Diabetes (p = 0.017), poor postoperative surgical cosmesis (p = 0.0036), use of chemotherapy (p = 0.0054), and increasing age (p = 0.041) were also associated with increased STAT score. When the Cambridge and Leicester datasets were combined, STAT was associated with smoking status (p < 0.00005), diabetes (p = 0.041), chemotherapy (p = 0.0008), and radiotherapy boost (p = 0.0001). STAT was independent of the toxicity scale used and was able to deal with missing data. There were correlations between residuals of the STAT score obtained using different toxicity scales (r > 0.86, p < 0.00005 for both datasets). Conclusions: The STAT score may be used to facilitate the analysis of overall late radiation toxicity, from multiple trials or centers, in studies of possible genetic and nongenetic determinants of radiotherapy toxicity.

Barnett, Gillian C., E-mail: gillbarnett@doctors.org.uk [University of Cambridge Department of Oncology, Oncology Centre, Cambridge (United Kingdom); Cancer Research-UK Centre for Genetic Epidemiology and Department of Oncology, Strangeways Research Laboratories, Cambridge (United Kingdom); West, Catharine M.L. [School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, University of Manchester, Christie Hospital, Manchester (United Kingdom); Coles, Charlotte E. [University of Cambridge Department of Oncology, Oncology Centre, Cambridge (United Kingdom); Pharoah, Paul D.P. [Cancer Research-UK Centre for Genetic Epidemiology and Department of Oncology, Strangeways Research Laboratories, Cambridge (United Kingdom); Talbot, Christopher J. [Department of Genetics, University of Leicester, Leicester (United Kingdom); Elliott, Rebecca M. [School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, University of Manchester, Christie Hospital, Manchester (United Kingdom); Tanteles, George A. [Department of Clinical Genetics, University Hospitals of Leicester, Leicester (United Kingdom); Symonds, R. Paul [Department of Cancer Studies and Molecular Medicine, University Hospitals of Leicester, Leicester (United Kingdom); Wilkinson, Jennifer S. [University of Cambridge Department of Oncology, Oncology Centre, Cambridge (United Kingdom); Dunning, Alison M. [Cancer Research-UK Centre for Genetic Epidemiology and Department of Oncology, Strangeways Research Laboratories, Cambridge (United Kingdom); Burnet, Neil G. [University of Cambridge Department of Oncology, Oncology Centre, Cambridge (United Kingdom); Bentzen, Soren M. [University of Wisconsin, School of Medicine and Public Health, Department of Human Oncology, Madison, WI (United States)

2012-03-01T23:59:59.000Z

295

CALIBRATING C-IV-BASED BLACK HOLE MASS ESTIMATORS  

SciTech Connect (OSTI)

We present the single-epoch black hole mass estimators based on the C IV {lambda}1549 broad emission line, using the updated sample of the reverberation-mapped active galactic nuclei and high-quality UV spectra. By performing multi-component spectral fitting analysis, we measure the C IV line widths (FWHM{sub C{sub IV}} and line dispersion, {sigma}{sub C{sub IV}}) and the continuum luminosity at 1350 A (L{sub 1350}) to calibrate the C-IV-based mass estimators. By comparing with the H{beta} reverberation-based masses, we provide new mass estimators with the best-fit relationships, i.e., M{sub BH}{proportional_to}L{sub 1350}{sup 0.50{+-}0.07}{sigma}{sub C{sub IV}{sup 2}} and M{sub BH}{proportional_to}L{sub 1350}{sup 0.52{+-}0.09} FWHM{sub C{sub IV}{sup 0.56{+-}0.48}}. The new C-IV-based mass estimators show significant mass-dependent systematic difference compared to the estimators commonly used in the literature. Using the published Sloan Digital Sky Survey QSO catalog, we show that the black hole mass of high-redshift QSOs decreases on average by {approx}0.25 dex if our recipe is adopted.

Park, Daeseong; Woo, Jong-Hak; Shin, Jaejin [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Denney, Kelly D., E-mail: pds2001@astro.snu.ac.kr, E-mail: woo@astro.snu.ac.kr, E-mail: jjshin@astro.snu.ac.kr, E-mail: kelly@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark)

2013-06-20T23:59:59.000Z

296

Screening masses in thermal and dense medium  

E-Print Network [OSTI]

Screening masses of different hadronic states are studied in thermal and dense medium on lattice. It has been found that screening masses increase with the temperature. In deconfinement phase, chemical potential enhances the screening masses. We use the normalization with respect to lowest Matsubara frequency to characterize dissolving of hadronic bound states at high temperatures. It has been found that different hadronic states have different dissolving temperatures and their survivals are considerably improved at finite chemical potentials.

A. Tawfik

2006-05-29T23:59:59.000Z

297

Measurement of the W Boson Mass  

E-Print Network [OSTI]

T Ľ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2peTp#1;Tđ1#1; cos#1;#2;Ţ p , where #1;#2; is the opening angle between the electron and neutrino momenta in the plane transverse to the beam. The magni- tude and direction of p#1;T are inferred from the event miss- ing transverse energy ( ~E6 T...

Baringer, Philip S.; Bean, Alice; Clutter, Justace Randall; Moulik, Tania; Wilson, Graham Wallace; Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, M.; Adams, T.

2009-10-01T23:59:59.000Z

298

Accurate Mass Measurements in Proteomics. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects ofAboutTestAccounting - WhatAdducts Including

299

Positron emission tomography study on pancreatic somatostatin receptors in normal and diabetic rats with {sup 68}Ga-DOTA-octreotide: A potential PET tracer for beta cell mass measurement  

SciTech Connect (OSTI)

Highlights: •PET images showed high uptake of {sup 68}Ga-DOTA-octreotide in the normal pancreas. •{sup 68}Ga-DOTA-octreotide specifically binds to somatostatin receptors in the pancreas. •The pancreatic uptake of {sup 68}Ga-DOTA-octreotide was decreased in the diabetic rats. •{sup 68}Ga-DOTA-octreotide could be a candidate PET probe to measure the beta cell mass. -- Abstract: Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycemia, and the loss or dysfunction of pancreatic beta cells has been reported before the appearance of clinical symptoms and hyperglycemia. To evaluate beta cell mass (BCM) for improving the detection and treatment of DM at earlier stages, we focused on somatostatin receptors that are highly expressed in the pancreatic beta cells, and developed a positron emission tomography (PET) probe derived from octreotide, a metabolically stable somatostatin analog. Octreotide was conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), a chelating agent, and labeled with {sup 68}Gallium ({sup 68}Ga). After intravenous injection of {sup 68}Ga-DOTA-octreotide, a 90-min emission scan of the abdomen was performed in normal and DM model rats. The PET studies showed that {sup 68}Ga-DOTA-octreotide radioactivity was highly accumulated in the pancreas of normal rats and that the pancreatic accumulation was significantly reduced in the rats administered with an excess amount of unlabeled octreotide or after treatment with streptozotocin, which was used for the chemical induction of DM in rats. These results were in good agreement with the ex vivo biodistribution data. These results indicated that the pancreatic accumulation of {sup 68}Ga-DOTA-octreotide represented specific binding to the somatostatin receptors and reflected BCM. Therefore, PET imaging with {sup 68}Ga-DOTA-octreotide could be a potential tool for evaluating BCM.

Sako, Takeo [Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan) [Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Division of Molecular Imaging, Institute of Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Hasegawa, Koki; Nishimura, Mie; Kanayama, Yousuke; Wada, Yasuhiro; Hayashinaka, Emi; Cui, Yilong; Kataoka, Yosky [Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan)] [Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Senda, Michio [Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan) [Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Division of Molecular Imaging, Institute of Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Watanabe, Yasuyoshi, E-mail: yywata@riken.jp [Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan)] [Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan)

2013-12-06T23:59:59.000Z

300

Mass Transportation on surfaces Ludovic Rifford  

E-Print Network [OSTI]

Mass Transportation on surfaces Ludovic Rifford Universit´e de Nice - Sophia Antipolis Ludovic Rifford Mass Transportation on surfaces #12;Monge quadratic transport in Rn Let µ0 and µ1 be probability measures with compact support in Rn . We call transport map from µ0 to µ1 any measurable map T : Rn Rn

Rifford, Ludovic

Note: This page contains sample records for the topic "mass difference measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Determination of neutrino masses, present and future  

E-Print Network [OSTI]

Oscillation experiments show that neutrinos have masses. They however only determine the neutrinop mass differences. Information on the absolute masses can be obtained by studying the kinematics in weak decays, or by searching for neutrinoless double beta decay. Recent results are reviewed, as well as future projects.

Jean-Luc Vuilleumier

2003-06-04T23:59:59.000Z

302

Demand Shifting with Thermal Mass in Light and Heavy Mass Commercial Buildings  

E-Print Network [OSTI]

as a Demand Response (DR) strategy for commercial buildings.demand response program because the added demand reduction from different buildingsdemand response, thermal mass INTRODUCTION The structural mass within existing commercial buildings

Xu, Peng

2010-01-01T23:59:59.000Z

303

Constituent quark masses obtained from hadron masses with contributions of Fermi-Breit and Glozman-Riska hyperfine interactions  

SciTech Connect (OSTI)

We use the color-spin and flavor-spin interaction Hamiltonians with SU(3) flavor symmetry breaking to obtain meson and baryon mass formulas. Adjusting these masses with experimental masses we determine the constituent quark masses. We discuss the constituent quark masses obtained from meson and baryon mass fits. The results for constituent quark masses are very similar in the case of two different phenomenological models: Fermi-Breit and Glozman-Riska hyperfine interactions.

Borka Jovanovic, V.; Borka, D. [Laboratory of Physics (010), Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Ignjatovic, S. R. [Department of Physics, Faculty of Science, University of Banja Luka, Mladena Stojanovica 2, 78000 Banja Luka (Bosnia and Herzegowina); Jovanovic, P. [Astronomical Observatory, Volgina 7, 11060 Belgrade (Serbia)

2010-12-01T23:59:59.000Z

304

Top-Quark Mass Data and the Sum of Quasi-Degenerate Neutrino Masses (One small electroweak-bound e-parameter organizes elementary particle 3-flavor phenomenology)  

E-Print Network [OSTI]

The absolute neutrino masses and type of neutrino mass hierarchy are among the main problems in neutrino physics. Top-quark mass is another topical problem in particle physics. These problems extend the old puzzle of electron-muon mass ratio close to the fine structure constant, which is still not solved by known theory. Here I continue the search for a general flavor pattern that may incorporate these problems. Relations between neutrino/electron and electron/top-quark pole mass ratios are obtained from supposition that realistic elementary particle dimensionless bare flavor quantities are small deviated (measured by universal parameter e) from the values of a stated flavor pattern (at e=0) and experimental data hints. With the world average t-quark mass data the sum of QD-neutrino masses is estimated (0.50 +- 0.003)eV in agreement with cosmological constraints and known QD-neutrino mass estimations from experimental data on neutrino oscillation mass-squared differences.

E. M. Lipmanov

2008-10-01T23:59:59.000Z

305

Noise properties of gravitational lens mass reconstruction  

E-Print Network [OSTI]

Gravitational lensing is potentially able to observe mass-selected halos, and to measure the projected cluster mass function. An optimal mass-selection requires a quantitative understanding of the noise behavior in mass maps. This paper is an analysis of the noise properties in mass maps reconstructed using a maximum likelihood method. The noise power spectrum and the mass error bars are derived as a straightforward extension of the Kaiser & Squires (1993) algorithm to the case of a correlated noise. A very good agreement is found between these calculations and the noise properties observed in maximum likelihood mass reconstructions limited to simulated non-critical clusters of galaxies. In a second part, I show that the statistic of peaks in the noise follows accurately the peak statistics of a two-dimensional Gaussian random field (using the BBKS technics) if the smoothing aperture contains enough galaxies. This analysis provides a procedure to derive the significance of any mass peak as a function of its amplitude and its profile. It is demonstrated that, to a very good approximation, a mass map is the sum of the lensing signal plus a 2D gaussian random noise, which means that a detailled quantitative analysis of the structures in mass maps can be done. A direct application is the measurement of the projected mass function in wide field lensing surveys, down to small mass halos which are individually undetectable, this is the subject of a forthcoming work.

L. Van Waerbeke

1999-09-09T23:59:59.000Z

306

Mass-sensitive chemical preconcentrator  

DOE Patents [OSTI]

A microfabricated mass-sensitive chemical preconcentrator actively measures the mass of a sample on an acoustic microbalance during the collection process. The microbalance comprises a chemically sensitive interface for collecting the sample thereon and an acoustic-based physical transducer that provides an electrical output that is proportional to the mass of the collected sample. The acoustic microbalance preferably comprises a pivot plate resonator. A resistive heating element can be disposed on the chemically sensitive interface to rapidly heat and release the collected sample for further analysis. Therefore, the mass-sensitive chemical preconcentrator can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

Manginell, Ronald P. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM)

2007-01-30T23:59:59.000Z

307

THE EFFECT OF MASS LOSS ON THE TIDAL EVOLUTION OF EXTRASOLAR PLANET  

E-Print Network [OSTI]

By combining mass loss and tidal evolution of close-in planets, we present a qualitative study on their tidal migrations. We incorporate mass loss in tidal evolution for planets with different masses and find that mass ...

Guo, Jianheng

308

Ultra High Mass Range Mass Spectrometer System  

DOE Patents [OSTI]

Applicant's present invention comprises mass spectrometer systems that operate in a mass range from 1 to 10.sup.16 DA. The mass spectrometer system comprising an inlet system comprising an aerodynamic lens system, a reverse jet being a gas flux generated in an annulus moving in a reverse direction and a multipole ion guide; a digital ion trap; and a thermal vaporization/ionization detector system. Applicant's present invention further comprises a quadrupole mass spectrometer system comprising an inlet system having a quadrupole mass filter and a thermal vaporization/ionization detector system. Applicant's present invention further comprises an inlet system for use with a mass spectrometer system, a method for slowing energetic particles using an inlet system. Applicant's present invention also comprises a detector device and a method for detecting high mass charged particles.

Reilly, Peter T. A. [Knoxville, TN

2005-12-06T23:59:59.000Z

309

SIEMENS ADVANCED QUANTRA FTICR MASS SPECTROMETER FOR ULTRA HIGH RESOLUTION AT LOW MASS  

SciTech Connect (OSTI)

The Siemens Advanced Quantra Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometer was evaluated as an alternative instrument to large double focusing mass spectrometers for gas analysis. High resolution mass spectrometers capable of resolving the common mass isomers of the hydrogen isotopes are used to provide data for accurate loading of reservoirs and to monitor separation of tritium, deuterium, and helium. Conventional double focusing magnetic sector instruments have a resolution that is limited to about 5000. The Siemens FTICR instrument achieves resolution beyond 400,000 and could possibly resolve the tritium ion from the helium-3 ion, which differ by the weight of an electron, 0.00549 amu. Working with Y-12 and LANL, SRNL requested Siemens to modify their commercial Quantra system for low mass analysis. To achieve the required performance, Siemens had to increase the available waveform operating frequency from 5 MHz to 40 MHz and completely redesign the control electronics and software. However, they were able to use the previous ion trap, magnet, passive pump, and piezo-electric pulsed inlet valve design. NNSA invested $1M in this project and acquired four systems, two for Y-12 and one each for SRNL and LANL. Siemens claimed a $10M investment in the Quantra systems. The new Siemens Advanced Quantra demonstrated phenomenal resolution in the low mass range. Resolution greater than 400,000 was achieved for mass 2. The new spectrometer had a useful working mass range to 500 Daltons. However, experiments found that a continuous single scan from low mass to high was not possible. Two useful working ranges were established covering masses 1 to 6 and masses 12 to 500 for our studies. A compromise performance condition enabled masses 1 to 45 to be surveyed. The instrument was found to have a dynamic range of about three orders of magnitude and quantitative analysis is expected to be limited to around 5 percent without using complex fitting algorithms. Analysis of low concentration ions, at the ppm level, required a separate analysis using ion ejection techniques. Chemical ionization due to the formation of the MH{sup +} ion or MD{sup +} increased the complexity of the spectra compared to magnetic sector mass spectra and formation of the protonated or deuterated complex was a dynamic function of the trap ion concentration. This made quantitative measurement more of a challenge. However, the resolution of the instrument was far superior to any other mass spectrometry technique that has been applied to the analysis of the hydrogen isotopes. The piezo-electric picoliter injection device offers a new way of submitting small quantities of atmospheric pressure sample gas for analysis. The new software had many improvements over the previous version but significant flaws in the beta codes remain that make the prototype units less than ideal. The instrument is a promising new technology that experience will likely improve. Unfortunately, Siemens has concluded that the technology will not be a commercial success and has decided to stop producing this product.

Spencer, W; Laura Tovo, L

2008-07-08T23:59:59.000Z

310

The e+ e- --> 3(pi+pi-), 2(pi+pi-pi0) and K+K- 2(pi+pi-) Cross Sections at Center-of-Mass Energies from Production Threshold to 4.5 GeV Measured with Initial-State Radiation  

E-Print Network [OSTI]

We study the processes e+ e- --> 3(pi+pi-)gamma, 2(pi+pi-pi0)gamma and K+ K- 2(pi+pi-)gamma, with the photon radiated from the initial state. About 20,000, 33,000 and 4,000 fully reconstructed events, respectively, have been selected from 232 fb-1 of BaBar data. The invariant mass of the hadronic final state defines the effective e+e- center-of-mass energy, so that these data can be compared with the corresponding direct e+e- measurements. From the 3(pi+pi-), 2(pi+pi-pi0) and K+ K- 2(pi+pi-) mass spectra, the cross sections for the processes e+ e- --> 3(pi+pi-), e+ e- --> 2(pi+pi-pi0) and e+ e- --> K+ K- 2(pi+pi-) are measured for center-of-mass energies from production threshold to 4.5 GeV. The uncertainty in the cross section measurement is typically 6-15%. We observe the J/psi in all these final states and measure the corresponding branching fractions.

The BABAR Collaboration; B. Aubert

2006-02-02T23:59:59.000Z

311

Mass Transfer by Stellar Wind  

E-Print Network [OSTI]

I review the process of mass transfer in a binary system through a stellar wind, with an emphasis on systems containing a red giant. I show how wind accretion in a binary system is different from the usually assumed Bondi-Hoyle approximation, first as far as the flow's structure is concerned, but most importantly, also for the mass accretion and specific angular momentum loss. This has important implications on the evolution of the orbital parameters. I also discuss the impact of wind accretion, on the chemical pollution and change in spin of the accreting star. The last section deals with observations and covers systems that most likely went through wind mass transfer: barium and related stars, symbiotic stars and central stars of planetary nebulae (CSPN). The most recent observations of cool CSPN progenitors of barium stars, as well as of carbon-rich post-common envelope systems, are providing unique constraints on the mass transfer processes.

Boffin, Henri M J

2014-01-01T23:59:59.000Z

312

Two Permanently Congruent Rods May Have Different Proper Lengths  

E-Print Network [OSTI]

We scrutinize congruence as one of the basic definitions of equality in geometry and pit it against physics of Special Relativity. We show that two non-rigid rods permanently kept congruent during their common expansion or compression may have different instantaneous proper lengths (when measured at the same time of their respective reference clocks) if they have different mass distributions over their lengths. Alternatively, their proper lengths can come out equal only when measured at different but strictly correlated moments of time of their respective clocks. The derived expression for the ratio of instantaneous proper lengths of two permanently congruent changing objects explicitly contains information about the objects mass distribution. The same is true for the ratio of readings of the two reference clocks, for which the instantaneous measurements of respective proper lengths produce the same result. In either case the characteristics usually considered as purely kinematic depend on mass distribution, which is a dynamic property. This is a spectacular demonstration of dynamic aspect of geometry already in the framework of Special Relativity.

Moses Fayngold

2008-07-06T23:59:59.000Z

313

The mass composition of cosmic rays above 10^17 eV  

E-Print Network [OSTI]

It is shown that our knowledge of the mass composition of cosmic rays is deficient at all energies above 10^17 eV. Systematic differences between different measurements are discussed and, in particular, it is argued that there is no compelling evidence to support the common assumption that cosmic rays of the highest energies are protons. Our knowledge of the mass needs to be improved if we are to resolve uncertainties about the energy spectrum and interpret data on the arrival direction distribution of cosmic rays.

A. A. Watson

2004-08-05T23:59:59.000Z

314

The mass composition of cosmic rays above 10^17 eV  

E-Print Network [OSTI]

Our knowledge of the mass composition of cosmic rays is deficient at all energies above 10^17. Here systematic differences between different measurements are discussed and, in particular, it is argued that there is no compelling evidence to support the common assumption that vast majority of the cosmic rays of the highest energies are protons. Our knowledge of the mass needs to be improved if we are to resolve uncertainties about the energy spectrum. Improvement is also needed for proper interpretation of data on the arrival direction distribution of cosmic ray.

A. A. Watson

2004-10-21T23:59:59.000Z

315

CLASSICAL CEPHEIDS REQUIRE ENHANCED MASS LOSS  

SciTech Connect (OSTI)

Measurements of rates of period change of Classical Cepheids probe stellar physics and evolution. Additionally, better understanding of Cepheid structure and evolution provides greater insight into their use as standard candles and tools for measuring the Hubble constant. Our recent study of the period change of the nearest Cepheid, Polaris, suggested that it is undergoing enhanced mass loss when compared to canonical stellar evolution model predictions. In this work, we expand the analysis to rates of period change measured for about 200 Galactic Cepheids and compare them to population synthesis models of Cepheids including convective core overshooting and enhanced mass loss. Rates of period change predicted from stellar evolution models without mass loss do not agree with observed rates, whereas including enhanced mass loss yields predicted rates in better agreement with observations. This is the first evidence that enhanced mass loss as suggested previously for Polaris and {delta} Cephei must be a ubiquitous property of Classical Cepheids.

Neilson, Hilding R.; Langer, Norbert; Izzard, Robert [Argelander Institute for Astronomy, University of Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany); Engle, Scott G.; Guinan, Ed, E-mail: neilsonh@etsu.edu [Department of Astronomy and Astrophysics, Villanova University, 800 Lancaster Ave. Villanova, PA 19085 (United States)

2012-11-20T23:59:59.000Z

316

Mass spectrometric immunoassay  

DOE Patents [OSTI]

Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

2013-07-16T23:59:59.000Z

317

Mass spectrometric immunoassay  

DOE Patents [OSTI]

Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

Nelson, Randall W (Phoenix, AZ); Williams, Peter (Phoenix, AZ); Krone, Jennifer Reeve (Granbury, TX)

2007-12-04T23:59:59.000Z

318

Higher-Order Mass Defect Analysis for Mass Spectra of Complex Organic Mixtures  

SciTech Connect (OSTI)

Higher-order mass defect analysis is introduced as a unique formula assignment and visualization method for the analysis of complex mass spectra. This approach is an extension of the concepts of Kendrick mass transformation widely used for identification of homologous compounds differing only by a number of base units (e.g., CH2, H2, O, CH2O, etc.) in complex mixtures. We present an iterative renormalization routine for defining higher order homologous series and multidimensional clustering of mass spectral features. This approach greatly simplifies visualization of complex mass spectra and increases the number of chemical formulae that can be confidently assigned for given mass accuracy. The potential for using higher-order mass defects for data reduction and visualization is shown. Higher-order mass defect analysis is described and demonstrated through third-order analysis of a de-isotoped high-resolution mass spectrum of crude oil containing nearly 13,000 peaks.

Roach, Patrick J.; Laskin, Julia; Laskin, Alexander

2011-06-15T23:59:59.000Z

319

Quark and lepton masses and mixing in the landscape  

E-Print Network [OSTI]

Even if quark and lepton masses are not uniquely predicted by the fundamental theory, as may be the case in the string theory landscape, nevertheless their pattern may reveal features of the underlying theory. We use statistical techniques to show that the observed masses appear to be representative of a scale invariant distribution, rho(m) ~ 1/m. If we extend this distribution to include all the Yukawa couplings, we show that the resulting CKM matrix elements typically show a hierarchical pattern similar to observations. The Jarlskog invariant measuring the amount of CP violation is also well reproduced in magnitude. We also apply this framework to neutrinos using the seesaw mechanism. The neutrino results are ambiguous, with the observed pattern being statistically allowed even though the framework does not provide a natural explanation for the observed two large mixing angles. Our framework highly favors a normal hierarchy of neutrino masses. We also are able to make statistical predictions in the neutrino sector when we specialize to situations consistent with the known mass differences and two large mixing angles. Within our framework, we show that with 95% confidence the presently unmeasured MNS mixing angle sin theta_{13} is larger than 0.04 and typically of order 0.1. The leptonic Jarlskog invariant is found to be typically of order 10^{-2} and the magnitude of the effective Majorana mass m_{ee} is typically of order 0.001 eV.

John F. Donoghue; Koushik Dutta; Andreas Ross

2006-01-27T23:59:59.000Z

320

Mass inequality for the quark propagator  

E-Print Network [OSTI]

We show that for any gauge-fixing scheme with positive semi-definite functional integral measure, the inverse correlation length of the quark propagator is bounded below by one-half the pion mass.

Dean Lee; Richard Thomson

2005-06-09T23:59:59.000Z

Note: This page contains sample records for the topic "mass difference measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Stochastic accretion of planetesimals onto white dwarfs: constraints on the mass distribution of accreted material from atmospheric pollution  

E-Print Network [OSTI]

This paper explores how the stochastic accretion of planetesimals onto white dwarfs would be manifested in observations of their atmospheric pollution. Archival observations of pollution levels for unbiased samples of DA and non-DA white dwarfs are used to derive the distribution of accretion rates, confirming that rates become systematically lower as sinking time is decreased, with no discernable dependence on cooling age. The accretion rates expected from planetesimals that are all the same mass (ie, a mono-mass distribution) are explored both analytically and using a Monte Carlo model, quantifying how measured accretion rates inevitably depend on sinking time, since different sinking times probe different times since the last accretion event. However, that dependence is so dramatic that a mono-mass distribution can be excluded. Consideration of accretion from a broad distribution of planetesimal masses uncovers an important conceptual difference: accretion is continuous (rather than stochastic) for planete...

Wyatt, M C; Pringle, J E; Bonsor, A

2014-01-01T23:59:59.000Z

322

Magnetic structure of Coronal Mass Ejections  

E-Print Network [OSTI]

We present several models of the magnetic structure of solar coronal mass ejections (CMEs). First, we model CMEs as expanding force-free magnetic structures. While keeping the internal magnetic field structure of the stationary solutions, expansion leads to complicated internal velocities and rotation, while the field structures remain force-free. Second, expansion of a CME can drive resistive dissipation within the CME changing the ionization states of different ions. We fit in situ measurements of ion charge states to the resistive spheromak solutions. Finally, we consider magnetic field structures of fully confined stable magnetic clouds containing both toroidal and poloidal magnetic fields and having no surface current sheets. Expansion of such clouds may lead to sudden onset of reconnection events.

Lyutikov, Maxim

2012-01-01T23:59:59.000Z

323

Analysis of perchlorate in groundwater by electrospray ionization mass spectrometry/mass spectrometry  

SciTech Connect (OSTI)

An electrospray ionization mass spectrometry/mass spectrometry (ESI/MS/MS) method was developed to measure part-per-billion ({micro}g/L) concentrations of perchlorate in groundwater. Selective and sensitive perchlorate detection was achieved by operating the mass spectrometer in the negative ionization mode and by using MS/MS to monitor the CIO{sub 4}{sup {minus}} to ClO{sub 3}{sup {minus}} transition. The method of standard additions was used to address the considerable signal suppression caused by anions that are typically present in groundwater, such as bicarbonate and sulfate. ESI-MS/MS analysis was rapid, accurate, reproducible, and provided a detection limit of 0.5 {micro}g/L perchlorate in groundwater. Accuracy and precision of the ESI/MS/MS method were assessed by analyzing performance evaluation samples in a groundwater matrix and by comparing ion chromatography (IC) and ESI/MS/MS results for local groundwater samples. Results for the performance evaluation samples differed from the certified values by 4--13%, and precision ranged from 3 to 10% (relative standard deviation). The IC and ESI/MS/MS results were statistically indistinguishable for perchlorate concentrations above the detection limits of both methods.

Koester, C.J.; Beller, H.R.; Halden, R.U.

2000-05-01T23:59:59.000Z

324

Improving Collision Induced Dissociation (CID), High Energy Collision Dissociation (HCD), and Electron Transfer Dissociation (ETD) Fourier Transform MS/MS Degradome-Peptidome Identifications Using High Accuracy Mass Information  

SciTech Connect (OSTI)

Identification of peptides through analysis of peptide ion fragmentation mass spectra is key to proteomic/peptidomic studies. Advanced mass spectrometry has enabled measurement of peptide fragments with {approx}ppm mass error levels; however, mass accuracy has not been widely utilized in broad aspects of peptide identification. In this work we describe how peptide high-precision fragments measured with Fourier transform mass spectrometry can provide a powerful discriminative capability to distinguish true peptide 'hits' from possible incorrect peptides. For identification of peptides having multiple termini and carrying multiple charges, we show that the simple utilization of high-precision mass fragments information results in improved peptide analysis coverage and consistency, with coverage of >95% peptides identified totally from different spectral scoring and peptide statistic probability methods developed for moderate accuracy mass spectral peptide identification.

Shen, Yufeng; Tolic, Nikola; Purvine, Samuel O.; Smith, Richard D.

2012-02-03T23:59:59.000Z

325

Current Direct Neutrino Mass Experiments  

E-Print Network [OSTI]

In this contribution we review the status and perspectives of direct neutrino mass experiments. These experiments investigate the kinematics of $\\beta$-decays of specific isotopes ($^3$H, $^{187}$Re, $^{163}$Ho) to derive model-independent information on the averaged electron (anti-) neutrino mass, which is formed by the incoherent sum of the neutrino mass eigenstates contributing to the electron neutrino. We first review the kinematics of $\\beta$-decay and the determination of the neutrino mass, before giving a brief overview of past neutrino mass measurements (SN1987a-ToF studies, Mainz and Troitsk experiments for $^3$H, cryo-bolometers for $^{187}$Re). We then describe the Karlsruhe Tritium Neutrino (KATRIN) experiment which is currently under construction at Karlsruhe Institute of Technology. The large-scale setup will use the MAC-E-Filter principle pioneered earlier to push the sensitivity down to a value of 200 meV(90% C.L.). KATRIN faces many technological challenges that have to be resolved with regar...

Drexlin, G; Mertens, S; Weinheimer, C

2013-01-01T23:59:59.000Z

326

Measurements of Higgs boson production and couplings in the four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector  

E-Print Network [OSTI]

The final ATLAS Run 1 measurements of Higgs boson production and couplings in the decay channel H?ZZ*??[superscript +]?[superscript?]?' [superscript +], ?' [superscript ?], where ?, ??=e or ?, are presented. These measurements ...

Taylor, Frank E.

327

Possible Measurable Effects of Dark Energy in Rotating Superconductors  

E-Print Network [OSTI]

We discuss recent laboratory experiments with rotating superconductors and show that three so far unexplained experimentally observed effects (anomalous acceleration signals, anomalous gyroscope signals, Cooper pair mass excess) can be physically explained in terms of a possible interaction of dark energy with Cooper pairs. Our approach is based on a Ginzburg-Landau-like model of electromagnetic dark energy, where gravitationally active photons obtain mass in the superconductor. We show that this model can account simultaneously for the anomalous acceleration and anomalous gravitomagnetic fields around rotating superconductors measured by Tajmar et al. and for the anomalous Cooper pair mass in superconductive Niobium, measured by Cabrera and Tate. It is argued that these three different physical effects are ultimately different experimental manifestations of the simultaneous spontaneous breaking of gauge invariance, and of the principle of general covariance in superconductive materials.

Clovis Jacinto de Matos; Christian Beck

2007-07-12T23:59:59.000Z

328

Effect of sulfite ions in N{sub 2} and CO{sub 2} purged 0.5 m NaCl solution on stainless steels examined by different electrochemical techniques and by reflectance measurements  

SciTech Connect (OSTI)

Three steels, 13% Cr-steel, SS 304 steel and duplex steel are examined for corrosion for 48-hours periods in N{sub 2} or CO{sub 2} purged 0.5 M sodium chloride electrolytes with different sulfite concentrations. The results show that 13%Cr-steel is most susceptible to pitting in the presence of sulfite both under N{sub 2} and CO{sub 2} atmospheres. SS 304 steel was more resistant to corrosion than 13%Cr-steel. Duplex steel showed rather good corrosion resistance under these conditions. The corrosion rate, inclusive pitting corrosion, after 24 hours in presence of 0--10 mM sulfite based on LPR-measurements is for duplex steel 0.5--0.9 mm/year under N{sub 2} and 0.1--1.8 mm/year under CO{sub 2}, for SS 304 steel 1.0--1.8 mm/year under N{sub 2} and 0.6--1.4 mm/year under CO{sub 2}, and for 13%Cr-steel 1.3--2.2 mm/year under N{sub 2} and 0.7--1.8 mm/year under CO{sub 2}. The use of AC-impedance measurements is discussed. The method should be used with care when other mechanisms than general corrosion are involved.

Hemmingsen, T.; Aagotnes, N.O.; Kroeger-Silseth, T.; Kolak, N.; Kaik, M. [Stavanger Coll. (Norway)

1999-11-01T23:59:59.000Z

329

Introduction Terrestrial animals that differ widely in mass, morphology  

E-Print Network [OSTI]

resemble relatively simple `spring-loaded inverted pendulum' (SLIP) systems (Cavagna et al., 1977; Farley such as greyhounds (Usherwood and Wilson, 2005). By artificially increasing yaw inertia, body shape was shown

Jindrich, Devin L.

330

atomic mass difference: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in the whole system - nuclei+atoms+condensed matter - nuclear...

331

atomic mass differences: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in the whole system - nuclei+atoms+condensed matter - nuclear...

332

Elbow mass flow meter  

DOE Patents [OSTI]

Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

McFarland, Andrew R. (College Station, TX); Rodgers, John C. (Santa Fe, NM); Ortiz, Carlos A. (Bryan, TX); Nelson, David C. (Santa Fe, NM)

1994-01-01T23:59:59.000Z

333

Neutrino mass matrix solutions and neutrinoless double beta decay  

E-Print Network [OSTI]

We present a determination of the neutrino mass matrix which holds for values of the neutrinoless double beta decay effective mass m_{ee} larger than the neutrino mass differences. We find eight possible solutions and discuss for each one the corresponding neutrino mass eigenvalues and zero texture. A minimal structure of the perturbations to add to these zero textures to recover the full mass matrix is also determined. Implications for neutrino hot dark matter are discussed for each solution.

Thomas Hambye

2002-01-31T23:59:59.000Z

334

Photon and graviton mass limits  

SciTech Connect (OSTI)

We review past and current studies of possible long-distance, low-frequency deviations from Maxwell electrodynamics and Einstein gravity. Both have passed through three phases: (1) Testing the inverse-square laws of Newton and Coulomb, (2) Seeking a nonzero value for the rest mass of photon or graviton, and (3) Considering more degrees of freedom, allowing mass while preserving gauge or general-coordinate invariance. For electrodynamics there continues to be no sign of any deviation. Since our previous review the lower limit on the photon Compton wavelength (associated with weakening of electromagnetic fields in vacuum over large distance scale) has improved by four orders of magnitude, to about one astronomical unit. Rapid current progress in astronomical observations makes it likely that there will be further advances. These ultimately could yield a bound exceeding galactic dimensions, as has long been contemplated. Meanwhile, for gravity there have been strong arguments about even the concept of a graviton rest mass. At the same time there are striking observations, commonly labeled 'dark matter' and 'dark energy' that some argue imply modified gravity. This makes the questions for gravity much more interesting. For dark matter, which involves increased attraction at large distances, any explanation by modified gravity would be qualitatively different from graviton mass. Because dark energy is associated with reduced attraction at large distances, it might be explained by a graviton-mass-like effect.

Nieto, Michael [Los Alamos National Laboratory; Goldhaber Scharff, Alfred [SUNY

2008-01-01T23:59:59.000Z

335

Non-Oscillation Probes of Neutrino Masses  

SciTech Connect (OSTI)

The absolute scale of neutrino masses is very important for understanding the evolution and the structure formation of the universe as well as for nuclear and particle physics beyond the present Standard Model. Complementary to deducing statements on the neutrino mass from cosmological observations, two different methods to determine the neutrino mass scale in the laboratory are pursued: the search for neutrinoless double beta decay and the direct neutrino mass search. For both methods currently experiments with a sensitivity of O(100) meV are being set up or commissioned.

Weinheimer, C. [Westfaelische Wilhelms-Universitaet Muenster Institut fuer Kernphysik, Wilhelm-Klemm-Str. 9, D-48149 Muenster (Germany)

2010-03-30T23:59:59.000Z

336

Non-oscillation probes of neutrino masses  

E-Print Network [OSTI]

The absolute scale of neutrino masses is very important for understanding the evolution and the structure formation of the universe as well as for nuclear and particle physics beyond the present Standard Model. Complementary to deducing statements on the neutrino mass from cosmological observations two different methods to determine the neutrino mass scale in the laboratory are pursued: the search for neutrinoless double beta decay and the direct neutrino mass search. For both methods currently experiments with a sensitivity of order 100 meV are being set up or commissioned.

C. Weinheimer

2009-12-23T23:59:59.000Z

337

Effective atomic numbers of blue topaz at different gamma-rays energies obtained from Compton scattering technique  

SciTech Connect (OSTI)

Topaz occurs in a wide range of colors, including yellow, orange, brown, pink-to-violet and blue. All of these color differences are due to color centers. In order to improve the color of natural colorless topaz, the most commonly used is irradiated with x- or gamma-rays, indicated that attenuation parameters is important to enhancements by irradiation. In this work, the mass attenuation coefficients of blue topaz were measured at the different energy of ?-rays using the Compton scattering technique. The results show that, the experimental values of mass attenuation coefficient are in good agreement with the theoretical values. The mass attenuation coefficients increase with the decrease in gamma rays energies. This may be attributed to the higher photon interaction probability of blue topaz at lower energy. This result is a first report of mass attenuation coefficient of blue topaz at different gamma rays energies.

Tuschareon, S., E-mail: tuscharoen@hotmail.com; Limkitjaroenporn, P., E-mail: tuscharoen@hotmail.com; Kaewkhao, J., E-mail: tuscharoen@hotmail.com [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000, Thailand and Science Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000 (Thailand)

2014-03-24T23:59:59.000Z

338

Resonance searches with the $t\\overline{t}$ Invariant Mass Distribution measured with the D\\O\\, Experiment at $\\sqrt{s}=1.96\\,\\textrm{TeV}  

SciTech Connect (OSTI)

Understanding the universe, its birth and its future is one of the biggest motivations in physics. In order to understand the cosmos, the fundamental particles forming the universe, the components our matter is built of need to be known and understood. Over time physicists have built a theory which describes the physics of the known fundamental particles very well: the Standard Model (SM) of particle physics. The SM describes the particles, their interactions and phenomena with high precision. So far no proven deviations from the SM have been found, though recently evidence for possible physics beyond the SM has been observed. The SM is not describing the mass of the elementary particles however and even with the addition of the Higgs mechanism giving mass to the particles, we have no full theory for all four fundamental forces. We know the model needs to be extended or replaced by another one, as gravitation is not included in the SM. Having a theory which describes all fundamental particles found so far and all but one fundamental interaction is a great success. However, all this describes about 4% of the universe we live in. 23% is dark matter and 73% is dark energy. Dark matter is believed to interact only through gravity and maybe the weak force, which makes it hardly observable. Dark energy is even more elusive. Among other theories the cosmologic constant and scalar fields are discussed to describe it. One should also note that other models exist which for example modify the Newtonian law of gravity. The Higgs mechanism has become the most popular model for mass generation. Alternative theories like Super Symmetry (SUSY), large Extra Dimensions, Technicolor, String Theory, to name just a few, have spread to describe the necessary mass generation or new particles. As proof for new physics beyond the SM has not been found yet, one assumes that new physics will manifest itself at a larger energy scale and therefore a higher particle mass. Particles with high masses are therefore presumed to be a window to test the SM for deviations caused by new physics. The heaviest fundamental particle which is in our reach is the top quark. Its mass is almost as large as that of a complete tungsten atom. It is so heavy, that it decays faster than it can hadronize. It seems the perfect probe to study new physics at the moment. In this analysis the top quark is used as a probe to search for a new resonance, whose properties are similar to a SM Z boson but is much more massive. This analysis will study t{bar t} decays to search for an excess in the invariant mass distribution of the t{bar t} pairs. Resonant states are suggested for massive Z-like bosons in extended gauge theories, Kaluza Klein states of the gluon or Z, axigluons, topcolor, and other beyond the Standard Model theories. Independent of the exact model a resonant production mechanism should be visible in the t{bar t} invariant mass distribution. In this thesis a model-independent search for a narrow-width heavy resonance X decaying into t{bar t} is performed. In the SM, the top quark decays into a W boson and a b quark nearly 100% of the time, which has been proven experimentally, too. The t{bar t} event signature is fully determined by the W boson decay modes. In this analysis, only the lepton+jets final state, which results from the leptonic decay of one of the W bosons and the hadronic decay of the other, is considered. The event signature is an isolated electron or muon with high transverse momentum, large transverse energy imbalance due to the undetected neutrino, and at least three jets, two of which result from the hadronization of b quarks.

Schliephake, Thorsten Dirk; /Wuppertal U.

2010-06-01T23:59:59.000Z

339

Three methods to measure RH bond energies  

SciTech Connect (OSTI)

In this paper the authors compare and contrast three powerful methods for experimentally measuring bond energies in polyatomic molecules. The methods are: radical kinetics; gas phase acidity cycles; and photoionization mass spectroscopy. The knowledge of the values of bond energies are a basic piece of information to a chemist. Chemical reactions involve the making and breaking of chemical bonds. It has been shown that comparable bonds in polyatomic molecules, compared to the same bonds in radicals, can be significantly different. These bond energies can be measured in terms of bond dissociation energies.

Berkowitz, J. [Argonne National Lab., IL (United States); Ellison, G.B. [Univ. of Colorado, Boulder, CO (United States). Dept. of Chemistry and Biochemistry; Gutman, D. [Catholic Univ. of America, Washington, DC (United States). Dept. of Chemistry

1993-03-21T23:59:59.000Z

340

Calculation of nuclear masses using image reconstruction techniques  

SciTech Connect (OSTI)

Several methods have been developed to calculate and predict nuclear masses over the last 70 years. The accuracy of the present state-of-the-art nuclear mass models is impressive, because these quantities can be calculated with an average 0.05 % precision. However this precision level is still insufficient to deal with nuclear reactions of astrophysical interest, especially r-process ones. Different approaches exist to calculate nuclear masses, ranging from the simple Bethe-Weizsaecker Liquid Drop Formula (LDM) to the sophisticated Finite Range Droplet Model calculations or the microscopic Hartree-Fock-Bogoliuvob techniques from first principles, using Skyrme or Gogny parametrizations of the nucleon-nucleon interaction. Here we suggest a new method to calculate this fundamental property of the atomic nucleus, using a completely phenomenological point of view. Our method is based in the analysis of the differences between measured masses and LDM predictions, which contains information related to those ingredients not taken into account in the LDM formula, such as shell closures, nuclear deformations and residual nuclear interactions. The differences are arranged in a two dimensional plot which can be viewed as an incomplete image of the full chart of nuclides, equivalent to a product of the full image and a binary mask. In order to remove the distortions produced by this mask we employ an algorithm, well known in astronomy, used to remove artificial effects present in the astrophysical images collected through telescopes. This algorithm is called the CLEAN method. It is one of a number of methods which exists to deconvolve undesirable effects in images and to extrapolate or reconstruct missing parts in them. By using the CLEAN method we can fit measured masses with an r.m.s error of less than 100 keV. We have performed several checks and concluded that its utilization must be carried out carefully in order to obtain reliable results in the zone of unknown masses between the driplines. We also outline potential applications of the present approach.

Barea, J.; Frank, A.; Hirsch, J. G.; Lopez, J. C.; Morales, I.; Mendoza, J. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510 Mexico, D.F. (Mexico); Velazquez, V. [Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, 04510 Mexico, D.F. (Mexico)

2007-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "mass difference measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Detecting dark matter-dark energy coupling with the halo mass function  

E-Print Network [OSTI]

We use high-resolution simulations of large-scale structure formation to analyze the effects of interacting dark matter and dark energy on the evolution of the halo mass function. Using a chi-square likelihood analysis, we find significant differences in the mass function between models of coupled dark matter-dark energy and standard concordance cosmology Lambda-CDM out to redshift z=1.5. We also find a preliminary indication that the Dark Energy Survey should be able to distinguish these models from Lambda-CDM within its mass and redshift contraints. While we can distinguish the effects of these models from Lambda-CDM cosmologies with different fundamental parameters, DES will require independent measurements of sigma-8 to confirm these effects.

P. M. Sutter; P. M. Ricker

2008-10-03T23:59:59.000Z

342

On the Experimental Substantiation of Anisotropy of Inertial Mass of Body in the Earth Gravitation Field  

E-Print Network [OSTI]

On the basis of the field concept of gravitation and gravitational analogue of the Faradays induction law the difference of inertial mass of a body at its accelerated movement in horizontal and vertical directions relative to the Earth is shown. For an illustration of such a distinction the results of comparison of a motion of balance mechanical watch at horizontal and vertical orientations of balance axis are given. The expediency of statement of precision mechanical experiments with measurement of anisotropy of the inertial mass is noted, allowing to estimate the validity of the field approach in the description of gravitation.

Alexander L. Dmitriev

2009-03-25T23:59:59.000Z

343

Mass Insertions vs. Mass Eigenstates calculations in Flavour Physics  

E-Print Network [OSTI]

We present and prove a theorem of matrix analysis, the Flavour Expansion Theorem (or FET), according to which, an analytic function of a Hermitian matrix can be expanded polynomially in terms of its off-diagonal elements with coefficients being the divided differences of the analytic function and arguments the diagonal elements of the Hermitian matrix. The theorem is applicable in case of flavour changing amplitudes. At one-loop level this procedure is particularly natural due to the observation that every loop function in the Passarino-Veltman basis can be recursively expressed in terms of divided differences. FET helps to algebraically translate an amplitude written in mass eigenbasis into flavour mass insertions, without performing diagrammatic calculations in flavour basis. As a non-trivial application of FET up to a third order, we demonstrate its use in calculating strong bounds on the real parts of flavour changing mass insertions in the up- squark sector of the MSSM from neutron Electric Dipole Moment...

Dedes, A; Rosiek, J; Suxho, K; Tamvakis, K

2015-01-01T23:59:59.000Z

344

Nuclear Masses in Astrophysics  

E-Print Network [OSTI]

Among all nuclear ground-state properties, atomic masses are highly specific for each particular combination of N and Z and the data obtained apply to a variety of physics topics. One of the most crucial questions to be addressed in mass spectrometry of unstable radionuclides is the one of understanding the processes of element formation in the Universe. To this end, accurate atomic mass values of a large number of exotic nuclei participating in nucleosynthesis are among the key input data in large-scale reaction network calculations. In this paper, a review on the latest achievements in mass spectrometry for nuclear astrophysics is given.

Christine Weber; Klaus Blaum; Hendrik Schatz

2008-12-09T23:59:59.000Z

345

EMSL - Mass Spectrometer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MS) with high mass resolution (m&61636;m100,000). Solvent mixtures of acetonitrilewater and acetonitriletoluene were used to extract and ionize polar and non-polar...

346

Compact hydrogen/helium isotope mass spectrometer  

DOE Patents [OSTI]

The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

Funsten, Herbert O. (Los Alamos, NM); McComas, David J. (Los Alamos, NM); Scime, Earl E. (Morgantown, WV)

1996-01-01T23:59:59.000Z

347

Mass generation in coalescence - effects on hadron spectra  

E-Print Network [OSTI]

Different scenarios for the creation of constituent mass in the hadron formation process are discussed. Effects of these may be observable in hadron momentum spectra.

T. Peitzmann

2005-11-07T23:59:59.000Z

348

CORONAL MASS EJECTION MASS, ENERGY, AND FORCE ESTIMATES USING STEREO  

SciTech Connect (OSTI)

Understanding coronal mass ejection (CME) energetics and dynamics has been a long-standing problem, and although previous observational estimates have been made, such studies have been hindered by large uncertainties in CME mass. Here, the two vantage points of the Solar Terrestrial Relations Observatory (STEREO) COR1 and COR2 coronagraphs were used to accurately estimate the mass of the 2008 December 12 CME. Acceleration estimates derived from the position of the CME front in three dimensions were combined with the mass estimates to calculate the magnitude of the kinetic energy and driving force at different stages of the CME evolution. The CME asymptotically approaches a mass of 3.4 {+-} 1.0 Multiplication-Sign 10{sup 15} g beyond {approx}10 R{sub Sun }. The kinetic energy shows an initial rise toward 6.3 {+-} 3.7 Multiplication-Sign 10{sup 29} erg at {approx}3 R{sub Sun }, beyond which it rises steadily to 4.2 {+-} 2.5 Multiplication-Sign 10{sup 30} erg at {approx}18 R{sub Sun }. The dynamics are described by an early phase of strong acceleration, dominated by a force of peak magnitude of 3.4 {+-} 2.2 Multiplication-Sign 10{sup 14} N at {approx}3 R{sub Sun }, after which a force of 3.8 {+-} 5.4 Multiplication-Sign 10{sup 13} N takes effect between {approx}7 and 18 R{sub Sun }. These results are consistent with magnetic (Lorentz) forces acting at heliocentric distances of {approx}<7 R{sub Sun }, while solar wind drag forces dominate at larger distances ({approx}>7 R{sub Sun }).

Carley, Eoin P.; Gallagher, Peter T. [Astrophysics Research Group, School of Physics, Trinity College Dublin, Dublin 2 (Ireland); McAteer, R. T. James [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003-8001 (United States)

2012-06-10T23:59:59.000Z

349

Small system for tritium accelerator mass spectrometry  

DOE Patents [OSTI]

Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and .sup.3 He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

Roberts, Mark L. (Livermore, CA); Davis, Jay C. (Livermore, CA)

1993-01-01T23:59:59.000Z

350

Small system for tritium accelerator mass spectrometry  

DOE Patents [OSTI]

Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and [sup 3]He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

Roberts, M.L.; Davis, J.C.

1993-02-23T23:59:59.000Z

351

Measurement of the Mass and Width and Study of the Spin of the Xi(1690)0 Resonance from Lambdac+ --> Lambda anti-K0 K+ Decay at Babar  

E-Print Network [OSTI]

The Xi(1690)0 resonance is observed in the Lambda anti-K0 channel in the decay Lambdac+ --> Lambda anti-K0 K+, from a data sample corresponding to a total integrated luminosity of ~ 200 fb-1 recorded by the Babar detector at the PEPII asymmetric-energy e+ e- collider operating at ~ 10.58 GeV and ~ 10.54 GeV center-of-mass energies. A fit to the Dalitz plot intensity distribution corresponding to the coherent superposition of amplitudes describing Lambda a0(980)+ and Xi(1690)0 K+ production yields mass and width values of 1684.7 +/- 1.3 (stat.) +2.2 -1.6 (syst.) MeV/c2, and $8.1 +3.9 -3.5 (stat.) +1.0 -0.9 (syst.) MeV, respectively, for the Xi(1690)0, while the spin is found to be consistent with value of 1/2 on the basis of studies of the (Lambda KS) angular distribution.

The BABAR Collaboration; B. Aubert

2006-07-23T23:59:59.000Z

352

Testing atomic mass models with radioactive beams  

SciTech Connect (OSTI)

Significantly increased yields of new or poorly characterized exotic isotopes that lie far from beta-decay stability can be expected when radioactive beams are used to produce these nuclides. Measurements of the masses of these new species are very important. Such measurements are motivated by the general tendency of mass models to diverge from one another upon excursions from the line of beta-stability. Therefore in these regions (where atomic mass data are presently nonexistent or sparse) the models can be tested rigorously to highlight the features that affect the quality of their short-range and long-range extrapolation properties. Selection of systems to study can be guided, in part, by a desire to probe those mass regions where distinctions among mass models are most apparent and where yields of exotic isotopes, produced via radioactive beams, can be optimized. Identification of models in such regions that have good predictive properties will aid materially in guiding the selection of additional experiments which ultimately will provide expansion of the atomic mass database for further refinement of the mass models. 6 refs., 5 figs.

Haustein, P.E.

1989-01-01T23:59:59.000Z

353

mass communication advertising &  

E-Print Network [OSTI]

mass communication advertising & public relations introduction. Graduate programs in the Department of Mass Communication, Advertising, and Public Relations provide an entry to a wide spectrum of careers in the communication industry. Classes, internships, site visits, and presentations by top professionals offer students

Finzi, Adrien

354

Elbow mass flow meter  

DOE Patents [OSTI]

The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

1994-08-16T23:59:59.000Z

355

The Origins of Mass  

SciTech Connect (OSTI)

The Higgs boson was discovered in July of 2012 and is generally understood to be the origin of mass. While those statements are true, they are incomplete. It turns out that the Higgs boson is responsible for only about 2% of the mass of ordinary matter. In this dramatic new video, Dr. Don Lincoln of Fermilab tells us the rest of the story.

Lincoln, Don

2014-07-30T23:59:59.000Z

356

Gas Chromatography -Mass Spectrometry  

E-Print Network [OSTI]

GCMS - 1 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS OF ETHANOL AND BENZENE IN GASOLINE Last updated: June 17, 2014 #12;GCMS - 2 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS). The goal of this experiment is to separate the components in a sample of gasoline using Gas Chromatography

Nizkorodov, Sergey

357

The Origins of Mass  

ScienceCinema (OSTI)

The Higgs boson was discovered in July of 2012 and is generally understood to be the origin of mass. While those statements are true, they are incomplete. It turns out that the Higgs boson is responsible for only about 2% of the mass of ordinary matter. In this dramatic new video, Dr. Don Lincoln of Fermilab tells us the rest of the story.

Lincoln, Don

2014-08-07T23:59:59.000Z

358

Simple neutrino mass matrix with only two free parameters  

E-Print Network [OSTI]

A simple form of neutrino mass matrix which has only two free parameters is proposed from a phenomenological point of view. Using this mass matrix, we succeed to reproduce all the observed values for the MNS lepton mixing angles and the neutrino mass squared difference ratio. Our model also predicts $\\delta_{\

Hiroyuki Nishiura; Takeshi Fukuyama

2014-05-10T23:59:59.000Z

359

Simple neutrino mass matrix with only two free parameters  

E-Print Network [OSTI]

A simple form of neutrino mass matrix which has only two free parameters is proposed from a phenomenological point of view. Using this mass matrix, we succeed to reproduce all the observed values for the MNS lepton mixing angles and the neutrino mass squared difference ratio. Our model also predicts $\\delta_{\

Nishiura, Hiroyuki

2014-01-01T23:59:59.000Z

360

EFFECTS OF THE NEUTRINO MASS SPLITTING ON THE NONLINEAR MATTER POWER SPECTRUM  

SciTech Connect (OSTI)

We have performed cosmological N-body simulations which include the effect of the masses of the individual neutrino species. The simulations were aimed at studying the effect of different neutrino hierarchies on the matter power spectrum. Compared to the linear theory predictions, we find that nonlinearities enhance the effect of hierarchy on the matter power spectrum at mildly nonlinear scales. The maximum difference between the different hierarchies is about 0.5% for a sum of neutrino masses of 0.1 eV. Albeit this is a small effect, it is potentially measurable from upcoming surveys. In combination with neutrinoless double-{beta} decay experiments, this opens up the possibility of using the sky to determine if neutrinos are Majorana or Dirac fermions.

Wagner, Christian; Verde, Licia; Jimenez, Raul [Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E08028 Barcelona (Spain)

2012-06-20T23:59:59.000Z

Note: This page contains sample records for the topic "mass difference measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Advances and problems in plasma-optical mass-separation  

SciTech Connect (OSTI)

This paper presents a short review of plasma-optical mass-separation and defines the fields for its possible application. During theoretical studies, numerical simulations, and experiments, the effect of the azimuthator finite size and of the vacuum conditions on the mass separator characteristics was revealed, as well as the quality of different-mass ion separation. The problems, solving which may lead to a successful end of the mass-separation plasma-optical technique implementation, were specified.

Bardakov, V. M.; Ivanov, S. D.; Strokin, N. A. [Institute for Physics and Technology, Irkutsk State Technical University, Irkutsk, Ulitsa Lermontova, 83, 664074 Irkutsk (Russian Federation)] [Institute for Physics and Technology, Irkutsk State Technical University, Irkutsk, Ulitsa Lermontova, 83, 664074 Irkutsk (Russian Federation)

2014-03-15T23:59:59.000Z

362

Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector  

E-Print Network [OSTI]

A measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 4.5??fb[superscript ?1] of proton-proton collisions data at ?s=7??TeV and 20.3??fb[superscript ...

Taylor, Frank E.

363

ON THE DISCREPANCY BETWEEN THEORETICAL AND X-RAY CONCENTRATION-MASS RELATIONS FOR GALAXY CLUSTERS  

SciTech Connect (OSTI)

In the past 15 years, the concentration-mass relation has been investigated diffusely in theoretical studies. On the other hand, only recently has this relation been derived from X-ray observations. When that happened, the results caused a certain level of concern: the X-ray normalizations and slopes were found significantly dissimilar from those predicted by theory. We analyzed 52 galaxy clusters and groups, simulated with different descriptions of the physical processes that affect the baryonic component, with the purpose of determining whether these discrepancies are real or induced by biases in the computation of the concentration parameter or in the determination of the selection function of the cluster sample for which the analysis is carried out. In particular, we investigate how the simulated concentration-mass relation depends (1) on the radial range used to derive the concentration; (2) on the presence of baryons in the simulations, and on the effect of star formation and feedback from supernovae and active galactic nuclei (AGNs). Finally, we evaluate (3) how the results differ when adopting an X-ray approach for the analysis and (4) how the selection function based on X-ray luminosity can impact the results. All effects studied go in the direction of alleviating the discrepancy between observations and simulations, although with different significance: while the choice of the radial range to fit the profiles and the inclusion of the baryonic component play only a minor role, the X-ray approach to reconstruct the mass profiles and the selection of the cluster sample have a strong impact on the resulting concentration-mass relation. Extending the fit to the most central regions or reducing the fitting radius from the virial boundary to the typical X-ray external radius causes an increase of the normalization in radiative simulations by 5%-10%. In the second case, we measure a slope that is up to twice steeper than that derived by using the typical theoretical radial range. Radiative simulations including only supernova feedback produce 30% higher concentrations than the dark matter case. Such a difference is largely reduced when including the effect of AGN feedback. The concentration-mass relation derived from the X-ray synthetic catalog is significantly steeper due to the combination of several different effects, such as environment, dynamical state and dynamical history of the clusters, bias in mass and temperature measurements, and their dependence on the radius and on the mass of the system. Finally, selecting clusters according to their X-ray luminosity produces a net increase in both normalization and slope of the relation, since at fixed mass, the most luminous clusters are also the most concentrated.

Rasia, E. [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109 (United States); Borgani, S. [Dipartimento di Fisica dell' Universitŕ di Trieste, Sezione di Astronomia, via Tiepolo 11, I-34131 Trieste (Italy); Ettori, S.; Meneghetti, M. [INAF, Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127, Bologna (Italy); Mazzotta, P. [Dipartimento di Fisica, Universitŕ di Roma Tor Vergata, via della Ricerca Scientifica, I-00133, Roma (Italy)

2013-10-10T23:59:59.000Z

364

Guide to transverse projections and mass-constraining variables  

SciTech Connect (OSTI)

This paper seeks to demonstrate that many of the existing mass-measurement variables proposed for hadron colliders (m{sub T}, m{sub eff}, m{sub T2}, missing p-vector{sub T}, h{sub T}, {radical}(s-circumflex){sub min}, etc.) are far more closely related to each other than is widely appreciated, and indeed can all be viewed as a common mass-bound specialized for a variety of purposes. A consequence of this is that one may understand better the strengths and weaknesses of each variable, and the circumstances in which each can be used to best effect. In order to achieve this, we find it necessary first to revisit the seemingly empty and infertile wilderness populated by the subscript 'T' (as in 'pe{sub T}') in order to remind ourselves what this process of transversification actually means. We note that, far from being simple, transversification can mean quite different things to different people. Those readers who manage to battle through the barrage of transverse notation distinguishing 'T' from 'v' or or from 'o', and 'early projection' from 'late projection', will find their efforts rewarded towards the end of the paper with (i) a better understanding of how collider mass variables fit together, (ii) an appreciation of how these variables could be generalized to search for things more complicated than supersymmetry, (iii) will depart with an aversion to thoughtless or naieve use of the so-called 'transverse methods' of any of the popular computer Lorentz-vector libraries, and (iv) will take care in their subsequent papers to be explicit about which of the 61 identified variants of the 'transverse mass' they are employing.

Barr, A. J. [Department of Physics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Khoo, T. J.; Lester, C. G. [Department of Physics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Konar, P. [Theoretical Physics Group, Physical Research Laboratory, Ahmedabad, Gujarat - 380 009 (India); Kong, K. [Department of Physics and Astronomy, University of Kansas, Lawrence, KA 66045 (United States); Matchev, K. T.; Park, M. [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States)

2011-11-01T23:59:59.000Z

365

MASS POLITICAL MOBILIZATION  

E-Print Network [OSTI]

................................................................................................................................................... MASS POLITICAL MOBILIZATION ................................................................................................................................................... Boix & Stokes: The Oxford Handbook of Comparative Politics Boixandstokes-chap21 Revise Proof page 497 20.4.2007 12:41pm #12;Boix & Stokes: The Oxford Handbook of Comparative Politics Boixandstokes-chap21

366

Masses of Fundamental Particles  

E-Print Network [OSTI]

In the original paper entitled, "Masses of Fundamental Particles"(arXiv:1109.3705v5, 10 Feb 2012), not only the masses of fundamental particles including the weak bosons, Higgs boson, quarks, and leptons, but also the mixing angles of quarks and those of neutrinos are all explained and/or predicted in the unified composite models of quarks and leptons successfully. In this addendum entitled, "Higgs Boson Mass in the Minimal Unified Subquark Model", it is emphasized that the Higgs boson mass is predicted to be about 130Gev in the minimal unified subquark model, which agrees well with the experimental values of 125-126GeV recently found by the ATLAS and CMS Collaborations at the LHC.

Hidezumi Terazawa

2014-06-11T23:59:59.000Z

367

Heavy Hybrid mesons Masses  

E-Print Network [OSTI]

We estimate the ground state masses of the heavy hybrid mesons using a phenomenological QCD-type potential. 0^{- -},1^{- -},0^{- +},1^{- +} and 0^{+ -} J^{PC} states are considered.

F. Iddir; L. Semlala

2006-11-13T23:59:59.000Z

368

Using fat and muscle measurements from different areas of the carcass in the prediction of yield of pork four lean cuts and primals as affected by cutting method and trim level  

E-Print Network [OSTI]

-in and boneless FLC progressively trimmed to .64,.32, and 0 cm, BLSFLC, and FFLFLC. Twelfth rib fat depth 3/4 measure (TW5) and M. longissimus area (TW7) accounted for 81% of the variation in RFLC. Twelfth rib fat and muscle depth 1/2 distance measures (TW3 and TW...

Harris, Shawn Dale

1995-01-01T23:59:59.000Z

369

Authentic samples were analyzed on low and high resolution, ion-trap and linear collision cell mass spectrometers. A clustering algorithm used an adjusted dot product as a measure of spectral similarity to create  

E-Print Network [OSTI]

speed (e.g. metabolite identifications in Standard Reference Materials studies); · The quality, size,183 precursor ions, 121,591 spectra of positive and negative ions at different collision energies. Building is an effective method for chemical identification because of its reliable searching results and fast searching

Magee, Joseph W.

370

HIGEE Mass Transfer  

E-Print Network [OSTI]

HIGEE MASS TRANSFER R.J. Mohr and R. Fowler GLITSCH, INC. Dallas, Texas ABSTRACT Distillation, absorption, and gas stripping have traditionally been performed in tall columns utilizing trays or packing. Columns perform satisfactorily... transfer system which utilizes a rotating bed of packing to achieve high efficiency separations, and consequent reduction in size and weight. INTRODUCTION HIGEE is probably one of the most interesting developments in mass transfer equipment made...

Mohr, R. J.; Fowler, R.

371

Main Sequence Masses and Radii from Gravitational Redshifts  

E-Print Network [OSTI]

Modern instrumentation makes it possible to measure the mass to radius ratio for main sequence stars in open clusters from gravitational redshifts. For stars where independent information is available for either the mass or the radius, this application of general relativity directly determines the other quantity. Applicable examples are: 1) measuring the radii of solar metallicity main sequence stars for which the mass - luminosity relation is well known, 2) measuring the radii for stars where model atmospheres can be used to determine the surface gravity (the mass to radius squared ratio), 3) refining the mass - radius relation for main sequence stars, and 4) measuring the change in radius as stars evolve off the main sequence and up the giant branch.

Ted von Hippel

1995-12-02T23:59:59.000Z

372

Method and system for measuring multiphase flow using multiple pressure differentials  

DOE Patents [OSTI]

An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.

Fincke, James R. (Idaho Falls, ID)

2001-01-01T23:59:59.000Z

373

Measurement of higher-order harmonic azimuthal anisotropy in PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76 TeV  

E-Print Network [OSTI]

Measurements are presented by the CMS Collaboration at the Large Hadron Collider (LHC) of the higher-order harmonic coefficients that describe the azimuthal anisotropy of charged particles emitted in sqrt(s[NN]) = 2.76 TeV PbPb collisions. Expressed in terms of the Fourier components of the azimuthal distribution, the n = 3-6 harmonic coefficients are presented for charged particles as a function of their transverse momentum (0.3 harmonic coefficients develop a more complete picture of the collective motion in high-energy heavy-ion collisions and shed light on the properties of the produced medium.

CMS Collaboration

2014-04-18T23:59:59.000Z

374

PARTICLES OF DIFFERENCE.  

SciTech Connect (OSTI)

It is no longer appropriate, if it ever was, to think of atmospheric aerosols as homogeneous spheres of uniform composition and size. Within the United States, and even more globally, not only the mass loading but also the composition, morphology, and size distribution of atmospheric aerosols are highly variable, as a function of location, and at a given location as a function of time. Particles of a given aerodynamic size may differ from one another, and even within individual particles material may be inhomogeneously distributed, as for example, carbon spherules imbedded in much larger sulfate particles. Some of the particulate matter is primary, that is, introduced into the atmosphere directly as particles, such as carbon particles in diesel exhaust. Some is secondary, that is, formed in the atmosphere by gas-to-particle conversion. Much of the material is inorganic, mainly sulfates and nitrates resulting mainly from energy-related emissions. Some of the material is carbonaceous, in part primary, in part secondary, and of this material some is anthropogenic and some biogenic. While the heterogeneity of atmospheric aerosols complicates the problem of understanding their loading and distribution, it may well be the key to its solution. By detailed examination of the materials comprising aerosols it is possible to infer the sources of these materials. It may be possible as well to identify specific health impairing agents. The heterogeneity of aerosol particles is thus the key to identifying their sources, to understanding the processes that govern their loading and properties, and to devising control strategies that are both effective and efficient. Future research must therefore take cognizance of differences among aerosol particles and use these differences to advantage.

SCHWARTZ,S.E.

2000-09-21T23:59:59.000Z

375

THE STELLAR VELOCITY DISPERSION OF A COMPACT MASSIVE GALAXY AT z = 1.80 USING X-SHOOTER: CONFIRMATION OF THE EVOLUTION IN THE MASS-SIZE AND MASS-DISPERSION RELATIONS {sup ,}  

SciTech Connect (OSTI)

Recent photometric studies have shown that early-type galaxies at fixed stellar mass were smaller and denser at earlier times. In this Letter, we assess that finding by deriving the dynamical mass of such a compact quiescent galaxy at z = 1.8. We have obtained a high-quality spectrum with full UV-NIR wavelength coverage of galaxy NMBS-C7447 using X-Shooter on the Very Large Telescope. We determined a velocity dispersion of 294 {+-} 51 km s{sup -1}. Given this velocity dispersion and the effective radius of 1.64 {+-} 0.15 kpc (as determined from Hubble Space Telescope Wide Field Camera 3 F160W observations) we derive a dynamical mass of (1.7 {+-} 0.5) x 10{sup 11} M{sub sun}. Comparison of the full spectrum with stellar population synthesis models indicates that NMBS-C774 has a relatively young stellar population (0.40 Gyr) with little or no star formation and a stellar mass of M{sub *} {approx} 1.5 x 10{sup 11} M{sub sun}. The dynamical and photometric stellar masses are in good agreement. Thus, our study supports the conclusion that the mass densities of quiescent galaxies were indeed higher at earlier times, and this earlier result is not caused by systematic measurement errors. By combining available spectroscopic measurements at different redshifts, we find that the velocity dispersion at fixed dynamical mass was a factor of {approx}1.8 higher at z = 1.8 compared with z = 0. Finally, we show that the apparent discrepancies between the few available velocity dispersion measurements at z > 1.5 are consistent with the intrinsic scatter of the mass-size relation.

Van de Sande, Jesse; Franx, Marijn; Labbe, Ivo [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Kriek, Mariska [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Van Dokkum, Pieter G.; Bezanson, Rachel; Whitaker, Katherine E. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Brammer, Gabriel [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Vitacura, Santiago (Chile); Groot, Paul J. [Department of Astrophysics, IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Kaper, Lex [Astronomical Institute Anton Pannekoek, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands)

2011-07-20T23:59:59.000Z

376

Uncertainty Measurement for Trace Element Analysis of Uranium and Plutonium Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)  

SciTech Connect (OSTI)

The measurement uncertainty estimatino associated with trace element analysis of impurities in U and Pu was evaluated using the Guide to the Expression of Uncertainty Measurement (GUM). I this evalution the uncertainty sources were identified and standard uncertainties for the components were categorized as either Type A or B. The combined standard uncertainty was calculated and a coverage factor k = 2 was applied to obtain the expanded uncertainty, U. The ICP-AES and ICP-MS methods used were deveoped for the multi-element analysis of U and Pu samples. A typical analytical run consists of standards, process blanks, samples, matrix spiked samples, post digestion spiked samples and independent calibration verification standards. The uncertainty estimation was performed on U and Pu samples that have been analyzed previously as part of the U and Pu Sample Exchange Programs. Control chart results and data from the U and Pu metal exchange programs were combined with the GUM into a concentration dependent estimate of the expanded uncertainty. Comparison of trace element uncertainties obtained using this model was compared to those obtained for trace element results as part of the Exchange programs. This process was completed for all trace elements that were determined to be above the detection limit for the U and Pu samples.

Gallimore, David L. [Los Alamos National Laboratory

2012-06-13T23:59:59.000Z

377

Measurement of the Single Top Quark Cross Section in the Lepton Plus Jets Final State in Proton-Antiproton Collisions at a Center of Mass Energy of 1.96 TeV Using the CDF II Detector  

SciTech Connect (OSTI)

We present a measurement of the single top quark cross section in the lepton plus jets final state using an integrated luminosity corresponding to 7.5~\\text{fb}^{-1} of p\\bar p collision data collected by the Collider Detector at Fermilab. The single top candidate events are identified by the signature of a charged lepton, large missing transverse energy, and two or three jets with at least one of them identified as originating from a bottom quark. A new Monte Carlo generator \\textsc{powheg} is used to model the single top quark production processes, which include {s}-channel, {t}-channel, and {Wt}-channel. A neural network multivariate method is exploited to discriminate the single top quark signal from the comparatively large backgrounds. We measure a single top production cross section of $3.04^{+0.57}_{-0.53}$ (\\mathrm{stat.~+~syst.}) pb assuming $m_{\\rm top}=172.5$~GeV/$c^2$. In addition, we extract the CKM matrix element value $|V_{tb}|=0.96\\pm 0.09~(\\mathrm{stat.~+~syst.})\\pm 0.05~(\\mathrm{theory})$ and set a lower limit of |V_{tb}|>0.78 at the 95\\% credibility level.

Wu, Zhenbin

2012-01-01T23:59:59.000Z

378

On Quasar Masses and Quasar Host Galaxies  

E-Print Network [OSTI]

The mass of massive black holes in quasar cores can be deduced using the typical velocities of Hb-emitting clouds in the Broad Line Region (BLR) and the size of this region. However, this estimate depends on various assumptions and is susceptible to large systematic errors. The Hb-deduced black hole mass in a sample of 14 bright quasars is found here to correlate with the quasar host galaxy luminosity, as determined with the Hubble Space Telescope (HST). This correlation is similar to the black hole mass vs. bulge luminosity correlation found by Magorrian et al. in a sample of 32 nearby normal galaxies. The similarity of the two correlations is remarkable since the two samples involve apparently different types of objects and since the black hole mass estimates in quasars and in nearby galaxies are based on very different methods. This similarity provides a ``calibration'' of the Hb-deduced black hole mass estimate, suggesting it is accurate to +-0.5 on log scale. The similarity of the two correlations also suggests that quasars reside in otherwise normal galaxies, and that the luminosity of quasar hosts can be estimated to +-0.5 mag based on the quasar continuum luminosity and the Hb line width. Future imaging observations of additional broad-line active galaxies with the HST are required in order to explore the extent, slope, and scatter of the black hole mass vs. host bulge luminosity correlation in active galaxies.

Ari Laor

1998-07-27T23:59:59.000Z

379

Top quark physics: Future Measurements  

SciTech Connect (OSTI)

We discuss the study of the top quark at future experiments and machines. Top's large mass makes it a unique probe of physics at the natural electroweak scale. We emphasize measurements of the top quark's mass, width, and couplings, as well as searches for rare or nonstandard decays, and discuss the complementary roles played by hadron and lepton colliders.

Frey, Raymond; Gerdes, David; Jaros, John; Vejcik, Steve; Berger, Edmond L.; Chivukula, R. Sekhar; Cuypers, Frank; Drell, Persis S.; Fero, Michael; Hadley, Nicholas; Han, Tao; Heinson, Ann P.; Knuteson, Bruce; Larios, Francisco; Miettinen, Hannu; Orr, Lynne H.; Peskin, Michael E.; Rizzo, Thomas; Sarid, Uri; Schmidt, Carl; Stelzer, Tim; Sullivan, Zack

1996-12-31T23:59:59.000Z

380

Top quark physics: Future measurements  

SciTech Connect (OSTI)

The authors discuss the study of the top quark at future experiments and machines. Top`s large mass makes it a unique probe of physics at the natural electroweak scale. They emphasize measurements of the top quark`s mass, width, and couplings, as well as searches for rare or nonstandard decays, and discuss the complementary roles played by hadron and lepton colliders.

Frey, R. [Univ. of Oregon, Eugene, OR (United States). Dept. of Physics; Vejcik, S. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Physics; Berger, E.L. [Argonne National Lab., IL (United States)] [and others

1997-04-04T23:59:59.000Z

Note: This page contains sample records for the topic "mass difference measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Isotherm parameters and intraparticle mass transfer kinetics on molecularly imprinted polymers in acetonitrile/buffer mobile phases  

SciTech Connect (OSTI)

The equilibrium isotherm and the intraparticle mass transfer kinetics of the enantiomers of the template were investigated on an Fmoc-L-tryptophan (Fmoc-L-Trp) imprinted polymer at different pHs and water concentrations in acetonitrile/aqueous buffer mobile phases. The equilibrium isotherm data were measured using frontal analysis at 25 {+-} 2 C. The adsorption energy distribution was found to be trimodal, with narrow modes. Consistent with this distribution, the adsorption data were modeled using a tri-Langmuir isotherm equation and the best estimates of the isotherm parameters were determined. The intraparticle mass transfer parameters were derived by comparing the profiles of experimental overloaded bands and the profiles calculated using the isotherm model and the lumped pore diffusion (POR) model of chromatography. These results showed that different adsorption and mass transfer mechanisms exist in mobile phases made of acetonitrile/aqueous buffer and of acetonitrile/acetic acid solutions.

Kim, Hyunjung [University of Tennessee, Knoxville (UTK); Kaczmarski, Krzysztof [University of Tennessee and Rzeszow University of Technology, Poland; Guiochon, Georges A [ORNL

2006-03-01T23:59:59.000Z

382

High Precision Density Measurements of Single Particles: The...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to measure individual particle mass spectrometer to measure individual particle aerodynamic diameter and composition. Mobility and aerodynamic diameters are used to extract...

383

Double beta decay and neutrino mass models  

E-Print Network [OSTI]

Neutrinoless double beta decay allows to constrain lepton number violating extensions of the standard model. If neutrinos are Majorana particles, the mass mechanism will always contribute to the decay rate, however, it is not a priori guaranteed to be the dominant contribution in all models. Here, we discuss whether the mass mechanism dominates or not from the theory point of view. We classify all possible (scalar-mediated) short-range contributions to the decay rate according to the loop level, at which the corresponding models will generate Majorana neutrino masses, and discuss the expected relative size of the different contributions to the decay rate in each class. We also work out the phenomenology of one concrete 2-loop model in which both, mass mechanism and short-range diagram, might lead to competitive contributions, in some detail.

Helo, J C; Ota, T; Santos, F A Pereira dos

2015-01-01T23:59:59.000Z

384

Review of technical literature and trends related to automobile mass-reduction technology  

E-Print Network [OSTI]

projects have found a variety of different mass-reduction vehicle designs across different light-duty vehicle classes (sportscars, sedans,

Lutsey, Nicholas P.

2010-01-01T23:59:59.000Z

385

Galaxy Cosmological Mass Function  

E-Print Network [OSTI]

We study the galaxy cosmological mass function (GCMF) in a semi-empirical relativistic approach using observational data provided by galaxy redshift surveys. Starting from the theory of Ribeiro & Stoeger (2003, arXiv:astro-ph/0304094) between the mass-to-light ratio, the selection function obtained from the luminosity function (LF) data and the luminosity density, the average luminosity $L$ and the average galactic mass $\\mathcal{M}_g$ are computed in terms of the redshift. $\\mathcal{M}_g$ is also alternatively estimated by a method that uses the galaxy stellar mass function (GSMF). Comparison of these two forms of deriving the average galactic mass allows us to infer a possible bias introduced by the selection criteria of the survey. We used the FORS Deep Field galaxy survey sample of 5558 galaxies in the redshift range $0.5 light ratio and its GSMF data. Assuming ${\\mathcal{M}_{g_0}} \\approx 10^{11} \\mathcal{M}_\\odot$ as the local value of the average galactic mass, the LF approach results in $L_{B} \\propto (1+z)^{(2.40 \\pm 0.03)}$ and $\\mathcal{M}_g \\propto (1+z)^{(1.1\\pm0.2)}$. However, using the GSMF results produces $\\mathcal{M}_g \\propto (1+z)^{(-0.58 \\pm 0.22)}$. We chose the latter result as it is less biased. We then obtained the theoretical quantities of interest, such as the differential number counts, to calculate the GCMF, which can be fitted by a Schechter function. The derived GCMF follows theoretical predictions in which the less massive objects form first, being followed later by more massive ones. In the range $0.5 < z < 2.0$ the GCMF has a strong variation that can be interpreted as a higher rate of galaxy mergers or as a strong evolution in the star formation history of these galaxies.

Amanda R. Lopes; Alvaro Iribarrem; Marcelo B. Ribeiro; William R. Stoeger

2014-12-03T23:59:59.000Z

386

Mass of Ne-16  

E-Print Network [OSTI]

1983 The American Physical Society 28 C. J. WOODWARD, R. E. TRIBBLE, AND D. M. TANNER 27 tron rf. A 0.3 mm Kapton absorber foil was insert- ed after the proportional counter in order to ensure that the He particles stopped in the Si detector...PHYSICAL REVIEWER C VOLUME 27, NUMBER 1 Mass of ' Ne JANUARY 1983 C. J. Woodward, * R. E. Tribble, and D. M. Tanner Cyclotron Institute, Texas A&M University, College Station, Texas 77843 (Received 23 August 1982) The mass of ' Ne has been...

Woodward, C. J.; Tribble, Robert E.; Tanner, D. M.

1983-01-01T23:59:59.000Z

387

Laser desorption mass spectrometry for fast DNA analysis  

SciTech Connect (OSTI)

During the past few years, major effort has been directed toward developing mass spectrometry to measure biopolymers because of the great potential benefit to biomedical research. Hellenkamp and his co-workers were the first to report that large polypeptide molecules can be ionized and detected without significant fragmentation when a greater number of nicotinic acid molecules are used as a matrix. This method is now well known as matrix-assisted laser desorption/ionization (MALDI). Since then, various groups have reported measurements of very large proteins by MALDI. Reliable protein analysis by MALDI is more or less well established. However, the application of MALDI to nucleic acids analysis has been found to be much more difficult. Most research on the measurement of nucleic acid by MALDI were stimulated by the Human Genome Project. Up to now, the only method for reliable routine analysis of nucleic acid is gel electrophoresis. Different sizes of nucleic acids can be separated in gel medium when a high electric field is applied to the gel. However, the time needed to separate different sizes of DNA segments usually takes from several minutes to several hours. If MALDI can be successfully used for nucleic acids analysis, the analysis time can be reduced to less than I millisecond. In addition, no tagging with radioactive materials or chemical dyes is needed. In this work, we will review recent progress related to MALDI for DNA analysis.

Chen, C.H.; Ch`ang, L.Y.; Taranenko, N.I.; Allman, S.L.; Tang, K.; Matteson, K.J.

1995-09-01T23:59:59.000Z

388

Neutrino Mass and Mixing: from Theory to Experiment  

E-Print Network [OSTI]

The origin of fermion mass hierarchies and mixings is one of the unresolved and most difficult problem in high-energy physics. One possibility to address the flavour problem is by extending the Standard Model to include a family symmetry. In the recent years it has become very popular to use non-Abelian discrete flavour symmetries because of their power in the prediction of the large leptonic mixing angles relevant for neutrino oscillation experiments. Here we give an introduction to the flavour problem and to discrete groups which have been used to attempt a solution for it. We review the current status of models in the light of the recent measurement of the reactor angle and we consider different model building directions taken. The use of the flavons or multi Higgs scalars in model building is discussed as well as the direct vs. indirect approaches. We also focus on the possibility to distinguish experimentally flavour symmetry models by means of mixing sum rules and mass sum rules. In fact, we illustrate in this review the complete path from mathematics, via model building, to experiments, so that any reader interested to start working in the field could use this text as a starting point in order to get a broad overview of the different subject areas.

Stephen F. King; Alexander Merle; Stefano Morisi; Yusuke Shimizu; Morimitsu Tanimoto

2014-02-18T23:59:59.000Z

389

Mass Extinctions Geology 331  

E-Print Network [OSTI]

into shallow water and released to atmosphere. · Oxidation of coal and hydrocarbons by extensive erosion of sedimentary rocks, and/or massive volcanic eruptions in Siberia? CH2O + O2 CO2 +H2O · Release of methane by rapid influx of C12 caused by methane release and mass dying at the end of the Permian. Organisms

Kammer, Thomas

390

Residential Thermal Mass Construction  

E-Print Network [OSTI]

The southwest has long known the value of building homes with high mass materials. The ancient Pueblo Indians found that by using "adobe" they could capture the energy necessary to survive the harsh desert climate. Our ancestors knew that a heavy...

Thieken, J. S.

1988-01-01T23:59:59.000Z

391

Mass-induced transition in fermion number  

SciTech Connect (OSTI)

We show that if we increase the mass of fermions in interaction with a topological (kink) scalar background in 1+1 dimensions, the fractional fermion number of the system will eventually vanish. The transition is sharp and corresponds to the disappearance of localized states from the spectrum of a Dirac operator which is exactly solvable. Possible applications to different physical systems are discussed.

Aragao de Carvalho, C.; Pureza, J. M.

1989-05-15T23:59:59.000Z

392

John Day Tailrace MASS2 Hydraulic Modeling  

SciTech Connect (OSTI)

Recent biological results for the Juvenile Bypass System at John Jay Lock and Dam have raised concerns about the hydraulic conditions that are created in the tailrace under different project operations. This Memorandum for Record discusses the development and application of a truncated MASS2 model in the John Day tailrace.

Rakowski, Cynthia L.; Richmond, Marshall C.

2003-06-03T23:59:59.000Z

393

The Theoretical Mass--Magnitude Relation of Low-Mass Stars and its Metallicity Dependence  

E-Print Network [OSTI]

We investigate the dependence of theoretically generated mass - (absolute magnitude) relations on stellar models. Using up to date physics we compute models in the mass range 0.1 [Fe/H] > -2.3) shows a maximum in -dm/dM_bol, which moves to brighter bolometric magnitudes with decreasing metallicity. The change in location of the maximum, as a function of [Fe/H], follows the location of structure in luminosity functions for stellar populations with different metal abundances. This structure seen in all observed stellar populations can be accounted for by the mass--luminosity relation.

Pavel Kroupa; Christopher A. Tout

1997-01-28T23:59:59.000Z

394

Mass and Angular Momentum of Sgr A*  

E-Print Network [OSTI]

For very fast spinning black holes with a>0.9953 the orbital velocity of a test particle unexpectly shows a positive radial gradient for low orbits, an effect of GR which has been overlooked so far. For a=0.99616 the maximum radial change of the orbital velocity equals the radial epicyclic frequency, which in turn is in a 1:3 resonance with the vertical epicyclic frequency. Application to Sgr A* using the quasi-periodic oscillations recently measured suggest that the mass of Sgr A* is 3.28 +/- 0.13 million solar masses.

B. Aschenbach

2004-10-13T23:59:59.000Z

395

ON DARK PEAKS AND MISSING MASS: A WEAK-LENSING MASS RECONSTRUCTION OF THE MERGING CLUSTER SYSTEM A520 ,  

SciTech Connect (OSTI)

Merging clusters of galaxies are unique in their power to directly probe and place limits on the self-interaction cross-section of dark matter. Detailed observations of several merging clusters have shown the intracluster gas to be displaced from the centroids of dark matter and galaxy density by ram pressure, while the latter components are spatially coincident, consistent with collisionless dark matter. This has been used to place upper limits on the dark matter particle self-interaction cross-section of order 1 cm{sup 2} g{sup -1}. The cluster A520 has been seen as a possible exception. We revisit A520 presenting new Hubble Space Telescope Advanced Camera for Surveys mosaic images and a Magellan image set. We perform a detailed weak-lensing analysis and show that the weak-lensing mass measurements and morphologies of the core galaxy-filled structures are mostly in good agreement with previous works. There is, however, one significant difference: We do not detect the previously claimed 'dark core' that contains excess mass with no significant galaxy overdensity at the location of the X-ray plasma. This peak has been suggested to be indicative of a large self-interaction cross-section for dark matter (at least {approx}5{sigma} larger than the upper limit of 0.7 cm{sup 2} g{sup -1} determined by observations of the Bullet Cluster). We find no such indication and instead find that the mass distribution of A520, after subtraction of the X-ray plasma mass, is in good agreement with the luminosity distribution of the cluster galaxies. We conclude that A520 shows no evidence to contradict the collisionless dark matter scenario.

Clowe, Douglas [Department of Physics and Astronomy, Ohio University, 251B Clippinger Labs, Athens, OH 45701 (United States); Markevitch, Maxim [NASA Goddard Space Flight Center, Code 662, 8800 Greenbelt Road, Greenbelt, MD 20706 (United States); Bradac, Marusa [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Gonzalez, Anthony H.; Chung, Sun Mi [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Massey, Richard [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Zaritsky, Dennis, E-mail: clowe@ohio.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

2012-10-20T23:59:59.000Z

396

The Top Mass: Interpretation and Theoretical Uncertainties  

E-Print Network [OSTI]

Currently the most precise LHC measurements of the top quark mass are determinations of the top quark mass parameter of Monte-Carlo (MC) event generators reaching uncertainties of well below $1$ GeV. However, there is an additional theoretical problem when using the MC top mass $m_t^{\\rm MC}$ as an input for theoretical predictions, because a rigorous relation of $m_t^{\\rm MC}$ to a renormalized field theory mass is, at the very strict level, absent. In this talk I show how - nevertheless - some concrete statements on $m_t^{\\rm MC}$ can be deduced assuming that the MC generator behaves like a rigorous first principles QCD calculator for the observables that are used for the analyses. I give simple conceptual arguments showing that in this context $m_t^{\\rm MC}$ can be interpreted like the mass of a heavy-light top meson, and that there is a conversion relation to field theory top quark masses that requires a non-perturbative input. The situation is in analogy to B physics where a similar relation exists between experimental B meson masses and field theory bottom masses. The relation gives a prescription how to use $m_t^{\\rm MC}$ as an input for theoretical predictions in perturbative QCD. The outcome is that at this time an additional uncertainty of about $1$ GeV has to be accounted for. I discuss limitations of the arguments I give and possible ways to test them, or even to improve the current situation.

André H. Hoang

2014-12-11T23:59:59.000Z

397

Very high resolution saturation spectroscopy of lutetium isotopes via c-w single-frequency laser resonance ionization mass spectrometry  

SciTech Connect (OSTI)

In this paper, we discuss the use of Resonance Ionization Mass Spectrometry (RIMS) to perform isotopically selective saturation spectroscopy of lutetium isotopes. Utilizing this technique, it is shown that accurate measurements of the relative frequencies of hyperfine (HF) components for different isotopes easily can be made without the need for an isotopically enriched sample. The precision with which the HF splitting constants can be determined is estimated to be approx.5 times greater than in previous work.

Fearey, B.L.; Parent, D.C.; Keller, R.A.; Miller, C.M.

1987-01-01T23:59:59.000Z

398

Testing Low-Mass Stellar Models: Three New Detached Eclipsing Binaries below 0.75 Msun  

E-Print Network [OSTI]

Full tests to stellar models below 1 Msun have been hindered until now by the scarce number of precise measurements of the stars' most fundamental parameters: their masses and radii. With the current observational techniques, the required precision to distinguish between different models (errors < 2-3 %) can only be achieved using detached eclipsing binaries where 1) both stars are similar in mass, i.e. q = M1/M2 ~ 1.0, and 2) each star is a main sequence object below 1 Msun. Until 2003 only three such binaries had been found and analyzed in detail. Two new systems were published in 2005 (Creevey et al.; Lopez-Morales & Ribas), almost doubling the previous number of data points. Here we present preliminary results for 3 new low-mass detached eclipsing binaries. These are the first studied systems from our sample of over 41 new binaries (Shaw & Lopez-Morales, this proceedings). We also provide an updated comparison between the Mass-Radius and the Mass-Teff relations predicted by the models and the observational data from detached eclipsing binaries.

Mercedes Lopez-Morales; J. Scott Shaw

2006-03-28T23:59:59.000Z

399

Automatic Gain Control in Mass Spectrometry using a Jet Disrupter Electrode in an Electrodynamic Ion Funnel  

SciTech Connect (OSTI)

We report on the use of a jet disrupter electrode in an electrodynamic ion funnel as an electronic valve to regulate the intensity of the ion beam transmitted through the interface of a mass spectrometer in order to perform automatic gain control (AGC). The ion flux is determined by either directly detecting the ion current on the conductance limiting orifice of the ion funnel or using a short mass spectrometry acquisition. Based upon the ion flux intensity, the voltage of the jet disrupter is adjusted to alter the transmission efficiency of the ion funnel to provide a desired ion population to the mass analyzer. Ion beam regulation by an ion funnel is shown to provide an unbiased control to within a few percent of a targeted ion intensity or abundance. The utility of ion funnel AGC was evaluated using a protein tryptic digest analyzed with liquid chromatography Fourier transform ion cyclotron resonance (LC-FTICR) mass spectrometry. The ion population in the ICR cell was accurately controlled to a variety of different levels, which improved data quality and provided better mass measurement accuracy.

Page, Jason S.; Bogdanov, Bogdan; Vilkov, Andrey N.; Prior, David C.; Buschbach, Michael A.; Tang, Keqi; Smith, Richard D.

2005-02-01T23:59:59.000Z

400

High Precision Atomic Mass Spectrometry with Applications to Neutrino Physics, Fundamental Constants and Physical Chemistry.  

E-Print Network [OSTI]

?? The Florida State University single-ion cryogenic Penning trap mass spectrometer has been used to precisely measure the masses of the doublets 76Ge/76Se and 74Ge/74Se… (more)

Mount, Brianna Jane

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mass difference measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

arbitrary quark mass: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with small uncertainty allows us to predict properties of the as-yet-unobserved Higgs boson. This paper presents the status of the measurements of the top quark mass. A. P....

402

Nanoscale mass conveyors  

DOE Patents [OSTI]

A mass transport method and device for individually delivering chargeable atoms or molecules from source particles is disclosed. It comprises a channel; at least one source particle of chargeable material fixed to the surface of the channel at a position along its length; a means of heating the channel; and a means for applying an controllable electric field along the channel, whereby the device transports the atoms or molecules along the channel in response to applied electric field. In a preferred embodiment, the mass transport device will comprise a multiwalled carbon nanotube (MWNT), although other one dimensional structures may also be used. The MWNT or other structure acts as a channel for individual or small collections of atoms due to the atomic smoothness of the material. Also preferred is a source particle of a metal such as indium. The particles move by dissociation into small units, in some cases, individual atoms. The particles are preferably less than 100 nm in size.

Regan, Brian C. (Oakland, CA); Aloni, Shaul (Albany, CA); Zettl, Alexander K. (Kensington, CA)

2008-03-11T23:59:59.000Z

403

Electrospray Ionization Mass Spectrometry  

SciTech Connect (OSTI)

Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

2014-06-13T23:59:59.000Z

404

Structural parameters of star clusters: relations among light, mass and star-count radial profiles and the dependence on photometric depth  

E-Print Network [OSTI]

Structural parameters of model star clusters are measured in radial profiles built from number-density, mass-density and surface-brightness distributions, assuming as well different photometric conditions. Star clusters of different ages, structure and mass functions are modelled by assuming that the radial distribution of stars follows a pre-defined analytical form. Near-infrared surface brightness and mass-density profiles result from mass-luminosity relations taken from a set of isochrones. Core, tidal and half-light, half-mass and half-star count radii, together with the concentration parameter, are measured in the three types of profiles, which are built under different photometric depths. While surface-brightness profiles are almost insensitive to photometric depth, radii measured in number-density and mass-density profiles change significantly with it. Compared to radii derived with deep photometry, shallow profiles result in lower values. This effect increases for younger ages. Radial profiles of clusters with a spatially-uniform mass function produce radii that do not depend on depth. With deep photometry, number-density profiles yield radii systematically larger than those derived from surface-brightness ones. In general, low-noise surface-brightness profiles result in uniform structural parameters that are essentially independent of photometric depth. For less-populous star clusters, those projected against dense fields and/or distant ones, which result in noisy surface-brightness profiles, this work provides a quantitative way to estimate the intrinsic radii by means of number-density profiles built with depth-limited photometry.

Charles Bonatto; Eduardo Bica

2007-11-19T23:59:59.000Z

405

SUPERNOVA REMNANT PROGENITOR MASSES IN M31  

SciTech Connect (OSTI)

Using Hubble Space Telescope photometry, we age-date 59 supernova remnants (SNRs) in the spiral galaxy M31 and use these ages to estimate zero-age main-sequence masses (M{sub ZAMS}) for their progenitors. To accomplish this, we create color-magnitude diagrams (CMDs) and employ CMD fitting to measure the recent star formation history of the regions surrounding cataloged SNR sites. We identify any young coeval population that likely produced the progenitor star, then assign an age and uncertainty to that population. Application of stellar evolution models allows us to infer the M{sub ZAMS} from this age. Because our technique is not contingent on identification or precise location of the progenitor star, it can be applied to the location of any known SNRs. We identify significant young star formation around 53 of the 59 SNRs and assign progenitor masses to these, representing a factor of {approx}2 increase over currently measured progenitor masses. We consider the remaining six SNRs as either probable Type Ia candidates or the result of core-collapse progenitors that have escaped their birth sites. In general, the distribution of recovered progenitor masses is bottom-heavy, showing a paucity of the most massive stars. If we assume a single power-law distribution, dN/dM{proportional_to}M{sup {alpha}}, then we find a distribution that is steeper than a Salpeter initial mass function (IMF) ({alpha} = -2.35). In particular, we find values of {alpha} outside the range -2.7 {>=} {alpha} {>=} -4.4 to be inconsistent with our measured distribution at 95% confidence. If instead we assume a distribution that follows a Salpeter IMF up to some maximum mass, then we find that values of M{sub Max} > 26 are inconsistent with the measured distribution at 95% confidence. In either scenario, the data suggest that some fraction of massive stars may not explode. The result is preliminary and requires more SNRs and further analysis. In addition, we use our distribution to estimate a minimum mass for core collapse between 7.0 and 7.8 M{sub Sun }.

Jennings, Zachary G.; Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Fouesneau, Morgan; Weisz, Daniel R. [Department of Astronomy, University of Washington Seattle, Box 351580, WA 98195 (United States); Murphy, Jeremiah W. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Dolphin, Andrew E., E-mail: zachjenn@uw.edu, E-mail: adolphin@raytheon.com [Raytheon, 1151 East Hermans Road, Tucson, AZ 85706 (United States)

2012-12-10T23:59:59.000Z

406

Mass spectrometry of proteins of known mass Andrew D. Miranker*  

E-Print Network [OSTI]

deter- mination has two significant advantages. First, the mass accuracy under these conditions to the orifice of the mass analyzer. As a result, there is a local separation of charges at the tip

Miranker, Andrew

407

Precision Electroweak Measurements on the Z Presonance  

SciTech Connect (OSTI)

The authors report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. the data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLD experiment using a polarized beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarized asymmetries. The mass and width of the Z boson, m{sub Z} and {Lambda}{sub Z}, and its couplings to fermions, for example the {rho} parameter and the effective electroweak mixing angle for leptons, are precisely measured: m{sub Z} = 91.1875 {+-} 0.0021 GeV; {Lambda}{sub Z} = 2.4952 {+-} 0.0023 GeV; {rho}{sub {ell}} = 1.0050 {+-} 0.0010; sin{sup 2} {theta}{sub eff}{sup lept} = 0.23153 {+-} 0.00016. The number of light neutrino species is determined to be 2.9840 {+-} 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model. At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its Standard Model expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m{sub t} = 173{sub -10}{sup +13} GeV, and the mass of the W boson, m{sub W} = 80.363 {+-} 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the Standard Model. Using in addition the direct measurements of m{sub t} and m{sub W}, the mass of the as yet unobserved Standard Model Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level.

Aleph,Delphi,L3,Opal,SLD , Collaborations

2005-09-08T23:59:59.000Z

408

Macro-microscopic mass formulae and nuclear mass predictions  

E-Print Network [OSTI]

and alpha [5] processes in taking into account the shell effects, the proximity energy and the nuclear de aiming at reproducing the nuclear binding energy and then the nuclear mass contain the usual vol- umeMacro-microscopic mass formulae and nuclear mass predictions G. Royer, M. Guilbaud, A. Onillon

Boyer, Edmond

409

Measurements of the polarisation amplitudes and triple product asymmetries in B_s^0 to phi phi  

E-Print Network [OSTI]

Using 1fb^{-1} of pp collision data collected at center of mass energy sqrt{s} = 7 TeV during 2011 by the LHCb detector. Measurements of the triple product asymmetries, polarisation amplitudes and strong phase difference in the decay B_s^0 to phi phi are presented.

Dean Lambert; for the LHCb Collaboration

2012-06-14T23:59:59.000Z

410

Mass of Ca-36  

E-Print Network [OSTI]

. Spross, Phys. Hev. C 1, 50 (1976). ~H. E. Tribble, J. D. Cossairt, and H. A. Kenefick, Phys. Lett. 618, 353 (1976). 5H. A. Paddock, Phys. Hev. C 5, 485 (1972). 6The ~He mass excess is the average of three deter- minations (all in MeV): 31..., and H. B. Weisenmiller, ibid. 10, 2654 (1974). R. G. H. Robertson, W. Benenson, E. Kashy, and D. Mueller, Phys. Bev. C 13, 1018 (1976). R. G. H. Robertson, S. Martin, W. R. Falk, D. Ingham, and A. Djaloeis, Phys. Hev. Lett. 32, 1207 (1974). R...

Tribble, Robert E.; Cossairt, J. D.; Kenefick, R. A.

1977-01-01T23:59:59.000Z

411

Heat and mass exchanger  

DOE Patents [OSTI]

A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

2007-09-18T23:59:59.000Z

412

Heat and mass exchanger  

DOE Patents [OSTI]

A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

2011-06-28T23:59:59.000Z

413

Mass of Si-24  

E-Print Network [OSTI]

). ~B. E. Tribbl, J. D. Cossairt, D. P. May, and B. A, Kenefick, Phys. Bev. C 16, 1835 (1977). B. E. Tribble, J. D. Cossairt, and B. A. Kenefick, Phys. Bev. C 15, 2028 (1977). B. E. Tribble, B. A. Kenefick, and B. L. Spross, Phys. Bev. C 13, 50...PHYSICAL REVIEW C VOLUME 22, NUMBER 1 JULY 1980 Mass of Si R. E. Tribble, D. M. Tanner, and A. F. Zeller* Cyclotron Institute and Physics Department, Texas A&M University, College Station, Texas 77843 (Received 11 January 1980) The Si( He, 'He...

Tribble, Robert E.; Tanner, D. M.; Zeller, A. F.

1980-01-01T23:59:59.000Z

414

Mass Spectrometry | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMissionreal-time informationScience &MapsMarketsMass

415

Quark masses, the Dashen phase, and gauge field topology  

SciTech Connect (OSTI)

The CP violating Dashen phase in QCD is predicted by chiral perturbation theory to occur when the up–down quark mass difference becomes sufficiently large at fixed down-quark mass. Before reaching this phase, all physical hadronic masses and scattering amplitudes are expected to behave smoothly with the up-quark mass, even as this mass passes through zero. In Euclidean space, the topological susceptibility of the gauge fields is positive at positive quark masses but diverges to negative infinity as the Dashen phase is approached. A zero in this susceptibility provides a tentative signal for the point where the mass of the up quark vanishes. I discuss potential ambiguities with this determination. -- Highlights: •The CP violating Dashen phase in QCD occurs when the up quark mass becomes sufficiently negative. •Before reaching this phase, all physical hadronic masses and scattering amplitudes behave smoothly with the up-quark mass. •The topological susceptibility of the gauge fields diverges to negative infinity as the Dashen phase is approached. •A zero in the topological susceptibility provides a tentative signal for the point where the mass of the up quark vanishes. •The universality of this definition remains unproven. Potential ambiguities are discussed.

Creutz, Michael, E-mail: creutz@bnl.gov

2013-12-15T23:59:59.000Z

416

MASS 2-pager Andrei Tokovinin  

E-Print Network [OSTI]

. After each 1-min. accumulation time, the MASS software, Turbina, calculates 10 scintillation indices ­ 4 functions centered on the respective layers. The altitude resolution of MASS is h/h 0.5. Turbina

Tokovinin, Andrei A.

417

Physics at the 100 GeV mass scale: Proceedings  

SciTech Connect (OSTI)

This report contains the following papers: heavy quarks--experimental; the theory of heavy flavour production; precision experiments in electroweak interactions; theory of precision electroweak measurements; applications of QCD to hadron-hadron collisions; W{sup +}W{sup {minus}} interactions and the search for the Higgs Boson; electroweak symmetry breaking: Higgs/Whatever; electron-positron storage rings as heavy quark factories; prospects for next-generation e{sup +}e{sup {minus}} linear colliders; current prospects for hadron colliders; hadron colliders beyond the SSC; recent results on weak decays of charmed mesons from the Mark 3 experiment; recent CLEO results on bottom and charm; recent results on B-decays from ARGUE; a review of recent results on the hadron and photoproduction of charm; search for the top quark at UA1; recent results from the UA2 experiment at the CERN {bar p}p collider; selected preliminary results from CDF; new measurement of the phase difference {Phi}{sub 00} {minus} {Phi}{sub {plus minus}} in CP--violating K{sup 0} decays; a recent result on CP violation by E731 at Fermilab; rare kaon decay experiments; CP violation; inverse muon decay, neutrino dimuon production, and a search for neutral heavy leptons at the tevatron; first results from MACRO; a superstring theory underview; recent results from TRISTAN ; measurements of the Z boson resonance parameters at SLC; decays of the Z boson; and theory--weak neutral currents and the Z mass after the SLC.

Brennan, E.C. (ed.)

1990-01-01T23:59:59.000Z

418

Experiments for the Measurement of LNG Mass Burning Rates  

E-Print Network [OSTI]

..................................................................................... 21#1; 3.2#1; Facilities .......................................................................................... 22#1; 3.3#1; Instrumentation and equipment....................................................... 23 vii Page 3.4#1; Procedure... by natural gas. LNG is a sound option for meeting increasing global natural gas demand. to continue growth through 2030 Figure 1. U.S. Energy consumption by fuel By September 2002, about 113 facilities were reported to be operating in the U...

Herrera Gomez, Lady Carolina

2012-07-16T23:59:59.000Z

419

Press Pass - Press Release - W mass precisions measurement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home DesignPresentations Presentations Sort by:at Argonne10-13 July

420

Compact mass spectrometer for plasma discharge ion analysis  

DOE Patents [OSTI]

A mass spectrometer and methods are disclosed for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are capture