National Library of Energy BETA

Sample records for mass difference measurements

  1. Measurements of the tau Mass and Mass Difference of the tau^+ and tau^- at BABAR

    SciTech Connect (OSTI)

    Aubert, B.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2009-10-30

    The authors present the result of a precision measurement of the mass of the {tau} lepton, M{sub {tau}}, based on 423 fb{sup -1} of data recorded at the {Upsilon}(4S) resonance with the BABAR detector. Using a pseudomass endpoint method, they determine the mass to be 1776.68 {+-} 0.12(stat) {+-} 0.41(syst) MeV. They also measure the mass difference between the {tau}{sup +} and {tau}{sup -}, and obtain (M{sub {tau}{sup +}} - M{sub {tau}{sup -}})/M{sub AVG}{sup {tau}} = (-3.4 {+-} 1.3(stat) {+-} 0.3(syst)) x 10{sup -4}, where M{sub AVG}{sup {tau}} is the average value of M{sub {tau}{sup +}} and M{sub {tau}{sup -}}.

  2. Measurement of the mass difference between $t$ and $\\bar{t}$ quarks

    SciTech Connect (OSTI)

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; Arisawa, T.; /Waseda U. /Dubna, JINR

    2011-03-01

    We present a direct measurement of the mass difference between t and {bar t} quarks using t{bar t} candidate events in the lepton+jets channel, collected with the CDF II detector at Fermilab's 1.96 TeV Tevatron p{bar p} Collider. We make an event by event estimate of the mass difference to construct templates for top quark pair signal events and background events. The resulting mass difference distribution of data is compared to templates of signals and background using a maximum likelihood fit. From a sample corresponding to an integrated luminosity of 5.6 fb{sup -1}, we measure a mass difference, {Delta}M{sub top} = M{sub t} - M{sub {bar t}} = -3.3 {+-} 1.4 (stat) {+-} 1.0 (syst) GeV/c{sup 2}, approximately two standard deviations away from the CPT hypothesis of zero mass difference. This is the most precise measurement of a mass difference between t and its {bar t} partner to date.

  3. Solution mass measurement

    SciTech Connect (OSTI)

    Ford, W.; Marshall, R.S.; Osborn, L.C.; Picard, R.; Thomas, C.C. Jr.

    1982-07-01

    This report describes the efforts to develop and demonstrate a solution mass measurement system for use at the Los Alamos Plutonium Facility. Because of inaccuracy of load cell measurements, our major effort was directed towards the pneumatic bubbler tube. The differential pressure between the air inlet to the bubbler tube and the glovebox interior is measured and is proportional to the solution mass in the tank. An inexpensive, reliable pressure transducer system for measuring solution mass in vertical, cylindrical tanks was developed, tested, and evaluated in a laboratory test bed. The system can withstand the over- and underpressures resulting from solution transfer operations and can prevent solution backup into the measurement pressure transducer during transfers. Drifts, noise, quantization error, and other effects limit the accuracy to 30 g. A transportable calibration system using a precision machined tank, pneumatic bubbler tubes, and a Ruska DDR 6000 electromanometer was designed, fabricated, tested, and evaluated. Resolution of the system is +-3.5 g out of 50 kg. The calibration error is 5 g, using room-temperature water as the calibrating fluid. Future efforts will be directed towards in-plant test and evaluation of the tank measurement systems. 16 figures, 3 tables.

  4. Particle Number & Particulate Mass Emissions Measurements on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-duty Engine using the PMP Methodologies Particle Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies Poster ...

  5. Mass measurements of rare isotopes with SHIPTRAP

    SciTech Connect (OSTI)

    Dworschak, M.

    2010-06-01

    The Penning-trap mass spectrometer SHIPTRAP was set up with the aim to perform high-precision mass measurements. Since autumn 2005, the masses of 63 neutron-deficient nuclides in the mass range from A = 80 to A = 254 have been determined with relative uncertainties of down to 10{sup -8}. Nuclides with half-lives down to 580 ms and production rates of less than one atom per minute were investigated. The results are valuable for nuclear structure investigations and nuclear astrophysics. The most remarkable successes were the first direct mass measurements beyond the proton drip line and in the region above Z = 100.

  6. Top quark mass measurement at the Tevatron

    SciTech Connect (OSTI)

    Guimaraes da Costa, Joao; /Harvard U.

    2004-12-01

    The authors report on the latest experimental measurements of the top quark mass by the CDF and D0 Collaborations at the Fermilab Tevatron. They present a new top mass measurement using the t{bar t} events collected by the D0 Collaboration in Run I between 1994 and 1996. This result is combined with previous measurements to yield a new world top mass average. They also describe several preliminary results using up to 193 pb{sup -1} of t{bar t} events produced in {bar p}p collisions at {radical}s = 1.96 TeV during the Run II of the Tevatron.

  7. Top quark mass measurements at CDF

    SciTech Connect (OSTI)

    Maki, Tuula; /Helsinki U. /Helsinki Inst. of Phys.

    2007-10-01

    The top quark mass is interesting both as a fundamental parameter of the standard model as well as an important input to precision electroweak tests. The CDF Collaboration has measured the top quark mass with high precision in all decay channels with complementary methods. A combination of the results from CDF gives a top quark mass of 170.5{+-}1.3(stat.){+-}1.8(syst.) GeV/c{sup 2}.

  8. Measurement of the [tau]-lepton mass

    SciTech Connect (OSTI)

    Balest, R.; Daoudi, M.; Ford, W.T.; Johnson, D.R.; Lingel, K.; Lohner, M.; Rankin, P.; Smith, J.G.; Alexander, J.P.; Bebek, C.; Berkelman, K.; Besson, D.; Browder, T.E.; Cassel, D.G.; Cho, H.A.; Coffman, D.M.; Drell, P.S.; Ehrlich, R.; Galik, R.S.; Garcia-Sciveres, M.; Geiser, B.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Honscheid, K.; Jones, C.D.; Kandaswamy, J.; Katayama, N.; Kim, P.C.; Kreinick, D.L.; Ludwig, G.S.; Masui, J.; Mevissen, J.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Ogg, M.; O'Grady, C.; Patterson, J.R.; Peterson, D.; Riley, D.; Sapper, M.; Selen, M.; Worden, H.; Worris, M.; Wuerthwein, F.; Avery, P.; Freyberger, A.; Rodriguez, J.; Stephens, R.; Yelton, J.; Cinabro, D.; Henderson, S.; Kinoshita, K.; Liu, T.; Saulnier, M.; Wilson, R.; Yamamoto, H.; Sadoff, A.J.; Ammar, R.; Ball, S.; Baringer, P.; Coppage, D.; Copty, N.; Davis, R.; Hancock, N.; Kelly, M.; Kwak, N.; Lam, H.; Kubota, Y.; Lattery, M.; Nelson, J.K.; Patton, S.; Perticone, D.; Poling, R.; Savino

    1993-05-01

    Using data from the CLEO II detector at CESR, we measure the [tau]-lepton mass by exploiting the unique kinematics of events in which both [tau]'s decay hadronically. The result is [ital m][sub [tau

  9. Penning trap mass measurements on nobelium isotopes

    SciTech Connect (OSTI)

    Dworschak, M.; Block, M.; Ackermann, D.; Herfurth, F.; Hessberger, F. P.; Hofmann, S.; Vorobyev, G. K.; Audi, G.; Blaum, K.; Droese, C.; Marx, G.; Schweikhard, L.; Eliseev, S.; Ketter, J.; Fleckenstein, T.; Haettner, E.; Plass, W. R.; Scheidenberger, C.; Ketelaer, J.; Kluge, H.-J.

    2010-06-15

    The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt allows accurate mass measurements of radionuclides, produced in fusion-evaporation reactions and separated by the velocity filter SHIP from the primary beam. Recently, the masses of the three nobelium isotopes {sup 252-254}No were determined. These are the first direct mass measurements of transuranium elements, which provide new anchor points in this region. The heavy nuclides were produced in cold-fusion reactions by irradiating a PbS target with a {sup 48}Ca beam, resulting in production rates of the nuclei of interest of about one atom per second. In combination with data from decay spectroscopy our results are used to perform a new atomic-mass evaluation in this region.

  10. MEASURING THE MASS DISTRIBUTION IN GALAXY CLUSTERS

    SciTech Connect (OSTI)

    Geller, Margaret J.; Diaferio, Antonaldo; Rines, Kenneth J.; Serra, Ana Laura E-mail: diaferio@ph.unito.it E-mail: serra@to.infn.it

    2013-02-10

    Cluster mass profiles are tests of models of structure formation. Only two current observational methods of determining the mass profile, gravitational lensing, and the caustic technique are independent of the assumption of dynamical equilibrium. Both techniques enable the determination of the extended mass profile at radii beyond the virial radius. For 19 clusters, we compare the mass profile based on the caustic technique with weak lensing measurements taken from the literature. This comparison offers a test of systematic issues in both techniques. Around the virial radius, the two methods of mass estimation agree to within {approx}30%, consistent with the expected errors in the individual techniques. At small radii, the caustic technique overestimates the mass as expected from numerical simulations. The ratio between the lensing profile and the caustic mass profile at these radii suggests that the weak lensing profiles are a good representation of the true mass profile. At radii larger than the virial radius, the extrapolated Navarro, Frenk and White fit to the lensing mass profile exceeds the caustic mass profile. Contamination of the lensing profile by unrelated structures within the lensing kernel may be an issue in some cases; we highlight the clusters MS0906+11 and A750, superposed along the line of sight, to illustrate the potential seriousness of contamination of the weak lensing signal by these unrelated structures.

  11. Precision measurement of a particle mass at the linear collider

    SciTech Connect (OSTI)

    Milstene, C.; Freitas, A.; Schmitt, M.; Sopczak, A.; /Lancaster U.

    2007-06-01

    Precision measurement of the stop mass at the ILC is done in a method based on cross-sections measurements at two different center-of-mass energies. This allows to minimize both the statistical and systematic errors. In the framework of the MSSM, a light stop, compatible with electro-weak baryogenesis, is studied in its decay into a charm jet and neutralino, the Lightest Supersymmetric Particle (LSP), as a candidate of dark matter. This takes place for a small stop-neutralino mass difference.

  12. Top quark mass measurements at CDF

    SciTech Connect (OSTI)

    Brubaker, Erik; /Chicago U., EFI

    2006-05-01

    The mass of the top quark M{sub top} is interesting both as a fundamental parameter of the standard model and as an important input to precision electroweak tests. The Collider Detector at Fermilab (CDF) has a robust program of top quark mass analyses, including the most precise single measurement, M{sub top} = 173.4 {+-} 2.8 GeV/c{sup 2}, using 680 pb{sup -1} of p{bar p} collision data. A combination of current results from CDF gives M{sub top} = 172.0 {+-} 2.7 GeV/c{sup 2}, surpassing the stated goal of 3 GeV/c{sup 2} precision using 2 fb{sup -1} of data. Finally, a combination with current D0 results gives a world average top quark mass of 172.5 {+-} 2.3 GeV/c{sup 2}.

  13. Top quark mass measurement using the template method at CDF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T

    2011-06-03

    We present a measurement of the top quark mass in the lepton+jets and dilepton channels of tmore » $$\\bar{t}$$ decays using the template method. The data sample corresponds to an integrated luminosity of 5.6 fb-1 of p$$\\bar{p}$$ collisions at Tevatron with √s = 1.96 TeV, collected with the CDF II detector. The measurement is performed by constructing templates of three kinematic variables in the lepton+jets and two kinematic variables in the dilepton channel. The variables are two reconstructed top quark masses from different jets-to-quarks combinations and the invariant mass of two jets from the W decay in the lepton+jets channel, and a reconstructed top quark mass and mT2, a variable related to the transverse mass in events with two missing particles, in the dilepton channel. The simultaneous fit of the templates from signal and background events in the lepton+jets and dilepton channels to the data yields a measured top quark mass of Mtop = 172.1±1.1 (stat)±0.9 (syst) GeV/c2.« less

  14. Top quark mass measurement using the template method at CDF

    SciTech Connect (OSTI)

    Aaltonen, T; Alvarez Gonzalez, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Apresyan, A; Arisawa, T

    2011-06-03

    We present a measurement of the top quark mass in the lepton+jets and dilepton channels of tt? decays using the template method. The data sample corresponds to an integrated luminosity of 5.6 fb-1 of pp? collisions at Tevatron with ?s = 1.96 TeV, collected with the CDF II detector. The measurement is performed by constructing templates of three kinematic variables in the lepton+jets and two kinematic variables in the dilepton channel. The variables are two reconstructed top quark masses from different jets-to-quarks combinations and the invariant mass of two jets from the W decay in the lepton+jets channel, and a reconstructed top quark mass and mT2, a variable related to the transverse mass in events with two missing particles, in the dilepton channel. The simultaneous fit of the templates from signal and background events in the lepton+jets and dilepton channels to the data yields a measured top quark mass of Mtop = 172.11.1 (stat)0.9 (syst) GeV/c2.

  15. Two-Phase Mass Flow Measurement Using Noise Analysis (Conference...

    Office of Scientific and Technical Information (OSTI)

    Two-Phase Mass Flow Measurement Using Noise Analysis Citation Details In-Document Search Title: Two-Phase Mass Flow Measurement Using Noise Analysis You are accessing a document ...

  16. Measurement of the top quark mass in the dilepton channel

    SciTech Connect (OSTI)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Aguilo, E.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; /Buenos Aires U. /Rio de Janeiro, CBPF /Rio de Janeiro State U. /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Hefei, CUST /Andes U., Bogota /Charles U.

    2006-09-01

    We present a measurement of the top quark mass in the dilepton channel based on approximately 370 pb{sup -1} of data collected by the D0 experiment during Run II of the Fermilab Tevatron collider. We employ two different methods to extract the top quark mass. We show that both methods yield consistent results using ensemble tests of events generated with the D0 Monte Carlo simulation. We combine the results from the two methods to obtain a top quark mass m{sub t} = 178.1 {+-} 8.2 GeV. The statistical uncertainty is 6.7 GeV and the systematic uncertainty is 4.8 GeV.

  17. Two-Phase Mass Flow Measurement Using Noise Analysis (Conference...

    Office of Scientific and Technical Information (OSTI)

    mass flow measurement sensor for two-phase flow conditions in geothermal applications. ... Resource Type: Conference Resource Relation: Conference: Geothermal Program Review ...

  18. Charged Kaon Mass Measurement using the Cherenkov Effect

    SciTech Connect (OSTI)

    Graf, N.; Lebedev, A.; Abrams, R.J.; Akgun, U.; Aydin, G.; Baker, W.; Barnes, P.D., Jr.; Bergfeld, T.; Beverly, L.; Bujak, A.; Carey, D.; /Fermilab /Virginia U. /Iowa U.

    2009-09-01

    The two most recent and precise measurements of the charged kaon mass use X-rays from kaonic atoms and report uncertainties of 14 ppm and 22 ppm yet differ from each other by 122 ppm. We describe the possibility of an independent mass measurement using the measurement of Cherenkov light from a narrow-band beam of kaons, pions, and protons. This technique was demonstrated using data taken opportunistically by the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory which recorded beams of protons, kaons, and pions ranging in momentum from +37 GeV/c to +63 GeV/c. The measured value is 491.3 {+-} 1.7 MeV/c{sup 2}, which is within 1.4{sigma} of the world average. An improvement of two orders of magnitude in precision would make this technique useful for resolving the ambiguity in the X-ray data and may be achievable in a dedicated experiment.

  19. Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator

    SciTech Connect (OSTI)

    Godin, Michel; Bryan, Andrea K.; Burg, Thomas P.; Babcock, Ken; Manalis, Scott R.

    2007-09-17

    We demonstrate the measurement of mass, density, and size of cells and nanoparticles using suspended microchannel resonators. The masses of individual particles are quantified as transient frequency shifts, while the particles transit a microfluidic channel embedded in the resonating cantilever. Mass histograms resulting from these data reveal the distribution of a population of heterogeneously sized particles. Particle density is inferred from measurements made in different carrier fluids since the frequency shift for a particle is proportional to the mass difference relative to the displaced solution. We have characterized the density of polystyrene particles, Escherichia coli, and human red blood cells with a resolution down to 10{sup -4} g/cm{sup 3}.

  20. Report of the working group on precision measurements - measurements of the W boson mass and width.

    SciTech Connect (OSTI)

    Brock, R.; Erler, J.; Kim, Y.-K.; Marciano, W.; Ashmanskas, W.; Baur, U.; Ellison, J.; Lancaster, M.; Nodulman, L.; Rha, J.; Waters, D.; Womersley, J.

    2000-11-29

    We discuss the prospects for measuring the W mass and width in Run II. The basic techniques used to measure M{sub W} are described and the statistical, theoretical and detector-related uncertainties are discussed in detail. Alternative methods of measuring the W mass at the Tevatron and the prospects for M{sub W} measurements at other colliders are also described.

  1. Circuit for measuring time differences among events

    DOE Patents [OSTI]

    Romrell, Delwin M.

    1977-01-01

    An electronic circuit has a plurality of input terminals. Application of a first input signal to any one of the terminals initiates a timing sequence. Later inputs to the same terminal are ignored but a later input to any other terminal of the plurality generates a signal which can be used to measure the time difference between the later input and the first input signal. Also, such time differences may be measured between the first input signal and an input signal to any other terminal of the plurality or the circuit may be reset at any time by an external reset signal.

  2. Top quark mass measurement at CDF Run-II

    SciTech Connect (OSTI)

    T. Maruyama

    2004-05-11

    CDF has resumed the top quark mass measurement with upgraded detectors and Tevatron complex. High statistics should allow us to determine the top mass with an uncertainty of a few GeV/c{sup 2} by the end of Run II. The current measured value, using an integrated luminosity of {approx} 108 pb{sup -1}, is 177.5{sub -9.4}{sup +12.7} (stat.) {+-} 7.1(syst.) GeV/c{sup 2} (lepton + jets with one b-jet tagged mode: the current best mode), which is consistent with RunI measurements.

  3. NREL: Measurements and Characterization - Dynamic Secondary Ion Mass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectrometry Dynamic Secondary Ion Mass Spectrometry SIMS Depth profile SIMS depth profiles of hydrogen for a series of a-Si films undergoing solid-phase recrystallization at different temperatures. Hydrogen loss is greater for higher temperatures; however, the rate of loss for a given temperature is also affected by the type of dopant and proximity to the surface. Dynamic Secondary Ion Mass Spectrometry (SIMS) uses a continuous, focused beam of primary ions to remove material from the

  4. Measuring consistent masses for 25 Milky Way globular clusters

    SciTech Connect (OSTI)

    Kimmig, Brian; Seth, Anil; Ivans, Inese I.; Anderton, Tim; Gregersen, Dylan; Strader, Jay; Caldwell, Nelson

    2015-02-01

    We present central velocity dispersions, masses, mass-to-light ratios (M/Ls ), and rotation strengths for 25 Galactic globular clusters (GCs). We derive radial velocities of 1951 stars in 12 GCs from single order spectra taken with Hectochelle on the MMT telescope. To this sample we add an analysis of available archival data of individual stars. For the full set of data we fit King models to derive consistent dynamical parameters for the clusters. We find good agreement between single-mass King models and the observed radial dispersion profiles. The large, uniform sample of dynamical masses we derive enables us to examine trends of M/L with cluster mass and metallicity. The overall values of M/L and the trends with mass and metallicity are consistent with existing measurements from a large sample of M31 clusters. This includes a clear trend of increasing M/L with cluster mass and lower than expected M/Ls for the metal-rich clusters. We find no clear trend of increasing rotation with increasing cluster metallicity suggested in previous work.

  5. Mass measurements near the Z = N line with JYFLTRAP

    SciTech Connect (OSTI)

    Kankainen, Anu; Collaboration: JYFLTRAP Collaboration

    2011-11-30

    Masses of nuclides involved in astrophysical rp and {nu}p processes have to be known precisely in order to model these processes reliably. Mass excesses for 90 ground state and 8 isomeric states of neutron-deficient nuclides have been determined with a precision of better than 10 keV with the JYFLTRAP double Penning trap mass spectrometer at the Ion-Guide Isotope Separator On-Line facility in Jyvaeskylae. Highlights of the measurements related to nuclear astrophysics are given. Some of the measured isomers, such as {sup 53}Co{sup m}, {sup 90}Tc{sup m}, and {sup 95}Pd{sup m}, and implications for the excitation energy of the 21{sup +} isomer in {sup 94}Ag are briefly discussed.

  6. Microwave measurement of the mass of frozen hydrogen pellets

    DOE Patents [OSTI]

    Talanker, Vera; Greenwald, Martin

    1990-01-01

    A nondestructive apparatus and method for measuring the mass of a moving object, based on the perturbation of the dielectric character of a resonant microwave cavity caused by the object passing through the cavity. An oscillator circuit is formed with a resonant cavity in a positive feedback loop of a microwave power amplifier. The moving object perturbs the resonant characteristics of the cavity causing a shift in the operating frequency of the oscillator proportional to the ratio of the pellet volume to the volume of the cavity. Signals from the cavity oscillation are mixed with a local oscillator. Then the IF frequency from the mixer is measured thereby providing a direct measurement of pellet mass based upon known physical properties and relationships. This apparatus and method is particularly adapted for the measurement of frozen hydrogen pellets.

  7. CAN THE MASSES OF ISOLATED PLANETARY-MASS GRAVITATIONAL LENSES BE MEASURED BY TERRESTRIAL PARALLAX?

    SciTech Connect (OSTI)

    Freeman, M.; Botzler, C. S.; Bray, J. C.; Cherrie, J. M.; Rattenbury, N. J.; Philpott, L. C.; Abe, F.; Muraki, Y.; Albrow, M. D.; Bennett, D. P.; Bond, I. A.; Christie, G. W.; Natusch, T.; Dionnet, Z.; Gould, A.; Han, C.; Heyrovský, D.; McCormick, J. M.; Skowron, J.; and others

    2015-02-01

    Recently Sumi et al. reported evidence for a large population of planetary-mass objects (PMOs) that are either unbound or orbit host stars in orbits ≥10 AU. Their result was deduced from the statistical distribution of durations of gravitational microlensing events observed by the MOA collaboration during 2006 and 2007. Here we study the feasibility of measuring the mass of an individual PMO through microlensing by examining a particular event, MOA-2011-BLG-274. This event was unusual as the duration was short, the magnification high, the source-size effect large, and the angular Einstein radius small. Also, it was intensively monitored from widely separated locations under clear skies at low air masses. Choi et al. concluded that the lens of the event may have been a PMO but they did not attempt a measurement of its mass. We report here a re-analysis of the event using re-reduced data. We confirm the results of Choi et al. and attempt a measurement of the mass and distance of the lens using the terrestrial parallax effect. Evidence for terrestrial parallax is found at a 3σ level of confidence. The best fit to the data yields the mass and distance of the lens as 0.80 ± 0.30 M {sub J} and 0.80 ± 0.25 kpc respectively. We exclude a host star to the lens out to a separation ∼40 AU. Drawing on our analysis of MOA-2011-BLG-274 we propose observational strategies for future microlensing surveys to yield sharper results on PMOs including those down to super-Earth mass.

  8. Precision Top-Quark Mass Measurements at CDF

    SciTech Connect (OSTI)

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; /Dubna, JINR /Texas A-M

    2012-07-01

    We present a precision measurement of the top-quark mass using the full sample of Tevatron {radical}s = 1.96 TeV proton-antiproton collisions collected by the CDF II detector, corresponding to an integrated luminosity of 8.7 fb{sup -1}. Using a sample of t{bar t} candidate events decaying into the lepton+jets channel, we obtain distributions of the top-quark masses and the invariant mass of two jets from the W boson decays from data. We then compare these distributions to templates derived from signal and background samples to extract the top-quark mass and the energy scale of the calorimeter jets with in situ calibration. The likelihood fit of the templates from signal and background events to the data yields the single most-precise measurement of the top-quark mass, mtop = 172.85 {+-} 0.71 (stat) {+-} 0.85 (syst) GeV/c{sup 2}.

  9. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    SciTech Connect (OSTI)

    Day-Lewis, Frederick David; Singha, Kamini; Johnson, Timothy C.; Haggerty, Roy; Binley, Andrew; Lane, John W.

    2014-11-25

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3

  10. Measuring the Scatter of the Mass-Richness Relation in Galaxy...

    Office of Scientific and Technical Information (OSTI)

    Measuring the Scatter of the Mass-Richness Relation in Galaxy Clusters in Photometric ... Title: Measuring the Scatter of the Mass-Richness Relation in Galaxy Clusters in ...

  11. Top quark mass measurement from dilepton events at CDF II

    SciTech Connect (OSTI)

    Abulencia, A.; Acosta, D.; Adelman, Jahred A.; Affolder, Anthony A.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara /Cantabria Inst. of Phys.

    2005-12-01

    We report a measurement of the top quark mass using events collected by the CDF II Detector from p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron. We calculate a likelihood function for the top mass in events that are consistent with t{bar t} {yields} {bar b}{ell}{sup -}{bar {nu}}{sub {ell}}b{ell}{prime}{sup +}{nu}{sub {ell}}{prime} decays. The likelihood is formed as the convolution of the leading-order matrix element and detector resolution functions. The joint likelihood is the product of likelihoods for each of 33 events collected in 340 pb{sup -1} of integrated luminosity, yielding a top quark mass M{sub t} = 165.2 {+-} 6.1(stat.) {+-} 3.4(syst.) GeV/c{sup 2}. This first application of a matrix-element technique to t{bar t} {yields} b{ell}{sup +}{nu}{sub {ell}}{bar b}{ell}{prime}{sup -}{bar {nu}}{sub {ell}}, decays gives the most precise single measurement of M{sub t} in dilepton events. Combined with other CDF Run II measurements using dilepton events, we measure M{sub t} = 167.9 {+-} 5.2(stat.) {+-} 3.7(syst.) GeV/c{sup 2}.

  12. Method of measuring the mass flow rate of a substance entering a cocurrent fluid stream

    DOE Patents [OSTI]

    Cochran, Jr., Henry D.

    1978-04-11

    This invention relates to an improved method of monitoring the mass flow rate of a substance entering a cocurrent fluid stream. The method very basically consists of heating equal sections of the fluid stream above and below the point of entry of the substance to be monitored, and measuring and comparing the resulting change in temperature of the sections. Advantage is taken of the difference in thermal characteristics of the fluid and the substance to be measured to correlate temperature differences in the sections above and below the substance feed point for providing an indication of the mass flow rate of the substance.

  13. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    SciTech Connect (OSTI)

    Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Tim; Binley, Andrew; Lane, John

    2014-01-16

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3

  14. Top-quark mass measurement using events with missing transverse energy and jets at CDF

    SciTech Connect (OSTI)

    Aaltonen, T; Alvarez Gonzalez, B; Amerio, S; Anastassov, A; Amidei, D; Antos, J; Annovi, A

    2013-07-01

    We present a measurement of the top-quark mass with tt? events using a data sample corresponding to an integrated luminosity of 5.7 fb -1 of pp? collisions at the Fermilab Tevatron with ?s = 1.96 TeV and collected by the CDF II Detector. We select events having no identified charged leptons, large missing transverse energy, and four, five, or six jets with at least one jet containing a secondary vertex consistent with the decay of a b quark. This analysis considers events from the semileptonic tt? decay channel, including events that contain tau leptons, which are usually not included in the top-quark mass measurements. The measurement uses as kinematic variables the invariant mass of two jets consistent with the mass of the W boson, and the invariant masses of two different three-jet combinations. We fit the data to signal templates of varying top-quark masses and background templates, and measure a top-quark mass of Mtop = 172.3 2.4 (stat) 1.0 (syst) GeV/c2.

  15. Top-quark mass measurement using events with missing transverse energy and jets at CDF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.

    2011-11-30

    We present a measurement of the top-quark mass with tt̄ events using a data sample corresponding to an integrated luminosity of 5.7 fb -1 of pp̄ collisions at the Fermilab Tevatron with √s = 1.96 TeV and collected by the CDF II Detector. We select events having no identified charged leptons, large missing transverse energy, and four, five, or six jets with at least one jet containing a secondary vertex consistent with the decay of a b quark. This analysis considers events from the semileptonic tt̄ decay channel, including events that contain tau leptons, which are usually not included inmore » the top-quark mass measurements. The measurement uses as kinematic variables the invariant mass of two jets consistent with the mass of the W boson, and the invariant masses of two different three-jet combinations. We fit the data to signal templates of varying top-quark masses and background templates, and measure a top-quark mass of Mtop = 172.3 ± 2.4 (stat) ± 1.0 (syst) GeV/c2.« less

  16. First Run II Measurement of the W Boson Mass

    SciTech Connect (OSTI)

    Aaltonen, T.; Abulencia, A.; Adelman, J.; Akimoto, T.; Albrow, Michael G.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, A.; Antos, J.; /Comenius U. /Fermilab

    2007-08-01

    We describe a measurement of the W boson mass m{sub W} using 200 pb{sup -1} of {radical}s = 1.96 TeV p{bar p} collision data taken with the CDF II detector. With a sample of 63,964 W {yields} e{nu} candidates and 51,128 W {yields} {mu}{nu} candidates, we measure m{sub W} = [80.413 {+-} 0.034(stat.) {+-} 0.034 (sys.) = 80.413 {+-} 0.048] GeV/c{sup 2}. This is the single most precise m{sub W} measurement to date. When combined with other measured electroweak parameters, this result further constrains the properties of new unobserved particles coupling to W and Z bosons.

  17. Measurements of the top quark mass and decay width with the D0 detector

    SciTech Connect (OSTI)

    Ilchenko, Yuriy

    2011-11-01

    The top quark discovery in 1995 at Fermilab is one of the major proofs of the standard model (SM). Due to its unique place in SM, the top quark is an important particle for testing the theory and probing for new physics. This article presents most recent measurements of top quark properties from the D0 detector. In particular, the measurement of the top quark mass, the top antitop mass difference and the top quark decay width. The discovery of the top quark in 1995 confirmed the existence of a third generation of quarks predicted in the standard model (SM). Being the heaviest elementary particle known, the top quark appears to become an important particle in our understanding of the standard model and physics beyond it. Because of its large mass the top quark has a very short lifetime, much shorter than the hadronization time. The predicted lifetime is only 3.3 {center_dot} 10{sup -25}s. Top quark is the only quark whose properties can be studied in isolation. A Lorentz-invariant local Quantum Field Theory, the standard model is expected to conserve CP. Due to its unique properties, the top quark provides a perfect test of CPT invariance in the standard model. An ability to look at the quark before being hadronized allows to measure directly mass of the top quark and its antiquark. An observation of a mass difference between particle and antiparticle would indicate violation of CPT invariance. Top quark through its radiative loop correction to the W mass constrains the mass of the Higgs boson. A precise measurement of the top quark mass provides useful information to the search of Higgs boson by constraining its region of possible masses. Another interesting aspect is that the top quark's Yukawa coupling to the Higgs boson is very close to unity (0.996 {+-} 0.006). That implies it may play a special role in the electroweak symmetry breaking mechanism.

  18. Top mass measurements at the Tevatron run II

    SciTech Connect (OSTI)

    Velev, Gueorgui V.; /Fermilab

    2005-10-01

    The latest top quark mass measurements by the CDF and D0 experiments are presented here. The mass has been determined in the dilepton (t{bar t} {yields} e{mu}, ee, {mu}{mu} + jets + E{sub T}) and lepton plus jets (t{bar t} {yields} e or {mu} + jets + E{sub T}) final states. The most accurate single result from lepton plus jets channel is 173.5{sub -3.6}{sup +3.7}(stat. + Jet Energy Scale Systematic) {+-} 1.3(syst.) GeV/c{sup 2}, which is better than the combined CDF and D0 Run I average. A preliminary and unofficial average of the best experimental Run II results gives M{sub top} = 172.7 {+-} 3.5 GeV/c{sup 2}.

  19. Press Pass - Press Release - W mass precisions measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    uncertainty of the W boson mass will lead to stricter bounds on the mass of the elusive Higgs boson. The W boson is a carrier of the weak nuclear force and a key element of the...

  20. Extending Penning trap mass measurements with SHIPTRAP to the heaviest elements

    SciTech Connect (OSTI)

    Block, M.; Ackermann, D.; Herfurth, F.; Hofmann, S.; Blaum, K.; Droese, C.; Marx, G.; Schweikhard, L.; Duellmann, Ch. E.; Eibach, M.; Eliseev, S.; Haettner, E.; Plass, W. R.; Scheidenberger, C.; Hessberger, F. P.; Ramirez, E. Minaya; Nesterenko, D.; and others

    2013-03-19

    Penning-trap mass spectrometry of radionuclides provides accurate mass values and absolute binding energies. Such mass measurements are sensitive indicators of the nuclear structure evolution far away from stability. Recently, direct mass measurements have been extended to the heavy elements nobelium (Z=102) and lawrencium (Z=103) with the Penning-trap mass spectrometer SHIPTRAP. The results probe nuclear shell effects at N=152. New developments will pave the way to access even heavier nuclides.

  1. Device for accurately measuring mass flow of gases

    DOE Patents [OSTI]

    Hylton, J.O.; Remenyik, C.J.

    1994-08-09

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure is disclosed. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel. 5 figs.

  2. Device for accurately measuring mass flow of gases

    DOE Patents [OSTI]

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  3. Method and apparatus for measuring surface changes, in porous materials, using multiple differently-configured acoustic sensors

    DOE Patents [OSTI]

    Hietala, Susan Leslie; Hietala, Vincent Mark; Tigges, Chris Phillip

    2001-01-01

    A method and apparatus for measuring surface changes, such as mass uptake at various pressures, in a thin-film material, in particular porous membranes, using multiple differently-configured acoustic sensors.

  4. Method for simultaneous measurement of mass loading and fluid property changes using a quartz crystal microbalance

    DOE Patents [OSTI]

    Granstaff, V.E.; Martin, S.J.

    1993-04-13

    A method is described, using a quartz crystal microbalance, to obtain simultaneous measurement of solid mass accumulation and changes in liquid density-viscosity product. The simultaneous real-time measurements of electrical parameters yields that changes in surface mass can be differentiated from changes in solution properties. Two methods to obtain the admittance/frequency data are employed.

  5. Method for simultaneous measurement of mass loading and fluid property changes using a quartz crystal microbalance

    DOE Patents [OSTI]

    Granstaff, Victoria E.; Martin, Stephen J.

    1993-01-01

    A method, using a quartz crystal microbalance, to obtain simultaneous measurement of solid mass accumulation and changes in liquid density-viscosity product. The simultaneous real-time measurements of electrical parameters yields that changes in surface mass can be differentiated from changes in solution properties. Two methods to obtain the admittance/frequency data are employed.

  6. Measurement of the Top Quark Mass Simultaneously in Dilepton and Lepton + Jets Decay Channels

    SciTech Connect (OSTI)

    Fedorko, Wojciech T.; /Chicago U.

    2008-09-01

    The authors present the first measurement of the top quark mass using simultaneously data from two decay channels. They use a data sample of {radical}s = 1.96 TeV collisions with integrated luminosity of 1.9 fb{sup -1} collected by the CDF II detector. They select dilepton and lepton + jets channel decays of t{bar t} pairs and reconstruct two observables in each topology. They use non-parametric techniques to derive probability density functions from simulated signal and background samples. The observables are the reconstructed top quark mass and the scalar sum of transverse energy of the event in the dilepton topology and the reconstructed top quark mass and the invariant mass of jets from the W boson decay in lepton + jets channel. They perform a simultaneous fit for the top quark mass and the jet energy scale which is constrained in situ by the hadronic W boson resonance from the lepton + jets channel. Using 144 dilepton candidate events and 332 lepton + jets candidate events they measure: M{sub top} = 171.9 {+-} 1.7 (stat. + JES) {+-} 1.1 (other sys.) GeV/c{sup 2} = 171.9 {+-} 2.0 GeV/c{sup 2}. The measurement features a robust treatment of the systematic uncertainties, correlated between the two channels and develops techniques for a future top quark mass measurement simultaneously in all decay channels. Measurements of the W boson mass and the top quark mass provide a constraint on the mass of the yet unobserved Higgs boson. The Higgs boson mass implied by measurement presented here is higher than Higgs boson mass implied by previously published, most precise CDF measurements of the top quark mass in lepton + jets and dilepton channels separately.

  7. Measurement of the Top Quark Mass Using the Invariant Mass of Lepton Pairs in Soft Muon b-tagged Events

    SciTech Connect (OSTI)

    Aaltonen, T.; Adelman, Jahred A.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, Alberto; Antos, Jaroslav; Apollinari, G.; Apresyan, A.; /Purdue U. /Waseda U.

    2009-06-01

    We present the first measurement of the mass of the top quark in a sample of t{bar t} {yields} {ell}{bar {nu}}b{bar b}q{bar q} events (where {ell} = e, {mu}) selected by identifying jets containing a muon candidate from the semileptonic decay of heavy-flavor hadrons (soft muon b-tagging). The p{bar p} collision data used corresponds to an integrated luminosity of 2 fb{sup -1} and was collected by the CDF II detector at the Fermilab Tevatron. The measurement is based on a novel technique exploiting the invariant mass of a subset of the decay particles, specifically the lepton from the W boson of the t {yields} Wb decay, and the muon from a semileptonic b decay. We fit template histograms, derived from simulation of t{bar t} events and a modeling of the background, to the mass distribution observed in the data and measure a top quark mass of 180.5 {+-} 12.0(stat.) {+-} 3.6(syst.) GeV/c{sup 2}, consistent with the current world average.

  8. Real-Time Particulate Mass Measurements Pre and Post Diesel Particulate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filters for LIght-Duty Diesel Vehicles | Department of Energy Particulate Mass Measurements Pre and Post Diesel Particulate Filters for LIght-Duty Diesel Vehicles Real-Time Particulate Mass Measurements Pre and Post Diesel Particulate Filters for LIght-Duty Diesel Vehicles 2005_deer_anderson.pdf (440.9 KB) More Documents & Publications Advanced Radio Frequency-Based Sensors for Monitoring Diesel Particulate Filter Loading and Regeneration Real-Time Measurement of Diesel Trap Efficiency

  9. MEASURING THE ULTIMATE HALO MASS OF GALAXY CLUSTERS: REDSHIFTS AND MASS PROFILES FROM THE HECTOSPEC CLUSTER SURVEY (HeCS)

    SciTech Connect (OSTI)

    Rines, Kenneth; Geller, Margaret J.; Kurtz, Michael J.; Diaferio, Antonaldo E-mail: diaferio@ph.unito.it

    2013-04-10

    The infall regions of galaxy clusters represent the largest gravitationally bound structures in a {Lambda}CDM universe. Measuring cluster mass profiles into the infall regions provides an estimate of the ultimate mass of these halos. We use the caustic technique to measure cluster mass profiles from galaxy redshifts obtained with the Hectospec Cluster Survey (HeCS), an extensive spectroscopic survey of galaxy clusters with MMT/Hectospec. We survey 58 clusters selected by X-ray flux at 0.1 < z < 0.3. The survey includes 22,680 unique MMT/Hectospec redshifts for individual galaxies; 10,145 of these galaxies are cluster members. For each cluster, we acquired high signal-to-noise spectra for {approx}200 cluster members and a comparable number of foreground/background galaxies. The cluster members trace out infall patterns around the clusters. The members define a very narrow red sequence. We demonstrate that the determination of velocity dispersion is insensitive to the inclusion of bluer members (a small fraction of the cluster population). We apply the caustic technique to define membership and estimate the mass profiles to large radii. The ultimate halo mass of clusters (the mass that remains bound in the far future of a {Lambda}CDM universe) is on average (1.99 {+-} 0.11)M{sub 200}, a new observational cosmological test in essential agreement with simulations. Summed profiles binned in M{sub 200} and in L{sub X} demonstrate that the predicted Navarro-Frenk-White form of the density profile is a remarkably good representation of the data in agreement with weak lensing results extending to large radius. The concentration of these summed profiles is also consistent with theoretical predictions.

  10. An Improved W Boson Mass Measurement Using the Collider Detector at Fermilab

    SciTech Connect (OSTI)

    Zeng, Yu

    2012-01-01

    The mass of the W boson is one of the most important parameters in the Standard Model. A precise measurement of the W boson mass, together with a precise measurement of the top quark mass, can constrain the mass of the undiscovered Higgs boson within the Standard Model framework or give a hint for physics beyond the Standard Model. This dissertation describes a measurement of the W boson mass through its decay into a muon and a neutrino using ~ 2.2 fb-1 of √ s = 1.96 TeV p$\\bar{p}$ data taken with the CDF II detector at Fermilab. We measure the W boson mass to be (80.374 ± 0.015stat. ± 0.016syst.) GeV/c2. This result, when combined with the W mass measurement in the electron channel, leads to the single most precise mW value and greatly constrains the possible mass range of the undiscovered Higgs boson. iv

  11. TIME-OF-FLIGHT MASS MEASUREMENTS AND THEIR IMPORTANCE FOR NUCLEAR ASTROPHYSICS

    SciTech Connect (OSTI)

    Matos, M.; Shapira, Dan

    2009-01-01

    Atomic masses play an important role in nuclear astrophysics. The lack of experimental values for nuclides of interest has triggered a rapid development of new mass measurement devices around the world, including Time-of-Flight (TOF) mass measurements offering an access to the most exotic nuclides. Recently, the TOF-B rho technique that includes a position measurement for magnetic rigidity correction has been implemented at the NSCL. An experiment with a similar TOF-B rho technique is approved and planned at the next generation radioactive beam facility (RIBF) at RIKEN.

  12. Measurement of the electron antineutrino mass from the beta spectrum of gaseous tritium

    SciTech Connect (OSTI)

    Knapp, D.A.

    1986-12-01

    A measurement has been made of the mass of the electron antineutrino using the beta spectrum from a source of gaseous molecular tritium, and an upper limit of 36 eV/c/sup 2/ has been set on this mass. This measurement is the first upper limit on neutrino mass that does not rely on assumptions about the atomic configuration after the beta decay, and it has significantly smaller systematic errors associated with it than do previous measurements. 130 refs., 83 figs., 8 tabs.

  13. MASS MEASUREMENT UNCERTAINTY FOR PLUTONIUM ALIQUOTS ASSAYED BY CONTROLLED-POTENTIAL COULOMETRY

    SciTech Connect (OSTI)

    Holland, M.; Cordaro, J.

    2009-03-18

    Minimizing plutonium measurement uncertainty is essential to nuclear material control and international safeguards. In 2005, the International Organization for Standardization (ISO) published ISO 12183 'Controlled-potential coulometric assay of plutonium', 2nd edition. ISO 12183:2005 recommends a target of {+-}0.01% for the mass of original sample in the aliquot because it is a critical assay variable. Mass measurements in radiological containment were evaluated and uncertainties estimated. The uncertainty estimate for the mass measurement also includes uncertainty in correcting for buoyancy effects from air acting as a fluid and from decreased pressure of heated air from the specific heat of the plutonium isotopes.

  14. Prospects for measuring neutron-star masses and radii with X-ray pulse profile modeling

    SciTech Connect (OSTI)

    Psaltis, Dimitrios; Özel, Feryal; Chakrabarty, Deepto E-mail: fozel@email.arizona.edu

    2014-06-01

    Modeling the amplitudes and shapes of the X-ray pulsations observed from hot, rotating neutron stars provides a direct method for measuring neutron-star properties. This technique constitutes an important part of the science case for the forthcoming NICER and proposed LOFT X-ray missions. In this paper, we determine the number of distinct observables that can be derived from pulse profile modeling and show that using only bolometric pulse profiles is insufficient for breaking the degeneracy between inferred neutron-star radius and mass. However, we also show that for moderately spinning (300-800 Hz) neutron stars, analysis of pulse profiles in two different energy bands provides additional constraints that allow a unique determination of the neutron-star properties. Using the fractional amplitudes of the fundamental and the second harmonic of the pulse profile in addition to the amplitude and phase difference of the spectral color oscillations, we quantify the signal-to-noise ratio necessary to achieve a specified measurement precision for neutron star radius. We find that accumulating 10{sup 6} counts in a pulse profile is sufficient to achieve a ≲ 5% uncertainty in the neutron star radius, which is the level of accuracy required to determine the equation of state of neutron-star matter. Finally, we formally derive the background limits that can be tolerated in the measurements of the various pulsation amplitudes as a function of the system parameters.

  15. Particle Number & Particulate Mass Emissions Measurements on a 'Euro VI'

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-duty Engine using the PMP Methodologies | Department of Energy Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies Particle Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's

  16. Precise measurement of the top quark mass in the lepton+jets topology at CDF II

    SciTech Connect (OSTI)

    Abulencia, A.; Adelman, J.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; Annovi, A.; Antos, J.; /Comenius U. /Tsukuba U.

    2007-03-01

    The authors present a measurement of the mass of the top quark from proton-antiproton collisions recorded at the CDF experiment in Run II of the Fermilab Tevatron. They analyze events from the single lepton plus jets final state (t{bar t} {yields} W{sup +}bW{sup -}{bar b} {yields} lvbq{bar q}{bar b}). The top quark mass is extracted using a direct calculation of the probability density that each event corresponds to the t{bar t} final state. The probability is a function of both the mass of the top quark and the energy scale of the calorimeter jets, which is constrained in situ by the hadronic W boson mass. Using 167 events observed in 955 pb{sup -1} of integrated luminosity, they achieve the single most precise measurement of the top quark mass, 170.8 {+-} 2.2(stat.) {+-} 1.4(syst.) GeV/c{sup 2}.

  17. Apparatus for passive removal of subsurface contaminants and mass flow measurement

    DOE Patents [OSTI]

    Jackson, Dennis G.; Rossabi, Joseph; Riha, Brian D.

    2003-07-15

    A system for improving the Baroball valve and a method for retrofitting an existing Baroball valve. This invention improves upon the Baroball valve by reshaping the interior chamber of the valve to form a flow meter measuring chamber. The Baroball valve sealing mechanism acts as a rotameter bob for determining mass flow rate through the Baroball valve. A method for retrofitting a Baroball valve includes providing static pressure ports and connecting a measuring device, to these ports, for measuring the pressure differential between the Baroball chamber and the well. A standard curve of nominal device measurements allows the mass flow rate to be determined through the retrofitted Baroball valve.

  18. Method and apparatus for measuring the mass flow rate of a fluid

    DOE Patents [OSTI]

    Evans, Robert P.; Wilkins, S. Curtis; Goodrich, Lorenzo D.; Blotter, Jonathan D.

    2002-01-01

    A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.

  19. Precision measurement of the mass and width of the W boson at CDF

    SciTech Connect (OSTI)

    Malik, Sarah Alam

    2009-09-01

    A precision measurement of the mass and width of the W boson is presented. The W bosons are produced in proton antiproton collisions occurring at a centre of mass energy of 1.96 TeV at the Tevatron accelerator. The data used for the analyses is collected by the Collider Detector at Fermilab (CDF) and corresponds to an average integrated luminosity of 350 pb-1 for the W width analysis for the electron and muon channels and an average integrated luminosity of 2350 pb-1 for the W mass analysis. The mass and width of the W boson is extracted by fitting to the transverse mass distribution, with the peak of the distribution being most sensitive to the mass and the tail of the distribution sensitive to the width. The W width measurement in the electron and muon channels is combined to give a final result of 2032 ± 73 MeV. The systematic uncertainty on the W mass from the recoil of the W boson against the initial state gluon radiation is discussed. A systematic study of the recoil in Z → e+e- events where one electron is reconstructed in the central calorimeter and the other in the plug calorimeter and its effect on the W mass is presented for the first time in this thesis.

  20. Measuring subhalo mass in redMaPPer clusters with CFHT Stripe 82 Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Ran; Shan, Huanyuan; Kneib, Jean -Paul; Mo, Houjun; Rozo, Eduardo; Leauthaud, Alexie; Moustakas, John; Xie, Lizhi; Erben, Thomas; Van Waerbeke, Ludovic; et al

    2016-03-07

    Here, we use the shear catalogue from the CFHT Stripe-82 Survey to measure the subhalo masses of satellite galaxies in redMaPPer clusters. Assuming a Chabrier initial mass function and a truncated NFW model for the subhalo mass distribution, we find that the subhalo mass to galaxy stellar mass ratio increases as a function of projected halo-centric radius rp, from Msub/Mstar = 4.43+6.63–2.23 at rp ε [0.1, 0.3] h–1 Mpc to Msub/Mstar = 75.40+19.73–19.09 at rp ε [0.6, 0.9] h–1 Mpc. We also investigate the dependence of subhalo masses on stellar mass by splitting satellite galaxies into two stellar mass bins:more » 10 < log (Mstar/h–1M⊙) < 10.5 and 11 < log (Mstar/h–1 M⊙) < 12. The best-fitting subhalo mass of the more massive satellite galaxy bin is larger than that of the less massive satellites: log(Msub/h–1M⊙) = 11.14+0.66–0.73 (Msub/Mstar = 19.5+19.8–17.9) versus log(Msub/h–1M⊙) = 12.38+0.16–0.16 (Msub/Mstar = 21.1+7.4–7.7).« less

  1. First measurement of the W boson mass in run II of the Tevatron

    SciTech Connect (OSTI)

    Aaltonen, T.; Abulencia, A.; Adelman, J.; Affolder, Anthony Allen; Akimoto, T.; Albrow, Michael G.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Anikeev, K.; Annovi, A.; /Fermilab /Frascati /Comenius U.

    2007-07-01

    We present a measurement of the W boson mass using 200 pb{sup -1} of data collected in p{bar p} collisions at {radical}s = 1.96 TeV by the CDF II detector at Run II of the Fermilab Tevatron. With a sample of 63964 W {yields} ev candidates and 51128 W W {yields} {mu}v candidates, we measure M{sub W} = (80413 {+-} 34{sub stat} {+-}34{sub syst} = 80413 {+-} 48) MeV/c{sup 2}. This is the most precise single measurement of the W boson mass to date.

  2. A parametric modeling approach to measuring the gas masses of circumstellar disks

    SciTech Connect (OSTI)

    Williams, Jonathan P.; Best, William M. J. E-mail: wbest@ifa.hawaii.edu

    2014-06-10

    The disks that surround young stars are mostly composed of molecular gas, which is harder to detect and interpret than the accompanying dust. Disk mass measurements have therefore relied on large and uncertain extrapolations from the dust to the gas. We have developed a grid of models to study the dependencies of isotopologue CO line strengths on disk structure and temperature parameters and find that a combination of {sup 13}CO and C{sup 18}O observations provides a robust measure of the gas mass. We apply this technique to Submillimeter Array observations of nine circumstellar disks and published measurements of six well studied disks. We find evidence for selective photodissociation of C{sup 18}O and determine masses to within a factor of about three. The inferred masses for the nine disks in our survey range from 0.7 to 6 M {sub Jup}, and all are well below the extrapolation from the interstellar medium gas-to-dust ratio of 100. This is consistent with the low masses of planets found around such stars, and may be due to accretion or photoevaporation of a dust-poor upper atmosphere. However, the masses may be underestimated if there are more efficient CO depletion pathways than those known in molecular clouds and cold cores.

  3. Precision measurement of the top-quark mass in lepton$+$jets final states

    SciTech Connect (OSTI)

    Abazov, Victor Mukhamedovich

    2015-06-04

    We measure the mass of the top quark in lepton þ jets final states using the full sample of pp¯ collision data collected by the D0 experiment in Run II of the Fermilab Tevatron Collider at √s = 1.96 TeV, corresponding to 9.7 fb-1 of integrated luminosity. We also use a matrix element technique that calculates the probabilities for each event to result from tt¯ production or background. Furthermore, the overall jet energy scale is constrained in situ by the mass of the W boson. We measure mt = 174.98 ± 0.76 GeV. As a result, this constitutes the most precise single measurement of the top-quark mass.

  4. Precision measurement of the top-quark mass in lepton+jets final states

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, Victor Mukhamedovich

    2014-07-17

    We measure the mass of the top quark in lepton$+$jets final states using the full sample of $p\\bar{p}$ collision data collected by the D0 experiment in Run II of the Fermilab Tevatron Collider at $\\sqrt s=1.96 $TeV, corresponding to $9.7 {\\rm fb}^{-1}$ of integrated luminosity. We use a matrix element technique that calculates the probabilities for each event to result from $t\\bar t$ production or background. The overall jet energy scale is constrained in situ by the mass of the $W$ boson. We measure $m_t=174.98\\pm0.76$ GeV. In conclusion, this constitutes the most precise single measurement of the top-quark mass.

  5. Precision measurement of the top-quark mass in lepton+jets final states

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, Victor Mukhamedovich

    2014-07-17

    We measure the mass of the top quark in leptonmore » $+$jets final states using the full sample of $$p\\bar{p}$$ collision data collected by the D0 experiment in Run II of the Fermilab Tevatron Collider at $$\\sqrt s=1.96 $$TeV, corresponding to $$9.7 {\\rm fb}^{-1}$$ of integrated luminosity. We use a matrix element technique that calculates the probabilities for each event to result from $$t\\bar t$$ production or background. The overall jet energy scale is constrained in situ by the mass of the $W$ boson. We measure $$m_t=174.98\\pm0.76$$ GeV. In conclusion, this constitutes the most precise single measurement of the top-quark mass.« less

  6. Precision measurement of the top-quark mass in lepton$+$jets final states

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, Victor Mukhamedovich

    2015-06-04

    We measure the mass of the top quark in lepton þ jets final states using the full sample of pp¯ collision data collected by the D0 experiment in Run II of the Fermilab Tevatron Collider at √s = 1.96 TeV, corresponding to 9.7 fb-1 of integrated luminosity. We also use a matrix element technique that calculates the probabilities for each event to result from tt¯ production or background. Furthermore, the overall jet energy scale is constrained in situ by the mass of the W boson. We measure mt = 174.98 ± 0.76 GeV. As a result, this constitutes the mostmore » precise single measurement of the top-quark mass.« less

  7. Precise measurement of the top-quark mass from lepton+jets events at D0

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, Victor Mukhamedovich

    2011-08-09

    We report a measurement of the mass of the top quark in lepton+jets final states of pp&3772; → tt̄ data corresponding to 2.6 fb-1 of integrated luminosity collected at the D0 experiment at the Fermilab Tevatron Collider. Using a matrix element method, we combine an in situ jet energy calibration with the standard jet energy scale derived in studies of Γ + jet and dijet events and employ a novel flavor-dependent jet response correction to measure a top-quark mass of mt = 176.01 ± 1.64 GeV. Combining this result with a previous result obtained on an independent data set, wemore » measure a top-quark mass of mt = 174.94 ± 1.49 GeV for a total integrated luminosity of 3.6 fb-1.« less

  8. Precise measurement of the top-quark mass from lepton+jets events at D0

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, Victor Mukhamedovich

    2011-08-09

    We report a measurement of the mass of the top quark in lepton+jets final states of pp&3772; → tt̄ data corresponding to 2.6 fb-1 of integrated luminosity collected at the D0 experiment at the Fermilab Tevatron Collider. Using a matrix element method, we combine an in situ jet energy calibration with the standard jet energy scale derived in studies of Γ + jet and dijet events and employ a novel flavor-dependent jet response correction to measure a top-quark mass of mt = 176.01 ± 1.64 GeV. Combining this result with a previous result obtained on an independent data set, wemore »measure a top-quark mass of mt = 174.94 ± 1.49 GeV for a total integrated luminosity of 3.6 fb-1.« less

  9. On-Road PM Mass Emission Measured with OBS-TRPM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PM Mass Emission Measured with OBS-TRPM On-Road PM Mass Emission Measured with OBS-TRPM Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-14_wei.pdf (310.84 KB) More Documents & Publications Performance of the Low-Efficiency Diesel Particulate Filter for Diesel PM Reduction Investigation of Direct Injection Vehicle Particulate Matter Emissions A High Temperature Direct Vehicle Exhaust Flowmeter for

  10. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Hildebrandt Ruiz, L.; Fortner, E.; Williams, L. R.; Wilson, K. R.; et al

    2015-01-12

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), and organic mass-to-organic carbon (OM : OC) ratios, and of carbon oxidation state (OS C) for a vastly expanded laboratory data set of multifunctional oxidized OA standards. For the expanded standard data set, the method introduced by Aiken et al. (2008), which uses experimentally measured ion intensities at all ions to determinemore » elemental ratios (referred to here as "Aiken-Explicit"), reproduces known O : C and H : C ratio values within 20% (average absolute value of relative errors) and 12%, respectively. The more commonly used method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions (referred to here as "Aiken-Ambient"), reproduces O : C and H : C of multifunctional oxidized species within 28 and 14% of known values. The values from the latter method are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and especially H2O+ produced from many oxidized species. Combined AMS–vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method uses specific ion

  11. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Hildebrandt Ruiz, L.; Fortner, E.; Williams, L. R.; Wilson, K. R.; et al

    2014-07-31

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), organic mass-to-organic carbon (OM : OC), and carbon oxidation state (OSC) for a vastly expanded laboratory dataset of multifunctional oxidized OA standards. For the expanded standard dataset, the "Aiken-Explicit" method (Aiken et al., 2008), which uses experimentally measured ion intensities at all ions to determine elemental ratios, reproduces known molecular O :more » C and H : C ratio values within 20% (average absolute value of relative errors) and 12% respectively. The more commonly used "Aiken-Ambient" method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions, reproduces O : C and H : C of multifunctional oxidized species within 28% and 14% of known values. These values are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and H2O+ produced from many oxidized species. Combined AMS-vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method reduces the systematic biases and reproduces O : C (H : C) ratios of individual oxidized standards within 28% (13

  12. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: Characterization, improved calibration, and implications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Ruiz, L. Hildebrandt; Fortner, E.; Williams, L. R.; Wilson, K. R.; et al

    2015-01-12

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), and organic mass-to-organic carbon (OM : OC) ratios, and of carbon oxidation state (OS C) for a vastly expanded laboratory data set of multifunctional oxidized OA standards. For the expanded standard data set, the method introduced by Aiken et al. (2008), which uses experimentally measured ionmoreintensities at all ions to determine elemental ratios (referred to here as "Aiken-Explicit"), reproduces known O : C and H : C ratio values within 20% (average absolute value of relative errors) and 12%, respectively. The more commonly used method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions (referred to here as "Aiken-Ambient"), reproduces O : C and H : C of multifunctional oxidized species within 28 and 14% of known values. The values from the latter method are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and especially H2O+ produced from many oxidized species. Combined AMSvacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method uses specific ion

  13. Precise measurement of the $W$-boson mass with the CDF II detector

    SciTech Connect (OSTI)

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; /Dubna, JINR /Texas A-M

    2012-03-01

    We have measured the W-boson mass M{sub W} using data corresponding to 2.2 fb{sup -1} of integrated luminosity collected in p{bar p} collisions at {radical}s = 1.96 TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470 126 W {yields} e{nu} candidates and 624 708 W {yields} {mu}{nu} candidates yield the measurement M{sub W} = 80 387 {+-} 12{sub stat} {+-} 15{sub syst} = 80 387 {+-} 19 MeV/c{sup 2}. This is the most precise measurement of the W-boson mass to date and significantly exceeds the precision of all previous measurements combined.

  14. Measurement of the Masses and Lifetimes of B Hadrons at the Tevatron

    SciTech Connect (OSTI)

    Catastini, Pierluigi; /Pisa U. /INFN, Pisa

    2006-05-01

    The latest results for the B Hadron sector at the Tevatron Collider are summarized. The properties of B hadrons can be precisely measured at the Tevatron. In particularly they will focus on the masses and lifetimes. The new Tevatron results for the CP violation in B Hadrons are also discussed.

  15. Effects of finite volume on the KL – KS mass difference

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Christ, N.  H.; Feng, X.; Martinelli, G.; Sachrajda, C.  T.

    2015-06-24

    Phenomena that involve two or more on-shell particles are particularly sensitive to the effects of finite volume and require special treatment when computed using lattice QCD. In this paper we generalize the results of Lüscher and Lellouch and Lüscher, which determine the leading-order effects of finite volume on the two-particle spectrum and two-particle decay amplitudes to determine the finite-volume effects in the second-order mixing of the K⁰ and K⁰⁻ states. We extend the methods of Kim, Sachrajda, and Sharpe to provide a direct, uniform treatment of these three, related, finite-volume corrections. In particular, the leading, finite-volume corrections to the KLmore » – KS mass difference ΔMK and the CP-violating parameter εK are determined, including the potentially large effects which can arise from the near degeneracy of the kaon mass and the energy of a finite-volume, two-pion state.« less

  16. Final Report: Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    SciTech Connect (OSTI)

    Haggerty, Roy; Day-Lewis, Fred; Singha, Kamini; Johnson, Timothy; Binley, Andrew; Lane, John

    2014-03-20

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3

  17. Measurement of the top quark mass in lepton+jets events with secondary vertex tagging

    SciTech Connect (OSTI)

    Harrington, Robert Duane; /Northeastern U.

    2007-02-01

    A measurement of the top quark mass with the matrix element method in the lepton + jets final state in D0 Run II is presented. Events with single isolated energetic charged lepton (electron or muon), exactly four calorimeter jets, and significant missing transverse energy are selected. Probabilities used to discriminate between signal and background are assumed to be proportional to differential cross-sections, calculated using event kinematics and folding in object resolutions and parton distribution functions. The event likelihoods constructed using these probabilities are varied with the top quark mass, m{sub t}, and the jet energy scale, JES, to give the smallest possible combined statistical + JES uncertainty.

  18. Top quark mass measurement from dilepton events at CDF II with the matrix-element method

    SciTech Connect (OSTI)

    Abulencia, A.; Acosta, D.; Adelman, Jahred A.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara

    2006-05-01

    We describe a measurement of the top quark mass using events with two charged leptons collected by the CDF II detector from p{bar p} collisions with {radical}s = 1.96 TeV at the Fermilab Tevatron. The likelihood in top mass is calculated for each event by convoluting the leading order matrix element describing q{bar q} {yields} t{bar t} {yields} b{ell}{nu}{sub {ell}}{bar b}{ell}{prime} {nu}{sub {ell}}, with detector resolution functions. The presence of background events in the data sample is modeled using similar calculations involving the matrix elements for major background processes. In a data sample with integrated luminosity of 340 pb{sup -1}, we observe 33 candidate events and measure M{sub top} = 165.2 {+-} 6.1(stat.) {+-} 3.4(syst.) GeV/c{sup 2}. This measurement represents the first application of this method to events with two charged leptons and is the most precise single measurement of the top quark mass in this channel.

  19. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    SciTech Connect (OSTI)

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V.

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  20. A Measurement of the Mass of the Top Quark in Lepton + Jets Events at CDF

    SciTech Connect (OSTI)

    Brubaker, Erik Matthews

    2004-12-01

    This document presents a measurement of the top quark mass using the CDF run II detector at Fermilab. Colliding beams of protons and anti-protons at Fermilab's Tevatron ({radical}s = 1.96 TeV) produce top/anti-top pairs, which decay to W{sup +}W{sup -} b{bar b}; events are selected where one W decays hadronically, and one W decays to either e or {mu} plus a neutrino. The data sample was collected between March 2002 and September 2003, and corresponds to an integrated luminosity of approximately 162 pb{sup -1}. Thirty-seven candidate t{bar t} events are found with at least one b jet identified by its displaced vertex. In each event, the best fit top quark invariant mass is determined by minimizing a {chi}{sup 2} for the overconstrained kinematic system. A likelihood fit of the reconstructed masses in the data sample to distributions from simulated signal and background events gives a top mass of 174.9{sub -7.7}{sup +7.1}(stat.) {+-} 6.5(syst.) GeV/c{sup 2}. The dominant systematic error is due to uncertainties in the jet energy measurements.

  1. DESI and other Dark Energy experiments in the era of neutrino mass measurements

    SciTech Connect (OSTI)

    Font-Ribera, Andreu; McDonald, Patrick; Mostek, Nick; Reid, Beth A.; Seo, Hee-Jong; Slosar, Ane E-mail: PVMcDonald@lbl.gov E-mail: BAReid@lbl.gov E-mail: anze@bnl.gov

    2014-05-01

    We present Fisher matrix projections for future cosmological parameter measurements, including neutrino masses, Dark Energy, curvature, modified gravity, the inflationary perturbation spectrum, non-Gaussianity, and dark radiation. We focus on DESI and generally redshift surveys (BOSS, HETDEX, eBOSS, Euclid, and WFIRST), but also include CMB (Planck) and weak gravitational lensing (DES and LSST) constraints. The goal is to present a consistent set of projections, for concrete experiments, which are otherwise scattered throughout many papers and proposals. We include neutrino mass as a free parameter in most projections, as it will inevitably be relevant DESI and other experiments can measure the sum of neutrino masses to ? 0.02 eV or better, while the minimum possible sum is ? 0.06 eV. We note that constraints on Dark Energy are significantly degraded by the presence of neutrino mass uncertainty, especially when using galaxy clustering only as a probe of the BAO distance scale (because this introduces additional uncertainty in the background evolution after the CMB epoch). Using broadband galaxy power becomes relatively more powerful, and bigger gains are achieved by combining lensing survey constraints with redshift survey constraints. We do not try to be especially innovative, e.g., with complex treatments of potential systematic errors these projections are intended as a straightforward baseline for comparison to more detailed analyses.

  2. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    SciTech Connect (OSTI)

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg

  3. Precise measurement of the top quark mass in dilepton decays using optimized neutrino weighting

    SciTech Connect (OSTI)

    Abazov, Victor Mukhamedovich

    2015-11-11

    We measure the top quark mass in dilepton final states of tt¯ events in pp¯ collisions at √s= 1.96 TeV, using data corresponding to an integrated luminosity of 9.7 fb-1 at the Fermilab Tevatron Collider. The analysis features a comprehensive optimization of the neutrino weighting method to minimize the statistical uncertainties. Furthermore, we improve the calibration of jet energies using the calibration determined in tt¯ → lepton + jets events, which reduces the otherwise limiting systematic uncertainty from the jet energy scale. As a result, the measured top quark mass is mt = 173.32±1.36(stat)±0.85(syst) GeV.

  4. Precise measurement of the top quark mass in dilepton decays using optimized neutrino weighting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, Victor Mukhamedovich

    2015-11-11

    We measure the top quark mass in dilepton final states of tt¯ events in pp¯ collisions at √s= 1.96 TeV, using data corresponding to an integrated luminosity of 9.7 fb-1 at the Fermilab Tevatron Collider. The analysis features a comprehensive optimization of the neutrino weighting method to minimize the statistical uncertainties. Furthermore, we improve the calibration of jet energies using the calibration determined in tt¯ → lepton + jets events, which reduces the otherwise limiting systematic uncertainty from the jet energy scale. As a result, the measured top quark mass is mt = 173.32±1.36(stat)±0.85(syst) GeV.

  5. Total cyanide mass measurement with micro-ion selective electrode for determination of specific activity of carbon-11 cyanide

    SciTech Connect (OSTI)

    Shea, Colleen; Alexoff, David L.; Kim, Dohyun; Hoque, Ruma; Schueller, Michael J.; Fowler, Joanna S.; Qu, Wenchao

    2015-04-25

    In this study, we aim to directly measure the specific activity (SA) of the carbon-11 cyanide ([11C]CN¯) produced by our in-house built automated [11C]HCN production system and to identify the major sources of 12C-cyanide (12CN¯). The [11C]CN¯ is produced from [11C]CO2, which is generated by the 14N(p,α)11C nuclear reaction using a cyclotron. Direct measurement of cyanide concentrations was accomplished using a relatively inexpensive, and easy to use ion selective electrode (ISE) which offered an appropriate range of sensitivity for detecting mass. Multiple components of the [11C]HCN production system were isolated in order to determine their relative contributions to 12CN¯ mass. It was determined that the system gases were responsible for approximately 30% of the mass, and that the molecular sieve/nickel furnace unit contributed approximately 70% of the mass. Beam on target (33 µA for 1 and 10 min) did not contribute significantly to the mass. Additionally, we compared the SA of our [11C]HCN precursor determined using the ISE to the SA of our current [11C]CN¯ derived radiotracers determined by HPLC to assure there was no significant difference between the two methods. These results are the first reported use of an ion selective electrode to determine the SA of no-carrier-added cyanide ion, and clearly show that it is a valuable, inexpensive and readily available tool suitable for this purpose.

  6. Total cyanide mass measurement with micro-ion selective electrode for determination of specific activity of carbon-11 cyanide

    SciTech Connect (OSTI)

    Shea, Colleen; Alexoff, David L.; Kim, Dohyun; Hoque, Ruma; Schueller, Michael J.; Fowler, Joanna S.; Qu, Wenchao

    2015-04-25

    In this study, we aim to directly measure the specific activity (SA) of the carbon-11 cyanide ([11C]CN) produced by our in-house built automated [11C]HCN production system and to identify the major sources of 12C-cyanide (12CN). The [11C]CN is produced from [11C]CO2, which is generated by the 14N(p,?)11C nuclear reaction using a cyclotron. Direct measurement of cyanide concentrations was accomplished using a relatively inexpensive, and easy to use ion selective electrode (ISE) which offered an appropriate range of sensitivity for detecting mass. Multiple components of the [11C]HCN production system were isolated in order to determine their relative contributions to 12CN mass. It was determined that the system gases were responsible for approximately 30% of the mass, and that the molecular sieve/nickel furnace unit contributed approximately 70% of the mass. Beam on target (33 A for 1 and 10 min) did not contribute significantly to the mass. Additionally, we compared the SA of our [11C]HCN precursor determined using the ISE to the SA of our current [11C]CN derived radiotracers determined by HPLC to assure there was no significant difference between the two methods. These results are the first reported use of an ion selective electrode to determine the SA of no-carrier-added cyanide ion, and clearly show that it is a valuable, inexpensive and readily available tool suitable for this purpose.

  7. Total cyanide mass measurement with micro-ion selective electrode for determination of specific activity of carbon-11 cyanide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shea, Colleen; Alexoff, David L.; Kim, Dohyun; Hoque, Ruma; Schueller, Michael J.; Fowler, Joanna S.; Qu, Wenchao

    2015-04-25

    In this study, we aim to directly measure the specific activity (SA) of the carbon-11 cyanide ([11C]CN¯) produced by our in-house built automated [11C]HCN production system and to identify the major sources of 12C-cyanide (12CN¯). The [11C]CN¯ is produced from [11C]CO2, which is generated by the 14N(p,α)11C nuclear reaction using a cyclotron. Direct measurement of cyanide concentrations was accomplished using a relatively inexpensive, and easy to use ion selective electrode (ISE) which offered an appropriate range of sensitivity for detecting mass. Multiple components of the [11C]HCN production system were isolated in order to determine their relative contributions to 12CN¯ mass.more » It was determined that the system gases were responsible for approximately 30% of the mass, and that the molecular sieve/nickel furnace unit contributed approximately 70% of the mass. Beam on target (33 µA for 1 and 10 min) did not contribute significantly to the mass. Additionally, we compared the SA of our [11C]HCN precursor determined using the ISE to the SA of our current [11C]CN¯ derived radiotracers determined by HPLC to assure there was no significant difference between the two methods. These results are the first reported use of an ion selective electrode to determine the SA of no-carrier-added cyanide ion, and clearly show that it is a valuable, inexpensive and readily available tool suitable for this purpose.« less

  8. Measurement of the Moments of the Hadronic Invariant Mass Distribution in Semileptonic Beta Decays

    SciTech Connect (OSTI)

    Acosta, D.; The CDF Collaboration TITLE=Measuremen

    2005-03-13

    Using 180 pb{sup -1} of data collected with the CDF II detector at the Tevatron, we measure the first two moments of the hadronic invariant mass-squared distribution in charmed semileptonic B decays. From these we determine the non-perturbative Heavy Quark Effective Theory parameters {Lambda} and {lambda}{sub 1} used to relate the B meson semileptonic branching ratio to the CKM matrix element |V{sub cb}|.

  9. Measurement of the W Boson Mass with the D0 Detector

    SciTech Connect (OSTI)

    Abazov V. M.; Abbott B.; Acharya B. S.; Adams M.; Adams T.; Alexeev G. D.; Alkhazov G.; Alton A.; Alverson G.; Aoki M.; Askew A.; Asman B.; Atkins S.; Atramentov O.; Augsten K.; Avila C.; Badaud F.; Bagby L.; Baldin B.; Bandurin D. V.; Banerjee S.; Barberis E.; Baringer P.; Barreto J.; Bartlett J. F.; Bassler U.; Bazterra V.; Bean A.; Begalli M.; Belanger-Champagne C.; Bellantoni L.; Beri S. B.; Bernardi G.; Bernhard R.; Bertram I.; Besancon M.; Beuselinck R.; Bezzubov V. A.; Bhat P. C.; Bhatia S.; Bhatnagar V.; Blazey G.; Blessing S.; Bloom K.; Boehnlein A.; Boline D.; Boos E. E.; Borissov G.; Bose T.; Brandt A.; Brandt O.; Brock R.; Brooijmans G.; Bross A.; Brown D.; Brown J.; Bu X. B.; Buehler M.; Buescher V.; Bunichev V.; Burdin S.; Buszello C. P.; Camacho-Perez E.; Casey B. C. K.; Castilla-Valdez H.; Caughron S.; Chakrabarti S.; Chakraborty D.; Chan K. M.; Chandra A.; Chapon E.; Chen G.; Chevalier-Thery S.; Cho D. K.; Cho S. W.; Choi S.; Choudhary B.; Cihangir S.; Claes D.; Clutter J.; Cooke M.; Cooper W. E.; Corcoran M.; Couderc F.; Cousinou M. -C.; Croc A.; Cutts D.; Das A.; Davies G.; de Jong S. J.; De la Cruz-Burelo E.; Deliot F.; Demina R.; Denisov D.; Denisov S. P.; Desai S.; Deterre C.; DeVaughan K.; Diehl H. T.; Diesburg M.; Ding P. F.; Dominguez A.; Dorland T.; Dubey A.; Dudko L. V.; Duggan D.; Duperrin A.; Dutt S.; Dyshkant A.; Eads M.; Edmunds D.; Ellison J.; Elvira V. D.; Enari Y.; Evans H.; Evdokimov A.; Evdokimov V. N.; Facini G.; Feng L.; Ferbel T.; Fiedler F.; Filthaut F.; Fisher W.; Fisk H. E.; Fortner M.; Fox H.; Fuess S.; Garcia-Bellido A.; Garcia-Guerra G. A.; Gavrilov V.; Gay P.; Geng W.; Gerbaudo D.; Gerber C. E.; Gershtein Y.; Ginther G.; Golovanov G.; Goussiou A.; Grannis P. D.; Greder S.; Greenlee H.; Grenier G.; Gris Ph.; Grivaz J. -F.; Grohsjean A.; Gruenendahl S.; Gruenewald M. W.; Guillemin T.; Gutierrez G.; Gutierrez P.; Haas A.; Hagopian S.; Haley J.; Han L.; Harder K.; Harel A.; Hauptman J. M.; Hays J.; Head T.; Hebbeker T.; Hedin D.; Hegab H.; Heinson A. P.; Heintz U.; Hensel C.; Heredia-De la Cruz I.; Herner K.; Hesketh G.; Hildreth M. D.; Hirosky R.; Hoang T.; Hobbs J. D.; Hoeneisen B.; Hohlfeld M.; Howley I.; Hubacek Z.; Hynek V.; Iashvili I.; Ilchenko Y.; Illingworth R.; Ito A. S.; Jabeen S.; Jaffre M.; Jayasinghe A.; Jesik R.; Johns K.; Johnson E.; Johnson M.; Jonckheere A.; Jonsson P.; Joshi J.; Jung A. W.; Juste A.; Kaadze K.; Kajfasz E.; Karmanov D.; Kasper P. A.; Katsanos I.; Kehoe R.; Kermiche S.; Khalatyan N.; Khanov A.; Kharchilava A.; Kharzheev Y. N.; Kohli J. M.; Kozelov A. V.; Kraus J.; Kulikov S.; Kumar A.; Kupco A.; Kurca T.; Kuzmin V. A.; Lammers S.; Landsberg G.; Lebrun P.; Lee H. S.; Lee S. W.; Lee W. M.; Lellouch J.; Li H.; Li L.; Li Q. Z.; Lim J. K.; Lincoln D.; Linnemann J.; Lipaev V. V.; Lipton R.; Liu H.; Liu Y.; Lobodenko A.; Lokajicek M.; de Sa R. Lopes; Lubatti H. J.; Luna-Garcia R.; Lyon A. L.; Maciel K. A.; Madar R.; Magana-Villalba R.; Malik S.; Malyshev V. L.; Maravin Y.; Martinez-Ortega J.; McCarthy R.; McGivern C. L.; Meijer M. M.; Melnitchouk A.; Menezes D.; Mercadante P. G.; Merkin M.; et al.

    2012-04-12

    We present a measurement of the W boson mass using data corresponding to 4.3 fb{sup -1} of integrated luminosity collected with the D0 detector during Run II at the Fermilab Tevatron p{bar p} collider. With a sample of 1677394 W {yields} e{nu} candidate events, we measure M{sub W} = 80.367 {+-} 0.026 GeV. This result is combined with an earlier D0 result determined using an independent Run II data sample, corresponding to 1 fb{sup -1} of integrated luminosity, to yield M{sub W} = 80.375 {+-} 0.023 GeV.

  10. A measurement of the top quark mass with a matrix element method

    SciTech Connect (OSTI)

    Gibson, Adam Paul; /UC, Berkeley

    2006-12-01

    The authors present a measurement of the mass of the top quark. The event sample is selected from proton-antiproton collisions, at 1.96 TeV center-of-mass energy, observed with the CDF detector at Fermilab's Tevatron. They consider a 318 pb{sup -1} dataset collected between March 2002 and August 2004. They select events that contain one energetic lepton, large missing transverse energy, exactly four energetic jets, and at least one displaced vertex b tag. The analysis uses leading-order t{bar t} and background matrix elements along with parameterized parton showering to construct event-by-event likelihoods as a function of top quark mass. From the 63 events observed with the 318 pb{sup -1} dataset they extract a top quark mass of 172.0 {+-} 2.6(stat) {+-} 3.3(syst) GeV/c{sup 2} from the joint likelihood. The mean expected statistical uncertainty is 3.2 GeV/c{sup 2} for m{sub t} = 178 GTeV/c{sup 2} and 3.1 GeV/c{sup 2} for m{sub t} = 172.5 GeV/c{sup 2}. The systematic error is dominated by the uncertainty of the jet energy scale.

  11. Low tritium partial pressure permeation system for mass transport measurement in lead lithium eutectic

    SciTech Connect (OSTI)

    Pawelko, R. J.; Shimada, M.; Katayama, K.; Fukada, S.; Humrickhouse, P. W.; Terai, T.

    2015-11-28

    This paper describes a new experimental system designed to investigate tritium mass transfer properties in materials important to fusion technology. Experimental activities were carried out at the Safety and Tritium Applied Research (STAR) facility located at the Idaho National Laboratory (INL). The tritium permeation measurement system was developed as part of the Japan/US TITAN collaboration to investigate tritium mass transfer properties in liquid lead lithium eutectic (LLE) alloy. The experimental system is configured to measure tritium mass transfer properties at low tritium partial pressures. Initial tritium permeation scoping tests were conducted on a 1 mm thick α-Fe plate to determine operating parameters and to validate the experimental technique. A second series of permeation tests was then conducted with the α-Fe plate covered with an approximately 8.5 mm layer of liquid lead lithium eutectic alloy (α-Fe/LLE). We present preliminary tritium permeation data for α-Fe and α-Fe/LLE at temperatures between 400 and 600°C and at tritium partial pressures between 1.7E-3 and 2.5 Pa in helium. Preliminary results for the α-Fe plate and α-Fe/LLE indicate that the data spans a transition region between the diffusion-limited regime and the surface-limited regime. In conclusion, additional data is required to determine the existence and range of a surface-limited regime.

  12. Low tritium partial pressure permeation system for mass transport measurement in lead lithium eutectic

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pawelko, R. J.; Shimada, M.; Katayama, K.; Fukada, S.; Humrickhouse, P. W.; Terai, T.

    2015-11-28

    This paper describes a new experimental system designed to investigate tritium mass transfer properties in materials important to fusion technology. Experimental activities were carried out at the Safety and Tritium Applied Research (STAR) facility located at the Idaho National Laboratory (INL). The tritium permeation measurement system was developed as part of the Japan/US TITAN collaboration to investigate tritium mass transfer properties in liquid lead lithium eutectic (LLE) alloy. The experimental system is configured to measure tritium mass transfer properties at low tritium partial pressures. Initial tritium permeation scoping tests were conducted on a 1 mm thick α-Fe plate to determinemore » operating parameters and to validate the experimental technique. A second series of permeation tests was then conducted with the α-Fe plate covered with an approximately 8.5 mm layer of liquid lead lithium eutectic alloy (α-Fe/LLE). We present preliminary tritium permeation data for α-Fe and α-Fe/LLE at temperatures between 400 and 600°C and at tritium partial pressures between 1.7E-3 and 2.5 Pa in helium. Preliminary results for the α-Fe plate and α-Fe/LLE indicate that the data spans a transition region between the diffusion-limited regime and the surface-limited regime. In conclusion, additional data is required to determine the existence and range of a surface-limited regime.« less

  13. Extending the Capabilities of Single Particle Mass Spectrometry: II. Measurements of Aerosol Particle Density without DMA

    SciTech Connect (OSTI)

    Vaden, Timothy D.; Imre, D.; Beranek, Josef; Zelenyuk, Alla

    2011-01-04

    Particle density is an important and useful property that is difficult to measure because it usually 5 requires separate instruments to measure two particle attributes. As density measurements are 6 often performed on size-classified particles, they are hampered by low particle numbers, and 7 hence poor temporal resolution. We present here a new method for measuring particle densities 8 using our single particle mass spectrometer, SPLAT. This method takes advantage of the fact 9 that the detection efficiency in our single particle mass spectrometer drops off very rapidly as the 10 particle size decreases below ~125 nm creating a distinct sharp feature on the small particle side 11 of the vacuum aerodynamic size distribution. Thus, the two quantities needed to determine 12 particle density, the particle diameter and vacuum aerodynamic diameter, are known. We first 13 test this method on particles of known composition and find that the densities it yields are 14 sufficiently accurate. We then apply the method to obtain the densities of particles that were 15 characterized during an airborne field campaign. In addition, we show that the distinctive 16 features of the vacuum aerodynamic size distribution can be used to characterize the instrument 17 detection efficiency as a function of particle size. In general, the method presented here reduces 18 complexity and yields information with high temporal resolution while the instrument is 19 collecting routine data on particle size and composition.

  14. Comparison of FTIR and Particle Mass Spectrometry for the Measurement of Paticulate Organic Nitrates

    SciTech Connect (OSTI)

    Bruns, Emily; Perraud, Veronique; Zelenyuk, Alla; Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Imre, D.; Finlayson-Pitts, Barbara J.; Alexander, M. L.

    2010-02-01

    While multifunctional organic nitrates are formed during the atmospheric oxidation of volatile organic compounds, relatively little is known about their signatures in particle mass spectrometers. High resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) was applied to NH4NO3, NaNO3 and isosorbide 5-mononitrate (IMN) particles, and to secondary organic aerosol (SOA) from NO3 radical reactions at 22 C and 1 atm in air with and pinene, 3-carene, limonene and isoprene. For comparison, single particle laser ablation mass spectra (SPLAT II) were also obtained for IMN and SOA from the pinene reaction. The mass spectra of all particles exhibit significant intensity at m/z 30, and for the SOA, weak peaks corresponding to various organic fragments containing nitrogen [CxHyNzOa]+ were identified using HR-ToF-AMS. The NO+/NO2+ ratios from HR-ToF-AMS were 10-15 for IMN and the SOA from the and pinene, 3-carene and limonene reactions, ~5 for the isoprene reaction, 2.4 for NH4NO3 and 80 for NaNO3. The N/H ratios from HR-ToF-AMS for the SOA were smaller by a factor of 2 to 4 than the -ONO2/C-H ratios measured using FTIR on particles impacted on ZnSe windows. While the NO+/NO2+ ratio may provide a generic indication of organic nitrates under some conditions, specific identification of particulate organic nitrates awaits further development of particle mass spectrometry techniques.

  15. Precision measurement of the top quark mass from dilepton events at CDF II

    SciTech Connect (OSTI)

    Abulencia, A.; Adelman, J.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; Annovi, A.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara

    2006-12-01

    We report a measurement of the top quark mass, M{sub t}, in the dilepton decay channel of t{bar t} {yields} b{ell}{prime}{sup +} {nu}{sub {ell}}, {bar b}{ell}{sup -}{bar {nu}}{sub {ell}} using an integrated luminosity of 1.0 fb{sup -1} of p{bar p} collisions collected with the CDF II detector. We apply a method that convolutes a leading-order matrix element with detector resolution functions to form event-by-event likelihoods; we have enhanced the leading-order description to describe the effects of initial-state radiation. The joint likelihood is the product of the likelihoods from 78 candidate events in this sample, which yields a measurement of M{sub t} = 164.5 {+-} 3.9(stat.) {+-} 3.9(syst.) GeV/c{sup 2}, the most precise measurement of M{sub t} in the dilepton channel.

  16. MASS MEASUREMENT OF {sup 45}Cr AND ITS IMPACT ON THE Ca-Sc CYCLE IN X-RAY BURSTS

    SciTech Connect (OSTI)

    Yan, X. L.; Xu, H. S.; Litvinov, Yu. A.; Zhang, Y. H.; Tu, X. L.; Zhou, X. H.; He, J. J.; Sun, Y.; Wang, M.; Yuan, Y. J.; Xia, J. W.; Yang, J. C.; Jia, G. B.; Hu, Z. G.; Ma, X. W.; Mao, R. S.; Schatz, H.; Blaum, K.; Sun, B. H.; Audi, G.; and others

    2013-03-20

    Masses of neutron-deficient {sup 58}Ni projectile fragments have been measured at the HIRFL-CSR facility in Lanzhou, China employing the isochronous mass spectrometry technique. Masses of a series of short-lived T{sub z} = -3/2 nuclides including the {sup 45}Cr nucleus have been measured with a relative uncertainty of about 10{sup -6}-10{sup -7}. The new {sup 45}Cr mass turned out to be essential for modeling the astrophysical rp-process. In particular, we find that the formation of the predicted Ca-Sc cycle in X-ray bursts can be excluded.

  17. Hydrogen measurement during steam oxidation using coupled thermogravimetric analysis and quadrupole mass spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Parkison, Adam J.; Nelson, Andrew Thomas

    2016-01-11

    An analytical technique is presented with the goal of measuring reaction kinetics during steam oxidation reactions for three cases in which obtaining kinetics information often requires a prohibitive amount of time and cost. The technique presented relies on coupling thermogravimetric analysis (TGA) with a quantitative hydrogen measurement technique using quadrupole mass spectrometry (QMS). The first case considered is in differentiating between the kinetics of steam oxidation reactions and those for simultaneously reacting gaseous impurities such as nitrogen or oxygen. The second case allows one to independently measure the kinetics of oxide and hydride formation for systems in which both ofmore » these reactions are known to take place during steam oxidation. The third case deals with measuring the kinetics of formation for competing volatile and non-volatile oxides during certain steam oxidation reactions. In order to meet the requirements of the coupled technique, a methodology is presented which attempts to provide quantitative measurement of hydrogen generation using QMS in the presence of an interfering fragmentation species, namely water vapor. This is achieved such that all calibrations and corrections are performed during the TGA baseline and steam oxidation programs, making system operation virtually identical to standard TGA. Benchmarking results showed a relative error in hydrogen measurement of 5.7–8.4% following the application of a correction factor. Lastly, suggestions are made for possible improvements to the presented technique so that it may be better applied to the three cases presented.« less

  18. Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements

    SciTech Connect (OSTI)

    Prost, Spencer A.; Crowell, Kevin L.; Baker, Erin Shammel; Ibrahim, Yehia M.; Clowers, Brian H.; Monroe, Matthew E.; Anderson, Gordon A.; Smith, Richard D.; Payne, Samuel H.

    2014-12-01

    Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that both fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm uses knowledge of the true signal peaks derived from the encoded data and allows for both artifacts and noise to be removed with high confidence, decreasing the likelihood of false identifications in subsequent data processing. The result is that IMS-MS can be applied to increase measurement sensitivity while avoiding artifacts that have previously limited its utility.

  19. Measurement of the Top Quark Mass in the All-Hadronic Mode at CDF

    SciTech Connect (OSTI)

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; /Dubna, JINR /Texas A-M

    2011-12-01

    A measurement of the top quark mass (M{sub top}) in the all-hadronic decay channel is presented. It uses 5.8 fb{sup -1} of p{bar p} data collected with the CDF II detector at the Fermilab Tevatron Collider. Events with six to eight jets are selected by a neural network algorithm and by the requirement that at least one of the jets is tagged as a b quark jet. The measurement is performed with a likelihood fit technique, which simultaneously determines M{sub top} and the jet energy scale (JES) calibration. The fit yields a value of M{sub top} = 172.5 {+-} 1.4 (stat) {+-} 1.0 (JES) {+-} 1.1 (syst) GeV/c{sup 2}.

  20. Measurement of the Top Quark Mass at CDF Using the Template Method in the Lepton + Jets Channel

    SciTech Connect (OSTI)

    Adelman, Jahred A.; /Chicago U.

    2008-05-01

    A measurement of the top quark mass in p{bar p} collisions at {radical}s = 1.96 TeV is presented. The analysis uses a template method, in which the overconstrained kinematics of the Lepton+Jets channel of the t{bar t} system are used to measure a single quantity, the reconstructed top quark mass, that is strongly correlated with the true top quark mass. in addition, the dijet mass of the hadronically decaying W boson is used to constrain in situ the uncertain jet energy scale in the CDF detector. Two-dimensional probability density functions are derived using a kernel density estimate-based machinery. Using 1.9 fb{sup -1} of data, the top quark mass is measured to be 171.8{sub -1.9}{sup +1.9}(stat.) {+-} 1.0(syst.)GeV/c{sup 2}.

  1. Effect of fluctuation measures on the uncertainty relations between two observables: Different measures lead to opposite conclusions

    SciTech Connect (OSTI)

    Luis, Alfredo

    2011-09-15

    We show within a very simple framework that different measures of fluctuations lead to uncertainty relations resulting in contradictory conclusions. More specifically we focus on Tsallis and Renyi entropic uncertainty relations and we get that the minimum joint uncertainty states for some fluctuation measures are the maximum joint uncertainty states of other fluctuation measures, and vice versa.

  2. Separation Of Uranium And Plutonium Isotopes For Measurement By Multi Collector Inductively Coupled Plasma Mass Spectroscopy

    SciTech Connect (OSTI)

    Martinelli, R E; Hamilton, T F; Williams, R W; Kehl, S R

    2009-03-29

    Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with {sup 233}U and {sup 242}Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA{reg_sign} column coupled to a UTEVA{reg_sign} column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of {sup 234}U/{sup 235}U, {sup 238}U/{sup 235}U, {sup 236}U/{sup 235}U, and {sup 240}Pu/{sup 239}Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.

  3. Comparison of HORACE and PHOTOS Algorithms for Multi-Photon Emission in the Context of the W Boson Mass Measurement

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kotwal, Ashutosh V.; Jayatilaka, Bodhitha

    2016-01-01

    W boson mass measurement is sensitive to QED radiative corrections due to virtual photon loops and real photon emission. The largest shift in the measured mass, which depends on the transverse momentum spectrum of the charged lepton from the boson decay, is caused by the emission of real photons from the final-state lepton. There are a number of calculations and codes available to model the final-state photon emission. We perform a detailed study, comparing the results from HORACE and PHOTOS implementations of the final-state multiphoton emission in the context of a direct measurement ofW boson mass at Tevatron. Mass fitsmore » are performed using a simulation of the CDF II detector.« less

  4. Comparison of Horace and Photos Algorithms for Multi-Photon Emission in the Context of the W Boson Mass Measurement

    SciTech Connect (OSTI)

    Kotwal, A. V.; Jayatilaka, B.

    2015-10-08

    The W boson mass measurement is sensitive to QED radiative corrections due to virtual photon loops and real photon emission. The largest shift in the measured mass, which depends on the transverse momentum spectrum of the charged lepton from the boson decay, is caused by the emission of real photons from the final-state lepton. We found that there are a number of calculations and codes available to model the final-state photon emission. We also perform a detailed study, comparing the results from the Horace and Photos implementations of the final-state multi-photon emission in the context of a direct measurement of the W boson mass at the Tevatron. Mass fits are performed using a simulation of the CDF II detector.

  5. Clock asynchrony and mass variation

    SciTech Connect (OSTI)

    Gruber, R.P.; Brahm, D.E.

    1993-04-01

    Many theories have been proposed in which particle masses vary with time. In a world with varying particle masses, clocks become asynchronous and metersticks inconsistent. By combining two or more clocks with different known dependences on mass, one can construct a nearly invariant clock, and measure the rate of mass variation. If the proton and electron masses vary differently, then certain equations must be applied to predict a clock's dependence on each. 8 refs.

  6. Measurement of cross section of quark pair production top with the D0 experiment at the Tevatron and determination the top quark mass using this measure

    SciTech Connect (OSTI)

    Chevalier-Thery, Solene; /Paris U., VI-VII /Saclay

    2010-06-01

    The top quark has been discovered by CDF and D0 experiments in 1995 at the proton-antiproton collider Tevatron. The amount of data recorded by both experiments makes it possible to accurately study the properties of this quark: its mass is now known to better than 1% accuracy. This thesis describes the measurement of the top pair cross section in the electron muon channel with 4, 3 fb{sup -1} recorded data between 2006 and 2009 by the D0 experiment. Since the final state included a muon, improvements of some aspects of its identification have been performed : a study of the contamination of the cosmic muons and a study of the quality of the muon tracks. The cross section measurement is in good agreement with the theoretical calculations and the other experimental measurements. This measurement has been used to extract a value for the top quark mass. This method allows for the extraction of a better defined top mass than direct measurements as it depends less on Monte Carlo simulations. The uncertainty on this extracted mass, dominated by the experimental one, is however larger than for direct measurements. In order to decrease this uncertainty, the ratio of the Z boson and the top pair production cross sections has been studied to look for some possible theoretical correlations. At the Tevatron, the two cross sections are not theoretically correlated: no decrease of the uncertainty on the extracted top mass is therefore possible.

  7. Nuclear Resonance Fluorescence to Measure Plutonium Mass in Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Ludewigt, Bernhard A; Quiter, Brian J.; Ambers, Scott D.

    2011-01-14

    The Next Generation Safeguard Initiative (NGSI) of the U.S Department of Energy is supporting a multi-lab/university collaboration to quantify the plutonium (Pu) mass in spent nuclear fuel (SNF) assemblies and to detect the diversion of pins with non-destructive assay (NDA) methods. The following 14 NDA techniques are being studied: Delayed Neutrons, Differential Die-Away, Differential Die-Away Self-Interrogation, Lead Slowing Down Spectrometer, Neutron Multiplicity, Passive Neutron Albedo Reactivity, Total Neutron (Gross Neutron), X-Ray Fluorescence, {sup 252}Cf Interrogation with Prompt Neutron Detection, Delayed Gamma, Nuclear Resonance Fluorescence, Passive Prompt Gamma, Self-integration Neutron Resonance Densitometry, and Neutron Resonance Transmission Analysis. Understanding and maturity of the techniques vary greatly, ranging from decades old, well-understood methods to new approaches. Nuclear Resonance Fluorescence (NRF) is a technique that had not previously been studied for SNF assay or similar applications. Since NRF generates isotope-specific signals, the promise and appeal of the technique lies in its potential to directly measure the amount of a specific isotope in an SNF assay target. The objectives of this study were to design and model suitable NRF measurement methods, to quantify capabilities and corresponding instrumentation requirements, and to evaluate prospects and the potential of NRF for SNF assay. The main challenge of the technique is to achieve the sensitivity and precision, i.e., to accumulate sufficient counting statistics, required for quantifying the mass of Pu isotopes in SNF assemblies. Systematic errors, considered a lesser problem for a direct measurement and only briefly discussed in this report, need to be evaluated for specific instrument designs in the future. Also, since the technical capability of using NRF to measure Pu in SNF has not been established, this report does not directly address issues such as cost, size

  8. A Precision Measurement of the W Boson Mass with 1 Inverse Femtobarn of DZero Run IIa Data

    SciTech Connect (OSTI)

    Osta, Jyotsna; /Notre Dame U.

    2009-10-01

    This thesis is a detailed presentation of a precision measurement of the mass of the W boson. It has been obtained by analyzing W {yields} e{nu} decays. The data used for this analysis was collected from 2002 to 2006 with the D0 detector, during Run IIa of the Fermilab Tevatron collider. It corresponds to a total integrated luminosity of 1 fb{sup -1}. With a sample of 499,830 W {yields} e{nu} candidate events, we obtain a mass measurement of M{sub W} = 80.401 {+-} 0.043 GeV. This is the most precise measurement from a single experiment to date.

  9. Measurement of three-jet production cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-05-27

    Double-differential three-jet production cross-sections are measured in proton–proton collisions at a centre-of-mass energy of √s=7TeV using the ATLAS detector at the large hadron collider. The measurements are presented as a function of the three-jet mass (mjjj), in bins of the sum of the absolute rapidity separations between the three leading jets (|Y*|). Invariant masses extending up to 5 TeV are reached for 8<|Y*|<10. These measurements use a sample of data recorded using the ATLAS detector in 2011, which corresponds to an integrated luminosity of 4.51 fb11. Jets are identified using the anti-kt algorithm with two different jet radius parameters, R=0.4more » and R=0.6. The dominant uncertainty in these measurements comes from the jet energy scale. Next-to-leading-order QCD calculations corrected to account for non-perturbative effects are compared to the measurements. Good agreement is found between the data and the theoretical predictions based on most of the available sets of parton distribution functions, over the full kinematic range, covering almost seven orders of magnitude in the measured cross-section values.« less

  10. Mass transport around comets and its impact on the seasonal differences in water production rates

    SciTech Connect (OSTI)

    Rubin, M.; Altwegg, K.; Thomas, N.; Fougere, N.; Combi, M. R.; Tenishev, V. M.; Le Roy, L.

    2014-06-20

    Comets are surrounded by a thin expanding atmosphere, and although the nucleus' gravity is small, some molecules and grains, possibly with the inclusion of ices, can get transported around the nucleus through scattering (atoms/molecules) and gravitational pull (grains). Based on the obliquity of the comet, it is also possible that volatile material and icy grains get trapped in regions, which are in shadow until the comet passes its equinox. When the Sun rises above the horizon and the surface starts to heat up, this condensed material starts to desorb and icy grains will sublimate off the surface, possibly increasing the comet's neutral gas production rate on the outbound path. In this paper we investigate the mass transport around the nucleus, and based on a simplified model, we derive the possible contribution to the asymmetry in the seasonal gas production rate that could arise from trapped material released from cold areas once they come into sunlight. We conclude that the total amount of volatiles retained by this effect can only contribute up to a few percent of the asymmetry observed in some comets.

  11. DIFFERENTIAL EMISSION MEASURE ANALYSIS OF MULTIPLE STRUCTURAL COMPONENTS OF CORONAL MASS EJECTIONS IN THE INNER CORONA

    SciTech Connect (OSTI)

    Cheng, X.; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Zhang, J. [School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 (United States); Saar, S. H., E-mail: xincheng@nju.edu.cn, E-mail: jzhang7@gmu.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-12-10

    In this paper, we study the temperature and density properties of multiple structural components of coronal mass ejections (CMEs) using differential emission measure (DEM) analysis. The DEM analysis is based on the six-passband EUV observations of solar corona from the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory. The structural components studied include the hot channel in the core region (presumably the magnetic flux rope of the CME), the bright loop-like leading front (LF), and coronal dimming in the wake of the CME. We find that the presumed flux rope has the highest average temperature (>8 MK) and density ({approx}1.0 Multiplication-Sign 10{sup 9} cm{sup -3}), resulting in an enhanced emission measure over a broad temperature range (3 {<=} T(MK) {<=} 20). On the other hand, the CME LF has a relatively cool temperature ({approx}2 MK) and a narrow temperature distribution similar to the pre-eruption coronal temperature (1 {<=} T(MK) {<=} 3). The density in the LF, however, is increased by 2%-32% compared with that of the pre-eruption corona, depending on the event and location. In coronal dimmings, the temperature is more broadly distributed (1 {<=} T(MK) {<=} 4), but the density decreases by {approx}35%-{approx}40%. These observational results show that: (1) CME core regions are significantly heated, presumably through magnetic reconnection; (2) CME LFs are a consequence of compression of ambient plasma caused by the expansion of the CME core region; and (3) the dimmings are largely caused by the plasma rarefaction associated with the eruption.

  12. Isolation of 163Ho from dysprosium target material by HPLC for neutrino mass measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mocko, Veronika; Taylor, Wayne  A.; Nortier, Francois M.; Engle, Jonathan  W.; Barnhart, Todd  E.; Nickles, Robert  J.; Pollington, Anthony  D.; Kunde, Gerd  J.; Rabin, Michael  W.; Birnbaum, Eva  R.

    2015-04-29

    The rare earth isotope 163Ho is of interest for neutrino mass measurements. This report describes the isolation of 163Ho from a proton-irradiated dysprosium target and its purification. A Dy metal target was irradiated with 16 MeV protons for 10 h. After target dissolution, 163Ho was separated from the bulk Dy via cation-exchange high performance liquid chromatography using 70 mmol dm–3 α-hydroxyisobutyric acid as the mobile phase. Subsequent purification of the collected Ho fraction was performed to remove the α-hydroxyisobutyrate chelating agent and to concentrate the Ho in a low ionic strength aqueous matrix. The final solution was characterized by MC-ICP-MSmore » to determine the 163Ho/165Ho ratio, 163Ho and the residual Dy content. The HPLC purification process resulted in a decontamination factor 1.4E5 for Dy. As a result, the isolated Ho fraction contained 24.8 ±1.3 ng of 163Ho corresponding to holmium recovery of 72 ± 3%.« less

  13. Top Quark Mass Measurement in the Lepton plus Jets Channel Using a Modified Matrix Element Method

    SciTech Connect (OSTI)

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; /Purdue U. /Waseda U.

    2008-12-01

    The authors report a measurement of the top quark mass, m{sub t}, obtained from p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector. They analyze a sample corresponding to an integrated luminosity of 1.9 rfb{sup -1}. They select events with an electron or muon, large missing transverse energy, and exactly four high-energy jets in the central region of the detector, at least one of which is tagged as coming from a b quark. They calculate a signal likelihood using a matrix element integration method, where the matrix element is modified by using effective propagators to take into account assumptions on event kinematics. The event likelihood is a function of m{sub t} and a parameter JES that determines in situ the calibration of the jet energies. They use a neural network discriminant to distinguish signal from background events. They also apply a cut on the peak value of each event likelihood curve to reduce the contribution of background and badly reconstructed events. Using the 318 events that pass all selection criteria, they find m{sub t} = 172.7 {+-} 1.8 (stat. + JES) {+-} 1.2(syst.) GeV/c{sup 2}.

  14. Measurement of three-jet production cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Khalek, S. Abdel; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; et al

    2015-05-01

    Double-differential three-jet production cross-sections are measured in protonproton collisions at a centre-of-mass energy of ?s = 7TeV using the ATLAS detector at the large hadron collider. The measurements are presented as a function of the three-jet mass (mjjj), in bins of the sum of the absolute rapidity separations between the three leading jets (|Y*|). Invariant masses extending up to 5 TeV are reached for 8*|1. Jets are identified using the anti-kt algorithm with two different jet radiusmoreparameters, R = 0.4 and R = 0.6. The dominant uncertainty in these measurements comes from the jet energy scale. Next-to-leading-order QCD calculations corrected to account for non-perturbative effects are compared to the measurements. Good agreement is found between the data and the theoretical predictions based on most of the available sets of parton distribution functions, over the full kinematic range, covering almost seven orders of magnitude in the measured cross-section values.less

  15. Characterization of Two Different Clay Materials by Thermogravimetry (TG), Differential Scanning Calorimetry (DSC), Dilatometry (DIL) and Mass Spectrometry (MS) - 12215

    SciTech Connect (OSTI)

    Post, Ekkehard; Henderson, Jack B.

    2012-07-01

    An illitic clay containing higher amounts of organic materials was investigated by dilatometry, thermogravimetry and differential scanning calorimetric. The evolved gases were studied during simultaneous TG-DSC (STA) and dilatometer measurements with simultaneous mass spectrometry in inert gas and oxidizing atmosphere. The dilatometer results were compared with the STA-MS results which confirmed and explained the reactions found during heating of the clay, like dehydration, dehydroxylation, shrinkage, sintering, quartz phase transition, combustion or pyrolysis of organics and the solid state reactions forming meta-kaolinite and mullite. The high amount of organic material effects in inert gas atmosphere most probably a reduction of the oxides which leads to a higher mass loss than in oxidizing atmosphere. Due to this reduction an additional CO{sub 2} emission at around 1000 deg. C was detected which did not occur in oxidizing atmosphere. Furthermore TG-MS results of a clay containing alkali nitrates show that during heating, in addition to water and CO{sub 2}, NO and NO{sub 2} are also evolved, leading to additional mass loss steps. These types of clays showed water loss starting around 100 deg. C or even earlier. This relative small mass loss affects only less shrinkage during the expansion of the sample. The dehydroxylation and the high crystalline quartz content result in considerable shrinkage and expansion of the clay. During the usual solid state reaction where the clay structure collapses, the remaining material finally shrinks down to a so-called clinker. With the help of MS the TG steps can be better interpreted as the evolved gases are identified. With the help of the MS it is possible to distinguish between CO{sub 2} and water (carbonate decomposition, oxidation of organics or dehydration/dehydroxylation). The MS also clearly shows that mass number 44 is found during the TG step of the illitic clay at about 900 deg. C in inert gas, which was interpreted

  16. Mass Measurements of Very Neutron-Deficient Mo and Tc Isotopes and Their Impact on rp Process Nucleosynthesis

    SciTech Connect (OSTI)

    Haettner, E.; Plass, W. R.; Scheidenberger, C.; Ackermann, D.; Block, M.; Eliseev, S.; Herfurth, F.; Hessberger, F. P.; Hofmann, S.; Kluge, H.-J.; Audi, G.; Blaum, K.; Ketter, J.; Fleckenstein, T.; Ketelaer, J.; Marx, G.; Schweikhard, L.; Mazzocco, M.; Novikov, Yu. N.; Vorobjev, G.

    2011-03-25

    The masses of ten proton-rich nuclides, including the N=Z+1 nuclides {sup 85}Mo and {sup 87}Tc, were measured with the Penning trap mass spectrometer SHIPTRAP. Compared to the Atomic Mass Evaluation 2003 a systematic shift of the mass surface by up to 1.6 MeV is observed causing significant abundance changes of the ashes of astrophysical x-ray bursts. Surprisingly low {alpha} separation energies for neutron-deficient Mo and Tc are found, making the formation of a ZrNb cycle in the rp process possible. Such a cycle would impose an upper temperature limit for the synthesis of elements beyond Nb in the rp process.

  17. Building America Case Study: Retrofit Measure for Embedded Wood Members in Insulated Mass Masonry Walls, Lawrence, Massachusetts

    SciTech Connect (OSTI)

    2015-10-01

    ?There are many existing buildings with load-bearing mass masonry walls, whose energy performance could be improved with the retrofit of insulation. However, adding insulation to the interior side of walls of such masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw have known solutions. But wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content and relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100 percent RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated vs. non-insulated joist pockets do not show large differences. South facing joists have safe (10-15 percent) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.

  18. High-precision Penning trap mass measurements for tests of the Standard Model

    SciTech Connect (OSTI)

    Blaum, Klaus; Eliseev, Sergey; Nagy, Szilard

    2010-08-04

    With the nowadays achievable accuracy in Penning trap mass spectrometry on short-lived exotic nuclides as well as stable atoms, precision fundamental tests can be performed, among them a test of the Standard Model, in particular with regard to the weak interaction, the CPT symmetry conservation, and the unitarity of the Cabibbo-Kobayashi-Maskawa quark mixing matrix. In addition, accurate mass values of specific nuclides are important for neutrino physics. The presently best tests of the Standard Model with high-precision Penning trap mass spectrometry will be reviewed.

  19. Precision measurement of the top quark mass in the lepton + jets...

    Office of Scientific and Technical Information (OSTI)

    a tbar t likelihood, employing a Quasi-Monte Carlo integration, which enables us to take into account effects due to finite detector angular resolution and quark mass effects. ...

  20. Measurable neutrino mass scale in A{sub 4}xSU(5)

    SciTech Connect (OSTI)

    Antusch, S.; Spinrath, M. [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, D-80805 Muenchen (Germany); King, Stephen F. [School of Physics and Astronomy, University of Southampton, SO17 1BJ Southampton (United Kingdom)

    2011-01-01

    We propose a supersymmetric A{sub 4}xSU(5) model of quasidegenerate neutrinos which predicts the effective neutrino mass m{sub ee} relevant for neutrinoless double beta decay to be proportional to the neutrino mass scale, thereby allowing its determination approximately independently of unknown Majorana phases. Such a natural quasidegeneracy is achieved by using A{sub 4} family symmetry (as an example of a non-Abelian family symmetry with real triplet representations) to enforce a contribution to the neutrino mass matrix proportional to the identity. Tribimaximal neutrino mixing as well as quark CP violation with {alpha}{approx_equal}90 deg. d a leptonic CP phase {delta}{sub MNS{approx_equal}}90 deg. arise from the breaking of the A{sub 4} family symmetry by the vacuum expectation values of four 'flavon' fields pointing in specific postulated directions in flavor space.

  1. Effects of finite volume on the KL – KS mass difference

    SciTech Connect (OSTI)

    Christ, N.  H.; Feng, X.; Martinelli, G.; Sachrajda, C.  T.

    2015-06-24

    Phenomena that involve two or more on-shell particles are particularly sensitive to the effects of finite volume and require special treatment when computed using lattice QCD. In this paper we generalize the results of Lüscher and Lellouch and Lüscher, which determine the leading-order effects of finite volume on the two-particle spectrum and two-particle decay amplitudes to determine the finite-volume effects in the second-order mixing of the K⁰ and K⁰⁻ states. We extend the methods of Kim, Sachrajda, and Sharpe to provide a direct, uniform treatment of these three, related, finite-volume corrections. In particular, the leading, finite-volume corrections to the KL – KS mass difference ΔMK and the CP-violating parameter εK are determined, including the potentially large effects which can arise from the near degeneracy of the kaon mass and the energy of a finite-volume, two-pion state.

  2. Measurement of the Top Quark Mass in the Lepton+Jets Channel Using the Lepton Transverse Momentum

    SciTech Connect (OSTI)

    Aaltonen, T.; Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; /Purdue U. /Waseda U. /Dubna, JINR

    2011-01-01

    This letter reports a measurement of the top quark mass, M{sub top}, in data from p{bar p} collisions at {radical}s = 1.96 TeV corresponding to 2.7 fb{sup -1} of integrated luminosity at the Fermilab Tevatron using the CDF II detector. Events with the lepton+jets topology are selected. An unbinned likelihood is constructed based on the dependence of the lepton transverse momentum, P{sub T}, on M{sub top}. A maximum likelihood fit to the data yields a measured mass M{sub top} = 176.9 {+-} 8.0{sub stat} {+-} 2.7{sub syst} GeV/c{sup 2}. In this measurement, the contribution by the jet energy scale uncertainty to the systematic error is negligible. The result provides an important consistency test for other M{sub top} measurements where explicit use of the jet energy is made for deriving the top quark mass.

  3. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters Final Report to the Subsurface Biogeochemical Research Program

    SciTech Connect (OSTI)

    Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Timothy; Binley, Andrew; Lane, John

    2014-03-10

    . In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Our study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3-part research plan involving (1) development of computer codes and techniques to estimate mass-transfer parameters from time-lapse electrical data; (2) bench-scale experiments on synthetic materials and materials from cores from the Hanford 300 Area; and (3) field demonstration experiments at the DOE’s Hanford 300 Area.

  4. Manifold and method of batch measurement of Hg-196 concentration using a mass spectrometer

    DOE Patents [OSTI]

    Grossman, M.W.; Evans, R.

    1991-11-26

    A sample manifold and method of its use has been developed so that milligram quantities of mercury can be analyzed mass spectroscopically to determine the [sup 196]Hg concentration to less than 0.02 atomic percent. Using natural mercury as a standard, accuracy of [+-]0.002 atomic percent can be obtained. The mass spectrometer preferably used is a commercially available GC/MS manufactured by Hewlett Packard. A novel sample manifold is contained within an oven allowing flow rate control of Hg into the MS. Another part of the manifold connects to an auxiliary pumping system which facilitates rapid clean up of residual Hg in the manifold. Sample cycle time is about 1 hour. 8 figures.

  5. Manifold and method of batch measurement of Hg-196 concentration using a mass spectrometer

    DOE Patents [OSTI]

    Grossman, Mark W.; Evans, Roger

    1991-01-01

    A sample manifold and method of its use has been developed so that milligram quantities of mercury can be analyzed mass spectroscopically to determine the .sup.196 Hg concentration to less than 0.02 atomic percent. Using natural mercury as a standard, accuracy of .+-.0.002 atomic percent can be obtained. The mass spectrometer preferably used is a commercially available GC/MS manufactured by Hewlett Packard. A novel sample manifold is contained within an oven allowing flow rate control of Hg into the MS. Another part of the manifold connects to an auxiliary pumping system which facilitates rapid clean up of residual Hg in the manifold. Sample cycle time is about 1 hour.

  6. Mass Spectrometer Facility | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass Spectrometer Facility Mass Spectrometer Facility The PARC Mass Spectrometer Facility uses customized instrumentation to directly measure the individual polypeptide mass of different light-harvesting complexes to do assignment to specific gene products and investigate protein processing. Newly developed techniques are also applied to measure the mass of native protein complexes. Structural information of complexes is extracted by combining protein chemical modification and H/D exchange

  7. Electrons in the D0 central calorimeter: A study of the systematic biases in the measurement of the W mass

    SciTech Connect (OSTI)

    Heuring, T.C.

    1993-08-01

    The D0 detector at Fermilab is a general purpose collider detector designed for the study of proton-antiproton collisions at a center of mass energy of 1.8 TeV. The detector consists of an inner tracking volume, a hermetic uranium/liquid argon calorimeter, and an outer muon detection system. Since the detector lacks a central magnetic field, it relies on energy measurements from the calorimeter as opposed to momentum measurements using the tracking chambers. To provide the necessary understanding of the calorimeter, a testbeam was conducted at Fermilab during the second half of 1991 featuring detector modules from the central calorimeter. Detailed simulations of the detector apparatus were also written. This thesis will present the results of this testbeam and simulation effort and relate them to the measurement of the W{sup {plus_minus}} intermediate vector boson mass in the full D0 detector. In the testbeam, an energy resolution that scaled as 14% divided by the square root of the beam energy was found. The uniformity of response of the detector as a function of angle of incidence was investigated. We found that the response increased by 4% over the range investigated. The results were compared to a simulation written using the CERN package GEANT. Although GEANT was able to reproduce the energy resolution, it was not able to reproduce the uniformity of response function. A second simulation utilizing the EGS4 package from SLAC was successful in reproducing the behavior of the detector as a function of angle. The biases induced by the discrepancies between the detector and GEANT response functions in the W{sup {plus_minus}} mass measurement are studied. We find that using GEANT as a detector simulation will cause a bias of between 460 and 680 MeV in the W{sup {plus_minus}} mass determination.

  8. Chemistry of α-pinene and naphthalene oxidation products generated in a Potential Aerosol Mass (PAM) chamber as measured by acetate chemical ionization mass spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; Stark, H.; Jayne, J. T.; Onasch, T. B.; Davidovits, P.; Kimmel, J. R.; Worsnop, D. R.

    2014-07-01

    Recent developments in high resolution, time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made possible the direct detection of atmospheric organic compounds in real-time with high sensitivity and with little or no fragmentation, including low volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, for the first time, we examine gas-phase O3 and OH oxidation products of α-pinene and naphthalene formed in the PAM flow reactor with an HR-ToF-CIMS using acetate reagent ion chemistry. Integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec cm−3 s, corresponding to approximately 1.0 to 7.5 daysmore » of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. We present a method that estimates vapor pressures of organic molecules using the measured O/C ratio, H/C ratio, and carbon number for each compound detected by the CIMS. The predicted condensed-phase SOA average acid yields and O/C and H/C ratios agree within uncertainties with previous AMS measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

  9. Real-Time Particulate Mass Measurements Pre and Post Diesel Particulat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Radio Frequency-Based Sensors for Monitoring Diesel Particulate Filter Loading and Regeneration Real-Time Measurement of Diesel Trap ...

  10. PHYSICAL ORIGIN OF DIFFERENCES AMONG VARIOUS MEASURES OF SOLAR MERIDIONAL CIRCULATION

    SciTech Connect (OSTI)

    Dikpati, Mausumi; Gilman, Peter A.; Ulrich, Roger K.

    2010-10-10

    We show that systematic differences between surface Doppler and magnetic element tracking measures of solar meridional flow can be explained by the effects of surface turbulent magnetic diffusion. Feature-tracking speeds are lower than plasma speeds in low and mid latitudes, because magnetic diffusion opposes poleward plasma flow in low latitudes whereas it adds to plasma flow at high latitudes. Flux-transport dynamo models must input plasma flow; the model outputs yield estimates of the surface magnetic feature tracking speed. We demonstrate that the differences between plasma speed and magnetic pattern speed in a flux-transport dynamo are consistent with the observed difference between these speeds.

  11. First Use of High Charge States for Mass Measurements of Short-Lived Nuclides in a Penning Trap

    SciTech Connect (OSTI)

    Ettenauer, S.; Gallant, A. T.; Dilling, J.; Simon, M. C.; Chaudhuri, A.; Mane, E.; Delheij, P.; Pearson, M. R.; Brunner, T.; Chowdhury, U.; Simon, V. V.; Brodeur, M.; Andreoiu, C.; Audi, G.; Lopez-Urrutia, J. R. Crespo; Ullrich, J.; Gwinner, G.; Lapierre, A.; Lunney, D.; Ringle, R.

    2011-12-30

    Penning trap mass measurements of short-lived nuclides have been performed for the first time with highly charged ions, using the TITAN facility at TRIUMF. Compared to singly charged ions, this provides an improvement in experimental precision that scales with the charge state q. Neutron-deficient Rb isotopes have been charge bred in an electron beam ion trap to q=8-12+ prior to injection into the Penning trap. In combination with the Ramsey excitation scheme, this unique setup creating low energy, highly charged ions at a radioactive beam facility opens the door to unrivaled precision with gains of 1-2 orders of magnitude. The method is particularly suited for short-lived nuclides such as the superallowed {beta} emitter {sup 74}Rb (T{sub 1/2}=65 ms). The determination of its atomic mass and an improved Q{sub EC} value are presented.

  12. Measurement and simulation of jet mass caused by a high-aspect ratio pertubation

    SciTech Connect (OSTI)

    Keiter, Paul A; Cooley, James; Kyrala, George; Wilson, Doug; Blue, Brent; Edwards, John; Robey, Harry; Spears, Brian

    2009-01-01

    Inertial confinement fusion (ICF) capsule performance can be negatively impacted by the presence of hydrodynamic instabilities. To perform a gas fill on an ICF capsule current plans involve drilling a small hole and inserting a fill tube to inject the gas mixture into the capsule. This introduces a perturbation on the capsule, which can seed hydrodynamic instabilities. The small hole can cause jetting of the shell material into the gas, which might adversely affect the capsule performance. We have performed simulations and experiments to study the hydrodynamic evolution of jets from high-aspect ratio holes, such as the fill tube hole. Although simulations using cold materials over predict the amount of mass in the jet, when a reasonable amount of preheat (< 1 eV) is introduced, the simulations are in better agreement with the experiment.

  13. Method for ultra-trace cesium isotope ratio measurements from environmental samples using thermal ionization mass spectrometry

    SciTech Connect (OSTI)

    Snow, Mathew S.; Snyder, Darin C.; Mann, Nick R.; White, Byron M.

    2015-05-01

    135Cs/137Cs isotope ratios can provide the age, origin and history of environmental Cs contamination. Relatively high precision 135Cs/137Cs isotope ratio measurements from samples containing femtogram quantities of 137Cs are needed to accurately track contamination resuspension and redistribution following environmental 137Cs releases; however, mass spectrometric analyses of environmental samples are limited by the large quantities of ionization inhibitors and isobaric interferences which are present at relatively high concentrations in the environment. We report a new approach for Cs purification from environmental samples. An initial ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) column provides a robust method for extracting Cs under a wide variety of sample matrices and mass loads. Cation exchange separations using a second AMP-PAN column result in more than two orders of magnitude greater Cs/Rb separation factors than commercially available strong cation exchangers. Coupling an AMP-PAN cation exchanging step to a microcation column (AG50W resin) enables consistent 2-4% (2?) measurement errors for samples containing 3-6,000 fg 137Cs, representing the highest precision 135Cs/137Cs ratio measurements currently reported for soil samples at the femtogram level.

  14. Explosive performance measurements on large, multiple-hole arrays and large masses of conventional explosive

    SciTech Connect (OSTI)

    McKown, T.O.; Eilers, D.D.; Williams, P.E.

    1994-11-01

    The COntinuous Reflectometry for Radius vs. Time EXperiment (CORRTEX) system was developed by the Los Alamos National Laboratory for determining the energy released in a nuclear explosion by measuring the position of its shock front as a function of time. The CORRTEX system, fielding techniques, and the methods and software for data reduction and analysis were developed over a 15 year period with hundreds of measurements made on nuclear tests and high explosive experiments. CORRTEX is a compact, portable, fast-sampling, microprocessor-controlled system, based on time domain reflectometry, requiring only a 24 volt power source and a sensing element. Only the sensing element (a length of 50 ohm coaxial cable) is expended during the detonation. In 1979, the CORRTEX system was shown to be ideally suited for chemical explosive performance measurements. Its utility for diagnosing chemical explosives was further demonstrated with successful measurements on large multiple-hole chemical shots in rock quarries and strip mines. Accurate timing of the detonation of sequenced or ripple fired arrays, as well as data characterizing the initiation, explosive performance and detonation anomalies are obtained. This information can serve as the basis for empirical or modeled improvements to blasting operations. A summary of the special CORRTEX features and well developed analysis techniques together with the experiment designs, data, and conclusions regarding the measurements and explosive performance from several array detonations and the Chemical Kiloton Experiment, 2.9 million pounds of an ammonium nitrate-fuel oil (ANFO) and emulsion blend conducted on the Nevada Test Site in 1993, are presented.

  15. PDF and QCD effects in the precision measurement of the W boson mass at CDF

    SciTech Connect (OSTI)

    Beecher, Daniel; /University Coll. London

    2011-01-01

    A sample of W {yields} e{nu} (W {yields} {mu}{nu}) and Z{sup 0} {yields} e{sup +}e{sup -} (Z{sup 0} {yields} {mu}{sup +}{mu}{sup -}) events recorded by the CDF detector for p{bar p} collisions at {radical}s = 1.96 TeV are used to evaluate the systematic uncertainty in the determination of the W boson mass arising from uncertainties in the parton distribution functions and higher-order QCD effects. The systematic contribution of PDFs is determined to be 10 MeV/c{sup 2} for MSTW2008 NLO and 12 MeV/c{sup 2} for CTEQ6.6. The total systematic contribution arising from higher-order QCD effects in 9 MeV/c{sup 2}. The Z{sup 0} events are used to extract improved estimates of the phenomenological parameters in the BLNY model that describes low transverse momentum.

  16. CDF measurement of the top quark mass in the lepton + jets channel using the multivariate template method

    SciTech Connect (OSTI)

    Freeman, John; /Fermilab

    2004-12-01

    The authors measure the mass of the top quark using 162 pb{sup -1} of data collected by the CDF experiment at FNAL in Run II. The decay chain t{bar t} {yields} bq{bar q}{bar b}lv is studied using a novel technique called the Multivariate Template Method (MTM). Using this technique they obtain a result of M{sub top} = 179.6{sub -6.3}{sup +6.4} {+-} 6.8 GeV/c{sup 2} for the top quark.

  17. Pinning Down the Mechanism of Neutrinoless Double {beta} Decay with Measurements in Different Nuclei

    SciTech Connect (OSTI)

    Deppisch, Frank [Deutsches Elektronen-Synchrotron (DESY), D-22603 Hamburg (Germany); Paes, Heinrich [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487 (United States)

    2007-06-08

    A measurement of neutrinoless double beta decay in one isotope does not allow us to determine the underlying physics mechanism. We discuss the discrimination of mechanisms for neutrinoless double beta decay by comparing ratios of half-life measurements for different isotopes. Six prominent examples for specific new physics contributions to neutrinoless double beta decay are analyzed. We find that the change in corresponding ratios of half lives varies from 60% for supersymmetric models up to a factor of 5-20 for extra-dimensional and left-right-symmetric mechanisms.

  18. Ultra-Sensitive Measurements of 233U by Accelerator Mass Spectrometry for National Security Applications.

    SciTech Connect (OSTI)

    Tumey, S J; Brown, T A; Buchholz, B A; Hamilton, T F; Hutcheon, I D; Williams, R W

    2009-07-13

    By making modifications to our previously established measurement setup, we increased our abundance sensitivity for {sup 233}U by three orders of magnitude and can now measure {sup 233}U/{sup 238}U ratios as low as 10{sup -13}. Because {sup 233}U has separate production pathways than {sup 236}U, it can provide valuable information on the particular source of anthropogenic uranium in a sample. We demonstrated the utility of our improved capability by using {sup 233}U to distinguish separate sources of anthropogenic uranium in a set of samples collected from a contaminated site. In the future, we plan to apply our new capability to characterizing {sup 233}U in a wide range of uranium materials.

  19. Charge carrier effective mass and concentration derived from combination of Seebeck coefficient and Te125 NMR measurements in complex tellurides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Levin, E. M.

    2016-06-27

    Thermoelectric materials utilize the Seebeck effect to convert heat to electrical energy. The Seebeck coefficient (thermopower), S, depends on the free (mobile) carrier concentration, n, and effective mass, m*, as S ~ m*/n2/3. The carrier concentration in tellurides can be derived from 125Te nuclear magnetic resonance (NMR) spin-lattice relaxation measurements. The NMR spin-lattice relaxation rate, 1/T1, depends on both n and m* as 1/T1~(m*)3/2n (within classical Maxwell-Boltzmann statistics) or as 1/T1~(m*)2n2/3 (within quantum Fermi-Dirac statistics), which challenges the correct determination of the carrier concentration in some materials by NMR. Here it is shown that the combination of the Seebeck coefficientmore » and 125Te NMR spin-lattice relaxation measurements in complex tellurides provides a unique opportunity to derive the carrier effective mass and then to calculate the carrier concentration. This approach was used to study AgxSbxGe50–2xTe50, well-known GeTe-based high-efficiency tellurium-antimony-germanium-silver thermoelectric materials, where the replacement of Ge by [Ag+Sb] results in significant enhancement of the Seebeck coefficient. Thus, values of both m* and n derived using this combination show that the enhancement of thermopower can be attributed primarily to an increase of the carrier effective mass and partially to a decrease of the carrier concentration when the [Ag+Sb] content increases.« less

  20. Validating mass spectrometry measurements of nuclear materials via a non-contact volume analysis method of ion sputter craters

    SciTech Connect (OSTI)

    Willingham, David G.; Naes, Benjamin E.; Fahey, Albert J.

    2015-01-01

    A combination of secondary ion mass spectrometry, optical profilometry and a statistically-driven algorithm was used to develop a non-contact volume analysis method to validate the useful yields of nuclear materials. The volume analysis methodology was applied to ion sputter craters created in silicon and uranium substrates sputtered by 18.5 keV O- and 6.0 keV Ar+ ions. Sputter yield measurements were determined from the volume calculations and were shown to be comparable to Monte Carlo calculations and previously reported experimental observations. Additionally, the volume calculations were used to determine the useful yields of Si+, SiO+ and SiO2+ ions from the silicon substrate and U+, UO+ and UO2+ ions from the uranium substrate under 18.5 keV O- and 6.0 keV Ar+ ion bombardment. This work represents the first steps toward validating the interlaboratory and cross-platform performance of mass spectrometry for the analysis of nuclear materials.

  1. Measurement and Interpretation of Moments of the Combined Hadronic Mass and Energy Spectrum in Inclusive Semileptonic B-Meson Decays

    SciTech Connect (OSTI)

    Klose, Verena; /Dresden, Tech. U.

    2011-08-12

    This thesis presents first measurements of moments of the hadronic n{sub X}{sup 2} distribution measured in inclusive semileptonic decays of B mesons to final states containing a charm quark, B {yields} X{sub c}{ell}{nu}. The variable n{sub X}{sup 2} is a combination of the invariant mass of the charmed meson m{sub X}, its energy in the B-meson rest-frame E{sub X;BRF}, and a constant {tilde {Lambda}} = 0.65 GeV, n{sub X}{sup 2} = m{sub X}{sup 2}c{sup 4}-2{tilde {Lambda}}E{sub X,BRF} + {tilde {Lambda}}{sup 2}. The moments with k = 2,4,6 are measured as proposed by theory to constrain assumptions made in the theoretical description of inclusive observables in semileptonic B-meson decays. This description uses Heavy Quark Expansion (HQE), an effective QCD combined with an Operator Product Expansion. The measurement is based on a sample of 231.6 million e{sup +}e{sup -} {yields} {Upsilon}(4S) {yields} B{bar B} events recorded with the BABAR experiment at the PEP-II e{sup +}e{sup -}-storage rings at SLAC. We reconstruct the semileptonic decay by identifying a charged lepton in events tagged by a fully reconstructed hadronic decay of the second B meson. Correction procedures are derived from Monte Carlo simulations to ensure an unbiased measurement of the moments of the n{sub X}{sup 2} distribution. All moments are measured requiring minimum lepton momenta between 0.8 GeV/c and 1.9 GeV/c in the rest frame of the B meson. Performing a simultaneous fit to the measured moments up to order k = 6 combined with other measurements of moments of the lepton-energy spectrum in decays B {yields} X{sub c}{ell}{nu} and moments of the photon-energy spectrum in decays B {yields} X{sub s}{gamma}, we determine the quark-mixing parameter |V{sub cb}|, the bottom and charm quark masses, the semileptonic branching fraction {Beta}(B {yields} X{sub c}{ell}{nu}), and four non-perturbative heavy quark parameters. Using HQE calculations in the kinetic scheme up

  2. Measurement of the top-quark mass in all-jets $$t\\bar{t}$$ events in pp collisions at $$\\sqrt{s}$$=7 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chatrchyan, Serguei

    2013-07-17

    The mass of the top quark is measured using a sample ofmore » $$t\\bar{t}$$ candidate events with at least six jets in the final state. The sample is selected from data collected with the CMS detector in pp collisions at $$\\sqrt{s}$$ = 7 TeV in 2011 and corresponds to an integrated luminosity of 3.54 inverse femtobarns. The mass is reconstructed for each event employing a kinematic fit of the jets to a $$t\\bar{t}$$ hypothesis. The top-quark mass is measured to be 173.49 $$\\pm$$ 0.69 (stat.) $$\\pm$$ 1.21 (syst.) GeV. A combination with previously published measurements in other decay modes by CMS yields a mass of 173.54 $$\\pm$$ 0.33 (stat.) $$\\pm$$ 0.96 (syst.) GeV.« less

  3. Measurement of the top-quark mass in all-jets $t\\bar{t}$ events in pp collisions at $\\sqrt{s}$=7 TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei

    2013-07-17

    The mass of the top quark is measured using a sample of $t\\bar{t}$ candidate events with at least six jets in the final state. The sample is selected from data collected with the CMS detector in pp collisions at $\\sqrt{s}$ = 7 TeV in 2011 and corresponds to an integrated luminosity of 3.54 inverse femtobarns. The mass is reconstructed for each event employing a kinematic fit of the jets to a $t\\bar{t}$ hypothesis. The top-quark mass is measured to be 173.49 $\\pm$ 0.69 (stat.) $\\pm$ 1.21 (syst.) GeV. A combination with previously published measurements in other decay modes by CMS yields a mass of 173.54 $\\pm$ 0.33 (stat.) $\\pm$ 0.96 (syst.) GeV.

  4. Mass composition studies of Ultra High Energy cosmic rays through the measurement of the Muon Production Depths at the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Collica, Laura

    2014-01-01

    The Pierre Auger Observatory (Auger) in Argentina studies Ultra High Energy Cosmic Rays (UHECRs) physics. The flux of cosmic rays at these energies (above 1018 eV) is very low (less than 100 particle/km2-year) and UHECR properties must be inferred from the measurements of the secondary particles that the cosmic ray primary produces in the atmosphere. These particles cascades are called Extensive Air Showers (EAS) and can be studied at ground by deploying detectors covering large areas. The EAS physics is complex, and the properties of secondary particles depend strongly on the first interaction, which takes place at an energy beyond the ones reached at accelerators. As a consequence, the analysis of UHECRs is subject to large uncertainties and hence many of their properties, in particular their composition, are still unclear. Two complementary techniques are used at Auger to detect EAS initiated by UHE- CRs: a 3000 km2 surface detector (SD) array of water Cherenkov tanks which samples particles at ground level and fluorescence detectors (FD) which collect the ultraviolet light emitted by the de-excitation of nitrogen nuclei in the atmosphere, and can operate only in clear, moonless nights. Auger is the largest cosmic rays detector ever built and it provides high-quality data together with unprecedented statistics. The main goal of this thesis is the measurement of UHECR mass composition using data from the SD of the Pierre Auger Observatory. Measuring the cosmic ray composition at the highest energies is of fundamental importance from the astrophysical point of view, since it could discriminate between different scenarios of origin and propagation of cosmic rays. Moreover, mass composition studies are of utmost importance for particle physics. As a matter of fact, knowing the composition helps in exploring the hadronic interactions at ultra-high energies, inaccessible to present accelerator experiments.

  5. Measurement of the top-quark mass in the fully hadronic decay channel from ATLAS data at √s=7 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Khalek, S. Abdel; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; et al

    2015-04-23

    In this study, the mass of the top quark is measured in a data set corresponding to 4.6 fb-1 of proton–proton collisions with centre-of-mass energy √s=7 TeV collected by the ATLAS detector at the LHC. Events consistent with hadronic decays of top–antitop quark pairs with at least six jets in the final state are selected. The substantial background from multijet production is modelled with data-driven methods that utilise the number of identified b-quark jets and the transverse momentum of the sixth leading jet, which have minimal correlation. The top-quark mass is obtained from template fits to the ratio of three-jetmore » to dijet mass. The three-jet mass is calculated from the three jets produced in a top-quark decay. Using these three jets the dijet mass is obtained from the two jets produced in the W boson decay. The top-quark mass obtained from this fit is thus less sensitive to the uncertainty in the energy measurement of the jets. A binned likelihood fit yields a top-quark mass of mt=175.1±1.4(stat.) ±1.2(syst.) GeV.« less

  6. Measurement of the top-quark mass in the fully hadronic decay channel from ATLAS data at √s=7 TeV

    SciTech Connect (OSTI)

    Aad, G.; Abbott, B.; Abdallah, J.; Khalek, S. Abdel; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyka, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.

    2015-04-23

    In this study, the mass of the top quark is measured in a data set corresponding to 4.6 fb-1 of proton–proton collisions with centre-of-mass energy √s=7 TeV collected by the ATLAS detector at the LHC. Events consistent with hadronic decays of top–antitop quark pairs with at least six jets in the final state are selected. The substantial background from multijet production is modelled with data-driven methods that utilise the number of identified b-quark jets and the transverse momentum of the sixth leading jet, which have minimal correlation. The top-quark mass is obtained from template fits to the ratio of three-jet to dijet mass. The three-jet mass is calculated from the three jets produced in a top-quark decay. Using these three jets the dijet mass is obtained from the two jets produced in the W boson decay. The top-quark mass obtained from this fit is thus less sensitive to the uncertainty in the energy measurement of the jets. A binned likelihood fit yields a top-quark mass of mt=175.1±1.4(stat.) ±1.2(syst.) GeV.

  7. Measurement of the top quark mass using the template method in the lepton plus jets channel with in situ W ---> j j calibration at CDF-II

    SciTech Connect (OSTI)

    Adelman, Jahred A.; Arguin, J.F.; Bellettini, G.; Brubaker, E.; Budagov, J.; Chlachidze, G.; Demortier, L.; Gibson, A.; Kim, S.; Kim, Y.K.; Maruyama, T.; Sato, K.; Shochet, M.; Sinervo, P.; Tomura, T.; Velev, G.; Xie, S.; Yang, U.K.; /Chicago U. /Toronto U. /INFN, Pisa /Dubna, JINR /Rockefeller U. /LBL, Berkeley /Tsukuba U. /Fermilab

    2006-05-01

    We report an updated measurement of the top quark mass in the lepton plus jets channel of t{bar t} events from p{bar p} collisions at {radical}s = 1.96 TeV. This measurement uses a dataset with integrated luminosity of 680 pb{sup -1}, containing 360 t{bar t} candidates separated into four subsamples. A top quark mass is reconstructed for each event by using energy and momentum constraints on the top quark pair decay products. We also employ the reconstructed mass of hadronic W boson decays W {yields} jj to constrain in situ the largest systematic uncertainty of the top quark mass measurement: the jet energy scale. Monte Carlo templates of the reconstructed top quark and W boson mass are produced as a function of the true top quark mass and the jet energy scale. The distribution of reconstructed top quark and W boson mass in the data are compared to the Monte Carlo templates using a likelihood fit to obtain: M{sub top} = 173.4 {+-} 2.8 GeV/c{sup 2}.

  8. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; Davies, J. E.; Lewis, R. R.; Crow, J. P.; Poole, C. A.; Grimes, T. S.; Giglio, J. J.

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determinemore » 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.« less

  9. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    SciTech Connect (OSTI)

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; Davies, J. E.; Lewis, R. R.; Crow, J. P.; Poole, C. A.; Grimes, T. S.; Giglio, J. J.

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.

  10. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    SciTech Connect (OSTI)

    J.J. Horkley; K.P E.M. Gantz; J.E. Davis; R.R. Lewis; J.P. Crow; C.A. Poole; T.S. Grimes; J.J. Giglio

    2015-03-01

    t Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure spike solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for age determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution,

  11. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    SciTech Connect (OSTI)

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; Davies, J. E.; Lewis, R. R.; Crow, J. P.; Poole, C. A.; Grimes, T. S.; Giglio, J. J.

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure spike solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for age determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.

  12. Measurement of the Top Quark Mass and ppbar -> ttbar Cross Section in the All-Hadronic Mode with the CDFII Detector

    SciTech Connect (OSTI)

    Aaltonen, T.; Adelman, J.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.; Apresyan, A.; /Purdue U. /Waseda U.

    2010-02-01

    We present a measurement of the top quark mass and of the top-antitop pair production cross section using p{bar p} data collected with the CDF II detector at the Tevatron Collider at the Fermi National Accelerator Laboratory and corresponding to an integrated luminosity of 2.9 fb{sup -1}. We select events with six or more jets satisfying a number of kinematical requirements imposed by means of a neural network algorithm. At least one of these jets must originate from a b quark, as identified by the reconstruction of a secondary vertex inside the jet. The mass measurement is based on a likelihood fit incorporating reconstructed mass distributions representative of signal and background, where the absolute jet energy scale (JES) is measured simultaneously with the top quark mass. The measurement yields a value of 174.8 {+-} 2.4(stat+JES){sub -1.0}{sup +1.2}(syst)GeV/c{sup 2}, where the uncertainty from the absolute jet energy scale is evaluated together with the statistical uncertainty. The procedure measures also the amount of signal from which we derive a cross section, {sigma}{sub t{bar t}} = 7.2 {+-} 0.5(stat) {+-} 1.0(syst) {+-} 0.4(lum) pb, for the measured values of top quark mass and JES.

  13. Measurement of the top-quark mass in the lepton+jets channel using a matrix element technique with the CDF II detector

    SciTech Connect (OSTI)

    Aaltonen, T; Alvarez Gonzalez, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A

    2011-10-14

    A measurement of the top-quark mass is presented using Tevatron data from proton-antiproton collisions at center-of-mass energy ?s = 1.96 TeV collected with the CDF II detector. Events are selected from a sample of candidates for production of tt? pairs that decay into the lepton+jets channel. The top-quark mass is measured with an unbinned maximum likelihood method where the event probability density functions are calculated using signal and background matrix elements, as well as a set of parameterized jet-to-parton transfer functions. The likelihood function is maximized with respect to the top-quark mass, the signal fraction in the sample, and a correction to the jet energy scale (JES) calibration of the calorimeter jets. The simultaneous measurement of the JES correction ({Delta}{sub JES}) amounts to an additional in situ jet energy calibration based on the known mass of the hadronically decaying W boson. Using the data sample of 578 lepton+jets candidate events, corresponding to 3.2 fb-1 of integrated luminosity, the top-quark mass is measured to be mt = 172.4 1.4 (stat + ?JES) 1.3 (syst) GeV/c2.

  14. Measurement of the top-quark mass in the lepton+jets channel using a matrix element technique with the CDF II detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.

    2011-10-14

    A measurement of the top-quark mass is presented using Tevatron data from proton-antiproton collisions at center-of-mass energy ?s = 1.96 TeV collected with the CDF II detector. Events are selected from a sample of candidates for production of tt? pairs that decay into the lepton+jets channel. The top-quark mass is measured with an unbinned maximum likelihood method where the event probability density functions are calculated using signal and background matrix elements, as well as a set of parameterized jet-to-parton transfer functions. The likelihood function is maximized with respect to the top-quark mass, the signal fraction in the sample, and amorecorrection to the jet energy scale (JES) calibration of the calorimeter jets. The simultaneous measurement of the JES correction ({Delta}{sub JES}) amounts to an additional in situ jet energy calibration based on the known mass of the hadronically decaying W boson. Using the data sample of 578 lepton+jets candidate events, corresponding to 3.2 fb-1 of integrated luminosity, the top-quark mass is measured to be mt = 172.4 1.4 (stat + ?JES) 1.3 (syst) GeV/c2.less

  15. Measurement of the top-quark mass in the lepton+jets channel using a matrix element technique with the CDF II detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.

    2011-10-14

    A measurement of the top-quark mass is presented using Tevatron data from proton-antiproton collisions at center-of-mass energy √s = 1.96 TeV collected with the CDF II detector. Events are selected from a sample of candidates for production of tt̄ pairs that decay into the lepton+jets channel. The top-quark mass is measured with an unbinned maximum likelihood method where the event probability density functions are calculated using signal and background matrix elements, as well as a set of parameterized jet-to-parton transfer functions. The likelihood function is maximized with respect to the top-quark mass, the signal fraction in the sample, and amore » correction to the jet energy scale (JES) calibration of the calorimeter jets. The simultaneous measurement of the JES correction ({Delta}{sub JES}) amounts to an additional in situ jet energy calibration based on the known mass of the hadronically decaying W boson. Using the data sample of 578 lepton+jets candidate events, corresponding to 3.2 fb-1 of integrated luminosity, the top-quark mass is measured to be mt = 172.4± 1.4 (stat + ΔJES) ± 1.3 (syst) GeV/c2.« less

  16. Top quark mass measurement in the dilepton channel during the D0 experiment at the Tevatron. Mesure de la masse du quark top dans les canaux di-leptoniques auprès de l’expérience DØ au Tevatron

    SciTech Connect (OSTI)

    Croc, Aurelien

    2011-01-01

    The top quark is the heaviest standard model quark. Discovered in 1995 by the two Tevatron experiments it has atypical properties. In particular its time life is so short that it decays before hadronizing, so the top quark mass could be measured with a high precision. Data collected by the DØ experiment between 2002 and 2009, which represent an integrated luminosity of 5.4 fb⁻¹, are used to measure the top quark mass by using the matrix element method in the three dilepton channels: dielectron, electron--muon and dimuon. The measured mass, 174.0 ± 1.8 (stat.) ± 2.4 (syst.) GeV, is in a good agreement with other measurements and limited by the systematic uncertainties for the first time in these channels. In this thesis different approaches have been studied to improve the accuracy of this measurement: the use of b-quark jet identification in order to optimize the selection of top--anti-top events and a better determination of the main systematic uncertainties. A special attention has been paid to the Monte-Carlo simulation of muons in DØ: the improved smearing procedure for the simulated muons, discussed in this thesis, will be used to increase the accuracy of the top properties measurements as well as the precision of many other DØ measurements.

  17. SU-E-T-543: Measurement of Neutron Activation From Different High Energy Varian Linear Accelerators

    SciTech Connect (OSTI)

    Thatcher, T; Madsen, S; Sudowe, R; Meigooni, A Soleimani

    2015-06-15

    Purpose: Linear accelerators producing photons above 10 MeV may induce photonuclear reactions in high Z components of the accelerator. These liberated neutrons can then activate the structural components of the accelerator and other materials in the beam path through neutron capture reactions. The induced activity within the accelerator may contribute to additional dose to both patients and personnel. This project seeks to determine the total activity and activity per activated isotope following irradiation in different Varian accelerators at energies above 10 MeV. Methods: A Varian 21IX accelerator was used to irradiate a 30 cm × 30 cm × 20 cm solid water phantom with 15 MV x-rays. The phantom was placed at an SSD of 100 cm and at the center of a 20 cm × 20 cm field. Activation induced gamma spectra were acquired over a 5 minute interval after 1 and 15 minutes from completion of the irradiation. All measurements were made using a CANBERRA Falcon 5000 Portable HPGe detector. The majority of measurements were made in scattering geometry with the detector situated at 90° to the incident beam, 30 cm from the side of the phantom and approximately 10 cm from the top. A 5 minute background count was acquired and automatically subtracted from all subsequent measurements. Photon spectra were acquired for both open and MLC fields. Results: Based on spectral signatures, nuclides have been identified and their activities calculated for both open and MLC fields. Preliminary analyses suggest that activities from the activation products in the microcurie range. Conclusion: Activation isotopes have been identified and their relative activities determined. These activities are only gross estimates since efficiencies have not been determined for this source-detector geometry. Current efforts are focused on accurate determination of detector efficiencies using Monte Carlo calculations.

  18. SU-E-I-53: Variation in Measurements of Breast Skin Thickness Obtained Using Different Imaging Modalities

    SciTech Connect (OSTI)

    Nguyen, U; Kumaraswamy, N; Markey, M

    2014-06-01

    Purpose: To investigate variation in measurements of breast skin thickness obtained using different imaging modalities, including mammography, computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI). Methods: Breast skin thicknesses as measured by mammography, CT, ultrasound, and MRI were compared. Mammographic measurements of skin thickness were obtained from published studies that utilized standard positioning (upright) and compression. CT measurements of skin thickness were obtained from a published study of a prototype breast CT scanner in which the women were in the prone position and the breast was uncompressed. Dermatological ultrasound exams of the breast skin were conducted at our institution, with the subjects in the upright position and the breast uncompressed. Breast skin thickness was calculated from breast MRI exams at our institution, with the patient in the prone position and the breast uncompressed. Results: T tests for independent samples demonstrated significant differences in the mean breast skin thickness as measured by different imaging modalities. Repeated measures ANOVA revealed significant differences in breast skin thickness across different quadrants of the breast for some modalities. Conclusion: The measurement of breast skin thickness is significantly different across different imaging modalities. Differences in the amount of compression and differences in patient positioning are possible reasons why measurements of breast skin thickness vary by modality.

  19. THE DEFLECTION OF THE TWO INTERACTING CORONAL MASS EJECTIONS OF 2010 MAY 23-24 AS REVEALED BY COMBINED IN SITU MEASUREMENTS AND HELIOSPHERIC IMAGING

    SciTech Connect (OSTI)

    Lugaz, N.; Farrugia, C. J.; Davies, J. A.; Davis, C. J.; Moestl, C.; Roussev, I. I.; Temmer, M.

    2012-11-01

    In 2010 May 23-24, Solar Dynamics Observatory (SDO) observed the launch of two successive coronal mass ejections (CMEs), which were subsequently tracked by the SECCHI suite on board STEREO. Using the COR2 coronagraphs and the heliospheric imagers (HIs), the initial direction of both CMEs is determined to be slightly west of the Sun-Earth line. We derive the CME kinematics, including the evolution of the CME expansion until 0.4 AU. We find that, during the interaction, the second CME decelerates from a speed above 500 km s{sup -1} to 380 km s{sup -1}, the speed of the leading edge of the first CME. STEREO observes a complex structure composed of two different bright tracks in HI2-A but only one bright track in HI2-B. In situ measurements from Wind show an 'isolated' interplanetary CME, with the geometry of a flux rope preceded by a shock. Measurements in the sheath are consistent with draping around the transient. By combining remote-sensing and in situ measurements, we determine that this event shows a clear instance of deflection of two CMEs after their collision, and we estimate the deflection of the first CME to be about 10 Degree-Sign toward the Sun-Earth line. The arrival time, arrival speed, and radius at Earth of the first CME are best predicted from remote-sensing observations taken before the collision of the CMEs. Due to the over-expansion of the CME after the collision, there are few, if any, signs of interaction in in situ measurements. This study illustrates that complex interactions during the Sun-to-Earth propagation may not be revealed by in situ measurements alone.

  20. Measurement of three-jet production cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector

    SciTech Connect (OSTI)

    Aad, G.

    2015-05-27

    Double-differential three-jet production cross-sections are measured in proton–proton collisions at a centre-of-mass energy of √s=7TeV using the ATLAS detector at the large hadron collider. The measurements are presented as a function of the three-jet mass (mjjj), in bins of the sum of the absolute rapidity separations between the three leading jets (|Y*|). Invariant masses extending up to 5 TeV are reached for 8<|Y*|<10. These measurements use a sample of data recorded using the ATLAS detector in 2011, which corresponds to an integrated luminosity of 4.51 fb11. Jets are identified using the anti-kt algorithm with two different jet radius parameters, R=0.4 and R=0.6. The dominant uncertainty in these measurements comes from the jet energy scale. Next-to-leading-order QCD calculations corrected to account for non-perturbative effects are compared to the measurements. Good agreement is found between the data and the theoretical predictions based on most of the available sets of parton distribution functions, over the full kinematic range, covering almost seven orders of magnitude in the measured cross-section values.

  1. A precise measurement of the top quark mass in dilepton final states using 9.7 fb$^{-1}$ of D{Ø} Run II data

    SciTech Connect (OSTI)

    Liu, Huanzhao

    2015-05-16

    The top quark is a very special fundamental particle in the Standard Model (SM) mainly due to its heavy mass. The top quark has extremely short lifetime and decays before hadronization. This reduces the complexity for the measurement of its mass. The top quark couples very strongly to the Higgs boson since the fermion-Higgs Yukawa coupling linearly depends on the fermion’s mass. Therefore, the top quark is also heavily involved in Higgs production and related study. A precise measurement of the top quark mass is very important, as it allows for self-consistency check of the SM, and also gives a insight about the stability of our universe in the SM context. This dissertation presents my work on the measurement of the top quark mass in dilepton final states of t$\\bar{t}$ events in p$\\bar{p}$ collisions at √s = 1.96 TeV, using the full DØ Run II data corresponding to an integrated luminosity of 9.7 fb-1 at the Fermilab Tevatron. I extracted the top quark mass by reconstructing event kinematics, and integrating over expected neutrino rapidity distributions to obtain solutions over a scanned range of top quark mass hypotheses. The analysis features a comprehensive optimization that I made to minimize the expected statistical uncertainty. I also improve the calibration of jets in dilepton events by using the calibration determined in t$\\bar{t}$ → lepton+jets events, which reduces the otherwise limiting systematic uncertainty from the jet energy scale. The measured mass is 173.11 ± 1.34(stat)+0.83 -0.72(sys) GeV .

  2. Radiation environment simulations at the Tevatron, studies of the beam profile and measurement of the Bc meson mass

    SciTech Connect (OSTI)

    Nicolas, Ludovic Y.

    2005-09-01

    The description of a computer simulation of the CDF detector at Fermilab and the adjacent accelerator parts is detailed, with MARS calculations of the radiation background in various elements of the model due to the collision of beams and machine-related losses. Three components of beam halo formation are simulated for the determination of the principal source of radiation background in CDF due to beam losses. The effect of a collimator as a protection for the detector is studied. The simulation results are compared with data taken by a CDF group. Studies of a 150 GeV Tevatron proton beam are performed to investigate the transverse diffusion growth and distribution. A technique of collimator scan is used to scrape the beam under various experimental conditions, and computer programs are written for the beam reconstruction. An average beam halo growth speed is given and the potential of beam tail reconstruction using the collimator scan is evaluated. A particle physics analysis is conducted in order to detect the B{sub c} {yields} J/{psi}{pi} decay signal with the CDF Run II detector in 360 pb{sup -1} of data. The cut variables and an optimization method to determine their values are presented along with a criterion for the detection threshold of the signal. The mass of the B{sub c} meson is measured with an evaluation of the significance of the signal.

  3. Isolation of 163Ho from dysprosium target material by HPLC for neutrino mass measurements

    SciTech Connect (OSTI)

    Mocko, Veronika; Taylor, Wayne  A.; Nortier, Francois M.; Engle, Jonathan  W.; Barnhart, Todd  E.; Nickles, Robert  J.; Pollington, Anthony  D.; Kunde, Gerd  J.; Rabin, Michael  W.; Birnbaum, Eva  R.

    2015-04-29

    The rare earth isotope 163Ho is of interest for neutrino mass measurements. This report describes the isolation of 163Ho from a proton-irradiated dysprosium target and its purification. A Dy metal target was irradiated with 16 MeV protons for 10 h. After target dissolution, 163Ho was separated from the bulk Dy via cation-exchange high performance liquid chromatography using 70 mmol dm–3 α-hydroxyisobutyric acid as the mobile phase. Subsequent purification of the collected Ho fraction was performed to remove the α-hydroxyisobutyrate chelating agent and to concentrate the Ho in a low ionic strength aqueous matrix. The final solution was characterized by MC-ICP-MS to determine the 163Ho/165Ho ratio, 163Ho and the residual Dy content. The HPLC purification process resulted in a decontamination factor 1.4E5 for Dy. As a result, the isolated Ho fraction contained 24.8 ±1.3 ng of 163Ho corresponding to holmium recovery of 72 ± 3%.

  4. Measurement of the inclusive jet cross section in proton-antiproton collisions at the center-of-mass energy of 1.96 TeV

    SciTech Connect (OSTI)

    Voutilainen, Mikko Antero; /Helsinki Inst. of Phys. /Helsinki U. of Tech. /Nebraska U. /Saclay

    2008-07-01

    This thesis studies the high-energy collisions of protons and antiprotons. The data used in the measurement were collected during 2004-2005 with the D0 detector at the Tevatron Collider of the Fermi National Accelerator Laboratory and correspond to 0.7 fb{sup -1} of integrated luminosity. High energy hadron collisions usually produce collimated sprays of particles called jets. The energy of the jets is measured using a liquid Argon-Uranium calorimeter and the production angle is determined with the help of silicon microstrip and scintillating fiber trackers. The inclusive jet cross section in proton-antiproton collisions is measured as a function of jet transverse momentum p{sub T} in six bins of jet rapidity at the center-of-mass energy {radical}s = 1.96 TeV. The measurement covers jet transerve momenta from 50 GeV up to 600 GeV and jet rapidities up to |y| = 2.4. The data are collected using a set of seven single jet triggers. Event and jet cuts are applied to remove non-physical backgrounds and cosmic-ray interactions. The data are corrected for jet energy calibration, cut and trigger efficiencies and finite jet p{sub T} resolution. The corrections are determined from data and the methods are tested with Monte Carlo simulation. The main experimental challenges in the measurement are the calibration of jet energies and the determination of the jet p{sub T} resolution. New methods are developed for the jet energy calibration that take into account physical differences between the {gamma}+jet and dijet calibration samples arising from quark and gluon jet differences. The uncertainty correlations are studied and provided as a set of uncertainty sources. The production of particle jets in hadron collisions is described by the theory of quantum chromodynamics (QCD). When the transverse jet momentum is large, the contributions from long-distance physics processes are small and the production rates of jets can be predicted by perturbative QCD. The inclusive jet cross

  5. Measurement of the Top Quark Mass in p anti-p Collisions at s**(1/2) = 1.96-TeV using the Decay Length Technique

    SciTech Connect (OSTI)

    Abulencia, A.; Adelman, J.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; Annovi, A.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara /Cantabria Inst. of Phys.

    2006-12-01

    We report the first measurement of the top quark mass using the decay length technique in p{bar p} collisions at a center-of-mass energy of 1.96 TeV. This technique uses the measured flight distance of the b hadron to infer the mass of the top quark in lepton plus jets events with missing transverse energy. It relies solely on tracking and avoids the jet energy scale uncertainty that is common to all other methods used so far. We apply our novel method to a 695 pb{sup -1} data sample recorded by the CDF II detector at Fermilab and extract a measurement of m{sub t} = 180.7{sub -13.4}{sup +15.5}(stat.) {+-} 8.6 (syst.) GeV/c{sup 2}. While the uncertainty of this result is larger than that of other measurements, the dominant uncertainties in the decay length technique are uncorrelated with those in other methods. This result can help reduce the overall uncertainty when combined with other existing measurements of the top quark mass.

  6. Measurement of the double differential diject mass cross section in pp(bar) collisions at sqrt(s) = 1.96 TeV

    SciTech Connect (OSTI)

    Rominsky, Mandy Kathleen; /Oklahoma U.

    2009-07-01

    This thesis presents the analysis of the double differential dijet mass cross section, measured at the D0 detector in Batavia, IL, using p{bar p} collisions at a center of mass energy of {radical}s = 1.96 TeV. The dijet mass was calculated using the two highest p{sub T} jets in the event, with approximately 0.7 fb{sup -1} of data collected between 2004 and 2005. The analysis was presented in bins of dijet mass (M{sub JJ}) and rapidity (y), and extends the measurement farther in M{sub JJ} and y than any previous measurement. Corrections due to detector effects were calculated using a Monte Carlo simulation and applied to data. The errors on the measurement consist of statistical and systematic errors, of which the Jet Energy Scale was the largest. The final result was compared to next-to-leading order theory and good agreement was found. These results may be used in the determination of the proton parton distribution functions and to set limits on new physics.

  7. Demonstration of femtosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements in U-10Mo nuclear fuel foils

    SciTech Connect (OSTI)

    Havrilla, George Joseph; Gonzalez, Jhanis

    2015-06-10

    The use of femtosecond laser ablation inductively coupled plasma mass spectrometry was used to demonstrate the feasibility of measuring the isotopic ratio of uranium directly in U-10Mo fuel foils. The measurements were done on both the flat surface and cross sections of bare and Zr clad U-10Mo fuel foil samples. The results for the depleted uranium content measurements were less than 10% of the accepted U235/238 ratio of 0.0020. Sampling was demonstrated for line scans and elemental mapping over large areas. In addition to the U isotopic ratio measurement, the Zr thickness could be measured as well as trace elemental composition if required. A number of interesting features were observed during the feasibility measurements which could provide the basis for further investigation using this methodology. The results demonstrate the feasibility of using fs-LA-ICP-MS for measuring the U isotopic ratio in U-10Mo fuel foils.

  8. Electronic measurement apparatus movable in a cased borehole and compensating for casing resistance differences

    DOE Patents [OSTI]

    Vail, III, William B.

    1991-01-01

    Methods of operation of an apparatus having at least two pairs of voltage measurement electrodes vertically disposed in a cased well to measure the resistivity of adjacent geological formations from inside the cased well. During stationary measurements with the apparatus at a fixed vertical depth within the cased well, the invention herein discloses methods of operation which include a measurement step and subsequent first and second compensation steps respectively resulting in improved accuracy of measurement. The invention also discloses multiple frequency methods of operation resulting in improved accuracy of measurement while the apparatus is simultaneously moved vertically in the cased well. The multiple frequency methods of operation disclose a first A.C. current having a first frequency that is conducted from the casing into formation and a second A.C. current having a second frequency that is conducted along the casing. The multiple frequency methods of operation simultaneously provide the measurement step and two compensation steps necessary to acquire accurate results while the apparatus is moved vertically in the cased well.

  9. Electronic measurement apparatus movable in a cased borehole and compensating for casing resistance differences

    DOE Patents [OSTI]

    Vail, W.B. III.

    1991-12-24

    Methods of operation are described for an apparatus having at least two pairs of voltage measurement electrodes vertically disposed in a cased well to measure the resistivity of adjacent geological formations from inside the cased well. During stationary measurements with the apparatus at a fixed vertical depth within the cased well, the invention herein discloses methods of operation which include a measurement step and subsequent first and second compensation steps respectively resulting in improved accuracy of measurement. The invention also discloses multiple frequency methods of operation resulting in improved accuracy of measurement while the apparatus is simultaneously moved vertically in the cased well. The multiple frequency methods of operation disclose a first A.C. current having a first frequency that is conducted from the casing into formation and a second A.C. current having a second frequency that is conducted along the casing. The multiple frequency methods of operation simultaneously provide the measurement step and two compensation steps necessary to acquire accurate results while the apparatus is moved vertically in the cased well. 6 figures.

  10. Measurement of the Top Quark Mass by Dynamical Likelihood Method using the Lepton + Jets Events with the Collider Detector at Fermilab

    SciTech Connect (OSTI)

    Kubo, Taichi; /Tsukuba U.

    2008-02-01

    We have measured the top quark mass with the dynamical likelihood method. The data corresponding to an integrated luminosity of 1.7fb{sup -1} was collected in proton antiproton collisions at a center of mass energy of 1.96 TeV with the CDF detector at Fermilab Tevatron during the period March 2002-March 2007. We select t{bar t} pair production candidates by requiring one high energy lepton and four jets, in which at least one of jets must be tagged as a b-jet. In order to reconstruct the top quark mass, we use the dynamical likelihood method based on maximum likelihood method where a likelihood is defined as the differential cross section multiplied by the transfer function from observed quantities to parton quantities, as a function of the top quark mass and the jet energy scale(JES). With this method, we measure the top quark mass to be 171.6 {+-} 2.0 (stat.+ JES) {+-} 1.3(syst.) = 171.6 {+-} 2.4 GeV/c{sup 2}.

  11. Measurement of the top quark mass at CDF using the `neutrino phi weighting' template method on a lepton plus isolated track sample

    SciTech Connect (OSTI)

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; /Purdue U. /Waseda U.

    2009-01-01

    We present a measurement of the top quark mass with t{bar t} dilepton events produced in p{bar p} collisions at the Fermilab Tevatron ({radical}s = 1.96 TeV) and collected by the CDF II detector. A sample of 328 events with a charged electron or muon and an isolated track, corresponding to an integrated luminosity of 2.9 fb{sup -1}, are selected as t{bar t} candidates. To account for the unconstrained event kinematics, we scan over the phase space of the azimuthal angles ({phi}{sub {nu}1}, {phi}{sub {nu}2}) of neutrinos and reconstruct the top quark mass for each {phi}{sub {nu}1}, {phi}{sub {nu}2} pair by minimizing a {chi}{sup 2} function in the t{bar t} dilepton hypothesis. We assign {chi}{sup 2}-dependent weights to the solutions in order to build a preferred mass for each event. Preferred mass distributions (templates) are built from simulated t{bar t} and background events, and parameterized in order to provide continuous probability density functions. A likelihood fit to the mass distribution in data as a weighted sum of signal and background probability density functions gives a top quark mass of 165.5{sub -3.3}{sup +3.4}(stat.){+-}3.1(syst.) GeV/c{sup 2}.

  12. Measurement of the 240Pu/239Pu mass ratio using a transition-edge-sensor microcalorimeter for total decay energy spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoover, Andrew S.; Bond, Evelyn M.; Croce, Mark P.; Holesinger, Terry G.; Kunde, Gerd J.; Rabin, Michael W.; Wolfsberg, Laura E.; Bennett, Douglas A.; Hays-Wehle, James P.; Schmidt, Dan R.; et al

    2015-02-27

    In this study, we have developed a new category of sensor for measurement of the 240Pu/239Pu mass ratio from aqueous solution samples with advantages over existing methods. Aqueous solution plutonium samples were evaporated and encapsulated inside of a gold foil absorber, and a superconducting transition-edge-sensor microcalorimeter detector was used to measure the total reaction energy (Q-value) of nuclear decays via heat generated when the energy is thermalized. Since all of the decay energy is contained in the absorber, we measure a single spectral peak for each isotope, resulting in a simple spectral analysis problem with minimal peak overlap. We foundmore » that mechanical kneading of the absorber dramatically improves spectral quality by reducing the size of radioactive inclusions within the absorber to scales below 50 nm such that decay products primarily interact with atoms of the host material. Due to the low noise performance of the microcalorimeter detector, energy resolution values of 1 keV fwhm (full width at half-maximum) at 5.5 MeV have been achieved, an order of magnitude improvement over α-spectroscopy with conventional silicon detectors. We measured the 240Pu/239Pu mass ratio of two samples and confirmed the results by comparison to mass spectrometry values. These results have implications for future measurements of trace samples of nuclear material.« less

  13. Measurement of the 240Pu/239Pu mass ratio using a transition-edge-sensor microcalorimeter for total decay energy spectroscopy

    SciTech Connect (OSTI)

    Hoover, Andrew S.; Bond, Evelyn M.; Croce, Mark P.; Holesinger, Terry G.; Kunde, Gerd J.; Rabin, Michael W.; Wolfsberg, Laura E.; Bennett, Douglas A.; Hays-Wehle, James P.; Schmidt, Dan R.; Swetz, Daniel; Ullom, Joel N.

    2015-02-27

    In this study, we have developed a new category of sensor for measurement of the 240Pu/239Pu mass ratio from aqueous solution samples with advantages over existing methods. Aqueous solution plutonium samples were evaporated and encapsulated inside of a gold foil absorber, and a superconducting transition-edge-sensor microcalorimeter detector was used to measure the total reaction energy (Q-value) of nuclear decays via heat generated when the energy is thermalized. Since all of the decay energy is contained in the absorber, we measure a single spectral peak for each isotope, resulting in a simple spectral analysis problem with minimal peak overlap. We found that mechanical kneading of the absorber dramatically improves spectral quality by reducing the size of radioactive inclusions within the absorber to scales below 50 nm such that decay products primarily interact with atoms of the host material. Due to the low noise performance of the microcalorimeter detector, energy resolution values of 1 keV fwhm (full width at half-maximum) at 5.5 MeV have been achieved, an order of magnitude improvement over α-spectroscopy with conventional silicon detectors. We measured the 240Pu/239Pu mass ratio of two samples and confirmed the results by comparison to mass spectrometry values. These results have implications for future measurements of trace samples of nuclear material.

  14. Improvement in Thermal-Ionization Mass Spectrometry (TIMS) using Total Flash Evaporation (TFE) method for lanthanides isotope ratio measurements in transmutation targets

    SciTech Connect (OSTI)

    Mialle, S.; Gourgiotis, A.; Aubert, M.; Stadelmann, G.; Gautier, C.; Isnard, H.

    2011-07-01

    The experiments involved in the PHENIX french nuclear reactor to obtain precise and accurate data on the total capture cross sections of the heavy isotopes and fission products require isotopic ratios measurements with uncertainty of a few per mil. These accurate isotopic ratio measurements are performed with mass spectrometer equipped with multi-collector system. The major difficulty for the analyses of these actinides and fission products is the low quantity of the initial powder enclosed in steel container (3 to 5 mg) and the very low quantities of products formed (several {mu}g) after irradiation. Specific analytical developments are performed by Thermal Ionization Mass Spectrometry (TIMS) to be able to analyse several nanograms of elements with this technique. A specific method of acquisition named Total Flash Evaporation was adapted in this study in the case of lanthanide measurements for quantity deposited on the filament in the order of 2 ng and applied on irradiated fuel. To validate the analytical approach and discuss about the accuracy of the data, the isotopic ratios obtained by TIMS are compared with other mass spectrometric techniques such as Multiple-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS). (authors)

  15. Isolation and Puification of Uranium Isotopes for Measurement by Mass-Spectrometry (233, 234, 235, 236, 238U) and Alpha Spectrometry (232U)

    SciTech Connect (OSTI)

    Marinelli, R; Hamilton, T; Brown, T; Marchetti, A; Williams, R; Tumey, S

    2006-05-30

    This report describes a standardized methodology used by researchers from the Center for Accelerator Mass Spectrometry (CAMS) (Energy and Environment Directorate) and the Environmental Radiochemistry Group (Chemistry and Materials Science Directorate) at the Lawrence Livermore National Laboratory (LLNL) for the full isotopic analysis of uranium from solution. The methodology has largely been developed for use in characterizing the uranium composition of selected nuclear materials but may also be applicable to environmental studies and assessments of public, military or occupational exposures to uranium using in-vitro bioassay monitoring techniques. Uranium isotope concentrations and isotopic ratios are measured using a combination of Multi Collector Inductively Coupled Plasma Mass Spectrometry (MC ICP-MS), Accelerator Mass Spectrometry (AMS) and Alpha Spectrometry.

  16. Measurement of the Absolute Branching FractionsB to D\\pi, D^*\\pi, D^{**}\\pi with aMissing Mass Method

    SciTech Connect (OSTI)

    Aubert, B.; Bona, M.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; Palano, A.; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; Eigen, G.; Ofte, I.; Stugu, B.; Abrams, G.S.; Battaglia, M.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Karlsruhe U., EKP /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Naples U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Pennsylvania U. /Perugia U. /INFN, Perugia /Pisa U. /INFN, Pisa /Prairie View A-M /Princeton U. /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Stony Brook /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison /Yale U.

    2006-11-30

    We present branching fraction measurements of charged and neutral B decays to D{pi}{sup -}, D*{pi}{sup -} and D**{pi}{sup -} with a missing mass method, based on a sample of 231 million {Upsilon}(4S) {yields} B{bar B} pairs collected by the BABAR detector at the PEP-II e{sup +}e{sup -} collider. One of the B mesons is fully reconstructed and the other one decays to a reconstructed charged {pi} and a companion charmed meson identified by its recoil mass, inferred by kinematics. Here D** refers to the sum of all the non-strange charm meson states with masses in the range 2.2-2.8 GeV/c{sup 2}.

  17. Measurement of the low-mass Drell-Yan differential cross section at √s = 7 TeV using the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2014-06-18

    The differential cross section for the process Z/γ → ℓℓ (ℓ = e,μ) as a function of dilepton invariant mass is measured in pp collisions at √s = 7 TeV at the LHC using the ATLAS detector. The measurement is performed in the e and μ channels for invariant masses between 26 GeV and 66 GeV using an integrated luminosity of 1.6 fb-1 collected in 2011 and these measurements are combined. The analysis is extended to invariant masses as low as 12 GeV in the muon channel using 35 pb-1 of data collected in 2010. The cross sections are determinedmore » within fiducial acceptance regions and corrections to extrapolate the measurements to the full kinematic range are provided. Next-to-next-to-leading-order QCD predictions provide a significantly better description of the results than next-to-leading order QCD calculations, unless the latter are matched to a parton shower calculation.« less

  18. Characterization of a real-time tracer for Isoprene Epoxydiols-derived Secondary Organic Aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; et al

    2015-04-16

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene low-NO oxidation pathways, was quantified by applying Positive Matrix Factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of OA in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the SOAS study, 78% of IEPOX-SOA is accounted for the measured molecular tracers, making itmore » the highest level of molecular identification of an ambient SOA component to our knowledge. Enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O ( fC5H6O = C5H6O+/OA) across multiple field, chamber and source datasets. A background of ~ 1.7 ± 0.1‰ is observed in studies strongly influenced by urban, biomass-burning and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.8‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7‰). Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12–40‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3‰) observed in non IEPOX-derived isoprene-SOA indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA

  19. Measurement of the forward-backward asymmetry in low-mass bottom-quark pairs produced in proton-antiproton collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; et al

    2016-06-02

    We report a measurement of the forward-backward asymmetry, AFB, in bmore » $$\\bar{b}$$ pairs produced in proton-antiproton collisions and identified by muons from semileptonic b-hadron decays. The event sample is collected at a center-of-mass energy of √s=1.96 TeV with the CDF II detector and corresponds to 6.9 fb-1 of integrated luminosity. We obtain an integrated asymmetry of AFB(b$$\\bar{b}$$)=(1.2±0.7)% at the particle level for b-quark pairs with invariant mass, mb$$\\bar{b}$$, down to 40 GeV/c2 and measure the dependence of AFB(b$$\\bar{b}$$) on mb$$\\bar{b}$$. The results are compatible with expectations from the standard model.« less

  20. Top Quark Mass Measurement in the Lepton + Jets Channel Using a Matrix Element Method and \\textit{in situ} Jet Energy Calibration

    SciTech Connect (OSTI)

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; Arisawa, T.; /Waseda U. /Dubna, JINR

    2010-10-01

    A precision measurement of the top quark mass m{sub t} is obtained using a sample of t{bar t} events from p{bar p} collisions at the Fermilab Tevatron with the CDF II detector. Selected events require an electron or muon, large missing transverse energy, and exactly four high-energy jets, at least one of which is tagged as coming from a b quark. A likelihood is calculated using a matrix element method with quasi-Monte Carlo integration taking into account finite detector resolution and jet mass effects. The event likelihood is a function of m{sub t} and a parameter {Delta}{sub JES} used to calibrate the jet energy scale in situ. Using a total of 1087 events, a value of m{sub t} = 173.0 {+-} 1.2 GeV/c{sup 2} is measured.

  1. Assessing Long-Term Wind Conditions by Combining Different Measure-Correlate-Predict Algorithms: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Chowdhury, S.; Messac, A.; Hodge, B. M.

    2013-08-01

    This paper significantly advances the hybrid measure-correlate-predict (MCP) methodology, enabling it to account for variations of both wind speed and direction. The advanced hybrid MCP method uses the recorded data of multiple reference stations to estimate the long-term wind condition at a target wind plant site. The results show that the accuracy of the hybrid MCP method is highly sensitive to the combination of the individual MCP algorithms and reference stations. It was also found that the best combination of MCP algorithms varies based on the length of the correlation period.

  2. PV technology differences and discrepancies in modelling between simulation programs and measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sensitivity and limitations of present and alternative PV models The sensitivity and limitations of present and alternative PV models Steve Ransome - Independent PV Consultant, SRCL, UK Juergen Sutterlueti - TEL Solar, Switzerland Sandia PV Modelling Workshop; Santa Clara, USA 1 st May 2013 Published by Sandia National Laboratories with the permission of the author * Many recent independent outdoor studies find <±5% kWh/kWp (with different rankings between technologies) there's less kWh/kWp

  3. A Measurement of the Top Quark Mass with the D0 Detector at s**(1/2) = 1.96-TeV using the Matrix Element Method

    SciTech Connect (OSTI)

    Kroeninger, Kevin Alexander; /Bonn U.

    2004-04-01

    Using a data set of 158 and 169 pb{sup -1} of D0 Run-II data in the electron and muon plus jets channel, respectively, the top quark mass has been measured using the Matrix Element Method. The method and its implementation are described. Its performance is studied in Monte Carlo using ensemble tests and the method is applied to the Moriond 2004 data set.

  4. Mass calibration and cosmological analysis of the SPT-SZ galaxy cluster sample using velocity dispersion σ v and x-ray Y X measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bocquet, S.; Saro, A.; Mohr, J. J.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Bazin, G.; Benson, B. A.; Bleem, L. E.; et al

    2015-01-30

    Here, we present a velocity-dispersion-based mass calibration of the South Pole Telescope Sunyaev-Zel'dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg2 of the survey along with 63 velocity dispersion (σv) and 16 X-ray YX measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. Our method accounts for cluster selection, cosmological sensitivity, and uncertainties in the mass calibrators. The calibrations using σv and YX are consistent at the 0.6σ level, with the σ v calibration preferring ~16% higher masses. We use the full SPTCL data setmore » (SZ clusters+σv+YX) to measure σ8(Ωm/0.27)0.3 = 0.809 ± 0.036 within a flat ΛCDM model. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming that the sum of the neutrino masses is mν = 0.06 eV, we find the data sets to be consistent at the 1.0σ level for WMAP9 and 1.5σ for Planck+WP. Allowing for larger Σmν further reconciles the results. When we combine the SPTCL and Planck+WP data sets with information from baryon acoustic oscillations and Type Ia supernovae, the preferred cluster masses are 1.9σ higher than the YX calibration and 0.8σ higher than the σ v calibration. Given the scale of these shifts (~44% and ~23% in mass, respectively), we execute a goodness-of-fit test; it reveals no tension, indicating that the best-fit model provides an adequate description of the data. Using the multi-probe data set, we measure Ωm = 0.299 ± 0.009 and σ8 = 0.829 ± 0.011. Within a νCDM model we find Σmν = 0.148 ± 0.081 eV. We present a consistency test of the cosmic growth rate using SPT clusters. Allowing both the growth index γ and the dark energy equation-of-state parameter w to vary, we find γ = 0.73 ± 0.28 and w = –1.007 ± 0.065, demonstrating that the eΣxpansion and the growth

  5. Masses and proton separation energies obtained from Q{sub a} and Q{sub p} measurements.

    SciTech Connect (OSTI)

    Davids, C. N.; Woods, P. J.; Batchelder, J. C.; Bingham, C. R.; Blumenthal, D. J.; Brown, L. T.; Carpenter, L. F.; Henderson, D. J.; Janssens, R. V. F.; Penttila, H. T.; Seweryniak, D.

    2000-10-20

    For many nuclei beyond the proton drip line in the Z>72, N>82 region, both proton and a emission are energetically allowed. In the case of some proton emitters, there are {alpha}-decay chains emanating from both parent and daughter nuclei. This means that if the mass excess of one member of an {alpha}-decay chain is known, then the mass excesses for all members of both chains can be obtained. In addition, proton separation energies may be derived for nuclei in the {alpha}-decay chain of the proton emitter. The method of time- and space-correlations also allows the identification of isomeric states in these nuclei. As an example, a large number of mass excesses and proton separation energies for ground and metastable states have been derived from Q{sub a} and Q{sub p} values obtained from the proton emitters {sup 165,166,167}Ir, {sup 171}Au, {sup 177}Tl, and their daughters.

  6. Measuring the Scatter of the Mass-Richness Relation in Galaxy Clusters in Photometric Imaging Surveys by Means of Their Correlation Function

    SciTech Connect (OSTI)

    Campa, Julia; Flaugher, Brenna; Estrada, Juan

    2015-12-04

    The knowledge of the scatter in the mass-observable relation is a key ingredient for a cosmological analysis based on galaxy clusters in a photometric survey. We demonstrate here how the linear bias measured in the correlation function for clusters can be used to determine the value of the scatter. The new method is tested in simulations of a 5.000 square degrees optical survey up to z~1, similar to the ongoing Dark Energy Survey. The results indicate that the scatter can be measured with a precision of 5% using this technique.

  7. Measurement of the top-quark mass in all-hadronic decays in p anti-p collisions at CDF II

    SciTech Connect (OSTI)

    Aaltonen, T.; Abulencia, A.; Adelman, J.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; /Fermilab /Frascati

    2006-12-01

    We present a measurement of the top-quark mass, M{sub tpo}, in the all-hadronic decay channel t{bar t} {yields} W{sup +}bW{sup -}{bar b} {yields} q{sub 1}{bar q}{sub 2}bq{sub 3}{bar q}{sub 4}{bar b}. The analysis is performed using 310 pb{sup -1} of {radical}s = 1.96 TeV p{bar p} collisions collected with the CDF II detector using a multi-jet trigger. The mass measurement is based on an event-by-event likelihood which depends on both the sample purity and the value of the top-quark mass, using 90 possible jet-to-parton assignments in the six-jet final state. The joint likelihood of 290 selected events yields a value of M{sub top} = 177.1 {+-} 4.9(stat.) {+-} 4.7(syst.) GeV/c{sup 2}.

  8. Measurement of the top-quark mass in the tt¯ dilepton channel using the full CDF Run II data set

    SciTech Connect (OSTI)

    Aaltonen, T.

    2015-08-06

    We present a measurement of the top-quark mass in events containing two leptons (electrons or muons) with a large transverse momentum, two or more energetic jets, and a transverse-momentum imbalance. We use the full proton-antiproton collision data set collected by the CDF experiment during the Fermilab Tevatron Run II at center-of-mass energy √s = 1.96 TeV, corresponding to an integrated luminosity of 9.1 fb–1. A special observable is exploited for an optimal reduction of the dominant systematic uncertainty, associated with the knowledge of the absolute energy of the hadronic jets. The distribution of this observable in the selected events is compared to simulated distributions of tt¯ dilepton signal and background. We measure a value for the top-quark mass of 171.5±1.9 (stat)±2.5 (syst) GeV/c2.

  9. MEASURING THE STELLAR MASSES OF z ∼ 7 GALAXIES WITH THE SPITZER ULTRAFAINT SURVEY PROGRAM (SURFS UP)

    SciTech Connect (OSTI)

    Ryan, R. E. Jr.; Casertano, S.; Stiavelli, M.; Gonzalez, A. H.; Lemaux, B. C.; Bradač, M.; Cain, B.; Hall, N.; Huang, K.-H.; Lubin, L.; Allen, S.; Von der Linden, A.; Gladders, M.; Hildebradt, H.; Schrabback, T.; Hinz, J.; Zaritsky, D.; Treu, T.

    2014-05-01

    We present Spitzer/IRAC observations of nine z'-band dropouts highly magnified (2 ≲ μ ≲ 12) by the Bullet Cluster. We combine archival imaging with our Exploratory program (SURFS UP), which results in a total integration time of ∼30 hr per Infrared Array Camera (IRAC) band. We detect (≳ 3σ) in both IRAC bands the brightest of these high-redshift galaxies, with [3.6] = 23.80 ± 0.28 mag, [4.5] = 23.78 ± 0.25 mag, and (H – [3.6]) = 1.17 ± 0.32 mag. The remaining eight galaxies are undetected to [3.6] ∼ 26.4 mag and [4.5] ∼ 26.0 mag with stellar masses of ∼5 × 10{sup 7} M {sub ☉}. The detected galaxy has an estimated magnification of μ = 12 ± 4, which implies this galaxy has an ultraviolet luminosity of L{sub 1500}∼0.3 L{sub z=7}{sup ∗}—the lowest-luminosity individual source detected in IRAC at z ≳ 7. By modeling the broadband photometry, we estimate the galaxy has an intrinsic star formation rate (SFR) of SFR ∼ 1.3 M {sub ☉} yr{sup –1} and stellar mass of M ∼ 2.0 × 10{sup 9} M {sub ☉}, which gives a specific star formation rate of sSFR ∼ 0.7 Gyr{sup –1}. If this galaxy had sustained this SFR since z ∼ 20, it could have formed the observed stellar mass (to within a factor of ∼2). We also discuss alternate star formation histories and argue that the exponentially increasing model is unlikely. Finally, based on the intrinsic SFR, we estimate that this galaxy has a likely [C II] flux of (f {sub [C} {sub II]}) = 1.6 mJy.

  10. Characterization of 350 HZ thermoacoustic driven orifice pulse tube refrigerator with measurements of the phase of the mass flow and pressure

    SciTech Connect (OSTI)

    Godshalk, K.M.; Jin, C.; Kwong, Y.K.

    1996-12-31

    The world`s first 350 Hz thermoacoustic driven orifice pulse tube refrigerator (TADOPTR) has been designed and built by Tektronix, Inc., in cooperation with Los Alamos National Laboratories (LANL) and the National Institute of Standards and Technology (NIST). This highly instrumented system includes hot wire anemometers and pressure sensors for measuring the phase of the mass flow and pressure at all key locations in the TADOPTR, permitting for the first time detailed comparison to analytical models developed by LANL and NIST. Characterization results for velocity and pressure phase, pressure amplitude, and enthalpy flow show good agreement with the simulations. The authors have also demonstrated a new design method that uses the inertance of the pulse tube at 350 Hz to achieve the desired phase between the mass flow and pressure, rather than the usual double inlet design. The authors have designed and characterized single stage and two stage 350 Hz TADOPTRs.

  11. Airborne measurements of sulfur dioxide, dimethyl sulfide, carbon disulfide, and carbonyl sulfide by isotope dilution gas chromatography/mass spectrometry

    SciTech Connect (OSTI)

    Bandy, A.R.; Thornton, D.C.; Driedger, A.R. III [Drexel Univ., Philadelphia, PA (United States)

    1993-12-01

    A gas chromatograph/mass spectrometer is described for determining atmospheric sulfur dioxide, carbon disulfide, dimethyl sulfide, and carbonyl sulfide from aircraft and ship platforms. Isotopically labelled variants of each analyte were used as internal standards to achieve high precision. The lower limit of detection for each species for an integration time of 3 min was 1 pptv for sulfur dioxide and dimethyl sulfide and 0.2 pptv for carbon disulfide and carbonyl sulfide. All four species were simultaneously determined with a sample frequency of one sample per 6 min or greater. When only one or two species were determined, a frequency of one sample per 4 min was achieved. Because a calibration is included in each sample, no separate calibration sequence was needed. Instrument warmup was only a few minutes. The instrument was very robust in field deployments, requiring little maintenance.

  12. Photoionization mass spectrometric measurements of initial reaction pathways in low-temperature oxidation of 2,5-dimethylhexane

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rotavera, Brandon; Zádor, Judit; Welz, Oliver; Sheps, Leonid; Scheer, Adam M.; Savee, John D.; Akbar Ali, Mohamad; Lee, Taek Soon; Simmons, Blake A.; Osborn, David L.; et al

    2014-09-19

    The product formation from R + O2 reactions relevant to low-temperature autoignition chemistry was studied for 2,5-dimethylhexane, a symmetrically branched octane isomer, at 550 and 650 K using Cl-atom initiated oxidation and multiplexed photoionization mass spectrometry (MPIMS). The interpretation of time- and photon-energy-resolved mass spectra led to three specific results important to characterizing the initial oxidation steps: (1) quantified isomer-resolved branching ratios for HO2 + alkene channels; (2) 2,2,5,5-tetramethyltetrahydrofuran is formed in substantial yield from addition of O2 to tertiary 2,5-dimethylhex-2-yl followed by isomerization of the resulting ROO adduct to tertiary hydroperoxyalkyl (QOOH) and exhibits a positive dependence on temperaturemore » over the range covered leading to a higher flux relative to aggregate cyclic ether yield. The higher relative flux is explained by a 1,5-hydrogen atom shift reaction that converts the initial primary alkyl radical (2,5-dimethylhex-1-yl) to the tertiary alkyl radical 2,5-dimethylhex-2-yl, providing an additional source of tertiary alkyl radicals. Furthermore, quantum-chemical and master-equation calculations of the unimolecular decomposition of the primary alkyl radical reveal that isomerization to the tertiary alkyl radical is the most favorable pathway, and is favored over O2-addition at 650 K under the conditions herein. The isomerization pathway to tertiary alkyl radicals therefore contributes an additional mechanism to 2,2,5,5-tetramethyltetrahydrofuran formation; (3) carbonyl species (acetone, propanal, and methylpropanal) consistent with β-scission of QOOH radicals were formed in significant yield, indicating unimolecular QOOH decomposition into carbonyl + alkene + OH.« less

  13. Photoionization mass spectrometric measurements of initial reaction pathways in low-temperature oxidation of 2,5-dimethylhexane

    SciTech Connect (OSTI)

    Rotavera, Brandon; Zádor, Judit; Welz, Oliver; Sheps, Leonid; Scheer, Adam M.; Savee, John D.; Akbar Ali, Mohamad; Lee, Taek Soon; Simmons, Blake A.; Osborn, David L.; Violi, Angela; Taatjes, Craig A.

    2014-09-19

    The product formation from R + O2 reactions relevant to low-temperature autoignition chemistry was studied for 2,5-dimethylhexane, a symmetrically branched octane isomer, at 550 and 650 K using Cl-atom initiated oxidation and multiplexed photoionization mass spectrometry (MPIMS). The interpretation of time- and photon-energy-resolved mass spectra led to three specific results important to characterizing the initial oxidation steps: (1) quantified isomer-resolved branching ratios for HO2 + alkene channels; (2) 2,2,5,5-tetramethyltetrahydrofuran is formed in substantial yield from addition of O2 to tertiary 2,5-dimethylhex-2-yl followed by isomerization of the resulting ROO adduct to tertiary hydroperoxyalkyl (QOOH) and exhibits a positive dependence on temperature over the range covered leading to a higher flux relative to aggregate cyclic ether yield. The higher relative flux is explained by a 1,5-hydrogen atom shift reaction that converts the initial primary alkyl radical (2,5-dimethylhex-1-yl) to the tertiary alkyl radical 2,5-dimethylhex-2-yl, providing an additional source of tertiary alkyl radicals. Furthermore, quantum-chemical and master-equation calculations of the unimolecular decomposition of the primary alkyl radical reveal that isomerization to the tertiary alkyl radical is the most favorable pathway, and is favored over O2-addition at 650 K under the conditions herein. The isomerization pathway to tertiary alkyl radicals therefore contributes an additional mechanism to 2,2,5,5-tetramethyltetrahydrofuran formation; (3) carbonyl species (acetone, propanal, and methylpropanal) consistent with β-scission of QOOH radicals were formed in significant yield, indicating unimolecular QOOH decomposition into carbonyl + alkene + OH.

  14. LoCuSS: A COMPARISON OF CLUSTER MASS MEASUREMENTS FROM XMM-NEWTON AND SUBARU-TESTING DEVIATION FROM HYDROSTATIC EQUILIBRIUM AND NON-THERMAL PRESSURE SUPPORT

    SciTech Connect (OSTI)

    Zhang, Yu-Ying; Okabe, Nobuhiro; Finoguenov, Alexis; Smith, Graham P.; Sanderson, Alastair J. R.; Piffaretti, Rocco; Valdarnini, Riccardo; Evrard, August E.; Mazzotta, Pasquale; Marrone, Daniel P.

    2010-03-10

    We compare X-ray hydrostatic and weak-lensing mass estimates for a sample of 12 clusters that have been observed with both XMM-Newton and Subaru. At an over-density of DELTA = 500, we obtain 1 - M {sup X}/M {sup WL} = 0.01 +- 0.07 for the whole sample. We also divided the sample into undisturbed and disturbed sub-samples based on quantitative X-ray morphologies using asymmetry and fluctuation parameters, obtaining 1 - M {sup X}/M {sup WL} = 0.09 +- 0.06 and -0.06 +- 0.12 for the undisturbed and disturbed clusters, respectively. In addition to non-thermal pressure support, there may be a competing effect associated with adiabatic compression and/or shock heating which leads to overestimate of X-ray hydrostatic masses for disturbed clusters, for example, in the famous merging cluster A1914. Despite the modest statistical significance of the mass discrepancy, on average, in the undisturbed clusters, we detect a clear trend of improving agreement between M {sup X} and M {sup WL} as a function of increasing over-density, M{sup X}/M{sup WL}=(0.908+-0.004)+(0.187+-0.010){center_dot} log{sub 10}(DELTA/500). We also examine the gas mass fractions, f{sub gas} = M {sup gas}/M {sup WL}, finding that they are an increasing function of cluster radius, with no dependence on dynamical state, in agreement with predictions from numerical simulations. Overall, our results demonstrate that XMM-Newton and Subaru are a powerful combination for calibrating systematic uncertainties in cluster mass measurements.

  15. Anthropogenic emissions of NOx over China: Reconciling the difference of inverse modeling results using GOME-2 and OMI measurements

    SciTech Connect (OSTI)

    Gu, Dasa; Wang, Yuhang; Smeltzer, Charles; Boersma, K. Folkert

    2014-06-27

    Inverse modeling using satellite observations of nitrogen dioxide (NO2) columns has been extensively used to estimate nitrogen oxides (NOx) emissions in China. Recently, the Global Ozone Monitoring Experiment-2 (GOME-2) and Ozone Monitoring Instrument (OMI) provide independent global NO2 column measurements on a nearly daily basis at around 9:30 and 13:30 local time across the equator, respectively. Anthropogenic NOx emission estimates by applying previously developed monthly inversion (MI) or daily inversion (DI) methods to these two sets of measurements show substantial differences. We improve the DI method by conducting model simulation, satellite retrieval, and inverse modeling sequentially on a daily basis. After each inversion, we update anthropogenic NOx emissions in the model simulation with the newly obtained a posteriori results. Consequently, the inversion-optimized emissions are used to compute the a priori NO2 profiles for satellite retrievals. As such, the a priori profiles used in satellite retrievals are now coupled to inverse modeling results. The improved procedure was applied to GOME-2 and OMI NO2 measurements in 2011. The new daily retrieval-inversion (DRI) method estimates an average NOx emission of 6.9 Tg N/yr over China, and the difference between using GOME-2 and OMI measurements is 0.4 Tg N/yr, which is significantly smaller than the difference of 1.3 Tg N/yr using the previous DI method. Using the more consistent DRI inversion results, we find that anthropogenic NOx emissions tend to be higher in winter and summer than spring (and possibly fall) and the weekday-to-weekend emission ratio tends to increase with NOx emission in China.

  16. Measurement of the Three-jet Mass Cross Section in $p\\bar{p}$ Collisions at $\\sqrt{s}=1.96$ TeV

    SciTech Connect (OSTI)

    Hubacek, Zdenek

    2010-06-01

    This thesis describes the measurement of the inclusive three-jet cross section in proton-antiproton collisions at {radical}s = 1.96 TeV measured at the D0 experiment at the Fermilab Tevatron Collider in the Fermi National Accelerator Laboratory, Batavia, Illinois, USA. The cross section as a function of three-jet invariant mass is provided in three regions of the third jet transverse momentum and three regions of jet rapidities. It utilizes a data sample collected in the so called Run IIa data taking period (2002-2006) corresponding to the integrated luminosity of about 0.7 fb{sup -1}. The results are used to test the next-to-leading order predictions of Quantum chromodynamics computed using the latest parton distribution functions.

  17. Application of high-resolution time-of-flight chemical ionization mass spectrometry measurements to estimate volatility distributions of α-pinene and naphthalene oxidation products

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; Stark, H.; Jayne, J. T.; Onasch, T. B.; Davidovits, P.; Kimmel, J. R.; Worsnop, D. R.

    2015-01-05

    Recent developments in high-resolution time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made it possible to directly detect atmospheric organic compounds in real time with high sensitivity and with little or no fragmentation, including low-volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, using ions identified by high-resolution spectra from an HR-ToF-CIMS with acetate reagent ion chemistry, we develop an algorithm to estimate the vapor pressures of measured organic acids. The algorithm uses identified ion formulas and calculated double bond equivalencies, information unavailable in quadrupole CIMS technology, as constraints for the number of possible oxygen-containing functionalmore » groups. The algorithm is tested with acetate chemical ionization mass spectrometry (acetate-CIMS) spectra of O3 and OH oxidation products of α-pinene and naphthalene formed in a flow reactor with integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec s cm−3, corresponding to approximately 1.0 to 7.5 days of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. The predicted condensed-phase secondary organic aerosol (SOA) average acid yields and O/C and H/C ratios agree within uncertainties with previous chamber and flow reactor measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

  18. A measurement of the top quark mass in 1.96 TeV proton-antiproton collisions using a novel matrix element method

    SciTech Connect (OSTI)

    Freeman, John C.; /LBL, Berkeley

    2007-12-01

    A measurement of the top quark mass in t{bar t} {yields} l + jets candidate events, obtained from p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector, is presented. The measurement approach is that of a matrix element method. For each candidate event, a two dimensional likelihood is calculated in the top pole mass and a constant scale factor, 'JES', where JES multiplies the input particle jet momenta and is designed to account for the systematic uncertainty of the jet momentum reconstruction. As with all matrix elements techniques, the method involves an integration using the Standard Model matrix element for tt production and decay. however, the technique presented is unique in that the matrix element is modified to compensate for kinematic assumptions which are made to reduce computation time. Background events are dealt with through use of an event observable which distinguishes signal from background, as well as through a cut on the value of an event's maximum likelihood. Results are based on a 955 pb{sup -1} data sample, using events with a high-p{sub T} lepton and exactly four high-energy jets, at least one of which is tagged as coming from a b quark; 149 events pass all the selection requirements. They find M{sub meas} = 169.8 {+-} 2.3(stat.) {+-} 1.4(syst.) GeV/c{sup 2}.

  19. A Measurement of the Top Quark Mass in 1.96 TeV Proton-Antiproton Collisions Using a Novel Matrix Element Method

    SciTech Connect (OSTI)

    CDF Collaboration; Freeman, John; Freeman, John

    2007-09-30

    A measurement of the top quark mass in t{bar t} {yields} l + jets candidate events, obtained from p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector, is presented. The measurement approach is that of a matrix element method. For each candidate event, a two dimensional likelihood is calculated in the top pole mass and a constant scale factor, 'JES', where JES multiplies the input particle jet momenta and is designed to account for the systematic uncertainty of the jet momentum reconstruction. As with all matrix element techniques, the method involves an integration using the Standard Model matrix element for t{bar t} production and decay. However, the technique presented is unique in that the matrix element is modified to compensate for kinematic assumptions which are made to reduce computation time. Background events are dealt with through use of an event observable which distinguishes signal from background, as well as through a cut on the value of an event's maximum likelihood. Results are based on a 955 pb{sup -1} data sample, using events with a high-p{sub T} lepton and exactly four high-energy jets, at least one of which is tagged as coming from a b quark; 149 events pass all the selection requirements. They find M{sub meas} = 169.8 {+-} 2.3(stat.) {+-} 1.4(syst.) GeV/c{sup 2}.

  20. Development of Tandem, Double-Focusing, Electron Impact, Gas Source Mass Spectrometer for Measurement of Rare Double-Substituted Isotoplogues in Geochemistry

    SciTech Connect (OSTI)

    Young, Edward D.

    2015-07-30

    This project culminated in construction and delivery of the world’s first large-radius gas-source isotope ratio mass spectrometer that permits unparalleled analyses of the stable isotopic composition of methane gas. The instrument, referred to as the “Panorama” and installed at UCLA in March 2015, can now be used to determine the relative abundances of rare isotopic species of methane that serve as tracers of temperature of formation and/or subsequent processing of gas. With this technology we can begin to delineate different sources and sinks of methane isotopically in ways not possible until now.

  1. System for measuring temporal profiles of scintillation at high and different linear energy transfers by using pulsed ion beams

    SciTech Connect (OSTI)

    Koshimizu, Masanori Asai, Keisuke; Kurashima, Satoshi; Taguchi, Mitsumasa; Kimura, Atsushi; Iwamatsu, Kazuhiro

    2015-01-15

    We have developed a system for measuring the temporal profiles of scintillation at high linear energy transfer (LET) by using pulsed ion beams from a cyclotron. The half width at half maximum time resolution was estimated to be 1.52.2 ns, which we attributed mainly to the duration of the pulsed ion beam and timing jitter between the trigger signal and the arrival of the ion pulse. The temporal profiles of scintillation of BaF{sub 2} at different LETs were successfully observed. These results indicate that the proposed system is a powerful tool for analyzing the LET effects in temporal profiles of scintillation.

  2. A more accurate and penetrating method to measure the enrichment and mass of UF6 storage containers using passive neutron self-interrogation

    SciTech Connect (OSTI)

    Menlove, Howard O; Swinhoe, Martyn T; Miller, Karen A

    2010-01-01

    This paper describes an unattended mode neutron measurement that can provide the enrichment of the uranium in UF{sub 6} cylinders. The new passive neutron measurement provides better penetration into the uranium mass than prior gamma-ray enrichment measurement methods. The Passive Neutron Enrichment Monitor (PNEM) provides a new measurement technique that uses passive neutron totals and coincidence counting together with neutron self-interrogation to measure the enrichment in the cylinders. The measurement uses the neutron rates from two detector pods. One of the pods has a bare polyethylene surface next to the cylinder and the other polyethylene surface is covered with Cd to prevent thermal neutrons from returning to the cylinder. The primary neutron source from the enriched UF{sub 6} is the alpha-particle decay from the {sub 234}U that interacts with the fluorine to produce random neutrons. The singles neutron counting rate is dominated by the {sub 234}U neutrons with a minor contribution from the induced fissions in the {sub 235}U. However, the doubles counting rate comes primarily from the induced fissions (i.e., multiplication) in the {sub 235}U in enriched uranium. The PNEM concept makes use of the passive neutrons that are initially produced from the {sub 234}U reactions that track the {sub 235}U enrichment during the enrichment process. The induced fission reactions from the thermal-neutron albedo are all from the {sub 235}U and provide a measurement of the {sub 235}U. The Cd ratio has the desirable feature that all of the thermal-neutron-induced fissions in {sub 235}U are independent of the original neutron source. Thus, the ratio is independent of the uranium age, purity, and prior reactor history.

  3. Laboratory assessment of the use of borehole pressure transients to measure the permeability of fractured rock masses

    SciTech Connect (OSTI)

    Forster, C.B.; Gale, J.E.

    1980-09-01

    A laboratory program is described that was designed (1) to evaluate the degree of correlation between permeability values determined from steady-state and transient tests on the same samples and (2) to determine the effects of packer compliance on pressure pulse tests performed on low permeability rocks. The basic theory of pressure pulse testing is reviewed and modifications are proposed that may account for packer compliance effects. The laboratory set-up simulates a full-scale field situation using standard field packers in a 76 mm steel pipe. Cylindrical samples 5 cm in diameter and 11 cm long can be subjected to hydrostatic confining pressure up to 34 MPa and pore pressures up to 10 MPa. Using this equipment, transient pressure pulse tests and stead-state flow tests have been performed on (1) two samples of Berea sandstone having conductivities of 6.1 x 10/sup -5/ cm/sec and 2.4 x 10/sup -4/ cm/sec. and (2) one sample of Stripa granite containing a single fracture parallel to the core axis. Flow through the fracture varied from 1.0 to 0.05 cm/sup 3//min when the confining pressure varied from about 3 MPa to 14 MPa for pressure differentials of 0.14 MPa. Transient tests on the porous media samples consistently gave lower permeability values than steady-state tests on the same samples. All samples showed distinct compliance effects that increased with decreasing permeability. The laboratory results demonstrated that transient tests are very sensitive to minor leaks in the test assembly and to temperature variations as slight as +- 0.05/sup 0/C in the cavity fluid. Thus pressure-pulse borehole equipment must be carefully checked in full-scale test assemblies and must incorporate temperature measuring devices that can detect changes of +- 0.01/sup 0/C.

  4. Measurement of the relative width difference of the $$$ {B}^0\\hbox{-} {\\overline{B}}^0 $$$ system with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; et al

    2016-06-14

    This study presents the measurement of the relative width difference ΔΓ d /Γ d of the B0-B¯¯¯¯0 system using the data collected by the ATLAS experiment at the LHC in pp collisions at √s=7 TeV and √s=8 TeV and corresponding to an integrated luminosity of 25.2 fb-1. The value of ΔΓ d /Γ d is obtained by comparing the decay-time distributions of B 0 → J/ψK S and B 0 → J/ψK *0(892) decays. The result is ΔΓ d /Γ d = (-0.1±1.1 (stat.)± 0.9 (syst.)) × 10-2. Currently, this is the most precise single measurement of ΔΓ d /Γmore » d . Finally, it agrees with the Standard Model prediction and the measurements by other experiments.« less

  5. Measurement and image processing evaluation of surface modifications of dental implants G4 pure titanium created by different techniques

    SciTech Connect (OSTI)

    Bulutsuz, A. G.; Demircioglu, P. Bogrekci, I.; Durakbasa, M. N.

    2015-03-30

    Foreign substances and organic tissue interaction placed into the jaw in order to eliminate tooth loss involves a highly complex process. Many biological reactions take place as well as the biomechanical forces that influence this formation. Osseointegration denotes to the direct structural and functional association between the living bone and the load-bearing artificial implant's surface. Taking into consideration of the requirements in the manufacturing processes of the implants, surface characterizations with high precise measurement techniques are investigated and thus long-term success of dental implant is emphasized on the importance of these processes in this study. In this research, the detailed surface characterization was performed to identify the dependence of the manufacturing techniques on the surface properties by using the image processing methods and using the scanning electron microscope (SEM) for morphological properties in 3D and Taylor Hobson stylus profilometer for roughness properties in 2D. Three implant surfaces fabricated by different manufacturing techniques were inspected, and a machined surface was included into the study as a reference specimen. The results indicated that different surface treatments were strongly influenced surface morphology. Thus 2D and 3D precise inspection techniques were highlighted on the importance for surface characterization. Different image analyses techniques such as Dark-light technique were used to verify the surface measurement results. The computational phase was performed using image processing toolbox in Matlab with precise evaluation of the roughness for the implant surfaces. The relationship between the number of black and white pixels and surface roughness is presented. FFT image processing and analyses results explicitly imply that the technique is useful in the determination of surface roughness. The results showed that the number of black pixels in the image increases with increase in surface

  6. Properties of jets measured from tracks in proton-proton collisions at center-of-mass energy √s=7 TeV with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; et al

    2011-09-20

    Jets are identified and their properties studied in center-of-mass energy √s=7 TeV proton-proton collisions at the Large Hadron Collider using charged particles measured by the ATLAS inner detector. Events are selected using a minimum bias trigger, allowing jets at very low transverse momentum to be observed and their characteristics in the transition to high-momentum fully perturbative jets to be studied. Jets are reconstructed using the anti-kt algorithm applied to charged particles with two radius parameter choices, 0.4 and 0.6. An inclusive charged jet transverse momentum cross section measurement from 4 GeV to 100 GeV is shown for four ranges inmore » rapidity extending to 1.9 and corrected to charged particle-level truth jets. The transverse momenta and longitudinal momentum fractions of charged particles within jets are measured, along with the charged particle multiplicity and the particle density as a function of radial distance from the jet axis. Comparison of the data with the theoretical models implemented in existing tunings of Monte Carlo event generators indicates reasonable overall agreement between data and Monte Carlo. These comparisons are sensitive to Monte Carlo parton showering, hadronization, and soft physics models.« less

  7. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    magnetic fluctuation-induced particle flux "invited... a... W. X. Ding, D. L. Brower, and T. Y. Yates Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, California 90095, USA ͑Presented 13 May 2008; received 12 May 2008; accepted 16 May 2008; published online 31 October 2008͒ Magnetic field fluctuation-induced particle transport has been directly measured in the high-temperature core of the MST reversed field pinch plasma. Measurement of radial

  8. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Induced, Charged Current, Charged Pion Production by Michael Joseph Wilking B.Ch.E., University of Minnesota, 2001 M.S., University of Colorado, 2007 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Physics 2009 This thesis entitled: Measurement of Neutrino Induced, Charged Current, Charged Pion Production written by Michael Joseph Wilking has been

  9. Method for calibrating mass spectrometers

    DOE Patents [OSTI]

    Anderson, Gordon A [Benton City, WA; Brands, Michael D [Richland, WA; Bruce, James E [Schwenksville, PA; Pasa-Tolic, Ljiljana [Richland, WA; Smith, Richard D [Richland, WA

    2002-12-24

    A method whereby a mass spectra generated by a mass spectrometer is calibrated by shifting the parameters used by the spectrometer to assign masses to the spectra in a manner which reconciles the signal of ions within the spectra having equal mass but differing charge states, or by reconciling ions having known differences in mass to relative values consistent with those known differences. In this manner, the mass spectrometer is calibrated without the need for standards while allowing the generation of a highly accurate mass spectra by the instrument.

  10. Measurement of the ?*? distribution of muon pairs with masses between 30 and 500 GeV in 10.4 fb-1 of pp collisions

    SciTech Connect (OSTI)

    Abazov, Victor Mukhamedovich

    2015-04-06

    We present a measurement of the distribution of the variable ?*? for muon pairs with masses between 30 and 500 GeV, using the complete run II data set collected by the D0 detector at the Fermilab Tevatron proton-antiproton collider. This corresponds to an integrated luminosity of 10.4 fb1 at ?s = 1.96 TeV. The data are corrected for detector effects and presented in bins of dimuon rapidity and mass. The variable ?*? probes the same physical effects as the Z/?* boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. These are the first measurements at any collider of the ?*? distributions for dilepton masses away from the Z ? ?+? boson mass peak. As a result, the data are compared to QCD predictions based on the resummation of multiple soft gluons.

  11. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    core velocity fluctuations and the dynamo in a reversed-field pinch * D. J. Den Hartog, †,a) J. T. Chapman, b) D. Craig, G. Fiksel, P. W. Fontana, S. C. Prager, and J. S. Sarff Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706 ͑Received 16 November 1998; accepted 20 January 1999͒ Plasma flow velocity fluctuations have been directly measured in the high-temperature magnetically confined plasma in the Madison Symmetric Torus ͑MST͒

  12. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 H( 7 Be, 8 B)γ cross section by Ryan P. Fitzgerald A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics & Astronomy. Chapel Hill 2005 Approved: A. E. Champagne, Advisor J. C. Blackmon, Reader C. Iliadis, Reader ABSTRACT Ryan P. Fitzgerald: Measurement of the 1 H( 7 Be, 8 B)γ cross section (Under the Direction of A. E. Champagne) The fusion

  13. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interpretation of micro benchmark and application energy use on the Cray XC30 Brian Austin, and Nicholas J. Wright ⇤ August 29, 2014 Abstract Understanding patterns of application energy use is key to reaching future HPC e ciency goals. We have measured the sensitivity of en- ergy use to CPU frequency for several microbenchmarks and applications on a Cray XC30. First order fits to the performance and power data are su cient to describe the energy used by these applications. Exam- ination of

  14. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronegative Contaminants and Drift Electron Lifetime in the MicroBooNE Experiment The MicroBooNE Collaboration May 19, 2016 Abstract High-purity liquid argon is critical for the operation of a liquid argon time projec- tion chamber (LArTPC). At MicroBooNE, we have achieved an electron drift lifetime of at least 6 ms without evacuation of the detector vessel. Measurements of the elec- tronegative contaminants oxygen and water are described and shown as the gas and liquid argon stages of

  15. Methods for recalibration of mass spectrometry data

    DOE Patents [OSTI]

    Tolmachev, Aleksey V.; Smith, Richard D.

    2009-03-03

    Disclosed are methods for recalibrating mass spectrometry data that provide improvement in both mass accuracy and precision by adjusting for experimental variance in parameters that have a substantial impact on mass measurement accuracy. Optimal coefficients are determined using correlated pairs of mass values compiled by matching sets of measured and putative mass values that minimize overall effective mass error and mass error spread. Coefficients are subsequently used to correct mass values for peaks detected in the measured dataset, providing recalibration thereof. Sub-ppm mass measurement accuracy has been demonstrated on a complex fungal proteome after recalibration, providing improved confidence for peptide identifications.

  16. Planet hunters. VII. Discovery of a new low-mass, low-density planet (PH3 C) orbiting Kepler-289 with mass measurements of two additional planets (PH3 B and D)

    SciTech Connect (OSTI)

    Schmitt, Joseph R.; Fischer, Debra A.; Wang, Ji; Margossian, Charles; Brewer, John M.; Giguere, Matthew J.; Agol, Eric; Deck, Katherine M.; Rogers, Leslie A.; Gazak, J. Zachary; Holman, Matthew J.; Jek, Kian J.; Omohundro, Mark R.; Winarski, Troy; Lintott, Chris; Simpson, Robert; Lynn, Stuart; Parrish, Michael; Schawinski, Kevin; Schwamb, Megan E.; and others

    2014-11-10

    We report the discovery of one newly confirmed planet (P = 66.06 days, R {sub P} = 2.68 ± 0.17 R {sub ⊕}) and mass determinations of two previously validated Kepler planets, Kepler-289 b (P = 34.55 days, R {sub P} = 2.15 ± 0.10 R {sub ⊕}) and Kepler-289-c (P = 125.85 days, R {sub P} = 11.59 ± 0.10 R {sub ⊕}), through their transit timing variations (TTVs). We also exclude the possibility that these three planets reside in a 1:2:4 Laplace resonance. The outer planet has very deep (∼1.3%), high signal-to-noise transits, which puts extremely tight constraints on its host star's stellar properties via Kepler's Third Law. The star PH3 is a young (∼1 Gyr as determined by isochrones and gyrochronology), Sun-like star with M {sub *} = 1.08 ± 0.02 M {sub ☉}, R {sub *} = 1.00 ± 0.02 R {sub ☉}, and T {sub eff} = 5990 ± 38 K. The middle planet's large TTV amplitude (∼5 hr) resulted either in non-detections or inaccurate detections in previous searches. A strong chopping signal, a shorter period sinusoid in the TTVs, allows us to break the mass-eccentricity degeneracy and uniquely determine the masses of the inner, middle, and outer planets to be M = 7.3 ± 6.8 M {sub ⊕}, 4.0 ± 0.9M {sub ⊕}, and M = 132 ± 17 M {sub ⊕}, which we designate PH3 b, c, and d, respectively. Furthermore, the middle planet, PH3 c, has a relatively low density, ρ = 1.2 ± 0.3 g cm{sup –3} for a planet of its mass, requiring a substantial H/He atmosphere of 2.1{sub −0.3}{sup +0.8}% by mass, and joins a growing population of low-mass, low-density planets.

  17. THE INFLUENCE OF DARK MATTER HALOS ON DYNAMICAL ESTIMATES OF BLACK HOLE MASS: 10 NEW MEASUREMENTS FOR HIGH-{sigma} EARLY-TYPE GALAXIES

    SciTech Connect (OSTI)

    Rusli, S. P.; Thomas, J.; Saglia, R. P.; Fabricius, M.; Erwin, P.; Bender, R.; Nowak, N.; Lee, C. H.; Riffeser, A.; Sharp, R.

    2013-09-15

    Adaptive optics assisted SINFONI observations of the central regions of 10 early-type galaxies are presented. Based primarily on the SINFONI kinematics, 10 black hole (BH) masses occupying the high-mass regime of the M{sub BH}-{sigma} relation are derived using three-integral Schwarzschild models. The effect of dark matter (DM) inclusion on the BH mass is explored. The omission of a DM halo in the model results in a higher stellar mass-to-light ratio, especially when extensive kinematic data are used in the model. However, when the diameter of the sphere of influence-computed using the BH mass derived without a dark halo-is at least 10 times the point-spread function FWHM during the observations, it is safe to exclude a DM component in the dynamical modeling, i.e., the change in BH mass is negligible. When the spatial resolution is marginal, restricting the mass-to-light ratio to the right value returns the correct M{sub BH} although a dark halo is not present in the model. Compared to the M{sub BH}-{sigma} and M{sub BH}-L relations of McConnell et al., the 10 BHs are all more massive than expected from the luminosities and 7 BH masses are higher than expected from the stellar velocity dispersions of the host bulges. Using new fitted relations, which include the 10 galaxies, we find that the space density of the most massive BHs (M{sub BH} {approx}> 10{sup 9} M{sub Sun }) estimated from the M{sub BH}-L relation is higher than the estimate based on the M{sub BH}-{sigma} relation and the latter is higher than model predictions based on quasar counts, each by about an order of magnitude.

  18. MASS SPECTROMETER

    DOE Patents [OSTI]

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  19. Stopping Power of Different Ions in Si Measured with a Bulk Sample Method and Bayesian Inference Data Analysis

    SciTech Connect (OSTI)

    Barradas, N. P.; Alves, E.; Siketic, Z.; Radovic, I. Bogdanovic

    2009-03-10

    The accuracy of ion beam analysis experiments depends critically on the stopping power values available. While for H and He ions accuracies normally better than 5% are achieved by usual interpolative schemes such as SRIM, for heavier ions the accuracy is worse. One of the main reasons is that the experimental data bases are very sparse, even for important materials such as Si. New measurements are therefore needed. Measurement of stopping power is often made with transmission in thin films, with the usual problems of film thickness homogeneity. We have previously developed an alternative method based on measuring bulk spectra, and fitting the yield by treating the stopping power as a fit parameter in a Bayesian inference Markov chain Monte Carlo procedure included in the standard IBA code NDF. We report on improvements of the method and on its application to the determination of the stopping power of {sup 7}Li in Si. To validate the method, we also apply it to the stopping of {sup 4}He in Si, which is known with 2% accuracy.

  20. Linear electric field mass spectrometry

    DOE Patents [OSTI]

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  1. Linear electric field mass spectrometry

    DOE Patents [OSTI]

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  2. The measured field performances of eight different mechanical and air-lift water-pumping wind-turbines

    SciTech Connect (OSTI)

    Kentfield, J.A.C.

    1996-12-31

    Results are presented of the specific performances of eight, different, water-pumping wind-turbines subjected to impartial tests at the Alberta Renewable Energy Test Site (ARETS), Alberta, Canada. The results presented which were derived from the test data, obtained independently of the equipment manufacturers, are expressed per unit of rotor projected area to eliminate the influence of machine size. Hub-height wind speeds and water flow rates for a common lift of 5.5 m (18 ft) constitute the essential test data. A general finding was that, to a first approximation, there were no major differences in specific performance between four units equipped with conventional reciprocating pumps two of which employed reduction gearing and two of which did not. It was found that a unit equipped with a Moyno pump performed well but three air-lift machines had, as was expected, poorer specific performances than the more conventional equipment. 10 refs., 9 figs.

  3. Multilayer graphene stacks grown by different methods-thickness measurements by X-ray diffraction, Raman spectroscopy and optical transmission

    SciTech Connect (OSTI)

    Tokarczyk, M. Kowalski, G.; Kępa, H.; Grodecki, K.; Drabińska, A.; Strupiński, W.

    2013-12-15

    X-ray diffraction, Raman spectroscopy and Optical absorption estimates of the thickness of graphene multi layer stacks (number of graphene layers) are presented for three different growth techniques. The objective of this work was focused on comparison and reconciliation of the two already widely used methods for thickness estimates (Raman and Absorption) with the calibration of the X-ray method as far as Scherer constant K is concerned and X-ray based Wagner-Aqua extrapolation method.

  4. Search for High-Mass Resonances Decaying into Leptons of Different Flavor (e mu, e tau, mu tau) in p anti-p Collisions at sqrt(s) = 1.96 TeV

    SciTech Connect (OSTI)

    Tu, Yanjun; /Pennsylvania U.

    2008-10-01

    We present a search for high-mass resonances decaying into two leptons of different flavor: e{mu}, e{tau}, and {mu}{tau}. These resonances are predicted by several models beyond the standard model, such as the R-parity-violating MSSM. The search is based on 1 fb{sup -1} of data collected at the Collider Detector at Fermilab (CDF II) in proton anti-proton collisions. Our observations are consistent with the standard model expectations. The results are interpreted to set 95% C.L. upper limits on {sigma} x BR of {tilde {nu}}{sub {tau}} {yields} e{mu}, e{tau}, {mu}{tau}.

  5. Measurement of the φ*η distribution of muon pairs with masses between 30 and 500 GeV in 10.4 fb-1 of pp¯ collisions

    SciTech Connect (OSTI)

    Abazov, Victor Mukhamedovich

    2015-04-06

    We present a measurement of the distribution of the variable φ*η for muon pairs with masses between 30 and 500 GeV, using the complete run II data set collected by the D0 detector at the Fermilab Tevatron proton-antiproton collider. This corresponds to an integrated luminosity of 10.4 fb–1 at √s = 1.96 TeV. The data are corrected for detector effects and presented in bins of dimuon rapidity and mass. The variable φ*η probes the same physical effects as the Z/γ* boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. These are the first measurements at any collider of the φ*η distributions for dilepton masses away from the Z → ℓ+ boson mass peak. As a result, the data are compared to QCD predictions based on the resummation of multiple soft gluons.

  6. Measurement of the Φ η * distribution of muon pairs with masses between 30 and 500 GeV in 10.4 fb - 1 of p p ¯ collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; et al

    2015-04-06

    We present a measurement of the distribution of the variable Φ*η for muon pairs with masses between 30 and 500 GeV, using the complete run II data set collected by the D0 detector at the Fermilab Tevatron proton-antiproton collider. This corresponds to an integrated luminosity of 10.4 fb⁻¹ at √s=1.96 TeV. The data are corrected for detector effects and presented in bins of dimuon rapidity and mass. The variable Φ*η probes the same physical effects as the Z/γ* boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. These are the first measurements at anymore » collider of the Φ*η distributions for dilepton masses away from the Z→l⁺l⁻ boson mass peak. The data are compared to QCD predictions based on the resummation of multiple soft gluons.« less

  7. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy

    SciTech Connect (OSTI)

    Sheng, WC; Zhuang, ZB; Gao, MR; Zheng, J; Chen, JGG; Yan, YS

    2015-01-08

    The hydrogen oxidation/evolution reactions are two of the most fundamental reactions in distributed renewable electrochemical energy conversion and storage systems. The identification of the reaction descriptor is therefore of critical importance for the rational catalyst design and development. Here we report the correlation between hydrogen oxidation/evolution activity and experimentally measured hydrogen binding energy for polycrystalline platinum examined in several buffer solutions in a wide range of electrolyte pH from 0 to 13. The hydrogen oxidation/evolution activity obtained using the rotating disk electrode method is found to decrease with the pH, while the hydrogen binding energy, obtained from cyclic voltammograms, linearly increases with the pH. Correlating the hydrogen oxidation/evolution activity to the hydrogen binding energy renders a monotonic decreasing hydrogen oxidation/evolution activity with the hydrogen binding energy, strongly supporting the hypothesis that hydrogen binding energy is the sole reaction descriptor for the hydrogen oxidation/evolution activity on monometallic platinum.

  8. Gas mass transfer for stratified flows

    SciTech Connect (OSTI)

    Duffey, R.B.; Hughes, E.D.

    1995-06-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrium integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh{sub t} = (2/{radical}{pi})Sc{sup 1/2}, where Sh{sub t} is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geo-physical and chemical engineering literature.

  9. Gas mass transfer for stratified flows

    SciTech Connect (OSTI)

    Duffey, R.B.; Hughes, E.D.

    1995-07-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrum integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh{sub t} = (2/{radical}{pi}) Sc{sup 1/2}, where Sh{sub t} is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geophysical and chemical engineering literature.

  10. W Boson Mass Working Group Report

    SciTech Connect (OSTI)

    Kilgore, W.; Kilgore, W.

    2010-06-14

    The W boson mass working group discussed the current status of the W boson mass measurement and the prospects for improving on LEP and Tevatron measurements at the LHC.

  11. Measurement of the top quark mass in the tt¯→ lepton+jets and tt¯→ dilepton channels using √s = 7   TeV ATLAS data

    SciTech Connect (OSTI)

    Aad, G.

    2015-07-17

    The top quark mass was measured in the channels tt¯→ lepton+jets and tt¯→ dilepton (lepton = e,μ) based on ATLAS data recorded in 2011. The data were taken at the LHC with a proton–proton centre-of-mass energy of √s = 7 TeV and correspond to an integrated luminosity of 4.6 fb–1. The tt¯→ lepton+jets analysis uses a three-dimensional template technique which determines the top quark mass together with a global jet energy scale factor (JSF), and a relative b-to-light-jet energy scale factor (bJSF), where the terms b-jets and light-jets refer to jets originating from b-quarks and u, d, c, s-quarks or gluons, respectively. The analysis of the tt¯→ dilepton channel exploits a one-dimensional template method using the mℓb observable, defined as the average invariant mass of the two lepton+b-jet pairs in each event. The top quark mass is measured to be 172.33 ± 0.75 (stat + JSF + bJSF) ± 1.02(syst) GeV, and 173.79 ± 0.54(stat) ± 1.30(syst) GeV in the tt¯→ lepton+jets and tt¯→ dilepton channels, respectively. Thus, the combination of the two results yields mtop = 172.99 ± 0.48(stat) ± 0.78(syst) GeV, with a total uncertainty of 0.91 GeV.

  12. Measurement of the top quark mass in the tt¯→ lepton+jets and tt¯→ dilepton channels using √s = 7   TeV ATLAS data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-07-17

    The top quark mass was measured in the channels tt¯→ lepton+jets and tt¯→ dilepton (lepton = e,μ) based on ATLAS data recorded in 2011. The data were taken at the LHC with a proton–proton centre-of-mass energy of √s = 7 TeV and correspond to an integrated luminosity of 4.6 fb–1. The tt¯→ lepton+jets analysis uses a three-dimensional template technique which determines the top quark mass together with a global jet energy scale factor (JSF), and a relative b-to-light-jet energy scale factor (bJSF), where the terms b-jets and light-jets refer to jets originating from b-quarks and u, d, c, s-quarks ormore » gluons, respectively. The analysis of the tt¯→ dilepton channel exploits a one-dimensional template method using the mℓb observable, defined as the average invariant mass of the two lepton+b-jet pairs in each event. The top quark mass is measured to be 172.33 ± 0.75 (stat + JSF + bJSF) ± 1.02(syst) GeV, and 173.79 ± 0.54(stat) ± 1.30(syst) GeV in the tt¯→ lepton+jets and tt¯→ dilepton channels, respectively. Thus, the combination of the two results yields mtop = 172.99 ± 0.48(stat) ± 0.78(syst) GeV, with a total uncertainty of 0.91 GeV.« less

  13. Measurement of the top quark mass in the tt¯→ lepton+jets and tt¯→ dilepton channels using √s = 7   TeV ATLAS data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-07-17

    The top quark mass was measured in the channels tt¯→ lepton+jets and tt¯→ dilepton (lepton = e,μ) based on ATLAS data recorded in 2011. The data were taken at the LHC with a proton–proton centre-of-mass energy of √s = 7 TeV and correspond to an integrated luminosity of 4.6 fb–1. The tt¯→ lepton+jets analysis uses a three-dimensional template technique which determines the top quark mass together with a global jet energy scale factor (JSF), and a relative b-to-light-jet energy scale factor (bJSF), where the terms b-jets and light-jets refer to jets originating from b-quarks and u, d, c, s-quarks ormore »gluons, respectively. The analysis of the tt¯→ dilepton channel exploits a one-dimensional template method using the mℓb observable, defined as the average invariant mass of the two lepton+b-jet pairs in each event. The top quark mass is measured to be 172.33 ± 0.75 (stat + JSF + bJSF) ± 1.02(syst) GeV, and 173.79 ± 0.54(stat) ± 1.30(syst) GeV in the tt¯→ lepton+jets and tt¯→ dilepton channels, respectively. Thus, the combination of the two results yields mtop = 172.99 ± 0.48(stat) ± 0.78(syst) GeV, with a total uncertainty of 0.91 GeV.« less

  14. MASS SPECTROMETRY

    DOE Patents [OSTI]

    Nier, A.O.C.

    1959-08-25

    A voltage switching apparatus is described for use with a mass spectrometer in the concentratron analysis of several components of a gas mixture. The system automatically varies the voltage on the accelerating electrode of the mass spectrometer through a program of voltages which corresponds to the particular gas components under analysis. Automatic operation may be discontinued at any time to permit the operator to manually select any desired predetermined accelerating voltage. Further, the system may be manually adjusted to vary the accelerating voltage over a wide range.

  15. Measurement of the φ*η distribution of muon pairs with masses between 30 and 500 GeV in 10.4 fb-1 of pp¯ collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, Victor Mukhamedovich

    2015-04-06

    We present a measurement of the distribution of the variable φ*η for muon pairs with masses between 30 and 500 GeV, using the complete run II data set collected by the D0 detector at the Fermilab Tevatron proton-antiproton collider. This corresponds to an integrated luminosity of 10.4 fb–1 at √s = 1.96 TeV. The data are corrected for detector effects and presented in bins of dimuon rapidity and mass. The variable φ*η probes the same physical effects as the Z/γ* boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. These are the first measurementsmore » at any collider of the φ*η distributions for dilepton masses away from the Z → ℓ+ℓ– boson mass peak. As a result, the data are compared to QCD predictions based on the resummation of multiple soft gluons.« less

  16. Commissioning Measurements and Experience Obtained from the Installation of a Fissile Mass Flow monitor in the URAL Electrochemical Integrated Plant (UEIP) in Novouralsk

    SciTech Connect (OSTI)

    March-Leuba, J.; Mastal, E.; Powell, D.; Sumner, J.; Uckan, T.; Vines, V.

    1999-07-25

    The Blend Down Monitoring System (BDMS) equipment sent earlier to the Ural Electrochemical Integrated Plant (UEIP) at Novouralsk, Russia, was installed and implemented successfully on February 2, 1999. The BDMS installation supports the highly enriched uranium (HEU) Transparency Implementation Program for material subject to monitoring under the HEU purchase agreement between the United States of America (USA) and the Russian Federation (RF). The BDMS consists of the Oak Ridge National Laboratory (ORNL) Fissile (uranium-235) Mass Flow Monitor (FMFM) and the Los Alamos National Laboratory (LANL) Enrichment Monitor (EM). Two BDMS?s for monitoring the Main and Reserve HEU blending process lines were installed at UEIP. Independent operation of the FMFM Main and FMFM Reserve was successfully demonstrated for monitoring the fissile mass flow as well as the traceability of HEU to the product low enriched uranium. The FMFM systems failed when both systems were activated during the calibration phase due to a synchronization problem between the systems. This operational failure was caused by the presence of strong electromagnetic interference (EMI) in the blend point. The source-modulator shutter motion of the two FMFM systems was not being properly synchronized because of EMI producing a spurious signal on the synchronization cable connecting the two FMFM cabinets. The signature of this failure was successfully reproduced at ORNL after the visit. This unexpected problem was eliminated by a hardware modification and software improvements during a recent visit (June 9-11, 1999) to UEIP, and both systems are now operating as expected.

  17. Quark Masses

    SciTech Connect (OSTI)

    Gasser, Juerg

    2005-10-26

    In my talk, I reviewed some basic aspects of quark masses: what do they mean, how can they be determined, what is our present knowledge on them. The talk was addressed to non specialists in the field, and so is this write up.

  18. Measurement of Hadronic Event Shapes and Jet Substructure in Proton-Proton Collisions at 7.0 TeV Center-of-Mass Energy with the ATLAS Detector at the Large Hadron Collider

    SciTech Connect (OSTI)

    Miller, David Wilkins

    2012-03-20

    This thesis presents the first measurement of 6 hadronic event shapes in proton-proton collisions at a center-of-mass energy of {radical}s = 7 TeV using the ATLAS detector at the Large Hadron Collider. Results are presented at the particle-level, permitting comparisons to multiple Monte Carlo event generator tools. Numerous tools and techniques that enable detailed analysis of the hadronic final state at high luminosity are described. The approaches presented utilize the dual strengths of the ATLAS calorimeter and tracking systems to provide high resolution and robust measurements of the hadronic jets that constitute both a background and a signal throughout ATLAS physics analyses. The study of the hadronic final state is then extended to jet substructure, where the energy flow and topology within individual jets is studied at the detector level and techniques for estimating systematic uncertainties for such measurements are commissioned in the first data. These first substructure measurements in ATLAS include the jet mass and sub-jet multiplicity as well as those concerned with multi-body hadronic decays and color flow within jets. Finally, the first boosted hadronic object observed at the LHC - the decay of the top quark to a single jet - is presented.

  19. Algorithm for Screening Phasor Measurement Unit Data for Power System Events and Categories and Common Characteristics for Events Seen in Phasor Measurement Unit Relative Phase-Angle Differences and Frequency Signals

    SciTech Connect (OSTI)

    Allen, A.; Santoso, S.; Muljadi, E.

    2013-08-01

    A network of multiple phasor measurement units (PMU) was created, set up, and maintained at the University of Texas at Austin to obtain actual power system measurements for power system analysis. Power system analysis in this report covers a variety of time ranges, such as short- term analysis for power system disturbances and their effects on power system behavior and long- term power system behavior using modal analysis. The first objective of this report is to screen the PMU data for events. The second objective of the report is to identify and describe common characteristics extracted from power system events as measured by PMUs. The numerical characteristics for each category and how these characteristics are used to create selection rules for the algorithm are also described. Trends in PMU data related to different levels and fluctuations in wind power output are also examined.

  20. Measurement of the top quark mass with the dynamical likelihood method using lepton plus jets events with b-tags in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect (OSTI)

    Abulencia, A.; Acosta, D.; Adelman, Jahred A.; Affolder, Anthony A.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara

    2005-12-01

    This report describes a measurement of the top quark mass, M{sub top}, with the dynamical likelihood method (DLM) using the CDF II detector at the Fermilab Tevatron. The Tevatron produces top/anti-top (t{bar t}) pairs in p{bar p} collisions at a center-of-mass energy of 1.96 TeV. The data sample used in this analysis was accumulated from March 2002 through August 2004, which corresponds to an integrated luminosity of 318 pb{sup -1}. They use the t{bar t} candidates in the ''lepton+jets'' decay channel, requiring at least one jet identified as a b quark by finding an displaced secondary vertex. The DLM defines a likelihood for each event based on the differential cross section as a function of M{sub top} per unit phase space volume of the final partons, multiplied by the transfer functions from jet to parton energies. The method takes into account all possible jet combinations in an event, and the likelihood is multiplied event by event to derive the top quark mass by the maximum likelihood method. Using 63 t{bar t} candidates observed in the data, with 9.2 events expected from background, they measure the top quark mass to be 173.2{sub -2.4}{sup +2.6}(stat.) {+-} 3.2(syst.) GeV/c{sup 2}, or 173.2{sub -4.0}{sup +4.1} GeV/c{sup 2}.

  1. Measurement of $d\\sigma/dy$ of Drell-Yan $e^+e^-$ pairs in the $Z$ Mass Region from $p\\bar{p}$ Collisions at $\\sqrt{s}=1.96$ TeV

    SciTech Connect (OSTI)

    Aaltonen, Timo Antero; Adelman, Jahred A.; Gonzalez, Barbara Alvarez; Amerio, Silvia; Amidei, Dante E.; Anastassov, Anton Iankov; Annovi, Alberto; Antos, Jaroslav; Apollinari, Giorgio; Appel, Jeffrey A.; Apresyan, Artur; /Purdue U. /Waseda U.

    2010-03-01

    We report on a CDF measurement of the total cross section and rapidity distribution, d{sigma}/dy, for q{bar q} {yields} {gamma}{sup *}/Z {yields} e{sup +} e {sup -} events in the Z boson mass region (66 < M {sub ee} < 116 GeV/c {sub 2}) produced in p{bar p} collisions at {radical}s = 1.96 TeV with 2.1 fb{sup -1} of integrated luminosity. The measured cross section of 257 {+-} 16pb and d{sigma}/dy distribution are compared with Next-to-Leading-Order (NLO) and Next-to-Next-to-Leading-Order (NNLO) QCD theory predictions with CTEQ and MRST/MSTW parton distribution functions (PDFs). There is good agreement between the experimental total cross section and d{sigma}/dy measurements with theoretical calcualtion with the most recent NNLO PDFs.

  2. A Measurement of the production cross section of top-antitop pairs in proton-antiproton collisions at a center of mass of 1.96 TeV using secondary vertex b-tagging.

    SciTech Connect (OSTI)

    Bachacou, Henri

    2004-12-01

    A measurement of the t{bar t} pair production cross section is presented using 162 pb{sup -1} of data collected by the CDF experiment during Run II at the Tevatron. t{bar t} events in the lepton+jets channel are isolated by identifying electrons and muons, reconstructing jets and transverse missing energy, and identifying b jets with a secondary vertex tagging algorithm. The efficiency of the algorithm is measured in a control sample using a novel technique that is less dependent on the simulation. For a top quark mass of 175 GeV/c{sup 2}, a cross section of {sigma}{sub t{bar t}} = 5.6{sub -1.1}{sup +1.2}(stat.){sub -0.6}{sup +0.9}(syst.)pb is measured.

  3. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect

    DOE Patents [OSTI]

    Cremers, David A.; Keller, Richard A.

    1984-01-01

    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect has been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical pathlength of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10.sup.-5 cm.sup.-1 can then be determined in the presence of background absorptions in excess of 10.sup.-3 cm.sup.-1. In addition, the smallest absorption measured with the instant apparatus and method is about 5.times. 10.sup.-6 cm.sup.-1.

  4. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect

    DOE Patents [OSTI]

    Cremers, D.A.; Keller, R.A.

    1984-05-08

    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect have been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical path length of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10[sup [minus]5] cm[sup [minus]1] can then be determined in the presence of background absorptions in excess of 10[sup [minus]3] cm[sup [minus]1]. In addition, the smallest absorption measured with the instant apparatus and method is about 5 [times] 10[sup [minus]6] cm[sup [minus]1]. 6 figs.

  5. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect

    DOE Patents [OSTI]

    Cremers, D.A.; Keller, R.A.

    1982-06-08

    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect has been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical pathlength of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10/sup -5/ cm/sup -1/ can then be determined in the presence of background absorptions in excess of 10/sup -3/ cm/sup -1/. In addition, the smallest absorption measured with the instant apparatus and method is about 5 x 10/sup -6/ cm/sup -1/.

  6. MEASURING CIRCUIT

    DOE Patents [OSTI]

    Mahoney, J.R.

    1963-01-29

    A measuring and balancing arrangement for mass spectrometers permits the ready determination of isotopic ratios and mole and weight percentages by employing a selection of amplifier input resistors to vary sensitivity in a bridge arrangement. (AEC)

  7. Measurement of elemental speciation by liquid chromatography -- inductively coupled plasma mass spectrometry (LC-ICP-MS) with the direct injection nebulizer (DIN)

    SciTech Connect (OSTI)

    Shum, S.

    1993-05-01

    This thesis is divided into 4 parts: elemental speciation, speciation of mercury and lead compounds by microbore column LC-ICP-MS with direct injection nebulization, spatially resolved measurements of size and velocity distributions of aerosol droplets from a direct injection nebulizer, and elemental speciation by anion exchange and size exclusion chromatography with detection by ICP-MS with direct injection nebulization. Tabs, figs, refs.

  8. MASS SPECTROMETRY

    DOE Patents [OSTI]

    Friedman, L.

    1962-01-01

    method is described for operating a mass spectrometer to improve its resolution qualities and to extend its period of use substantially between cleanings. In this method, a small amount of a beta emitting gas such as hydrogen titride or carbon-14 methane is added to the sample being supplied to the spectrometer for investigation. The additive establishes leakage paths on the surface of the non-conducting film accumulating within the vacuum chamber of the spectrometer, thereby reducing the effect of an accumulated static charge on the electrostatic and magnetic fields established within the instrument. (AEC)

  9. Measurement of d sigma/dy of Drell-Yan e+ e- pairs in the Z Mass Region from p anti-p Collisions at s88(1/2) = 1.96-TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; /Purdue U. /Waseda U.

    2009-08-01

    We report on a CDF measurement of the total cross section and rapidity distribution, d{sigma}/dy, for q{bar q} {yields} {gamma}*/Z {yields} e{sup +}e{sup -} events in the Z boson mass region (66 < M{sub ee} < 116 GeV/c{sup 2}) produced in p{bar p} collisions at {radical}s = 1.96 TeV with 2.1 fb{sup -1} of integrated luminosity. The measured cross section of 256 {+-} 16 pb and d{sigma}/dy distribution are compared with Next-to-Leading-Order and Next-to-Next-to-Leading-Order QCD theory predictions with CTEQ and MRST parton distribution functions (PDFs). There is good agreement between data and theory except at large rapidity for which further tuning of PDF models may be needed.

  10. Time and space resolved measurement of the electron temperature, mass density and ionization state in the ablation plasma between two exploding Al wires

    SciTech Connect (OSTI)

    Knapp, P. F.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Hansen, S. B.

    2012-05-15

    We have determined the properties of plasma around and between two exploding wires using high-resolution x-ray absorption spectroscopy. Plasma densities and temperatures ranging from Greater-Than-Or-Equivalent-To 0.1g/cm{sup 3} and a few eV to less than 0.01 g/cm{sup 3} and 30 eV have been measured in experiments at Cornell University with two 40 {mu}m aluminum (Al) wires spaced 1 mm apart driven by {approx}150 kA peak current pulses with 100 ns rise time. The wire plasma was backlit by the 1.4-1.6 keV continuum radiation produced by a Mo wire X-pinch. The spectrometer employed two spherically bent quartz crystals to record the absorption and backlighter spectra simultaneously. The transition between the dense Al wire core and the coronal plasma is seen as a transition from cold K-edge absorption to Mg-, Na-, and finally Ne-like absorption at the boundary. In the plasma that accumulates between the wires, ionization states up to C-Like Al are observed. The spectrometer geometry and {approx}2{mu}m X-pinch source size provide 0.3 eV spectral resolution and 20 {mu}m spatial resolution enabling us to see 1s{yields} 2p satellite transitions as separate lines as well as O-, F-, and Ne-like 1s{yields} 3p transitions that have not been seen before. A step wedge was used to calibrate the transmission, enabling density to be measured within a factor of two and temperature to be measured within {+-}25%. A genetic algorithm was developed to fit synthetic spectra calculated using the collisional-radiative code SCRAM to the experimental spectra. In order to obtain agreement it was necessary to assume multiple plasma regions with variable thicknesses, thereby allowing the inferred plasma conditions to vary along the absorption path.

  11. Investigation of structure and properties of the Nb rods manufactured by different deformation and heat treatment regimes in mass production conditions for the Nb{sub 3}Sn strands

    SciTech Connect (OSTI)

    Abdyukhanov, I. M.; Vorobieva, A. E.; Alekseev, M. V.; Mareev, K. A.; Dergunova, E. A.; Peredkova, T. N. [JSC Bochvar High-Technology Research Institute of Inorganic Materials, 5a Rogova St., Moscow, 123060 (Russian Federation); Shikov, A. K. [NRC Kurchatov Institute, 1 Akademika Kurchatova Sq., Moscow, 123182 (Russian Federation); Utkin, K. V.; Vorobieva, A. V.; Kharkovsky, D. N. [JSC Chepetsky Mechanical Plant, 7 Belova St., Glazov, 427620 (Russian Federation)

    2014-01-27

    From 2009 the mass production of the Nb{sub 3}Sn strands for ITER with the yield of several tens of tons per year operates at JSC Chepetsky Mechanical Plant (Glazov, Russia). In order to enhance the stability of output characteristics of the produced Nb{sub 3}Sn strands, to increase the Nb filaments dimensional homogeneity the manufacture regimes improvement of the used semiproducts such as Nb rods intended for the superconducting filaments formation in the finished strands has been carried out. In the work the investigations of the Nb rheological behavior, the influence of heat treatment in the wide temperature range from 700 to 1300 C on the predeformed Nb rods structure and mechanical properties have been performed. Different production routes of the Nb rods, including such operations like forging, extrusion and drawing combined with the recrystallization annealings, were used. Composite Nb{sub 3}Sn strands have been produced and their electrophysical properties have been tested. For the first time influence of the niobium rods manufacture regimes on the current carrying capacity of the industrial Nb{sub 3}Sn strands has been investigated.

  12. Mass spectrometry

    SciTech Connect (OSTI)

    Gramlich, J.W. )

    1989-11-01

    The limiting factor to the absolute accuracy of isotopic measurements is no longer instrumentation hardware. This article discusses how greater understanding and control of the chemistry of sample purification, gravimetric blending of separated isotopes, filament loading, and the physico-chemical processes occurring at the high-temperature filament will be necessary before the advantages of robotic sample preparation and filament loading and automated analysis can be attained. Such improved understanding is seen to be an essential procursor to controlling and reducing the uncertainty in isotopic ratio measurements to one part in 10{sup 5}.

  13. Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; et al

    2014-12-24

    Our measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 4.5 fb₋1 of proton-proton collisions data at √s=7 TeV and 20.3 fb₋1 at √s=8 TeV collected by the ATLAS detector at the Large Hadron Collider. The number of observed Higgs boson decays to diphotons divided by the corresponding Standard Model prediction, called the signal strength, is found to be μ=1.17±0.27 at the value of the Higgs boson mass measured by ATLAS, mH=125.4 GeV. The analysis is optimized to measure the signal strengths for individual Higgs boson production processes at thismore » value of mH. They are found to be μggF=1.32±0.38, μVBF=0.8±0.7, μWH=1.0±1.6, μZH=0.1+3.7₋0.1, and μtt¯H=1.6+2.7₋1.8, for Higgs boson production through gluon fusion, vector-boson fusion, and in association with a W or Z boson or a top-quark pair, respectively. In conclusion, compared with the previously published ATLAS analysis, the results reported here also benefit from a new energy calibration procedure for photons and the subsequent reduction of the systematic uncertainty on the diphoton mass resolution. We found no significant deviations from the predictions of the Standard Model.« less

  14. First Measurement of the Angular Coefficients of Drell-Yan e⁺e⁻ Pairs in the Z Mass Region from pp̄ Collisions at √s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Apresyan, A.; et al

    2011-06-15

    We report on the first measurement of the angular distributions of final state electrons in pp̄→γ*/Z→e⁺e⁻+X events produced in the Z boson mass region at √s=1.96 TeV. The data sample collected by the CDF II detector for this result corresponds to 2.1 fb⁻¹ of integrated luminosity. The angular distributions are studied as a function of the transverse momentum of the electron-positron pair and show good agreement with the Lam-Tung relation, consistent with a spin-1 description of the gluon, and demonstrate that, at high values of the transverse momentum, Z bosons are produced via quark-antiquark annihilation and quark-gluon Compton processes.

  15. First Measurement of the Angular Coefficients of Drell-Yan e?e? Pairs in the Z Mass Region from pp? Collisions at ?s=1.96 TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; lvarez Gonzlez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Apresyan, A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bauer, G.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Brigliadori, L.; Brisuda, A.; Bromberg, C.; Brucken, E.; Bucciantonio, M.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Chung, W. H.; Chung, Y. S.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; dAscenzo, N.; Datta, M.; de Barbaro, P.; De Cecco, S.; De Lorenzo, G.; DellOrso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Devoto, F.; dErrico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; DOnofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, D.; Errede, S.; Ershaidat, N.; Eusebi, R.; Fang, H. C.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; Gonzlez, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hidas, D.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirby, M.; Klimenko, S.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, Q.; Liu, T.; Lockwitz, S.; Lockyer, N. S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maksimovic, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martnez, M.; Martnez-Ballarn, R.; Mastrandrea, P.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.

    2011-06-01

    We report on the first measurement of the angular distributions of final state electrons in pp???*/Z?e?e?+X events produced in the Z boson mass region at ?s=1.96 TeV. The data sample collected by the CDF II detector for this result corresponds to 2.1 fb? of integrated luminosity. The angular distributions are studied as a function of the transverse momentum of the electron-positron pair and show good agreement with the Lam-Tung relation, consistent with a spin-1 description of the gluon, and demonstrate that, at high values of the transverse momentum, Z bosons are produced via quark-antiquark annihilation and quark-gluon Compton processes.

  16. First Measurement of the Angular Coefficients of Drell-Yan $e^{+}e^{-}$ pairs in the Z Mass Region from $p\\bar{p}$ Collisions at $\\sqrt{s}$ = 1.96 TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; /Purdue U. /Waseda U. /Dubna, JINR

    2011-03-01

    We report on the first measurement of the angular distributions of final state electrons in p{bar p} {yields} {gamma}*/Z {yields} e{sup +}e{sup -} + X events produced in the Z boson mass region at {radical}s = 1.96 TeV. The data sample collected by the CDF II detector for this result corresponds to 2.1 fb{sup -1} of integrated luminosity. The angular distributions are studied as a function of the transverse momentum of the electron-positron pair and show good agreement with the Lam-Tung relation, consistent with a spin-1 description of the gluon, and demonstrate that at high values of the transverse momentum, Z bosons are produced via quark anti-quark annihilation and quark-gluon Compton processes.

  17. Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings

    SciTech Connect (OSTI)

    Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu

    2009-07-15

    Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

  18. Probing the Dark Matter mass and nature with neutrinos

    SciTech Connect (OSTI)

    Blennow, Mattias; Carrigan, Marcus; Martinez, Enrique Fernandez E-mail: carri@kth.se

    2013-06-01

    We study the possible indirect neutrino signal from dark matter annihilations inside the Sun's core for relatively light dark matter masses in the O(10) GeV range. Due to their excellent energy reconstruction capabilities, we focus on the detection of this flux in liquid argon or magnetized iron calorimeter detectors, proposed for the next generation of far detectors of neutrino oscillation experiments and neutrino telescopes. The aim of the study is to probe the ability of these detectors to determine fundamental properties of the dark matter nature such as its mass or its relative annihilation branching fractions to different channels. We find that these detectors will be able to accurately measure the dark matter mass as long as the dark matter annihilations have a significant branching into the neutrino or at least the τ channel. We have also discovered degeneracies between different dark matter masses and annihilation channels, where a hard τ channel spectrum for a lower dark matter mass may mimic that of a softer quark channel spectrum for a larger dark matter mass. Finally, we discuss the sensitivity of the detectors to the different branching ratios and find that it is between one and two orders of magnitude better than the current bounds from those coming from analysis of Super-Kamiokande data.

  19. Measurement of the top quark pair production cross section in proton-antiproton collisions at a center of mass energy of 1.96 TeV, hadronic top decays with the D0 detector

    SciTech Connect (OSTI)

    Hegeman, Jeroen Guido; /Twente U. Tech., Enschede

    2009-01-16

    Of the six quarks in the standard model the top quark is by far the heaviest: 35 times more massive than its partner the bottom quark and more than 130 times heavier than the average of the other five quarks. Its correspondingly small decay width means it tends to decay before forming a bound state. Of all quarks, therefore, the top is the least affected by quark confinement, behaving almost as a free quark. Its large mass also makes the top quark a key player in the realm of the postulated Higgs boson, whose coupling strengths to particles are proportional to their masses. Precision measurements of particle masses for e.g. the top quark and the W boson can hereby provide indirect constraints on the Higgs boson mass. Since in the standard model top quarks couple almost exclusively to bottom quarks (t {yields} Wb), top quark decays provide a window on the standard model through the direct measurement of the Cabibbo-Kobayashi-Maskawa quark mixing matrix element V{sub tb}. In the same way any lack of top quark decays into W bosons could imply the existence of decay channels beyond the standard model, for example charged Higgs bosons as expected in two-doublet Higgs models: t {yields} H{sup +}b. Within the standard model top quark decays can be classified by the (lepton or quark) W boson decay products. Depending on the decay of each of the W bosons, t{bar t} pair decays can involve either no leptons at all, or one or two isolated leptons from direct W {yields} e{bar {nu}}{sub e} and W {yields} {mu}{bar {nu}}{sub {mu}} decays. Cascade decays like b {yields} Wc {yields} e{bar {nu}}{sub e}c can lead to additional non-isolated leptons. The fully hadronic decay channel, in which both Ws decay into a quark-antiquark pair, has the largest branching fraction of all t{bar t} decay channels and is the only kinematically complete (i.e. neutrino-less) channel. It lacks, however, the clear isolated lepton signature and is therefore hard to distinguish from the multi-jet QCD

  20. Photoionization mass spectrometric measurements of initial reaction...

    Office of Scientific and Technical Information (OSTI)

    ... Additional Journal Information: Journal Volume: 118; Journal Issue: 44; Journal ID: ISSN 1089-5639 Publisher: American Chemical Society Research Org: Sandia National Laboratories ...

  1. M dwarfs in the Local Milky Way: The Field Low-Mass Stellar Luminosity and Mass Functions

    SciTech Connect (OSTI)

    Bochanski, John J., Jr.; /Washington U., Seattle, Astron. Dept.

    2006-06-01

    Modern sky surveys, such as the Sloan Digital Sky Survey (SDSS) and the Two-Micron All Sky Survey, have revolutionized how Astronomy is done. With millions of photometric and spectroscopic observations, global observational properties can be studied with unprecedented statistical significance. Low-mass stars dominate the local Milky Way, with tens of millions observed by SDSS within a few kpc. Thus, they make ideal tracers of the Galactic potential, and the thin and thick disks. In this thesis dissertation, I present my efforts to characterize the local low-mass stellar population, using a collection of observations from the Sloan Digital Sky Survey (SDSS). First, low-mass stellar template spectra were constructed from the co-addition of thousands of SDSS spectroscopic observations. These template spectra were used to quantify the observable changes introduced by chromospheric activity and metallicity. Furthermore, the average ugriz colors were measured as a function of spectral type. Next, the local kinematic structure of the Milky Way was quantified, using a special set of SDSS spectroscopic observations. Combining proper motions and radial velocities (measured using the spectral templates), along with distances, the full UVW space motions of over 7000 low-mass stars along one line of sight were computed. These stars were also separated kinematically to investigate other observational differences between the thin and thick disks. Finally, this dissertation details a project designed to measure the luminosity and mass functions of low-mass stars. Using a new technique optimized for large surveys, the field luminosity function (LF) and local stellar density profile are measured simultaneously. The sample size used to estimate the LF is nearly three orders of magnitude larger than any previous study, offering a definitive measurement of this quantity. The observed LF is transformed into a mass function (MF) and compared to previous studies.

  2. Measurement of the CP-violating weak phase $\\mathrm{ \\phi_s }$ and the decay width difference $ \\Delta \\Gamma_{ \\mathrm{s} }$ using the $ \\mathrm{B^0_s} \\to \\mathrm{J} / \\psi \\phi(1020) $ decay channel in pp collisions at $\\sqrt{s} =$ 8 TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan

    2015-07-28

    The CP-violating weak phase ?s of the B0 s meson and the decay width difference ??s of the B0 s light and heavy mass eigenstates are measured with the CMS detector at the LHC using a data sample of B0 s ?J/? ?(1020) ? + -K+K- decays. Our analysed data set corresponds to an integrated luminosity of 19.7 fb-1 collected in pp collisions at a centre-of-mass energy of 8 TeV. Additionally, a total of 49 200 reconstructed B0 s decays are used to extract the values of ?s and ??s by performing a time-dependent and flavourtagged angular analysis of the + -K+K- final state. The weak phase is measured to be ?s = -0.075 0.097 (stat) 0.031 (syst) rad, and the decay width difference is ??s = 0.095 0.013 (stat) 0.007 (syst) ps-1 .

  3. Introducing the Concept of the Minimally Important Difference to Determine a Clinically Relevant Change on Patient-Reported Outcome Measures in Patients with Intermittent Claudication

    SciTech Connect (OSTI)

    Conijn, Anne P.; Jonkers, Wilma; Rouwet, Ellen V.; Vahl, Anco C.; Reekers, Jim A.; Koelemay, Mark J. W.

    2015-10-15

    PurposeThe minimally important difference (MID) represents the smallest change in score on patient-reported outcome measures that is relevant to patients. The aim of this study was to introduce the MID for the Vascular Quality of Life Questionnaire (VascuQol) and the walking impairment questionnaire (WIQ) for patients with intermittent claudication (IC).MethodsIn this multicenter study, we recruited 294 patients with IC between July and October 2012. Patients completed the VascuQol, with scores ranging from 1 to 7 (worst to best), and the WIQ, with scores ranging from 0 to 1 (worst to best) at first visit and after 4 months follow-up. In addition, patients answered an anchor-question rating their health status compared to baseline, as being improved, unchanged, or deteriorated. The MID for improvement and deterioration was calculated by an anchor-based approach, and determined with the upper and lower limits of the 95 % confidence interval of the mean change of the group who had not changed according to the anchor-question.ResultsFor the MID analyses of the VascuQol and WIQ, 163 and 134 patients were included, respectively. The MID values for the VascuQol (mean baseline score 4.25) were 0.87 for improvement and 0.23 for deterioration. For the WIQ (mean baseline score 0.39), we found MID values of 0.11 and −0.03 for improvement and deterioration, respectively.ConclusionIn this study, we calculated the MID for the VascuQol and the WIQ. Applying these MID facilitates better interpretation of treatment outcomes and can help to set treatment goals for individual care.

  4. A Residual Mass Ballistic Testing Method to Compare Armor Materials or Components (Residual Mass Ballistic Testing Method)

    SciTech Connect (OSTI)

    Benjamin Langhorst; Thomas M Lillo; Henry S Chu

    2014-05-01

    A statistics based ballistic test method is presented for use when comparing multiple groups of test articles of unknown relative ballistic perforation resistance. The method is intended to be more efficient than many traditional methods for research and development testing. To establish the validity of the method, it is employed in this study to compare test groups of known relative ballistic performance. Multiple groups of test articles were perforated using consistent projectiles and impact conditions. Test groups were made of rolled homogeneous armor (RHA) plates and differed in thickness. After perforation, each residual projectile was captured behind the target and its mass was measured. The residual masses measured for each test group were analyzed to provide ballistic performance rankings with associated confidence levels. When compared to traditional V50 methods, the residual mass (RM) method was found to require fewer test events and be more tolerant of variations in impact conditions.

  5. CALIBRATING C-IV-BASED BLACK HOLE MASS ESTIMATORS

    SciTech Connect (OSTI)

    Park, Daeseong; Woo, Jong-Hak; Shin, Jaejin [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Denney, Kelly D., E-mail: pds2001@astro.snu.ac.kr, E-mail: woo@astro.snu.ac.kr, E-mail: jjshin@astro.snu.ac.kr, E-mail: kelly@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark)

    2013-06-20

    We present the single-epoch black hole mass estimators based on the C IV {lambda}1549 broad emission line, using the updated sample of the reverberation-mapped active galactic nuclei and high-quality UV spectra. By performing multi-component spectral fitting analysis, we measure the C IV line widths (FWHM{sub C{sub IV}} and line dispersion, {sigma}{sub C{sub IV}}) and the continuum luminosity at 1350 A (L{sub 1350}) to calibrate the C-IV-based mass estimators. By comparing with the H{beta} reverberation-based masses, we provide new mass estimators with the best-fit relationships, i.e., M{sub BH}{proportional_to}L{sub 1350}{sup 0.50{+-}0.07}{sigma}{sub C{sub IV}{sup 2}} and M{sub BH}{proportional_to}L{sub 1350}{sup 0.52{+-}0.09} FWHM{sub C{sub IV}{sup 0.56{+-}0.48}}. The new C-IV-based mass estimators show significant mass-dependent systematic difference compared to the estimators commonly used in the literature. Using the published Sloan Digital Sky Survey QSO catalog, we show that the black hole mass of high-redshift QSOs decreases on average by {approx}0.25 dex if our recipe is adopted.

  6. Isotope mass spectrometry from 1968 to 1989

    SciTech Connect (OSTI)

    DeBievre, P. )

    1989-11-01

    The principal developments in isotope mass spectrometry are described with respect to instrument construction, detector technology, measurement precision, measurement accuracy, and reference materials. The increase in the application of isotope mass spectrometry is summarized, with special emphasis on its use in safeguards of nuclear materials. The future potential versus the present achievements of the field are discussed.

  7. Tevatron results on the discovery of sigma^(*)_b, b_s oscillations and the measurement of delta m_s, the lifetime difference delta gamma_s and the cp-violating phase phi

    SciTech Connect (OSTI)

    Heijboer, Aart; /Pennsylvania U.

    2007-10-01

    The author discusses results from the Tevatron experiments on mixing and CP-violation in B{sub s} mesons, including the observation of B{sub s} oscillations and the first precision measurement of the mixing frequency, as well as a measurement of the lifetime difference {Delta}{Lambda}{sub s} and the first measurement of the CP-violating phase {delta}{sub s}. The author also briefly reports on the observation of four new bottom baryons at CDF.

  8. Ultra High Mass Range Mass Spectrometer System

    DOE Patents [OSTI]

    Reilly, Peter T. A. [Knoxville, TN

    2005-12-06

    Applicant's present invention comprises mass spectrometer systems that operate in a mass range from 1 to 10.sup.16 DA. The mass spectrometer system comprising an inlet system comprising an aerodynamic lens system, a reverse jet being a gas flux generated in an annulus moving in a reverse direction and a multipole ion guide; a digital ion trap; and a thermal vaporization/ionization detector system. Applicant's present invention further comprises a quadrupole mass spectrometer system comprising an inlet system having a quadrupole mass filter and a thermal vaporization/ionization detector system. Applicant's present invention further comprises an inlet system for use with a mass spectrometer system, a method for slowing energetic particles using an inlet system. Applicant's present invention also comprises a detector device and a method for detecting high mass charged particles.

  9. A measurement of. Delta. sigma. sub L (np), the difference between neutron-proton total cross sections in pure longitudinal spin states

    SciTech Connect (OSTI)

    Beddo, M.E.

    1990-10-01

    A measurement off {Delta}{sigma}{sub L}(np), the difference between neutron-proton total cross sections in pure longitudinal spin states, is described. The results will help determine the isospin-zero (I = 0) scattering amplitudes, which are not well known above laboratory energies of 500 MeV, whereas the isospin-one (I = 1) amplitudes are fairly well-determined to 1 GeV. Data points were taken at the Los Alamos Meson Physics Facility (LAMPF) at Los Alamos, New Mexico, for five neutron beam energies: 484, 568, 634,720 and 788 MeV; they are the first in this energy range. Polarized neutrons were produced by charge-exchange of polarized protons on a liquid deuterium target (LD{sub 2}). Large-volume neutron counters detected the neutrons that passed through a polarized proton target. The counters subtended a range of solid angles large enough to allow extrapolation of the scattered neutrons to 0{degree}. Two modifications to the LAMPF accelerator system which were made for this work are described. They included a beam buncher,'' which modified the normal rf-time structure of the proton beam and allowed for the selection of peak-energy neutrons by time-of-flight means, and a computerized beam steering program, which reduced systematic effects due to beam motion at the LD{sub 2} target. The experimental values of {Delta}{sigma}{sub L}(np) are found to be consistent with other np data, including preliminary data from SIN and Saclay, but not with some results from Argonne which used a polarized proton beam and a polarized deuteron target. The I = 0 component was extracted from {Delta}{sigma}{sub L}(np) using existing pp data (I = 1), with the unexpected result that {Delta}{sigma}{sub L}(I = 0) was found to be essentially identical in shape to {Delta}{sigma}{sub L}(I = 1). The significance of this is not yet understood.

  10. Mass-sensitive chemical preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P.; Adkins, Douglas R.; Lewis, Patrick R.

    2007-01-30

    A microfabricated mass-sensitive chemical preconcentrator actively measures the mass of a sample on an acoustic microbalance during the collection process. The microbalance comprises a chemically sensitive interface for collecting the sample thereon and an acoustic-based physical transducer that provides an electrical output that is proportional to the mass of the collected sample. The acoustic microbalance preferably comprises a pivot plate resonator. A resistive heating element can be disposed on the chemically sensitive interface to rapidly heat and release the collected sample for further analysis. Therefore, the mass-sensitive chemical preconcentrator can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  11. Mass spectrometric immunoassay

    DOE Patents [OSTI]

    Nelson, Randall W.; Williams, Peter; Krone, Jennifer Reeve

    2005-12-13

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  12. Mass spectrometric immunoassay

    DOE Patents [OSTI]

    Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

    2013-07-16

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  13. Mass spectrometric immunoassay

    DOE Patents [OSTI]

    Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

    2007-12-04

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  14. Measurements of plutonium

    SciTech Connect (OSTI)

    Larsen, R.P. )

    1989-11-01

    Based on reviews of the early and recent literature concerning comparative measurements of plutonium, sources of measurement error are discussed. This paper focuses on those related to mass spectrometric isotope dilution.

  15. SIEMENS ADVANCED QUANTRA FTICR MASS SPECTROMETER FOR ULTRA HIGH RESOLUTION AT LOW MASS

    SciTech Connect (OSTI)

    Spencer, W; Laura Tovo, L

    2008-07-08

    The Siemens Advanced Quantra Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometer was evaluated as an alternative instrument to large double focusing mass spectrometers for gas analysis. High resolution mass spectrometers capable of resolving the common mass isomers of the hydrogen isotopes are used to provide data for accurate loading of reservoirs and to monitor separation of tritium, deuterium, and helium. Conventional double focusing magnetic sector instruments have a resolution that is limited to about 5000. The Siemens FTICR instrument achieves resolution beyond 400,000 and could possibly resolve the tritium ion from the helium-3 ion, which differ by the weight of an electron, 0.00549 amu. Working with Y-12 and LANL, SRNL requested Siemens to modify their commercial Quantra system for low mass analysis. To achieve the required performance, Siemens had to increase the available waveform operating frequency from 5 MHz to 40 MHz and completely redesign the control electronics and software. However, they were able to use the previous ion trap, magnet, passive pump, and piezo-electric pulsed inlet valve design. NNSA invested $1M in this project and acquired four systems, two for Y-12 and one each for SRNL and LANL. Siemens claimed a $10M investment in the Quantra systems. The new Siemens Advanced Quantra demonstrated phenomenal resolution in the low mass range. Resolution greater than 400,000 was achieved for mass 2. The new spectrometer had a useful working mass range to 500 Daltons. However, experiments found that a continuous single scan from low mass to high was not possible. Two useful working ranges were established covering masses 1 to 6 and masses 12 to 500 for our studies. A compromise performance condition enabled masses 1 to 45 to be surveyed. The instrument was found to have a dynamic range of about three orders of magnitude and quantitative analysis is expected to be limited to around 5 percent without using complex fitting algorithms

  16. Imaging mass spectrometer with mass tags

    DOE Patents [OSTI]

    Felton, James S.; Wu, Kuang Jen; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2010-06-01

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  17. Imaging mass spectrometer with mass tags

    DOE Patents [OSTI]

    Felton, James S.; Wu, Kuang Jen J.; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2013-01-29

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  18. Measurement of the correlation between flow harmonics of different order in lead-lead collisions at s NN = 2.76 TeV with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-09-14

    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using ?sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 ?b-1. The vm-vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistentmorewith similar anticorrelations between the corresponding eccentricities, ?2 and ?3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm-vn correlations for n=4 and 5 are found to disagree with ?m-?n correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations.less

  19. Metrics For Comparing Plasma Mass Filters

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2012-08-15

    High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter. __________________________________________________

  20. Metrics for comparing plasma mass filters

    SciTech Connect (OSTI)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-10-15

    High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter.

  1. Gluon correlations from a glasma flux-tube model compared to measured hadron correlations on transverse momentum (pt,pt) and angular differences (ηΔ,φΔ)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Trainor, Thomas A.; Ray, R. L.

    2011-09-09

    A glasma flux-tube model has been proposed to explain strong elongation on pseudorapidity η of the same-side two-dimensional (2D) peak in minimum-bias angular correlations from √(sNN)=200 GeV Au-Au collisions. The same-side peak or “soft ridge” is said to arise from coupling of flux tubes to radial flow whereby gluons radiated transversely from flux tubes are boosted by radial flow to form a narrow structure or ridge on azimuth. In this study we test the theory conjecture by comparing measurements to predictions for particle production, spectra, and correlations from the glasma model and from conventional fragmentation processes. We conclude that themore » glasma model is contradicted by measured hadron yields, spectra, and correlations, whereas a two-component model of hadron production, including minimum-bias parton fragmentation, provides a quantitative description of most features of the data, although η elongation of the same-side 2D peak remains undescribed.« less

  2. Mass-matrix ansatz and constraints on B{sub s}{sup 0}-B{sub s}{sup 0} mixing in 331 models

    SciTech Connect (OSTI)

    Martinez, R.; Ochoa, F.

    2008-03-15

    Comparing the theoretically predicted and measured values of the mass difference of the B{sub s}{sup 0} system, we estimate the lower bound on the mass of the Z{sup '} boson of models based on the SU(3){sub c} x SU(3){sub L} x U(1){sub X} gauge group. By assuming zero-texture approaches of the quark mass matrices, we find the ratio of the measured value to the theoretical prediction from the standard model and the Z{sup '} contribution from the 331 models of the mass difference of the B{sub s}{sup 0} system. We find lower bounds on the Z{sup '} mass ranging between 1 TeV and 30 TeV for the two most popular 331 models, and four different zero-textures ansaetze. The above results are expressed as a function of the weak angle associated to the b-s-Z{sup '} couplings.

  3. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  4. Mass spectrometry for biomarker development

    SciTech Connect (OSTI)

    Wu, Chaochao; Liu, Tao; Baker, Erin Shammel; Rodland, Karin D.; Smith, Richard D.

    2015-06-19

    Biomarkers potentially play a crucial role in early disease diagnosis, prognosis and targeted therapy. In the past decade, mass spectrometry based proteomics has become increasingly important in biomarker development due to large advances in technology and associated methods. This chapter mainly focuses on the application of broad (e.g. shotgun) proteomics in biomarker discovery and the utility of targeted proteomics in biomarker verification and validation. A range of mass spectrometry methodologies are discussed emphasizing their efficacy in the different stages in biomarker development, with a particular emphasis on blood biomarker development.

  5. Calorimetry of low mass Pu239 items

    SciTech Connect (OSTI)

    Cremers, Teresa L; Sampson, Thomas E

    2010-01-01

    Calorimetric assay has the reputation of providing the highest precision and accuracy of all nondestructive assay measurements. Unfortunately, non-destructive assay practitioners and measurement consumers often extend, inappropriately, the high precision and accuracy of calorimetric assay to very low mass items. One purpose of this document is to present more realistic expectations for the random uncertainties associated with calorimetric assay for weapons grade plutonium items with masses of 200 grams or less.

  6. Co-registered Topographical, Band Excitation Nanomechanical, and Mass Spectral Imaging Using a Combined Atomic Force Microscopy/Mass Spectrometry Platform

    SciTech Connect (OSTI)

    Ovchinnikova, Olga S.; Tai, Tamin; Bocharova, Vera; Okatan, Mahmut Baris; Belianinov, Alex; Kertesz, Vilmos; Jesse, Stephen; Van Berkel, Gary J.

    2015-03-18

    The advancement of a hybrid atomic force microscopy/mass spectrometry imaging platform demonstrating for the first time co-registered topographical, band excitation nanomechanical, and mass spectral imaging of a surface using a single instrument is reported. The mass spectrometry-based chemical imaging component of the system utilized nanothermal analysis probes for pyrolytic surface sampling followed by atmospheric pressure chemical ionization of the gas phase species produced with subsequent mass analysis. We discuss the basic instrumental setup and operation and the multimodal imaging capability and utility are demonstrated using a phase separated polystyrene/poly(2-vinylpyridine) polymer blend thin film. The topography and band excitation images showed that the valley and plateau regions of the thin film surface were comprised primarily of one of the two polymers in the blend with the mass spectral chemical image used to definitively identify the polymers at the different locations. Data point pixel size for the topography (390 nm x 390 nm), band excitation (781 nm x 781 nm), mass spectrometry (690 nm x 500 nm) images was comparable and submicrometer in all three cases, but the data voxel size for each of the three images was dramatically different. The topography image was uniquely a surface measurement, whereas the band excitation image included information from an estimated 10 nm deep into the sample and the mass spectral image from 110-140 nm in depth. Moreover, because of this dramatic sampling depth variance, some differences in the band excitation and mass spectrometry chemical images were observed and were interpreted to indicate the presence of a buried interface in the sample. The spatial resolution of the mass spectral image was estimated to be between 1.5 m 2.6 m, based on the ability to distinguish surface features in that image that were also observed in the other images.

  7. Co-registered Topographical, Band Excitation Nanomechanical, and Mass Spectral Imaging Using a Combined Atomic Force Microscopy/Mass Spectrometry Platform

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ovchinnikova, Olga S.; Tai, Tamin; Bocharova, Vera; Okatan, Mahmut Baris; Belianinov, Alex; Kertesz, Vilmos; Jesse, Stephen; Van Berkel, Gary J.

    2015-03-18

    The advancement of a hybrid atomic force microscopy/mass spectrometry imaging platform demonstrating for the first time co-registered topographical, band excitation nanomechanical, and mass spectral imaging of a surface using a single instrument is reported. The mass spectrometry-based chemical imaging component of the system utilized nanothermal analysis probes for pyrolytic surface sampling followed by atmospheric pressure chemical ionization of the gas phase species produced with subsequent mass analysis. We discuss the basic instrumental setup and operation and the multimodal imaging capability and utility are demonstrated using a phase separated polystyrene/poly(2-vinylpyridine) polymer blend thin film. The topography and band excitation images showedmore » that the valley and plateau regions of the thin film surface were comprised primarily of one of the two polymers in the blend with the mass spectral chemical image used to definitively identify the polymers at the different locations. Data point pixel size for the topography (390 nm x 390 nm), band excitation (781 nm x 781 nm), mass spectrometry (690 nm x 500 nm) images was comparable and submicrometer in all three cases, but the data voxel size for each of the three images was dramatically different. The topography image was uniquely a surface measurement, whereas the band excitation image included information from an estimated 10 nm deep into the sample and the mass spectral image from 110-140 nm in depth. Moreover, because of this dramatic sampling depth variance, some differences in the band excitation and mass spectrometry chemical images were observed and were interpreted to indicate the presence of a buried interface in the sample. The spatial resolution of the mass spectral image was estimated to be between 1.5 m 2.6 m, based on the ability to distinguish surface features in that image that were also observed in the other images.« less

  8. Application of water jet assisted drag bit and pick cutter for the cutting of coal measure rocks. Final technical report. [Tests of combination in different rocks

    SciTech Connect (OSTI)

    Ropchan, D.; Wang, F.D.; Wolgamott, J.

    1980-04-01

    A laboratory investigation was made of the effects of high pressure water jets on the cutting forces of drag bit cutters in sedimentary rocks. A hard and soft sandstone, shale and limestone were tested with commercially obtainable conical and plow type drag bits on the EMI linear cutting machine. About 1200 cuts were made at different bit penetration, jet orientation, and water pressure to determine the reduction of cutting forces on the bit from the use of the water jet. Both independent and interactive cutting was used. The greatest reduction in cutting forces were with both of the sandstones; the drag forces were reduced about 30 percent and the normal forces about 60 percent at 5000 psi water pressure with the nozzle behind the bit. The method was less effective in the shale, except at 10,000 psi water pressure the reduction in drag force was about 55 percent. Of the rocks tested, the limestone was least affected by the water jet. The cutting forces for the plow bit showed continuous change with wear so a machined conical bit was used for most of the testing. Tests with the plow bit did show a large reduction in cutting forces by using the water jet with worn bits. An economic analysis of equipping a drag bit tunnel boring machine indicated that the water jet system could reduce costs per foot in sandstone by up to 40 percent.

  9. Analysis of perchlorate in groundwater by electrospray ionization mass spectrometry/mass spectrometry

    SciTech Connect (OSTI)

    Koester, C.J.; Beller, H.R.; Halden, R.U.

    2000-05-01

    An electrospray ionization mass spectrometry/mass spectrometry (ESI/MS/MS) method was developed to measure part-per-billion ({micro}g/L) concentrations of perchlorate in groundwater. Selective and sensitive perchlorate detection was achieved by operating the mass spectrometer in the negative ionization mode and by using MS/MS to monitor the CIO{sub 4}{sup {minus}} to ClO{sub 3}{sup {minus}} transition. The method of standard additions was used to address the considerable signal suppression caused by anions that are typically present in groundwater, such as bicarbonate and sulfate. ESI-MS/MS analysis was rapid, accurate, reproducible, and provided a detection limit of 0.5 {micro}g/L perchlorate in groundwater. Accuracy and precision of the ESI/MS/MS method were assessed by analyzing performance evaluation samples in a groundwater matrix and by comparing ion chromatography (IC) and ESI/MS/MS results for local groundwater samples. Results for the performance evaluation samples differed from the certified values by 4--13%, and precision ranged from 3 to 10% (relative standard deviation). The IC and ESI/MS/MS results were statistically indistinguishable for perchlorate concentrations above the detection limits of both methods.

  10. Non-Oscillation Probes of Neutrino Masses

    SciTech Connect (OSTI)

    Weinheimer, C. [Westfaelische Wilhelms-Universitaet Muenster Institut fuer Kernphysik, Wilhelm-Klemm-Str. 9, D-48149 Muenster (Germany)

    2010-03-30

    The absolute scale of neutrino masses is very important for understanding the evolution and the structure formation of the universe as well as for nuclear and particle physics beyond the present Standard Model. Complementary to deducing statements on the neutrino mass from cosmological observations, two different methods to determine the neutrino mass scale in the laboratory are pursued: the search for neutrinoless double beta decay and the direct neutrino mass search. For both methods currently experiments with a sensitivity of O(100) meV are being set up or commissioned.

  11. Mass Transport within Soils

    SciTech Connect (OSTI)

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated zone

  12. Resonance searches with the $t\\overline{t}$ Invariant Mass Distribution measured with the D\\O\\, Experiment at $\\sqrt{s}=1.96\\,\\textrm{TeV}

    SciTech Connect (OSTI)

    Schliephake, Thorsten Dirk; /Wuppertal U.

    2010-06-01

    Understanding the universe, its birth and its future is one of the biggest motivations in physics. In order to understand the cosmos, the fundamental particles forming the universe, the components our matter is built of need to be known and understood. Over time physicists have built a theory which describes the physics of the known fundamental particles very well: the Standard Model (SM) of particle physics. The SM describes the particles, their interactions and phenomena with high precision. So far no proven deviations from the SM have been found, though recently evidence for possible physics beyond the SM has been observed. The SM is not describing the mass of the elementary particles however and even with the addition of the Higgs mechanism giving mass to the particles, we have no full theory for all four fundamental forces. We know the model needs to be extended or replaced by another one, as gravitation is not included in the SM. Having a theory which describes all fundamental particles found so far and all but one fundamental interaction is a great success. However, all this describes about 4% of the universe we live in. 23% is dark matter and 73% is dark energy. Dark matter is believed to interact only through gravity and maybe the weak force, which makes it hardly observable. Dark energy is even more elusive. Among other theories the cosmologic constant and scalar fields are discussed to describe it. One should also note that other models exist which for example modify the Newtonian law of gravity. The Higgs mechanism has become the most popular model for mass generation. Alternative theories like Super Symmetry (SUSY), large Extra Dimensions, Technicolor, String Theory, to name just a few, have spread to describe the necessary mass generation or new particles. As proof for new physics beyond the SM has not been found yet, one assumes that new physics will manifest itself at a larger energy scale and therefore a higher particle mass. Particles with high

  13. Reconciling Change in Oi-Horizon Carbon-14 with Mass Loss for an Oak Forest

    SciTech Connect (OSTI)

    Hanson, Paul J; Swanston, Christopher W.; Garten Jr, Charles T; Todd Jr, Donald E; Trumbore, Susan E.

    2005-01-01

    First-year litter decomposition was estimated for an upland-oak forest ecosystem using enrichment or dilution of the 14C-signature of the Oi-horizon. These isotopically-based mass-loss estimates were contrasted with measured mass-loss rates from past litterbag studies. Mass-loss derived from changes in the 14C-signature of the Oi-horizon suggested mean mass loss over 9 months of 45% which was higher than the corresponding 9-month rate extrapolated from litterbag studies (~35%). Greater mass loss was expected from the isotopic approach because litterbags are known to limit mass loss processes driven by soil macrofauna (e.g., fragmentation and comminution). Although the 14C-isotope approach offers the advantage of being a non-invasive method, it exhibited high variability that undermined its utility as an alternative to routine litterbag mass loss methods. However, the 14C approach measures the residence time of C in the leaf litter, rather than the time it takes for leaves to disappear; hence radiocarbon measures reflect C immobilization and recycling in the microbial pool, and do not necessarily replicate results from litterbag mass loss. The commonly applied two-compartment isotopic mixing model was appropriate for estimating decomposition from isotopic enrichment of near-background soils, but it produced divergent results for isotopic dilution of a multi-layered system with litter cohorts having independent 14C-signatures. This discrepancy suggests that cohort-based models are needed to adequately capture the complex processes involved in carbon transport associated with litter mass-loss. Such models will be crucial for predicting intra- and interannual differences in organic horizon decomposition driven by scenarios of climatic change.

  14. Reconciling Change in Oi-Horizon 14C With Mass Loss for an Oak Forest

    SciTech Connect (OSTI)

    Hanson, P J; Swanston, C W; Garten, Jr., C T; Todd, D E; Trumbore, S E

    2005-06-27

    First-year litter decomposition was estimated for an upland-oak forest ecosystem using enrichment or dilution of the {sup 14}C-signature of the Oi-horizon. These isotopically-based mass-loss estimates were contrasted with measured mass-loss rates from past litterbag studies. Mass-loss derived from changes in the {sup 14}C-signature of the Oi-horizon suggested mean mass loss over 9 months of 45% which was higher than the corresponding 9-month rate extrapolated from litterbag studies ({approx}35%). Greater mass loss was expected from the isotopic approach because litterbags are known to limit mass loss processes driven by soil macrofauna (e.g., fragmentation and comminution). Although the {sup 14}C-isotope approach offers the advantage of being a non-invasive method, it exhibited high variability that undermined its utility as an alternative to routine litterbag mass loss methods. However, the {sup 14}C approach measures the residence time of C in the leaf litter, rather than the time it takes for leaves to disappear; hence radiocarbon measures are subject to C immobilization and recycling in the microbial pool, and do not necessarily reflect results from litterbag mass loss. The commonly applied two-compartment isotopic mixing model was appropriate for estimating decomposition from isotopic enrichment of near-background soils, but it produced divergent results for isotopic dilution of a multi-layered system with litter cohorts having independent {sup 14}C-signatures. This discrepancy suggests that cohort-based models are needed to adequately capture the complex processes involved in carbon transport associated with litter mass-loss. Such models will be crucial for predicting intra- and interannual differences in organic horizon decomposition driven by scenarios of climatic change.

  15. The impact of galaxy geometry and mass evolution on the survival of star clusters

    SciTech Connect (OSTI)

    Madrid, Juan P.; Hurley, Jarrod R.; Martig, Marie

    2014-04-01

    Direct N-body simulations of globular clusters in a realistic Milky-Way-like potential are carried out using the code NBODY6 to determine the impact of the host galaxy disk mass and geometry on the survival of star clusters. A relation between disk mass and star-cluster dissolution timescale is derived. These N-body models show that doubling the mass of the disk from 5 10{sup 10} M {sub ?} to 10 10{sup 10} M {sub ?} halves the dissolution time of a satellite star cluster orbiting the host galaxy at 6 kpc from the galactic center. Different geometries in a disk of identical mass can determine either the survival or dissolution of a star cluster orbiting within the inner 6 kpc of the galactic center. Furthermore, disk geometry has measurable effects on the mass loss of star clusters up to 15 kpc from the galactic center. N-body simulations performed with a fine output time step show that at each disk crossing the outer layers of star clusters experiences an increase in velocity dispersion of ?5% of the average velocity dispersion in the outer section of star clusters. This leads to an enhancement of mass lossa clearly discernable effect of disk shocking. By running models with different inclinations, we determine that star clusters with an orbit that is perpendicular to the Galactic plane have larger mass loss rates than do clusters that evolve in the Galactic plane or in an inclined orbit.

  16. Low tritium partial pressure permeation system for mass transport...

    Office of Scientific and Technical Information (OSTI)

    Low tritium partial pressure permeation system for mass transport measurement in lead lithium eutectic Citation Details In-Document Search This content will become publicly ...

  17. Method Development and Application of Mass Spectrometry Imaging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass spectrometry imaging is making a significant impact in the fields of pathology, medicine and biology. It provides a unique capability to simultaneously measure,...

  18. The Origins of Mass

    SciTech Connect (OSTI)

    Lincoln, Don

    2014-07-30

    The Higgs boson was discovered in July of 2012 and is generally understood to be the origin of mass. While those statements are true, they are incomplete. It turns out that the Higgs boson is responsible for only about 2% of the mass of ordinary matter. In this dramatic new video, Dr. Don Lincoln of Fermilab tells us the rest of the story.

  19. The Origins of Mass

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-07

    The Higgs boson was discovered in July of 2012 and is generally understood to be the origin of mass. While those statements are true, they are incomplete. It turns out that the Higgs boson is responsible for only about 2% of the mass of ordinary matter. In this dramatic new video, Dr. Don Lincoln of Fermilab tells us the rest of the story.

  20. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  1. Ground difference compensating system

    DOE Patents [OSTI]

    Johnson, Kris W.; Akasam, Sivaprasad

    2005-10-25

    A method of ground level compensation includes measuring a voltage of at least one signal with respect to a primary ground potential and measuring, with respect to the primary ground potential, a voltage level associated with a secondary ground potential. A difference between the voltage level associated with the secondary ground potential and an expected value is calculated. The measured voltage of the at least one signal is adjusted by an amount corresponding to the calculated difference.

  2. Mass Spectrometry Imaging of Biological Tissue: An Approach for Multicenter Studies

    SciTech Connect (OSTI)

    Rompp, Andreas; Both, Jean-Pierre; Brunelle, Alain; Heeren, Ronald M.; Laprevote, Olivier; Prideaux, Brendan; Seyer, Alexandre; Spengler, Bernhard; Stoeckli, Markus; Smith, Donald F.

    2015-03-01

    Mass spectrometry imaging has become a popular tool for probing the chemical complexity of biological surfaces. This led to the development of a wide range of instrumentation and preparation protocols. It is thus desirable to evaluate and compare the data output from different methodologies and mass spectrometers. Here, we present an approach for the comparison of mass spectrometry imaging data from different laboratories (often referred to as multicenter studies). This is exemplified by the analysis of mouse brain sections in five laboratories in Europe and the USA. The instrumentation includes matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF), MALDI-QTOF, MALDIFourier transform ion cyclotron resonance (FTICR), atmospheric-pressure (AP)-MALDI-Orbitrap, and cluster TOF-secondary ion mass spectrometry (SIMS). Experimental parameters such as measurement speed, imaging bin width, and mass spectrometric parameters are discussed. All datasets were converted to the standard data format imzML and displayed in a common open-source software with identical parameters for visualization, which facilitates direct comparison of MS images. The imzML conversion also allowed exchange of fully functional MS imaging datasets between the different laboratories. The experiments ranged from overview measurements of the full mouse brain to detailed analysis of smaller features (depending on spatial resolution settings), but common histological features such as the corpus callosum were visible in all measurements. High spatial resolution measurements of AP-MALDI-Orbitrap and TOF-SIMS showed comparable structures in the low-micrometer range. We discuss general considerations for planning and performing multicenter studies in mass spectrometry imaging. This includes details on the selection, distribution, and preparation of tissue samples as well as on data handling. Such multicenter studies in combination with ongoing activities for reporting guidelines, a common

  3. Anomalous pressure dependence of thermal conductivities of large mass ratio compounds

    SciTech Connect (OSTI)

    Lindsay, Lucas R; Broido, David; Carrete, Jesus; Mingo, Natalio; Reinecke, Tom

    2015-01-01

    The lattice thermal conductivities ( ) of binary compound materials are examined as a function of hydrostatic pressure, P, using a first-principles approach. Compound materials with relatively small mass ratios, such as MgO, show an increase in with P, consistent with measurements. Conversely, compounds with large mass ratios (e.g., BSb, BAs, BeTe, BeSe) exhibit decreasing with increasing P, a behavior that cannot be understood using simple theories of . This anomalous P dependence of arises from the fundamentally different nature of the intrinsic scattering processes for heat-carrying acoustic phonons in large mass ratio compounds compared to those with small mass ratios. This work demonstrates the power of first principles methods for thermal properties and advances the understanding of thermal transport in non-metals.

  4. Compact hydrogen/helium isotope mass spectrometer

    DOE Patents [OSTI]

    Funsten, Herbert O.; McComas, David J.; Scime, Earl E.

    1996-01-01

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

  5. Thermal gradient-induced forces on geodesic reference masses for LISA

    SciTech Connect (OSTI)

    Carbone, L.; Ciani, G.; Dolesi, R.; Hueller, M.; Tombolato, D.; Vitale, S.; Weber, W. J.; Cavalleri, A.

    2007-11-15

    The low frequency sensitivity of space-borne gravitational wave observatories will depend critically on the geodesic purity of the trajectories of orbiting test masses. Fluctuations in the temperature difference across the enclosure surrounding the free-falling test mass can produce noisy forces through several processes, including the radiometric effect, radiation pressure, and outgassing. We present here a detailed experimental investigation of thermal gradient-induced forces for the Laser Interferometer Space Antenna (LISA) gravitational wave mission and the LISA Pathfinder, employing high resolution torsion pendulum measurements of the torque on a LISA-like test mass suspended inside a prototype of the LISA gravitational reference sensor that will surround the test mass in orbit. The measurement campaign, accompanied by numerical simulations of the radiometric and radiation pressure effects, allows a more accurate and representative characterization of thermal-gradient forces in the specific geometry and environment relevant to LISA free-fall. The pressure dependence of the measured torques allows clear identification of the radiometric effect, in quantitative agreement with the model developed. In the limit of zero gas pressure, the measurements are most likely dominated by outgassing, but at a low level that does not threaten the current LISA noise estimate, which assumes a maximum net force per degree of temperature difference of 100(pN/K) for the overall thermal gradient-induced effects.

  6. SINTERED REFRACTORY MASS

    DOE Patents [OSTI]

    Williams, A.E.

    1955-09-01

    A method is given for joining sintered masses of refractory compounds. It consists in maintaining the masses in contact with each other by application of a moderate pressure, while they are at sintering temperature. The sintered masses are subjected to am applied pressure of about 1/2 to 1 ton per square inch of the surface in contact for about 10 minutes, and the temperature employed may be fropn about 1400 deg C to 2000 deg C. Refractory oxides to which the invention may be applied are beryllia, alumina, thoria, and magnesia.

  7. Moving beyond mass-based parameters for conductivity analysis of sulfonated polymers

    SciTech Connect (OSTI)

    Kim, Yu Seung; Pivovar, Bryan

    2009-01-01

    Proton conductivity of polymer electrolytes is critical for fuel cells and has therefore been studied in significant detail. The conductivity of sulfonated polymers has been linked to material characteristics in order to elucidate trends. Mass based measurements based on water uptake and ion exchange capacity are two of the most common material characteristics used to make comparisons between polymer electrolytes, but have significant limitations when correlated to proton conductivity. These limitations arise in part because different polymers can have significantly different densities and conduction happens over length scales more appropriately represented by volume measurements rather than mass. Herein, we establish and review volume related parameters that can be used to compare proton conductivity of different polymer electrolytes. Morphological effects on proton conductivity are also considered. Finally, the impact of these phenomena on designing next generation sulfonated polymers for polymer electrolyte membrane fuel cells is discussed.

  8. Sensitivity of optical mass sensor enhanced by optomechanical coupling

    SciTech Connect (OSTI)

    He, Yong

    2015-03-23

    Optical mass sensors based on cavity optomechanics employ radiation pressure force to drive mechanical resonator whose mechanical susceptibility can be described by nonlinear optical transmission spectrum. In this paper, we present an optical mass sensor based on a two-cavity optomechanical system where the mechanical damping rate can be decreased by adjusting a pump power so that the mass sensitivity which depends on the mechanical quality factor has been enhanced greatly. Compared with that of an optical mass sensor based on single-cavity optomechanics, the mass sensitivity of the optical mass sensor is improved by three orders of magnitude. This is an approach to enhance the mass sensitivity by means of optomechanical coupling, which is suitable for all mass sensor based on cavity optomechanics. Finally, we illustrate the accurate measurement for the mass of a few chromosomes, which can be achieved based on the current experimental conditions.

  9. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsAerosols

  10. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsRadiometric

  11. Solids mass flow determination

    DOE Patents [OSTI]

    Macko, Joseph E.

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  12. PRECISE BLACK HOLE MASSES FROM MEGAMASER DISKS: BLACK HOLE-BULGE RELATIONS AT LOW MASS

    SciTech Connect (OSTI)

    Greene, Jenny E.; Peng, Chien Y.; Kim, Minjin; Kuo, Cheng-Yu; Braatz, James A.; Impellizzeri, C. M. Violette; Condon, James J.; Lo, K. Y.; Henkel, Christian; Reid, Mark J.

    2010-09-20

    The black hole (BH)-bulge correlations have greatly influenced the last decade of efforts to understand galaxy evolution. Current knowledge of these correlations is limited predominantly to high BH masses (M{sub BH{approx}}>10{sup 8} M{sub sun}) that can be measured using direct stellar, gas, and maser kinematics. These objects, however, do not represent the demographics of more typical L < L* galaxies. This study transcends prior limitations to probe BHs that are an order of magnitude lower in mass, using BH mass measurements derived from the dynamics of H{sub 2}O megamasers in circumnuclear disks. The masers trace the Keplerian rotation of circumnuclear molecular disks starting at radii of a few tenths of a pc from the central BH. Modeling of the rotation curves, presented by Kuo et al., yields BH masses with exquisite precision. We present stellar velocity dispersion measurements for a sample of nine megamaser disk galaxies based on long-slit observations using the B and C spectrograph on the Dupont telescope and the Dual Imaging Spectrograph on the 3.5 m telescope at Apache Point. We also perform bulge-to-disk decomposition of a subset of five of these galaxies with Sloan Digital Sky Survey imaging. The maser galaxies as a group fall below the M{sub BH}-{sigma}{sub *} relation defined by elliptical galaxies. We show, now with very precise BH mass measurements, that the low-scatter power-law relation between M{sub BH} and {sigma}{sub *} seen in elliptical galaxies is not universal. The elliptical galaxy M{sub BH}-{sigma}{sub *} relation cannot be used to derive the BH mass function at low mass or the zero point for active BH masses. The processes (perhaps BH self-regulation or minor merging) that operate at higher mass have not effectively established an M{sub BH}-{sigma}{sub *} relation in this low-mass regime.

  13. Development and application of a mass spectrometric system to study volatile components of fluid inclusions

    SciTech Connect (OSTI)

    Sloan, R.C. Jr.

    1992-06-01

    A quadrupole mass spectrometric system coupled with mechanical decrepitation was constructed and calibrated to study fluid inclusions from an active geothermal system. Fluid inclusions in Salton Sea Scientific Drilling Project well cores and ejects from flow tests were analyzed. Ion currents from selected mass/charge ratio numbers were measured for gases from ruptured inclusions in epidote, calcite, and hematite vein minerals from different depths. Water, carbon dioxide, hydrogen sulfide, sulfur dioxide, and C1{minus}C4+ hydrocarbons and free nitrogen were analyzed.

  14. Small system for tritium accelerator mass spectrometry

    DOE Patents [OSTI]

    Roberts, Mark L.; Davis, Jay C.

    1993-01-01

    Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and .sup.3 He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

  15. Small system for tritium accelerator mass spectrometry

    DOE Patents [OSTI]

    Roberts, M.L.; Davis, J.C.

    1993-02-23

    Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and [sup 3]He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

  16. Photoionization Mass Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photoionization Mass Spectroscopy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  17. Engineering rock mass classifications

    SciTech Connect (OSTI)

    Bieniawski, Z.T.

    1989-01-01

    This book is a reference on rock mass classification, consolidating into one handy source information widely scattered through the literature. Includes new, unpublished material and case histories. Presents the fundamental concepts of classification schemes and critically appraises their practical application in industrial projects such as tunneling and mining.

  18. Measurement of the Single Top Quark Cross Section in the Lepton Plus Jets Final State in Proton-Antiproton Collisions at a Center of Mass Energy of 1.96 TeV Using the CDF II Detector

    SciTech Connect (OSTI)

    Wu, Zhenbin

    2012-01-01

    We present a measurement of the single top quark cross section in the lepton plus jets final state using an integrated luminosity corresponding to 7.5~\\text{fb}^{-1} of p\\bar p collision data collected by the Collider Detector at Fermilab. The single top candidate events are identified by the signature of a charged lepton, large missing transverse energy, and two or three jets with at least one of them identified as originating from a bottom quark. A new Monte Carlo generator \\textsc{powheg} is used to model the single top quark production processes, which include {s}-channel, {t}-channel, and {Wt}-channel. A neural network multivariate method is exploited to discriminate the single top quark signal from the comparatively large backgrounds. We measure a single top production cross section of $3.04^{+0.57}_{-0.53}$ (\\mathrm{stat.~+~syst.}) pb assuming $m_{\\rm top}=172.5$~GeV/$c^2$. In addition, we extract the CKM matrix element value $|V_{tb}|=0.96\\pm 0.09~(\\mathrm{stat.~+~syst.})\\pm 0.05~(\\mathrm{theory})$ and set a lower limit of |V_{tb}|>0.78 at the 95\\% credibility level.

  19. Geochemical Speciation Mass Transfer

    Energy Science and Technology Software Center (OSTI)

    1985-12-01

    PHREEQC is designed to model geochemical reactions. Based on an ion association aqueous model, PHREEQC can calculate pH, redox potential, and mass transfer as a function of reaction progress. It can be used to describe geochemical processes for both far-field and near-field performance assessment and to evaluate data acquisition needs and test data. It can also calculate the composition of solutions in equilibrium with multiple phases. The data base, including elements, aqueous species, and mineralmore » phases, is independent of the program and is completely user-definable. PHREEQC requires thermodynamic data for each solid, gaseous, or dissolved chemical species being modeled. The two data bases, PREPHR and DEQPAK7, supplied with PHREEQC are for testing purposes only and should not be applied to real problems without first being carefully examined. The conceptual model embodied in PHREEQC is the ion-association model of Pearson and Noronha. In this model a set of mass action equations are established for each ion pair (and controlling solid phases when making mass transfer calculations) along with a set of mass balance equations for each element considered. These sets of equations are coupled using activity coefficient values for each aqueous species and solved using a continued fraction approach for the mass balances combined with a modified Newton-Raphson technique for all other equations. The activity coefficient expressions in PHREEQC include the extended Debye-Huckel, WATEQ Debye-Huckel, and Davies equations from the original United States Geological Survey version of the program. The auxiliary preprocessor program PHTL, which is derived from EQTL, converts EQ3/6 thermodynamic data to PHREEQC format so that the two programs can be compared. PHREEQC can be used to determine solubility limits on the radionuclides present in the waste form. These solubility constraints may be input to the WAPPA leach model.« less

  20. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsCloud Properties

  1. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsSurface Properties

  2. Magnetic Centrifugal Mass Filter Abraham J. Fetterman and Nathaniel J.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fisch | Princeton Plasma Physics Lab Magnetic Centrifugal Mass Filter Abraham J. Fetterman and Nathaniel J. Fisch This invention is of a magnetic centrifugal mass filter that can separate ions of different mass or ions of different energies into separate streams. The filter, which uses both the centrifugal and magnetic confinement of ions, can be used to separate radioactive fission products from nuclear waste or from spent nuclear fuel in a nonproliferative manner. No.: M-818

  3. The universal relation of galactic chemical evolution: the origin of the mass-metallicity relation

    SciTech Connect (OSTI)

    Zahid, H. Jabran; Dima, Gabriel I.; Kudritzki, Rolf-Peter; Kewley, Lisa J.; Geller, Margaret J.; Hwang, Ho Seong; Silverman, John D.; Kashino, Daichi

    2014-08-20

    We examine the mass-metallicity relation for z ≲ 1.6. The mass-metallicity relation follows a steep slope with a turnover, or 'knee', at stellar masses around 10{sup 10} M {sub ☉}. At stellar masses higher than the characteristic turnover mass, the mass-metallicity relation flattens as metallicities begin to saturate. We show that the redshift evolution of the mass-metallicity relation depends only on the evolution of the characteristic turnover mass. The relationship between metallicity and the stellar mass normalized to the characteristic turnover mass is independent of redshift. We find that the redshift-independent slope of the mass-metallicity relation is set by the slope of the relationship between gas mass and stellar mass. The turnover in the mass-metallicity relation occurs when the gas-phase oxygen abundance is high enough that the amount of oxygen locked up in low-mass stars is an appreciable fraction of the amount of oxygen produced by massive stars. The characteristic turnover mass is the stellar mass, where the stellar-to-gas mass ratio is unity. Numerical modeling suggests that the relationship between metallicity and the stellar-to-gas mass ratio is a redshift-independent, universal relationship followed by all galaxies as they evolve. The mass-metallicity relation originates from this more fundamental universal relationship between metallicity and the stellar-to-gas mass ratio. We test the validity of this universal metallicity relation in local galaxies where stellar mass, metallicity, and gas mass measurements are available. The data are consistent with a universal metallicity relation. We derive an equation for estimating the hydrogen gas mass from measurements of stellar mass and metallicity valid for z ≲ 1.6 and predict the cosmological evolution of galactic gas masses.

  4. Twisted mass finite volume effects

    SciTech Connect (OSTI)

    Colangelo, Gilberto; Wenger, Urs; Wu, Jackson M. S.

    2010-08-01

    We calculate finite-volume effects on the pion masses and decay constant in twisted mass lattice QCD at finite lattice spacing. We show that the lighter neutral pion in twisted mass lattice QCD gives rise to finite-volume effects that are exponentially enhanced when compared to those arising from the heavier charged pions. We demonstrate that the recent two flavor twisted mass lattice data can be better fitted when twisted mass effects in finite-volume corrections are taken into account.

  5. Design and test of magnetic shields for quadrupole mass spectrometers

    SciTech Connect (OSTI)

    Gervasini, G.; De Angeli, M.; Gittini, G.

    2007-03-15

    The use of quadrupole mass spectrometers in plasma experiments with magnetic field confinement presents troublesome problems because of the presence of static magnetic fields. In mass spectrometers, the Lorentz force associated with the magnetic field deflects the ion trajectory in the analyzer section with a subsequent loss of instrument sensitivity. In order to reduce the effect of the externally applied magnetic field in the quadrupole, different magnetic materials have been considered as a shielding structure (iron Fe-37, soft iron Armco{sup TM}, Amumetal{sup TM} sheets). The present work describes a solution to shielding quadrupole mass spectrometers against strong magnetic fields giving an introduction to magnetic shield design, by means of finite element calculations, taking into account many factors such as the material used, the length and thickness of the shield, and the effects of openings. To prove the efficiency of the shielding system, the hydrogen signal from the quadrupole instrument has been monitored. The intensity and the direction of the magnetic field with respect to the quadrupole head axes have been varied. Measurements of the magnetic field have been made in order to validate the calculations and an example of application of the shield design guidelines to a magnetic confined plasma device is presented and tested in situ. The principal aim of the present work is to indicate a possible approach to the problem and how to obtain a practical solution with a worthy compromise between costs and performances.

  6. Nanoscale mass conveyors

    DOE Patents [OSTI]

    Regan, Brian C.; Aloni, Shaul; Zettl, Alexander K.

    2008-03-11

    A mass transport method and device for individually delivering chargeable atoms or molecules from source particles is disclosed. It comprises a channel; at least one source particle of chargeable material fixed to the surface of the channel at a position along its length; a means of heating the channel; and a means for applying an controllable electric field along the channel, whereby the device transports the atoms or molecules along the channel in response to applied electric field. In a preferred embodiment, the mass transport device will comprise a multiwalled carbon nanotube (MWNT), although other one dimensional structures may also be used. The MWNT or other structure acts as a channel for individual or small collections of atoms due to the atomic smoothness of the material. Also preferred is a source particle of a metal such as indium. The particles move by dissociation into small units, in some cases, individual atoms. The particles are preferably less than 100 nm in size.

  7. Single event mass spectrometry

    DOE Patents [OSTI]

    Conzemius, Robert J.

    1990-01-16

    A means and method for single event time of flight mass spectrometry for analysis of specimen materials. The method of the invention includes pulsing an ion source imposing at least one pulsed ion onto the specimen to produce a corresponding emission of at least one electrically charged particle. The emitted particle is then dissociated into a charged ion component and an uncharged neutral component. The ion and neutral components are then detected. The time of flight of the components are recorded and can be used to analyze the predecessor of the components, and therefore the specimen material. When more than one ion particle is emitted from the specimen per single ion impact, the single event time of flight mass spectrometer described here furnis This invention was made with Government support under Contract No. W-7405-ENG82 awarded by the Department of Energy. The Government has certain rights in the invention.

  8. Wall loss of atomic nitrogen determined by ionization threshold mass spectrometry

    SciTech Connect (OSTI)

    Sode, M. Schwarz-Selinger, T.; Jacob, W.; Kersten, H.

    2014-11-21

    In the afterglow of an inductively coupled N{sub 2} plasma, relative N atom densities are measured by ionization threshold mass spectrometry as a function of time in order to determine the wall loss time t{sub wN} from the exponential decay curves. The procedure is performed with two mass spectrometers on different positions in the plasma chamber. t{sub wN} is determined for various pressures, i.e., for 3.0, 5.0, 7.5, and 10?Pa. For this conditions also the internal plasma parameters electron density n{sub e} and electron temperature T{sub e} are determined with the Langmuir probe and the rotational temperature T{sub rot}{sup N{sub 2}} of N{sub 2} is determined with the optical emission spectroscopy. For T{sub rot}{sup N{sub 2}}, a procedure is presented to evaluate the spectrum of the transition ?{sup ?}=0??{sup ?}=2 of the second positive system (C{sup 3}?{sub u}?B{sup 3}?{sub g}) of N{sub 2}. With this method, a gas temperature of 610?K is determined. For both mass spectrometers, an increase of the wall loss times of atomic nitrogen with increasing pressure is observed. The wall loss time measured with the first mass spectrometer in the radial center of the cylindrical plasma vessel increases linearly from 0.31?ms for 3?Pa to 0.82?ms for 10?Pa. The wall loss time measured with the second mass spectrometer (further away from the discharge) is about 4 times higher. A model is applied to describe the measured t{sub wN.} The main loss mechanism of atomic nitrogen for the considered pressure is diffusion to the wall. The surface loss probability ?{sub N} of atomic nitrogen on stainless steel was derived from t{sub wN} and is found to be 1 for the present conditions. The difference in wall loss times measured with the mass spectrometers on different positions in the plasma chamber is attributed to the different diffusion lengths.

  9. Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  10. EFFECTS OF THE NEUTRINO MASS SPLITTING ON THE NONLINEAR MATTER POWER SPECTRUM

    SciTech Connect (OSTI)

    Wagner, Christian; Verde, Licia; Jimenez, Raul [Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E08028 Barcelona (Spain)

    2012-06-20

    We have performed cosmological N-body simulations which include the effect of the masses of the individual neutrino species. The simulations were aimed at studying the effect of different neutrino hierarchies on the matter power spectrum. Compared to the linear theory predictions, we find that nonlinearities enhance the effect of hierarchy on the matter power spectrum at mildly nonlinear scales. The maximum difference between the different hierarchies is about 0.5% for a sum of neutrino masses of 0.1 eV. Albeit this is a small effect, it is potentially measurable from upcoming surveys. In combination with neutrinoless double-{beta} decay experiments, this opens up the possibility of using the sky to determine if neutrinos are Majorana or Dirac fermions.

  11. Effective atomic numbers of blue topaz at different gamma-rays energies obtained from Compton scattering technique

    SciTech Connect (OSTI)

    Tuschareon, S. Limkitjaroenporn, P. Kaewkhao, J.

    2014-03-24

    Topaz occurs in a wide range of colors, including yellow, orange, brown, pink-to-violet and blue. All of these color differences are due to color centers. In order to improve the color of natural colorless topaz, the most commonly used is irradiated with x- or gamma-rays, indicated that attenuation parameters is important to enhancements by irradiation. In this work, the mass attenuation coefficients of blue topaz were measured at the different energy of ?-rays using the Compton scattering technique. The results show that, the experimental values of mass attenuation coefficient are in good agreement with the theoretical values. The mass attenuation coefficients increase with the decrease in gamma rays energies. This may be attributed to the higher photon interaction probability of blue topaz at lower energy. This result is a first report of mass attenuation coefficient of blue topaz at different gamma rays energies.

  12. Anomalous pressure dependence of thermal conductivities of large mass ratio compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lindsay, Lucas R; Broido, David; Carrete, Jesus; Mingo, Natalio; Reinecke, Tom

    2015-01-01

    The lattice thermal conductivities ( ) of binary compound materials are examined as a function of hydrostatic pressure, P, using a first-principles approach. Compound materials with relatively small mass ratios, such as MgO, show an increase in with P, consistent with measurements. Conversely, compounds with large mass ratios (e.g., BSb, BAs, BeTe, BeSe) exhibit decreasing with increasing P, a behavior that cannot be understood using simple theories of . This anomalous P dependence of arises from the fundamentally different nature of the intrinsic scattering processes for heat-carrying acoustic phonons in large mass ratio compounds compared to those with small massmore » ratios. This work demonstrates the power of first principles methods for thermal properties and advances the understanding of thermal transport in non-metals.« less

  13. Precision Determination of the Top Quark Mass

    SciTech Connect (OSTI)

    Movilla Fernandez, Pedro A.; /LBL, Berkeley

    2007-05-01

    The CDF and D0 collaborations have updated their measurements of the mass of the top quark using proton-antiproton collisions at {radical}s = 1.96 TeV produced at the Tevatron. The uncertainties in each of the top-antitop decay channels have been reduced. The new Tevatron average for the mass of the top quark based on about 1 fb{sup -1} of data per experiment is 170.9 {+-} 1.8 GeV/c{sup 2}.

  14. Missing Mass Recoiling Against the Charged D

    SciTech Connect (OSTI)

    Cain, Hillary

    2003-09-05

    This paper chronicles the investigation of a peak in the BaBar mass data set of mass recoiling against charged D*s. Our hypothesis is that the peak at 2620 MeV is a reflection of the D{sub s}* and {pi} system. Specifically, we explored the idea that the peak might be a reflection from the decay B {yields} D**{sup -} D*{sub s}{sup +} with the D**{sup -} {yields} D*{sup -} {pi}. Theoretically, when the D**{sup -} decays, the trajectory of the resulting {pi} will form an angle with the D*{sub s}{sup +}, and different angles impart difference masses to the system over a range of a GeV or so. If quantum mechanics dictates that their paths will form a particular angle more often than others, a peak would appear in the histogram of their collective mass. Using the Monte Carlo model of particle collision events, Anders Ryd's EVTGEN program, C++ code derived from GeneratorsQA, and PAW, we tested the hypothesis that the peak might be a reflection of the system, but found that this possible explanation could not account for the peak. No 2620 MeV peak appears in the histogram of the system mass. We therefore discount the hypothesis and conclude that some other reflection, statistical fluctuation, or particle is causing the peak.

  15. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew; Sibilia, Marc J.; Miller, Jeffrey A.; Tonon, Thomas

    2007-09-18

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  16. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew; Sibilia, Marc J.; Miller, Jeffrey A.; Tonon, Thomas

    2011-06-28

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  17. Energy Grasses for the Masses

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 1-D: The Pitch Energy Grasses for the Masses Jason Force, Chief Executive Officer, Iron Goat Technology, Inc.

  18. Method for increasing the dynamic range of mass spectrometers

    DOE Patents [OSTI]

    Belov, Mikhail; Smith, Richard D.; Udseth, Harold R.

    2004-09-07

    A method for enhancing the dynamic range of a mass spectrometer by first passing a sample of ions through the mass spectrometer having a quadrupole ion filter, whereupon the intensities of the mass spectrum of the sample are measured. From the mass spectrum, ions within this sample are then identified for subsequent ejection. As further sampling introduces more ions into the mass spectrometer, the appropriate rf voltages are applied to a quadrupole ion filter, thereby selectively ejecting the undesired ions previously identified. In this manner, the desired ions may be collected for longer periods of time in an ion trap, thus allowing better collection and subsequent analysis of the desired ions. The ion trap used for accumulation may be the same ion trap used for mass analysis, in which case the mass analysis is performed directly, or it may be an intermediate trap. In the case where collection is an intermediate trap, the desired ions are accumulated in the intermediate trap, and then transferred to a separate mass analyzer. The present invention finds particular utility where the mass analysis is performed in an ion trap mass spectrometer or a Fourier transform ion cyclotron resonance mass spectrometer.

  19. The double well mass filter

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gueroult, Renaud; Rax, Jean -Marcel; Fisch, Nathaniel J.

    2014-02-03

    Various mass filter concepts based on rotating plasmas have been suggested with the specific purpose of nuclear waste remediation. We report on a new rotating mass filter combining radial separation with axial extraction. Lastly, the radial separation of the masses is the result of a “double-well” in effective radial potential in rotating plasma with a sheared rotation profile.

  20. Accelerator mass spectrometry program at the University of Washington

    SciTech Connect (OSTI)

    Farwell, G.W.; Leach, D.D.; Grootes, P.M.; Schmidt, F.H.

    1984-04-10

    The University uses an FN-Tandem for /sup 14/C and /sup 10/Be measurements. Three main problems for accelerator-mass-spectrometry are normalization, stability, and sample preparation. The approach to these problems is discussed. (GHT)

  1. Method and system for measuring multiphase flow using multiple pressure differentials

    DOE Patents [OSTI]

    Fincke, James R.

    2001-01-01

    An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.

  2. MASS DETERMINATION STUDIES OF 104 LARGE ASTEROIDS

    SciTech Connect (OSTI)

    Zielenbach, William

    2011-10-15

    The techniques described in an earlier paper were used to determine masses of 104 asteroids by the method of asteroid-asteroid gravitational interaction. For each of the 104 perturbers, 4 large sets of test particles selected by different criteria were used to calculate 4 mass values from a weighted mean of individual results within each set. The sheer number of test particles and observations ameliorates the effects of random observational errors and the type of systematic errors known to have affected specific observatories at specific times. It also reduces the effect of mismodeled attractions by perturbers other than the one being estimated, because the various test particles are affected to different degrees and in different directions. For most of the perturbers that have been analyzed by others, the results of this study agree reasonably well with values published in the past decade, giving credence to the approach. Thirty-eight of the results appear to be the first published masses for the respective asteroids, and 12 are the first determinations based on asteroid-asteroid interactions. Unrealistic and/or negative masses were obtained for some perturbers. Causes for this phenomenon are discussed and various means to obtain reasonable numbers are evaluated.

  3. First Gogny-Hartree-Fock-Bogoliubov Nuclear Mass Model

    SciTech Connect (OSTI)

    Goriely, S.; Hilaire, S.; Girod, M.; Peru, S.

    2009-06-19

    We present the first Gogny-Hartree-Fock-Bogoliubov (HFB) model which reproduces nuclear masses with an accuracy comparable with the best mass formulas. In contrast with the Skyrme-HFB nuclear-mass models, an explicit and self-consistent account of all the quadrupole correlation energies are included within the 5D collective Hamiltonian approach. The final rms deviation with respect to the 2149 measured masses is 798 keV. In addition, the new Gogny force is shown to predict nuclear and neutron matter properties in agreement with microscopic calculations based on realistic two- and three-body forces.

  4. Measuring Neutrino Mass with Radioactive Ions in a Storage Ring...

    Office of Scientific and Technical Information (OSTI)

    eV, it is necessary to control the ion momentum with a ... Proceedings; Journal Volume: 1222; Journal Issue: 1; Conference: NuFact09: 11. international workshop on ...

  5. Tau Lepton Mass Measurements (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference ...

  6. Enthalpy and mass flowrate measurements for two-phase geothermal...

    Open Energy Info (EERE)

    distribution which exists in most geothermal areas. Authors Hirtz, P.; Lovekin, J.; Copp, J.; Buck, C.; Adams and M. Published Eighteenth workshop on geothermal reservoir...

  7. Nuclear Structure Revealed by High-Precision Mass Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Summit U.S. and China Continue Cooperative Partnership to Advance Safe, Secure Civil Nuclear Energy for Clean Energy Future DOE/NNSA Hosts 11th U.S.-China Peaceful Uses of Nuclear Technology Meeting at Savannah River National Laboratory in Aiken, South Carolina (Aiken, South Carolina) - On May 10-11, 2016 the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) and the China... Statement on Signing of the Administrative Arrangement to the Agreement

  8. Measurement of cross section of quark pair production top with...

    Office of Scientific and Technical Information (OSTI)

    Measurement of cross section of quark pair production top with the D0 experiment at the Tevatron and determination the top quark mass using this measure Citation Details ...

  9. Quark masses, the Dashen phase, and gauge field topology

    SciTech Connect (OSTI)

    Creutz, Michael

    2013-12-15

    The CP violating Dashen phase in QCD is predicted by chiral perturbation theory to occur when the up–down quark mass difference becomes sufficiently large at fixed down-quark mass. Before reaching this phase, all physical hadronic masses and scattering amplitudes are expected to behave smoothly with the up-quark mass, even as this mass passes through zero. In Euclidean space, the topological susceptibility of the gauge fields is positive at positive quark masses but diverges to negative infinity as the Dashen phase is approached. A zero in this susceptibility provides a tentative signal for the point where the mass of the up quark vanishes. I discuss potential ambiguities with this determination. -- Highlights: •The CP violating Dashen phase in QCD occurs when the up quark mass becomes sufficiently negative. •Before reaching this phase, all physical hadronic masses and scattering amplitudes behave smoothly with the up-quark mass. •The topological susceptibility of the gauge fields diverges to negative infinity as the Dashen phase is approached. •A zero in the topological susceptibility provides a tentative signal for the point where the mass of the up quark vanishes. •The universality of this definition remains unproven. Potential ambiguities are discussed.

  10. Mass transfer effects in a gasification riser

    SciTech Connect (OSTI)

    Breault, Ronald W; Li, Tingwen; Nicoletti, Phillip

    2013-01-01

    In the development of multiphase reacting computational fluid dynamics (CFD) codes, a number of simplifications were incorporated into the codes and models. One of these simplifications was the use of a simplistic mass transfer correlation for the faster reactions and omission of mass transfer effects completely on the moderate speed and slow speed reactions such as those in a fluidized bed gasifier. Another problem that has propagated is that the mass transfer correlation used in the codes is not universal and is being used far from its developed bubbling fluidized bed regime when applied to circulating fluidized bed (CFB) riser reactors. These problems are true for the major CFD codes. To alleviate this problem, a mechanistic based mass transfer coefficient algorithm has been developed based upon an earlier work by Breault et al. This fundamental approach uses the local hydrodynamics to predict a local, time varying mass transfer coefficient. The predicted mass transfer coefficients and the corresponding Sherwood numbers agree well with literature data and are typically about an order of magnitude lower than the correlation noted above. The incorporation of the new mass transfer model gives the expected behavior for all the gasification reactions evaluated in the paper. At the expected and typical design values for the solid flow rate in a CFB riser gasifier an ANOVA analysis has shown the predictions from the new code to be significantly different from the original code predictions. The new algorithm should be used such that the conversions are not over predicted. Additionally, its behaviors with changes in solid flow rate are consistent with the changes in the hydrodynamics.

  11. Orbital masses of nearby luminous galaxies

    SciTech Connect (OSTI)

    Karachentsev, Igor D.; Kudrya, Yuri N. E-mail: yukudrya@gmail.com

    2014-09-01

    We use observational properties of galaxies accumulated in the Updated Nearby Galaxy Catalog to derive a dark matter mass of luminous galaxies via motions of their companions. The data on orbital-to-stellar mass ratio are presented for 15 luminous galaxies situated within 11 Mpc from us: the Milky Way, M31, M81, NGC 5128, IC342, NGC 253, NGC 4736, NGC 5236, NGC 6946, M101, NGC 4258, NGC 4594, NGC 3115, NGC 3627, and NGC 3368, as well as for a composite suite around other nearby galaxies of moderate and low luminosity. The typical ratio for these galaxies is M {sub orb}/M {sub *} = 31, corresponding to the mean local density of matter ? {sub m} = 0.09, i.e., one-third of the global cosmic density. This quantity seems to be rather an upper limit of dark matter density, since the peripheric population of the suites may suffer from the presence of fictitious unbound members. We note that the Milky Way and M31 halos have lower dimensions and lower stellar masses than those of the other 13 nearby luminous galaxies. However, the dark-to-stellar mass ratio for both the Milky Way and M31 is typical for other neighboring luminous galaxies. The distortion in the Hubble flow, observed around the Local Group and five other neighboring groups, yields their total masses within the radius of a zero velocity surface, R {sub 0}; these masses are slightly lower than the orbital and virial values. This difference may be due to the effect of dark energy producing a kind of 'mass defect' within R {sub 0}.

  12. Mass dependency of turbulent parameters in stationary glow discharge plasmas

    SciTech Connect (OSTI)

    Titus, J. B.; Alexander, A. B.; Wiggins, D. L.; Johnson, J. A. III

    2013-05-15

    A direct current glow discharge tube is used to determine how mass changes the effects of certain turbulence characteristics in a weakly ionized gas. Helium, neon, argon, and krypton plasmas were created, and an axial magnetic field, varied from 0.0 to 550.0 Gauss, was used to enhance mass dependent properties of turbulence. From the power spectra of light emission variations associated with velocity fluctuations, determination of mass dependency on turbulent characteristic unstable modes, energy associated with turbulence, and the rate at which energy is transferred from scale to scale are measured. The magnetic field strength is found to be too weak to overcome particle diffusion to the walls to affect the turbulence in all four types of plasmas, though mass dependency is still detected. Though the total energy and the rate at which the energy moves between scales are mass invariant, the amplitude of the instability modes that characterize each plasma are dependent on mass.

  13. Compact mass spectrometer for plasma discharge ion analysis

    DOE Patents [OSTI]

    Tuszewski, M.G.

    1997-07-22

    A mass spectrometer and methods are disclosed for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector. 7 figs.

  14. Compact mass spectrometer for plasma discharge ion analysis

    DOE Patents [OSTI]

    Tuszewski, Michel G.

    1997-01-01

    A mass spectrometer and methods for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector.

  15. THE STELLAR MASS–HALO MASS RELATION FOR LOW-MASS X-RAY GROUPS AT 0.5< z< 1 IN THE CDFS WITH CSI

    SciTech Connect (OSTI)

    Patel, Shannon G.; Kelson, Daniel D.; Williams, Rik J.; Mulchaey, John S.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.

    2015-01-30

    Since z∼1, the stellar mass density locked in low-mass groups and clusters has grown by a factor of ∼8. Here, we make the first statistical measurements of the stellar mass content of low-mass X-ray groups at 0.5mass scales for wide-field optical and infrared surveys. Groups are selected from combined Chandra and XMM-Newton X-ray observations in the Chandra Deep Field South. These ultra-deep observations allow us to identify bona fide low-mass groups at high redshift and enable measurements of their total halo masses. We compute aggregate stellar masses for these halos using galaxies from the Carnegie-Spitzer-IMACS (CSI) spectroscopic redshift survey. Stars comprise ∼3%–4% of the total mass of group halos with masses 10{sup 12.8}mass of Fornax and one-fiftieth the mass of Virgo). Complementing our sample with higher mass halos at these redshifts, we find that the stellar-to-halo mass ratio decreases toward higher halo masses, consistent with other work in the local and high redshift universe. The observed scatter about the stellar–halo mass relation is σ∼0.25 dex, which is relatively small and suggests that total group stellar mass can serve as a rough proxy for halo mass. We find no evidence for any significant evolution in the stellar–halo mass relation since z≲1. Quantifying the stellar content in groups since this epoch is critical given that hierarchical assembly leads to such halos growing in number density and hosting increasing shares of quiescent galaxies.

  16. Ultra-high-mass mass spectrometry with charge discrimination using cryogenic detectors

    DOE Patents [OSTI]

    Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Benner, W. Henry

    1999-01-01

    An ultra-high-mass time-of-flight mass spectrometer using a cryogenic particle detector as an ion detector with charge discriminating capabilities. Cryogenic detectors have the potential for significantly improving the performance and sensitivity of time-of-flight mass spectrometers, and compared to ion multipliers they exhibit superior sensitivity for high-mass, slow-moving macromolecular ions and can be used as "stop" detectors in time-of-flight applications. In addition, their energy resolving capability can be used to measure the charge state of the ions. Charge discrimination is very valuable in all time-of-flight mass spectrometers. Using a cryogenically-cooled Nb-Al.sub.2 O.sub.3 -Nb superconductor-insulator-superconductor (SIS) tunnel junction (STJ) detector operating at 1.3 K as an ion detector in a time-of-flight mass spectrometer for large biomolecules it was found that the STJ detector has charge discrimination capabilities. Since the cryogenic STJ detector responds to ion energy and does not rely on secondary electron production, as in the conventionally used microchannel plate (MCP) detectors, the cryogenic detector therefore detects large molecular ions with a velocity-independent efficiency approaching 100%.

  17. Mass Spectrometer Laboratory | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass Spectrometer Laboratory Mass Spectrometer Laboratory A look inside the recently updated Mass Spectrometer Facility managed by Staff Scientish Hao Zhang

  18. Top and Electroweak Measurements at the Tevatron

    SciTech Connect (OSTI)

    Bartos, P.

    2016-01-01

    In this report, we summarize the latest results of the top-quark mass and electroweak measurements from the Tevatron. Since the world combination of top-quark mass measurements was done, CDF and D0 experiments improved the precision of several results. Some of them reach the relative precition below 1% for a single measurement. From the electroweak results, we report on the WW and WZ production cross section, measurements of the weak mixing angle and indirect measurements of W boson mass. The Tevatron results of the weak mixing angle are still the most precise ones of hadron colliders.

  19. Mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  20. Mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  1. Lead Slowing Down Spectrometry Analysis of Data from Measurements on Nuclear Fuel

    SciTech Connect (OSTI)

    Warren, Glen A.; Anderson, Kevin K.; Kulisek, Jonathan A.; Danon, Yaron; Weltz, Adam; Gavron, Victor A.; Harris, Jason; Stewart, Trevor N.

    2015-01-12

    Improved non-destructive assay of isotopic masses in used nuclear fuel would be valuable for nuclear safeguards operations associated with the transport, storage and reprocessing of used nuclear fuel. Our collaboration is examining the feasibility of using lead slowing down spectrometry techniques to assay the isotopic fissile masses in used nuclear fuel assemblies. We present the application of our analysis algorithms on measurements conducted with a lead spectrometer. The measurements involved a single fresh fuel pin and discrete 239Pu and 235U samples. We are able to describe the isotopic fissile masses with root mean square errors over seven different configurations to 6.35% for 239Pu and 2.7% for 235U over seven different configurations. Funding Source(s):

  2. MASS SEPARATION OF HIGH ENERGY PARTICLES

    DOE Patents [OSTI]

    Marshall, L.

    1962-09-25

    An apparatus and method are described for separating charged, high energy particles of equal momentum forming a beam where the particles differ slightly in masses. Magnetic lenses are utilized to focus the beam and maintain that condition while electrostatic fields located between magnetic lenses are utilized to cause transverse separation of the particles into two beams separated by a sufficient amount to permit an aperture to block one beam. (AEC)

  3. Optimizing weak lensing mass estimates for cluster profile uncertainty

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gruen, D.; Bernstein, G. M.; Lam, T. Y.; Seitz, S.

    2011-09-11

    Weak lensing measurements of cluster masses are necessary for calibrating mass-observable relations (MORs) to investigate the growth of structure and the properties of dark energy. However, the measured cluster shear signal varies at fixed mass M200m due to inherent ellipticity of background galaxies, intervening structures along the line of sight, and variations in the cluster structure due to scatter in concentrations, asphericity and substructure. We use N-body simulated halos to derive and evaluate a weak lensing circular aperture mass measurement Map that minimizes the mass estimate variance <(Map - M200m)2> in the presence of all these forms of variability. Dependingmore » on halo mass and observational conditions, the resulting mass estimator improves on Map filters optimized for circular NFW-profile clusters in the presence of uncorrelated large scale structure (LSS) about as much as the latter improve on an estimator that only minimizes the influence of shape noise. Optimizing for uncorrelated LSS while ignoring the variation of internal cluster structure puts too much weight on the profile near the cores of halos, and under some circumstances can even be worse than not accounting for LSS at all. As a result, we discuss the impact of variability in cluster structure and correlated structures on the design and performance of weak lensing surveys intended to calibrate cluster MORs.« less

  4. Optimizing weak lensing mass estimates for cluster profile uncertainty

    SciTech Connect (OSTI)

    Gruen, D.; Bernstein, G. M.; Lam, T. Y.; Seitz, S.

    2011-09-11

    Weak lensing measurements of cluster masses are necessary for calibrating mass-observable relations (MORs) to investigate the growth of structure and the properties of dark energy. However, the measured cluster shear signal varies at fixed mass M200m due to inherent ellipticity of background galaxies, intervening structures along the line of sight, and variations in the cluster structure due to scatter in concentrations, asphericity and substructure. We use N-body simulated halos to derive and evaluate a weak lensing circular aperture mass measurement Map that minimizes the mass estimate variance <(Map - M200m)2> in the presence of all these forms of variability. Depending on halo mass and observational conditions, the resulting mass estimator improves on Map filters optimized for circular NFW-profile clusters in the presence of uncorrelated large scale structure (LSS) about as much as the latter improve on an estimator that only minimizes the influence of shape noise. Optimizing for uncorrelated LSS while ignoring the variation of internal cluster structure puts too much weight on the profile near the cores of halos, and under some circumstances can even be worse than not accounting for LSS at all. As a result, we discuss the impact of variability in cluster structure and correlated structures on the design and performance of weak lensing surveys intended to calibrate cluster MORs.

  5. Advanced Mass Spectrometric Methods for the Rapid and Quantitative Characterization of Proteomes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Richard D.

    2002-01-01

    Progress is reviewedmore » towards the development of a global strategy that aims to extend the sensitivity, dynamic range, comprehensiveness and throughput of proteomic measurements based upon the use of high performance separations and mass spectrometry. The approach uses high accuracy mass measurements from Fourier transform ion cyclotron resonance mass spectrometry (FTICR) to validate peptide ‘accurate mass tags’ (AMTs) produced by global protein enzymatic digestions for a specific organism, tissue or cell type from ‘potential mass tags’ tentatively identified using conventional tandem mass spectrometry (MS/MS). This provides the basis for subsequent measurements without the need for MS/ MS. High resolution capillary liquid chromatography separations combined with high sensitivity, and high resolution accurate FTICR measurements are shown to be capable of characterizing peptide mixtures of more than 10 5 components. The strategy has been initially demonstrated using the microorganisms Saccharomyces cerevisiae and Deinococcus radiodurans. Advantages of the approach include the high confidence of protein identification, its broad proteome coverage, high sensitivity, and the capability for stableisotope labeling methods for precise relative protein abundance measurements. Abbreviations : LC, liquid chromatography; FTICR, Fourier transform ion cyclotron resonance; AMT, accurate mass tag; PMT, potential mass tag; MMA, mass measurement accuracy; MS, mass spectrometry; MS/MS, tandem mass spectrometry; ppm, parts per million.« less

  6. Study of the effect of humidity, particle hygroscopicity and size on the mass loading capacity of HEPA filters

    SciTech Connect (OSTI)

    Gupta, A.

    1992-01-01

    The effect of humidity, particle hygroscopicity and size on the mass loading capacity of glass fiber HEPA filters has been studied. At humidifies above the deliquescent point, the pressure drop across the HEPA filter increased non-linearly with the areal loading density (mass collected/filtration area) of NaCl aerosol, thus significantly reducing the mass loading capacity of the filter compared to dry hygroscopic or non-hygroscopic particle mass loadings. The specific cake resistance, K{sub 2}, has been computed for different test conditions and used as a measure of the mass loading capacity. K. was found to decrease with increasing humidity for the non-hygroscopic aluminum oxide particles and the hygroscopic NaCl particles (at humidities below the deliquescent point). It is postulated that an increase in humidity leads to the formation of a more open particulate cake which lowers the pressure drop for a given mass loading. A formula for predicting K{sub 2} for lognormally distributed aerosols (parameters obtained from impactor data) is derived. The resistance factor, R, calculated using this formula was compared to the theoretical R calculated using the Rudnick-Happel expression. For the non-hygroscopic aluminum oxide the agreement was good but for the hygroscopic sodium chloride, due to large variation in the cake porosity estimates, the agreement was poor.

  7. Study of the effect of humidity, particle hygroscopicity and size on the mass loading capacity of HEPA filters

    SciTech Connect (OSTI)

    Gupta, A.

    1992-09-01

    The effect of humidity, particle hygroscopicity and size on the mass loading capacity of glass fiber HEPA filters has been studied. At humidifies above the deliquescent point, the pressure drop across the HEPA filter increased non-linearly with the areal loading density (mass collected/filtration area) of NaCl aerosol, thus significantly reducing the mass loading capacity of the filter compared to dry hygroscopic or non-hygroscopic particle mass loadings. The specific cake resistance, K{sub 2}, has been computed for different test conditions and used as a measure of the mass loading capacity. K. was found to decrease with increasing humidity for the non-hygroscopic aluminum oxide particles and the hygroscopic NaCl particles (at humidities below the deliquescent point). It is postulated that an increase in humidity leads to the formation of a more open particulate cake which lowers the pressure drop for a given mass loading. A formula for predicting K{sub 2} for lognormally distributed aerosols (parameters obtained from impactor data) is derived. The resistance factor, R, calculated using this formula was compared to the theoretical R calculated using the Rudnick-Happel expression. For the non-hygroscopic aluminum oxide the agreement was good but for the hygroscopic sodium chloride, due to large variation in the cake porosity estimates, the agreement was poor.

  8. Physics at the 100 GeV mass scale: Proceedings

    SciTech Connect (OSTI)

    Brennan, E.C.

    1990-01-01

    This report contains the following papers: heavy quarks--experimental; the theory of heavy flavour production; precision experiments in electroweak interactions; theory of precision electroweak measurements; applications of QCD to hadron-hadron collisions; W{sup +}W{sup {minus}} interactions and the search for the Higgs Boson; electroweak symmetry breaking: Higgs/Whatever; electron-positron storage rings as heavy quark factories; prospects for next-generation e{sup +}e{sup {minus}} linear colliders; current prospects for hadron colliders; hadron colliders beyond the SSC; recent results on weak decays of charmed mesons from the Mark 3 experiment; recent CLEO results on bottom and charm; recent results on B-decays from ARGUE; a review of recent results on the hadron and photoproduction of charm; search for the top quark at UA1; recent results from the UA2 experiment at the CERN {bar p}p collider; selected preliminary results from CDF; new measurement of the phase difference {Phi}{sub 00} {minus} {Phi}{sub {plus minus}} in CP--violating K{sup 0} decays; a recent result on CP violation by E731 at Fermilab; rare kaon decay experiments; CP violation; inverse muon decay, neutrino dimuon production, and a search for neutral heavy leptons at the tevatron; first results from MACRO; a superstring theory underview; recent results from TRISTAN ; measurements of the Z boson resonance parameters at SLC; decays of the Z boson; and theory--weak neutral currents and the Z mass after the SLC.

  9. A Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... And, of course, for letting me pretend Bear was my dog... And to the rest of the MiniBooNE ... neutral particle with the same spin as an electron and very little or no rest mass 1. ...

  10. Direct determination of the electron effective mass of GaAsN by terahertz cyclotron resonance spectroscopy

    SciTech Connect (OSTI)

    Eßer, F.; Helm, M.; Drachenko, O.; Winnerl, S.; Schneider, H.; Patanè, A.; Ozerov, M.

    2015-08-10

    We use cyclotron resonance THz-spectroscopy in pulsed magnetic fields up to 63 T to measure the electron effective mass in Si-doped GaAsN semiconductor alloys with nitrogen content up to 0.2%. This technique directly probes the transport properties of the N-modified conduction band, particularly the electron effective mass, which has been discussed controversially in the experimental and theoretical literature. We report a slight increase of the electron effective mass and nonparabolicity with N-content for different photon energies in agreement with the two-level band anticrossing model calculations. Furthermore, we show a pronounced electron mobility drop with increasing N-content.

  11. Precision Electroweak Measurements on the Z Presonance

    SciTech Connect (OSTI)

    Aleph,Delphi,L3,Opal,SLD , Collaborations

    2005-09-08

    The authors report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. the data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLD experiment using a polarized beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarized asymmetries. The mass and width of the Z boson, m{sub Z} and {Lambda}{sub Z}, and its couplings to fermions, for example the {rho} parameter and the effective electroweak mixing angle for leptons, are precisely measured: m{sub Z} = 91.1875 {+-} 0.0021 GeV; {Lambda}{sub Z} = 2.4952 {+-} 0.0023 GeV; {rho}{sub {ell}} = 1.0050 {+-} 0.0010; sin{sup 2} {theta}{sub eff}{sup lept} = 0.23153 {+-} 0.00016. The number of light neutrino species is determined to be 2.9840 {+-} 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model. At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its Standard Model expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m{sub t} = 173{sub -10}{sup +13} GeV, and the mass of the W boson, m{sub W} = 80.363 {+-} 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the Standard Model. Using in addition the direct measurements of m{sub t} and m{sub W}, the mass of the as yet unobserved Standard Model Higgs boson is predicted with a

  12. Impact of individual nuclear masses on r-process abundances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mumpower, M. R.; Surman, R.; Fang, D. -L.; Beard, M.; Möller, P.; Kawano, T.; Aprahamian, A.

    2015-09-15

    We have performed for the first time a comprehensive study of the sensitivity of r-process nucleosynthesis to individual nuclear masses across the chart of nuclides. Using the latest version (2012) of the Finite-Range Droplet Model, we consider mass variations of ±0.5 MeV and propagate each mass change to all affected quantities, including Q values, reaction rates, and branching ratios. We find such mass variations can result in up to an order of magnitude local change in the final abundance pattern produced in an r-process simulation. As a result, we identify key nuclei whose masses have a substantial impact on abundancemore » predictions for hot, cold, and neutron star merger r-process scenarios and could be measured at future radioactive beam facilities.« less

  13. Active and sterile neutrino mass effects on beta decay spectra

    SciTech Connect (OSTI)

    Boillos, Juan Manuel; Moya de Guerra, Elvira

    2013-06-10

    We study the spectra of the emitted charged leptons in charge current weak nuclear processes to analyze the effect of neutrino masses. Standard active neutrinos are studied here, with masses of the order of 1 eV or lower, as well as sterile neutrinos with masses of a few keV. The latter are warm dark matter (WDM) candidates hypothetically produced or captured as small mixtures with the active neutrinos. We compute differential decay or capture rates spectra in weak charged processes of different nuclei ({sup 3}H, {sup 187}Re, {sup 107}Pd, {sup 163}Ho, etc) using different masses of both active and sterile neutrinos and different values of the mixing parameter.

  14. MICROLENSING DISCOVERY OF A POPULATION OF VERY TIGHT, VERY LOW MASS BINARY BROWN DWARFS

    SciTech Connect (OSTI)

    Choi, J.-Y.; Han, C.; Udalski, A.; Sumi, T.; Gaudi, B. S.; Gould, A.; Bennett, D. P.; Dominik, M.; Beaulieu, J.-P.; Tsapras, Y.; Bozza, V.; Abe, F.; Furusawa, K.; Itow, Y.; Bond, I. A.; Ling, C. H.; Botzler, C. S.; Freeman, M.; Chote, P.; Fukui, A.; Collaboration: MOA Collaboration; OGLE Collaboration; muFUN Collaboration; MiNDSTEp Consortium; PLANET Collaboration; RoboNet Collaboration; and others

    2013-05-10

    Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs (BDs) are poorly understood. The multiplicity properties and minimum mass of the BD mass function provide critical empirical diagnostics of these mechanisms. We present the discovery via gravitational microlensing of two very low mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 M{sub Sun} and 0.034 M{sub Sun }, and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field BD binaries known. The discovery of a population of such binaries indicates that BD binaries can robustly form at least down to masses of {approx}0.02 M{sub Sun }. Future microlensing surveys will measure a mass-selected sample of BD binary systems, which can then be directly compared to similar samples of stellar binaries.

  15. Appendix MASS: Performance Assessment Modeling Assumptions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appendix MASS-2014 Performance Assessment Modeling Assumptions United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Appendix MASS Table of Contents MASS-1.0 Introduction MASS-2.0 Summary of Changes in Performance Assessment MASS-2.1 FEPs Assessment MASS-2.2 Monitoring MASS-2.3 Experimental Activities MASS-2.3.1 Steel Corrosion Investigations MASS-2.3.2 Waste Shear Strength Investigations MASS-2.3.3

  16. Multiday production of condensing organic aerosol mass in urban and forest outflow

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.; Camredon, M.; Valorso, R.

    2015-01-16

    Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for multiple days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (~50%) and of shorter duration (1–2 days). The multiday production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction productsmore » of both aromatics and alkanes, especially those with relatively low carbon numbers (C4–15). In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions and different vapor pressure schemes, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. The results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.« less

  17. Mass Correlation of Engine Emissions with Spectral Instruments | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Mass Correlation of Engine Emissions with Spectral Instruments Mass Correlation of Engine Emissions with Spectral Instruments 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: University of Minnesota, Cambustion UK 2004_deer_collings.pdf (417.32 KB) More Documents & Publications Nanoparticle Emissions from Internal Combustion Engines Chemical and Physical Characteristics of Diesel Aerosol Measurement of diesel solid nanoparticle emissions using a catalytic

  18. Negative mass solitons in gravity

    SciTech Connect (OSTI)

    Cebeci, Hakan; Sarioglu, Oezguer; Tekin, Bayram

    2006-03-15

    We first reconstruct the conserved (Abbott-Deser) charges in the spin-connection formalism of gravity for asymptotically (Anti)-de Sitter spaces, and then compute the masses of the AdS soliton and the recently found Eguchi-Hanson solitons in generic odd dimensions, unlike the previous result obtained for only five dimensions. These solutions have negative masses compared to the global AdS or AdS/Z{sub p} spacetimes. As a separate note, we also compute the masses of the recent even dimensional Taub-NUT-Reissner-Nordstroem metrics.

  19. A laser and molecular beam mass spectrometer study of low-pressure dimethyl ether flames

    SciTech Connect (OSTI)

    Andrew McIlroy; Toby D. Hain; Hope A. Michelsen; Terrill A. Cool

    2000-12-15

    The oxidation of dimethyl ether (DME) is studied in low-pressure flames using new molecular beam mass spectrometer and laser diagnostics. Two 30.0-Torr, premixed DME/oxygen/argon flames are investigated with stoichiometries of 0.98 and 1.20. The height above burner profiles of nine stable species and two radicals are measured. These results are compared to the detailed chemical reaction mechanism of Curran and coworkers. Generally good agreement is found between the model and data. The largest discrepancies are found for the methyl radical profiles where the model predicts qualitatively different trends in the methyl concentration with stoichiometry than observed in the experiment.

  20. Determination of carbon distributions in quenched and partitioned microstructures using nanoscale secondary ion mass spectroscopy

    SciTech Connect (OSTI)

    Choi, Kyoo Sil; Zhu, Zihua; Sun, Xin; De Moor, Emmanuel; Taylor, Mark D.; Speer, John; Matlock, David K.

    2015-04-20

    A multi-modal characterization technique, which combines nanoscale secondary ion mass spectroscopy (Nano-SIMS) with a spatial resolution of ~100 nm and electron back scatter diffraction (EBSD) to determine carbon distributions in austenite and martensite in a quenched and partitioned (Q&P) Fe-0.29C-2.95Mn-1.59Si steel is presented. Significant carbon enrichment of austenite was measured with decreased levels of carbon in martensite, supporting the carbon partitioning mechanism. Fresh untempered martensite could be identified, and different degrees of enrichment were observed for blocky and lath austenite.

  1. The black hole mass scale of classical and pseudo bulges in active galaxies

    SciTech Connect (OSTI)

    Ho, Luis C.; Kim, Minjin

    2014-07-01

    The mass estimator used to calculate black hole (BH) masses in broad-line active galactic nuclei (AGNs) relies on a virial coefficient (the 'f factor') that is determined by comparing reverberation-mapped (RM) AGNs with measured bulge stellar velocity dispersions against the M {sub BH}-σ{sub *} relation of inactive galaxies. It has recently been recognized that only classical bulges and ellipticals obey a tight M {sub BH}-σ{sub *} relation; pseudobulges have a different zero point and much larger scatter. Motivated by these developments, we reevaluate the f factor for RM AGNs with available σ{sub *} measurements, updated Hβ RM lags, and new bulge classifications based on detailed decomposition of high-resolution ground-based and space-based images. Separate calibrations are provided for the two bulge types, whose virial coefficients differ by a factor of ∼2: f = 6.3 ± 1.5 for classical bulges and ellipticals and f = 3.2 ± 0.7 for pseudobulges. The structure and kinematics of the broad-line region, at least as crudely encoded in the f factor, seems to be related to the large-scale properties or formation history of the bulge. Lastly, we investigate the bulge stellar masses of the RM AGNs, show evidence for recent star formation in the AGN hosts that correlates with Eddington ratio, and discuss the potential utility of the M {sub BH}-M {sub bulge} relation as a more promising alternative to the conventionally used M {sub BH}-σ{sub *} relation for future refinement of the virial mass estimator for AGNs.

  2. Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior

    SciTech Connect (OSTI)

    UC Davis; Cappa, Christopher D.; Wilson, Kevin R.

    2010-10-28

    Vacuum Ultraviolet (VUV) photoionization mass spectrometry has been used to measure the evolution of chemical composition for two distinct organic aerosol types as they are passed through a thermodenuder at different temperatures. The two organic aerosol types considered are primary lubricating oil (LO) aerosol and secondary aerosol from the alpha-pinene + O3 reaction (alphaP). The evolution of the VUV mass spectra for the two aerosol types with temperature are observed to differ dramatically. For LO particles, the spectra exhibit distinct changes with temperature in which the lower m/z peaks, corresponding to compounds with higher vapor pressures, disappear more rapidly than the high m/z peaks. In contrast, the alphaP aerosol spectrum is essentially unchanged by temperature even though the particles experience significant mass loss due to evaporation. The variations in the LO spectra are found to be quantitatively in agreement with expectations from absorptive partitioning theory whereas the alphaP spectra suggest that the evaporation of alphaP derived aerosol appears to not be governed by partitioning theory. We postulate that this difference arises from the alphaP particles existing as in a glassy state instead of having the expected liquid-like behavior. To reconcile these observations with decades of aerosol growth measurements, which indicate that OA formation is described by equilibrium partitioning, we present a conceptual model wherein the secondary OA is formed and then rapidly converted from an absorbing form to a non-absorbing form. The results suggest that although OA growth may be describable by equilibrium partitioning theory, the properties of organic aerosol once formed may differ significantly from the properties determined in the equilibrium framework.

  3. ARM - Measurement - Ice water content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    content ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ice water content The concentration (mass/vol) of ice water particles in a cloud. Categories Cloud Properties, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  4. ARM - Measurement - Liquid water content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    content ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Liquid water content The concentration (mass/vol) of liquid water droplets in a cloud. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded

  5. Alternative Fuels Data Center: Mass Transit

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Mass Transit to someone by E-mail Share Alternative Fuels Data Center: Mass Transit on Facebook Tweet about Alternative Fuels Data Center: Mass Transit on Twitter Bookmark Alternative Fuels Data Center: Mass Transit on Google Bookmark Alternative Fuels Data Center: Mass Transit on Delicious Rank Alternative Fuels Data Center: Mass Transit on Digg Find More places to share Alternative Fuels Data Center: Mass Transit on AddThis.com... More in this section... Idle Reduction Parts & Equipment

  6. Measuring solar reflectance Part II: Review of practical methods...

    Office of Scientific and Technical Information (OSTI)

    solar position, and found that clear sky air mass 1 global horizontal (AM1GH) solar ... Rsub g,0more to within 0.006. The air mass 1.5 solar reflectance measured with ...

  7. EXPLANATION OF SIGNIFICANT DIFFERENCES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... represents a significant mass of the contamination, as ... the assumptions used in cost estimation for the excavation and ... to show "high" production rates or "low" costs ...

  8. A More Precise Higgs Boson Mass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Quigg, Chris

    2015-05-14

    To learn what distinguishes electromagnetism from the weak interactions was an early goal of experiments at CERNs Large Hadron Collider (LHC). A big part of the answer was given in mid-2012, when the ATLAS and CMS Collaborations at the LHC announced the discovery of the Higgs boson in the study of protonproton collisions. Now the discovery teams have pooled their data analyses to produce a measurement of the Higgs boson mass with 0.2% precision. The new value they discovered enables physicists to make more stringent tests of the electroweak theory and of the Higgs bosons properties.

  9. Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector

    SciTech Connect (OSTI)

    Aad, G.

    2015-09-14

    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb-1. The vm-vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm-vn correlations for n=4 and 5 are found to disagree with εmn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations.

  10. Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-09-14

    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb-1. The vm-vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistentmore » with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm-vn correlations for n=4 and 5 are found to disagree with εm-εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations.« less

  11. Gluon correlations from a glasma flux-tube model compared to measured hadron correlations on transverse momentum (pt,pt) and angular differences (??,??)

    SciTech Connect (OSTI)

    Trainor, Thomas A.; Ray, R. L.

    2011-09-09

    A glasma flux-tube model has been proposed to explain strong elongation on pseudorapidity ? of the same-side two-dimensional (2D) peak in minimum-bias angular correlations from ?(sNN)=200 GeV Au-Au collisions. The same-side peak or soft ridge is said to arise from coupling of flux tubes to radial flow whereby gluons radiated transversely from flux tubes are boosted by radial flow to form a narrow structure or ridge on azimuth. In this study we test the theory conjecture by comparing measurements to predictions for particle production, spectra, and correlations from the glasma model and from conventional fragmentation processes. We conclude that the glasma model is contradicted by measured hadron yields, spectra, and correlations, whereas a two-component model of hadron production, including minimum-bias parton fragmentation, provides a quantitative description of most features of the data, although ? elongation of the same-side 2D peak remains undescribed.

  12. Atmospheric pressure plasma analysis by modulated molecular beam mass spectrometry

    SciTech Connect (OSTI)

    Aranda Gonzalvo, Y.; Whitmore, T.D.; Rees, J.A.; Seymour, D.L.; Stoffels, E.

    2006-05-15

    Fractional number density measurements for a rf plasma 'needle' operating at atmospheric pressure have been obtained using a molecular beam mass spectrometer (MBMS) system designed for diagnostics of atmospheric plasmas. The MBMS system comprises three differentially pumped stages and a mass/energy analyzer and includes an automated beam-to-background measurement facility in the form of a software-controlled chopper mechanism. The automation of the beam modulation allows the neutral components in the plasma to be rapidly and accurately measured using the mass spectrometer by threshold ionization techniques. Data are reported for plasma generated by a needle plasma source operated using a helium/air mixture. In particular, data for the conversion of atmospheric oxygen and nitrogen into nitric oxide are discussed with reference to its significance for medical applications such as disinfecting wounds and dental cavities and for microsurgery.

  13. TRACKING CORONAL FEATURES FROM THE LOW CORONA TO EARTH: A QUANTITATIVE ANALYSIS OF THE 2008 DECEMBER 12 CORONAL MASS EJECTION

    SciTech Connect (OSTI)

    DeForest, C. E.; Howard, T. A.; McComas, D. J.

    2013-05-20

    We have tracked a slow magnetic cloud associated coronal mass ejection (CME) continuously from its origin as a flux rope structure in the low solar corona over a four-day passage to impact with spacecraft located near Earth. Combining measurements from the STEREO, ACE, and Wind space missions, we are able to follow major elements with enough specificity to relate pre-CME coronal structure in the low corona to the corresponding elements seen in the near-Earth in situ data. Combining extreme ultraviolet imaging, quantitative Thomson scattering data throughout the flight of the CME, and ''ground-truth'' in situ measurements, we: (1) identify the plasma observed by ACE and Wind with specific features in the solar corona (a segment of a long flux rope); (2) determine the onset mechanism of the CME (destabilization of a filament channel following flare reconnection, coupled with the mass draining instability) and demonstrate that it is consistent with the in situ measurements; (3) identify the origin of different layers of the sheath material around the central magnetic cloud (closed field lifted from the base of the corona, closed field entrained during passage through the corona, and solar wind entrained by the front of the CME); (4) measure mass accretion of the system via snowplow effects in the solar wind as the CME crossed the solar system; and (5) quantify the kinetic energy budget of the system in interplanetary space, and determine that it is consistent with no long-term driving force on the CME.

  14. Micro mass spectrometer on a chip.

    SciTech Connect (OSTI)

    Cruz, Dolores Y.; Blain, Matthew Glenn; Fleming, James Grant

    2005-11-01

    The design, simulation, fabrication, packaging, electrical characterization and testing analysis of a microfabricated a cylindrical ion trap ({mu}CIT) array is presented. Several versions of microfabricated cylindrical ion traps were designed and fabricated. The final design of the individual trap array element consisted of two end cap electrodes, one ring electrode, and a detector plate, fabricated in seven tungsten metal layers by molding tungsten around silicon dioxide (SiO{sub 2}) features. Each layer of tungsten is then polished back in damascene fashion. The SiO{sub 2} was removed using a standard release processes to realize a free-hung structure. Five different sized traps were fabricated with inner radii of 1, 1.5, 2, 5 and 10 {micro}m and heights ranging from 3-24 {micro}m. Simulations examined the effects of ion and neutral temperature, the pressure and nature of cooling gas, ion mass, trap voltage and frequency, space-charge, fabrication defects, and other parameters on the ability of micrometer-sized traps to store ions. The electrical characteristics of the ion trap arrays were determined. The capacitance was 2-500 pF for the various sized traps and arrays. The resistance was in the order of 1-2 {Omega}. The inductance of the arrays was calculated to be 10-1500 pH, depending on the trap and array sizes. The ion traps' field emission characteristics were assessed. It was determined that the traps could be operated up to 125 V while maintaining field emission currents below 1 x 10{sup -15} A. The testing focused on using the 5-{micro}m CITs to trap toluene (C{sub 7}H{sub 8}). Ion ejection from the traps was induced by termination of the RF voltage applied to the ring electrode and current measured on the collector electrode suggested trapping of ions in 1-10% of the traps. Improvements to the to the design of the traps were defined to minimize voltage drop to the substrate, thereby increasing trapping voltage applied to the ring electrode, and to allow

  15. Measurement of the Helicity Difference in γp→pπ+π- with the CLAS Spectrometer at Jefferson Laboratory

    SciTech Connect (OSTI)

    Park, Sungkyun

    2010-08-05

    The study of the properties of baryon resonances can provide us with hints to help us understand the structure of non-perturbative QCD and the effect of a particular resonance on polarization observables. The investigation of double-pion photoproduction data is needed to discover higher-lying states and their properties at and above W [approximate] 1.8 GeV. Therefore, the analysis of the helicity difference in gp γp→pπ+π- will help us in our understanding of QCD.The CLAS g9a (FROST) experiment, as part of the N* spectroscopy program at Jefferson Laboratory, has accumulated photoproduction data using linearly and circularly polarized photons incident on a longitudinally-polarized butanol target in the photon energy range 0.3 to 2.4 GeV. The FROST experiment provides an important step toward a “complete” experiment for the reaction gammaN-->KY.In this contribution, the method to calculate the helicity difference for the reaction γp→pπ+π- will be described and preliminary results will be discussed.

  16. Solar spectral measurements and modeling

    SciTech Connect (OSTI)

    Bird, R.E.; Hulstrom, R.L.

    1981-01-01

    A newly developed spectroradiometer for routine measurement of the solar spectra is described. This instrument measures the solar spectrum between 300 and 2500 nm in less than 2.5 min, with 0.7-nm resolution in the visible and 10-nm resolution in the infrared. Many examples of global, direct, and diffuse spectra are illustrated for Bedford, Mass. and Golden, Colo. The effects of air mass, turbidity, and sun tracking on the spectrum are presented, and radiative transfer modeling capabilities and comparisons between models and between models and experiment are discussed.

  17. The Origin of Mass and the Feebleness of Gravity

    ScienceCinema (OSTI)

    Wilczek, Frank

    2010-09-01

    BSA Distinguished Lecture presented by Frank Wilczek, co-winner of the 2004 Nobel Prize in Physics. Einstein's famous equation E=mc^2 asserts that energy and mass are different aspects of the same reality. The general public usually associates the equation with the idea that small amounts of mass can be converted into large amounts of energy, as in nuclear reactors and bombs. For physicists who study the basic nature of matter, however, the more important idea is just the opposite.

  18. Correcting systematic bias and instrument measurement drift with mzRefinery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gibbons, Bryson C.; Chambers, Matthew C.; Monroe, Matthew E.; Tabb, David L.; Payne, Samuel H.

    2015-08-04

    Systematic bias in mass measurement adversely affects data quality and negates the advantages of high precision instruments. We introduce the mzRefinery tool into the ProteoWizard package for calibration of mass spectrometry data files. Using confident peptide spectrum matches, three different calibration methods are explored and the optimal transform function is chosen. After calibration, systematic bias is removed and the mass measurement errors are centered at zero ppm. Because it is part of the ProteoWizard package, mzRefinery can read and write a wide variety of file formats. In conclusion, we report on availability; the mzRefinery tool is part of msConvert, availablemore » with the ProteoWizard open source package at http://proteowizard.sourceforge.net/« less

  19. Correcting systematic bias and instrument measurement drift with mzRefinery

    SciTech Connect (OSTI)

    Gibbons, Bryson C.; Chambers, Matthew C.; Monroe, Matthew E.; Tabb, David L.; Payne, Samuel H.

    2015-08-04

    Systematic bias in mass measurement adversely affects data quality and negates the advantages of high precision instruments. We introduce the mzRefinery tool into the ProteoWizard package for calibration of mass spectrometry data files. Using confident peptide spectrum matches, three different calibration methods are explored and the optimal transform function is chosen. After calibration, systematic bias is removed and the mass measurement errors are centered at zero ppm. Because it is part of the ProteoWizard package, mzRefinery can read and write a wide variety of file formats. In conclusion, we report on availability; the mzRefinery tool is part of msConvert, available with the ProteoWizard open source package at http://proteowizard.sourceforge.net/

  20. Correcting systematic bias and instrument measurement drift with mzRefinery

    SciTech Connect (OSTI)

    Gibbons, Bryson C.; Chambers, Matthew C.; Monroe, Matthew E.; Tabb, David L.; Payne, Samuel H.

    2015-12-01

    MOTIVATION: Systematic bias in mass measurement adversely affects data quality and negates the advantages of high precision instruments. RESULTS: We introduce the mzRefinery tool into the ProteoWizard package for calibration of mass spectrometry data files. Using confident peptide spectrum matches, three different calibration methods are explored and the optimal transform function is chosen. After calibration, systematic bias is removed and the mass measurement errors are centered at zero ppm. Because it is part of the ProteoWizard package, mzRefinery can read and write a wide variety of file formats. AVAILABILITY: The mzRefinery tool is part of msConvert, available with the ProteoWizard open source package at http://proteowizard.sourceforge.net/

  1. THE STELLAR-TO-HALO MASS RELATION FOR LOCAL GROUP GALAXIES

    SciTech Connect (OSTI)

    Brook, C. B.; Cintio, A. Di; Knebe, A.; Yepes, G.; Gottlber, S.; Hoffman, Y.; Garrison-Kimmel, S.

    2014-03-20

    We contend that a single power-law halo mass distribution is appropriate for direct matching to the stellar masses of observed Local Group dwarf galaxies, allowing the determination of the slope of the stellar mass-halo mass relation for low-mass galaxies. Errors in halo masses are well defined as the Poisson noise of simulated Local Group realizations, which we determine using local volume simulations. For the stellar mass range 10{sup 7}M {sub ?}mass-halo mass relation follows a power law with slope of 3.1, significantly steeper than most values in the literature. This steep relation between stellar and halo masses would indicate that Local Group dwarf galaxies are hosted by dark matter halos with a small range of mass. Our methodology is robust down to the stellar mass to which the census of observed Local Group galaxies is complete, but the significant uncertainty in the currently measured slope of the stellar-to-halo mass relation will decrease dramatically if the Local Group completeness limit was 10{sup 6.5}M {sub ?} or below, highlighting the importance of pushing such limit to lower masses and larger volumes.

  2. Fermilab | Science at Fermilab | Computing | Mass Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data is stored on tapes in Central Mass Storage. Data is stored on tapes in Central Mass Storage. Computing Mass Storage Fermilab stores tens of petabytes of scientific data in its ...

  3. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239{sup Pu} induced by thermal neutrons

    SciTech Connect (OSTI)

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-08-04

    The average of fragment kinetic energy (E-bar sign*) and the multiplicity of prompt neutrons ({nu}(bar sign)) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of {sup 239}Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation {sigma}{sub E}*(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass ({sigma}{sub E}(A)). As a result of the simulation we obtain the dependence {sigma}{sub E}*(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  4. Stable isotope, site-specific mass tagging for protein identification

    DOE Patents [OSTI]

    Chen, Xian

    2006-10-24

    Proteolytic peptide mass mapping as measured by mass spectrometry provides an important method for the identification of proteins, which are usually identified by matching the measured and calculated m/z values of the proteolytic peptides. A unique identification is, however, heavily dependent upon the mass accuracy and sequence coverage of the fragment ions generated by peptide ionization. The present invention describes a method for increasing the specificity, accuracy and efficiency of the assignments of particular proteolytic peptides and consequent protein identification, by the incorporation of selected amino acid residue(s) enriched with stable isotope(s) into the protein sequence without the need for ultrahigh instrumental accuracy. Selected amino acid(s) are labeled with .sup.13C/.sup.15N/.sup.2H and incorporated into proteins in a sequence-specific manner during cell culturing. Each of these labeled amino acids carries a defined mass change encoded in its monoisotopic distribution pattern. Through their characteristic patterns, the peptides with mass tag(s) can then be readily distinguished from other peptides in mass spectra. The present method of identifying unique proteins can also be extended to protein complexes and will significantly increase data search specificity, efficiency and accuracy for protein identifications.

  5. Measurement of $\

    SciTech Connect (OSTI)

    Acciarri, R.; et al.

    2015-11-03

    The ArgoNeuT collaboration reports the first measurement of neutral current $\\pi^{0}$ production in $\

  6. ARM - Measurement -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurements ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Categories Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments UV-MFRSR : Ultraviolet

  7. Measuring circuit

    DOE Patents [OSTI]

    Sun, Shan C.; Chaprnka, Anthony G.

    1977-01-11

    An automatic gain control circuit functions to adjust the magnitude of an input signal supplied to a measuring circuit to a level within the dynamic range of the measuring circuit while a log-ratio circuit adjusts the magnitude of the output signal from the measuring circuit to the level of the input signal and optimizes the signal-to-noise ratio performance of the measuring circuit.

  8. Big Mysteries: The Higgs Mass

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-06-03

    With the discovery of what looks to be the Higgs boson, LHC researchers are turning their attention to the next big question, which is the predicted mass of the newly discovered particles. When the effects of quantum mechanics is taken into account, the mass of the Higgs boson should be incredibly high...perhaps upwards of a quadrillion times higher than what was observed. In this video, Fermilab's Dr. Don Lincoln explains how it is that the theory predicts that the mass is so large and gives at least one possible theoretical idea that might solve the problem. Whether the proposed idea is the answer or not, this question must be answered by experiments at the LHC or today's entire theoretical paradigm could be in jeopardy.

  9. Electrophoresis-mass spectrometry probe

    DOE Patents [OSTI]

    Andresen, B.D.; Fought, E.R.

    1987-11-10

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface. 8 figs.

  10. Symposium on accelerator mass spectrometry

    SciTech Connect (OSTI)

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  11. Big Mysteries: The Higgs Mass

    SciTech Connect (OSTI)

    Lincoln, Don

    2014-04-28

    With the discovery of what looks to be the Higgs boson, LHC researchers are turning their attention to the next big question, which is the predicted mass of the newly discovered particles. When the effects of quantum mechanics is taken into account, the mass of the Higgs boson should be incredibly high...perhaps upwards of a quadrillion times higher than what was observed. In this video, Fermilab's Dr. Don Lincoln explains how it is that the theory predicts that the mass is so large and gives at least one possible theoretical idea that might solve the problem. Whether the proposed idea is the answer or not, this question must be answered by experiments at the LHC or today's entire theoretical paradigm could be in jeopardy.

  12. Electrophoresis-mass spectrometry probe

    DOE Patents [OSTI]

    Andresen, Brian D.; Fought, Eric R.

    1987-01-01

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface.

  13. The dynamical masses, densities, and star formation scaling relations of Lyα galaxies

    SciTech Connect (OSTI)

    Rhoads, James E.; Malhotra, Sangeeta; Richardson, Mark L. A.; McLinden, Emily M.; Finkelstein, Steven L.; Fynbo, Johan P. U.; Tilvi, Vithal S.

    2014-01-01

    We present the first dynamical mass measurements for Lyα galaxies at high redshift, based on velocity dispersion measurements from rest-frame optical emission lines and size measurements from Hubble Space Telescope imaging, for nine galaxies drawn from four surveys. We use these measurements to study Lyα galaxies in the context of galaxy scaling relations. The resulting dynamical masses range from 10{sup 9} to 10{sup 10} M {sub ☉}. We also fit stellar population models to our sample and use them to place the Lyα sample on a stellar mass versus line width relation. The Lyα galaxies generally follow the same scaling relation as star-forming galaxies at lower redshift, although, lower stellar mass fits are also acceptable in ∼1/3 of the Lyα galaxies. Using the dynamical masses as an upper limit on gas mass, we show that Lyα galaxies have unusually active star formation for their gas mass surface density. This behavior is consistent with what is observed in starburst galaxies, despite the typically smaller masses and sizes of the Lyα galaxy population. Finally, we examine the mass densities of these galaxies and show that their future evolution likely requires dissipational ('wet') merging. In short, we find that Lyα galaxies are low-mass cousins of larger starbursts.

  14. Press Pass - Press Release - Higgs mass constraints

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -mass-constraints-20100726-images.html Fermilab experiments narrow allowed mass range for Higgs boson Batavia, Ill.New constraints on the elusive Higgs particle are more...

  15. Atmospheric Ionization Mass Spectrometry Capabilities at Sandia...

    Office of Scientific and Technical Information (OSTI)

    Mass Spectrometry Capabilities at Sandia National Labs. Citation Details In-Document Search Title: Atmospheric Ionization Mass Spectrometry Capabilities at Sandia National Labs. ...

  16. Performance testing accountability measurements

    SciTech Connect (OSTI)

    Oldham, R.D.; Mitchell, W.G.; Spaletto, M.I.

    1993-12-31

    The New Brunswick Laboratory (NBL) provides assessment support to the DOE Operations Offices in the area of Material Control and Accountability (MC and A). During surveys of facilities, the Operations Offices have begun to request from NBL either assistance in providing materials for performance testing of accountability measurements or both materials and personnel to do performance testing. To meet these needs, NBL has developed measurement and measurement control performance test procedures and materials. The present NBL repertoire of performance tests include the following: (1) mass measurement performance testing procedures using calibrated and traceable test weights, (2) uranium elemental concentration (assay) measurement performance tests which use ampulated solutions of normal uranyl nitrate containing approximately 7 milligrams of uranium per gram of solution, and (3) uranium isotopic measurement performance tests which use ampulated uranyl nitrate solutions with enrichments ranging from 4% to 90% U-235. The preparation, characterization, and packaging of the uranium isotopic and assay performance test materials were done in cooperation with the NBL Safeguards Measurements Evaluation Program since these materials can be used for both purposes.

  17. Renormalization of a two-loop neutrino mass model

    SciTech Connect (OSTI)

    Babu, K. S.; Julio, J.

    2014-01-01

    We analyze the renormalization group structure of a radiative neutrino mass model consisting of a singly charged and a doubly charged scalar fields. Small Majorana neutrino masses are generated by the exchange of these scalars via two-loop diagrams. We derive boundedness conditions for the Higgs potential and show how they can be satisfied to energies up to the Planck scale. Combining boundedness and perturbativity constraints with neutrino oscillation phenomenology, new limits on the masses and couplings of the charged scalars are derived. These in turn lead to lower limits on the branching ratios for certain lepton flavor violating (LFV) processes such as μ→eγ, μ→3e and μ – e conversion in nuclei. Improved LFV measurements could test the model, especially in the case of inverted neutrino mass hierarchy where these are more prominent.

  18. ARM - Measurement - Hydrometeor Geometry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geometry ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor Geometry Measurements describing the geometry of hydrometeors, e.g. oblateness, diameters along different axes, volume, etc. Categories Atmospheric State, Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  19. SU-E-I-62: Assessing Radiation Dose Reduction and CT Image Optimization Through the Measurement and Analysis of the Detector Quantum Efficiency (DQE) of CT Images Using Different Beam Hardening Filters

    SciTech Connect (OSTI)

    Collier, J; Aldoohan, S; Gill, K

    2014-06-01

    Purpose: Reducing patient dose while maintaining (or even improving) image quality is one of the foremost goals in CT imaging. To this end, we consider the feasibility of optimizing CT scan protocols in conjunction with the application of different beam-hardening filtrations and assess this augmentation through noise-power spectrum (NPS) and detector quantum efficiency (DQE) analysis. Methods: American College of Radiology (ACR) and Catphan phantoms (The Phantom Laboratory) were scanned with a 64 slice CT scanner when additional filtration of thickness and composition (e.g., copper, nickel, tantalum, titanium, and tungsten) had been applied. A MATLAB-based code was employed to calculate the image of noise NPS. The Catphan Image Owl software suite was then used to compute the modulated transfer function (MTF) responses of the scanner. The DQE for each additional filter, including the inherent filtration, was then computed from these values. Finally, CT dose index (CTDIvol) values were obtained for each applied filtration through the use of a 100 mm pencil ionization chamber and CT dose phantom. Results: NPS, MTF, and DQE values were computed for each applied filtration and compared to the reference case of inherent beam-hardening filtration only. Results showed that the NPS values were reduced between 5 and 12% compared to inherent filtration case. Additionally, CTDIvol values were reduced between 15 and 27% depending on the composition of filtration applied. However, no noticeable changes in image contrast-to-noise ratios were noted. Conclusion: The reduction in the quanta noise section of the NPS profile found in this phantom-based study is encouraging. The reduction in both noise and dose through the application of beam-hardening filters is reflected in our phantom image quality. However, further investigation is needed to ascertain the applicability of this approach to reducing patient dose while maintaining diagnostically acceptable image qualities in a

  20. Evolution in the HALO Masses of Isolated Galaxies between Z~;1 andZ~;0: From Deep2 to SDSS

    SciTech Connect (OSTI)

    Conroy, Charlie; Prada, Francisco; Newman, Jeffrey A.; Croton,Darren; Coil, Alison L.; Conselice, Christopher J.; Cooper, Michael C.; Davis, Marc; Faber, S.M.; Gerke, Brian F.; Guhathakurta, Puragra; Klypin,Anatoly; Koo, David C.; Yan, Renbin

    2006-09-13

    We measure the evolution in the virial mass-to-light ratio(M_200/L_B) and virial-to-stellar mass ratio (M_200/M*) for isolated ~;L*galaxies between z~;1 and z~;0 by combining data from the DEEP2 GalaxyRedshift Survey and the Sloan Digital Sky Survey. Utilizing the motionsof satellite galaxies around isolated galaxies, we measure line-of-sightvelocity dispersions and derive dark matter halo virial masses for thesehost galaxies. At both epochs the velocity dispersionof satellitescorrelates with host galaxy stellar mass, with sigma prop M*(0.4+-0.1),while the relation between satellite velocity dispersion and host galaxyB-band luminosity may grow somewhat shallower, from sigma propL_B(0.6+-0.1) at z~;1 to sigma proportional to L_B(0.4+-0.1) at z~;0. Theevolution in M_200/M* from z~;1 to z~;0 displays a bimodality, insofar ashost galaxies with stellar mass below M*~;1011 h-11M_Sub maintain aconstant ratio (the intrinsic increase is constrained to a factor of1.1+-0.5) while host galaxies above this mass experience a factor of3.3+-2.2 increase in their virial-to-stellar mass ratio. This result canbe easily understood if galaxies below this stellar mass scale continueto form stars while star formation in galaxies above this scale isquenched and the dark matter halos of galaxies both above and below thisscale grow in accordance with LCDM cosmological simulations. Hostgalaxies that are red in U - B color have larger satellite dispersionsand hence reside on average in more massive halos than blue galaxies atboth z~;1 and z~;0. The satellite population of host galaxies varieslittle between these epochs; the only significant difference is thatsatellites at z~;1 tend to be comparatively fainter (by ~;0.15 magnitudesin the mean) relative to their host luminosity than satellites at z ~; 0.The redshift and host galaxy stellar mass dependence of M_200/M* agreesqualitatively with the Millennium Run semi-analytic model of galaxyformation.

  1. Micro-scale mass-transfer variations during electrodeposition

    SciTech Connect (OSTI)

    Sutija, D.P.

    1991-08-01

    Results of two studies on micro-scale mass-transfer enhancement are reported: (1) Profiled cross-sections of striated zinc surfaces deposited in laminar channel flow were analyzed with fast-fourier transforms (FFT) to determine preferred striation wavelengths. Striation frequency increases with current density until a minimum separation between striae of 150 {mu}m is reached. Beyond this point, independent of substrate used, striae meld together and form a relatively smooth, nodular deposit. Substrates equipped with artificial micron-sized protrusions result in significantly different macro-morphology in zinc deposits. Micro-patterned electrodes (MPE) with hemispherical protrusions 5 {mu}m in diameter yield thin zinc striae at current densities that ordinarily produce random nodular deposits. MPEs with artificial hemi-cylinders, 2.5 {mu}m in height and spaced 250 {mu}m apart, form striae with a period which matches the spacing of micron-sized ridges. (2) A novel, corrosion-resistant micromosaic electrode was fabricated on a silicon wafer. Measurements of mass-transport enhancement to a vertical micromosaic electrode caused by parallel bubble streams rising inside of the diffusion boundary-layer demonstrated the presence of two co-temporal enhancement mechanisms: surface-renewal increases the limiting current within five bubble diameters of the rising column, while bubble-induced laminar flows cause weaker enhancement over a much broader swath. The enhancement caused by bubble curtains is predicted accurately by linear superposition of single-column enhancements. Two columns of smaller H{sub 2} bubbles generated at the same volumetric rate as a single column of larger bubbles cause higher peak and far-field enhancements. 168 refs., 96 figs., 6 tabs.

  2. Demand Shifting with Thermal Mass in Light and Heavy Mass Commercial Buildings

    SciTech Connect (OSTI)

    Xu, Peng; Zagreus, Leah

    2009-05-01

    The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. This project studied the potential of pre-cooling and demand limiting in a heavy mass and a light mass building in the Bay Area of California. The conclusion of the work to date is that pre-cooling has the potential to improve the demand responsiveness of commercial buildings while maintaining acceptable comfort conditions. Results indicate that pre-cooling increases the depth (kW) and duration (kWh) of the shed capacity of a given building, all other factors being equal. Due to the time necessary for pre-cooling, it is only applicable to day-ahead demand response programs. Pre-cooling can be very effective if the building mass is relatively heavy. The effectiveness of night pre-cooling under hot weather conditions has not been tested. Further work is required to quantify and demonstrate the effectiveness of pre-cooling in different climates. Research is also needed to develop screening tools that can be used to select suitable buildings and customers, identify the most appropriate pre-cooling strategies, and estimate the benefits to the customer and the utility.

  3. Salado mass concrete: Mixture development and preliminary characterization

    SciTech Connect (OSTI)

    Wakeley, L.D.; Ernzen, J.J.; Neeley, B.D.; Hansen, F.D.

    1994-06-01

    A salt-saturated concrete proportioned with Class H oilwell cement, Class F fly ash, and a shrinkage compensating component was developed to meet performance requirements for mass placement as seal components at the Waste Isolation Pilot Plant. Target properties of the concrete included 8-in. slump 3 hr after mixing, no aggregate segregation, heat rise of < 25{degrees}F 4 hr after mixing, compressive strength of 4,500 psi at 180 days, minimal volume change, and probable geochemical stability for repository conditions. Thermal and mechanical properties of promising candidate concrete mixtures were measured. Modulus of elasticity and creep behavior were similar to those of ordinary portland cement mass concretes. Thermal expansion for the salt-saturated concrete developed here was typical of ordinary concrete with similar silicate aggregates. Thermal conductivity, diffusivity, and specific heat approximated values measured for other mass concretes and were similar to values of the host salt rock.

  4. Time of flight mass spectrometer

    DOE Patents [OSTI]

    Ulbricht, Jr., William H.

    1984-01-01

    A time-of-flight mass spectrometer is described in which ions are desorbed from a sample by nuclear fission fragments, such that desorption occurs at the surface of the sample impinged upon by the fission fragments. This configuration allows for the sample to be of any thickness, and eliminates the need for complicated sample preparation.

  5. Mass spectroscopic apparatus and method

    DOE Patents [OSTI]

    Bomse, David S.; Silver, Joel A.; Stanton, Alan C.

    1991-01-01

    The disclosure is directed to a method and apparatus for ionization modulated mass spectrometric analysis. Analog or digital data acquisition and processing can be used. Ions from a time variant source are detected and quantified. The quantified ion output is analyzed using a computer to provide a two-dimensional representation of at least one component present within an analyte.

  6. Building America Case Study: Retrofit Measure for Embedded Wood...

    Energy Savers [EERE]

    Existing Homes Building America Case Study Retrofit Measures for Embedded Wood Members in Insulated Mass Masonry Walls Lawrence, Massachusetts PROJECT INFORMATION Project Name: The...

  7. Color-mass-to-light-ratio relations for disk galaxies

    SciTech Connect (OSTI)

    McGaugh, Stacy S.; Schombert, James M. E-mail: jschombe@uoregon.edu

    2014-11-01

    We combine Spitzer 3.6 μm observations of a sample of disk galaxies spanning over 10 mag in luminosity with optical luminosities and colors to test population synthesis prescriptions for computing stellar mass. Many commonly employed models fail to provide self-consistent results: the stellar mass estimated from the luminosity in one band can differ grossly from that of another band for the same galaxy. Independent models agree closely in the optical (V band), but diverge at longer wavelengths. This effect is particularly pronounced in recent models with substantial contributions from TP-AGB stars. We provide revised color-mass-to-light ratio relations that yield self-consistent stellar masses when applied to real galaxies. The B – V color is a good indicator of the mass-to-light ratio. Some additional information is provided by V – I, but neither it nor J – K{sub s} are particularly useful for constraining the mass-to-light ratio on their own. In the near-infrared, the mass-to-light ratio depends weakly on color, with typical values of 0.6 M {sub ☉}/L {sub ☉} in the K{sub s} band and 0.47 M {sub ☉}/L {sub ☉} at 3.6 μm.

  8. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  9. Measurement Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins 2016 Joseph F. Keithley Award for Advances in Measurement Science October 15, 2015 Honors to Albert Migliori, developer of resonant ultrasound spectroscopy LOS ALAMOS, N.M., Oct. 15, 2015-Los Alamos National Laboratory physicist Albert Migliori, having led the development of a powerful tool for important measurements in condensed matter physics including superconductivity, is being given the Joseph F. Keithley Award For Advances in Measurement Science, the top instrumentation prize of the

  10. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements Related Links MC3E Home News News & Press MC3E Backgrounder (PDF, 1.61MB) SGP Images ARM flickr site Field Blog ARM Data Discovery Browse Data Deployment Operations Measurements Science Plan (PDF, 3.85 MB) Featured Data Plots SGP Data Plots (all) Experiment Planning Steering Committee Science Questions MC3E Proposal Abstract and Related Campaigns Meetings Cloud Life Cycle Working Group Contacts Michael Jensen, Lead Scientist Measurements Ground-based Instruments Category

  11. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements Related Links SPARTICUS Home AAF Home Deployment Operations Measurements SGP Data Plots NASA Data Plots ARM Data Discovery Browse Data Experiment Planning SPARTICUS Proposal Abstract Science Questions Science and Operations (PDF, 1.01M) SPARTICUS Wiki News News & Press Backgrounder (PDF, 269K) Contacts Gerald Mace, Lead Scientist Measurements The SPARTICUS field campaign seeks to collect a substantial series of data sets-profiling cirrus ice crystal size and distribution-during

  12. The supernova progenitor mass distributions of M31 and M33: further evidence for an upper mass limit

    SciTech Connect (OSTI)

    Jennings, Zachary G.; Weisz, Daniel R.; Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Fouesneau, Morgan; Murphy, Jeremiah W.; Dolphin, Andrew E. E-mail: adolphin@raytheon.com

    2014-11-10

    Using Hubble Space Telescope photometry to measure star formation histories, we age-date the stellar populations surrounding supernova remnants (SNRs) in M31 and M33. We then apply stellar evolution models to the ages to infer the corresponding masses for their supernova progenitor stars. We analyze 33 M33 SNR progenitors and 29 M31 SNR progenitors in this work. We then combine these measurements with 53 previously published M31 SNR progenitor measurements to bring our total number of progenitor mass estimates to 115. To quantify the mass distributions, we fit power laws of the form dN/dM∝M {sup –α}. Our new larger sample of M31 progenitors follows a distribution with α=4.4{sub −0.4}{sup +0.4}, and the M33 sample follows a distribution with α=3.8{sub −0.5}{sup +0.4}. Thus both samples are consistent within the uncertainties, and the full sample across both galaxies gives α=4.2{sub −0.3}{sup +0.3}. Both the individual and full distributions display a paucity of massive stars when compared to a Salpeter initial mass function, which we would expect to observe if all massive stars exploded as SN that leave behind observable SNR. If we instead fix α = 2.35 and treat the maximum mass as a free parameter, we find M {sub max} ∼ 35-45 M {sub ☉}, indicative of a potential maximum cutoff mass for SN production. Our results suggest that either SNR surveys are biased against finding objects in the youngest (<10 Myr old) regions, or the highest mass stars do not produce SNe.

  13. Mass Determination of Two-Proton Radioactive Nuclides

    SciTech Connect (OSTI)

    Miernik, Krzysztof A

    2012-01-01

    The masses of heavy two-proton emitters (45Fe, 48Ni and 54Zn) are calculated, basing on experimentally measured two-proton decay energies. The results are compared with theoretical predictions and extrapolations.

  14. Characterization of compounds by time-of-flight measurement utilizing random fast ions

    DOE Patents [OSTI]

    Conzemius, R.J.

    1989-04-04

    An apparatus is described for characterizing the mass of sample and daughter particles, comprising a source for providing sample ions; a fragmentation region wherein a fraction of the sample ions may fragment to produce daughter ion particles; an electrostatic field region held at a voltage level sufficient to effect ion-neutral separation and ion-ion separation of fragments from the same sample ion and to separate ions of different kinetic energy; a detector system for measuring the relative arrival times of particles; and processing means operatively connected to the detector system to receive and store the relative arrival times and operable to compare the arrival times with times detected at the detector when the electrostatic field region is held at a different voltage level and to thereafter characterize the particles. Sample and daughter particles are characterized with respect to mass and other characteristics by detecting at a particle detector the relative time of arrival for fragments of a sample ion at two different electrostatic voltage levels. The two sets of particle arrival times are used in conjunction with the known altered voltage levels to mathematically characterize the sample and daughter fragments. In an alternative embodiment the present invention may be used as a detector for a conventional mass spectrometer. In this embodiment, conventional mass spectrometry analysis is enhanced due to further mass resolving of the detected ions. 8 figs.

  15. Characterization of compounds by time-of-flight measurement utilizing random fast ions

    DOE Patents [OSTI]

    Conzemius, Robert J.

    1989-01-01

    An apparatus for characterizing the mass of sample and daughter particles, comprising a source for providing sample ions; a fragmentation region wherein a fraction of the sample ions may fragment to produce daughter ion particles; an electrostatic field region held at a voltage level sufficient to effect ion-neutral separation and ion-ion separation of fragments from the same sample ion and to separate ions of different kinetic energy; a detector system for measuring the relative arrival times of particles; and processing means operatively connected to the detector system to receive and store the relative arrival times and operable to compare the arrival times with times detected at the detector when the electrostatic field region is held at a different voltage level and to thereafter characterize the particles. Sample and daughter particles are characterized with respect to mass and other characteristics by detecting at a particle detector the relative time of arrival for fragments of a sample ion at two different electrostatic voltage levels. The two sets of particle arrival times are used in conjunction with the known altered voltage levels to mathematically characterize the sample and daughter fragments. In an alternative embodiment the present invention may be used as a detector for a conventional mass spectrometer. In this embodiment, conventional mass spectrometry analysis is enhanced due to further mass resolving of the detected ions.

  16. Evidence for two distinct stellar initial mass functions: probing for clues to the dichotomy

    SciTech Connect (OSTI)

    Zaritsky, Dennis; Colucci, Janet E.; Bernstein, Rebecca A.; Pessev, Peter M.

    2014-12-01

    We present new measurements of the velocity dispersions of 11 Local Group globular clusters using spatially integrated spectra, to expand our sample of clusters with precise integrated-light velocity dispersions to 29, over 4 different host galaxies. This sample allows us to further our investigation of the stellar mass function among clusters, with a particular emphasis on a search for the driver of the apparent bimodal nature of the inferred stellar initial mass function (IMF). We confirm our previous result that clusters fall into two classes. If, as we argue, this behavior reflects a variation in the stellar IMF, the cause of that variation is not clear. The variations do not correlate with formation epoch as quantified by age, metallicity quantified by [Fe/H], host galaxy, or internal structure as quantified by velocity dispersion, physical size, relaxation time, or luminosity. The stellar mass-to-light ratios, Y{sub *}, of the high and low Y{sub *} cluster populations are well-matched to those found in recent studies of early and late type galaxies, respectively.

  17. Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California

    SciTech Connect (OSTI)

    Yin, Rongxin; Kiliccote, Sila; Piette, Mary Ann; Parrish, Kristen

    2010-05-14

    This paper reports on the potential impact of demand response (DR) strategies in commercial buildings in California based on the Demand Response Quick Assessment Tool (DRQAT), which uses EnergyPlus simulation prototypes for office and retail buildings. The study describes the potential impact of building size, thermal mass, climate, and DR strategies on demand savings in commercial buildings. Sensitivity analyses are performed to evaluate how these factors influence the demand shift and shed during the peak period. The whole-building peak demand of a commercial building with high thermal mass in a hot climate zone can be reduced by 30percent using an optimized demand response strategy. Results are summarized for various simulation scenarios designed to help owners and managers understand the potential savings for demand response deployment. Simulated demand savings under various scenarios were compared to field-measured data in numerous climate zones, allowing calibration of the prototype models. The simulation results are compared to the peak demand data from the Commercial End-Use Survey for commercial buildings in California. On the economic side, a set of electricity rates are used to evaluate the impact of the DR strategies on economic savings for different thermal mass and climate conditions. Our comparison of recent simulation to field test results provides an understanding of the DR potential in commercial buildings.

  18. Local Mass and Heat Transfer on a Turbine Blade Tip

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jin, P.; Goldstein, R. J.

    2003-01-01

    Locmore » al mass and heat transfer measurements on a simulated high-pressure turbine blade-tip surface are conducted in a linear cascade with a nonmoving tip endwall, using a naphthalene sublimation technique. The effects of tip clearance (0.86–6.90% of chord) are investigated at various exit Reynolds numbers (4–7 × 10 5 ) and turbulence intensities (0.2 and 12.0%). The mass transfer on the tip surface is significant along its pressure edge at the smallest tip clearance. At the two largest tip clearances, the separation bubble on the tip surface can cover the whole width of the tip on the second half of the tip surface. The average mass-transfer rate is highest at a tip clearance of 1.72% of chord. The average mass-transfer rate on the tip surface is four and six times as high as on the suction and the pressure surface, respectively. A high mainstream turbulence level of 12.0% reduces average mass-transfer rates on the tip surface, while the higher mainstream Reynolds number generates higher local and average mass-transfer rates on the tip surface.« less

  19. Finite mass gravitating Yang monopoles

    SciTech Connect (OSTI)

    Cebeci, Hakan; Sarioglu, Oezguer; Tekin, Bayram

    2008-12-15

    We show that gravity cures the infrared divergence of the Yang monopole when a proper definition of conserved quantities in curved backgrounds is used, i.e. the gravitating Yang monopole in cosmological Einstein theory has a finite mass in generic even dimensions (including time). In addition, we find exact Yang-monopole type solutions in the cosmological Einstein-Gauss-Bonnet-Yang-Mills theory and briefly discuss their properties.

  20. MEASURING PROJECTOR

    DOE Patents [OSTI]

    Franck, J.V.; Broadhead, P.S.; Skiff, E.W.

    1959-07-14

    A semiautomatic measuring projector particularly adapted for measurement of the coordinates of photographic images of particle tracks as prcduced in a bubble or cloud chamber is presented. A viewing screen aids the operator in selecting a particle track for measurement. After approximate manual alignment, an image scanning system coupled to a servo control provides automatic exact alignment of a track image with a reference point. The apparatus can follow along a track with a continuous motion while recording coordinate data at various selected points along the track. The coordinate data is recorded on punched cards for subsequent computer calculation of particle trajectory, momentum, etc.

  1. Method for measuring multiple scattering corrections between liquid scintillators

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Verbeke, J. M.; Glenn, A. M.; Keefer, G. J.; Wurtz, R. E.

    2016-04-11

    In this study, a time-of-flight method is proposed to experimentally quantify the fractions of neutrons scattering between scintillators. An array of scintillators is characterized in terms of crosstalk with this method by measuring a californium source, for different neutron energy thresholds. The spectral information recorded by the scintillators can be used to estimate the fractions of neutrons multiple scattering. With the help of a correction to Feynman's point model theory to account for multiple scattering, these fractions can in turn improve the mass reconstruction of fissile materials under investigation.

  2. Proton Form Factors Measurements in the Time-Like Region

    SciTech Connect (OSTI)

    Anulli, F.; /Frascati

    2007-10-22

    I present an overview of the measurement of the proton form factors in the time-like region. BABAR has recently measured with great accuracy the e{sup +}e{sup -} {yields} p{bar p} reaction from production threshold up to an energy of {approx} 4.5 GeV, finding evidence for a ratio of the electric to magnetic form factor greater than unity, contrary to expectation. In agreement with previous measurements, BABAR confirmed the steep rise of the magnetic form factor close to the p{bar p} mass threshold, suggesting the possible presence of an under-threshold N{bar N} vector state. These and other open questions related to the nucleon form factors both in the time-like and space-like region, wait for more data with different experimental techniques to be possibly solved.

  3. Uranium Measurement Improvements at the Savannah River Technology Center

    SciTech Connect (OSTI)

    Shick, C. Jr.

    2002-02-13

    Uranium isotope ratio and isotope dilution methods by mass spectrometry are used to achieve sensitivity, precision and accuracy for various applications. This report presents recent progress made at SRTC in the analysis of minor isotopes of uranium. Comparison of routine measurements of NBL certified uranium (U005a) using the SRTC Three Stage Mass Spectrometer (3SMS) and the SRTC Single Stage Mass Spectrometer (SSMS). As expected, the three stage mass spectrometer yielded superior sensitivity, precision, and accuracy for this application.

  4. Measuring Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Activity SI Units and Prefixes Conversions Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Measurement Activity: How Much Is Present? The size or weight of a container or shipment does not indicate how much radioactivity is in it. The amount of radioactivity in a quantity of material can be determined by noting how many curies of the material are present. This information should be found on labels and/or shipping

  5. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project (BBOP)Measurements Related Links BBOP Home Outreach News & Press Backgrounder (PDF, 2.1MB) Images ARM flickr site ARM Data Discovery Browse Data Deployment Operations Airborne Measurements Science Plan (PDF, 2.2MB) BBOP wiki Login Required Data Sets Experiment Planning Proposal Abstract and Related Campaigns BBOP Breakout Session, ASR Science Team Meeting, March 2014 BBOP Breakout Session, ASR Science Team Meeting, March 2013 BNL BBOP Website Contacts Larry Kleinman, Lead Scientist

  6. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements Related Links RACORO Home AAF Home ARM Data Discovery Browse Data Post-Campaign Data Sets Data Guide (PDF, 1.4MB) Campaign Journal Flight Details Images ARM flickr site Deployment Operations Measurements Science & Operations Plan (PDF, 640K) SGP Data Plots RACORO wiki Login Required Experiment Planning Steering Committee Science Questions RACORO Proposal Abstract Full Proposal (PDF, 886K) Collaborations Meetings CLOWD Working Group News Discovery Channel Earth Live Blog News

  7. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements Related Links TCAP Home Outreach News & Press WCAI Interview with Dr. Berg (YouTube) Frequently Asked Questions Brochure Backgrounder (PDF, 1.5MB) AMF Poster, 2012 Images ARM flickr site ARM Data Discovery Browse Data Deployment Operations Data Sets Baseline Instruments and Data Plots at the Archive Airborne Measurements Airborne Data Sets Science Plan (PDF, 1.6 MB) G-1 Cabin Layout TCAP wiki Login Required Experiment Planning Proposal Abstract and Related Campaigns Poster at

  8. Isotopic mass-dependence of noble gas diffusion coefficients inwater

    SciTech Connect (OSTI)

    Bourg, I.C.; Sposito, G.

    2007-06-25

    Noble gas isotopes are used extensively as tracers inhydrologic and paleoclimatic studies. These applications requireknowledge of the isotopic mass (m) dependence of noble gas diffusioncoefficients in water (D), which has not been measured but is estimatedusing experimental D-values for the major isotopes along with an untestedrelationship from kinetic theory, D prop m-0.5. We applied moleculardynamics methods to determine the mass dependence of D for four noblegases at 298 K, finding that D prop m-beta with beta<0.2, whichrefutes the kinetic theory model underlying all currentapplications.

  9. Ambient aromatic hydrocarbon measurements at Welgegund, South Africa

    SciTech Connect (OSTI)

    Jaars, K.; Beukes, J. P.; van Zyl, P. G.; Venter, A. D.; Josipovic, M.; Pienaar, J. J.; Vakkari, Ville; Aaltonen, H.; Laakso, H.; Kulmala, M.; Tiitta, P.; Guenther, Alex B.; Hellen, H.; Laakso, L.; Hakola, H.

    2014-07-11

    Aromatic hydrocarbons are associated with direct adverse human health effects and can have negative impacts on ecosystems due to their toxicity, as well as indirect negative effects through the formation of tropospheric ozone and secondary organic aerosol that affect human health, crop production and regional climate. Measurements were conducted at the Welgegund measurement station (South Africa) that is considered to be a regionally representative background site. However, the site is occasionally impacted by plumes from major anthropogenic source regions in the interior of South Africa, which include the western Bushveld Igneous Complex (e.g. platinum, base metal and ferrochrome smelters), the eastern Bushveld Igneous Complex (platinum and ferrochrome smelters), the Johannesburg-Pretoria metropolitan conurbation (>10 million people), the Vaal Triangle (e.g. petrochemical and industries), the Mpumalanga Highveld (e.g. coal-fired power plants and petrochemical industry) and also a region of anti-cyclonic recirculation of air mass over the interior of South Africa. The aromatic hydrocarbon measurements were conducted with an automated sampler on Tenax-TA and Carbopack-B adsorbent tubes with heated inlet for one year. Samples were collected twice a week for two hours during daytime and two hours 1 during night-time. A thermal desorption unit, connected to a gas chromatograph and a mass 2 selective detector was used for sample preparation and analysis. Results indicated that the 3 monthly median total aromatic hydrocarbon concentrations ranged between 0.01 to 3.1 ppb. 4 Benzene levels did not exceed local air quality standards. Toluene was the most abundant 5 species, with an annual median concentration of 0.63 ppb. No statistically significant 6 differences in the concentrations measured during daytime and night-time were found and no distinct seasonal patterns were observed. Air mass back trajectory analysis proved that the lack of seasonal cycles could be

  10. Hot plasma associated with a coronal mass ejection

    SciTech Connect (OSTI)

    Landi, E. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Miralles, M. P.; Raymond, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Hara, H. [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2013-11-20

    We analyze coordinated observations from the EUV Imaging Spectrometer (EIS) and X-Ray Telescope (XRT) on board Hinode of an X-ray Plasma Ejection (XPE) that occurred during the coronal mass ejection (CME) event of 2008 April 9. The XPE was trailing the CME core from behind, following the same trajectory, and could be identified both in EIS and XRT observations. Using the EIS spectrometer, we have determined the XPE plasma parameters, measuring the electron density, thermal distribution, and elemental composition. We have found that the XPE composition and electron density were very similar to those of the pre-event active region plasma. The XPE temperature was higher, and its thermal distribution peaked at around 3 MK; also, typical flare lines were absent from EIS spectra, indicating that any XPE component with temperatures in excess of 5 MK was likely either faint or absent. We used XRT data to investigate the presence of hotter plasma components in the XPE that could have gone undetected by EIS and found thatif at all presentthese components have small emission measure values and their temperature is in the 8-12.5 MK range. The very hot plasma found in earlier XPE observations obtained by Yohkoh seems to be largely absent in this CME, although plasma ionization timescales may lead to non-equilibrium ionization effects that could make bright lines from ions formed in a 10 MK plasma not detectable by EIS. Our results supersede the XPE findings of Landi et al., who studied the same event with older response functions for the XRT Al-poly filter; the differences in the results stress the importance of using accurate filter response functions.

  11. In situ measurement system

    DOE Patents [OSTI]

    Lord, D.E.

    1980-11-24

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop hairpin configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. Measurement means are provided for obtaining for each pair the electrical resistance of each element and the difference in electrical resistance of the paired elements, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner means sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  12. Low floor mass transit vehicle

    DOE Patents [OSTI]

    Emmons, J. Bruce; Blessing, Leonard J.

    2004-02-03

    A mass transit vehicle includes a frame structure that provides an efficient and economical approach to providing a low floor bus. The inventive frame includes a stiff roof panel and a stiff floor panel. A plurality of generally vertical pillars extend between the roof and floor panels. A unique bracket arrangement is disclosed for connecting the pillars to the panels. Side panels are secured to the pillars and carry the shear stresses on the frame. A unique seating assembly that can be advantageously incorporated into the vehicle taking advantage of the load distributing features of the inventive frame is also disclosed.

  13. Ultrasonic differential measurement

    DOE Patents [OSTI]

    Rhodes, George W.; Migliori, Albert

    1995-01-01

    A method and apparatus for ultrasonic resonance testing of an object is shown and described. Acoustic vibrations are applied to an object at a plurality of frequencies. Measurements of the object's vibrational response are made simultaneously at different locations on said object. The input frequency is stepped by using small frequency changes over a predetermined range. There is a pause interval or ring delay which permits the object to reach a steady state resonance before a measurement is taken.

  14. Building America Technology Solutions for Existing Homes: Retrofit Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Embedded Wood Member in Insulated Mass Masonry Walls | Department of Energy Existing Homes: Retrofit Measures for Embedded Wood Member in Insulated Mass Masonry Walls Building America Technology Solutions for Existing Homes: Retrofit Measures for Embedded Wood Member in Insulated Mass Masonry Walls In this project, the Building Science Corporation team studied a historic brick building in Lawrence, Massachusetts, which is being renovated into 10 condominium units and adding insulation to

  15. Update on 2007 Diesel Particulate Measurement Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2007 Diesel Particulate Measurement Research Update on 2007 Diesel Particulate Measurement Research 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_shimpi.pdf (228.33 KB) More Documents & Publications Real-Time Measurement of Diesel Trap Efficiency Mass Correlation of Engine Emissions with Spectral Instruments Real-Time Particulate Mass Measurements Pre and Post Diesel Particulate Filters for LIght-Duty Diesel Vehicles

  16. Quantitative and qualitative measures of decomposition: Is there a link?

    SciTech Connect (OSTI)

    Eaton, Robert, J.; Sanchez, Felipe, G.

    2009-03-01

    Decomposition rates of loblolly pine coarse woody debris (CWD) were determined by mass loss and wood density changes for trees that differed in source of mortality (natural, girdle-poison, and felling). Specifically, three treatments were examined: (1) control (CON): natural mortality; (2) CD: 5-fold increase in CWD compared with the CON; and (3) CS: 12-fold increase in snags compared with the CON. The additional CWD in the CD treatment plots and the additional snags in the CS plots were achieved by felling (for the CD plots) or girdling followed by herbicide injection (for the CS plots) select trees in these plots. Consequently,mortality on the CD plots is due to natural causes and felling. Likewise, mortality on the CS plots is due to natural causes and girdle-poison. In each treatment plot, mortality due to natural causes was inventoried since 1997, whereas mortality due to girdle-poison and felling were inventoried since 2001. No significant difference was detected between the rates of decomposition for the CWD on these treatment plots, indicating that source of the tree mortality did not influence rates of decomposition once the tree fell. These experimental measures of decomposition were compared with two decay classification systems (three- and five-unit classifications) to determine linkages. Changes in wood density did not correlate to any decay classification, whereas mass loss had a weak correlation with decay class. However, the large degree of variation limits the utility of decay classification systems in estimating mass loss.

  17. NREL: Measurements and Characterization - Static Time-of-Flight Secondary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ion Mass Spectrometry (SIMS) Static Time-of-Flight Secondary Ion Mass Spectrometry (SIMS) Image of high mass resolution and mass accuracy provided by TOF SIMS We used the high mass resolution and mass accuracy of TOF SIMS to study surface cleanliness of in-oxide-coated glass after different types of isolation scribes and cleaning processes. Not all processes were equal. As-received in tin oxide was heavily contaminated with silicone oils (not shown). An acidic wash resulted in contamination

  18. Evidence for neutrino mass: A decade of discovery

    SciTech Connect (OSTI)

    Heeger, Karsten M.

    2004-12-08

    Neutrino mass and mixing are amongst the major discoveries of recent years. From the observation of flavor change in solar and atmospheric neutrino experiments to the measurements of neutrino mixing with terrestrial neutrinos, recent experiments have provided consistent and compelling evidence for the mixing of massive neutrinos. The discoveries at Super-Kamiokande, SNO, and KamLAND have solved the long-standing solar neutrino problem and demand that we make the first significant revision of the Standard Model in decades. Searches for neutrinoless double-beta decay probe the particle nature of neutrinos and continue to place limits on the effective mass of the neutrino. Possible signs of neutrinoless double-beta decay will stimulate neutrino mass searches in the next decade and beyond. I review the recent discoveries in neutrino physics and the current evidence for massive neutrinos.

  19. MassBioFuel | Open Energy Information

    Open Energy Info (EERE)

    MassBioFuel Jump to: navigation, search Name: MassBioFuel Address: 271 Milton Street Place: Dedham, Massachusetts Zip: 02026 Region: Greater Boston Area Sector: Biofuels Product:...

  20. Nonuniversal gaugino masses and muong-2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gogoladze, Ilia; Nasir, Fariha; Shafi, Qaisar; Ün, Cem Salih

    2014-08-11

    We consider two classes of supersymmetric models with nonuniversal gaugino masses at the grand unification scale MGUT in an attempt to resolve the apparent muon g-2 anomaly encountered in the Standard Model. We explore two distinct scenarios, one in which all gaugino masses have the same sign at MGUT, and a second case with opposite sign gaugino masses. The sfermion masses in both cases are assumed to be universal at MGUT. We exploit the nonuniversality among gaugino masses to realize large mass splitting between the colored and noncolored sfermions. Thus, the sleptons can have masses in the few hundred GeVmore » range, whereas the colored sparticles turn out to be an order of magnitude or so heavier. In both models the resolution of the muon g-2 anomaly is compatible, among other things, with a 125–126 GeV Higgs boson mass and the WMAP dark matter bounds.« less

  1. THE EFFECT OF MAGNETIC FIELDS AND AMBIPOLAR DIFFUSION ON CORE MASS FUNCTIONS

    SciTech Connect (OSTI)

    Bailey, Nicole D.; Basu, Shantanu E-mail: basu@uwo.ca

    2013-03-20

    Linear analysis of the formation of protostellar cores in planar magnetic interstellar clouds yields information about length scales involved in star formation. Combining these length scales with various distributions of other environmental variables (i.e., column density and mass-to-flux ratio) and applying Monte Carlo methods allow us to produce synthetic core mass functions (CMFs) for different environmental conditions. Our analysis shows that the shape of the CMF is directly dependent on the physical conditions of the cloud. Specifically, magnetic fields act to broaden the mass function and develop a high-mass tail while ambipolar diffusion will truncate this high-mass tail. In addition, we analyze the effect of small number statistics on the shape and high-mass slope of the synthetic CMFs. We find that observed CMFs are severely statistically limited, which has a profound effect on the derived slope for the high-mass tail.

  2. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    SciTech Connect (OSTI)

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  3. Derivative expansion at small mass for the spinor effective action

    SciTech Connect (OSTI)

    Dunne, Gerald V.; Huet, Adolfo; Hur, Jin; Min, Hyunsoo

    2011-05-15

    We study the small-mass limit of the one-loop spinor effective action, comparing the derivative expansion approximation with exact numerical results that are obtained from an extension to spinor theories of the partial-wave cutoff method. In this approach, one can compute numerically the renormalized one-loop effective action for radially separable gauge field background fields in spinor QED. We highlight an important difference between the small-mass limit of the derivative expansion for spinor and scalar theories.

  4. Unified spin gauge model and the top quark mass

    SciTech Connect (OSTI)

    Chisholm, J.S.R.; Farwell, R.S.

    1995-10-01

    Spin gauge models use a real Clifford algebraic structure R{sub p,q} associated with a real manifold of dimension p + q to describe the fundamental interactions of elementary particles. This review provides a comparison between those models and the standard model, indicating their similarities and differences. By contrast with the standard model, the spin gauge model based on R{sub 3,8} generates intermediate boson mass terms without the need to use the Higgs-Kibble mechanism and produces a precise prediction for the mass of the top quark. The potential of this model to account for exactly three families of fermions is considered.

  5. EXTENDING THE USEFUL LIFE OF OLDER MASS SPECTROMETERS

    SciTech Connect (OSTI)

    Johnson, S.; Cordaro, J.; Holland, M.; Jones, V.

    2010-06-17

    Thermal ionization and gas mass spectrometers are widely used across the Department of Energy (DOE) Complex and contractor laboratories. These instruments support critical missions, where high reliability and low measurement uncertainty are essential. A growing number of these mass spectrometers are significantly older than their original design life. The reality is that manufacturers have declared many of the instrument models obsolete, with direct replacement parts and service no longer available. Some of these obsolete models do not have a next generation, commercially available replacement. Today's budget conscious economy demands for the use of creative funds management. Therefore, the ability to refurbish (or upgrade) these valuable analytical tools and extending their useful life is a cost effective option. The Savannah River Site (SRS) has the proven expertise to breathe new life into older mass spectrometers, at a significant cost savings compared to the purchase and installation of new instruments. A twenty-seven year old Finnigan MAT-261{trademark} Thermal Ionization Mass Spectrometer (TIMS), located at the SRS F/H Area Production Support Laboratory, has been successfully refurbished. Engineers from the Savannah River National Laboratory (SRNL) fabricated and installed the new electronics. These engineers also provide continued instrument maintenance services. With electronic component drawings being DOE Property, other DOE Complex laboratories have the option to extend the life of their aged Mass Spectrometers.

  6. Quality Control Inspector: Different Programs, Different Responosibilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Control Inspector: Different Programs, Different ResponsibiliDes. A Guide to the JTA So& Skills. Inspects implementaDon of the program. þ þ Documents areas needing improvement in report. þ þ May assure homeowners/clients of follow---up work. ý þ Independent 3 rd party inspectors may be hired by an enDty not in a role to promise follow---up to clients or residents. Agency staff can and should assure clients of proper follow---up when appropriate. May address

  7. Measurements of the Influence of Acceleration and Temperature of Bodies on their Weight

    SciTech Connect (OSTI)

    Dmitriev, Alexander L.

    2008-01-21

    A brief review of experimental research of the influence of acceleration and temperatures of test mass upon gravitation force, executed between the 1990s and the beginning of 2000 at the St.-Petersburg State University of Information Technologies, Mechanics and Optics in cooperation with D. I. Mendeleev's Institute of Metrology is provided. According to a phenomenological notion, the acceleration of a test mass caused by external action, for example electromagnetic forces, results in changes of the gravitational properties of this mass. Consequences are a dependence upon gravity on the size and sign of test mass acceleration, and also on its absolute temperature. Results of weighing a rotor of a mechanical gyroscope with a horizontal axis, an anisotropic crystal with the big difference of the speed of longitudinal acoustic waves, measurements of temperature dependence of weight of metal bars of nonmagnetic materials, and also measurement of restitution coefficients at quasi-elastic impact of a steel ball about a massive plate are given. In particular, a reduction of apparent mass of a horizontal rotor with relative size 3.10{sup -6} at a speed of rotation of 18.6 thousand rev/min was observed. A negative temperature dependence of the weight of a brass core with relative size near 5.10{sup -4} K{sup -1} at room temperature was measured; this temperature factor was found to be a maximum for light and elastic metals. All observably experimental effects, have probably a general physical reason connected with the weight change dependent upon acceleration of a body or at thermal movement of its microparticles. The reduction of mass at high temperatures is of particular interest for propulsion applications.

  8. USB Mass Storage Device Manager

    Energy Science and Technology Software Center (OSTI)

    2004-06-17

    The USB probram is designed to give some level of control over the use of USB mass storage devices (MSDs). This program allows you to disable all USB MSDs from working on a machine or to configure specific devices for the machine as an administrator. For complete control over USB MSDs the user of the machine must belong to the 'User' group. If a MSD has already been configured on the machine it will continuemore » to function after using the 'Activate Administrator Control' function. The only way to disable previously configured devices is to use the 'Block' feature to block all MSDs from being used on the machine.« less

  9. Microscale ion trap mass spectrometer

    DOE Patents [OSTI]

    Ramsey, J. Michael; Witten, William B.; Kornienko, Oleg

    2002-01-01

    An ion trap for mass spectrometric chemical analysis of ions is delineated. The ion trap includes a central electrode having an aperture; a pair of insulators, each having an aperture; a pair of end cap electrodes, each having an aperture; a first electronic signal source coupled to the central electrode; a second electronic signal source coupled to the end cap electrodes. The central electrode, insulators, and end cap electrodes are united in a sandwich construction where their respective apertures are coaxially aligned and symmetric about an axis to form a partially enclosed cavity having an effective radius r.sub.0 and an effective length 2z.sub.0, wherein r.sub.0 and/or z.sub.0 are less than 1.0 mm, and a ratio z.sub.0 /r.sub.0 is greater than 0.83.

  10. Beyond single particle mass spectrometry: multidimensional characterisation of individual aerosol particles

    SciTech Connect (OSTI)

    Zelenyuk, Alla; Imre, D.

    2009-09-10

    The behavior of small aerosol particles depends on a number of their physical and chemical properties, many of which are strongly coupled. The size, internal composition, density, shape, morphology, hygroscopicity, index of refraction, activity as cloud condensation nuclei and ice nuclei, and other attributes of individual particles - all play a role in determining particle properties and their impacts. The traditional particle characterization approaches rely on separate parallel measurements that average over an ensemble of particles of different sizes and/or compositions and later attempt to draw correlations between them. As a result such studies overlook critical differences between particles and bulk and miss the fact that individual particles often exhibit major differences. Here we review the recently developed methods to simultaneously measure in-situ and in real time several of the attributes for individual particles using single particle mass spectrometer, SPLAT or its second generation SPLAT II. We also discuss novel approaches developed for classification, visualization and mining of large datasets produced by the multidimensional single particle characterization.

  11. Measurement of $\

    SciTech Connect (OSTI)

    Aguilar-Arevalo, A.A.; Anderson, C.E.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; Curioni, A.; /Yale U. /Columbia U.

    2010-10-01

    MiniBooNE reports the first absolute cross sections for neutral current single {pi}{sup 0} production on CH{sub 2} induced by neutrino and antineutrino interactions measured from the largest sets of NC {pi}{sup 0} events collected to date. The principal result consists of differential cross sections measured as functions of {pi}{sup 0} momentum and {pi}{sup 0} angle averaged over the neutrino flux at MiniBooNE. We find total cross sections of (4.76 {+-} 0.05{sub stat} {+-} 0.76{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at a mean energy of E{sub {nu}} = 808 MeV and (1.48 {+-} 0.05{sub stat} {+-} 0.23{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at a mean energy of E{sub {nu}} = 664 MeV for {nu}{sub {mu}} and {bar {nu}}{sub {mu}} induced production, respectively. In addition, we have included measurements of the neutrino and antineutrino total cross sections for incoherent exclusive NC 1{pi}{sup 0} production corrected for the effects of final state interactions to compare to prior results.

  12. Quark mass functions and pion structure in Minkowski space

    SciTech Connect (OSTI)

    Biernat, Elmer P.; Gross, Franz L.; Pena, Maria Teresa; Stadler, Alfred

    2014-03-01

    We present a study of the dressed quark mass function and the pion structure in Minkowski space using the Covariant Spectator Theory (CST). The quark propagators are dressed with the same kernel that describes the interaction between different quarks. We use an interaction kernel in momentum space that is a relativistic generalization of the linear confining q-qbar potential and a constant potential shift that defines the energy scale. The confining interaction has a Lorentz scalar part that is not chirally invariant by itself but decouples from the equations in the chiral limit and therefore allows the Nambu--Jona-Lasinio (NJL) mechanism to work. We adjust the parameters of our quark mass function calculated in Minkowski-space to agree with LQCD data obtained in Euclidean space. Results of a calculation of the pion electromagnetic form factor in the relativistic impulse approximation using the same mass function are presented and compared with experimental data.

  13. Symmetry Energy as a Function of Density and Mass

    SciTech Connect (OSTI)

    Danielewicz, Pawel; Lee, Jenny

    2007-10-26

    Energy in nuclear matter is, in practice, completely characterized at different densities and asymmetries, when the density dependencies of symmetry energy and of energy of symmetric matter are specified. The density dependence of the symmetry energy at subnormal densities produces mass dependence of nuclear symmetry coefficient and, thus, can be constrained by that latter dependence. We deduce values of the mass dependent symmetry coefficients, by using excitation energies to isobaric analog states. The coefficient systematic, for intermediate and high masses, is well described in terms of the symmetry coefficient values of a{sub a}{sup V} = (31.5-33.5) MeV for the volume coefficient and a{sub a}{sup S} = (9-12) MeV for the surface coefficient. These two further correspond to the parameter values describing density dependence of symmetry energy, of L{approx}95 MeV and K{sub sym}{approx}25 MeV.

  14. Initial experimental test of a helicon plasma based mass filter

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gueroult, R.; Evans, E. S.; Zweben, S. J.; Fisch, N. J.; Levinton, F.

    2016-05-12

    High throughput plasma mass separation requires rotation control in a high density multi-species plasmas. A preliminary mass separation device based on a helicon plasma operating in gas mixtures and featuring concentric biasable ring electrodes is introduced. Plasma profile shows strong response to electrode biasing. In light of floating potential measurements, the density response is interpreted as the consequence of a reshaping of the radial electric field in the plasma. This field can be made confining or de-confining depending on the imposed potential at the electrodes, in a way which is consistent with single particle orbit radial stability. In conclusion, concurrentmore » spatially resolved spectroscopic measurements suggest ion separation, with heavy to light ion emission line ratio increasing with radius when a specific potential gradient is applied to the electrodes.« less

  15. A compact permanent magnet cyclotrino for accelerator mass spectrometry

    SciTech Connect (OSTI)

    Young, A.T.; Clark, D.J.; Kunkel, W.B.; Leung, K.N.; Li, C.Y.

    1995-02-01

    The authors describe the development of a new instrument for the detection of trace amounts of rare isotopes, a Cyclotron Mass Spectrometer (CMS). A compact low energy cyclotron optimized for high mass resolution has been designed and has been fabricated. The instrument has high sensitivity and is designed to measure carbon-14 at abundances of < 10{sup {minus}12}. A novel feature of the instrument is the use of permanent magnets to energize the iron poles of the cyclotron. The instrument uses axial injection, employing a spiral inflector. The instrument has been assembled and preliminary measurements of the magnetic field show that it has a uniformity on the order of 2 parts in 10{sup 4}.

  16. Microelectromechanical dual-mass resonator structure

    DOE Patents [OSTI]

    Dyck, Christopher W.; Allen, James J.; Huber, Robert J.

    2002-01-01

    A dual-mass microelectromechanical (MEM) resonator structure is disclosed in which a first mass is suspended above a substrate and driven to move along a linear or curved path by a parallel-plate electrostatic actuator. A second mass, which is also suspended and coupled to the first mass by a plurality of springs is driven by motion of the first mass. Various modes of operation of the MEM structure are possible, including resonant and antiresonant modes, and a contacting mode. In each mode of operation, the motion induced in the second mass can be in the range of several microns up to more than 50 .mu.m while the first mass has a much smaller displacement on the order of one micron or less. The MEM structure has applications for forming microsensors that detect strain, acceleration, rotation or movement.

  17. Constraints for the progenitor masses of 17 historic core-collapse supernovae

    SciTech Connect (OSTI)

    Williams, Benjamin F.; Peterson, Skyler; Gilbert, Karoline; Dalcanton, Julianne J.; Murphy, Jeremiah; Dolphin, Andrew E.; Jennings, Zachary G. E-mail: peters8@uw.edu E-mail: jeremiah@physics.fsu.edu E-mail: dolphin@raytheon.com

    2014-08-20

    Using resolved stellar photometry measured from archival Hubble Space Telescope imaging, we generate color-magnitude diagrams of the stars within 50 pc of the locations of historic core-collapse supernovae (SNe) that took place in galaxies within 8 Mpc. We fit these color-magnitude distributions with stellar evolution models to determine the best-fit age distribution of the young population. We then translate these age distributions into probability distributions for the progenitor mass of each SN. The measurements are anchored by the main-sequence stars surrounding the event, making them less sensitive to assumptions about binarity, post-main-sequence evolution, or circumstellar dust. We demonstrate that, in cases where the literature contains masses that have been measured from direct imaging, our measurements are consistent with (but less precise than) these measurements. Using this technique, we constrain the progenitor masses of 17 historic SNe, 11 of which have no previous estimates from direct imaging. Our measurements still allow the possibility that all SN progenitor masses are <20 M {sub ☉}. However, the large uncertainties for the highest-mass progenitors also allow the possibility of no upper-mass cutoff.

  18. Halo-independent direct detection analyses without mass assumptions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2015-10-06

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the mχ – σn plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the vmin – g~ plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from vmin to nuclear recoil momentum (pR),more » the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call tilde h(pR). The entire family of conventional halo-independent tilde g~(vmin) plots for all DM masses are directly found from the single tilde h~(pR) plot through a simple rescaling of axes. By considering results in tildeh~(pR) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple tilde g~(vmin) plots for different DM masses. As a result, we conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.« less

  19. Halo-independent direct detection analyses without mass assumptions

    SciTech Connect (OSTI)

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2015-10-06

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the m{sub χ}−σ{sub n} plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the v{sub min}−g-tilde plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from v{sub min} to nuclear recoil momentum (p{sub R}), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call h-til-tilde(p{sub R}). The entire family of conventional halo-independent g-tilde(v{sub min}) plots for all DM masses are directly found from the single h-tilde(p{sub R}) plot through a simple rescaling of axes. By considering results in h-tilde(p{sub R}) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple g-tilde(v{sub min}) plots for different DM masses. We conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.

  20. Halo-independent direct detection analyses without mass assumptions

    SciTech Connect (OSTI)

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2015-10-06

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the mχ – σn plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the vmin – g~ plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from vmin to nuclear recoil momentum (pR), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call tilde h(pR). The entire family of conventional halo-independent tilde g~(vmin) plots for all DM masses are directly found from the single tilde h~(pR) plot through a simple rescaling of axes. By considering results in tildeh~(pR) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple tilde g~(vmin) plots for different DM masses. As a result, we conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.

  1. Testing X-ray measurements of galaxy cluster outskirts with cosmological simulations

    SciTech Connect (OSTI)

    Avestruz, Camille; Lau, Erwin T.; Nagai, Daisuke; Vikhlinin, Alexey

    2014-08-20

    The study of galaxy cluster outskirts has emerged as one of the new frontiers in extragalactic astrophysics and cosmology with the advent of new observations in X-ray and microwave. However, the thermodynamic properties and chemical enrichment of this diffuse and azimuthally asymmetric component of the intracluster medium (ICM) are still not well understood. This work, for the first time, systematically explores potential observational biases in these regions. To assess X-ray measurements of galaxy cluster properties at large radii (>R {sub 500c}), we use mock Chandra analyses of cosmological galaxy cluster simulations. The pipeline is identical to that used for Chandra observations, but the biases discussed in this paper are relevant for all X-ray observations outside of R {sub 500c}. We find the following from our analysis: (1) filament regions can contribute as much as 50% at R {sub 200c} to the emission measure; (2) X-ray temperatures and metal abundances from model fitted mock X-ray spectra in a multi-temperature ICM respectively vary to the level of 10% and 50%; (3) resulting density profiles vary to within 10% out to R {sub 200c}, and gas mass, total mass, and baryon fractions all vary to within a few percent; (4) the bias from a metal abundance extrapolated a factor of five higher than the true metal abundance results in total mass measurements biased high by 20% and total gas measurements biased low by 10%; and (5) differences in projection and dynamical state of a cluster can lead to gas density slope measurements that differ by a factor of 15% and 30%, respectively. The presented results can partially account for some of the recent gas profile measurements in cluster outskirts by, e.g., Suzaku. Our findings are pertinent to future X-ray cosmological constraints from cluster outskirts, which are least affected by non-gravitational gas physics, as well as to measurements probing gas properties in filamentary structures.

  2. Method and apparatus for measuring the state of charge in a battery based on volume of battery components

    DOE Patents [OSTI]

    Rouhani, S. Zia

    1996-10-22

    The state of charge of electrochemical batteries of different kinds is determined by measuring the incremental change in the total volume of the reactive masses in the battery. The invention is based on the principle that all electrochemical batteries, either primary or secondary (rechargeable), produce electricity through a chemical reaction with at least one electrode, and the chemical reactions produce certain changes in the composition and density of the electrode. The reactive masses of the electrodes, the electrolyte, and any separator or spacers are usually contained inside a battery casing of a certain volume. As the battery is used, or recharged, the specific volume of at least one of the electrode masses will change and, since the masses of the materials do not change considerably, the total volume occupied by at least one of the electrodes will change. These volume changes may be measured in many different ways and related to the state of charge in the battery. In one embodiment, the volume change can be measured by monitoring the small changes in one of the principal dimensions of the battery casing as it expands or shrinks to accommodate the combined volumes of its components.

  3. Enhancing Bottom-up and Top-down Proteomic Measurements with Ion Mobility Separations

    SciTech Connect (OSTI)

    Baker, Erin Shammel; Burnum-Johnson, Kristin E.; Ibrahim, Yehia M.; Orton, Daniel J.; Monroe, Matthew E.; Kelly, Ryan T.; Moore, Ronald J.; Zhang, Xing; Theberge, Roger; Costello, Catherine E; Smith, Richard D.

    2015-07-03

    Proteomic measurements with greater throughput, sensitivity and additional structural information enhance the in-depth characterization of complex mixtures and targeted studies with additional information and higher confidence. While liquid chromatography separation coupled with mass spectrometry (LC-MS) measurements have provided information on thousands of proteins in different sample types, the additional of another rapid separation stage providing structural information has many benefits for analyses. Technical advances in ion funnels and multiplexing have enabled ion mobility separations to be easily and effectively coupled with LC-MS proteomics to enhance the information content of measurements. Herein, we report on applications illustrating increased sensitivity, throughput, and structural information by utilizing IMS-MS and LC-IMS-MS measurements for both bottom-up and top-down proteomics measurements.

  4. Enhancing Bottom-up and Top-down Proteomic Measurements with Ion Mobility Separations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baker, Erin Shammel; Burnum-Johnson, Kristin E.; Ibrahim, Yehia M.; Orton, Daniel J.; Monroe, Matthew E.; Kelly, Ryan T.; Moore, Ronald J.; Zhang, Xing; Theberge, Roger; Costello, Catherine E.; et al

    2015-07-03

    Proteomic measurements with greater throughput, sensitivity and additional structural information enhance the in-depth characterization of complex mixtures and targeted studies with additional information and higher confidence. While liquid chromatography separation coupled with mass spectrometry (LC-MS) measurements have provided information on thousands of proteins in different sample types, the additional of another rapid separation stage providing structural information has many benefits for analyses. Technical advances in ion funnels and multiplexing have enabled ion mobility separations to be easily and effectively coupled with LC-MS proteomics to enhance the information content of measurements. Finally, herein, we report on applications illustrating increased sensitivity, throughput,more » and structural information by utilizing IMS-MS and LC-IMS-MS measurements for both bottom-up and top-down proteomics measurements.« less

  5. Mass production of magnetic nickel nanoparticle in thermal plasma reactor

    SciTech Connect (OSTI)

    Kanhe, Nilesh S.; Nawale, Ashok B.; Bhoraskar, S. V.; Mathe, V. L.; Das, A. K.

    2014-04-24

    We report the mass production of Ni metal nanoparticles using dc transferred arc thermal plasma reactor by homogeneous gas phase condensation process. To increase the evaporation rate and purity of Ni nanoparticles small amount of hydrogen added along with argon in the plasma. Crystal structure analysis was done by using X-ray diffraction technique. The morphology of as synthesized nanoparticles was carried out using FESEM images. The magnetic properties were measured by using vibrating sample magnetometer at room temperature.

  6. Ion source for high-precision mass spectrometry

    DOE Patents [OSTI]

    Todd, Peter J.; McKown, Henry S.; Smith, David H.

    1984-01-01

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit.

  7. Diagnostic Mass-Consistent Wind Field Monte Carlo Dispersion Model

    Energy Science and Technology Software Center (OSTI)

    1991-01-01

    MATHEW generates a diagnostic mass-consistent, three-dimensional wind field based on point measurements of wind speed and direction. It accounts for changes in topography within its calculational domain. The modeled wind field is used by the Langrangian ADPIC dispersion model. This code is designed to predict the atmospheric boundary layer transport and diffusion of neutrally bouyant, non-reactive species as well as first-order chemical reactions and radioactive decay (including daughter products).

  8. Ion source for high-precision mass spectrometry

    DOE Patents [OSTI]

    Todd, P.J.; McKown, H.S.; Smith, D.H.

    1982-04-26

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit. 2 figures, 3 tables.

  9. Herschel photometry of disks around low-mass stars in the R CrA cloud

    SciTech Connect (OSTI)

    Harvey, Paul M.; Henning, Thomas; Liu, Yao; Wolf, Sebastian E-mail: nje@astro.as.utexas.edu E-mail: yliu@pmo.ac.cn E-mail: yliu@pmo.ac.cn

    2014-11-01

    We report photometric results from a subset of a Herschel-PACS program to observe cool dust in disks around low-mass stars as a complement to our earlier program to measure far-infrared emission from brown dwarfs. In this latest study we observed five low-mass objects in the nearby R Corona Australis region and detected at least three at 70 μm. Using a Monte Carlo radiative transfer code we have investigated the disk masses and geometry based on detailed spectral energy distribution (SED) modeling, and we compare these new results to those from our earlier larger sample of brown dwarfs. In particular, our SED analysis for these five objects shows again that disk geometries of brown dwarfs or low-mass stars are generally similar to their higher mass counterparts like T Tauri disks, but the range of disk mass extends to well below the value found in T Tauri stars.

  10. Phase measurement system using a dithered clock

    DOE Patents [OSTI]

    Fairley, Christopher R.; Patterson, Steven R.

    1991-01-01

    A phase measurement system which measures the phase shift between two signals by dithering a clock signal and averaging a plurality of measurements of the phase differences between the two signals.

  11. Phase measurement system using a dithered clock

    DOE Patents [OSTI]

    Fairley, C.R.; Patterson, S.R.

    1991-05-28

    A phase measurement system is disclosed which measures the phase shift between two signals by dithering a clock signal and averaging a plurality of measurements of the phase differences between the two signals. 8 figures.

  12. Capacitance measuring device

    DOE Patents [OSTI]

    Andrews, W.H. Jr.

    1984-08-01

    A capacitance measuring circuit is provided in which an unknown capacitance is measured by comparing the charge stored in the unknown capacitor with that stored in a known capacitance. Equal and opposite voltages are repetitively simultaneously switched onto the capacitors through an electronic switch driven by a pulse generator to charge the capacitors during the ''on'' portion of the cycle. The stored charge is compared by summing discharge currents flowing through matched resistors at the input of a current sensor during the ''off'' portion of the switching cycle. The net current measured is thus proportional to the difference in value of the two capacitances. The circuit is capable of providing much needed accuracy and stability to a great variety of capacitance-based measurement devices at a relatively low cost.

  13. THE ZURICH ENVIRONMENTAL STUDY (ZENS) OF GALAXIES IN GROUPS ALONG THE COSMIC WEB. V. PROPERTIES AND FREQUENCY OF MERGING SATELLITES AND CENTRALS IN DIFFERENT ENVIRONMENTS

    SciTech Connect (OSTI)

    Pipino, A.; Cibinel, A.; Tacchella, S.; Carollo, C. M.; Lilly, S. J.; Miniati, F.; Silverman, J. D.; Van Gorkom, J. H.; Finoguenov, A.

    2014-12-20

    We use the Zurich Environmental Study database to investigate the environmental dependence of the merger fraction ? and merging galaxy properties in a sample of ?1300 group galaxies with M > 10{sup 9.2} M {sub ?} and 0.05 < z < 0.0585. In all galaxy mass bins investigated in our study, we find that ? decreases by a factor of ?2-3 in groups with halo masses M {sub HALO} > 10{sup 13.5} M {sub ?} relative to less massive systems, indicating a suppression of merger activity in large potential wells. In the fiducial case of relaxed groups only, we measure a variation of ??/?log (M {sub HALO}) ? 0.07 dex{sup 1}, which is almost independent of galaxy mass and merger stage. At galaxy masses >10{sup 10.2} M {sub ?}, most mergers are dry accretions of quenched satellites onto quenched centrals, leading to a strong increase of ? with decreasing group-centric distance at these mass scales. Both satellite and central galaxies in these high-mass mergers do not differ in color and structural properties from a control sample of nonmerging galaxies of equal mass and rank. At galaxy masses of <10{sup 10.2} M {sub ?} where we mostly probe satellite-satellite pairs and mergers between star-forming systems close pairs (projected distance <10-20 kpc) show instead ?2 enhanced (specific) star formation rates and ?1.5 larger sizes than similar mass, nonmerging satellites. The increase in both size and star formation rate leads to similar surface star formation densities in the merging and control-sample satellite populations.

  14. Coriolis Meters for Hydrogen Dispensing Measurement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coriolis Meters for Hydrogen Dispensing Measurement John Daly NA Lead Flow Specialist GE Measurement and Control Solutions Flow Technologies at GE MS Clamp-on Ultrasonic * Install on existing pipes * Low over cost of ownership * Focused on liquid but also for gas Wetted Ultrasonic * Higher accuracy * Difficult applications * Very low operational costs * Strong performance for liquid and gas Coriolis * Direct mass measurement * High accuracy over wide range * Liquid and Gas * Pipes up to 12"

  15. Effect of neutrino rest mass on ionization equilibrium freeze-out

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grohs, Evan Bradley; Fuller, George M.; Kishimoto, Chad T.; Paris, Mark W.

    2015-12-23

    We show how small neutrino rest masses can increase the expansion rate near the photon decoupling epoch in the early Universe, causing an earlier, higher temperature freeze-out for ionization equilibrium compared to the massless neutrino case. This yields a larger free-electron fraction, thereby affecting the photon diffusion length differently than the sound horizon at photon decoupling. This neutrino-mass and recombination effect depends strongly on the neutrino rest masses. Ultimately, though below current sensitivity, this effect could be probed by next-generation cosmic microwave background experiments, giving another observational handle on neutrino rest mass.

  16. Mercury Emission Measurement at a CFB Plant

    SciTech Connect (OSTI)

    John Pavlish; Jeffrey Thompson; Lucinda Hamre

    2009-02-28

    In response to pending regulation to control mercury emissions in the United States and Canada, several projects have been conducted to perform accurate mass balances at pulverized coal (pc)-fired utilities. Part of the mercury mass balance always includes total gaseous mercury as well as a determination of the speciation of the mercury emissions and a concentration bound to the particulate matter. This information then becomes useful in applying mercury control strategies, since the elemental mercury has traditionally been difficult to control by most technologies. In this instance, oxidation technologies have proven most beneficial for increased capture. Despite many years of mercury measurement and control projects at pc-fired units, far less work has been done on circulating fluidized-bed (CFB) units, which are able to combust a variety of feedstocks, including cofiring coal with biomass. Indeed, these units have proven to be more problematic because it is very difficult to obtain a reliable mercury mass balance. These units tend to have very different temperature profiles than pc-fired utility boilers. The flexibility of CFB units also tends to be an issue when a mercury balance is determined, since the mercury inputs to the system come from the bed material and a variety of fuels, which can have quite variable chemistry, especially for mercury. In addition, as an integral part of the CFB operation, the system employs a feedback loop to circulate the bed material through the combustor and the solids collection system (the primary cyclone), thereby subjecting particulate-bound metals to higher temperatures again. Despite these issues, CFB boilers generally emit very little mercury and show good native capture. The Energy & Environmental Research Center is carrying out this project for Metso Power in order to characterize the fate of mercury across the unit at Rosebud Plant, an industrial user of CFB technology from Metso. Appropriate solids were collected, and

  17. ON SUN-TO-EARTH PROPAGATION OF CORONAL MASS EJECTIONS

    SciTech Connect (OSTI)

    Liu, Ying D.; Luhmann, Janet G.; Moestl, Christian; Bale, Stuart D.; Lin, Robert P.; Lugaz, Noe; Davies, Jackie A.

    2013-05-20

    We investigate how coronal mass ejections (CMEs) propagate through, and interact with, the inner heliosphere between the Sun and Earth, a key question in CME research and space weather forecasting. CME Sun-to-Earth kinematics are constrained by combining wide-angle heliospheric imaging observations, interplanetary radio type II bursts, and in situ measurements from multiple vantage points. We select three events for this study, the 2012 January 19, 23, and March 7 CMEs. Different from previous event studies, this work attempts to create a general picture for CME Sun-to-Earth propagation and compare different techniques for determining CME interplanetary kinematics. Key results are obtained concerning CME Sun-to-Earth propagation: (1) the Sun-to-Earth propagation of fast CMEs can be approximately formulated into three phases: an impulsive acceleration, then a rapid deceleration, and finally a nearly constant speed propagation (or gradual deceleration); (2) the CMEs studied here are still accelerating even after the flare maximum, so energy must be continuously fed into the CME even after the time of the maximum heating and radiation has elapsed in the corona; (3) the rapid deceleration, presumably due to interactions with the ambient medium, mainly occurs over a relatively short timescale following the acceleration phase; and (4) CME-CME interactions seem a common phenomenon close to solar maximum. Our comparison between different techniques (and data sets) has important implications for CME observations and their interpretations: (1) for the current cases, triangulation assuming a compact CME geometry is more reliable than triangulation assuming a spherical front attached to the Sun for distances below 50-70 solar radii from the Sun, but beyond about 100 solar radii we would trust the latter more; (2) a proper treatment of CME geometry must be performed in determining CME Sun-to-Earth kinematics, especially when the CME propagation direction is far away from the

  18. W boson production and mass at the Tevatron

    SciTech Connect (OSTI)

    Stelzer-Chilton, Oliver; /Toronto U.

    2005-06-01

    The CDF and D0 collaborations have analyzed up to {approx} 200 pb{sup -1} of Run 2 physics data to measure W production properties such as the W cross section, the W width, lepton universality and the W charge asymmetry. From the cross section measurements, CDF obtains a lepton universality of g{sub {mu}}/g{sub e} = 0.998 {+-} 0.012 and g{sub {tau}}/g{sub e} = 0.99 {+-} 0.04 and an indirect W width of {Lambda}{sub W} = 2079 {+-} 41 MeV. D0 measured the W width directly and finds {Lambda}{sub W} = 2011 {+-} 142 MeV. CDF has estimated the uncertainties on the W boson mass measurements in the electron and muon decay channels and obtains an overall uncertainty of 76 MeV.

  19. An intercomparison of aircraft instrumentation for tropospheric measurements of sulfur dioxide

    SciTech Connect (OSTI)

    Gregory, G.L.; Davis, D.D.; Beltz, N.; Bandy, A.R.; Ferek, R.J.; Thornton, D.C. [NASA, Langely Research Center, Hampton, VA (United States)]|[Georgia Institute of Technology, Atlanta, GA (United States)]|[J.W. Goethe Univ., Frankfurt (Germany)]|[Drexel Univ., Philadelphia, PA (United States)]|[Univ. of Washington, Seattle, WA (United States)

    1993-12-01

    As part of the NASA Tropospheric Chemistry Program, a series of field intercomparisons have been conducted to evaluate the state-of-the art for measuring key tropospheric species. One of the objectives of the third intercomparison campaign in this series, Chemical Instrumentation Test and Evaluation 3 (CITE 3), was to evaluate instrumentation for making reliable tropospheric aircraft measurements of sulfur dioxide, dimethyl sulfide, hydrogen sulfide, carbon disulfide, and carbonyl sulfide. This paper reports the results of the intercomparisons of five sulfur dioxide measurement methods ranging from filter techniques, in which samples collected in flight are returned to the laboratory for analyses (chemiluminescent or ion chromatographic), to near real-time, in-flight measurements via gas chromatographic, mass spectrometric, and chemiluminescent techniques. All techniques showed some tendency to track sizeable changes in ambient SO2 such as those associated with altitude changes. For SO2 mixing ratios in the range of 200 pptv to a few ppbv, agreement among the techniques varies from about 30% to several orders of magnitude, depending upon the pair of measurements intercompared. For SO2 mixing ratios less than 200 pptv, measurements from the techniques are uncorrelated. In general, observed differences in the measurement of standards do not account for the flight results. The CITE 3 results do not unambiguously identify one or more of the measurement techniques as providing valid or invalid SO2 measurements, but identify the range of `potential` uncertainty in SO2 measurements reported by currently available instrumentation and as measured under realistic aircraft environments.

  20. Study of node and mass sensitivity of resonant mode based cantilevers with concentrated mass loading

    SciTech Connect (OSTI)

    Zhang, Kewei Chai, Yuesheng; Fu, Jiahui

    2015-12-15

    Resonant-mode based cantilevers are an important type of acoustic wave based mass-sensing devices. In this work, the governing vibration equation of a bi-layer resonant-mode based cantilever attached with concentrated mass is established by using a modal analysis method. The effects of resonance modes and mass loading conditions on nodes and mass sensitivity of the cantilever were theoretically studied. The results suggested that the node did not shift when concentrated mass was loaded on a specific position. Mass sensitivity of the cantilever was linearly proportional to the square of the point displacement at the mass loading position for all the resonance modes. For the first resonance mode, when mass loading position x{sub c} satisfied 0 < x{sub c} < ∼ 0.3l (l is the cantilever beam length and 0 represents the rigid end), mass sensitivity decreased as the mass increasing while the opposite trend was obtained when mass loading satisfied ∼0.3l ≤ x{sub c} ≤ l. Mass sensitivity did not change when concentrated mass was loaded at the rigid end. This work can provide scientific guidance to optimize the mass sensitivity of a resonant-mode based cantilever.