Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

BNL | Biomass Burns  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Burn Observation Project (BBOP) Biomass Burn Observation Project (BBOP) Aerosols from biomass burning are recognized to perturb Earth's climate through the direct effect (both scattering and absorption of incoming shortwave radiation), the semi-direct effect (evaporation of cloud drops due to absorbing aerosols), and indirect effects (by influencing cloud formation and precipitation. Biomass burning is an important aerosol source, providing an estimated 40% of anthropogenically influenced fine carbonaceous particles (Bond, et al., 2004; Andrea and Rosenfeld, 2008). Primary organic aerosol (POA) from open biomass burns and biofuel comprises the largest component of primary organic aerosol mass emissions at northern temperate latitudes (de Gouw and Jimenez, 2009). Data from the IMPROVE

2

Molecular Characterization of Nitrogen Containing Organic Compounds in Biomass Burning Aerosols Using High Resolution Mass Spectrometry  

DOE Green Energy (OSTI)

Although nitrogen-containing organic compounds (NOC) are important components of atmospheric aerosols, little is known about their chemical compositions. Here we present detailed characterization of the NOC constituents of biomass burning aerosol (BBA) samples using high resolution electrospray ionization mass spectrometry (ESI/MS). Accurate mass measurements combined with MS/MS fragmentation experiments of selected ions were used to assign molecular structures to individual NOC species. Our results indicate that N-heterocyclic alkaloid compounds - species naturally produced by plants and living organisms - comprise a substantial fraction of NOC in BBA samples collected from test burns of five biomass fuels. High abundance of alkaloids in test burns of ponderosa pine - a widespread tree in the western U.S. areas frequently affected by large scale fires - suggests that N-heterocyclic alkaloids in BBA can play a significant role in dry and wet deposition of fixed nitrogen in this region.

Laskin, Alexander; Smith, Jeffrey S.; Laskin, Julia

2009-05-13T23:59:59.000Z

3

5, 27912831, 2005 Biomass burning  

E-Print Network (OSTI)

ACPD 5, 2791­2831, 2005 Biomass burning emissions P. Guyon et al. Title Page Abstract Introduction measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia P. Guyon1 , G. Frank1. 2791 #12;ACPD 5, 2791­2831, 2005 Biomass burning emissions P. Guyon et al. Title Page Abstract

Paris-Sud XI, Université de

4

7, 1733917366, 2007 Biomass burning  

E-Print Network (OSTI)

ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

Paris-Sud XI, Université de

5

Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry  

DOE Green Energy (OSTI)

Chemical characterizations of atmospheric aerosols is a serious analytical challenge because of the complexity of particulate matter analyte composed of a large number of compounds with a wide range of molecular structures, physico-chemical properties, and reactivity. In this study chemical composition of biomass burning organic aerosol (BBOA) samples is characterized by high resolution electrospray ionization mass spectrometry (ESI/MS). Accurate mass measurement combined with Kendrick analysis allowed us to assign elemental composition for hundreds of compounds in the range of m/z values of 50-1000. ESI/MS spectra of different BBOA samples contain a variety of distinct, sample specific, characteristic peaks that can be used as unique markers for different types of biofuels. Our results indicate that a significant number of high-MW organic compounds in BBOA samples are highly oxidized polar species that can be efficiently detected using ESI/MS but are difficult to observe using the conventional GCMS analysis of aerosol samples. The average O:C ratios obtained for each of the BBOA samples studied in this work are in a strikingly good agreement with the previously reported values obtained using STXM/NEXAFS. The degree of unsaturation of detected organic compounds shows a clear decrease with increase in the molecular weight of the anyalyte molecules. The decrease is particularly pronounced for the samples containing a large number of CH2-based homologous series.

Smith, Jeffrey S.; Laskin, Alexander; Laskin, Julia

2009-02-13T23:59:59.000Z

6

Biomass Burning: A Driver for Global Change!  

Science Conference Proceedings (OSTI)

Biomass burning includes the burning of the world''s vegetation---forests, savannas, and agricultural lands---to clear the land and change its use. Only in the past decade have researchers realized the important contributions of biomass burning to the ...

Levine J. S.; III W. R. Cofer; Jr D. R. Cahoon; Winstead E. L.

1995-01-01T23:59:59.000Z

7

THE BURNING OF BIOMASS Economy, Environment, Health  

E-Print Network (OSTI)

THE BURNING OF BIOMASS Economy, Environment, Health Kees Kolff, MD, MPH April 21, 2012 #12;OUR #12;PT COGENERATION LLC A wood-burning cogeneration power plant - Generates electricity (for sale off paper making process, black and white liquor , sludge #12;SLASH BURNING Slash burned in 2008: Jefferson

8

TQ2. Global Biomass Burning What is the impact of global biomass burning on the terrestrial  

E-Print Network (OSTI)

TQ2. Global Biomass Burning What is the impact of global biomass burning on the terrestrial and land use. MODIS active fire detections 2000-2006 for Southern California 2001-2004 mean annual burned (bottom), expressed as fraction of grid cell that burns each year. From Giglio et al. (2005), Atmos. Chem

Christian, Eric

9

OLIGOMERIZATION OF LEVOGLUCOSAN IN PROXIES OF BIOMASS BURNING AEROSOLS.  

E-Print Network (OSTI)

??Biomass burning aerosols play an important role in the chemistry and physics of the atmosphere and therefore, affect global climate. Biomass burning aerosols are generally (more)

Holmes, Bryan J.

10

UNCORRECTED 2 Burning biodiversity: Woody biomass use by commercial  

E-Print Network (OSTI)

UNCORRECTED PROOF 2 Burning biodiversity: Woody biomass use by commercial 3 and subsistence groups as: Lisa Naughton-Treves et al., Burning biodiversity: Woody biomass use by commercial

Kammen, Daniel M.

11

ARM - Field Campaign - Biomass Burning Observation Project - BBOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsBiomass Burning Observation Project - BBOP govCampaignsBiomass Burning Observation Project - BBOP Campaign Links BNL BBOP Website ARM Aerial Facility Payload Science Plan Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Biomass Burning Observation Project - BBOP 2013.07.01 - 2013.10.24 Website : http://campaign.arm.gov/bbop/ Lead Scientist : Larry Kleinman For data sets, see below. Description This field campaign will address multiple uncertainties in aerosol intensive properties, which are poorly represented in climate models, by means of aircraft measurements in biomass burning plumes. Key topics to be investigated are: Aerosol mixing state and morphology Mass absorption coefficients (MACs) Chemical composition of non-refractory material associated with

12

Global observations of desert dust and biomass burning aerosols  

E-Print Network (OSTI)

Global observations of desert dust and biomass burning aerosols Martin de Graaf KNMI #12; Outline · Absorbing Aerosol Index - Theory · Absorbing Aerosol Index - Reality · Biomass burning.6 Biomass burning over Angola, 09 Sep. 2004 Absorbing Aerosol Index PMD image #12;biomass burning ocean

Graaf, Martin de

13

Reduction in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer  

Science Conference Proceedings (OSTI)

Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used are Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients reveal a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: 1. Shielding of inner monomers after particle consolidation or collapse with water uptake; 2. The contribution of mass transfer through evaporation and condensation at high relative humidity to the usual heat transfer pathway for energy release by laser heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

lewis, Kristen A.; Arnott, W. P.; Moosmuller, H.; Chakrabarti, Raj; Carrico, Christian M.; Kreidenweis, Sonia M.; Day, Derek E.; Malm, William C.; Laskin, Alexander; Jimenez, Jose L.; Ulbrich, Ingrid M.; Huffman, John A.; Onasch, Timothy B.; Trimborn, Achim; Liu, Li; Mishchenko, M.

2009-11-27T23:59:59.000Z

14

Biomass Burning Observation Project Specifically,  

NLE Websites -- All DOE Office Websites (Extended Search)

Burning Observation Project Burning Observation Project Specifically, the aircraft will obtain measurements of the microphysical, chemical, hygroscopic, and optical properties of aerosols. Data captured during BBOP will help scientists better understand how aerosols combine and change at a variety of distances and burn times. Locations Pasco, Washington. From July through September, the G-1 will be based out of its home base in Washington. From this location, it can intercept and measure smoke plumes from naturally occurring uncontrolled fires across Washington, Oregon, Idaho, Northern California, and Western Montana. Smoke plumes aged 0-5 hours are the primary targets for this phase of the campaign. Memphis, Tennessee. In October, the plane moves to Tennessee to sample prescribed

15

Correlations between Optical, Chemical and Physical Properties of Biomass Burn Aerosols  

E-Print Network (OSTI)

laboratory measurements of biomass-burning emissions: 1.tar balls: Particles from biomass and biofuel burning, J.Eleuterio (2005), A review of biomass burning emissions part

2008-01-01T23:59:59.000Z

16

Do biomass burning aerosols intensify drought in equatorial Asia during El Niño?  

E-Print Network (OSTI)

fication of drought-induced biomass burning in Indonesiavariability in global biomass burning emissions from 1997 toChemistry and Physics Do biomass burning aerosols intensify

Tosca, M. G; Randerson, J. T; Zender, C. S; Flanner, M. G; Rasch, P. J

2010-01-01T23:59:59.000Z

17

Do biomass burning aerosols intensify drought in equatorial Asia during El Niño?  

E-Print Network (OSTI)

of drought-induced biomass burning in Indonesia since 1960,variability in global biomass burning emissions from 1997 toand Physics Do biomass burning aerosols intensify drought in

Tosca, M. G; Randerson, J. T; Zender, C. S; Flanner, M. G; Rasch, P. J

2010-01-01T23:59:59.000Z

18

Biomass Burning and the Production of Greenhouse Gases  

Science Conference Proceedings (OSTI)

Biomass burning is a source of greenhouse gases, carbon dioxide, methane, and nitrous oxide. In addition, biomass burning is a source of chemically active gases, including carbon monoxide, nonmethane hydrocarbons, and nitric oxide. These gases, along ...

Levine J. S.

1994-01-01T23:59:59.000Z

19

In Situ Chemical Characterization of Aged Biomass-Burning Aerosols Impacting Cold Wave Clouds  

Science Conference Proceedings (OSTI)

During the Ice in Clouds ExperimentLayer Clouds (ICE-L), aged biomass-burning particles were identified within two orographic wave cloud regions over Wyoming using single-particle mass spectrometry and electron microscopy. Using a suite of ...

Kerri A. Pratt; Andrew J. Heymsfield; Cynthia H. Twohy; Shane M. Murphy; Paul J. DeMott; James G. Hudson; R. Subramanian; Zhien Wang; John H. Seinfeld; Kimberly A. Prather

2010-08-01T23:59:59.000Z

20

Biomass burning : particle emissions, characteristics, and airborne measurements.  

E-Print Network (OSTI)

??Biomass burning started to attract attention since the last decade because of its impacts on the atmosphere and the environmental air quality, as well as (more)

Wardoyo, Arinto Yudi

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Impact of biomass burning on the atmosphere  

DOE Green Energy (OSTI)

Fire has played an important part in biogeochemical cycling throughout most of the history of our planet. Ice core studies have been very beneficial in paleoclimate studies and constraining the budgets of biogeochemical cycles through the past 160,000 years of the Vostok ice core. Although to date there has been no way of determining cause and effect, concentration of greenhouse gases directly correlates with temperature in ice core analyses. Recent ice core studies on Greenland have shown that significant climate change can be very rapid on the order of a decade. This chapter addresses the coupled evolution of our planet`s atmospheric composition and biomass burning. Special attention is paid to the chemical and climatic impacts of biomass burning on the atmosphere throughout the last century, specifically looking at the cycles of carbon, nitrogen, and sulfur. Information from ice core measurements may be useful in understanding the history of fire and its historic affect on the composition of the atmosphere and climate.

Dignon, J.

1993-03-01T23:59:59.000Z

22

Tropical biomass burning smoke plume size, shape, reflectance, and age based on 2001??2009 MISR imagery of Borneo  

E-Print Network (OSTI)

C. S. Zender et al. : Tropical biomass burning smoke plumeslaboratory measurements of biomass-burning emis- sions: 1.aerosol optical depth biomass burning events: a comparison

Zender, C. S.; Krolewski, A. G.; Tosca, M. G.; Randerson, J. T.

2012-01-01T23:59:59.000Z

23

Physical and Chemical Characterization of Particulate and Gas phase Emissions from Biomass Burning  

E-Print Network (OSTI)

during the open combustion of biomass in the laboratory, J.J. R. , and Veres, P. : Biomass burning in Siberia andOpen burning of agricultural biomass: Physical and chemical

Hosseini, Seyedehsan

2012-01-01T23:59:59.000Z

24

Predictability of carbon emissions from biomass burning in Indonesia from 1997 to 2006  

E-Print Network (OSTI)

Predictability of carbon emissions from biomass burning in Indonesia from 1997 to 2006 Robert D biomass burning C emissions in Indonesia for 1997­2006, obtained from the Global Fire Emissions Database), Predictability of carbon emissions from biomass burning in Indonesia from 1997 to 2006, J. Geophys. Res., 113, G

Field, Robert

25

Biomass burning emission inventory with daily resolution: Application to aircraft observations of Asian outflow  

E-Print Network (OSTI)

Biomass burning emission inventory with daily resolution: Application to aircraft observations for biomass burning using AVHRR satellite observations of fire activity corrected for data gaps and scan angle biomass burning in SE Asia was a major contributor to the outflow of Asian pollution observed in TRACE

Palmer, Paul

26

Evolution of biomass burning aerosol properties from an agricultural fire in southern Africa  

E-Print Network (OSTI)

Evolution of biomass burning aerosol properties from an agricultural fire in southern Africa Steven Met Office C-130 within a distinct biomass burning plume during the Southern AFricAn Regional science, and P. R. Buseck, Evolution of biomass burning aerosol properties from an agricultural fire in southern

Highwood, Ellie

27

Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2  

E-Print Network (OSTI)

1 Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2 Naoko effects of biomass burning aerosols from Southern African fires9 during July-October are investigated region the overall TOA radiative effect from the23 biomass burning aerosols is almost zero due

Wood, Robert

28

Direct and semidirect aerosol effects of southern African biomass burning aerosol  

E-Print Network (OSTI)

Direct and semidirect aerosol effects of southern African biomass burning aerosol Naoko Sakaeda,1 2011; published 21 June 2011. [1] Direct and semidirect radiative effects of biomass burning aerosols static stability. Over the entire region the overall TOA radiative effect from the biomass burning

Wood, Robert

29

Airborne measurements of carbonaceous aerosols in southern Africa during the dry, biomass burning season  

DOE Green Energy (OSTI)

Particulate matter collected aboard the University of Washington's Convair-580 research aircraft over southern Africa during the dry, biomass burning season was analyzed for total carbon, organic carbon, and black carbon contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the total carbon collected. Consequently, conclusions derived from the data are greatly dependent on whether or not organic carbon concentrations are corrected for this artifact. For example, the estimated aerosol co-albedo (1 - single scattering albedo), which is a measure of aerosol absorption, of the biomass smoke samples is 60 percent larger using corrected organic carbon concentrations. Thus, the corrected data imply that the biomass smoke is 60 percent more absorbing than do the uncorrected data. The black carbon to (corrected) organic carbon mass ratio (BC/OC) of smoke plume samples (0.18/2610.06) is lower than that of samples collected in the regional haze (0.25/2610.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three-quarters of the aerosol burden in the regional haze, while other sources (e.g., fossil fuel burning) contribute the remainder.

Kirchstetter, Thomas W.; Novakov, T.; Hobbs, Peter V.; Magi, Brian

2002-06-17T23:59:59.000Z

30

Case Study of Water-Soluble Metal Containing Organic Constituents of Biomass Burning Aerosol  

DOE Green Energy (OSTI)

Natural and prescribed biomass fires are a major source of atmospheric aerosols that can persist in the atmosphere for long periods of time. Biomass burning aerosols (BBA) can be associated with long range transport of water soluble N?, S?, P?, and metal?containing species. In this study, BBA samples were collected using a particle?into?liquid sampler (PILS) from laboratory burns of vegetation collected on military bases in the southeastern and southwestern United States. The samples were then analyzed using high resolution electrospray ionization mass spectrometry (ESI/HR?MS) that enabled accurate mass measurements for hundreds of species with m/z values between 70 and 1000 and assignment of probable elemental formulae. Mg, Al, Ca, Cr, Mn, Fe, Ni, Cu, Zn, and Ba?containing organometallic species were identified. The results suggest that the biomass may have accumulated metal?containing species that were reemitted during biomass burning. Further research into the sources, persistence, and dispersion of metal?containing aerosols as well as their environmental effects is needed.

Chang-Graham, Alexandra L.; Profeta, Luisa Tm; Johnson, Timothy J.; Yokelson, Robert J.; Laskin, Alexander; Laskin, Julia

2011-01-10T23:59:59.000Z

31

BIOMASS BURNING IN THE AMAZON: LINKS BETWEEN BURNING, SCIAMACHY TRACE GASES, AND AEROSOL AND SURFACE PROPERTIES FROM THE ORAC-AATSR RETRIEVAL  

E-Print Network (OSTI)

BIOMASS BURNING IN THE AMAZON: LINKS BETWEEN BURNING, SCIAMACHY TRACE GASES, AND AEROSOL@atm.ox.ac.uk AEROSOL AND GAS PROPERTIESSEASONALITY OF BURNING Biomass burning in the Amazon shows strong seasonal counts are generally highest up to 3 months after the burning of ground. ACKNOWLEDGEMENTS ESA

32

Biogenic and biomass burning sources of acetone to the troposphere  

DOE Green Energy (OSTI)

Acetone may be an important source of reactive odd hydrogen in the upper troposphere and lower stratosphere. This source of odd hydrogen may affect the concentration of a number of species, including ozone, nitrogen oxides, methane, and others. Traditional, acetone had been considered a by-product of the photochemical oxidation of other species, and had not entered models as a primary emission. However, recent work estimates a global source term of 40-60 Tg acetone/year. Of this, 25% is directly emitted during biomass burning, and 20% is directly emitted by evergreens and other plants. Only 3% is due to anthropogenic/industrial emissions. The bulk of the remainder, 51% of the acetone source, is a secondary product from the oxidation of propane, isobutane, and isobutene. Also, while it is speculated that the oxidation of pinene (a biogenic emission) may also contribute about 6 Tg/year, this term is highly uncertain. Thus, the two largest primary sources of acetone are biogenic emission and biomass burning, with industrial/anthropogenic emissions very small in comparison.

Atherton, C.S.

1997-04-01T23:59:59.000Z

33

Biomass burning sources of nitrogen oxides, carbon monoxide, and non-methane hydrocarbons  

SciTech Connect

Biomass burning is an important source of many key tropospheric species, including aerosols, carbon dioxide (CO{sub 2}), nitrogen oxides (NO{sub {times}}=NO+NO{sub 2}), carbon monoxide (CO), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), methyl bromide (CH{sub 3}Br), ammonia (NH{sub 3}), non-methane hydrocarbons (NMHCs) and other species. These emissions and their subsequent products act as pollutants and affect greenhouse warming of the atmosphere. One important by-product of biomass burning is tropospheric ozone, which is a pollutant that also absorbs infrared radiation. Ozone is formed when CO, CH{sub 4}, and NMHCs react in the presence of NO{sub {times}} and sunlight. Ozone concentrations in tropical regions (where the bulk of biomass burning occurs) may increase due to biomass burning. Additionally, biomass burning can increase the concentration of nitric acid (HNO{sub 3}), a key component of acid rain.

Atherton, C.S.

1995-11-01T23:59:59.000Z

34

Emission and transport of cesium-137 from boreal biomass burning in the summer of 2010  

SciTech Connect

While atmospheric concentrations of cesium-137 have decreased since the nuclear testing era, resuspension of Cs-137 during biomass burning provides an ongoing emission source. The summer of 2010 was an intense biomass burning season in western Russia, with high levels of particulate matter impacting air quality and visibility. A radionuclide monitoring station in western Russia shows enhanced airborne Cs-137 concentrations during the wildfire period. Since Cs-137 binds to aerosols, satellite observations of aerosols and fire occurrences can provide a global-scale context for Cs-137 emissions and transport during biomass burning events.

Strode, S.; Ott, Lesley E.; Pawson, Steven; Bowyer, Ted W.

2012-05-09T23:59:59.000Z

35

Climate effects of seasonally varying Biomass Burning emitted Carbonaceous Aerosols (BBCA)  

E-Print Network (OSTI)

The climate impact of the seasonality of Biomass Burning emitted Carbonaceous Aerosols (BBCA) is studied using an aerosol-climate model coupled with a slab ocean model in a set of 60-year long simulations, driven by BBCA ...

Jeong, Gill-Ran

36

Estimation of Shortwave Direct Radiative Forcing of Biomass-Burning Aerosols Using New Angular Models  

Science Conference Proceedings (OSTI)

Using a new angular distribution model (ADM) for smoke aerosols, the instantaneous top-of-atmosphere (TOA) shortwave aerosol radiative forcing (SWARF) is calculated for selected days over biomass-burning regions in South America. The visible and ...

Xiang Li; Sundar A. Christopher; Joyce Chou; Ronald M. Welch

2000-12-01T23:59:59.000Z

37

Fossil Fuel and Biomass Burning Effect on ClimateHeating or Cooling?  

Science Conference Proceedings (OSTI)

Emission from burning of fossil fuels and biomass (associated with deforestation) generates a radiative forcing on the atmosphere and a possible climate chaw. Emitted trace gases heat the atmosphere through their greenhouse effect, while ...

Yoram J. Kaufman; Robert S. Fraser; Robert L. Mahoney

1991-06-01T23:59:59.000Z

38

Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods  

E-Print Network (OSTI)

from Smoldering Biomass Combustion. Atmos. Chem. Phys. , 10,aerosols emitted during biomass combustion [Robinson et al.burning samples. Combustion of biomass produces EC a and

Soto-Garcia, Lydia L.

2012-01-01T23:59:59.000Z

39

Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME, SCIAMACHY, and GOME-2  

E-Print Network (OSTI)

Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME burning events. It is found that the regional AAI data follow the regional tropospheric NO2 data well sensitive to desert dust aerosols (DDA) and biomass burning aerosols (BBA). See Figure 1. The AAI

Tilstra, Gijsbert

40

Biomass burning in Asia : annual and seasonal estimates and atmospheric emissions.  

DOE Green Energy (OSTI)

Estimates of biomass burning in Asia are developed to facilitate the modeling of Asian and global air quality. A survey of national, regional, and international publications on biomass burning is conducted to yield consensus estimates of 'typical' (i.e., non-year-specific) estimates of open burning (excluding biofuels). We conclude that 730 Tg of biomass are burned in a typical year from both anthropogenic and natural causes. Forest burning comprises 45% of the total, the burning of crop residues in the field comprises 34%, and 20% comes from the burning of grassland and savanna. China contributes 25% of the total, India 18%, Indonesia 13%, and Myanmar 8%. Regionally, forest burning in Southeast Asia dominates. National, annual totals are converted to daily and monthly estimates at 1{sup o} x 1{sup o} spatial resolution using distributions based on AVHRR fire counts for 1999--2000. Several adjustment schemes are applied to correct for the deficiencies of AVHRR data, including the use of moving averages, normalization, TOMS Aerosol Index, and masks for dust, clouds, landcover, and other fire sources. Good agreement between the national estimates of biomass burning and adjusted fire counts is obtained (R{sup 2} = 0.71--0.78). Biomass burning amounts are converted to atmospheric emissions, yielding the following estimates: 0.37 Tg of SO{sub 2}, 2.8 Tg of NO{sub x}, 1100 Tg of CO{sub 2}, 67 Tg of CO, 3.1 Tg of CH{sub 4}, 12 Tg of NMVOC, 0.45 Tg of BC, 3.3 Tg of OC, and 0.92 Tg of NH{sub 3}. Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of {+-}65% for CO{sub 2} emissions in Japan to a high of {+-}700% for BC emissions in India.

Streets, D. G.; Yarber, K. F.; Woo, J.-H.; Carmichael, G. R.; Decision and Information Sciences; Univ. of Iowa

2003-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods  

E-Print Network (OSTI)

Tar Balls from Smoldering Biomass Combustion. Atmos. Chem.gases and particles from biomass burning in Brazil, J. Ge-for smoke from African biomass burning, J. Geophys. Res. ,

Soto-Garcia, Lydia L.

2012-01-01T23:59:59.000Z

42

1 Characterization of carbonaceous aerosols outflow from India and 2 Arabia: Biomass/biofuel burning and fossil fuel combustion  

E-Print Network (OSTI)

1 Characterization of carbonaceous aerosols outflow from India and 2 Arabia: Biomass/biofuel tracer for biomass/biofuel burning, 16 number concentration of submicrometer carbon-containing particles and biomass/biofuel 22 burning are subject to long-range transport, thereby contributing to anthropogenic 23

Dickerson, Russell R.

43

Case study analysis of biomass burning plumes observed over Brazil during SAMBBA, September 2012  

Science Conference Proceedings (OSTI)

Biomass burning is a huge source of atmospheric aerosols and is poorly understood leading to large uncertainties in estimates of radiative forcing of climate. Aerosols have both a direct effect on climate by reflecting and absorbing solar radiation and an indirect effect by acting as cloud condensation nuclei (CCN) and ice nuclei (IN). Biomass burning aerosols are produced from burning of vegetation with the vast majority occurring in the tropics. This research presents data collected during the aircraft campaign of the South American Biomass Burning Analysis (SAMBBA) project during September and October 2012. A smouldering rainforest fire and a flaming savannah-like fire were selected for in-depth case studies of the atmospheric plume constituents and provide a comparison between the two fire types. The physiochemical characterization of the two plumes are identified

2013-01-01T23:59:59.000Z

44

Kleinman 2013 Biomass Burn Plan B.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

if There are Few Fires? if There are Few Fires? Fire Plan Major focus is to sample fires in near-field where there are rapid changes, with a particular emphasis on soot, brown carbon, and SOA This includes sampling other sources for contrast Urban, Long range transport Plan B Same instruments can be used for multiple purposes Year to Year Burn Variability Fire Data from FINN version 1.0, courtesy of Christine Wiedinmyer Areas are ~ 1000 km by 1000 km centered on Pasco, WA and Little Rock, AK Year to year variability in Monthly Fire Emissions ~ factor of 10. Year to Year Burn Variability Fire Data from FINN version 1.0, courtesy of Christine Wiedinmyer Large year to year variability in Fire Counts Sometimes, 2 week periods between fire activity Other Soot/Brown Carbon Sources

45

The relationships between biomass burning, land-cover/use change, and the distribution of carbonaceous aerosols in mainland Southeast Asia: A review and synthesis  

E-Print Network (OSTI)

1 The relationships between biomass burning, land-cover/use change, and the distribution. 793, The Ohio State University March 3, 2007 Biomass burning is a major source of black carbon directly and indirectly. Uncertainty regarding the contribution of biomass burning to the concentration

Shi, Tao

46

Surface Area, Volume, Mass, and Density Distributions for Sized Biomass Particles  

DOE Green Energy (OSTI)

This final technical report describes work performed at Morehouse College under DOE Grant No. DE-FC26-04NT42130 during the period July 01, 2004 to June 30, 2007 which covers the entire performance period of the project. 25 individual biomass particles (hardwood sawdust AI14546 in the size range of 100-200 microns) were levitated in an electrodynamic balance (EDB) and their external surface area, volume, and drag coefficient/mass (C{sub d}/m) ratios were characterized applying highly specialized video based and high-speed diode array imaging systems. Analysis methods were employed using shape and drag information to calculate mass and density distributions for these particles. Results of these measurements and analyses were validated by independent mass measurements using a particle weighing and counting technique. Similar information for 28 PSOC 1451D bituminous coal particles was retrieved from a previously published work. Using these two information, density correlations for coal/biomass blends were developed. These correlations can be used to estimate the density of the blend knowing either the volume fraction or the mass fraction of coal in the blend. The density correlations presented here will be useful in predicting the burning rate of coal/biomass blends in cofiring combustors. Finally, a discussion on technological impacts and economic projections of burning biomass with coal in US power plants is presented.

Ramanathan Sampath

2007-06-30T23:59:59.000Z

47

The Short-Term Cooling but Long-Term Global Warming Due to Biomass Burning  

Science Conference Proceedings (OSTI)

Biomass burning releases gases (e.g., CO2, CO, CH4, NOx, SO2, C2H6, C2H4, C3H8, C3H6) and aerosol particle components (e.g., black carbon, organic matter, K+, Na+, Ca2+, Mg2+, NH4+, H+, Cl?, H2SO4, HSO4?, SO42?, NO3?). To date, the global-scale climate response of ...

Mark Z. Jacobson

2004-08-01T23:59:59.000Z

48

Formation of ozone and growth of aerosols in young smoke plumes from biomass burning: 1. Lagrangian parcel studies  

E-Print Network (OSTI)

We have developed a new model of the gas- and aerosol-phase chemistry of biomass burning smoke plumes called Aerosol Simulation Program (ASP). Here we use ASP combined with a Lagrangian parcel model to simulate the chemistry ...

Alvarado, Matthew James

49

The 1985 Biomass Burning Season in South America: Satellite Remote Sensing of Fires, Smoke, and Regional Radiative Energy Budgets  

Science Conference Proceedings (OSTI)

Using satellite imagery, more than five million square kilometers of the forest and cerrado regions over South America are extensively studied to monitor fires and smoke during the 1985 biomass burning season. The results are characterized for ...

Sundar A. Christopher; Min Wang; Todd A. Berendes; Ronald M. Welch; Shi-Keng Yang

1998-07-01T23:59:59.000Z

50

PULSATIONS IN HYDROGEN BURNING LOW-MASS HELIUM WHITE DWARFS  

SciTech Connect

Helium core white dwarfs (WDs) with mass M {approx}< 0.20 M {sub sun} undergo several Gyr of stable hydrogen burning as they evolve. We show that in a certain range of WD and hydrogen envelope masses, these WDs may exhibit g-mode pulsations similar to their passively cooling, more massive carbon/oxygen core counterparts, the ZZ Cetis. Our models with stably burning hydrogen envelopes on helium cores yield g-mode periods and period spacings longer than the canonical ZZ Cetis by nearly a factor of 2. We show that core composition and structure can be probed using seismology since the g-mode eigenfunctions predominantly reside in the helium core. Though we have not carried out a fully nonadiabatic stability analysis, the scaling of the thermal time in the convective zone with surface gravity highlights several low-mass helium WDs that should be observed in search of pulsations: NLTT 11748, SDSS J0822+2753, and the companion to PSR J1012+5307. Seismological studies of these He core WDs may prove especially fruitful, as their luminosity is related (via stable hydrogen burning) to the hydrogen envelope mass, which eliminates one model parameter.

Steinfadt, Justin D. R. [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States); Bildsten, Lars [Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States); Arras, Phil, E-mail: jdrs@physics.ucsb.ed, E-mail: bildsten@kitp.ucsb.ed, E-mail: arras@virginia.ed [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States)

2010-07-20T23:59:59.000Z

51

Workshop: Novas Abordagens para Monitorar a Queima de Biomassa (New Approaches to Monitor Biomass Burning) Coordenador: Emilio Chuvieco (University of Alcal, Spain)  

E-Print Network (OSTI)

Workshop: Novas Abordagens para Monitorar a Queima de Biomassa (New Approaches to Monitor Biomass relevant topics associated to monitoring biomass burnings from satellite data, both at global and regional scales. Hora Título das Palestras Apresentador 9:00 Opening 9:10 Global Monitoring of Biomass Burning

52

Measurements of aerosol properties from aircraft, satellite and ground-based remote sensing: a case-study from the Dust and Biomass-burning Experiment (DABEX)  

DOE Green Energy (OSTI)

Measurements of aerosol properties from aircraft, satellite and ground-based remote sensing: A case study from the Dust and Biomass burning Experiment (DABEX)

Johnson, B. T.; Christopher, S.; Haywood, J.; Osborne, S. R.; McFarlane, Sally; Hsu, C.; Salustro, C.; Kahn, Ralph

2009-04-28T23:59:59.000Z

53

Mass burning rate of premixed stretched flames: integral analysis versus large activation energy asymptotics  

E-Print Network (OSTI)

Mass burning rate of premixed stretched flames: integral analysis versus large activation energy, The Netherlands Abstract. New expressions for the mass burning rate are derived from a recently introduced burning rate. The consequences for experimental and numerical studies are investigated. Keywords: premixed

Eindhoven, Technische Universiteit

54

Inclusion of biomass burning in WRF-Chem: Impact of wildfires on weather forecasts  

Science Conference Proceedings (OSTI)

A plume rise algorithm for wildfires was included in WRF-Chem, and applied to look at the impact of intense wildfires during the 2004 Alaska wildfire season on weather forecasts using model resolutions of 10km and 2km. Biomass burning emissions were estimated using a biomass burning emissions model. In addition, a 1-D, time-dependent cloud model was used online in WRF-Chem to estimate injection heights as well as the final emission rates. It was shown that with the inclusion of the intense wildfires of the 2004 fire season in the model simulations, the interaction of the aerosols with the atmospheric radiation led to significant modifications of vertical profiles of temperature and moisture in cloud-free areas. On the other hand, when clouds were present, the high concentrations of fine aerosol (PM2.5) and the resulting large numbers of Cloud Condensation Nuclei (CCN) had a strong impact on clouds and microphysics, with decreased precipitation coverage and precipitation amounts during the first 12 hours of the integration, but significantly stronger storms during the afternoon hours.

Grell, G. A.; Freitas, Saulo; Stuefer, Martin; Fast, Jerome D.

2011-06-06T23:59:59.000Z

55

Direct and semidirect aerosol effects of Southern African biomass burning aerosol  

Science Conference Proceedings (OSTI)

The direct and semi-direct radiative effects of biomass burning aerosols from Southern African fires during July-October are investigated using 20 year runs of the Community Atmospheric Model (CAM) coupled to a slab ocean model. The aerosol optical depth is constrained using observations in clear skies from MODIS and for aerosol layers above clouds from CALIPSO. Over the ocean, where the absorbing biomass burning aerosol layers are primarily located above cloud, negative top of atmosphere (TOA) semi-direct radiative effects associated with increased low cloud cover dominate over a weaker positive all-sky direct radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers, reductions in cloud liquid water path (LWP) lead to a positive semi-direct radiative effect that dominates over a near-zero DRE. Over the ocean, the cloud response can be understood as a response to increased lower tropospheric stability (LTS) which is caused both by aerosol absorptive warming in overlying layers and surface cooling in response to direct aerosol forcing. The ocean cloud changes are robust to changes in the cloud parameterization (removal of the hard-wired dependence of clouds on LTS), suggesting that they are physically realistic. Over land where cloud cover changes are minimal, decreased LWP is consistent with weaker convection driven by increased static stability. Over the entire region the overall TOA radiative effect from the biomass burning aerosols is almost zero due to opposing effects over the land and ocean. However, the surface forcing is strongly negative requiring a reduction in precipitation. This is primarily realized through reductions in convective precipitation on both the southern and northern flanks of the convective precipitation region spanning the equatorial rainforest and the ITCZ in the southern Sahel. The changes are consistent with the low-level aerosol forced cooling pattern. The results highlight the importance of semi-direct radiative effects and precipitation responses for determining the climatic effects of aerosols in the African region.

Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.

2011-06-21T23:59:59.000Z

56

Biomass burning and the production of greenhouse gases, in Climate Biosphere Interaction: Biogenic Emissions and the Environmental Effects of Climate Change, edited by  

E-Print Network (OSTI)

Biomass burning is a source of greenhouse gases, carbon dioxide, methane, and nitrous oxide. In addition, biomass burning is a source of chemically active gases, including carbon monoxide, nonmethane hydrocarbons, and nitric oxide. These gases, along with methane, lead to the chemical production of tropospheric ozone (another greenhouse gas) as well as control the concentration of the

Joel S. Levine

1994-01-01T23:59:59.000Z

57

DOE/SC-ARM-13-014 Biomass Burning Observation Project Science  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Biomass Burning Observation Project Science Plan LI Kleinman AJ Sedlacek September 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and

58

An Infrared Spectral Database for Detection of Gases Emitted by Biomass Burning  

DOE Green Energy (OSTI)

We report the construction of a database of infrared spectra aimed at detecting the gases emitted by biomass burning (BB). The project uses many of the methods of the Pacific Northwest National Laboratory (PNNL) infrared database, but the selection of the species and special experimental considerations are optimized. Each spectrum is a weighted average derived from 10 or more individual measurements. Each composite has a spectral range from ? 600 cm-1 to ? 6500 cm-1 with an instrumental apodized resolution of 0.11 cm-1. The resolution was chosen to bring out all spectral features, but recognizing that pressure broadening at 760 Torr results in essentially all ro-vibrational lines having these or greater linewidths.

Johnson, Timothy J.; Profeta, Luisa TM; Sams, Robert L.; Griffith, David WT; Yokelson, Robert L.

2010-05-26T23:59:59.000Z

59

Impact of biomass burning aerosol on the monsoon circulation transition over Amazonia  

DOE Green Energy (OSTI)

Ensemble simulations of a regional climate model (RegCM3) forced by aerosol radiative forcing suggest that biomass burning aerosols can work against the seasonal monsoon circulation transition, thus re-enforce the dry season rainfall pattern for Southern Amazonia. Strongly absorbing smoke aerosols warm and stabilize the lower troposphere within the smoke center in southern Amazonia (where aerosol optical depth > 0.3). These changes increase the surface pressure in the smoke center, weaken the southward surface pressure gradient between northern and southern Amazonia, and consequently induce an anomalous moisture divergence in the smoke center and an anomalous convergence occurs in northwestern Amazonia (5S-5N, 60W-40 70W). The increased atmospheric thermodynamic stability, surface pressure, and divergent flow in Southern Amazonia may inhibit synoptic cyclonic activities propagated from extratropical South America, and re-enforce winter-like synoptic cyclonic activities and rainfall in southeastern Brazil, Paraguay and northeastern Argentina.

Zhang, Y.; Fu, Rong; Yu, Hongbin; Qian, Yun; Dickinson, Robert; Silva Dias, Maria Assuncao F.; da Silva Dias, Pedro L.; Fernandes, Katia

2009-05-30T23:59:59.000Z

60

Influence of aerosols from biomass burning on the spectral analysis of Cherenkov telescopes  

E-Print Network (OSTI)

During the last decade, imaging atmospheric Cherenkov telescopes (IACTs) have proven themselves as astronomical detectors in the very-high-energy (VHE; E>0.1 TeV) regime. The IACT technique observes the VHE photons indirectly, using the Earth's atmosphere as a calorimeter. Much of the calibration of Cherenkov telescope experiments is done using Monte Carlo simulations of the air shower development, Cherenkov radiation and detector, assuming certain models for the atmospheric conditions. Any deviation of the real conditions during observations from the assumed atmospheric model will result in a wrong reconstruction of the primary gamma-ray energy and the resulting source spectra. During eight years of observations, the High Energy Stereoscopic System (H.E.S.S.) has experienced periodic natural as well as anthropogenic variations of the atmospheric transparency due to aerosols created by biomass burning. In order to identify data that have been taken under such long-term reductions in atmospheric transparency, ...

Reyes, R de los; Bernloehr, K; Krueger, P; Deil, C; Gast, H; Kosack, K; Marandon, V

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Modeling the spectral optical properties of ammonium sulfate and biomass burning aerosols  

SciTech Connect

The importance of including the global and regional radiative effects of aerosols in climate models has increasingly been realized. Accurate modeling of solar radiative forcing due to aerosols from anthropogenic sulfate and biomass burning emissions requires adequate spectral resolution and treatment of spatial and temporal variability. The variation of aerosol spectral optical properties with local relative humidity and dry aerosol composition must be considered. Because the cost of directly including Mie calculations within a climate model is prohibitive, parameterizations from offline calculations must be used. Starting from a log-normal size distribution of dry ammonium sulfate, we developed optical properties for tropospheric sulfate aerosol at 15 relative humidities up to 99 percent. The resulting aerosol size distributions were then used to calculate bulk optical properties at wavelengths between 0.175 {micro}m and 4 {micro}m. Finally, functional fits of optical properties were made for each of 12 wavelength bands as a function of relative humidity. Significant variations in optical properties occurred across the total solar spectrum. Relative increases in specific extinction and asymmetry factor with increasing relative humidity became larger at longer wavelengths. Significant variation in single-scattering albedo was found only in the longest near-IR band. This is also the band with the lowest albedo. A similar treatment was done for aerosols from biomass burning. In this case, size distributions were taken as having two carbonaceous size modes and a larger dust mode. The two carbonaceous modes were considered to be humidity dependent. Equilibrium size distributions and compositions were calculated for 15 relative humidities and five black carbon fractions. Mie calculations and Chandrasekhar averages of optical properties were done for each of the resulting 75 cases. Finally, fits were made for each of 12 spectral bands as functions of relative humidity and black carbon fraction.

Grant, K.E.; Chuang, C.C.; Grossman, A.S.; Penner, J.E. [Michigan Univ., Ann Arbor, MI (United States)

1997-09-01T23:59:59.000Z

62

Physical and Chemical Characterization of Particulate and Gas phase Emissions from Biomass Burning  

E-Print Network (OSTI)

of levoglucosan in biomass combustion aerosol by high-Transport of Biomass Combustion Aerosols. Environmentalfrom diverse biomass combustion conditions have been

Hosseini, Seyedehsan

2012-01-01T23:59:59.000Z

63

Correlations between Optical, Chemical and Physical Properties of Biomass Burn Aerosols  

E-Print Network (OSTI)

of potassium in biomass combustion, Proceedings of thethan those from biomass combustion. In Figure 3, ? ap valuesspectral dependence for the biomass combustion particulates.

2008-01-01T23:59:59.000Z

64

Vertical distribution and radiative effects of mineral dust and biomass burning aerosol over West Africa during DABEX  

SciTech Connect

This paper presents measurements of the vertical distribution of aerosol extinction coefficient over West Africa, during the Dust and Biomass burning aerosol Experiment (DABEX) / African Monsoon Multidisciplinary Analysis dry season Special Observing period zero (AMMA-SOP0). In situ aircraft measurements from the UK FAAM aircraft are compared with two ground based lidars (POLIS and ARM MPL) and an airborne lidar on an ultra-light aircraft. In general mineral dust was observed at low altitudes (up to 2km) and a mixture of biomass burning aerosol and dust was observed at altitudes of 2-5km. The study exposes difficulties associated with spatial and temporal variability when inter-comparing aircraft and ground measurements. Averaging over many profiles provided a better means of assessing consistent errors and biases associated with in situ sampling instruments and retrievals of lidar ratios. Shortwave radiative transfer calculations and a 3-year simulation with the HadGEM2-A climate model show that the radiative effect of biomass burning aerosol is somewhat sensitive to the vertical distribution of aerosol. Results show a 15% increase in absorption of solar radiation by elevated biomass burning aerosol when the observed low-level dust layer is included as part of the background atmospheric state in the model. This illustrates that the radiative forcing of anthropogenic absorbing aerosol is sensitive to the treatment of other aerosol species and that care is needed in simulating natural aerosols assumed to exist in the pre-industrial, or natural state of the atmosphere.

Johnson, Ben; Heese, B.; McFarlane, Sally A.; Chazette, P.; Jones, A.; Bellouin, N.

2008-09-12T23:59:59.000Z

65

Experiments for the Measurement of LNG Mass Burning Rates  

E-Print Network (OSTI)

Liquefied Natural Gas (LNG) is a commonly used flammable fuel that has safety concerns associated with vapor dispersion and radiation emitted from pool fires. The main objective of this effort is to advance the knowledge of pool fires and to expand the data that is commonly used to validate semi-empirical models. This includes evaluation of the methods that are utilized to obtain experimental values of mass burning rates, which are used in models where semi-empirical correlations cannot be applied. A total of three small-size experiments designed to study the radiative characteristics of LNG pool fires were carried out at Texas A & M University's Brayton Fire Training Field (BFTF). This set of experiments was designed to study how the heat feedback from the fire to the pool surface is subsequently distributed through the liquid volume and the validity of different methods for measuring burning rates. In this work, a number of semi-empirical correlations were used to predict the characteristics of the flame and examine the predictive accuracy of these correlations when compared to the values obtained experimentally. In addition, the heat transferred from the energy received at the pool's surface to the surroundings was investigated. Finally, the parameters that influenced the measurement of radiative head feedback to the liquid pool were analyzed to investigate potential causes of calibration drift in the instrumentation. The results of this work provided information regarding the validity of certain techniques for the measurement of mass burning rates and the use of correlations to predict the characteristics of an LNG pool fire on a small-scale. The findings from this work indicate that the energy received at the liquid surface was used entirely for evaporation and no indications of transmission to the surroundings were observed. Lastly, it was found that during the experiments, the sink temperature of the sensor was not constant, and therefore, the readings of the radiative heat were unreliable. This was due to the insufficient cooling effect of the water circulated. It was later shown in the laboratory that through a series of qualitative tests, a change of 20C in the cooling water resulted in a calibration drift.

Herrera Gomez, Lady Carolina

2011-05-01T23:59:59.000Z

66

Topical Area MFE Title: Burning Plasma Science_____________________________________________ Description Fusion energy is released by burning light elements using nuclear reactions which consume mass and  

E-Print Network (OSTI)

Page 1 Topical Area MFE Title: Burning Plasma Science_____________________________________________ · Description Fusion energy is released by burning light elements using nuclear reactions which consume mass-sustained purely by its alpha particle heating. The science of burning plasmas consists of: (1) the physics

67

U.K. HiGEM: Simulations of Desert Dust and Biomass Burning Aerosols with a High-Resolution Atmospheric GCM  

Science Conference Proceedings (OSTI)

The atmospheric component of the United Kingdoms new High-resolution Global Environmental Model (HiGEM) has been run with interactive aerosol schemes that include biomass burning and mineral dust. Dust emission, transport, and deposition are ...

M. J. Woodage; A. Slingo; S. Woodward; R. E. Comer

2010-04-01T23:59:59.000Z

68

GROUP 4: Is biomass burning carbon-neutral? Global environment aspect. It is argued that since trees take CO2 out of the air and give off oxygen as they grow,  

E-Print Network (OSTI)

GROUP 4: Is biomass burning carbon-neutral? Global environment aspect. It is argued that since trees take CO2 out of the air and give off oxygen as they grow, that by burning them we are just putting in terms of CO2 in the atmosphere. Investigate the national scene, which seems very pro- biomass burning

69

Investigation of the optical and cloud forming properties of pollution, biomass burning, and mineral dust aerosols  

E-Print Network (OSTI)

This dissertation describes the use of measured aerosol size distributions and size-resolved hygroscopic growth to examine the physical and chemical properties of several particle classes. The primary objective of this work was to investigate the optical and cloud forming properties of a range of ambient aerosol types measured in a number of different locations. The tool used for most of these analyses is a differential mobility analyzer / tandem differential mobility analyzer (DMA / TDMA) system developed in our research group. To collect the data described in two of the chapters of this dissertation, an aircraft-based version of the DMA / TDMA was deployed to Japan and California. The data described in two other chapters were conveniently collected during a period when the aerosol of interest came to us. The unique aspect of this analysis is the use of these data to isolate the size distributions of distinct aerosol types in order to quantify their optical and cloud forming properties. I used collected data during the Asian Aerosol Characterization Experiment (ACE-Asia) to examine the composition and homogeneity of a complex aerosol generated in the deserts and urban regions of China and other Asian countries. An aircraft-based TDMA was used for the first time during this campaign to examine the size-resolved hygroscopic properties of the aerosol. The Asian Dust Above Monterey (ADAM-2003) study was designed both to evaluate the degree to which models can predict the long-range transport of Asian dust, and to examine the physical and optical properties of that aged dust upon reaching the California coast. Aerosol size distributions and hygroscopic growth were measured in College Station, Texas to investigate the cloud nucleating and optical properties of a biomass burning aerosol generated from fires on the Yucatan Peninsula. Measured aerosol size distributions and size-resolved hygroscopicity and volatility were used to infer critical supersaturation distributions of the distinct particle types that were observed during this period. The predicted cloud condensation nuclei concentrations were used in a cloud model to determine the impact of the different aerosol types on the expected cloud droplet concentration. RH-dependent aerosol extinction coefficients were also calculated.

Lee, Yong Seob

2003-05-01T23:59:59.000Z

70

Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory  

E-Print Network (OSTI)

emissions during laboratory biomass fires, Journal ofphysical properties of biomass burn aerosols, Geophysicalaromatic hydrocarbons from biomass burning, Environ. Sci.

McMeeking, Gavin R.

2009-01-01T23:59:59.000Z

71

Tropospheric Aerosol Chemistry via Aerosol Mass Spectrometry  

NLE Websites -- All DOE Office Websites (Extended Search)

chemical information needed to interpret mass spectra. The challenge is to separate primary and secondary; anthropogenic, biogenic and biomass burning sources - and...

72

Modeling the impacts of biomass burning on air quality in and around Mexico City  

E-Print Network (OSTI)

The local and regional impacts of open fires and trash burning on ground-level ozone (O[subscript 3]) and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA) and surrounding region during two high fire ...

Lei, W.

73

Formation of ozone and growth of aerosols in young smoke plumes from biomass burning  

E-Print Network (OSTI)

The combustion of biomass is a major source of atmospheric trace gases and aerosols. Regional and global-scale models of atmospheric chemistry and climate take estimates for these emissions and arbitrarily "mix" them into ...

Alvarado, Matthew James

2008-01-01T23:59:59.000Z

74

Daytime Variation of Shortwave Direct Radiative Forcing of Biomass Burning Aerosols from GOES-8 Imager  

Science Conference Proceedings (OSTI)

Hourly Geostationary Operational Environmental Satellite-8 (GOES-8) imager data (13441944 UTC) from 20 July31 August 1998 were used to study the daytime variation of shortwave direct radiative forcing (SWARF) of smoke aerosols over biomass ...

Sundar A. Christopher; Jianglong Zhang

2002-02-01T23:59:59.000Z

75

Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods  

DOE Green Energy (OSTI)

Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D{sub p}) ranging from 0.03 to 0.10 m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC{sub a}, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC{sub e}) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D{sub p} < 2.5 {mu}m: average 59.8 {mu}g m{sup -3}) were higher than coarse aerosols (D{sub p} > 2.5 {mu}m: 4.1 {mu}g m{sup -3}). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC{sub e}, comprised more than 90% to the total aerosol mass. Concentrations of EC{sub a} (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2 {+-} 1.3 and 3.1 {+-} 0.8 {mu}g m{sup -3}, respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption {angstrom} exponent of particles in the size range of 0.1 to 1.0 {mu}m from > 2.0 to approximately 1.2. The size-resolved BC{sub e} measured by the LTM showed a clear maximum between 0.4 and 0.6 m in diameter. The concentrations of OC and BC{sub e} varied diurnally during the dry period, and this variation is related to diurnal changes in boundary layer thickness and in fire frequency.

Soto-Garcia, Lydia L.; Andreae, Meinrat O.; Andreae, Tracey W.; taxo, Paulo Ar-; Maenhaut, Willy; Kirchstetter, Thomas; Novakov, T.; Chow, Judith C.; Mayol-Bracero, Olga L.

2011-06-03T23:59:59.000Z

76

Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods  

Science Conference Proceedings (OSTI)

Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D{sub p}) ranging from 0.03 to 0.10 m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC{sub a}, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC{sub e}) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D{sub p} aerosols (D{sub p} > 2.5 {mu}m: 4.1 {mu}g m{sup -3}). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC{sub e}, comprised more than 90% to the total aerosol mass. Concentrations of EC{sub a} (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2 {+-} 1.3 and 3.1 {+-} 0.8 {mu}g m{sup -3}, respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption {angstrom} exponent of particles in the size range of 0.1 to 1.0 {mu}m from > 2.0 to approximately 1.2. The size-resolved BC{sub e} measured by the LTM showed a clear maximum between 0.4 and 0.6 m in diameter. The concentrations of OC and BC{sub e} varied diurnally during the dry period, and this variation is related to diurnal changes in boundary layer thickness and in fire frequency.

Soto-Garcia, Lydia L.; Andreae, Meinrat O.; Andreae, Tracey W.; taxo, Paulo Ar-; Maenhaut, Willy; Kirchstetter, Thomas; Novakov, T.; Chow, Judith C.; Mayol-Bracero, Olga L.

2011-06-03T23:59:59.000Z

77

Dredge-up and envelope burning in intermediate mass giants of very low metallicity  

E-Print Network (OSTI)

(abbreviated) The evolution of intermediate mass stars at very low metallicity during their final thermal pulse asymptotic giant branch phase is studied in detail. As representative examples models with initial masses of 4Msun and 5Msun with a metallicity of Z=0.0001 ([Fe/H] ~ -2.3) are discussed. The 1D stellar structure and evolution model includes time- and depth dependent overshooting motivated by hydrodynamical simulations, as well as a full nuclear network and time-dependent mixing. Particular attention is given to high time and space resolution to avoid numerical artefacts related to third dredge-up and hot-bottom burning predictions. The model calculations predict very efficient third dredge-up which mixes the envelope with the entire intershell layer or a large fraction thereof, and in some cases penetrates into the C/O core below the He-shell. In all cases primary oxygen is mixed into the envelope. The models predict efficient envelope burning during the interpulse phase. Depending on the envelope burning temperature, oxygen is destroyed to varying degrees. The combined effect of dredge-up and envelope burning does not lead to any significant oxygen depletion in any of the cases considered in this study. The large dredge-up efficiency in our model is closely related to the particular properties of the H-shell during the dredge-up phase in low-metallicity very metal poor stars, which is followed here over many thermal pulses. During the dredge-up phase, the temperature just below the convective boundary is large enough for protons to burn vigorously when they are brought into the C-rich environment below the convection boundary by the time- and depth dependent overshooting. H-burning luminosities of 10^5 to ~2* 10^6L_sun are generated. [...

Falk Herwig

2003-12-24T23:59:59.000Z

78

Environmental performance of air staged combustor with flue gas recirculation to burn coal/biomass  

DOE Green Energy (OSTI)

The environmental and thermal performance of a 1.07 m diameter, 440 kW atmospheric fluidized bed combustor operated at 700{degrees}C-920{degrees}C and burning coal was studied. Flue gas recirculation was incorporated to enhance the thermal performance and air staging was used to control emissions of SO{sub 2}, CO, NO{sub x} and N{sub 2}O. Studies focused on the effect of excess air, firing rate, and use of sorbent on system performance. The recirculation-staging mode with limestone had the highest thermal efficiency (0.67) using the firing equation. Emission data showed that flue gas recirculation (ratio of 0.7) significantly reduced NO{sub x} emissions; and that use of limestone sorbent at a Ca/S ratio of 3 reduced SO{sub 2} emissions by 64% to approximately 0.310 g/MJ.

Anuar, S.H.; Keener, H.M.

1995-12-31T23:59:59.000Z

79

HOT BOTTOM BURNING IN INTERMEDIATE MASS STARS JOHN LATTANZIO 1;2 , CHERYL FROST 1;2 , ROBERT CANNON 2;3 , PETER WOOD 4  

E-Print Network (OSTI)

HOT BOTTOM BURNING IN INTERMEDIATE MASS STARS JOHN LATTANZIO 1;2 , CHERYL FROST 1;2 , ROBERT CANNON burning in the bottom of the convective envelope. We find strong CN cycling, with substantial Al include the recently discovered ``Hot Bottom Burning''. Hot Bottom Burning (hereafter HBB

Lattanzio, John

80

SURFACE AREA, VOLUME, MASS, AND DENSITY DISTRIBUTIONS FOR SIZED BIOMASS PARTICLES  

DOE Green Energy (OSTI)

This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FC26-04NT42130 during the period July 01, 2005 to December 31, 2005 which covers the third six months of the project. Presently work is in progress to characterize surface area, volume, mass, and density distributions for sized biomass particles. During this reporting period, Morehouse continued to obtain additional mean mass measurements for biomass particles employing the gravimetric technique measurement system that was set up in the last reporting period. Simultaneously, REM, our subcontractor, has obtained raw data for surface area, volume, and drag coefficient to mass ratio (C{sub d}/m) information for several biomass particles employing the electrodynamic balance (EDB) measurement system that was calibrated in the last reporting period. Preliminary results of the mean mass and the shape data obtained are reported here, and more data collection is in progress.

Ramanathan Sampath

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

SURFACE AREA, VOLUME, MASS, AND DENSITY DISTRIBUTIONS FOR SIZED BIOMASS PARTICLES  

DOE Green Energy (OSTI)

This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FC26-04NT42130 during the period January 01, 2006 to June 30, 2006 which covers the fourth six months of the project. Presently work is in progress to characterize surface area, volume, mass, and density distributions for sized biomass particles. During this reporting period, Morehouse completed obtaining additional mean mass measurements for biomass particles employing the gravimetric technique measurement system that was set up in a previous reporting period. Simultaneously, REM, our subcontractor, has completed obtaining raw data for surface area, volume, and drag coefficient to mass ratio (Cd/m) information for 9 more biomass particles employing the electrodynamic balance (EDB) measurement system that was calibrated before in this project. Results of the mean mass data obtained to date are reported here, and analysis of the raw data collected by REM is in progress.

Ramanathan Sampath

2006-06-30T23:59:59.000Z

82

PUBLISHED ONLINE: 5 DECEMBER 2010 | DOI: 10.1038/NGEO1027 Recent acceleration of biomass burning and  

E-Print Network (OSTI)

burning and carbon losses in Alaskan forests and peatlands Merritt R. Turetsky1 *, Evan S. Kane2 in burned area and fire frequency are expected to stimulate boreal carbon losses3­5 . However, the impact of wildfires on carbon emissions is also affected by the severity of burning. How climate change influences

Ruess, Roger W.

83

Dredge-up and envelope burning in intermediate mass giants of very low metallicity  

E-Print Network (OSTI)

(abbreviated) The evolution of intermediate mass stars at very low metallicity during their final thermal pulse asymptotic giant branch phase is studied in detail. As representative examples models with initial masses of 4Msun and 5Msun with a metallicity of Z=0.0001 ([Fe/H] ~ -2.3) are discussed. The 1D stellar structure and evolution model includes time- and depth dependent overshooting motivated by hydrodynamical simulations, as well as a full nuclear network and time-dependent mixing. Particular attention is given to high time and space resolution to avoid numerical artefacts related to third dredge-up and hot-bottom burning predictions. The model calculations predict very efficient third dredge-up which mixes the envelope with the entire intershell layer or a large fraction thereof, and in some cases penetrates into the C/O core below the He-shell. In all cases primary oxygen is mixed into the envelope. The models predict efficient envelope burning during the interpulse phase. Depending on the envelope b...

Herwig, F

2004-01-01T23:59:59.000Z

84

Research, Development and Demonstration of Bio-Mass Boiler for Food Industry  

SciTech Connect

Frito-Lay is working to reduce carbon emissions from their manufacturing plants. As part of this effort, they invested in a ??biomass-fired? boiler at the Topeka, Kansas, plant. Frito-Lay partnered with Burns & McDonnell Engineering, Inc. and CPL Systems, Inc., to design and construct a steam producing boiler using ??carbon neutral? fuels such as wood wastes (e.g. tree bark), shipping pallets, and used rubber vehicle tires. The U.S. Department of Energy (DOE) joined with Frito-Lay, Burns & McDonnell, and CPL to analyze the reductions in carbon dioxide (CO{sub 2}) emissions that result from use of biomass-fired boilers in the food manufacturing environment. DOE support provided for the data collection and analysis, and reporting necessary to evaluate boiler efficiencies and reductions in CO{sub 2} emissions. The Frito-Lay biomass-fired boiler has resulted in significant reductions in CO{sub 2} emissions from the Topeka production facility. The use of natural gas has been reduced by 400 to 420 million standard cubic feet per year with corresponding reductions of 24,000 to 25,000 tons of CO{sub 2}. The boiler does require auxiliary ??functions,? however, that are unnecessary for a gas-fired boiler. These include heavy motors and fans for moving fuel and firing the boiler, trucks and equipment for delivering the fuel and moving at the boiler plant, and chippers for preparing the fuel prior to delivery. Each of these operations requires the combustion of fossil fuels or electricity and has associated CO{sub 2} emissions. Even after accounting for each of these auxiliary processes, however, the biomass-fired boiler results in net emission reductions of 22,500 to 23,500 tons of CO{sub 2} per year.

Fisher, Steve; Knapp, David

2012-03-31T23:59:59.000Z

85

Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980-2010 period  

Science Conference Proceedings (OSTI)

Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980-2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical emissions developed in support of the simulations for the IPCC AR5 assessment. Emissions for 2005 and 2010 from the Representative Concentration Pathways (RCPs) are also included. Large discrepancies between the global and regional emissions are identified, which shows that there is still no consensus on the best estimates for surface emissions of atmospheric compounds. At the global scale, anthropogenic emissions of CO, NOx and SO2 show the best agreement in most years. The agreement is low for BC emissions, particularly in the period prior to 2000. The best consensus is for NOx emissions for all periods and all regions, except for China where emissions in 1980 and 1990 need to be better defined. Emissions of CO need a better quantification in the USA for all periods; in Central Europe, the evolution of emissions during the past two decades needs to be better determined. The agreement between the different SO2 emissions datasets is rather good for the USA, but better quantification is needed elsewhere, particularly for Central Europe and China. The comparisons performed in this study show that the use of RCP8.5 for the extension of the ACCMIP inventory beyond 2000 is reasonable, until more global or regional estimates become available. Concerning biomass burning emissions, most inventories agree within 50-80%, depending on the year and season. The large differences are due to differences in the estimates of burned areas from the different available products, as well as in the amount of biomass burnt.

Granier, Claire; Bessagnet, Bertrand; Bond, Tami C.; D'Angiola, Ariela; Denier van der Gon, Hugo; Frost, G. J.; Heil, Angelika; Kaiser, Johannes W.; Kinne, Stefan; Klimont, Z.; Kloster, Jean; Lamarque, J.-F.; Liousse, Catherine; Masui, Toshihiko; Meleux, Frederik; Mieville, Aude; Ohara, Toshimasa; Raut, Jean-Christophe; Riahi, Keywan; Schultz, Martin; Smith, Steven J.; Thomson, Allison M.; van Aardenne, John; van der Werf, Guido R.; Van Vuuren, Detlef

2011-08-08T23:59:59.000Z

86

Anthropogenic particulate source characterization and source apportionment using aerosol time-of-flight mass spectrometry  

E-Print Network (OSTI)

vehicles, biomass burning, coal combustion, meat cooking,Arabia: biomass/biofuel burning and fossil fuel combustion,Arabia: biomass/biofuel burning and fossil fuel combustion,

Toner, Stephen Mark

2007-01-01T23:59:59.000Z

87

Analysis of mass loss of a coal particle during the course of burning in a flow of inert material  

SciTech Connect

This paper is an attempt to explain the role of erosion during the process of coal combustion in a circulating fluidized bed. Different kinds of carbon deposits found in Poland, both bituminous as well as lignite with the particle of 10 mm in diameter were the subject of the research. According to many publications it is well known that erosion plays a significant role in coal combustion, by changing its mechanism as well as generating an additional mass loss of the mother particle. The purpose of this research was to determine the influence of an inert material on an erosive mass loss of a single coal particle burning in a two-phase flow. The determination of the influence of a coal type, the rate of flow of inert material and the temperature inside the furnace on the erosive mass loss of burning coal particle was also taken into consideration. The results obtained indicate that the velocity of the erosive mass loss depends on the chemical composition and petrographic structure of burning coal. The mechanical interaction of inert and burning coal particles leads to the shortening of the period of overall mass loss of the coal particle by even two times. The increase in the rate of flow of the inert material intensifies the generation of mass loss by up to 100%. The drop in temperature which slows down the combustion process, decreases the mass loss of the coal particle as the result of mechanical interaction of the inert material. As was observed, the process of percolation plays a significant role by weakening the surface of the burning coal. (author)

Pelka, Piotr [Czestochowa University of Technology, Department of Boilers and Thermodynamics, Armii Krajowej 19c, Czestochowa, Silesia 42-200 (Poland)

2009-08-15T23:59:59.000Z

88

Investigations into the impact of transported particles on air pollution and climate using aerosol time-of-flight mass spectrometry  

E-Print Network (OSTI)

for fossil fuel combustion and biomass burning emissions [Arabia: Biomass/biofuel burning and fossil fuel combustion,Many K-Combustion particles are from biomass burning, but

Ault, Andrew Phillip

2010-01-01T23:59:59.000Z

89

7, 80178033, 2007 burning-tropopause  

E-Print Network (OSTI)

ACPD 7, 8017­8033, 2007 Biomass burning-tropopause mixing J. Brioude et al. Title Page Abstract Discussions Mixing between a stratospheric intrusion and a biomass burning plume J. Brioude1 , O. R. Cooper1.brioude@noaa.gov) 8017 #12;ACPD 7, 8017­8033, 2007 Biomass burning-tropopause mixing J. Brioude et al. Title Page

Paris-Sud XI, Université de

90

Biomass--The next revolution in surfactants?  

Science Conference Proceedings (OSTI)

Neil A. Burns examines this potential player in the surfactant valuechain. Biomass--The next revolution in surfactants? Inform Magazine Inform Archives Surfactants and Detergents Biomass--The next revolution in surfactants? Neil A. Burn

91

The land around typical Darfur refugee camps is cleared of all wood 2 T H E T R O U B L E W I T H C O O K I N Gthe impact of biomass-burning on health & enviornment and what we are doing about it  

E-Print Network (OSTI)

O O K I N Gthe impact of biomass-burning on health & enviornment and what we are doing about it H fire By 2030, biomass use for cooking is projected to in- crease by an addi- tional 30%13 References [1-Darfur Stove World Population 3B 7B 3B 4B Biomass Users Non-Biomass Users 2 , 0 0 0 , 0 0 0deaths annually

Eisen, Michael

92

5, 1045510516, 2005 A review of biomass  

E-Print Network (OSTI)

ACPD 5, 10455­10516, 2005 A review of biomass burning emissions, part I R. Koppmann et al. Title and Physics Discussions A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide A review of biomass burning emissions, part I R. Koppmann et al. Title Page Abstract Introduction

Paris-Sud XI, Université de

93

4, 51355200, 2004 A review of biomass  

E-Print Network (OSTI)

ACPD 4, 5135­5200, 2004 A review of biomass burning emissions, part II J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions, part II: Intensive physical properties of biomass burning particles J. S. Reid 1 , R. Koppmann 2 , T. F. Eck 3 , and D. P. Eleuterio 4 1 Marine

Paris-Sud XI, Université de

94

4, 52015260, 2004 A review of biomass  

E-Print Network (OSTI)

ACPD 4, 5201­5260, 2004 A review of biomass burning emissions part III J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions part III: intensive optical properties of biomass burning particles J. S. Reid1 , T. F. Eck2 , S. A. Christopher3 , R. Koppmann4 , O. Dubovik3 , D

Paris-Sud XI, Université de

95

New insights into single-particle mixing state using aircraft aerosol time-of-flight mass spectrometry  

E-Print Network (OSTI)

K, and S during combustion of annual biomass, Energy Fuels,spherical combustion particles from biomass burning usingsuch as biomass burning, fossil fuel combustion, and dust

Pratt, Kerri Anne

2009-01-01T23:59:59.000Z

96

Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory  

E-Print Network (OSTI)

emissions during biomass combustion: Controlling factors andopen burning of biomass in a combustion wind-tunnel, Globalfrom smoldering combustion of biomass measured by open-path

McMeeking, Gavin R.

2009-01-01T23:59:59.000Z

97

Dynamic molecular structure of plant biomass-derived black carbon (biochar)  

E-Print Network (OSTI)

andtheatmospherefrombiomassburning. ClimaticChangeIntroductiontopyrolysisofbiomass. J. Anal. Appl. Molecular Structure of Plant Biomass-derived Black Carbon (

Keiluweit, M.

2010-01-01T23:59:59.000Z

98

THE PRODUCTION OF SYNGAS VIA HIGH TEMPERATURE ELECTROLYSIS AND BIO-MASS GASIFICATION  

DOE Green Energy (OSTI)

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to improve the hydrogen production efficiency of the steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon dioxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K.

M. G. McKellar; G. L. Hawkes; J. E. O'Brien

2008-11-01T23:59:59.000Z

99

11, 1342513467, 2011 Biomass burning  

E-Print Network (OSTI)

and Roger Taylor Oak Ridge National Laboratory (ORNL): Joel Eisenberg Sentech: David Posner Contributors ­ National Renewable Energy Laboratory ORNL ­ Oak Ridge National Laboratory PBC ­ public benefits charge (aka

Li, Qinbin

100

Feature Article Negative pressure dependence of mass burning rates of H2/CO/O2/diluent flames  

E-Print Network (OSTI)

, and emission data related to conversion of coal, natural gas, biomass and corn grain to methanol and ethanol

Ju, Yiguang

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Burns Prevention  

NLE Websites -- All DOE Office Websites (Extended Search)

Burns Burns Burns can result from everyday things and activities in your home. The most common causes of burns are from scalds (steam, hot bath water, hot drinks and foods), fire, chemicals, electricity and overexposure to the sun. Some burns may be more serious than others. The severity of the burn is based on the depth of the burn. First degree burns are the least severe, and third degree burns are the most severe. Call 911 or seek medical attention if you are unsure of how severe your burn is. All burns are susceptible to tetanus (lockjaw). Get a tetanus shot every 10 years. If your last shot was 5 years ago, talk to your doctor - you may need a booster shot. Causes of Burns: Scalds Scalding injuries and burns are caused by hot tap water, hot beverages and food, and steam.

102

Fire and biofuel contributions to annual mean aerosol mass concentrations in the United States  

E-Print Network (OSTI)

Fire and biofuel contributions to annual mean aerosol mass concentrations in the United States 1 2: Aerosols, Wildfires, Biomass burning, Biofuel, Air quality, Visibility Index terms: 1 #12;Abstract.1 2 3 4 burning (summer wildfires, other fires, residential biofuel, and industrial biofuel) to seasonal

Jacob, Daniel J.

103

Original article Belowground biomass seasonal variation in two  

E-Print Network (OSTI)

Original article Belowground biomass seasonal variation in two Neotropical savannahs (Brazilian March 2001) Abstract ­ The belowground biomass of two types of ecosystems, frequently burned open by flotation and sieving. Belowground biomass showed significant seasonal variation, values being higher during

Recanati, Catherine

104

NREL: Learning - Student Resources on Biomass Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

or converting it into gaseous or liquid fuels that burn more efficiently, to generate electricity. Bioproducts - Converting biomass into chemicals for making plastics and other...

105

For more information contact the Biomass Energy Centre, (01420) 526197 biomass.centre@forestry.gsi.gov.uk  

E-Print Network (OSTI)

For more information contact the Biomass Energy Centre, (01420) 526197 · biomass woodland supports jobs in the forestry industry. Choosing Logs When choosing wood for burning there are two suppliers are available on the Biomass Energy Centre website (www

106

Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass: Biomass: Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes. Other definitions:Wikipedia Reegle Traditional and Thermal Use of Biomass Traditional use of biomass, particularly burning wood, is one of the oldest manners in which biomass has been utilized for energy. Traditional use of biomass is 14% of world energy usage which is on the same level as worldwide electricity usage. Most of this consumption comes from developing countries where traditional use of biomass accounts for 35% of primary energy usage [1] and greater than 75% of primary energy use is in the residential sector. The general trend in developing countries has been a

107

OUT Success Stories: Biomass Gasifiers  

DOE Green Energy (OSTI)

The world's first demonstration of an efficient, low-pressure biomass gasifier capable of producing a high-quality fuel is now operating in Vermont. The gasifier converts 200 tons of solid biomass per day into a clean-burning gas with a high energy content for electricity generation.

Jones, J.

2000-08-31T23:59:59.000Z

108

Energie-Cits 2001 BIOMASS -WOOD  

E-Print Network (OSTI)

Energie-Cités 2001 BIOMASS - WOOD Gasification / Cogeneration ARMAGH United Kingdom Gasification is transferring the combustible matters in organic waste or biomass into gas and pure char by burning the fuel via it allows biomass in small-scaled engines and co-generation units ­ which with conventional technologies

109

CLC of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Developments on Developments on Chemical Looping Combustion of Biomass Laihong Shen Jiahua Wu Jun Xiao Rui Xiao Southeast University Nanjing, China 2 th U.S. - China Symposium on CO 2 Emissions Control Science & Technology Hangzhou, China May 28-30, 2008 Overview  Introduction  Technical approach  Experiments on chemical looping combustion of biomass  Conclusions Climate change is a result of burning too much coal, oil and gas.... We need to capture CO 2 in any way ! Introduction CCS is the world's best chance to have a major & immediate impact on CO 2 emission reduction Introduction Introduction  Biomass is renewable energy with zero CO 2 emission  A way to capture CO 2 from biomass ?  If so, a quick way to reduce CO 2 content in the atmosphere Normal combustion

110

Biomass Anaerobic Digestion Facilities and Biomass Gasification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana) Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)...

111

PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS  

DOE Green Energy (OSTI)

CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in existing boilers, evaluation of these composite fuels to determine their applicability to the major combustor types, development of preliminary designs and economic projections for commercial facilities producing up to 200,000 tons per year of biomass/waste-containing fuels, and the development of dewatering technologies to reduce the moisture content of high-moisture biomass and waste materials during the pelletization process.

David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

2001-04-20T23:59:59.000Z

112

Stability and Regeneration of Catalysts for the Destruction of Tars from Bio-mass Black Liquor Gasification  

DOE Green Energy (OSTI)

The goal of this project was to develop catalytic materials and processes that would be effective in the destruction of tars formed during the gasification of black liquor and biomass. We report here the significant results obtained at the conclusion of this two year project.

Pradeep Agrawal

2004-09-07T23:59:59.000Z

113

The burning bush  

E-Print Network (OSTI)

ISSN 1948-6596 The burning bush Fire in Mediterraneandiscussion. Pre- scription burning is used in many forest

Schwilk, Dylan W

2013-01-01T23:59:59.000Z

114

NO reduction in decoupling combustion of biomass and biomass-coal blend  

SciTech Connect

Biomass is a form of energy that is CO{sub 2}-neutral. However, NOx emissions in biomass combustion are often more than that of coal on equal heating-value basis. In this study, a technology called decoupling combustion was investigated to demonstrate how it reduces NO emissions in biomass and biomass-coal blend combustion. The decoupling combustion refers to a two-step combustion method, in which fuel pyrolysis and the burning of char and pyrolysis gas are separated and the gas burns out during its passage through the burning-char bed. Tests in a quartz dual-bed reactor demonstrated that, in decoupling combustion, NO emissions from biomass and biomass-coal blends were both less than those in traditional combustion and that NO emission from combustion of blends of biomass and coal decreased with increasing biomass percentage in the blend. Co-firing rice husk and coal in a 10 kW stove manufactured according to the decoupling combustion technology further confirmed that the decoupling combustion technology allows for truly low NO emission as well as high efficiency for burning biomass and biomass-coal blends, even in small-scale stoves and boilers. 22 refs., 6 figs., 1 tab.

Li Dong; Shiqiu Gao; Wenli Song; Jinghai Li; Guangwen Xu [Chinese Academy of Sciences, Beijing (China). State Key Laboratory of Multi-Phase Complex Systems

2009-01-15T23:59:59.000Z

115

Chemical and Structural Features of Plants That Contribute to Biomass Recalcitrance  

E-Print Network (OSTI)

of the Pyrolysis of Biomass. 1. Fundamentals. Energy Fuelsof the Pyrolysis of Biomass. 1. Fundamentals. Energy Fuelsand Pyrolysis Molecular Beam Mass Spectrometry. Biomass

DeMartini, Jaclyn Diana

2011-01-01T23:59:59.000Z

116

Evaluation of the carbon content of aerosols from the burning...  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of the carbon content of aerosols from the burning of biomass in the Brazilian Amazon using thermal, optical and thermal-optical analysis methods Title Evaluation of the...

117

Burning plasmas  

SciTech Connect

The fraction of fusion-reaction energy that is released in energetic charged ions, such as the alpha particles of the D-T reaction, can be thermalized within the reacting plasma and used to maintain its temperature. This mechanism facilitates the achievement of very high energy-multiplication factors Q, but also raises a number of new issues of confinement physics. To ensure satisfactory reaction operation, three areas of energetic-ion interaction need to be addressed: single-ion transport in imperfectly symmetric magnetic fields or turbulent background plasmas; energetic-ion-driven (or stabilized) collective phenomena; and fusion-heat-driven collective phenomena. The first of these topics is already being explored in a number of tokamak experiments, and the second will begin to be addressed in the D-T-burning phase of TFTR and JET. Exploration of the third topic calls for high-Q operation, which is a goal of proposed next-generation plasma-burning projects. Planning for future experiments must take into consideration the full range of plasma-physics and engineering R D areas that need to be addressed on the way to a fusion power demonstration.

Furth, H.P.; Goldston, R.J.; Zweben, S.J. (Princeton Univ., NJ (USA). Plasma Physics Lab.); Sigmar, D.J. (Massachusetts Inst. of Tech., Cambridge, MA (USA))

1990-10-01T23:59:59.000Z

118

High-Speed Biomass Recalcitrance Pipeline Speeds Up Bio ...  

High-Speed Biomass Recalcitrance Pipeline Speeds Up Bio-Mass Analysis Robotic pipeline allows for rapid analysis of optimal substrate/enzyme ...

119

Considerations for Prescribed Burning  

E-Print Network (OSTI)

Considerations for Prescribed Burning NEW M EX ICO S TAE U N I V E R SI T YT Cooperative Extension prescribed burns ...................... 1 Fire effects ................................................ 3 Justification for burning ......................................... 3 Reclamation versus

Castillo, Steven P.

120

Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory  

E-Print Network (OSTI)

in press), Organic aerosols in the earth's atmosphere,loss, and trace gas and aerosol emissions during laboratoryproperties of biomass burn aerosols, Geophysical Research

McMeeking, Gavin R.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Biomass Energy Production in California: The Case for a Biomass Policy Initiative; Final Report  

DOE Green Energy (OSTI)

During the 1980s California developed the largest and most divers biomass energy industry in the world. Biomass energy production has become an important component of the state's environmental infrastructure, diverting solid wastes from open burning and disposal in landfills to a beneficial use application.

Morris, G.

2000-12-14T23:59:59.000Z

122

Biomass Energy Production in California: The Case for a Biomass Policy Initiative; Final Report  

SciTech Connect

During the 1980s California developed the largest and most divers biomass energy industry in the world. Biomass energy production has become an important component of the state's environmental infrastructure, diverting solid wastes from open burning and disposal in landfills to a beneficial use application.

Morris, G.

2000-12-14T23:59:59.000Z

123

Biomass pretreatment  

SciTech Connect

A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

2013-05-21T23:59:59.000Z

124

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

Ergun, Sabri

2013-01-01T23:59:59.000Z

125

Biomass Technologies  

Energy.gov (U.S. Department of Energy (DOE))

There are many types of biomassorganic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastesthat can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007.

126

Biomass Resources  

Energy.gov (U.S. Department of Energy (DOE))

Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks.

127

Energy Basics: Biomass Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Share this resource Biomass Biofuels Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biomass Resources Biomass resources include any...

128

Life cycle assessment and biomass carbon accounting  

U.S. Energy Information Administration (EIA) Indexed Site

Biomass feedstocks Biomass feedstocks and the climate implications of bioenergy Steven Hamburg Environmental Defense Fund Slides adapted from Reid Miner NCASI On the landscape, the single-plot looks like this 75 Harvested and burned for energy In year zero, the plot is harvested and the wood is burned for energy 1.1 Year 1 After regeneration begins, the growing biomass sequesters small amounts of CO2 annually 2.1 Year 2 2.8 Year 3 ??? Year X, until next harvest Σ = . Over time, if carbon stocks are returned to pre-harvest levels... ...the net emissions over this time are zero. single plot analysis Net Cumulative CO2 combustion emissions Cumulative CO2 combustion emissions Time Time Biomass energy Fossil fuel energy single plot analysis Net Cumulative CO2 combustion emissions Cumulative

129

Spring Cleaning. Calorie Burning.  

E-Print Network (OSTI)

Spring Cleaning. Calorie Burning. Laundry: 73 Dusting: 85 Mopping the Floor: 153 Washing the Car Painting: 161 (Estimate based on 150 lb person per 30 minutes, more calories burned if weigh more, fewer calories burned if weigh less) Allergy Sufferers' Survival Guide > Wash your hair before bed to avoid

Acton, Scott

130

New approaches for the chemical and physical characterization of aerosols using a single particle mass spectrometry based technique  

E-Print Network (OSTI)

expected for K-biomass and automobile combustion particles [Arabia: Biomass/biofuel burning and fossil fuel combustion,or coal combustion. The fly ash does not resemble K-biomass

Spencer, Matthew Todd

2007-01-01T23:59:59.000Z

131

Combustion of biomass as a global carbon sink  

E-Print Network (OSTI)

This note is intended to highlight the important role of black carbon produced from biomass burning in the global carbon cycle, and encourage further research in this area. Consideration of the fundamental physical chemistry of cellulose thermal decomposition suggests that suppression of biomass burning or biasing burning practices to produce soot-free flames must inevitably transfer more carbon to the atmosphere. A simple order-of-magnitude quantitative analysis indicates that black carbon may be a significant carbon reservoir that persists over geological time scales.

Ball, Rowena

2008-01-01T23:59:59.000Z

132

Superheater Corrosion Produced By Biomass Fuels  

Science Conference Proceedings (OSTI)

About 90% of the world's bioenergy is produced by burning renewable biomass fuels. Low-cost biomass fuels such as agricultural wastes typically contain more alkali metals and chlorine than conventional fuels. Although the efficiency of a boiler's steam cycle can be increased by raising its maximum steam temperature, alkali metals and chlorine released in biofuel boilers cause accelerated corrosion and fouling at high superheater steam temperatures. Most alloys that resist high temperature corrosion protect themselves with a surface layer of Cr{sub 2}O{sub 3}. However, this Cr{sub 2}O{sub 3} can be fluxed away by reactions that form alkali chromates or volatilized as chromic acid. This paper reviews recent research on superheater corrosion mechanisms and superheater alloy performance in biomass boilers firing black liquor, biomass fuels, blends of biomass with fossil fuels and municipal waste.

Sharp, William (Sandy) [SharpConsultant; Singbeil, Douglas [FPInnovations; Keiser, James R [ORNL

2012-01-01T23:59:59.000Z

133

Estimating forest biomass in the USA using generalized allometric models and MODIS land products  

E-Print Network (OSTI)

Estimating forest biomass in the USA using generalized allometric models and MODIS land products 2006; published 11 May 2006. [1] Spatially-distributed forest biomass components are essential to understand carbon cycle and the impact of biomass burning emissions on air quality. We estimated the density

Kuligowski, Bob

134

Biomass Power: Program overview fiscal years 1993--1994  

DOE Green Energy (OSTI)

The Biomass Power Program and industry are developing technologies to expand the use of biomass that include methods of feedstock production and the equipment to convert feedstocks into electric power or process heat. With the help of advanced biomass power technologies and new feedstock supply systems, as much as 50,000 megawatts (MW) of biomass power capacity will be in place by the year 2010. The Biomass Power Program supports the development of three technologies--gasification, pyrolysis, and direct combustion--from the laboratory bench scale to the prototype commercial scale. Gasification equipment produces biogas that is burned in high-efficiency turbine-generators developed for the electric power industry. Pyrolysis processes produce oils from renewable biomass that burn like petroleum to generate electricity. In direct combustion technology, power plants today burn bulk biomass directly to generate electricity. Improving the direct combustion technology of these plants increases efficiency and reduces emissions. In addition to developing these three technologies, the Biomass Power Program supports joint ventures to plan and construct facilities that demonstrate the benefits of biomass power. The Program is supporting joint ventures to conduct 10 case studies of dedicated feedstock supply systems.

NONE

1995-03-01T23:59:59.000Z

135

Russell Biomass | Open Energy Information  

Open Energy Info (EERE)

Russell Biomass Jump to: navigation, search Name Russell Biomass Place Massachusetts Sector Biomass Product Russell Biomass, LLC is developing a 50MW biomass to energy project at...

136

Star Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass Jump to: navigation, search Name Star Biomass Place India Sector Biomass Product Plans to set up biomass projects in Rajasthan. References Star Biomass1 LinkedIn...

137

Energy Basics: Biomass Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Share this resource Biomass Biofuels Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biomass Technologies Photo of a pair of hands...

138

Combustion, pyrolysis, gasification, and liquefaction of biomass  

DOE Green Energy (OSTI)

All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

Reed, T.B.

1980-09-01T23:59:59.000Z

139

Bittersweet and Burning Bush  

NLE Websites -- All DOE Office Websites (Extended Search)

Bittersweet and Burning Bush Nature Bulletin No. 250 December 25, 1982 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation...

140

Soot from the burning of fossil fuels and solid biofuels contributes far more to global  

E-Print Network (OSTI)

Soot from the burning of fossil fuels and solid biofuels contributes far more to global warming Researchers ScienceDaily (July 30, 2010) -- Soot from the burning of fossil fuels and solid biofuels biofuels, such as wood, manure, dung, and other solid biomass used for home heating and cooking in many

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network (OSTI)

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RIS? and DTU Anne Belinda Thomsen (RIS?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

142

Science Activities in Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Activities in Biomass Curriculum: Biomass Power (organic chemistry, genetics, distillation, agriculture, chemicalcarbon cycles, climatology, plants and energy resources...

143

Carbon Neutrality of Biomass Fuels: Case Studies of the Influence of Pretreatment Processes and Accounting Methods  

Science Conference Proceedings (OSTI)

Until recently, combustion of biomass to generate electricity was generally presumed to be carbon neutral, based on the understanding that biomass accumulates carbon dioxide from the atmosphere during its growth, and then releases carbon dioxide when burned, resulting in no net emissions. Prior to 2010, electric utilities anticipated having the ability to co-fire biomass with coal, or replace coal entirely with biomass in existing coal-fired power plants, to reduce their net emissions ...

2012-12-31T23:59:59.000Z

144

Biomass Cofiring in Coal-Fired Boilers  

DOE Green Energy (OSTI)

Cofiring biomass-for example, forestry residues such as wood chips-with coal in existing boilers is one of the easiest biomass technologies to implement in a federal facility. The current practice is to substitute biomass for up to 20% of the coal in the boiler. Cofiring has many benefits: it helps to reduce fuel costs as well as the use of landfills, and it curbs emissions of sulfur oxide, nitrogen oxide, and the greenhouse gases associated with burning fossil fuels. This Federal Technology Alert was prepared by the Department of Energy's Federal Energy Management Program to give federal facility managers the information they need to decide whether they should pursue biomass cofiring at their facilities.

Not Available

2004-06-01T23:59:59.000Z

145

Thermal Use of Biomass in The United States | Open Energy Information  

Open Energy Info (EERE)

of Biomass in The United States of Biomass in The United States Jump to: navigation, search The biomass heat exchanger furnace can burn husklage, wood residue, or other biomass fuels to produce warm air for space heating or for process use such as grain drying. Courtesy of DOE/NREL. Credit - Energetics The United States much less biomass to produce thermal energy even when compared with developed countries. In 2003, the United States only consumed 727 kilotons of oil equivalent (ktoe) of biomass to produce thermal energy while consuming 6,078 ktoe of biomass to produce electricity. On the other hand, Europe consumed 6,978 ktoe of biomass to produce useful thermal energy while consuming 5,663 ktoe of biomass as electricity. In Europe (especially Sweden and other Nordic Countries) the use of biomass for heat

146

Sun tanning/burning  

NLE Websites -- All DOE Office Websites (Extended Search)

Sun tanning/burning Sun tanning/burning Name: Richardo Cossyleon Location: N/A Country: N/A Date: N/A Question: Why doesn't the sun affect or burn people with dark pigment in their skin? Replies: Good question! The pigment, melanin, is more toward the surface of the upper skin layer and absorbs ultraviolet rays from the Sun or artificial sources. This absorption protects the lower layers from damage and inflammation (burning). A very dark skinned person may have over a 1000X the protection from UV compared to a fair skinned person. Fair skinned people should use sun-block lotions especially early in the warm season AND keep exposure to the sun, particularly at midday, to less than 30 min. Even if a person gets a good tan, the sun's UV will age the skin over time. It will get wrinkled and develop age lines, etc. after many years of exposure. Moderation is the key!

147

Schiller Biomass Con Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Schiller Biomass Con Biomass Facility Jump to: navigation, search Name Schiller Biomass Con Biomass...

148

Ware Biomass Cogen Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Ware Biomass Cogen Biomass Facility Jump to: navigation, search Name Ware Biomass Cogen Biomass...

149

Open Burning Permit Events Management  

E-Print Network (OSTI)

Open Burning Permit Events Management Form Revision Date: 09/29/2010 OpenBurningPermit.docx A Use being burned: (check all that apply) [ ] Small logs (less than 16 in. long) [ ] Finished Lumber________________________________ As the individual responsible for this event, I have read the attached Regulations for Open Burning. The sponsoring

Manning, Sturt

150

NREL: Biomass Research - Biomass Characterization Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Characterization Projects Biomass Characterization Projects A photo of a magnified image on a computer screen. Many blue specks and lines in different sizes and shapes are visible on top of a white background. A microscopic image of biomass particles. Through biomass characterization projects, NREL researchers are exploring the chemical composition of biomass samples before and after pretreatment and during processing. The characterization of biomass feedstocks, intermediates, and products is a critical step in optimizing biomass conversion processes. Among NREL's biomass characterization projects are: Feedstock/Process Interface NREL is working to understand the effects of feedstock and feedstock pre-processing on the conversion process and vice versa. The objective of the task is to understand the characteristics of biomass feedstocks

151

Definition: Biomass Cook Stove | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Biomass Cook Stove Jump to: navigation, search Dictionary.png Biomass Cook Stove A Stove that is heated by burning wood, charcoal, animal dung or crop residue. Cook stoves are the most common way of cooking and heating food in developing countries.[1] View on Wikipedia Wikipedia Definition "Cooking stove" redirects here. For a kitchen cooker, stove, range, oven, or stove top, see Kitchen stove. In cooking, a cook stove is heated by burning wood, charcoal, animal dung or crop residue. Cook stoves are commonly used for cooking and heating food in developing countries. Developing countries consume little energy compared to developed nations; however, over 50% of the energy that they do use goes into cooking food.

152

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

Ergun, Sabri

2013-01-01T23:59:59.000Z

153

CATALYTIC LIQUEFACTION OF BIOMASS  

E-Print Network (OSTI)

liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

Seth, Manu

2012-01-01T23:59:59.000Z

154

Exploration of supercritical water gasification of biomass using batch reactor .  

E-Print Network (OSTI)

??The focus of this study is on gasification of a biomass in supercritical water. Vapor mass yield in a batch reactor after 20 minutes in (more)

Venkitasamy, Chandrasekar

2011-01-01T23:59:59.000Z

155

Atmospheric Fluidized Bed Combustion for Power Production from Biomass  

Science Conference Proceedings (OSTI)

Atmospheric fluidized bed combustion (AFBC) technologyincluding smaller bubbling fluidized bed (BFB) as well as circulating fluidized bed (CFB) combustor unitsprovides robust combustion with high thermal inertia. This means that AFBC units can successfully respond to variations in ash content, calorific value, and moisture content commonly encountered in burning biomass fuels. This report describes AFBC technology and its deployment for generating steam for power plants using a wide variety of biomass fu...

2010-01-28T23:59:59.000Z

156

Woody Biomass Supply Issues  

Science Conference Proceedings (OSTI)

Woody biomass is the feedstock for the majority of biomass power producers. Woody biomass consists of bark and wood and is generally obtained as a byproduct or waste product. Approximately 40% of timber biomass is left behind in the form of slash, consisting of tree tops, branches, and stems after a timber harvest. Collecting and processing this residue provides the feedstock for many utility biomass projects. Additional sources of woody biomass include urban forestry, right-of-way clearance, and trees k...

2011-03-31T23:59:59.000Z

157

Original article Biomass of root and shoot systems  

E-Print Network (OSTI)

Original article Biomass of root and shoot systems of Quercus coccifera shrublands in Eastern Spain biomass of kermes oak shrublands (Quercus coccifera L.), an evergreen sclerophyllous species common- mass has been measured on 320 1-m2 plots. Total biomass varies with age and ranges between 0.4 (7

Recanati, Catherine

158

NREL: Biomass Research - Biomass Characterization Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Characterization Capabilities Biomass Characterization Capabilities A photo of a man wearing a white lab coat and looking into a large microscope. A researcher uses an Atomic Force Microscope to image enzymes used in biochemical conversion. Through biomass characterization, NREL develops, refines, and validates rapid and cost-effective methods to determine the chemical composition of biomass samples before and after pretreatment, as well as during bioconversion processing. Detailed and accurate characterization of biomass feedstocks, intermediates, and products is a necessity for any biomass-to-biofuels conversion. Understanding how the individual biomass components and reaction products interact at each stage in the process is important for researchers. With a large inventory of standard biomass samples as reference materials,

159

Tracy Biomass Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Tracy Biomass Biomass Facility Tracy Biomass Biomass Facility Jump to: navigation, search Name Tracy Biomass Biomass Facility Facility Tracy Biomass Sector Biomass Location San Joaquin County, California Coordinates 37.9175935°, -121.1710389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9175935,"lon":-121.1710389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

NREL: Biomass Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Catalytic conversion of biomass.  

E-Print Network (OSTI)

?? Catalytic processes for conversion of biomass to transportation fuels have gained an increasing attention in sustainable energy production. The biomass can be converted to (more)

Calleja Aguado, Raquel

2013-01-01T23:59:59.000Z

162

Biomass pyrolysis for chemicals.  

E-Print Network (OSTI)

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

163

CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS  

DOE Green Energy (OSTI)

The following are proposed activities for quarter 3 (12/15/00-3/14/01): (1) Conduct TGA and fuel characterization studies - Task 1; (2) Continue to perform re-burn experiments. - Task 2; (3) Design fixed bed combustor. - Task 3; and (4) Modify the PCGC2 code to include moisture evaporation model - Task 4. The following were achieved During Quarter 3 (12/15/0-3/14/01): (1) Conducted TGA and Fuel Characterization studies (Appendix I). A comparison of -fuel properties, TGA traces etc is given in Appendix I. Litter has 3 and 6 times more N compared to coal on mass and heat basis. The P of litter is almost 2 % (Task 1). Both litter biomass (LB) and feedlot biomass (FB) have been pulverized. The size distributions are similar for both litter and FB in that 75 % pass through 150 {micro}m sieve while for coal 75 % pass through 60 {micro}m sieve. Rosin Rammler curve parameters are given. The TGA characteristics of FB and LB are similar and pyrolysis starts at 100 C below that of coal; (2) Reburn experiments with litter and with FB have been performed (Appendix II) -Task 2. Litter is almost twice effective (almost 70--90 % reduction) compared to coal in reducing the NOx possibly due to presence of N in the form of NH{sub 3}; (3) Designed fixed bed gasifier/combustor (Appendix III) - Task 3; and (4) Modified PCGC2 to include moisture evaporation model in coal and biomass particles. (Appendix IV) - Task 4.

Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

2001-05-10T23:59:59.000Z

164

Biomass Boiler and Furnace Emissions and Safety Regulations in the  

Open Energy Info (EERE)

Biomass Boiler and Furnace Emissions and Safety Regulations in the Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency/Company /Organization: CONEG Policy Research Center Inc. Partner: Massachusetts Department of Energy Resources, Rick Handley and Associates, Northeast States for Coordinated Air Use Management (NESCAUM) Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, Economic Development Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Other Website: www.mass.gov/Eoeea/docs/doer/renewables/biomass/DOER%20Biomass%20Emiss Country: United States

165

BARRIER ISSUES TO THE UTILIZATION OF BIOMASS  

DOE Green Energy (OSTI)

In summary, stoker-fired boilers that cofire or switch to biomass fuel may potentially have to deal with ash behavior issues such as production of different concentrations and quantities of fine particulate or aerosols and ash-fouling deposition. Stoker boiler operators that are considering switching to biomass and adding potential infrastructure to accommodate the switch may also at the same time be looking into upgrades that will allow for generating additional power for sale on the grid. This is the case for the feasibility study being done currently for a small (<1-MW) stoker facility at the North Dakota State Penitentiary, which is considering not only the incorporation of a lower-cost biomass fuel but also a refurbishing of the stoker boiler to burn slightly hotter with the ability to generate more power and sell excess energy on the grid. These types of fuel and boiler changes can greatly affect ash behavior issues.

Greg F. Weber; Christopher J. Zygarlicke

2001-05-01T23:59:59.000Z

166

Biomass/Biogas | Open Energy Information  

Open Energy Info (EERE)

Biomass/Biogas Biomass/Biogas < Biomass Jump to: navigation, search Agricultural residues are defined as the residues from production of the following crops. * Corn * Wheat * Soybeans * Cotton * Sorghum * Barley * Oats * Rice * Rye * Canola * Beans * Peas * Peanuts * Potatoes * Safflower * Sunflower * Sugarcane * Flaxseed Forest residues are defined as logging residues and other removals. These include material already utilized as well as material that is disposed as waste. Logging residues are the unused portions of trees cut by logging (tops and branches) and left to be burned or decay in the woods. Other removals include trees removed as a part of thinning projects, land clearings, and forest health uses that are not directly associated with round wood product harvests. Primary mill residues include wood materials

167

Production of New Biomass/Waste-Containing Solid Fuels  

DOE Green Energy (OSTI)

CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration in Phase II. In Phase II (June 2001 to December 2004), the project team demonstrated the GranuFlow technology as part of a process to combine paper sludge and coal to produce a composite fuel with combustion and handling characteristics acceptable to existing boilers and fuel handling systems. Bench-scale studies were performed at DOE-NETL, followed by full-scale commercial demonstrations to produce the composite fuel in a 400-tph coal cleaning plant and combustion tests at a 90-MW power plant boiler to evaluate impacts on fuel handling, boiler operations and performance, and emissions. A circuit was successfully installed to re-pulp and inject paper sludge into the fine coal dewatering circuit of a commercial coal-cleaning plant to produce 5,000 tons of a ''composite'' fuel containing about 5% paper sludge. Subsequent combustion tests showed that boiler efficiency and stability were not compromised when the composite fuel was blended with the boiler's normal coal supply. Firing of the composite fuel blend did not have any significant impact on emissions as compared to the normal coal supply, and it did not cause any excursions beyond Title V regulatory limits; all emissions were well within regulatory limits. SO{sub 2} emissions decreased during the composite fuel blend tests as a result of its higher heat content and slightly lower sulfur content as compared to the normal coal supply. The composite fuel contained an extremely high proportion of fines because the parent coal (feedstock to the coal-cleaning plant) is a ''soft'' coal (HGI > 90) and contained a high proportion of fines. The composite fuel was produced and combustion-tested under record wet conditions for the local area. In spite of these conditions, full load was obtained by the boiler when firing the composite fuel blend, and testing was completed without any handling or combustion problems beyond those typically associated with wet coal. Fuel handling and pulverizer performance (mill capacity and outlet temperatures) could become greater concerns when firing composite fuels which contain higher percent

Glenn A. Shirey; David J. Akers

2005-09-23T23:59:59.000Z

168

On the burning behavior of pulverized coal chars  

SciTech Connect

A model that predicts the physical changes that pulverized coal char particles undergo during combustion has been developed. In the model, a burning particle is divided into a number of concentric annular volume elements. The mass loss rate, specific surface area, and apparent density in each volume element depend upon the local particle conditions, which vary as a consequence of the adsorbed oxygen and gas-phase oxygen concentration gradients inside the particle. The model predicts the particle's burning rate, temperature, diameter, apparent density, and specific surface area as combustion proceeds, given ambient conditions and initial char properties. A six-step heterogeneous reaction mechanism is used to describe carbon reactivity to oxygen. A distributed activation energy approach is used to account for the variation in desorption energies of adsorbed O-atoms on the carbonaceous surface. Model calculations support the three burning zones established for the oxidation of pulverized coal chars. The model indicates two types of zone II behavior, however. Under weak zone II burning conditions, constant-diameter burning occurs up to 30% to 50% conversion before burning commences with reductions in both size and apparent density. Under strong zone II conditions, particles burn with reductions in both size and apparent density after an initial short period (conversion) of constant-diameter burning. Model predictions reveal that early in the oxidation process, there is mass loss at constant diameter under all zone II burning conditions. Such weak and strong burning behavior cannot be predicted with the commonly used power-law model for the mode of burning employing a single value for the burning mode parameter. Model calculations also reveal how specific surface area evolves when oxidation occurs in the zone II burning regime. Based on the calculated results, a surface area submodel that accounts for the effects of pore growth and coalescence during combustion under zone I conditions was modified to permit the characterization of the variations in specific surface area that occur during char conversion under zones II conditions. The modified surface area model is applicable to all burning regimes. Calculations also indicate that the particle's effectiveness factor varies during conversion under zone II burning conditions. With the adsorption/desorption mechanism employed, a near first-order Thiele modulus-effectiveness factor relationship is obeyed over the particle's lifetime. (author)

Mitchell, Reginald E.; Ma, Liqiang; Kim, BumJick [Thermosciences Group, Mechanical Engineering Department, Stanford University, Stanford, CA 94305-3032 (United States)

2007-11-15T23:59:59.000Z

169

Biomass power industry: Assessment of key players and approaches for DOE and industry interaction. Final report  

DOE Green Energy (OSTI)

This report reviews the status of the US biomass power industry. The topics of the report include current fuels and the problems associated with procuring, transporting, preparing and burning them, competition from natural gas projects because of the current depressed natural gas prices, need for incentives for biomass fueled projects, economics, market potential and expansion of US firms overseas.

None

1993-07-01T23:59:59.000Z

170

Biomass treatment method  

DOE Patents (OSTI)

A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

Friend, Julie (Claymont, DE); Elander, Richard T. (Evergreen, CO); Tucker, III; Melvin P. (Lakewood, CO); Lyons, Robert C. (Arvada, CO)

2010-10-26T23:59:59.000Z

171

Vista Program Capabilities for Analysis of Biomass Co-Firing  

Science Conference Proceedings (OSTI)

The ever-increasing focus on greenhouse gas emissions reductions is of critical importance to coal-fired power plants, as they produce a large amount of the total anthropogenic CO2 emissions. One commonly considered method of reducing the net CO2 emissions of a coal-fired power plant is by burning renewable biomass to generate heat and power. Although biomass is the oldest combustible fuel, knowledge of the effects that co-firing biomass will have on a coal-fired boiler is sometimes lacking at power plan...

2010-02-02T23:59:59.000Z

172

Environmental Life Cycle Implications of Fuel Oxygenate Production from California Biomass  

SciTech Connect

Historically, more than 90% of the excess agricultural residue produced in California (approximately 10 million dry metric tons per year) has been disposed through open-field burning. Concerns about air quality have prompted federal, state, and local air quality agencies to tighten regulations related to this burning and to look at disposal alternatives. One use of this biomass is as an oxygenated fuel. This report focuses on quantifying and comparing the comprehensive environmental flows over the life cycles of two disposal scenarios: (1) burning the biomass, plus producing and using MTBE; and (2) converting and using ETBE.

Kadam, K. L. (National Renewable Energy Laboratory); Camobreco, V. J.; Glazebrook, B. E. (Ecobalance Inc.); Forrest, L. H.; Jacobson, W. A. (TSS Consultants); Simeroth, D. C. (California Air Resources Board); Blackburn, W. J. (California Energy Commission); Nehoda, K. C. (California Department of Forestry and Fire Protection)

1999-05-20T23:59:59.000Z

173

Smoke Management for Prescribed Burning  

E-Print Network (OSTI)

Smoke Management for Prescribed Burning E-1008 Oklahoma Cooperative Extension Service Division of Agricultural Sciences and Natural Resources Oklahoma State University Smoke Management for Prescribed Burning Extension #12;#12;Smoke Management for Prescribed Burning John R. Weir Research Associate Natural Resource

Balasundaram, Balabhaskar "Baski"

174

Burning Plasma Developments Presented to  

E-Print Network (OSTI)

Burning Plasma Developments Dale Meade Presented to VLT Program Advisory Committee UCLA December 4 and Burning Plasma Issues · NSO PAC Activities First Meeting July 20-21, 2001 at GA Action Items and Status Second Meeting January 17-18, 2001 at MIT Agenda items · FuSAC Recommendation on a burning plasma

175

Woodland Biomass Power Ltd Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Woodland Biomass Power Ltd Biomass Facility Jump to: navigation, search Name Woodland Biomass Power...

176

Fibrominn Biomass Power Plant Biomass Facility | Open Energy...  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Fibrominn Biomass Power Plant Biomass Facility Jump to: navigation, search Name Fibrominn Biomass Power...

177

NREL: Biomass Research - Standard Biomass Analytical Procedures  

NLE Websites -- All DOE Office Websites (Extended Search)

in the pertinent LAPs. Workbooks are available for: Wood (hardwood or softwood) Corn stover (corn stover feedstock) Biomass hydrolyzate (liquid fraction produced from...

178

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

179

Hydrothermal Liquefaction of Biomass  

SciTech Connect

Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the carbohydrate structures as they have been further reacted to phenolic Aldol condensation products. The bio-oil

Elliott, Douglas C.

2010-12-10T23:59:59.000Z

180

Biomass for Electricity Generation  

Reports and Publications (EIA)

This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

Zia Haq

2002-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Biomass Energy Program  

Energy.gov (U.S. Department of Energy (DOE))

The Biomass Energy Program assists businesses in installing biomass energy systems. Program participants receive up to $75,000 in interest subsidy payments to help defray the interest expense on...

182

Small Modular Biomass Systems  

DOE Green Energy (OSTI)

Fact sheet that provides an introduction to small modular biomass systems. These systems can help supply electricity to rural areas, businesses, and people without power. They use locally available biomass fuels such as wood, crop waste, and animal manures.

Not Available

2002-12-01T23:59:59.000Z

183

TORREFACTION OF BIOMASS.  

E-Print Network (OSTI)

??Torrefaction is a thermo-chemical pre-treatment of biomass within a narrow temperature range from 200C to 300C, where mostly the hemicellulose components of a biomass depolymerise. (more)

Dhungana, Alok

2011-01-01T23:59:59.000Z

184

Biomass One Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Facility Biomass One Sector Biomass Owner Biomass One LP Location White City, Oregon Coordinates 42.4333333°, -122.8338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4333333,"lon":-122.8338889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

185

Biomass Cofiring Update 2002  

Science Conference Proceedings (OSTI)

Biomass is a renewable energy source. When cofired with coal in a plant that would normally fire 100% coal as the fuel, biomass becomes a renewable source of electricityfor that fraction of electricity that is generated from the biomass fraction of the heat in the fuel mix to the power plant. For electric power generation organizations that have coal-fired generation, cofiring biomass with coal will often be the lowest-cost form of renewable power.

2003-07-11T23:59:59.000Z

186

Original article Root biomass and biomass increment in a beech  

E-Print Network (OSTI)

Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

Recanati, Catherine

187

AVAILABLE NOW! Biomass Funding  

E-Print Network (OSTI)

AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

188

NREL: Biomass Research - Alexandre Chapeaux  

NLE Websites -- All DOE Office Websites (Extended Search)

biofuels with industrial partners. Alex's research areas of interest are: Integrated biomass processing High solids biomass conversion Fermentation development Separation...

189

Understanding Biomass Feedstock Variability  

SciTech Connect

If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

2013-01-01T23:59:59.000Z

190

Natural organic compounds as tracers for biomass combustion in aerosols  

SciTech Connect

Biomass combustion is an important primary source of carbonaceous particles in the global atmosphere. Although various molecular markers have already been proposed for this process, additional specific organic tracers need to be characterized. The injection of natural product organic tracers to smoke occurs primarily by direct volatilization/steam stripping and by thermal alteration based on combustion temperature. The degree of alteration increases as the burn temperature rises and the moisture content of the fuel decreases. Although the molecular composition of organic matter in smoke particles is highly variable, the molecular structures of the tracers are generally source specific. The homologous compound series and biomarkers present in smoke particles are derived directly from plant wax, gum and resin by volatilization and secondarily from pyrolysis of biopolymers, wax, gum and resin. The complexity of the organic components of smoke aerosol is illustrated with examples from controlled burns of temperate and tropical biomass fuels. Burning of biomass from temperate regions (i.e., conifers) yields characteristic tracers from diterpenoids as well as phenolics and other oxygenated species, which are recognizable in urban airsheds. The major organic components of smoke particles from tropical biomass are straight-chain, aliphatic and oxygenated compounds and triterpenoids. The precursor-to-product approach of organic geochemistry can be applied successfully to provide tracers for studying smoke plume chemistry and dispersion.

Simoneit, B.R.T. [Brookhaven National Lab., Upton, NY (United States)]|[Oregon State Univ., Corvallis, OR (United States). Coll. of Oceanic and Atmospheric Sciences; Abas, M.R. bin [Brookhaven National Lab., Upton, NY (United States)]|[Univ. of Malaya, Kuala Lumpur (Malaysia); Cass, G.R. [Brookhaven National Lab., Upton, NY (United States)]|[California Inst. of Tech., Pasadena, CA (United States). Environmental Engineering Science Dept.; Rogge, W.F. [Brookhaven National Lab., Upton, NY (United States)]|[Florida International Univ., University Park, FL (United States). Dept. of Civil and Environmental Engineering; Mazurek, M.A. [Brookhaven National Lab., Upton, NY (United States); Standley, L.J. [Academy of Natural Sciences, Avondale, PA (United States). Stroud Water Research Center; Hildemann, L.M. [Stanford Univ., CA (United States). Dept. of Civil Engineering

1995-08-01T23:59:59.000Z

191

BARRIER ISSUES TO THE UTILIZATION OF BIOMASS  

Science Conference Proceedings (OSTI)

In summary, stoker-fired boilers that cofire or switch to biomass fuel may potentially have to deal with ash behavior issues such as production of different concentrations and quantities of fine particulate or aerosols and ash-fouling deposition. Stoker boiler operators that are considering switching to biomass and adding potential infrastructure to accommodate the switch may also at the same time be looking into upgrades that will allow for generating additional power for sale on the grid. This is the case for the feasibility study being done currently for a small (boiler to burn slightly hotter with the ability to generate more power and sell excess energy on the grid. These types of fuel and boiler changes can greatly affect ash behavior issues.

Greg F. Weber; Christopher J. Zygarlicke

2001-05-01T23:59:59.000Z

192

Department of Energy Planning Cookstoves Research, Releases Biomass  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Planning Cookstoves Research, Releases Biomass Planning Cookstoves Research, Releases Biomass Technical Meeting Summary Department of Energy Planning Cookstoves Research, Releases Biomass Technical Meeting Summary May 10, 2011 - 12:02pm Addthis Improved cookstove in village of Santa Cruz de Lanchi, installed through Peru’s national cookstove program. | Photo credit: Ranyee Chiang, DOE Improved cookstove in village of Santa Cruz de Lanchi, installed through Peru's national cookstove program. | Photo credit: Ranyee Chiang, DOE Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy What does this mean for me? Clean-burning cookstoves in the developing world will reduce carbon emissions and lessen the effects of deforestation. Cookstoves may seem like a strange fit for the Department of Energy, an

193

Emissions of trace gases and aerosols during the open combustion of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions of trace gases and aerosols during the open combustion of biomass Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory Title Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory Publication Type Journal Article Year of Publication 2009 Authors McMeeking, Gavin R., Sonia M. Kreidenweis, Stephen Baker, Christian M. Carrico, Judith C. Chow, Jeffrey Collett L. Jr., Wei Min Hao, Amanda S. Holden, Thomas W. Kirchstetter, William C. Malm, Hans Moosmuller, Amy P. Sullivan, and Cyle E. Wold Journal Journal of Geophysical Research Volume 114 Abstract We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U.S. domestic fuels: laboratory-based emission factors have not previously been reported for many commonly burned species that are frequently consumed by fires near populated regions and protected scenic areas. The plants we tested included the chaparral species chamise, manzanita, and ceanothus, and species common to the southeastern United States (common reed, hickory, kudzu, needlegrass rush, rhododendron, cord grass, sawgrass, titi, and wax myrtle). Fire-integrated emission factors for gas-phase CO2, CO, CH4, C2-4 hydrocarbons, NH3, SO2, NO, NO2, HNO3, and particle-phase organic carbon (OC), elemental carbon (EC), SO4 2, NO3, Cl, Na+, K+, and NH4 + generally varied with both fuel type and with the fire-integrated modified combustion efficiency (MCE), a measure of the relative importance of flaming- and smoldering-phase combustion to the total emissions during the burn. Chaparral fuels tended to emit less particulate OC per unit mass of dry fuel than did other fuel types, whereas southeastern species had some of the largest observed emission factors for total fine particulate matter. Our measurements spanned a larger range of MCE than prior studies, and thus help to improve estimates of the variation of emissions with combustion conditions for individual fuels.

194

Bending Burning Matches and Crumpling Burning Paper Texas A&M University  

E-Print Network (OSTI)

Bending Burning Matches and Crumpling Burning Paper Zeki Melek Texas A&M University Department burning. Specifically, we can simulate the bending of burning matches, and the folding of burning paper interactively. 1 Introduction We present a simple method to increase the realism of the simu- lation of burning

Keyser, John

195

BLM Burns District Office | Open Energy Information  

Open Energy Info (EERE)

Burns District Office Jump to: navigation, search Name BLM Burns District Office Place Hines, Oregon References BLM Burns District Office1 This article is a stub. You can help...

196

INHIBITION EFFECTS ON EXTINCTION OF POLYMER BURNING  

E-Print Network (OSTI)

ON EXTINCTION OF POLYMER BURNING* W.J. Pitz R.F. SawyerQuantitative determinations of burning rates, extinctionlayer at the surface of a burning polymer. The char l ayer

Pitz, W.J.

2011-01-01T23:59:59.000Z

197

Predicted effects of prescribed burning and harvesting on forest recovery and sustainability in southwest Georgia, USA  

SciTech Connect

A model-based analysis of the effect of prescribed burning and forest thinning or clear-cutting on stand recovery and sustainability was conducted at Fort Benning, GA, in the southeastern USA. Two experiments were performed with the model. In the first experiment, forest recovery from degraded soils was predicted for 100 years with or without prescribed burning. In the second experiment simulations began with 100 years of predicted stand growth, then forest sustainability was predicted for an additional 100 years under different combinations of prescribed burning and forest harvesting. Three levels of fire intensity (low, medium, and high), that corresponded to 17%, 33%, and 50% consumption of the forest floor C stock by fire, were evaluated at 1-, 2-, and 3-year fire return intervals. Relative to the control (no fire), prescribed burning with a 2- or 3-year return interval caused only a small reduction in predicted steady state soil C stocks ({le} 25%) and had no effect on steady state tree wood biomass, regardless of fire intensity. Annual high intensity burns did adversely impact forest recovery and sustainability (after harvesting) on less sandy soils, but not on more sandy soils that had greater N availability. Higher intensity and frequency of ground fires increased the chance that tree biomass would not return to pre-harvest levels. Soil N limitation was indicated as the cause of unsustainable forests when prescribed burns were too frequent or too intense to permit stand recovery.

Garten Jr, Charles T [ORNL

2006-12-01T23:59:59.000Z

198

Test Burns of Torrefied Wood  

Science Conference Proceedings (OSTI)

Biomass fuel is an important option for mitigating the production of carbon dioxide emissions from generating units that are designed to fire conventional fossil fuels. The key attraction of biomass fuels is that they are carbon neutralthe carbon dioxide released by combustion was fixed or removed from the atmosphere by photosynthesis, so its return does not provide a net carbon addition. Utilities in the United States and Canada are considering options both for co-firing biomass with coal and for comple...

2010-06-24T23:59:59.000Z

199

NREL: Biomass Research - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Capabilities A photo of a series of large metal tanks connected by a network of pipes. Only the top portion of the tanks is visible above the metal floor grate. Each tank has a round porthole on the top. Two men examine one of the tanks at the far end of the floor. Sugars are converted into ethanol in fermentation tanks. This ethanol is then separated, purified, and recovered for use as a transportation fuel. NREL biomass researchers and scientists have strong capabilities in many facets of biomass technology that support the cost-effective conversion of biomass to biofuels-capabilities that are in demand. The NREL biomass staff partners with other national laboratories, academic institutions, and commercial entities at every stage of the biomass-to-biofuels conversion process. For these partners, our biomass

200

Complex pendulum biomass sensor  

DOE Patents (OSTI)

A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

2007-12-25T23:59:59.000Z

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Biomass for Electricity Generation - Table 9  

U.S. Energy Information Administration (EIA)

Modeling and Analysis Papers> Biomass for Electricity Generation : Biomass for Electricity Generation. Table 9. Biomass-Fired Electricity Generation ...

202

Biomass for Electricity Generation - Table 3  

U.S. Energy Information Administration (EIA)

Modeling and Analysis Papers> Biomass for Electricity Generation : Biomass for Electricity Generation. Table 3. Biomass Resources by Price: Quantities ...

203

Biomass Cofiring Handbook  

Science Conference Proceedings (OSTI)

This handbook has been prepared as a 147how tomanual for those interested in biomass cofiring in cyclone- or pulverized-coal-fired boilers. It contains information regarding all aspects of biomass cofiring, including biomass materials and procurement, handling, storage, pulverizing, feeding, gaseous emissions, ash handling, and general economics. It relies on actual utility experience over the past many years from plants mainly in the United States, but some experience also in Europe and Australia. Many ...

2009-11-05T23:59:59.000Z

204

Engine fuels from biomass  

SciTech Connect

Methods discussed for the conversion of biomass to engine fuels include the production of producer gas, anaerobic fermentation to give biogas, fermentation of sugars and starches to give EtOH, and the production of synthesis gas for conversion to MeOH or hydrocarbons. Also discussed are the suitability of these fuels for particular engines, biomass availability, and the economics of biomass-derived engine fuels.

Parker, H.W.

1982-01-01T23:59:59.000Z

205

Biomass Gasification Syngas Cleanup  

Science Conference Proceedings (OSTI)

In December 2012, the Electric Power Research Institute (EPRI) published report 1023994, Engineering and Economic Evaluation of Biomass Gasification, prepared by CH2M HILL Engineers, Inc. (CH2M HILL). It provided a global overview of commercially available biomass gasification technologies that can be used for power production in the 25- to 50-MWe range. The report provided detailed descriptions of biomass gasification technologies, typical operational parameters, emissions information, and ...

2013-12-23T23:59:59.000Z

206

Biomass Cofiring Guidelines  

Science Conference Proceedings (OSTI)

Biomass, primarily wood waste such as sawdust, has been cofired in over twenty utility coal-fired boilers in the United States at cofiring levels where the biomass provides from 1% to 10% of the heat input to the boiler. These guidelines present insights and conclusions from five years of EPRI assessment and testing of biomass cofiring and will enable utility engineers and power plant managers to evaluate their own options and plan their own tests.

1997-10-09T23:59:59.000Z

207

Advanced Biomass Gasification Projects  

DOE Green Energy (OSTI)

DOE has a major initiative under way to demonstrate two high-efficiency gasification systems for converting biomass into electricity. As this fact sheet explains, the Biomass Power Program is cost-sharing two scale-up projects with industry in Hawaii and Vermont that, if successful, will provide substantial market pull for U.S. biomass technologies, and provide a significant market edge over competing foreign technologies.

Not Available

1997-08-01T23:59:59.000Z

208

Biomass Gasification Technology Commercialization  

Science Conference Proceedings (OSTI)

Reliable cost and performance data on biomass gasification technology is scarce because of limited experience with utility-scale gasification projects and the reluctance of vendors to share proprietary information. The lack of this information is a major obstacle to the implementation of biomass gasification-based power projects in the U.S. market. To address this problem, this report presents four case studies for bioenergy projects involving biomass gasification technologies: A utility-scale indirect c...

2010-12-10T23:59:59.000Z

209

Hydrogen production from biomass .  

E-Print Network (OSTI)

??Biomass energy encompasses a broad category of energy derived from plants and animals as well as the residual materials from each. Hydrogen gas is an (more)

Hahn, John J.

2006-01-01T23:59:59.000Z

210

NREL: Biomass Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

211

Co-firing biomass  

SciTech Connect

Concern about global warming has altered the landscape for fossil-fuel combustion. The advantages and challenges of co-firing biomass and coal are discussed. 2 photos.

Hunt, T.; Tennant, D. [Hunt, Guillot & Associates LLC (United States)

2009-11-15T23:59:59.000Z

212

Biomass Processing Photolibrary  

DOE Data Explorer (OSTI)

Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

213

Florida Biomass Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Florida Biomass Energy, LLC Place Florida Sector Biomass Product Florida-based biomass project developer. References Florida Biomass Energy, LLC1 LinkedIn Connections CrunchBase...

214

Northeast regional biomass program. Retrospective, 1983--1993  

DOE Green Energy (OSTI)

Ten years ago, when Congress initiated the Regional Biomass Energy Program, biomass fuel use in the Northeast was limited primarily to the forest products industry and residential wood stoves. An enduring form of energy as old as settlement in the region, residential wood-burning now takes its place beside modern biomass combustion systems in schools and other institutions, industrial cogeneration facilities, and utility-scale power plants. Biomass today represents more than 95 percent of all renewable energy consumed in the Northeast: a little more than one-half quadrillion BTUs yearly, or five percent of the region`s total energy demand. Yet given the region`s abundance of overstocked forests, municipal solid waste and processed wood residues, this represents just a fraction of the energy potential the biomass resource has to offer.This report provides an account of the work of the Northeast Regional Biomass Program (NRBP) over it`s first ten years. The NRBP has undertaken projects to promote the use of biomass energy and technologies.

Savitt, S.; Morgan, S. [eds.] [Citizens Conservation Corp., Boston, MA (United States)

1995-01-01T23:59:59.000Z

215

Summary of NOx Emissions Reduction from Biomass Cofiring  

DOE Green Energy (OSTI)

NOx emissions from commercial- and pilot-scale biomass/coal cofiring demonstrations are reduced as the percentage of energy supplied to the boiler by the biomass fuel is increased. This report attempts to provide a summary of the NO{sub x} emissions measured during recent biomass/coal cofiring demonstrations. These demonstrations were carried out at the commercial and pilot-scales. Commercial-scale tests were conducted in a variety of pulverized fuel boiler types including wall-fired, T-fired, and cyclone furnaces. Biomass input ranged up to 20% on a mass basis and 10% on an energy basis.

Dayton, D.

2002-05-01T23:59:59.000Z

216

NREL: Biomass Research - Standard Procedures for Microalgal Biofuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Standard Procedures for Microalgal Biofuels Analysis Standard Procedures for Microalgal Biofuels Analysis Capabilities in Microalgal Analysis NREL's Algal Biofuels Research team can work with you to analyze the chemical composition of algae as a biomass feedstock. NREL develops laboratory analytical procedures (LAPs) for analyzing microalgal biofuels. These procedures help scientists and analysts understand more about the chemical composition of algae as a feedstock to convert to biofuels. For more procedures, see the biomass characterization LAPs. Laboratory Analytical Procedures NREL wrote these analytical procedures to help the research community analyze algae. Summative Mass Analysis of Algal Biomass - Integration of Analytical Procedures Download Procedure This procedure guides the integration of LAPs to measure algal biomass

217

Burning Plasma Support Research Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Burning Plasma Support Research Program on Alcator C-Mod Presented by: Stephen M. Wolfe Alcator C-Mod Five Year Proposal Review MIT Plasma Science & Fusion Center Cambridge, MA May...

218

Ash Properties Analysis from Co-Firing Biomass and Coal  

Science Conference Proceedings (OSTI)

Power plant interest in renewable energy has been increasing, especially in response to legislative requirements to include renewables in the generation mix. One promising renewable strategy is co-firing biomass with coal, in pulverized coal- (PC-) fired units. The objective of this research is to provide quantitative data on full-scale test burn samples to demonstrate changes in ash characteristics and to identify anomalies affecting particulate material (PM) collection efficiency that result from co-fi...

2011-09-06T23:59:59.000Z

219

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY) .......................................................................... 91 Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass) ......................................................................................................................... 111 Appendix 12: Biomass to Energy Project Team, Committee Members, and Project Advisors

220

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY to treatment prescriptions and anticipated outputs of sawlogs and biomass fuel? How many individual operations biomass fuel removed. Typically in plantations. 50% No harvest treatment

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

biomass | OpenEI  

Open Energy Info (EERE)

biomass biomass Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

222

Category:Burns, OR | Open Energy Information  

Open Energy Info (EERE)

Burns, OR Burns, OR Jump to: navigation, search Go Back to PV Economics By Location Media in category "Burns, OR" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Burns OR PacifiCorp (Oregon).png SVFullServiceRestauran... 71 KB SVHospital Burns OR PacifiCorp (Oregon).png SVHospital Burns OR Pa... 74 KB SVLargeHotel Burns OR PacifiCorp (Oregon).png SVLargeHotel Burns OR ... 74 KB SVLargeOffice Burns OR PacifiCorp (Oregon).png SVLargeOffice Burns OR... 69 KB SVMediumOffice Burns OR PacifiCorp (Oregon).png SVMediumOffice Burns O... 71 KB SVMidriseApartment Burns OR PacifiCorp (Oregon).png SVMidriseApartment Bur... 72 KB SVOutPatient Burns OR PacifiCorp (Oregon).png SVOutPatient Burns OR ... 69 KB SVPrimarySchool Burns OR PacifiCorp (Oregon).png

223

Patch Burning: Integrating Fire and Grazing  

E-Print Network (OSTI)

Patch Burning: Integrating Fire and Grazing to Promote Heterogeneity Patch Burning: Integrating Oklahoma Cooperative Extension Service Oklahoma State University June 2013 #12;#12;Patch Burning: Integrating Fire and Grazing to Promote Heterogeneity Patch Burning: Integrating Fire and Grazing to Promote

Balasundaram, Balabhaskar "Baski"

224

FROM YEARNING TO BURNING Marshall Rosenbluth  

E-Print Network (OSTI)

FROM YEARNING TO BURNING Marshall Rosenbluth Possible broad-brush guidelines for "burning plasma" thinking December 6, 2000 The "yearn to burn" is well motivated. Most of us came into the fusion program for many years, the point at which science and the fusion energy goal converge is in a burning plasma

225

Patch Burning: Integrating Fire and Grazing  

E-Print Network (OSTI)

Patch Burning: Integrating Fire and Grazing to Promote Heterogeneity Patch Burning: Integrating Oklahoma Cooperative Extension Service Oklahoma State University September 2007 #12;#12;Patch Burning: Integrating Fire and Grazing to Promote Heterogeneity Patch Burning: Integrating Fire and Grazing to Promote

Debinski, Diane M.

226

NREL: Biomass Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

and green algae and gas bubbles can be seen floating in the liquid. Through biomass research, NREL is developing technologies to convert biomass-plant matter such as...

227

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY study. The Biomass to Energy (B2E) Project is exploring the ecological and economic consequences

228

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Citation: USDA Forest Service, Pacific Southwest Research Station. 2009. Biomass to Energy: Forest

229

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and continuously between the earth's biomass and atmosphere. From a greenhouse gas perspective, forest treatments

230

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY .................................................................................... 33 3.3 BIOMASS POWER PLANT OPERATION MODELS AND DATA

231

Multi-functional biomass systems.  

E-Print Network (OSTI)

??Biomass can play a role in mitigating greenhouse gas emissions by substituting conventional materials and supplying biomass based fuels. Main reason for the low share (more)

Dornburg, Veronika

2004-01-01T23:59:59.000Z

232

SUBCHAPTER D. OUTDOOR BURNING Sec. 352.081. REGULATION OF OUTDOOR BURNING. (a) In this  

E-Print Network (OSTI)

SUBCHAPTER D. OUTDOOR BURNING Sec. 352.081. REGULATION OF OUTDOOR BURNING. (a) In this section measurement that takes into consideration the burning index, spread component, or ignition component court of a county by order may prohibit or restrict outdoor burning in general or outdoor burning

233

Hydropyrolysis of biomass  

DOE Green Energy (OSTI)

The pyrolysis and hydropyrolysis of biomass was investigated. Experimental runs using the biomass (Poplar wood sawdust) were performed using a tubular reactor of dimensions 1 inch inside diameter and 8 feet long heated at a temperature of 800 C and pressures between 450 and 750 psig. At low heat-up rate the reaction precedes in two steps. First pyrolysis takes place at temperatures of 300 to 400 c and subsequent hydropyrolysis takes place at 700 C and above. This is also confirmed by pressurized thermogravimetric analysis (PTGA). Under conditions of rapid heat-up at higher temperatures and higher hydrogen pressure gasification and hydrogasification of biomass is especially effective in producing carbon monoxide and methane. An overall conversion of 88 to 90 wt % of biomass was obtained. This value is in agreement with the previous work of flash pyrolysis and hydropyrolysis of biomass for rapid heat-up and short residence time. Initial rates of biomass conversion indicate that the rate increases significantly with increase in hydrogen pressure. At 800 C and 755 psig the initial rate of biomass conversion to gases is 0.92 1/min.

Kobayashi, Atsushi; Steinberg, M.

1992-01-01T23:59:59.000Z

234

OpenEI - biomass  

Open Energy Info (EERE)

Industrial Biomass Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 http://en.openei.org/datasets/node/827 Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA).

License
Type of License: 

235

WP 3 Report: Biomass Potentials Biomass production potentials  

E-Print Network (OSTI)

WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

236

Hydrogen Burning on Magnetar Surfaces  

E-Print Network (OSTI)

We compute the rate of diffusive nuclear burning for hydrogen on the surface of a "magnetar" (Soft Gamma-Ray Repeater or Anomalous X-Ray Pulsar). We find that hydrogen at the photosphere will be burned on an extremely rapid timescale of hours to years, depending on composition of the underlying material. Improving on our previous studies, we explore the effect of a maximally thick "inert" helium layer, previously thought to slow down the burning rate. Since hydrogen diffuses faster in helium than through heavier elements, we find this helium buffer actually increases the burning rate for magnetars. We compute simple analytic scalings of the burning rate with temperature and magnetic field for a range of core temperature. We conclude that magnetar photospheres are very unlikely to contain hydrogen. This motivates theoretical work on heavy element atmospheres that are needed to measure effective temperature from the observed thermal emission and constrains models of AXPs that rely on magnetar cooling through thick light element envelopes.

P. Chang; P. Arras; L. Bildsten

2004-10-18T23:59:59.000Z

237

Survey of biomass gasification. Volume I. Synopsis and executive summary  

DOE Green Energy (OSTI)

Biomass can be converted by gasification into a clean-burning gaseous fuel that can be used to retrofit existing gas/oil boilers, to power engines, to generate electricity, and as a base for synthesis of methanol, gasoline, ammonia, or methane. This survey describes biomass gasification, associated technologies and issues in three volumes. Volume I contains the synopsis and executive summary, giving highlights of the findings of the other volumes. In Volume II, the technical background necessary for understanding the science, engineering, and commercialization of biomass is presented. In Volume III, the present status of gasification processes is described in detail, followed by chapters on economics, gas conditioning, fuel synthesis, the institutional role to be played by the federal government, and recommendations for future research and development.

None

1979-07-01T23:59:59.000Z

238

Survey of biomass gasification. Volume II. Principles of gasification  

DOE Green Energy (OSTI)

Biomass can be converted by gasification into a clean-burning gaseous fuel that can be used to retrofit existing gas/oil boilers, to power engines, to generate electricity, and as a base for synthesis of methanol, gasoline, ammonia, or methane. This survey describes biomass gasification, associated technologies, and issues in three volumes. Volume I contains the synopsis and executive summary, giving highlights of the findings of the other volumes. In Volume II the technical background necessary for understanding the science, engineering, and commercialization of biomass is presented. In Volume III the present status of gasification processes is described in detail, followed by chapters on economics, gas conditioning, fuel synthesis, the institutional role to be played by the federal government, and recommendations for future research and development.

Reed, T.B. (comp.)

1979-07-01T23:59:59.000Z

239

Biomass | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy » Energy » Biomass Biomass Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy. Featured Energy 101 | Algae-to-Fuel A behind-the-scenes video of how oil from algae is extracted and refined to create clean, renewable transportation fuel. Oregon Hospital Heats Up with a Biomass Boiler Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Highlighting how a rural Oregon hospital was able to cut its heating bills while stimulating the local economy. Ceres: Making Biofuels Bigger and Better A Ceres researcher evaluates the performance of biofuel crops. | Photo courtesy of Ceres, Inc.

240

Energy Basics: Biomass Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from...

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

CLC of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Developments on Chemical Looping Combustion of Biomass Laihong Shen Jiahua Wu Jun Xiao Rui Xiao Southeast University Nanjing, China 2 th U.S. - China Symposium on CO 2 Emissions...

242

Assessment of particulate concentrations from domestic biomass combustion in rural Mexico  

SciTech Connect

Recent evidence has suggested that woodsmoke exposure in developed countries is associated with acute and chronic health impacts. Particulate concentrations were measured in rural Mexican kitchens using biomass combustion for cooking. To investigate differences in indoor particle concentrations between kitchens using different fuels and stove types, measurements were made in eight kitchens using only biomass, six using only liquefied petroleum gas (LPG), six using a combination of biomass and LPG, and three using biomass in ventilated stoves. Outdoor samples were collected at the same time as the indoor samples. PM{sub 10} and PM{sub 2.5} measurements were made with inertial impactors, and particle light scattering was measured continuously with an integrating nephelometer. PM{sub 10} and PM{sub 2.5} concentrations (mean concentrations of 768 and 555 {mu}g m{sup -3}, respectively) in the kitchens burning only biomass were greater than in all other types (biomass > biomass + LPG > ventilated > LPG > outdoor). A similar trend was evident for the indoor/outdoor concentration ratio. Based on the short-term measurements estimated from the nephelometer data, PM{sub 10} and PM{sub 2.5} cooking period average and 5-min peak concentrations were significantly higher (p < 0.05) in kitchens using only biomass than in those using LPG, a combination of LPG and biomass, or a ventilated biomass stove. 20 refs., 3 figs., 3 tabs.

Brauer, M.; Bartlett, K. [Univ. of British Columbia, Vancouer (Canada); Regalado-Pineda, J.; Perez-Padilla, R. [Instituto Nacional de Enfermedades Respiratorias, Tlalpan (Mexico)

1996-01-01T23:59:59.000Z

243

BIOMASS ACTION PLAN FOR SCOTLAND  

E-Print Network (OSTI)

BIOMASS ACTION PLAN FOR SCOTLAND #12; #12;© Crown copyright 2007 ISBN: 978 0 7559 6506 9 Scottish% recyclable. #12;A BIOMASS ACTION PLAN FOR SCOTLAND #12;#12;1 CONTENTS FOREWORD 3 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 9 3. WIDER CONTEXT 13 4. SCOTLAND'S ROLE IN THE UK BIOMASS STRATEGY 17 5. BIOMASS HEATING 23 6

244

Flash hydrogenation of biomass  

DOE Green Energy (OSTI)

It is proposed to obtain process chemistry information on the rapid hydrogenation of biomass (wood and other agricultural products) to produce light liquid and gaseous hydrocarbon fuels and feedstocks. The process is referred to as Flash Hydropyrolysis. The information will be of use in the design and evaluation of processes for the conversion of biomass to synthetic fuels and petrochemical feedstocks. Results obtained in an initial experiment are discussed.

Steinberg, M

1980-01-01T23:59:59.000Z

245

Biomass cogeneration. A business assessment  

DOE Green Energy (OSTI)

This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

Skelton, J.C.

1981-11-01T23:59:59.000Z

246

Open Burning (New Mexico) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Open Burning (New Mexico) Open Burning (New Mexico) Open Burning (New Mexico) < Back Eligibility Commercial Construction General Public/Consumer Industrial Residential Program Info Start Date 2003 State New Mexico Program Type Environmental Regulations Provider New Mexico Environment Department The New Mexico Environment Department's Air Quality Bureau regulates the open burning rules established by the Environmental Improvement Board. These rules are established to protect public health and welfare by establishing controls on pollution produced by open burning. Open burning is allowed for recreational and ceremonial purposes, for barbecuing, for heating purposes in fireplaces, for the noncommercial cooking of food for human consumption and for warming by small wood fires at construction

247

Biomass Power Association (BPA) | Open Energy Information  

Open Energy Info (EERE)

Biomass Power Association (BPA) Biomass Power Association (BPA) Jump to: navigation, search Tool Summary Name: Biomass Power Association (BPA) Agency/Company /Organization: Biomass Power Association Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.usabiomass.org Cost: Free References: Biomass Power Association[1] The website includes information on biomass power basics, renewable electricity standards, and updates on legislation affecting biomass power plants. Overview "The Biomass Power Association is the nation's leading organization working to expand and advance the use of clean, renewable biomass

248

Available online at www.sciencedirect.com Regulation of plant biomass production  

E-Print Network (OSTI)

as raw materials by humans for a myriad of applications, such as burning for energy, pulping and paper of a particular plant is greatly influenced by the efficiency of photosyn- thesis, which supplies raw materials,2 and Zheng-Hua Ye3 Plant biomass used for cellulosic biofuel production is primarily from vegetative tissues

Ye, Zheng-Hua

249

Paradigm Shift: Burning Coal to Geothermal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paradigm Shift: Burning Coal to Geothermal Paradigm Shift: Burning Coal to Geothermal Paradigm Shift: Burning Coal to Geothermal 20121120ballstatepresentation.pdf More Documents...

250

Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames  

E-Print Network (OSTI)

effects on cellular burning structures in lean premixedAnalyzing and Tracking Burning Structures in Lean Premixedthe turbulence of the burning process with the distribution

Bremer, Peer-Timo

2010-01-01T23:59:59.000Z

251

Practical tip: Precooling topical calcineurin inhibitors tube; reduces burning sensation  

E-Print Network (OSTI)

inhibitors tube; reduces burning sensation Sultan Al-salkhenaizan@hotmail.com Abstract Burning sensation at theuse, does reduce the burning sensation and enable most

Al-Khenaizan, Sultan

2010-01-01T23:59:59.000Z

252

Pyrolysis and ignition behavior of coal, cattle biomass, and coal/cattle biomass blends  

E-Print Network (OSTI)

Increases in demand, lower emission standards, and reduced fuel supplies have fueled the recent effort to find new and better fuels to power the necessary equipment for societys needs. Often, the fuels chosen for research are renewable fuels derived from biomass. Current research at Texas A&M University is focused on the effectiveness of using cattle manure biomass as a fuel source in conjunction with coal burning utilities. The scope of this project includes fuel property analysis, pyrolysis and ignition behavior characteristics, combustion modeling, emissions modeling, small scale combustion experiments, pilot scale commercial combustion experiments, and cost analysis of the fuel usage for both feedlot biomass and dairy biomass. This paper focuses on fuel property analysis and pyrolysis and ignition characteristics of feedlot biomass. Deliverables include a proximate and ultimate analysis, pyrolysis kinetics values, and ignition temperatures of four types of feedlot biomass (low ash raw manure [LARM], low ash partially composted manure [LAPC], high ash raw manure [HARM], and high ash partially composted manure [HAPC]) as well as blends of each biomass with Texas lignite coal (TXL). Activation energy results for pure samples of each fuel using the single reaction model rigorous solution were as follows: 45 kJ/mol (LARM), 43 kJ/mol (LAPC), 38 kJ/mol (HARM), 36 kJ/mol (HAPC), and 22 kJ/mol (TXL). Using the distributed activation energy model the activation energies were 169 kJ/mol (LARM), 175 kJ/mol (LAPC), 172 kJ/mol (HARM), 173 kJ/mol (HAPC), and 225 kJ/mol (TXL). Ignition temperature results for pure samples of each of the fuels were as follows: 734 K (LARM), 745 K (LAPC), 727 (HARM), 744 K (HAPC), and 592 K (TXL). There was little difference observed between the ignition temperatures of the 50% blends of coal with biomass and the pure samples of coal as observed by the following results: 606 K (LARM), 571 K (LAPC), 595 K (HARM), and 582 K (HAPC).

Martin, Brandon Ray

2006-12-01T23:59:59.000Z

253

NREL: Biomass Research - Projects in Biomass Process and Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects in Biomass Process and Sustainability Analyses Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global impacts of biomass conversion technologies. These analyses reveal the economic feasibility and environmental benefits of biomass technologies and are useful for government, regulators, and the private sector. NREL's Energy Analysis Office integrates and supports the energy analysis functions at NREL. Among NREL's projects in biomass process and sustainability analyses are: Life Cycle Assessment of Energy Independence and Security Act for Ethanol NREL is determining the life cycle environmental impacts of the ethanol portion of the Energy Independence and Security Act (EISA). EISA mandates

254

Minimally refined biomass fuels: an economic shortcut  

DOE Green Energy (OSTI)

An economic shortcut can be realized if the sugars from which ethanol is made are utilized directly as concentrated aqueous solutions for fuels rather than by further refining them through fermentation and distillation steps. Simple evaporation of carbohydrate solutions from sugar cane or sweet sorghum, or from hydrolysis of starch or cellulose content of many plants yield potential liquid fuels of energy contents (on a volume basis) comparable to highly refined liquid fuels like methanol and ethanol. The potential utilization of such minimally refined biomass derived fuels is discussed and the burning of sucrose-ethanol-water solutions in a small modified domestic burner is demonstrated. Other potential uses of sugar solutions or emulsion and microemulsions in fuel oils for use in diesel or turbine engines are proposed and discussed.

Pearson, R.K.; Hirschfeld, T.B.

1980-07-01T23:59:59.000Z

255

Carbon, water, and heat flux responses to experimental burning and drought  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon, water, and heat flux responses to experimental burning and drought Carbon, water, and heat flux responses to experimental burning and drought in a tallgrass prairie Title Carbon, water, and heat flux responses to experimental burning and drought in a tallgrass prairie Publication Type Journal Article Year of Publication 2012 Authors Fischer, Marc L., Margaret S. Torn, David P. Billesbach, Geoffrey Doyle, Brian Northup, and Sebastien C. Biraud Journal Agricultural and Forest Meteorology Volume 166-167 Pagination 169-174 Keywords Carbon exchange, eddy covariance, Fire, Grassland, Prairie, Water stress Abstract Drought and fire are common disturbances to grassland ecosystems. We report two years of eddy covariance ecosystem-atmosphere fluxes and biometric variables measured in nearby burned and unburned pastures in the US Southern Great Plains. Over the course of the experiment, annual precipitation (∼600 mm yr-1) was lower than the long term mean (∼860 mm yr-1). Soil moisture decreased from productive conditions in March 2005 dry, unproductive conditions during the growing season starting in March 2006. Just prior to the burn in early March 2005, burned and unburned pastures contained 520 ± 60 and 360 ± 40 g C m-2 of total above ground biomass (AGB) and litter, respectively. The fire removed approximately 200 g C m-2 of litter and biomass. In the 2005 growing season following the burn, maximum green AGB was 450 ± 60 and 270 ± 40 g C m-2, with corresponding cumulative annual net ecosystem carbon exchange (NEE) of -330 and -150 g C m-2 for the burned and unburned pastures, respectively. In contrast to NEE, cumulative mean sensible heat and water fluxes were approximately equal in both pastures during the growing season, suggesting either an increase in water use efficiency or a decrease in evaporation in the burned relative to the unburned pasture. In the 2006 growing season, dry conditions decreased carbon uptake and latent heat, and increased sensible heat fluxes. Peak AGB was reduced to 210 ± 30 g C m-2 and 140 ± 30 g C m-2 in the burned and unburned pastures, respectively, while NEE was near zero. These results suggest that the lack of precipitation was responsible for most of the interannual variation in carbon exchange for these un-irrigated prairie pastures.

256

Molecular Beam Mass Spectrometry (MBMS) (Revised) (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides information about Molecular Beam Mass Spectrometry (MBMS) capabilities and applications at NREL's National Bioenergy Center. NREL has six MBMS systems that researchers and industry partners can use to understand thermochemical biomass conversion and biomass composition recalcitrance.

Not Available

2011-07-01T23:59:59.000Z

257

MFE Burning Plasmas Innovative Confinement Concepts (ICCs)  

E-Print Network (OSTI)

MFE Burning Plasmas and Innovative Confinement Concepts (ICCs) Bick Hooper LLNL Presentation power requires: · A burning plasma experiment · An advancing portfolio of ICCs · Plasma physics unified Improved Configurations Magnetic Configurations Knowledge Base Burning Plasma Phys. & Tech. Knowledge Base

258

Schoenberg, Chang, Pompa, Woods, Xu. Burning Index. 1 RH: Burning index in Los Angeles  

E-Print Network (OSTI)

Schoenberg, Chang, Pompa, Woods, Xu. Burning Index. 1 RH: Burning index in Los Angeles A Critical Assessment of the Burning Index in Los Angeles County, California Frederic Paik SchoenbergA,E , Chien: The effectiveness of the Burning Index (BI) in predicting wildfire ac- tivity is assessed using 25 years of area

Schoenberg, Frederic Paik (Rick)

259

Schoenberg, Chang, Keeley, Pompa, Woods, Xu. Burning Index. 1 RH: Burning index in Los Angeles  

E-Print Network (OSTI)

Schoenberg, Chang, Keeley, Pompa, Woods, Xu. Burning Index. 1 RH: Burning index in Los Angeles A Critical Assessment of the Burning Index in Los Angeles County, California Frederic Paik Schoenberg: The effectiveness of the Burning Index (BI) in predicting wildfire ac- tivity is assessed using 25 years of area

Schoenberg, Frederic Paik (Rick)

260

November 2011 Model documentation for biomass,  

E-Print Network (OSTI)

1 November 2011 Model documentation for biomass, cellulosic biofuels, renewable of Education, Office of Civil Rights. #12;3 Contents Biomass.....................................................................................................................................................4 Variables in the biomass module

Noble, James S.

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Successful biomass (wood pellets ) implementation in  

E-Print Network (OSTI)

Successful biomass (wood pellets ) implementation in Estonia Biomass Utilisation of Local in Estonia in 1995 - 2002 Regional Energy Centres in Estonia http://www.managenergy.net/conference/biomass

262

Florida Biomass Energy Consortium | Open Energy Information  

Open Energy Info (EERE)

Consortium Jump to: navigation, search Name Florida Biomass Energy Consortium Place Florida Sector Biomass Product Association of biomass energy companies. References Florida...

263

Haryana Biomass Power Ltd | Open Energy Information  

Open Energy Info (EERE)

Haryana Biomass Power Ltd Jump to: navigation, search Name Haryana Biomass Power Ltd. Place Mumbai, Haryana, India Zip 400025 Sector Biomass Product This is a JV consortium between...

264

Algae Biomass Summit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Algae Biomass Summit Algae Biomass Summit September 30, 2013 12:00PM EDT to October 3, 2013 12:00PM EDT Algae Biomass Summit...

265

PRETREATMENT OF BIOMASS PRIOR TO LIQUEFACTION  

E-Print Network (OSTI)

UC-61 PRETREATMENT OF BIOMASS PRIOR TO LIQUEFACTION Larry L.10093 PRETREATMENT OF BIOMASS PRIOR TO LIQUEFACTION Larry L.hydrolytic pretreatment to biomass feedstocks, higher acid

Schaleger, Larry L.

2012-01-01T23:59:59.000Z

266

Category:Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass category. Pages in category "Biomass" This category contains only the following page. B Biomass Scenario Model Retrieved from "http:en.openei.orgwindex.php?titleCatego...

267

Tribal Renewable Energy Curriculum Foundational Course: Biomass...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Tribal Renewable Energy Curriculum Foundational Course: Biomass Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on biomass renewable...

268

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

Biofuels,LLC UCSDBiomasstoPower EconomicFeasibilityFigure1:WestBiofuelsBiomassGasificationtoPowerrates... 31 UCSDBiomasstoPower?Feasibility

Cattolica, Robert

2009-01-01T23:59:59.000Z

269

Hebei Jiantou Biomass Power | Open Energy Information  

Open Energy Info (EERE)

Jiantou Biomass Power Jump to: navigation, search Name Hebei Jiantou Biomass Power Place Jinzhou, Hebei Province, China Zip 50000 Sector Biomass Product A company engages in...

270

Chowchilla Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Chowchilla Biomass Facility Jump to: navigation, search Name Chowchilla Biomass Facility Facility Chowchilla Sector Biomass Owner London Economics Location Chowchilla, California...

271

Wheelabrator Saugus Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Wheelabrator Saugus Biomass Facility Jump to: navigation, search Name Wheelabrator Saugus Biomass Facility Facility Wheelabrator Saugus Sector Biomass Facility Type Municipal Solid...

272

Benchmarking Biomass Gasification Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Gasification Technologies for Biomass Gasification Technologies for Fuels, Chemicals and Hydrogen Production Prepared for U.S. Department of Energy National Energy Technology Laboratory Prepared by Jared P. Ciferno John J. Marano June 2002 i ACKNOWLEDGEMENTS The authors would like to express their appreciation to all individuals who contributed to the successful completion of this project and the preparation of this report. This includes Dr. Phillip Goldberg of the U.S. DOE, Dr. Howard McIlvried of SAIC, and Ms. Pamela Spath of NREL who provided data used in the analysis and peer review. Financial support for this project was cost shared between the Gasification Program at the National Energy Technology Laboratory and the Biomass Power Program within the DOE's Office of Energy Efficiency and Renewable Energy.

273

YEAR 2 BIOMASS UTILIZATION  

DOE Green Energy (OSTI)

This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

Christopher J. Zygarlicke

2004-11-01T23:59:59.000Z

274

Sustainable Biomass Supply Systems  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOEs ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

2009-04-01T23:59:59.000Z

275

APS Biomass I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

APS Biomass I Biomass Facility APS Biomass I Biomass Facility Jump to: navigation, search Name APS Biomass I Biomass Facility Facility APS Biomass I Sector Biomass Location Arizona Coordinates 34.0489281°, -111.0937311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0489281,"lon":-111.0937311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Research on Common Biomass Pyrolysis Production of Biomass ...  

Science Conference Proceedings (OSTI)

Textural parameters analysis revealed the caloric value of biomass carbons between 32 MJ/kg and 34 MJ/kg. It also indicated that the surface of biomass carbon...

277

Minimally refined biomass fuel  

DOE Patents (OSTI)

A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

Pearson, Richard K. (Pleasanton, CA); Hirschfeld, Tomas B. (Livermore, CA)

1984-01-01T23:59:59.000Z

278

Fixed Bed Biomass Gasifier  

DOE Green Energy (OSTI)

The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

Carl Bielenberg

2006-03-31T23:59:59.000Z

279

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

280

Biomass Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technologies August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic...

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and dead vegetative material that have been removed from the landscape (either sent as biomass to the power

282

ENERGY FROM BIOMASS AND  

E-Print Network (OSTI)

integrated- gasifier steam-injected gasturbine (BIGISTIG) cogenerationsystemsis carried out here. A detailed!l!ledin a companionpaperprepared for this conference. 781 #12;BIOMASS-GASIFIER ~.INJECTED GAS TURBINE COGENERA110N FOR THE CANE). Biomassintegrated-gasifier/steam-injectedgas-turbine (BIG/STIG) cogenerationtechnologyand prospectsfor its use

283

3, 503539, 2006 Biomass OSSEs  

E-Print Network (OSTI)

OSD 3, 503­539, 2006 Biomass OSSEs G. Crispi et al. Title Page Abstract Introduction Conclusions for biomass assimilation G. Crispi, M. Pacciaroni, and D. Viezzoli Istituto Nazionale di Oceanografia e di Correspondence to: G. Crispi (gcrispi@ogs.trieste.it) 503 #12;OSD 3, 503­539, 2006 Biomass OSSEs G. Crispi et al

Paris-Sud XI, Université de

284

5, 21032130, 2008 Biomass Pantanal  

E-Print Network (OSTI)

BGD 5, 2103­2130, 2008 Biomass Pantanal J. Sch¨ongart et al. Title Page Abstract Introduction dynamics in aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil J. Sch of the European Geosciences Union. 2103 #12;BGD 5, 2103­2130, 2008 Biomass Pantanal J. Sch¨ongart et al. Title

Paris-Sud XI, Université de

285

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY not substantively affect the findings or recommendations of the study. 2. Introduction The Biomass to Energy (B2E) Project is developing a comprehensive forest biomass-to- electricity model to identify and analyze

286

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;5-2 #12;APPENDIX 5: BIOMASS TO ENERGY PROJECT:WILDLIFE HABITAT EVALUATION 1. Authors: Patricia Manley Ross management scenarios. We evaluated the potential effects of biomass removal scenarios on biological diversity

287

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY as a result of emerging biomass opportunities on private industrial and public multiple-use lands (tracked in the vegetation domain) and the quantity of biomass consumed by the wildfire (tracked

288

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;12-2 #12;Appendix 12: Biomass to Energy Project Team, Committee Members and Project Advisors Research Team. Nechodom's background is in biomass energy policy development and public policy research. Peter Stine

289

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;10-2 #12;Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass to Renewable Fuels and Electricity 1. Report to the Biomass to Energy Project (B2E) Principal Authors: Dennis Schuetzle, TSS

290

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;6-2 #12;APPENDIX 6: Cumulative Watershed Effects Analysis for the Biomass to Energy Project 1. Principal the findings or recommendations of the study. Cumulative watershed effects (CWE) of the Biomass to Energy (B2E

291

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY or recommendations of the study. 1. INTRODUCTION 1.1 Domain Description The study area for the Biomass to Energy (B2 and environmental costs and benefits of using forest biomass to generate electrical power while changing fire

292

Biomass Energy and Agricultural Sustainability  

E-Print Network (OSTI)

Biomass Energy and Agricultural Sustainability Stephen Kaffka Department of Plant Sciences University of California, Davis & California Biomass Collaborative February 2008 #12;E x p e c t e d d u r 9 ) ---------Biomass era----------- --?????????? #12;By 2025, every source of energy

California at Davis, University of

293

Biomass Energy Crops: Massachusetts' Potential  

E-Print Network (OSTI)

Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

Schweik, Charles M.

294

6, 60816124, 2006 Modeling biomass  

E-Print Network (OSTI)

ACPD 6, 6081­6124, 2006 Modeling biomass smoke injection into the LS (part II) G. Luderer et al Chemistry and Physics Discussions Modeling of biomass smoke injection into the lower stratosphere by a large Correspondence to: G. Luderer (gunnar@mpch-mainz.mpg.de) 6081 #12;ACPD 6, 6081­6124, 2006 Modeling biomass smoke

Paris-Sud XI, Université de

295

Abundance,Biomass, and Production  

E-Print Network (OSTI)

Abundance,Biomass, and Production Daniel B.Hayes,James R.Bence,Thomas J.Kwak, and Bradley E, the proportion of fish present that are #12;Abundance,Biomass,and Production 329 detected (i.e., sightability; available at http://www.ruwpa.st-and.ac.uk/distance/). #12;Abundance,Biomass,and Production 331 Box 8

Kwak, Thomas J.

296

Biomass Equipment & Materials Compensating Tax Deduction | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Equipment & Materials Compensating Tax Deduction Biomass Equipment & Materials Compensating Tax Deduction Eligibility Commercial Industrial Savings For Bioenergy Biofuels...

297

Biomass and Biofuels Technologies - Energy Innovation Portal  

Biofuels produced from biomass provide a promising alternative to fossil fuels. Biomass is an inexpensive, readily available and renewable resource.

298

Biomass Guidelines (Prince Edward Island, Canada) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Guidelines (Prince Edward Island, Canada) Biomass Guidelines (Prince Edward Island, Canada) Eligibility Agricultural Construction Developer Industrial Investor-Owned...

299

Biomass Supply and Carbon Accounting for  

E-Print Network (OSTI)

Biomass Supply and Carbon Accounting for Southeastern Forests February 2012 #12;This Biomass Supply and Carbon Accounting for Southeastern Forests study was conducted by the Biomass Energy Resource Center Biomass Energy Resource Center Kamalesh Doshi Biomass Energy Resource Center Hillary Emick Biomass Energy

300

NREL: Biomass Research - Thomas Foust  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Foust Thomas Foust Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels conversion technologies, and environmental and societal sustainability issues associated with biofuels. He has more than 20 years of research and research management experience, specializing in biomass feedstocks and conversion technologies. As National Bioenergy Center Director, Dr. Foust guides and directs NREL's research efforts to develop biomass conversion technologies via biochemical and thermochemical routes, as well as critical research areas addressing the sustainability of biofuels. This research focuses on developing the necessary science and technology for converting biomass to biofuels,

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Definition: Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass Biomass Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes.[1][2] View on Wikipedia Wikipedia Definition Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass. As a renewable energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Historically, humans have harnessed biomass-derived

302

Correlation of turbulent burning velocities of ethanol-air, measured in a fan-stirred bomb up to 1.2 MPa  

SciTech Connect

The turbulent burning velocity is defined by the mass rate of burning and this also requires that the associated flame surface area should be defined. Previous measurements of the radial distribution of the mean reaction progress variable in turbulent explosion flames provide a basis for definitions of such surface areas for turbulent burning velocities. These inter-relationships. in general, are different from those for burner flames. Burning velocities are presented for a spherical flame surface, at which the mass of unburned gas inside it is equal to the mass of burned gas outside it. These can readily be transformed to burning velocities based on other surfaces. The measurements of the turbulent burning velocities presented are the mean from five different explosions, all under the same conditions. These cover a wide range of equivalence ratios, pressures and rms turbulent velocities for ethanol-air mixtures. Two techniques are employed, one based on measurements of high speed schlieren images, the other on pressure transducer measurements. There is good agreement between turbulent burning velocities measured by the two techniques. All the measurement are generalised in plots of burning velocity normalised by the effective unburned gas rms velocity as a function of the Karlovitz stretch factor for different strain rate Markstein numbers. For a given value of this stretch factor a decrease in Markstein number increases the normalised burning velocity. Comparisons are made with the findings of other workers. (author)

Bradley, D.; Lawes, M.; Mansour, M.S. [School of Mechanical Engineering, University of Leeds (United Kingdom)

2011-01-15T23:59:59.000Z

303

Biomass: Potato Power  

NLE Websites -- All DOE Office Websites (Extended Search)

POTATO POWER POTATO POWER Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Grades 2 to 3 Small groups (3 to 4) Time: 30 to 40 minutes Summary: Students assemble a potato battery that will power a digital clock. This shows the connection between renewable energy from biomass and its application. Provided by the Department of Energy's National Renewable Energy Laboratory and BP America Inc. BIOPOWER - POTATO POWER Purpose: Can a potato power a clock? Materials:  A potato  A paper plate  Two pennies  Two galvanized nails  Three 8 inch insulated copper wire, with 2 inches of the insulation removed from the ends  A digital clock (with places for wire attachment)

304

Clean fractionation of biomass  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R & D) that uses `green` feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. New alternatives for American industry may lie in the nation`s forests and fields. The AF program is conducting ongoing research on a clean fractionation process. This project is designed to convert biomass into materials that can be used for chemical processes and products. Clean fractionation separates a single feedstock into individual components cellulose, hemicellulose, and lignin.

Not Available

1995-01-01T23:59:59.000Z

305

Actinide Burning in CANDU Reactors  

Science Conference Proceedings (OSTI)

Actinide burning in CANDU reactors has been studied as a method of reducing the actinide content of spent nuclear fuel from light water reactors, and thereby decreasing the associated long term decay heat load. In this work simulations were performed of actinides mixed with natural uranium to form a mixed oxide (MOX) fuel, and also mixed with silicon carbide to form an inert matrix (IMF) fuel. Both of these fuels were taken to a higher burnup than has previously been studied. The total transuranic element destruction calculated was 40% for the MOX fuel and 71% for the IMF. (authors)

Hyland, B.; Dyck, G.R. [Atomic Energy of Canada Limited, Chalk River, Ontario, K0J 1J0 (Canada)

2007-07-01T23:59:59.000Z

306

Catalyzed gasification of biomass  

DOE Green Energy (OSTI)

Catalyzed biomass gasification studies are being conducted by Battelle's Pacific Northwest Laboratories. Investigations are being carried out concurrently at the bench and process development unit scales. These studies are designed to test the technical and economic feasibility of producing specific gaseous products from biomass by enhancing its reactivity and product specificity through the use of specific catalysts. The program is directed at controlling the gasification reaction through the use of specific catalytic agents to produce desired products including synthetic natural gas, ammonia synthesis gas (H/sub 2//N/sub 2/), hydrogen, or syn gas (H/sub 2//CO). Such gaseous products are currently produced in tonnage quantities from non-renewable carbonaceous resources, e.g., natural gas and petroleum. The production of high yields of these specified gases from biomass is accomplished through optimization of gasification conditions and proper choice of catalytic agents. For instance, high yields of synthetic natural gas can be attained through gasification with steam in the presence of gasification catalyst such as trona (Na/sub 2/CO/sub 3/ . NaHCO/sub 3/ . 2H/sub 2/O) and a nickel methanation catalyst. The gasification catalyst enhances the steam-biomass reaction while the methanation catalyst converts gaseous intermediates from this reaction to methane, the most thermodynamically stable hydrocarbon product. This direct conversion to synthetic natural gas represents a significant advancement in the classical approach of producing synthetic natural gas from carbonaceous substrates through several unit operations. A status report, which includes experimental data and results of the program is presented.

Sealock, L.J. Jr.; Robertus, R.J.; Mudge, L.K.; Mitchell, D.H.; Cox, J.L.

1978-06-16T23:59:59.000Z

307

NREL: Biomass Research - Jonathan J. Stickel  

NLE Websites -- All DOE Office Websites (Extended Search)

Jonathan J. Stickel Jonathan J. Stickel Photo of Jonathan J. Stickel Jonathan Stickel is a senior research engineer in the Biochemical Process R&D group of the National Bioenergy Center at NREL. His primary role is the leader (Principal Investigator) for the Process Science of Enzymatic Hydrolysis subtask of the NREL Biomass Program. This work involves fundamental and applied research of the fluid mechanics, mass transfer, and reaction kinetics of biomass undergoing enzymatic hydrolysis in order to improve overall conversion yields and process economics. Education Ph.D., Chemical Engineering, University of California at Davis, 2006 B.S., Chemical Engineering, Rensselaer Polytechnic Institute, 1999 Professional Experience Senior Research Engineer, National Renewable Energy Laboratory,

308

COFIRING OF BIOMASS AT THE UNIVERSITY OF NORTH DAKOTA  

DOE Green Energy (OSTI)

A project funded by the U.S. Department of Energy's National Energy Technology Laboratory was completed by the Energy & Environmental Research Center to explore the potential for cofiring biomass at the University of North Dakota (UND). The results demonstrate how 25% sunflower hulls can be cofired with subbituminous coal and provide a 20% return on investment or 5-year payback for the modifications required to enable firing biomass. Significant outcomes of the study are as follows. A complete resource assessment presented all biomass options to UND within a 100-mile radius. Among the most promising options in order of preference were sunflower hulls, wood residues, and turkey manure. The firing of up to 28% sunflower hulls by weight was completed at the university's steam plant to identify plant modifications that would be necessary to enable cofiring sunflower hulls. The results indicated investments in a new equipment could be less than $408,711. Data collected from test burns, which were not optimized for biomass firing, resulted in a 15% reduction in sulfur and NO{sub x} emissions, no increase in opacity, and slightly better boiler efficiency. Fouling and clinkering potential were not evaluated; however, no noticeable detrimental effects occurred during testing. As a result of this study, UND has the potential to achieve a cost savings of approximately $100,000 per year from a $1,500,000 annual fossil fuel budget by implementing the cofiring of 25% sunflower hulls.

Phillip N. Hutton

2002-01-01T23:59:59.000Z

309

In Situ Burning of Oil Spills  

Science Conference Proceedings (OSTI)

... burns, the Teflon filters were weighed and sealed in Petri dishes, while the ... terrain, solar heating and surface friction creates a tur- bulent wind field ...

2001-02-13T23:59:59.000Z

310

The Performance Culture of Burning Man.  

E-Print Network (OSTI)

??Theatre in the United States for the last twenty years has been evolving in scope by way of a cultural phenomenon known as Burning Man. (more)

Clupper, Wendy Ann

2007-01-01T23:59:59.000Z

311

Uniform-burning matrix burner  

DOE Patents (OSTI)

Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

Bohn, Mark S. (Golden, CO); Anselmo, Mark (Arvada, CO)

2001-01-01T23:59:59.000Z

312

Lyonsdale Biomass LLC Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name Lyonsdale Biomass LLC Biomass Facility Facility Lyonsdale Biomass LLC Sector Biomass Location Lewis County, New York Coordinates 43.840112°, -75.4344727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.840112,"lon":-75.4344727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

313

Biomass One LP Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

LP Biomass Facility LP Biomass Facility Jump to: navigation, search Name Biomass One LP Biomass Facility Facility Biomass One LP Sector Biomass Location Jackson County, Oregon Coordinates 42.334535°, -122.7646577° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.334535,"lon":-122.7646577,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

Supercritical Water Gasification of Biomass & Biomass Model Compounds.  

E-Print Network (OSTI)

??Supercritical water gasification (SCWG) is an innovative, modern, and effective destruction process for the treatment of organic compounds. Hydrogen production using SCWG of biomass or (more)

Youssef, Emhemmed A.E.A

2011-01-01T23:59:59.000Z

315

AIAA 2001-0339 INTERMITTENT BURNING AND ITS  

E-Print Network (OSTI)

AIAA 2001-0339 INTERMITTENT BURNING AND ITS CONTRIBUTION TO PLATEAU BURNING OF COMPOSITE and Astronautics, Inc. with permission. INTERMITTENT BURNING AND ITS CONTRIBUTION TO PLATEAU BURNING OF COMPOSITE; Fellow AIAA §Senior Research Engineer Abstract The plateau burning behavior of composite solid

Seitzman, Jerry M.

316

Remotely sensed heat anomalies linked with Amazonian forest biomass declines  

E-Print Network (OSTI)

with Amazonian forest biomass declines Michael Toomey, 1 Darof aboveground living biomass (p biomass declines, Geophys. Res.

Toomey, M.; Roberts, D. A.; Still, C.; Goulden, M. L.; McFadden, J. P.

2011-01-01T23:59:59.000Z

317

State and Regional Biomass Partnerships  

DOE Green Energy (OSTI)

The Northeast Regional Biomass Program successfully employed a three pronged approach to build the regional capacity, networks, and reliable information needed to advance biomass and bioenergy technologies and markets. The approach included support for state-based, multi-agency biomass working groups; direct technical assistance to states and private developers; and extensive networking and partnership-building activities to share objective information and best practices.

Handley, Rick; Stubbs, Anne D.

2008-12-29T23:59:59.000Z

318

Microsoft Word - Biomass Energy Center Final EA 5.4.10.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

58 58 PROPOSED DEVELOPMENT AND DEMONSTRATION OF A BIOMASS ENERGY CENTER FOR FOOD PROCESSING APPLICATIONS TOPEKA, KANSAS FINAL ENVIRONMENTAL ASSESSMENT U.S. DEPARTMENT OF ENERGY National Energy Technology Laboratory APRIL 2010 THIS PAGE INTENTIONALLY LEFT BLANK National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The United States Department of Energy (DOE) proposes through a cooperative agreement with Burns & McDonnell Engineering, to partially fund project activities to design, install, and demonstrate an innovative biomass boiler pilot project that would offset a significant percentage of the natural gas consumption used for steam generation at the Frito-Lay

319

Catalysis in biomass gasification  

DOE Green Energy (OSTI)

The objective of these studies is to evaluate the technical and economic feasibility of producing specific gas products by catalytic gasification of biomass. Catalyst performance is a key factor in the feasibility of catalytic gasification processes. The results of studies designed to gain a fundamental understanding of catalytic mechanisms and causes of deactivation, and discussion of the state-of-the-art of related catalytic processes are presented. Experiments with primary and secondary catalysts were conducted in a 5-cm-diameter, continuous-wood-feed, fixed-catalyst-bed reactor. The primary catalysts used in the experiments were alkali carbonates mixed with the biomass feed; the secondary catalysts included nickel or other transition metals on supports such as alumina, silica, or silica-alumina. The primary catalysts were found to influence wood pyrolysis as well as the char/steam reaction. Secondary catalysts were used in a fixed-bed configuration to direct gas phase reactions. Results of the performance of these catalysts are presented. Secondary catalysts were found to be highly effective for conversion of biomass to specific gas products: synthesis gases and methane-rich gas. With an active catalyst, equilibrium gas composition are obtained, and all liquid pyrolysis products are converted to gases. The major cause of catalyst deactivation was carbon deposition, or coking. Loss of surface area by sintering was also inportant. Catalyst deactivation by sulfur poisoning was observed when bagasse was used as the feedstock for catalytic gasification. Mechanisms of catalyst activity and deactivation are discussed. Model compounds (methane, ethylene, and phenol) were used to determine coking behavior of catalysts. Carbon deposition is more prevalent with ethylene and phenol than with methane. Catalyst formulations that are resistant to carbon deposition are presented. 60 references, 10 figures, 21 tables.

Baker, E.G.; Mudge, L.K.

1984-06-01T23:59:59.000Z

320

Biomass power for rural development  

DOE Green Energy (OSTI)

Biomass is a proven option for electricity generation. A diverse range of biopower producers includes electric utilities, independent power producers, and the pulp and paper industry. To help expand opportunities for biomass power production, the U.S. Department of Energy established the Biopower Program and is sponsoring efforts to increase the productivity of dedicated energy crops. The Program aims to double biomass conversion efficiencies, thus reducing biomass power generation costs. These efforts will promote industrial and agricultural growth, improve the environment, create jobs, increase U.S. energy security, and provide new export markets.

Shepherd, P.

2000-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Biomass Engineering Prize Competition Announced  

Science Conference Proceedings (OSTI)

Posted on: 7/30/2010 12:00:00 AM... The DownEast 2010 Biomass Engineering Prize Competition is seeking innovative solutions focused on revitalizing an...

322

Biomass Pretreatment for Integrated Steelmaking  

Science Conference Proceedings (OSTI)

Presentation Title, Biomass Pretreatment for Integrated Steelmaking. Author(s), Shiju Thomas, Paul Cha, Steven J McKnight, Vincent A Bouma, Andrew L Petrik,

323

Biomass Databook ed4.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Energy Data Book Center for Transportation Analysis 2360 Cherahala Boulevard Knoxville, TN 37932 For more information please contact: Stacy Davis (865) 946-1256...

324

NREL: Biomass Research - Daniel Inman  

NLE Websites -- All DOE Office Websites (Extended Search)

us to examine the feasibility of alternative process configurations. Learn more about Biomass Technology Analysis at NREL. System Dynamics I am also interested in dynamic modeling...

325

Biomass Rapid Analysis Network (BRAN)  

DOE Green Energy (OSTI)

Helping the emerging biotechnology industry develop new tools and methods for real-time analysis of biomass feedstocks, process intermediates and The Biomass Rapid Analysis Network is designed to fast track the development of modern tools and methods for biomass analysis to accelerate the development of the emerging industry. The network will be led by industry and organized and coordinated through the National Renewable Energy Lab. The network will provide training and other activities of interest to BRAN members. BRAN members will share the cost and work of rapid analysis method development, validate the new methods, and work together to develop the training for the future biomass conversion workforce.

Not Available

2003-10-01T23:59:59.000Z

326

System and process for biomass treatment  

DOE Patents (OSTI)

A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

2013-08-20T23:59:59.000Z

327

Biomass Allocation Model - Comparing alternative uses of scarce...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Allocation Model - Comparing alternative uses of scarce biomass energy resource through estimations of future biomass use for liquid fuels and electricity. Title Biomass...

328

Biomass for energy and materials Local technologies -  

E-Print Network (OSTI)

Biomass for energy and materials Local technologies - in a global perspective Erik Steen Jensen Bioenergy and biomass Biosystems Department Risø National Laboratory Denmark #12;Biomass - a local resource, slaughterhouse waste. #12;Biomass characteristics · Biomass is a storable energy carrier, unlike electricity

329

Exhaust gas purification system for lean burn engine  

DOE Patents (OSTI)

An exhaust gas purification system for a lean burn engine includes a thermal mass unit and a NO.sub.x conversion catalyst unit downstream of the thermal mass unit. The NO.sub.x conversion catalyst unit includes at least one catalyst section. Each catalyst section includes a catalytic layer for converting NO.sub.x coupled to a heat exchanger. The heat exchanger portion of the catalyst section acts to maintain the catalytic layer substantially at a desired temperature and cools the exhaust gas flowing from the catalytic layer into the next catalytic section in the series. In a further aspect of the invention, the exhaust gas purification system includes a dual length exhaust pipe upstream of the NO.sub.x conversion catalyst unit. The dual length exhaust pipe includes a second heat exchanger which functions to maintain the temperature of the exhaust gas flowing into the thermal mass downstream near a desired average temperature.

Haines, Leland Milburn (Northville, MI)

2002-02-19T23:59:59.000Z

330

Visualizing Buoyant Burning Bubbles in Type Ia Supernovae at...  

NLE Websites -- All DOE Office Websites (Extended Search)

Burning in Supernovae Buoyant Burning Bubbles in Type Ia Supernovae bubble-s.jpeg Flame ignition in type Ia supernovae leads to isolated bubbles of burning buoyant fluid. As a...

331

Chemical analysis of biomass fast pyrolysis oils  

DOE Green Energy (OSTI)

This paper reviews the development of the field of chemical analysis of biomass fast pyrolysis oils. The techniques applied to pyrolysis oil analysis are reviewed including proximate and ultimate analysis, water (moisture) analysis, and chemical component analysis by various forms of chromatography, solvent separations, and spectrophotometric analyses, like infrared and ultraviolet. Advanced analytical techniques such as nuclear magnetic resonance and molecular beam -- mass spectrometry are also discussed. This paper reviews and compares the methods and the results of the analyses. The advantages and shortcomings of the various methods applied are identified. Comparisons derived from the IEA Round Robin are incorporated.

Elliott, D.C.

1994-09-01T23:59:59.000Z

332

NREL: Biomass Research - Capabilities in Biomass Process and Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities in Biomass Process and Sustainability Analyses Capabilities in Biomass Process and Sustainability Analyses A photo of a woman and four men, all wearing hard hats and looking into a large square bin of dried corn stover. One man is using a white scoop to pick up some of the material and another man holds some in his hand. Members of Congress visit NREL's cellulosic ethanol pilot plant. A team of NREL researchers uses biomass process and sustainability analyses to bridge the gap between research and commercial operations, which is critical for the scale-up of biomass conversion technology. Among NREL's biomass analysis capabilities are: Life cycle assessments Technoeconomic analysis Sensitivity analysis Strategic analysis. Life Cycle Assessments Conducting full life cycle assessments is important for determining the

333

REMOTE SENSING OF BURN SEVERITY AND THE INTERACTIONS BETWEEN BURN SEVERITY, TOPOGRAPHY AND VEGETATION IN INTERIOR ALASKA  

E-Print Network (OSTI)

REMOTE SENSING OF BURN SEVERITY AND THE INTERACTIONS BETWEEN BURN SEVERITY, TOPOGRAPHY likely to change vegetation type. Finally, vegetation recovery, estimated using a remotely-sensed................................................................................6 Chapter 2. Mapping Burn Severity Using Satellite Remote Sensing..........................8

Ruess, Roger W.

334

FESAC Panel on Burning Plasmas 1.What scientific issues should be addressed by a burning plasma physics experiment and  

E-Print Network (OSTI)

FESAC Panel on Burning Plasmas Charge 1.What scientific issues should be addressed by a burning of using various magnetic confinement concepts in studying burning plasma physics? As a part of your

335

Process for concentrated biomass saccharification  

DOE Patents (OSTI)

Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

Hennessey, Susan M. (Avondale, PA); Seapan, Mayis (Landenberg, PA); Elander, Richard T. (Evergreen, CO); Tucker, Melvin P. (Lakewood, CO)

2010-10-05T23:59:59.000Z

336

Carbon Management for a Coal/Biomass to Liquids Plant in Northeast...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon ManageMent for a CoalbioMass to liquids Plant in northeast ohio Background This project involves the development of a carbon management plan for a proposed coal and biomass...

337

New Computer Codes Unlock the Secrets of Cleaner Burning Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes Unlock the Secrets of Cleaner Burning Coal New Computer Codes Unlock the Secrets of Cleaner Burning Coal March 29, 2012 | Tags: Advanced Scientific Computing Research (ASCR),...

338

The QSE-Reduced Nuclear Reaction Network for Silicon Burning.  

E-Print Network (OSTI)

??Iron and neighboring nuclei are formed by silicon burning in massive stars before core collapse and during supernova outbursts. Complete and incomplete silicon burning is (more)

Parete-Koon, Suzanne T

2008-01-01T23:59:59.000Z

339

JV 58-Effects of Biomass Combustion on SCR Catalyst  

DOE Green Energy (OSTI)

A portable slipstream selective catalytic reduction (SCR) reactor was installed at a biomass cofired utility boiler to examine the rates and mechanisms of catalyst deactivation when exposed to biomass combustion products. The catalyst was found to deactivate at a much faster rate than typically found in a coal-fired boiler, although this may have been the result of high ash loading rather than a general property of biomass combustion. Deactivation was mainly the result of alkali and alkaline-earth sulfate formation and growth in catalyst pores, apparently caused by alkaline-earth ash deposition on or near the pore sites. The high proportion of biomass in the fuel contributed to elevated levels of alkali and alkaline-earth material in the ash when compared to coal ash, and these higher levels provided more opportunity for sulfate formation. Based on laboratory tests, neither catalyst material nor ammonia contributed measurably to ash mass gains via sulfation. A model constructed using both field and laboratory data was able to predict catalyst deactivation of catalysts under subbituminous coal firing but performed poorly at predicting catalyst deactivation under cofiring conditions. Because of the typically higher-than coal levels of alkali and alkaline-earth elements present in biomass fuels that are available for sulfation at typical SCR temperatures, the use of SCR technology and biomass cofiring needs to be carefully evaluated prior to implementation.

Bruce C. Folkedahl; Christopher J. Zygarlicke; Joshua R. Strege; Donald P. McCollor; Jason D. Laumb; Lingbu Kong

2006-08-31T23:59:59.000Z

340

Agricultural Biomass and Landfill Diversion Incentive (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This law provides a grant of a minimum $20 per bone-dry ton of qualified agricultural biomass, forest wood waste, urban wood waste, co-firing biomass, or storm-generated biomass that is provided to...

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Mineral Transformation and Biomass Accumulation Associated With  

E-Print Network (OSTI)

Mineral Transformation and Biomass Accumulation Associated With Uranium Bioremediation at Rifle transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation to understand the biogeochemical processes and to quantify the biomass and mineral transformation/ accumulation

Hubbard, Susan

342

NQAATechnical Memorandum NMFS BIOMASS-BASEDMODELSAND HARVESTINGPOLICIES  

E-Print Network (OSTI)

NQAATechnical Memorandum NMFS APRIL BIOMASS-BASEDMODELSAND HARVESTINGPOLICIES FORWASHINGTON corrpletsformalreview,editorialamtrd,ordetailedediting. APRIL 1990 BIOMASS-BASEDMODELSAND HARVESTINGPOLICIES rockfish (S.jordani). A biomass-based delay- difference model with knife-edge recruitment appeared

343

BIOMASS LIQUEFACTION EFFORTS IN THE UNITED STATES  

E-Print Network (OSTI)

icat ion Preheat zone Biomass liquefaction Tubular reactor (design is shown in Figure 7, C I Biomass ua efaction Fic LBL Process BiOMASS t NON-REVERS lNG CYCLONE CONDENSER (

Ergun, Sabri

2012-01-01T23:59:59.000Z

344

Biomass Electricity in California Elizabeth K. Stoltzfus  

E-Print Network (OSTI)

Biomass Electricity in California Elizabeth K. Stoltzfus Energy and Resources Group University would also like to thank Bryan Jenkins and other members of the California Biomass Collaborative............................................................................................................................. 1 1.1 Biomass Electricity in California Today

Kammen, Daniel M.

345

Treatment of biomass to obtain fermentable sugars  

DOE Patents (OSTI)

Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

Dunson, Jr., James B. (Newark, DE); Tucker, Melvin (Lakewood, CO); Elander, Richard (Evergreen, CO); Hennessey, Susan M. (Avondale, PA)

2011-04-26T23:59:59.000Z

346

Biomass Webinar Text Version | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Webinar Text Version Biomass Webinar Text Version Dowload the text version of the audio from the DOE Office of Indian Energy webinar on biomass. DOE Office of Indian Energy...

347

Biomass Producer or Collector Tax Credit (Oregon)  

Energy.gov (U.S. Department of Energy (DOE))

The Oregon Department of Energy provides a tax credit for agricultural producers or collectors of biomass. The credit can be used for eligible biomass used to produce biofuel; biomass used in...

348

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

with greater supply of biomass, such as northernareasof highersupplywillenablebiomasstobesecuredsupplyoffeedstockis keycomponentindevelopingaviablebiomass

Cattolica, Robert

2009-01-01T23:59:59.000Z

349

NREL: Biomass Research - Amie Sluiter  

NLE Websites -- All DOE Office Websites (Extended Search)

Amie Sluiter Amie Sluiter Amie Sluiter (aka Amie D. Sluiter, Amie Havercamp) is a scientist at the National Renewable Energy Laboratory's National Bioenergy Center in Golden, Colorado. Research Interests Amie Sluiter began research in the biomass-to-ethanol field in 1996. She joined the Biomass Analysis Technologies team to provide compositional analysis data on biomass feedstocks and process intermediates for use in pretreatment models and techno-economic analyses. The results of wet chemical analysis provide guidance on feedstock handling, pretreatment conditions, economic viability, and life cycle analyses. Amie Sluiter has investigated a number of biomass analysis methods and is an author on 11 Laboratory Analytical Procedures (LAPs), which are being used industry-wide. She has taught full biomass compositional analysis

350

Catalytic Hydrothermal Gasification of Biomass  

Science Conference Proceedings (OSTI)

A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

Elliott, Douglas C.

2008-05-06T23:59:59.000Z

351

NREL: Biomass Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Below are news stories related to NREL biomass research. Subscribe to the RSS feed RSS . Learn about RSS. November 7, 2013 NREL Developed Mobile App for Alternative Fueling Station Locations Released iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) developed the new mobile application for DOE's Clean Cities program. Clean Cities supports local stakeholders across the country in an effort to cut petroleum use in transportation. August 21, 2013 Can "Drop-In" Biofuels Solve Integration Issues? Lab works to create biofuels indistinguishable from conventional

352

Mobile Biomass Pelletizing System  

DOE Green Energy (OSTI)

This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

Thomas Mason

2009-04-16T23:59:59.000Z

353

Evolution of Massive Stars Up to the End of Central Oxygen Burning  

E-Print Network (OSTI)

We present a detailed study of the evolution of massive stars of masses 15, 20, 25 and 30 $\\msun$ assuming solar-like initial chemical composition. The stellar sequences were evolved through the advanced burning phases up to the end of core oxygen burning. We present a careful analysis of the physical characteristics of the stellar models. In particular, we investigate the effect of the still unsettled reaction $^{12}$C($\\alpha$,$\\gamma$)$^{16}$O on the advanced evolution by using recent compilations of this rate. We find that this rate has a significant impact on the evolution not only during the core helium burning phase, but also during the late burning phases, especially the shell carbon-burning. We have also considered the effect of different treatment of convective instability based on the Ledoux criterion in regions of varying molecular weight gradient during the hydrogen and helium burning phases. We compare our results with other investigations whenever available. Finally, our present study constitutes the basis of analyzing the nucleosynthesis processes in massive stars. In particular we will present a detail analysis of the {\\it s}-process in a forthcoming paper.

Mounib F. El Eid; Bradley S. Meyer; Lih-Sin The

2004-07-21T23:59:59.000Z

354

Chinese Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Up Search Page Edit with form History Facebook icon Twitter icon Chinese Station Biomass Facility Jump to: navigation, search Name Chinese Station Biomass Facility Facility...

355

SPI Lincoln Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon SPI Lincoln Biomass Facility Jump to: navigation, search Name SPI Lincoln Biomass Facility Facility SPI...

356

Montgomery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Montgomery Biomass Facility Jump to: navigation, search Name Montgomery Biomass Facility Facility...

357

Deblois Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Deblois Biomass Facility Jump to: navigation, search Name Deblois Biomass Facility Facility Deblois...

358

West Enfield Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon West Enfield Biomass Facility Jump to: navigation, search Name West Enfield Biomass Facility Facility West...

359

MM Nashville Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon MM Nashville Biomass Facility Jump to: navigation, search Name MM Nashville Biomass Facility Facility MM...

360

Olokele Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Olokele Biomass Facility Jump to: navigation, search Name Olokele Biomass Facility Facility Olokele...

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Pennsbury Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Pennsbury Biomass Facility Jump to: navigation, search Name Pennsbury Biomass Facility Facility...

362

Celanese Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Celanese Biomass Facility Jump to: navigation, search Name Celanese Biomass Facility Facility Celanese...

363

Central LF Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Central LF Biomass Facility Jump to: navigation, search Name Central LF Biomass Facility Facility...

364

US Sugar Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon US Sugar Biomass Facility Jump to: navigation, search Name US Sugar Biomass Facility Facility US Sugar...

365

Rocklin Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Rocklin Biomass Facility Jump to: navigation, search Name Rocklin Biomass Facility Facility Rocklin...

366

Glendale Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Glendale Biomass Facility Jump to: navigation, search Name Glendale Biomass Facility Facility Glendale...

367

SPI Quincy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon SPI Quincy Biomass Facility Jump to: navigation, search Name SPI Quincy Biomass Facility Facility SPI...

368

Kettle Falls Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Kettle Falls Biomass Facility Jump to: navigation, search Name Kettle Falls Biomass Facility Facility...

369

DG Whitefield Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon DG Whitefield Biomass Facility Jump to: navigation, search Name DG Whitefield Biomass Facility Facility DG...

370

Viking Northumberland Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Search Page Edit with form History Facebook icon Twitter icon Viking Northumberland Biomass Facility Jump to: navigation, search Name Viking Northumberland Biomass Facility...

371

Livermore Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Livermore Biomass Facility Jump to: navigation, search Name Livermore Biomass Facility Facility...

372

Mecca Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Mecca Biomass Facility Jump to: navigation, search Name Mecca Biomass Facility Facility Mecca...

373

Oxnard Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Oxnard Biomass Facility Jump to: navigation, search Name Oxnard Biomass Facility Facility Oxnard...

374

Westwood Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Westwood Biomass Facility Jump to: navigation, search Name Westwood Biomass Facility Facility Westwood...

375

Buckeye Florida Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Up Search Page Edit with form History Facebook icon Twitter icon Buckeye Florida Biomass Facility Jump to: navigation, search Name Buckeye Florida Biomass Facility Facility...

376

Wilmarth Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Wilmarth Biomass Facility Jump to: navigation, search Name Wilmarth Biomass Facility Facility Wilmarth...

377

El Nido Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon El Nido Biomass Facility Jump to: navigation, search Name El Nido Biomass Facility Facility El Nido...

378

Dinuba Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Dinuba Biomass Facility Jump to: navigation, search Name Dinuba Biomass Facility Facility Dinuba...

379

Stratton Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Stratton Biomass Facility Jump to: navigation, search Name Stratton Biomass Facility Facility Stratton...

380

Jonesboro Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Jonesboro Biomass Facility Jump to: navigation, search Name Jonesboro Biomass Facility Facility...

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Broome County Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Broome County Biomass Facility Jump to: navigation, search Name Broome County Biomass Facility Facility...

382

Salinas Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Salinas Biomass Facility Jump to: navigation, search Name Salinas Biomass Facility Facility Salinas...

383

Coventry LFG Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Coventry LFG Biomass Facility Jump to: navigation, search Name Coventry LFG Biomass Facility Facility...

384

Lanchester Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Lanchester Biomass Facility Jump to: navigation, search Name Lanchester Biomass Facility Facility...

385

Troy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Troy Biomass Facility Jump to: navigation, search Name Troy Biomass Facility Facility Troy Sector...

386

SPI Loyalton Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon SPI Loyalton Biomass Facility Jump to: navigation, search Name SPI Loyalton Biomass Facility Facility SPI...

387

Sherman Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Sherman Biomass Facility Jump to: navigation, search Name Sherman Biomass Facility Facility Sherman...

388

Craven County Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Craven County Biomass Facility Jump to: navigation, search Name Craven County Biomass Facility Facility...

389

Warren Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Warren Biomass Facility Jump to: navigation, search Name Warren Biomass Facility Facility Warren...

390

Collins Pine Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Collins Pine Biomass Facility Jump to: navigation, search Name Collins Pine Biomass Facility Facility...

391

Davis County Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Davis County Biomass Facility Jump to: navigation, search Name Davis County Biomass Facility Facility...

392

Fort Fairfield Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Up Search Page Edit with form History Facebook icon Twitter icon Fort Fairfield Biomass Facility Jump to: navigation, search Name Fort Fairfield Biomass Facility Facility...

393

Putney Basketville Site Biomass CHP Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

publications. 25 5 Bioenergy Overview Biopower, or biomass power, is the use of biomass to generate electricity. Biopower system technologies include direct-firing,...

394

Biomass and Biofuels Technologies - Energy Innovation Portal  

Biomass and Biofuels Technology Marketing Summaries Here ... The methods of the invention use solar thermal energy as the energy source for the biomass pyrolysis or ...

395

BSCL Use Plan: Solving Biomass Recalcitrance  

DOE Green Energy (OSTI)

Technical report describing NREL's new Biomass Surface Characterization Laboratory (BSCL). The BSCL was constructed to provide the most modern commercial surface characterization equipment for studying biomass surfaces.

Himmel, M.; Vinzant, T.; Bower, S.; Jechura, J.

2005-08-01T23:59:59.000Z

396

Utility Promoters for Biomass Feedstock Biotechnology ...  

Technology Marketing Summary. Genetic optimization of biomass is necessary to improve the rates and final yields of sugar release from woody biomass.

397

Biomass and Biofuels Technologies - Energy Innovation Portal  

Biomass and Biofuels Technology Marketing Summaries Here youll find marketing summaries of biomass and biofuels technologies available for licensing ...

398

Biomass Energy Services Inc | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy Services Inc Place Tifton, Georgia Zip 31794 Product Biodiesel plant developer in Cordele, Georgia. References Biomass Energy Services Inc1 LinkedIn Connections...

399

Biomass Webinar Presentation Slides | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presentation Slides Biomass Webinar Presentation Slides Download presentation slides for the DOE Office of Indian Energy webinar on biomass renewable energy. DOE Office of Indian...

400

Biomass Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Energy Technology Module AgencyCompany Organization: World Bank Sector: Energy...

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Los Alamos scientists advance biomass fuel production  

NLE Websites -- All DOE Office Websites (Extended Search)

Issues submit Los Alamos scientists advance biomass fuel production Adapting biomass waste molecules for energy production May 1, 2013 Lab research can yield energy from...

402

Conservation of Biomass Fuel, Firewood (Minnesota) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conservation of Biomass Fuel, Firewood (Minnesota) Conservation of Biomass Fuel, Firewood (Minnesota) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned...

403

Biomass Engineering Ltd | Open Energy Information  

Open Energy Info (EERE)

"Biomass Engineering Ltd" Retrieved from "http:en.openei.orgwindex.php?titleBiomassEngineeringLtd&oldid342847" Categories: Clean Energy Organizations Companies...

404

Biomass Resources Corporation | Open Energy Information  

Open Energy Info (EERE)

Biomass Resources Corporation Jump to: navigation, search Name Biomass Resources Corporation Place West Palm Beach, Florida Zip 33401 Product The Company has established a unique...

405

Particle and feeding characteristics of biomass powders.  

E-Print Network (OSTI)

?? Milling of biomass is a necessary key step in suspension gasification or powder combustion. Milled biomass powders are often cohesive, have low bulk density (more)

Falk, Joel

2013-01-01T23:59:59.000Z

406

Biomass Integrated Gasification Combined Cycles (BIGCC).  

E-Print Network (OSTI)

??Conversion of biomass to energy does not contribute to the net increase of carbon dioxide in the environment, therefore the use of biomass waste as (more)

Yap, Mun Roy

2004-01-01T23:59:59.000Z

407

Survey of biomass gasification. Volume III. Current technology and research  

DOE Green Energy (OSTI)

This survey of biomass gasification was written to aid the Department of Energy and the Solar Energy Research Institute Biological and Chemical Conversion Branch in determining the areas of gasification that are ready for commercialization now and those areas in which further research and development will be most productive. Chapter 8 is a survey of gasifier types. Chapter 9 consists of a directory of current manufacturers of gasifiers and gasifier development programs. Chapter 10 is a sampling of current gasification R and D programs and their unique features. Chapter 11 compares air gasification for the conversion of existing gas/oil boiler systems to biomass feedstocks with the price of installing new biomass combustion equipment. Chapter 12 treats gas conditioning as a necessary adjunct to all but close-coupled gasifiers, in which the product is promptly burned. Chapter 13 evaluates, technically and economically, synthesis-gas processes for conversion to methanol, ammonia, gasoline, or methane. Chapter 14 compiles a number of comments that have been assembled from various members of the gasifier community as to possible roles of the government in accelerating the development of gasifier technology and commercialization. Chapter 15 includes recommendations for future gasification research and development.

None

1980-04-01T23:59:59.000Z

408

Wood-Burning Heating System Deduction  

Energy.gov (U.S. Department of Energy (DOE))

This statute allows individual taxpayers a deduction for the purchase and installation of a wood-burning heating system. The deduction is equal to the total cost of purchase and installation for...

409

Clean Burn Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

developer planning to build a 60m gallons per year (227.12m litres per year) bioethanol plant in Raeford, North Carolina. References Clean Burn Fuels LLC1 LinkedIn...

410

HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation  

Science Conference Proceedings (OSTI)

HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the response of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable performance, whether as a result of accident, hazard, or a fault in the detonation train. These models describe the build-up of detonation from a shock stimulus. They are generally consistent with the mesoscale picture of ignition at many small defects in the plane of the shock front and the growth of the resulting hot-spots, leading to detonation in heterogeneous explosives such as plastic-bonded explosives (PBX). The models included terms for ignition, and also for the growth of reaction as tracked by the local mass fraction of product gas, {lambda}. The growth of reaction in such models incorporates a form factor that describes the change of surface area per unit volume (specific surface area) as the reaction progresses. For unimolecular crystalline-based explosives, the form factor is consistent with the mesoscale picture of a galaxy of hot spots burning outward and eventually interacting with each other. For composite explosives and propellants, where the fuel and oxidizer are segregated, the diffusion flame at the fuel-oxidizer interface can be interpreted with a different form factor that corresponds to grains burning inward from their surfaces. The form factor influences the energy release rate, and the amount of energy released in the reaction zone. Since the 19th century, gun and cannon propellants have used perforated geometric shapes that produce an increasing surface area as the propellant burns. This helps maintain the pressure as burning continues while the projectile travels down the barrel, which thereby increases the volume of the hot gas. Interior ballistics calculations use a geometric form factor to describe the changing surface area precisely. As a result, with a suitably modified form factor, detonation models can represent burning and explosion in damaged and broken reactant. The disadvantage of such models in application to accidents is that the ignition term does not distinguish between a value of pressure that results from a shock, and the same pressure that results from a more gradual increase. This disagrees with experiments, where

Reaugh, J E

2011-11-22T23:59:59.000Z

411

HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation  

SciTech Connect

HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the response of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable performance, whether as a result of accident, hazard, or a fault in the detonation train. These models describe the build-up of detonation from a shock stimulus. They are generally consistent with the mesoscale picture of ignition at many small defects in the plane of the shock front and the growth of the resulting hot-spots, leading to detonation in heterogeneous explosives such as plastic-bonded explosives (PBX). The models included terms for ignition, and also for the growth of reaction as tracked by the local mass fraction of product gas, {lambda}. The growth of reaction in such models incorporates a form factor that describes the change of surface area per unit volume (specific surface area) as the reaction progresses. For unimolecular crystalline-based explosives, the form factor is consistent with the mesoscale picture of a galaxy of hot spots burning outward and eventually interacting with each other. For composite explosives and propellants, where the fuel and oxidizer are segregated, the diffusion flame at the fuel-oxidizer interface can be interpreted with a different form factor that corresponds to grains burning inward from their surfaces. The form factor influences the energy release rate, and the amount of energy released in the reaction zone. Since the 19th century, gun and cannon propellants have used perforated geometric shapes that produce an increasing surface area as the propellant burns. This helps maintain the pressure as burning continues while the projectile travels down the barrel, which thereby increases the volume of the hot gas. Interior ballistics calculations use a geometric form factor to describe the changing surface area precisely. As a result, with a suitably modified form factor, detonation models can represent burning and explosion in damaged and broken reactant. The disadvantage of such models in application to accidents is that the ignition term does not distinguish between a value of pressure that results from a shock, and the same pressure that results from a more gradual increase. This disagrees with experiments, where

Reaugh, J E

2011-11-22T23:59:59.000Z

412

Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance  

NLE Websites -- All DOE Office Websites (Extended Search)

Reviews Reviews Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance Marcus Foston and Arthur J. Ragauskas BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA Abstract The ever-increasing global demand for energy and materials has a pronounced effect on worldwide economic stability, diplomacy, and technical advancement. In response, a recent key research area in bio- technology has centered on the biological conversion of lignocellulosic biomass to simple sugars. Lignocellulosic biomass, converted to fer- mentable sugars via enzymatic hydrolysis of cell wall polysaccharides, can be utilized to generate a variety of downstream fuels and chemicals. Ethanol, in particular, has a high potential as transportation fuel to supplement or even replace

413

A Technical Review on Biomass Processing: Densification, Preprocessing, Modeling and Optimization  

SciTech Connect

It is now a well-acclaimed fact that burning fossil fuels and deforestation are major contributors to climate change. Biomass from plants can serve as an alternative renewable and carbon-neutral raw material for the production of bioenergy. Low densities of 4060 kg/m3 for lignocellulosic and 200400 kg/m3 for woody biomass limits their application for energy purposes. Prior to use in energy applications these materials need to be densified. The densified biomass can have bulk densities over 10 times the raw material helping to significantly reduce technical limitations associated with storage, loading and transportation. Pelleting, briquetting, or extrusion processing are commonly used methods for densification. The aim of the present research is to develop a comprehensive review of biomass processing that includes densification, preprocessing, modeling and optimization. The specific objective include carrying out a technical review on (a) mechanisms of particle bonding during densification; (b) methods of densification including extrusion, briquetting, pelleting, and agglomeration; (c) effects of process and feedstock variables and biomass biochemical composition on the densification (d) effects of preprocessing such as grinding, preheating, steam explosion, and torrefaction on biomass quality and binding characteristics; (e) models for understanding the compression characteristics; and (f) procedures for response surface modeling and optimization.

Jaya Shankar Tumuluru; Christopher T. Wright

2010-06-01T23:59:59.000Z

414

A Novel Slurry-Based Biomass Reforming Process Final Technical Report  

SciTech Connect

This project was focused on developing a catalytic means of producing H2 from raw, ground biomass, such as fast growing poplar trees, willow trees, or switch grass. The use of a renewable, biomass feedstock with minimal processing can enable a carbon neutral means of producing H2 in that the carbon dioxide produced from the process can be used in the environment to produce additional biomass. For economically viable production of H2, the biomass is hydrolyzed and then reformed without any additional purification steps. Any unreacted biomass and other byproduct streams are burned to provide process energy. Thus, the development of a catalyst that can operate in the demanding corrosive environment and presence of potential poisons is vital to this approach. The concept for this project is shown in Figure 1. The initial feed is assumed to be a >5 wt% slurry of ground wood in dilute base, such as potassium carbonate (K2CO3). Base hydrolysis and reforming of the wood is carried out at high but sub-critical pressures and temperatures in the presence of a solid catalyst. A Pd alloy membrane allows the continuous removal of pure , while the retentate, including methane is used as fuel in the plant. The project showed that it is possible to economically produce H2 from woody biomass in a carbon neutral manner. Technoeconomic analyses using HYSYS and the DOE's H2A tool [1] were used to design a 2000 ton day-1 (dry basis) biomass to hydrogen plant with an efficiency of 46% to 56%, depending on the mode of operation and economic assumptions, exceeding the DOE 2012 target of 43%. The cost of producing the hydrogen from such a plant would be in the range of $1/kg H2 to $2/kg H2. By using raw biomass as a feedstock, the cost of producing hydrogen at large biomass consumption rates is more cost effective than steam reforming of hydrocarbons or biomass gasification and can achieve the overall cost goals of the DOE Fuel Cell Technologies Program. The complete conversion of wood to hydrogen, methane, and carbon dioxide was repeatedly demonstrated in batch reactors varying in size from 50 mL to 7.6 L. The different wood sources (e.g., swamp maple, poplar, and commercial wood flour) were converted in the presence of a heterogeneous catalyst and base at relatively low temperatures (e.g., 310 ???????°C) at sub-critical pressures sufficient to maintain the liquid phase. Both precious metal and base metal catalysts were found to be active for the liquid phase hydrolysis and reforming of wood. Pt-based catalysts, particularly Pt-Re, were shown to be more selective toward breaking C-C bonds, resulting in a higher selectivity to hydrogen versus methane. Ni-based catalysts were found to prefer breaking C-O bonds, favoring the production of methane. The project showed that increasing the concentration of base (base to wood ratio) in the presence of Raney Ni catalysts resulted in greater selectivity toward hydrogen but at the expense of increasing the production of undesirable organic acids from the wood, lowering the amount of wood converted to gas. It was shown that by modifying Ni-based catalysts with dopants, it was possible to reduce the base concentration while maintaining the selectivity toward hydrogen and increasing wood conversion to gas versus organic acids. The final stage of the project was the construction and testing of a demonstration unit for H2 production. This continuous flow demonstration unit consisted of wood slurry and potassium carbonate feed pump systems, two reactors for hydrolysis and reforming, and a gas-liquid separation system. The technical challenges associated with unreacted wood fines and Raney Ni catalyst retention limited the demonstration unit to using a fixed bed Raney Ni catalyst form. The lower activity of the larger particle Raney Ni in turn limited the residence time and thus the wood mass flow feed rate to 50 g min-1 for a 1 wt% wood slurry. The project demonstrated continuous H2 yields with unmodified, fixed bed Raney Ni, from 63% to 100% with correspond

Sean C. Emerson; Timothy D. Davis; A. Peles; Ying She; Joshua Sheffel; Rhonda R. Willigan; Thomas H. Vanderspurt; Tianli Zhu

2011-09-30T23:59:59.000Z

415

Laboratory illustrations of the transformations and deposition of inorganic material in biomass boilers  

DOE Green Energy (OSTI)

Boilers fired with certain woody biomass fuels have proven to be a viable, reliable means of generating electrical power. The behavior of the inorganic material in the fuels is one of the greatest challenges to burning the large variety of fuels available to biomass combustors. Unmanageable ash deposits and interactions between ash and bed material cause loss in boiler availability and significant increase in maintenance costs. The problems related to the behavior of inorganic material now exceed all other combustion-related challenges in biomass-fired boilers. This paper reviews the mechanisms of ash deposit formation, the relationship between fuel properties and ash deposit properties, and a series of laboratory tests in Sandia`s Multifuel Combustor designed to illustrate how fuel type, boiler design, and boiler operating conditions impact ash deposit properties.

Baxter, L.L. [Sandia National Labs., Livermore, CA (United States); Jenkins, B.M. [California Univ., Davis, CA (United States). Dept. of Biological and Argicultural Engineering

1995-08-01T23:59:59.000Z

416

Simulation of a Burning Plasma C. Kessel, PPPL  

E-Print Network (OSTI)

Simulation of a Burning Plasma Experiment C. Kessel, PPPL UFA Workshop on Burning Plasma Science, December 11-13, 2000 #12;FIRE Burning Plasma Discharge Simulation with TSC ELMy H-mode, N, R=2.0 m, Ip=6.5 MA #12;Burning Plasma Experiment Simultaneously Needs · L-H mode transition · Non

417

BURNING PLASMA NEXT STEPS: DISCUSSION OF KEY DEVELOPMENTS  

E-Print Network (OSTI)

BURNING PLASMA NEXT STEPS: DISCUSSION OF KEY DEVELOPMENTS Gerald A. Navratil Columbia University/FESAC Burning Plasma Strategy Dec 2002 NRC/NAS Interim Report on Burning Plasmas Jan 30, 2003 DOE of the physics of burning plasma, advance fusion technology, and contribute to the development of fusion energy

418

Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames  

E-Print Network (OSTI)

Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames P.-T. Bremer1, G. Weber2 flames subject to different levels of tur- bulence. Due to their unstable nature, lean flames burn to quantitatively correlate the turbulence of the burning process with the distribution of burning regions, properly

419

Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames  

E-Print Network (OSTI)

Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames Peer-Timo Bremer, Member levels of turbulence. Due to their unstable nature, lean flames burn in cells separated by locally the turbulence of the burning process with the distribution of burning regions, properly segmented and selected

Pascucci, Valerio

420

Effects of Range Burning on Kansas Flint Hills Soil  

E-Print Network (OSTI)

Effects of Range Burning on Kansas Flint Hills Soil CLENTON E. OWENSBY AND JOHN BRUCE WYRILL, III Highlight: Two tallgrass prairie areas burned annually for 20 (grazed) nnd 48 (un. grazed) years ar-spring burned ungrared plots were generally higher in soil pH, organic ma~fer, and K than late-spring burned

Owensby, Clenton E.

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Other Biomass | OpenEI  

Open Energy Info (EERE)

Other Biomass Other Biomass Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

422

Washington State biomass data book  

DOE Green Energy (OSTI)

This is the first edition of the Washington State Biomass Databook. It assess sources and approximate costs of biomass fuels, presents a view of current users, identifies potential users in the public and private sectors, and lists prices of competing energy resources. The summary describes key from data from the categories listed above. Part 1, Biomass Supply, presents data increasing levels of detail on agricultural residues, biogas, municipal solid waste, and wood waste. Part 2, Current Industrial and Commercial Use, demonstrates how biomass is successfully being used in existing facilities as an alternative fuel source. Part 3, Potential Demand, describes potential energy-intensive public and private sector facilities. Part 4, Prices of Competing Energy Resources, shows current suppliers of electricity and natural gas and compares utility company rates. 49 refs., 43 figs., 72 tabs.

Deshaye, J.A.; Kerstetter, J.D.

1991-07-01T23:59:59.000Z

423

Northeast Regional Biomass Energy Program  

DOE Green Energy (OSTI)

The Northeast Regional Biomass Program (NRBP) is entering its ninth year of operation. The management and the objectives have virtually remained unchanged and are stated as follows. The program conducted by NRBP has three basic features: (1) a state grant component that provides funds (with a 50 percent matching requirement) to each of the states in the region to strengthen and integrate the work of state agencies involved in biomass energy; (2) a series of technical reports and studies in areas that have been identified as being of critical importance to the development of biomass energy in the region; and (3) a continuous long range planning component with heavy private sector involvement that helps to identify activities necessary to spur greater development and use of biomass energy in the Northeast.

O'Connell, R.A.

1992-04-01T23:59:59.000Z

424

Bioenergy Technologies Office: Biomass Feedstocks  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

is defined as any renewable, biological material that can be used directly as a fuel, or converted to another form of fuel or energy product. Biomass feedstocks are the...

425

NREL: Biomass Research - Video Text  

NLE Websites -- All DOE Office Websites (Extended Search)

is to apply heat and acid." (Voiceover) After pretreatment Nancy Dowe: "So this is the corn stover." The video shows various stages of corn stover from biomass to pretreated...

426

Northeast Regional Biomass Energy Program  

DOE Green Energy (OSTI)

The Northeast Regional Biomass Program (NRBP) is entering its ninth year of operation. The management and the objectives have virtually remained unchanged and are stated as follows. The program conducted by NRBP has three basic features: (1) a state grant component that provides funds (with a 50 percent matching requirement) to each of the states in the region to strengthen and integrate the work of state agencies involved in biomass energy; (2) a series of technical reports and studies in areas that have been identified as being of critical importance to the development of biomass energy in the region; and (3) a continuous long range planning component with heavy private sector involvement that helps to identify activities necessary to spur greater development and use of biomass energy in the Northeast.

O'Connell, R.A.

1992-02-01T23:59:59.000Z

427

Biomass Supply for a Bioenergy  

E-Print Network (OSTI)

Resource assessment do we have enough biomass? Techno-economic analysis can biofuels be produced at competitive prices? Integrated biorefineries what is being funded at DOE and what are future plans?

Hydrocarbon-based Biofuels; Zia Haq

2012-01-01T23:59:59.000Z

428

Global (International) Energy Policy and Biomass  

DOE Green Energy (OSTI)

Presentation to the California Biomass Collaboration--First Annual Forum, January 8th 2004, Sacramento, California

Overend, R. P.

2004-01-01T23:59:59.000Z

429

Biomass Surface Characterization Laboratory (Fact Sheet)  

SciTech Connect

This fact sheet provides information about Biomass Surface Characterization Laboratory capabilities and applications at NREL.

Not Available

2012-04-01T23:59:59.000Z

430

Available Technologies: Enhanced Ionic Liquid Biomass ...  

APPLICATIONS OF TECHNOLOGY: Lignocellulosic biofuel production; Biomass pretreatment; Sugar production; Materials and processes using recovered lignin

431

Chemical Exergy of Canola Biomass Components  

Science Conference Proceedings (OSTI)

... LS Karpushenkova Chemical Faculty, Belarusian State University, Minsk, Belarus Thermodynamic properties of canola biomass components: seeds ...

2006-07-20T23:59:59.000Z

432

Biomass Equipment & Materials Compensating Tax Deduction (New...  

Open Energy Info (EERE)

Sector Commercial, Industrial Eligible Technologies Anaerobic Digestion, Biodiesel, Biomass, CHPCogeneration, Ethanol, Hydrogen, Landfill Gas, Methanol, Microturbines,...

433

NREL: News Feature - Biomass Analysis Tool Is Faster, More Precise  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Analysis Tool Is Faster, More Precise Biomass Analysis Tool Is Faster, More Precise February 26, 2013 Photo of a left hand holding a rectangular tray that has 48 cups, each holding a small amount of a biomass sample. Below the tray is a slice of a poplar tree, about an inch thick and a foot in diameter. Enlarge image This tray of 80-milliliter samples was taken from a standard poplar tree, such as the one pictured here. It is ready to be loaded into NREL's molecular beam mass spectrometer for rapid analysis of the cell wall chemistry of each sample. Credit: Dennis Schroeder A screening tool from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) eases and greatly quickens one of the thorniest tasks in the biofuels industry: determining cell wall chemistry to find plants with ideal genes.

434

EPRI Biomass Interest Group Results  

Science Conference Proceedings (OSTI)

EPRI8217s Biomass Interest Group (BIG) provides topical reviews of major areas of interest in the field of biomass-to-power. Part of that review consists of periodic meetings to review existing EPRI BIG projects, discuss topics of interest or concern, hear from industry experts, and visit sites that highlight significant technical developments. In 2006, the EPRI BIG had three meetings. The first meeting was Thursday, April 6 in Golden, Colorado. The group reviewed ongoing projects and then toured the DO...

2006-12-07T23:59:59.000Z

435

Report on Biomass Drying Technology  

DOE Green Energy (OSTI)

Using dry fuel provides significant benefits to combustion boilers, mainly increased boiler efficiency, lower air emissions, and improved boiler operation. The three main choices for drying biomass are rotary dryers, flash dryers, and superheated steam dryers. Which dryer is chosen for a particular application depends very much on the material characteristics of the biomass, the opportunities for integrating the process and dryer, and the environmental controls needed or already available.

Amos, W. A.

1999-01-12T23:59:59.000Z

436

Biomass Interest Group Meetings - 2007  

Science Conference Proceedings (OSTI)

The Biomass Interest Group (BIG) provides technology updates and information exchange for funders of EPRI Program 84.005. The group sponsors research projects and technology summaries. This report assembles presentation materials from webcasts and other meetings conducted by the Biomass Interest Group in 2007. Presentations covered several technologies including the prospect of using cellulosic feedstock in the production of ethanol, as well as gasification, the synthesis of biodiesel, and the cofiring o...

2008-03-31T23:59:59.000Z

437

Enzymatic Hydrolysis of Cellulosic Biomass  

Science Conference Proceedings (OSTI)

Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

2011-08-22T23:59:59.000Z

438

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities  

E-Print Network (OSTI)

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities Biomass energy input basis in the upcoming calendar year? - Please check "yes" or "no." 12. Types of Biomass Fuel Used - Please report the quantity and supplier of the following types of biomass fuel used

439

Co-utilization of biomass and natural gas: a new route for power productin from biomass  

E-Print Network (OSTI)

Abstract Co-utilization of biomass and natural gas: a new route for power productin from biomass production is proposed in which biomass energy is used to partially reform natural gas in gas turbines. As a result, part of the natural gas fuel supply can be replaced by biomass while keeping the biomass

Glineur, François

440

Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar  

E-Print Network (OSTI)

Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NETL: Coal/Biomass Feed and Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal/Biomass Feed & Gasification Coal/Biomass Feed & Gasification Coal and Coal/Biomass to Liquids Coal/Biomass Feed and Gasification The Coal/Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal and/or coal-biomass mixtures. Activities support research for handling and processing of coal/biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on downstream components, catalyst and reactor optimization, and characterizing the range of products and product quality. Active projects within the program portfolio include the following: Coal-biomass fuel preparation Development of Biomass-Infused Coal Briquettes for Co-Gasification Coal-biomass gasification modeling

442

Mitigation Options in Forestry, Land-Use, Change and Biomass Burning in Africa  

DOE Green Energy (OSTI)

Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are describe in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct a baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land and in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those, which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries .

Makundi, Willy R.

1998-06-01T23:59:59.000Z

443

Aerosols in Amazonia: Natural biogenic particles and large scale biomass burning impacts  

Science Conference Proceedings (OSTI)

The Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA) is a long term (20 years) research effort aimed at the understanding of the functioning of the Amazonian ecosystem. In particular

2013-01-01T23:59:59.000Z

444

Physical and Chemical Characterization of Particulate and Gas phase Emissions from Biomass Burning  

E-Print Network (OSTI)

from Residential Wood Combustion, Environmental Science &of emissions from birch wood combustion in a wood stove,from residential wood combustion, Environmental science &

Hosseini, Seyedehsan

2012-01-01T23:59:59.000Z

445

Physical and Chemical Characterization of Particulate and Gas phase Emissions from Biomass Burning  

E-Print Network (OSTI)

literature. For example, EF of butane in this study was 5.0-Alkanes Propane 2M-Propane 2M-Propene Butane 2,2-DM-PropanePentane 2,2-DM-Butane 107-167 a , 169 b a b 8.69-13.12 a ,

Hosseini, Seyedehsan

2012-01-01T23:59:59.000Z

446

Relationships of Biomass-Burning Aerosols to Ice in Orographic Wave Clouds  

Science Conference Proceedings (OSTI)

Ice concentrations in orographic wave clouds at temperatures between ?24 and ?29C were shown to be related to aerosol characteristics in nearby clear air during five research flights over the Rocky Mountains. When clouds with influence from ...

Cynthia H. Twohy; Paul J. DeMott; Kerri A. Pratt; R. Subramanian; Gregory L. Kok; Shane M. Murphy; Traci Lersch; Andrew J. Heymsfield; Zhien Wang; Kim A. Prather; John H. Seinfeld

2010-08-01T23:59:59.000Z

447

Correlations between Optical, Chemical and Physical Properties of Biomass Burn Aerosols  

E-Print Network (OSTI)

instruments and photoelectric aerosol sensors in source-sampling of black carbon aerosol and particle-bound PAHsAirborne minerals and related aerosol particles: Effects on

2008-01-01T23:59:59.000Z

448

Biomass Supply Chain: Issues and Lessons  

Science Conference Proceedings (OSTI)

This report investigates the risks in the supply chain for biomass fuels delivered to plants for electric power generation. The intent is to reduce plant operating risks by increasing awareness of potential problems, make specific suggestions for the improvement of biomass assessments, and identify useful areas for further research. A biomass assessment is currently the key tool for identifying the risks pertinent to a specific proposed biomass plant. Three biomass assessments are compared regarding what...

2010-12-31T23:59:59.000Z

449

A Review on Biomass Torrefaction Process and Product Properties  

DOE Green Energy (OSTI)

Biomass Torrefaction is gaining attention as an important preprocessing step to improve the quality of biomass in terms of physical properties and chemical composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of approximately 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-280 C. Thus, the process can be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. The present review work looks into (a) torrefaction process and different products produced during the process and (b) solid torrefied material properties which include: (i) physical properties like moisture content, density, grindability, particle size distribution and particle surface area and pelletability; (ii) chemical properties like proximate and ultimate composition; and (iii) storage properties like off-gassing and spontaneous combustion.

Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; J. Richard Hess; Richard D. Boardman

2011-08-01T23:59:59.000Z

450

Tailoring the plateau burning rates of composite propellants by the use of nanoscale additives  

E-Print Network (OSTI)

Composite propellants are composed of a solid oxidizer that is mixed into a hydrocarbon binder that when polymerized results in a solid mass capable of self-sustained combustion after ignition. Plateau propellants exhibit burning rate curves that do not follow the typical linear relationship between burning rate and pressure when plotted on a log-log scale, and because of this deviation their burning behavior is classified as anomalous burning. It is not unusual for solid-particle additives to be added to propellants in order to enhance burning rate or other properties. However, the effect of nano-size solid additives in these propellants is not fully understood or agreed upon within the research community. The current project set out to explore what possible variables were creating this result and to explore new additives. This thesis contains a literature review chronicling the last half-century of research to better understand the mechanisms that govern anomalous burning and to shed light on current research into plateau and related propellants. In addition to the review, a series of experiments investigating the use of nanoscale TiO2-based additives in AP-HTPB composite propellants was performed. The baseline propellant consisted of either 70% or 80% monomodal AP (223 ?m) and 30% or 20% binder composed of IPDI-cured HTPB with Tepanol. Propellants burning rates were tested using a strand bomb between 500 and 2500 psi (34.0-170.1 atm). Analysis of the burning rate data shows that the crystal phase and synthesis method of the TiO2 additive are influential to plateau tailoring and to the apparent effectiveness of the additive in altering the burning rate of the composite propellant. Some of the discrepancy in the literature regarding the effectiveness of TiO2 as a tailoring additive may be due to differences in how the additive was produced. Doping the TiO2 with small amounts of metallic elements (Al, Fe, or Gd) showed additional effects on the burning rate that depend on the doping material and the amount of the dopant.

Stephens, Matthew Aaron

2008-12-01T23:59:59.000Z

451

TAILORING THE PLATEAU BURNING RATES OF COMPOSITE PROPELLANTS BY THE USE OF NANOSCALE ADDITIVES  

E-Print Network (OSTI)

Composite propellants are composed of a solid oxidizer that is mixed into a hydrocarbon binder that when polymerized results in a solid mass capable of selfsustained combustion after ignition. Plateau propellants exhibit burning rate curves that do not follow the typical linear relationship between burning rate and pressure when plotted on a log-log scale, and because of this deviation their burning behavior is classified as anomalous burning. It is not unusual for solid-particle additives to be added to propellants in order to enhance burning rate or other properties. However, the effect of nano-size solid additives in these propellants is not fully understood or agreed upon within the research community. The current project set out to explore what possible variables were creating this result and to explore new additives. This thesis contains a literature review chronicling the last half-century of research to better understand the mechanisms that govern anomalous burning and to shed light on current research into plateau and related propellants. In addition to the review, a series of experiments investigating the use of nanoscale TiO2-based additives in AP-HTPB composite propellants was performed. The baseline propellant consisted of either 70% or 80% monomodal AP (223 ?m) and 30% or 20% binder composed of IPDI-cured HTPB with Tepanol. Propellants burning rates were tested using a strand bomb between 500 and 2500 psi (34.0-170.1 atm). Analysis of the burning rate data shows that the crystal phase and synthesis method of the TiO2 additive are influential to plateau tailoring and to the apparent effectiveness of the additive in altering the burning rate of the composite propellant. Some of the discrepancy in the literature regarding the effectiveness of TiO2 as a tailoring additive may be due to differences in how the additive was produced. Doping the TiO2 with small amounts of metallic elements (Al, Fe, or Gd) showed additional effects on the burning rate that depend on the doping material and the amount of the dopant.

Stephens, Matthew

2009-05-01T23:59:59.000Z

452

Fiscalini Farms Biomass Energy Project  

SciTech Connect

In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed system capacity. During the baseline study period, feedstocks included manure, sudan grass silage, and

William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

2011-09-30T23:59:59.000Z

453

Paradigm Shift: Burning Coal to Geothermal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paradigm Shift: Burning Coal Paradigm Shift: Burning Coal to Geothermal" November 20, 2012 jlowe@bsu.edu 765.285.2805 Ball State University Ball State University Administration Building 1899 Ball State 1920s Ball State University Ball State University (4) Coal Fired Boilers Installed 1941/1955 (3) Natural Gas Fired Boilers Installed in the 1970s Heat and Chilled Water Plant Operations Heat Plant: 4 Coal Fired Boilers 3 Natural Gas Fired Boilers 320,000 Lbs/Hr nameplate 240,000 Lbs/Hr current 700,000,000 Lbs/Year Chilled Water Plant: 5 Electrical Centrifugal Chillers 9,300 ton capacity 25,000,000 Ton Hours/Year Pollutants Produced from Burning 36,000 tons of Coal * Carbon Dioxide 85,000 tons (Global Warming)

454

Vanadium catalysts break down biomass for fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass into useful components Breaking down biomass could help in converting biomass to fuels. March 26, 2012 Biomass Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is an attractive alternative as a feedstock for the production of renewable chemicals and fuels. Get Expertise Researcher Susan Hanson Inorganic Isotope & Actinide Chem Email Researcher Ruilian Wu Bioenergy & Environmental Science Email Researcher Louis "Pete" Silks Bioenergy & Environmental Science Email Vanadium is an inexpensive, earth-abundant metal that is well suited for promoting oxidations in air. Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is

455

COFIRING BIOMASS WITH LIGNITE COAL  

DOE Green Energy (OSTI)

The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

Darren D. Schmidt

2002-01-01T23:59:59.000Z

456

COFIRING BIOMASS WITH LIGNITE COAL  

SciTech Connect

The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

Darren D. Schmidt

2002-01-01T23:59:59.000Z

457

Oxidation of volatiles in residential wood burning equipment. Final technical report, September 1980-February 1984  

DOE Green Energy (OSTI)

The objectives of this project are to measure, through the use of laboratory combustors, those conditions which promote complete combustion of wood volatiles in residential wood burning equipment. The conditions of interest are combustion temperature, residence time, stoichiometry, and air mixing. The project objectives are met through two laboratory approaches: (1) model compound studies: in order to measure the overall rates of oxidative pyrolysis of biomass volatiles, and to determine the types of intermediate organic species which are likely to form as part of this process, model compounds have been reacted in a specialized jet-stirred reactor, which has been developed as part of this research. (2) high-intensity wood combustion: in order to study the clean combustion of wood, that is, to investigate the conceptual design features required for clean burning, and to ascertain the levels and types of pollutant and condensible species which are most difficult to oxidize, a high-intensity, research wood combustor has been developed and examined for the different phases of the wood burning cycle. Although the objectives of the project have been met, it has not been possible, because of support limitations, to thoroughly explore several interesting aspects which have arisen because of this research. For example, a third laboratory system in which wood pyrolysis gas is injected directly into the a well characterized reactor, so that the kinetics and mechanisms of the gas-phase reaction of the actual biomass volatiles can be studied, could not be thoroughly developed. Refinements in the high-intensity wood combustor, which would bring its design features closer to practicality for the industry, could not be considered. 32 references, 37 figures, 10 tables.

Malte, P.C.; Thornton, M.M.; Kamber, P.D.

1984-04-01T23:59:59.000Z

458

Biomass Energy Production in California 2002: Update of the California Biomass Database  

DOE Green Energy (OSTI)

An updated version of the California Biomass Energy Database, which summarizes California's biomass energy industry using data from 2000 and 2001.

Morris, G.

2002-12-01T23:59:59.000Z

459

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 61, NO. 5, MAY 2012 1343 Flow Measurement of Biomass and Blended Biomass  

E-Print Network (OSTI)

to those in the horizontal pipe. Index Terms--Biomass­coal flow, blended biomass, cross- correlation. It is expected that biomass­coal mixture or blended biomass flow is significantly more complex than and between different biomass fuels. Quantitative data about biomass­coal mixture flow and blended biomass

Yan, Yong

460

Biomass Producer or Collector Tax Credit (Oregon) | Open Energy...  

Open Energy Info (EERE)

or collectors of biomass. The credit can be used for eligible biomass used to produce biofuel; biomass used in facilities such as those producing electricity from anaerobic...

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Biomass Thermal Energy Council (BTEC) | Open Energy Information  

Open Energy Info (EERE)

Biomass Thermal Energy Council (BTEC) Biomass Thermal Energy Council (BTEC) Jump to: navigation, search Tool Summary Name: Biomass Thermal Energy Council (BTEC) Agency/Company /Organization: Biomass Thermal Energy Council (BTEC) Partner: International Trade Administration Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.biomassthermal.org Cost: Free The Biomass Thermal Energy Council (BTEC) website is focused on biomass for heating and other thermal energy applications, and includes links to numerous reports from various agencies around the world. Overview The Biomass Thermal Energy Council (BTEC) website is focused on biomass for

462

HMDC Kingsland Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

HMDC Kingsland Landfill Biomass Facility Jump to: navigation, search Name HMDC Kingsland Landfill Biomass Facility Facility HMDC Kingsland Landfill Sector Biomass Facility Type...

463

LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS ENGINEERING UNIT (PEU)  

E-Print Network (OSTI)

0092 UC-61 ORNIA LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSLBL~l0092 LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSof Energy LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS

Figueroa, Carlos

2012-01-01T23:59:59.000Z

464

Hebei Milestone Biomass Energy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Milestone Biomass Energy Co Ltd Jump to: navigation, search Name Hebei Milestone Biomass Energy Co Ltd Place Hebei Province, China Zip 50051 Sector Biomass Product China-based...

465

New process speeds conversion of biomass to fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

466

A survey of state clean energy fund support for biomass  

E-Print Network (OSTI)

Ibid. SB 704 Energy to Biomass Program Documents Page. Jersey Clean Energy Program. Biomass System Helps LumberCriteria for Sustainable Biomass Projects. http://

Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

467

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

Design Parameters Marine Biomass Production Sea Farmof Various Types of Biomass . Biomethanation Parameters.Proceedings, Fuels from Biomass Symposium. University of

Haven, Kendall F.

2011-01-01T23:59:59.000Z

468

The role of biomass in California's hydrogen economy  

E-Print Network (OSTI)

Making a Business from Biomass in Energy, Environment,2004. An assessment of biomass resources in California.methanol and hydrogen from biomass. Journal of Power Sources

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

469

Interactions of Lignin and Hemicellulose and Effects on Biomass Deconstruction  

E-Print Network (OSTI)

777- 93. Himmel ME. Biomass recalcitrance : deconstructingEthanol from Cellulosic Biomass. Science. 1991 Mar 15;251(from Lignocellulosic Biomass - Technology, Economics, and

Li, Hongjia

2012-01-01T23:59:59.000Z

470

Huaian Huapeng Biomass Electricity Co | Open Energy Information  

Open Energy Info (EERE)

Huaian Huapeng Biomass Electricity Co Jump to: navigation, search Name Huaian Huapeng Biomass Electricity Co. Place Jiangsu Province, China Sector Biomass Product China-based...

471

SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY  

E-Print Network (OSTI)

on the Steam Gasification of Biomass," Department of EnergySteam Gasification of Biomass, 11 April 28, 1978. Liu,Conceptual Commercial Biomass Liquefaction Flow Schematic

Figueroa, C.

2012-01-01T23:59:59.000Z

472

Buena Vista Biomass Power LCC | Open Energy Information  

Open Energy Info (EERE)

Power LCC Jump to: navigation, search Name Buena Vista Biomass Power LCC Place California Sector Biomass Product California-based firm developing and operating an 18MW biomass...

473

Liuzhou Xinneng Biomass Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Liuzhou Xinneng Biomass Power Co Ltd Jump to: navigation, search Name Liuzhou Xinneng Biomass Power Co Ltd Place Guangxi Autonomous Region, China Sector Biomass Product China-based...

474

Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass  

E-Print Network (OSTI)

of Plant Biomass for Biological and Chemical Conversion torole of biomass conversion to fuels and chemicals. Low pHof Plant Biomass for Biological and Chemical Conversion to

McKenzie, Heather Lorelei

2012-01-01T23:59:59.000Z

475

Des Plaines Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Des Plaines Landfill Biomass Facility Jump to: navigation, search Name Des Plaines Landfill Biomass Facility Facility Des Plaines Landfill Sector Biomass Facility Type Landfill Gas...

476

Biomass Gas Electric LLC BG E | Open Energy Information  

Open Energy Info (EERE)

Biomass Gas Electric LLC BG E Jump to: navigation, search Name Biomass Gas & Electric LLC (BG&E) Place Norcross, Georgia Zip 30092 Sector Biomass Product Project developer...

477

Rodefeld Landfill Ga Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Rodefeld Landfill Ga Biomass Facility Jump to: navigation, search Name Rodefeld Landfill Ga Biomass Facility Facility Rodefeld Landfill Ga Sector Biomass Facility Type Landfill Gas...

478

Winnebago County Landfill Gas Biomass Facility | Open Energy...  

Open Energy Info (EERE)

Winnebago County Landfill Gas Biomass Facility Jump to: navigation, search Name Winnebago County Landfill Gas Biomass Facility Facility Winnebago County Landfill Gas Sector Biomass...

479

The role of biomass in California's hydrogen economy  

E-Print Network (OSTI)

the biomass resources, hydrogen demands and prices to ?ndhydrogen. The price premium for biomass hydrogen comparedfrom biomass varies with hydrogen selling price. The curves

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

480

The role of biomass in California's hydrogen economy  

E-Print Network (OSTI)

dimensions of both biomass supply and hydrogen demand. TheIn the process, optimal biomass supply chains are found. Twoproduction from waste biomass supply in California Hydrogen

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mass burn biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

A Hypothetical Burning-Velocity Formula for Very Lean Hydrogen-Air Mixtures  

E-Print Network (OSTI)

K. Fig. 2 Comparisons of burning-velocity predictions withcurve), when an experimental burning velocity (points) of 53and calculated laminar burning velocities of lean hydrogen-

Grcar, Joseph F

2008-01-01T23:59:59.000Z

482

New Developments in Storage and Handling of Biomass  

E-Print Network (OSTI)

An extensive research project to derive guidelines for the design of a reliable bin-feeder system for biomass materials has been completed. The new system uses a converging mass flow hopper with a much smaller outlet and discharge feeder compared to existing systems. A reliable and economical system with a superior performance has been achieved. Two existing hog fuel storage bins in pulp mills have been successfully modified, based on the new design.

Bundalli, N.

1986-06-01T23:59:59.000Z

483

NREL: Biomass Research - Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Staff Research Staff NREL's biomass research staff includes: Management team Technology and research areas Research support areas. Search the NREL staff directory to contact any of the research staff listed below. Management Team The biomass management team is composed of: Thomas Foust, National Bioenergy Center Director Robert Baldwin, Principal Scientist, Thermochemical Conversion Phil Pienkos, Applied Science Principal Group Manager Kim Magrini, Catalysis and Thermochemical Sciences and Engineering R&D Principal Group Manager Jim McMillan, Biochemical Process R&D Principal Group Manager Rich Bain, Principal Engineer, Thermochemical Sciences Mark Davis, Thermochemical Platform Lead Richard Elander, Biochemical Platform Lead Dan Blake, Emeritus Back to Top Technology and Research Areas

484

A Review on Biomass Torrefaction Process and Product Properties for Energy Applications  

Science Conference Proceedings (OSTI)

Torrefaction of biomass can be described as a mild form of pyrolysis at temperatures typically ranging between 200 and 300 C in an inert and reduced environment. Common biomass reactions during torrefaction include devolatilization, depolymerization, and carbonization of hemicellulose, lignin and cellulose. Torrefaction process produces a brown to black solid uniform product and also condensable (water, organics, and lipids) and non condensable gases (CO2, CO, and CH4). Typically during torrefaction, 70% of the mass is retained as a solid product, containing 90% of the initial energy content, and 30% of the lost mass is converted into condensable and non-condensable products. The system's energy efficiency can be improved by reintroducing the material lost during torrefaction as a source of heat. Torrefaction of biomass improves its physical properties like grindability; particle shape, size, and distribution; pelletability; and proximate and ultimate composition like moisture, carbon and hydrogen content, and calorific value. Carbon and calorific value of torrefied biomass increases by 15-25%, and moisture content reduces to biomass has improved sphericity, particle surface area, and particle size distribution. Pelletization of torrefied biomass at temperatures of 225 C reduces specific energy consumption by two times and increases the capacity of the mill by two times. The loss of the OH group during torrefaction makes the material hydrophobic (loses the ability to attract water molecules) and more stable against chemical oxidation and microbial degradation. These improved properties make torrefied biomass particularly suitable for cofiring in power plants and as an upgraded feedstock for gasification.

Jaya Shankar Tumuluru; Shahab Sokhansanj; J. Richard Hess; Christopher T. Wright; Richard D. Boardman

2011-10-01T23:59:59.000Z

485

Explosive hydrogen burning during type I X-ray bursts  

E-Print Network (OSTI)

Explosive hydrogen burning in type I X-ray bursts (XRBs) comprise charged particle reactions creating isotopes with masses up to A~100. Since charged particle reactions in a stellar environment are very temperature sensitive, we use a realistic time-dependent general relativistic and self-consistent model of type I x-ray bursts to provide accurate values of the burst temperatures and densities. This allows a detailed and accurate time-dependent identification of the reaction flow from the surface layers through the convective region and the ignition region to the neutron star ocean. Using this, we determine the relative importance of specific nuclear reactions in the X-ray burst.

Jacob Lund Fisker; Hendrik Schatz; Friedrich-Karl Thielemann

2007-03-13T23:59:59.000Z

486

Conversion of biomass to methanol and its effect on CO sub 2 emissions  

DOE Green Energy (OSTI)

The purpose for this report is to present a preliminary analysis of various processes for conversion of biomass to methanol fuel with the objective of determining the effect of these processes on net CO{sub 2} emissions. The analysis is made primarily on the basis of first principles of mass and energy balances. There are at least four systems that can produce methanol from biomass (defined as wood or lignocellulose). These are reviewed and assessed. 5 refs., 3 figs., 1 tab.

Steinberg, M.

1990-10-01T23:59:59.000Z

487

Biomass energy: State of the technology present obstacles and future potential  

DOE Green Energy (OSTI)

The prevailing image of wood and waste burning as dirty and environmentally harmful is no longer valid. The use of biomass combustion for energy can solve many of our nation`s problems. Wood and other biomass residues that are now causing expensive disposal problems can be burned as cleanly and efficiently as natural gas, and at a fraction of the cost. New breakthroughs in integrated waste-to-energy systems, from fuel handling, combustion technology and control systems to heat transfer and power generation, have dramatically improved system costs, efficiencies, cleanliness of emissions, maintenance-free operation, and end-use applications. Increasing costs for fossil fuels and for waste disposal strict environmental regulations and changing political priorities have changed the economics and rules of the energy game. This report will describe the new rules, new playing fields and key players, in the hope that those who make our nation`s energy policy and those who play in the energy field will take biomass seriously and promote its use.

Dobson, L.

1993-06-23T23:59:59.000Z

488

Reactive burn models and ignition & growth concept  

SciTech Connect

Plastic-bonded explosives are heterogeneous materials. Experimentally, shock initiation is sensitive to small amounts of porosity, due to the formation of hot spots (small localized regions of high temperature). This leads to the Ignition and Growth concept, introduced by Lee and Tarver in 1980, as the basis for reactive burn models. A homogeneized burn rate needs to account for three mesoscale physical effects (i) the density of burnt hot spots, which depends on the lead shock strength; (ii) the growth of the burn fronts triggered by hot spots, which depends on the local deflagration speed; (iii) a geometric factor that accounts for the overlap of deflagration wavelets from adjacent hot spots. These effects can be combined and the burn model defined by specifying the reaction progress variable {lambda}(t) as a function of a dimensionless reaction length {tau}{sub hs}(t)/{ell}{sub hs}, rather than by xpecifying an explicit burn rate. The length scale {ell}{sub hs} is the average distance between hot spots, which is proportional to [N{sub hs}(P{sub s})]{sup -1/3}, where N{sub hs} is the number density of hot spots activated by the lead shock. The reaction length {tau}{sub hs}(t) = {line_integral}{sub 0}{sup t} D(P(t'))dt' is the distance the burn front propagates from a single hot spot, where D is the deflagration speed and t is the time since the shock arrival. A key implementation issue is how to determine the lead shock strength in conjunction with a shock capturing scheme. They have developed a robust algorithm for this purpose based on the Hugoniot jump condition for the energy. The algorithm utilizes the time dependence of density, pressure and energy within each cell. The method is independent of the numerical dissipation used for shock capturing. It is local and can be used in one or more space dimensions. The burn model has a small number of parameters which can be calibrated to fit velocity gauge data from shock initiation experiments.

Menikoff, Ralph S [Los Alamos National Laboratory; Shaw, Milton S [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

489

Reflective Terahertz Imaging for early diagnosis of skin burn severity  

E-Print Network (OSTI)

97 Fig 7.3 Cross shaped brass brand used for burnFig 7.21 3-D drawing of the brass brand used for controlledfor imaging burns[10]. A brass brand heated to 315C was

TEWARI, PRIYAMVADA

2013-01-01T23:59:59.000Z

490

How much carbon dioxide is produced by burning gasoline and ...  

U.S. Energy Information Administration (EIA)

How much carbon dioxide is produced by burning gasoline and diesel fuel? About 19.64 pounds of carbon dioxide (CO 2) are produced from burning a gallon of gasoline ...

491

NETL: Releases & Briefs - Laser ignition for lean-burn engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Technology Laboratory have successfully operated a laser-spark lean-burn natural gas reciprocating engine. Development of lean-burn engines is driven by demand for higher...

492

Florida Biomass Energy Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Jump to: navigation, search Name Florida Biomass Energy Group Place Gulf Breeze, Florida Zip 32561 Sector Biomass Product Florida Biomass Energy Group is a Florida limited liability corporation whose business is the development and operation of closed-loop, biomass-fired electrical generating plants. References Florida Biomass Energy Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Florida Biomass Energy Group is a company located in Gulf Breeze, Florida . References ↑ "Florida Biomass Energy Group" Retrieved from "http://en.openei.org/w/index.php?title=Florida_Biomass_Energy_Group&oldid=345419" Categories: Clean Energy Organizations

493

Biomass Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

494

Biomass Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

495

Biomass Sales and Use Tax Exemption  

Energy.gov (U.S. Department of Energy (DOE))

Georgia enacted legislation in April 2006 (HB 1018) creating an exemption for biomass materials from the state's sales and use taxes. The term "biomass material" is defined as "organic matter,...

496

Biomass One LP | Open Energy Information  

Open Energy Info (EERE)

Biomass One LP Place White City, Oregon Product Owner and operator of a 25MW wood fired cogeneration plant in Oregon. References Biomass One LP1 LinkedIn Connections CrunchBase...

497

Treatment of biomass to obtain ethanol  

DOE Patents (OSTI)

Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

Dunson, Jr., James B. (Newark, DE); Elander, Richard T. (Evergreen, CO); Tucker, III, Melvin P. (Lakewood, CO); Hennessey, Susan Marie (Avondale, PA)

2011-08-16T23:59:59.000Z

498

Biomass Webinar Text Version | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Text Version Biomass Webinar Text Version Dowload the text version of the audio from the DOE Office of Indian Energy webinar on biomass. DOE Office of Indian Energy Foundational...

499

Biomass Oil Analysis: Research Needs and Recommendations  

SciTech Connect

Report analyzing the use of biomass oils to help meet Office of the Biomass Program goals of establishing a commercial biorefinery by 2010 and commercializing at least four biobased products.

Tyson, K. S.; Bozell, J.; Wallace, R.; Petersen, E.; Moens, L.

2004-06-01T23:59:59.000Z

500

Biomass Resources for the Federal Sector  

DOE Green Energy (OSTI)

Biomass Resources for the Federal Sector is a fact sheet that explains how biomass resources can be incorporated into the federal sector, and also how they can provide opportunities to meet federal renewable energy goals.

Not Available

2005-08-01T23:59:59.000Z