National Library of Energy BETA

Sample records for marks seismic techniques

  1. Category:Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Seismic Techniques page? For detailed information on Seismic...

  2. Active Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Technique: Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. StratigraphicStructural: Structural geology-...

  3. Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    impedance boundary7 References (Majer, n.d.) "3-D Seismic Methods For Geothermal Reservoir Exploration and Assessment- Summary" 2.0 2.1 2.2 (Dobrin and Savit, 1988)...

  4. Category:Active Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Active Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Active Seismic Techniques page? For detailed information...

  5. Category:Passive Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Passive Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Passive Seismic Techniques page? For detailed...

  6. Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques

    Broader source: Energy.gov [DOE]

    Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Justin Coleman, P.E. October 25th, 2011

  7. Borehole Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Technique: Downhole Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities StratigraphicStructural: Structural geology-...

  8. Category:Borehole Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    out of 2 total. S Single-Well And Cross-Well Seismic Imaging 1 pages V Vertical Seismic Profiling 1 pages Pages in category "Borehole Seismic...

  9. Mapping Diffuse Seismicity Using Empirical Matched Field Processing Techniques

    SciTech Connect (OSTI)

    Wang, J; Templeton, D C; Harris, D B

    2011-01-21

    The objective of this project is to detect and locate more microearthquakes using the empirical matched field processing (MFP) method than can be detected using only conventional earthquake detection techniques. We propose that empirical MFP can complement existing catalogs and techniques. We test our method on continuous seismic data collected at the Salton Sea Geothermal Field during November 2009 and January 2010. In the Southern California Earthquake Data Center (SCEDC) earthquake catalog, 619 events were identified in our study area during this time frame and our MFP technique identified 1094 events. Therefore, we believe that the empirical MFP method combined with conventional methods significantly improves the network detection ability in an efficient matter.

  10. Italy - Adriatic Sea - Barbara - A giant gas field marked by seismic velocity anomaly - A subtle trap

    SciTech Connect (OSTI)

    Ianniello, A.; Bolelli, W.; Di Scala, L. )

    1990-09-01

    Barbara gas field, discovered in 1971, is located in the northern sector of the Adriatic offshore. The field is a gentle anticline involving Quaternary clastic sediments and shaped by carbonate Mesozoic morphology. The presence of shallow gas pockets at the crest of the structure distort the seismic signal to such an extent that structural reconstruction using seismic data is not possible. Moreover, time delays and ray-path anomalies do not allow the use of staking velocities for the depth conversion. Seismic attribute analysis, instead of velocities, and time delays on the isochrone maps are providing a key to the understanding of seismic anomalies and are an indirect tool for reconstructing the real structural configuration of the field. The appraisal story of the field illustrates how the previously mentioned complications influenced its delineation and how an understanding of these complications helped in upgrading the reserves from an initial value of 10 billion ECM of gas to 40 billion ECM. Additional data acquired with the development wells tend to increase the estimate. Therefore, Barbara field is the most important Italian gas field of the decade. The producing formation is composed of very thin-bedded sandstone and shale intercalations, representing the peculiarity of this reservoir. Development of the field is being achieved with six production platforms and 72 wells.

  11. Microseismic techniques for avoiding induced seismicity during fluid injection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Matzel, Eric; White, Joshua; Templeton, Dennise; Pyle, Moira; Morency, Christina; Trainor-Guitton, Whitney

    2014-01-01

    The goal of this research is to develop a fundamentally better approach to geological site characterization and early hazard detection. We combine innovative techniques for analyzing microseismic data with a physics-based inversion model to forecast microseismic cloud evolution. The key challenge is that faults at risk of slipping are often too small to detect during the site characterization phase. Our objective is to devise fast-running methodologies that will allow field operators to respond quickly to changing subsurface conditions.

  12. Geotechnical Seismic Hazard Evaluation At Sellano (Umbria, Italy) Using The GIS Technique

    SciTech Connect (OSTI)

    Capilleri, P.; Maugeri, M.

    2008-07-08

    A tool that has been widely-used in civil engineering in recent years is the geographic information system (GIS). Geographic Information systems (GIS) are powerful tools for organizing, analyzing, and presenting spatial data. The GIS can be used by geotechnical engineers to aid preliminary assessment through to the final geotechnical design. The aim of this work is to provide some indications for the use of the GIS technique in the field of seismic geotechnical engineering, particularly as regards the problems of seismic hazard zonation maps. The study area is the village of Sellano located in the Umbrian Apennines in central Italy, about 45 km east of Perugia and 120 km north-east of Rome The increasing importance attributed to microzonation derives from the spatial variability of ground motion due to particular local conditions. The use of GIS tools can lead to an early identification of potential barriers to project completion during the design process that may help avoid later costly redesign.

  13. Application of seismic tomographic techniques in the investigation of geothermal systems

    SciTech Connect (OSTI)

    Romero, A.E. Jr.

    1995-05-01

    The utility of microearthquake data for characterizing the Northwest Geysers geothermal field and the Long Valley Caldera (LVC) was investigated. Three-dimensional (3-D) P- and S-wave seismic velocity models were estimated for the Coldwater Creek Steam Field (CCSF) in the Northwest Geysers region. Hypocenters relocated using these 3-D models appear to be associated with the steam producing zone, with a deeper cluster of hypocenters beneath an active injection well. Spatial and temporal patterns of seismicity exhibit strong correlation with geothermal exploitation. A 3-D differential attenuation model was also developed for the CCSF from spectral ratios corrected for strong site effects. High-velocity anomalies and low attenuation in the near surface correspond to Franciscan metagraywacke and greenstone units. Microearthquakes recorded at seismographic stations located near the metagraywacke unit exhibit high corner frequencies. Low-velocity anomalies and higher attenuation in the near surface are associated with sections of Franciscan melange. Near-surface high attenuation and high Vp/Vs are interpreted to indicate liquid-saturated regions affected by meteoric recharge. High attenuation and low Vp/Vs marks the steam producing zone, suggesting undersaturation of the reservoir rocks. The extent of the high attenuation and low Vp/Vs anomalies suggest that the CCSF steam reservoir may extend northwestward beyond the known producing zone. This study concludes that microearthquake monitoring may be useful as an active reservoir management tool. Seismic velocity and attenuation structures as well as the distribution of microearthquake activity can be used to identify and delineate the geothermal reservoir, while temporal variations in these quantities would be useful in tracking changes during exploitation.

  14. Karst characterization in a semi-arid region using gravity, seismic, and resistivity geophysical techniques.

    SciTech Connect (OSTI)

    Barnhart, Kevin Scott

    2013-10-01

    We proposed to customize emerging in situ geophysical monitoring technology to generate time-series data during sporadic rain events in a semi-arid region. Electrodes were to be connected to wireless %5Cnodes%22 which can be left in the eld for many months. Embedded software would then increase sampling frequency during periods of rainfall. We hypothesized that this contrast between no-volume ow in karst passageways dur- ing dry periods and partial- or saturated-volume ow during a rain event is detectable by these Wireless Sensor Network (WSN) geophysical nodes, we call this a Wireless Resistivity Network (WRN). The development of new methodologies to characterize semi-arid karst hydrology is intended to augment Sandia National Laboratorys mission to lead e orts in energy technologies, waste disposal and climate security by helping to identify safe and secure regions and those that are at risk. Development and initial eld testing identi ed technological barriers to using WRNs for identifying semi-arid karst, exposing R&D which can be targeted in the future. Gravity, seismic, and resis- tivity surveys elucidated how each technique might e ectively be used to characterize semi-arid karst. This research brings to light the importance and challenges with char- acterizing semi-arid karst through a multi-method geophysical study. As there have been very few studies with this emphasis, this study has expanded the body of practical experience needed to protect the nations water and energy security interests.

  15. Mark Bowers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mark Bowers A Can-Do Attitude about Life Mark Bowers, optics manager and sailing enthusiast, is shown sailing in the San Francisco Bay. It is quickly clear that Mark Bowers, optical systems project associate manager, loves learning and sharing knowledge with others, both on and off the job. His enthusiasm allows him to enliven even typically dull events such as weekly safety meetings. Knowing that the best way to encourage attendance and disseminate important information at the weekly meetings

  16. Mark Herrmann

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mark Herrmann Mark Herrmann Director, National Ignition Facility NIF Director Mark Herrmann came to LLNL in October 2014 from Sandia National Laboratories, where he served as director of the Pulsed Power Sciences Center. As the NIF Director, Herrmann works closely with the leadership of the National Nuclear Security Administration's Stockpile Stewardship Program (SSP) across the weapons complex including the national Inertial Confinement Fusion (ICF) Program, as well as the National Security

  17. Mark Heer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mark Heer Mark Heer mheer.jpg Mark Heer Account Support MHeer@lbl.gov Phone: (510) 486-4284 Fax: (510) 486-4316 1 Cyclotron Road Mail Stop 943-256 Berkeley, CA 94720 Biographical Sketch Mark Heer is a member of the Account Support team and serves as postmaster for nersc.gov email. He creates user accounts on NIM, answers calls from users about their accounts, and generates statistics on NERSC users and usage. He joined NERSC at LLNL and was previously Computer Operations Manager for a software

  18. Full Reviews: Seismicity and Seismic

    Broader source: Energy.gov [DOE]

    Below are the project presentations and respective peer reviewer comments for Seismicity and Seismic.

  19. Vertical Seismic Profiling | Open Energy Information

    Open Energy Info (EERE)

    Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. StratigraphicStructural: Structural geology-...

  20. Teleseismic-Seismic Monitoring | Open Energy Information

    Open Energy Info (EERE)

    Passive Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. StratigraphicStructural: Map geothermal...

  1. Mark Lausten

    Broader source: Energy.gov [DOE]

    Mark is a registered professional engineer with a background in the power industry engineering, procurement, and construction. He began work for the Solar Energy Technologies Office in 2007, focusing on market barriers to large-scale solar deployment. Now working on the SunShot Initiative team, he has watched the state of the concentrating solar power (CSP) market change from nearly barren to flourishing.

  2. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect (OSTI)

    Michael G. Waddell; William J. Domoracki; Jerome Eyer

    2003-01-01

    The Earth Sciences and Resources Institute, University of South Carolina is conducting a proof of concept study to determine the location and distribution of subsurface DNAPL carbon tetrachloride (CCl{sub 4}) contamination at the 216-Z-9 crib, 200 West area, DOE Hanford Site, Washington by use of two-dimensional high-resolution seismic reflection surveys and borehole geophysical data. The study makes use of recent advances in seismic reflection amplitude versus offset (AVO) technology to directly detect the presence of subsurface DNAPL. The techniques proposed are noninvasive means of site characterization and direct free-phase DNAPL detection. This final report covers the results of Tasks 1, 2, and 3. Task (1) contains site evaluation and seismic modeling studies. The site evaluation consists of identifying and collecting preexisting geological and geophysical information regarding subsurface structure and the presence and quantity of DNAPL. The seismic modeling studies were undertaken to determine the likelihood that an AVO response exists and its probable manifestation. Task (2) is the design and acquisition of 2-D seismic reflection data to image areas of probable high concentration of DNAPL. Task (3) is the processing and interpretation of the 2-D data. During the commission of these tasks four seismic reflection profiles were collected. Subsurface velocity information was obtained by vertical seismic profile surveys in three wells. The interpretation of these data is in two parts. Part one is the construction and interpretation of structural contour maps of the contact between the Hanford Fine unit and the underlying Plio/Pleistocene unit and of the contact between the Plio/Pleistocene unit and the underlying caliche layer. These two contacts were determined to be the most likely surfaces to contain the highest concentration CCl{sub 4}. Part two of the interpretation uses the results of the AVO modeling to locate any seismic amplitude anomalies that might be associated with the presence of high concentrations of CCl{sub 4}. Based on the modeling results three different methods of AVO analysis were preformed on the seismic data: enhanced amplitude stacks, offset range limited stacks, and gradient stacks. Seismic models indicate that the reflection from the contact between the Hanford Fine and the Plio/Pleistocene should exhibit amplitude variations where there are high concentrations of CCl{sub 4}. A series of different scenarios were modeled. The first scenario is the Hanford Fine pores are 100% saturated with CCl{sub 4} and the underlying Plio/Pleistocene pores are saturated with air. In this scenario the reflection coefficients are slightly negative at the small angles of incidence and become increasing more negative at the larger angles of incidence (dim-out). The second scenario is the Hanford Fine pores are saturated with air and Plio/Pleistocene pores are saturated with CCl{sub 4}. In this scenario the reflection coefficients are slightly positive at the small angles of incidence and become negative at the large angles of incidence (polarity reversal). Finally the third scenario is both the Hanford Fine and the Plio/Pleistocene pores are saturated CCl{sub 4}. In this scenario the reflection coefficients at the small angles of incidence are slightly positive, but much less than background response, and with increasing angle of incidence the reflection coefficients become slightly more positive. On the field data areas where extraction wells have high concentrations of CCl{sub 4} a corresponding dim-out and/or a polarity reversal is noted.

  3. ZYGO Mark Ivxp Interferometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ZYGO Mark Ivxp Interferometer Back to Equipment

  4. COMBINING A NEW 3-D SEISMIC S-WAVE PROPAGATION ANALYSIS FOR REMOTE FRACTURE DETECTION WITH A ROBUST SUBSURFACE MICROFRACTURE-BASED VERIFICATION TECHNIQUE

    SciTech Connect (OSTI)

    Bob Hardage; M.M. Backus; M.V. DeAngelo; R.J. Graebner; S.E. Laubach; Paul Murray

    2004-02-01

    Fractures within the producing reservoirs at McElroy Field could not be studied with the industry-provided 3C3D seismic data used as a cost-sharing contribution in this study. The signal-to-noise character of the converted-SV data across the targeted reservoirs in these contributed data was not adequate for interpreting azimuth-dependent data effects. After illustrating the low signal quality of the converted-SV data at McElroy Field, the seismic portion of this report abandons the McElroy study site and defers to 3C3D seismic data acquired across a different fractured carbonate reservoir system to illustrate how 3C3D seismic data can provide useful information about fracture systems. Using these latter data, we illustrate how fast-S and slow-S data effects can be analyzed in the prestack domain to recognize fracture azimuth, and then demonstrate how fast-S and slow-S data volumes can be analyzed in the poststack domain to estimate fracture intensity. In the geologic portion of the report, we analyze published regional stress data near McElroy Field and numerous formation multi-imager (FMI) logs acquired across McElroy to develop possible fracture models for the McElroy system. Regional stress data imply a fracture orientation different from the orientations observed in most of the FMI logs. This report culminates Phase 2 of the study, ''Combining a New 3-D Seismic S-Wave Propagation Analysis for Remote Fracture Detection with a Robust Subsurface Microfracture-Based Verification Technique''. Phase 3 will not be initiated because wells were to be drilled in Phase 3 of the project to verify the validity of fracture-orientation maps and fracture-intensity maps produced in Phase 2. Such maps cannot be made across McElroy Field because of the limitations of the available 3C3D seismic data at the depth level of the reservoir target.

  5. Non-Linear Seismic Soil Structure Interaction (SSI) Method for...

    Office of Environmental Management (EM)

    Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear...

  6. Idaho National Laboratory (INL) Seismic Initiative | Department of Energy

    Office of Environmental Management (EM)

    Initiative Idaho National Laboratory (INL) Seismic Initiative Presentation from the May 2015 Seismic Lessons-Learned Panel Meeting. PDF icon INL Seismic Initiative More Documents & Publications Development of Nonlinear SSI Time Domain Methodology Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Natural Phenomena Hazards (NPH) Workshop

  7. 3D Seismic Experimentation and Advanced Processing/Inversion Development for Investigations of the Shallow Subsurface

    SciTech Connect (OSTI)

    Levander, Alan Richard; Zelt, Colin A.

    2015-03-17

    The work plan for this project was to develop and apply advanced seismic reflection and wide-angle processing and inversion techniques to high resolution seismic data for the shallow subsurface to seismically characterize the shallow subsurface at hazardous waste sites as an aid to containment and cleanup activities. We proposed to continue work on seismic data that we had already acquired under a previous DoE grant, as well as to acquire additional new datasets for analysis. The project successfully developed and/or implemented the use of 3D reflection seismology algorithms, waveform tomography and finite-frequency tomography using compressional and shear waves for high resolution characterization of the shallow subsurface at two waste sites. These two sites have markedly different near-surface structures, groundwater flow patterns, and hazardous waste problems. This is documented in the list of refereed documents, conference proceedings, and Rice graduate theses, listed below.

  8. Non-linear Seismic Soil Structure Interaction Method for Developing Nonlinear Seismic SSI

    Office of Environmental Management (EM)

    Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Justin Coleman, P.E. October 25th, 2011 E102003020BDS Presentation Outline  Purpose of Presentation  Linear versus Non-Linear Seismic SSI  Non-Linear seismic Soil Structure Interaction (NLSSI) Studies  The NLSSI Introduction  Non-Linearity in Seismic SSI Analysis  Commercial Software Elements  Commercial Software Non-Linear Constitutive Models  Non-Linear

  9. Active Seismic Methods | Open Energy Information

    Open Energy Info (EERE)

    Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Active Seismic Methods Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration...

  10. Mark R. Lochbaum

    Broader source: Energy.gov [DOE]

    Mark Lochbaum is a Lead Small Business Specialist with Office of Small and Disadvantaged Business Utilization.Prior to joining the U.S. Department of Energy, Mark worked at the U.S. Department of...

  11. Method of intrinsic marking

    DOE Patents [OSTI]

    Adams, David P; McDonald, Joel Patrick; Jared, Bradley Howell; Hodges, V. Carter; Hirschfeld, Deidre; Blair, Dianna S

    2014-04-01

    A method of pulsed laser intrinsic marking can provide a unique identifier to detect tampering or counterfeiting.

  12. mark | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mark Ames Laboratory Profile Mark Gordon Associate Chemical & Biological Sciences 201 Spedding Phone Number: 515-294-0452 Email Address: mark@si.msg.chem.iastate.edu Ames Laboratory Associate and Distinguished Professor, Iowa State University Website(s): Mark Gordon's Quantum Theory Group Ames Laboratory Research Projects: Chemical Physics Theoretical/Computational Tools for Energy-Relevant Catalysis Education: Postdoctoral Associate, Iowa State University, 1967-1970 Ph.D. Carnegie-Mellon

  13. Howard S. Marks

    Broader source: Energy.gov [DOE]

    Howard Marks is a Program Analyst with the Office of Energy Efficiency and Renewable Energy's Biomass Program.

  14. Single-Well And Cross-Well Seismic Imaging | Open Energy Information

    Open Energy Info (EERE)

    Single-Well And Cross-Well Seismic Imaging (Redirected from Single-Well And Cross-Well Seismic) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique:...

  15. Single-Well And Cross-Well Seismic Imaging | Open Energy Information

    Open Energy Info (EERE)

    Single-Well And Cross-Well Seismic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well And Cross-Well Seismic Imaging Details...

  16. Congressional House Senate Omnibus Request Marks Marks

    Office of Environmental Management (EM)

    09 FY 2009 ($ in thousands) Congressional House Senate Omnibus Request Marks Marks 3/11/2009 FOSSIL ENERGY R&D Coal 623,732 681,600 644,432 692,410 Natural Gas Technologies 0 25,000 20,000 20,000 Petroleum - Oil Technology 0 3,000 5,000 5,000 Oil and Gas Security 0 0 0 0 Program Direction 126,252 126,252 152,804 152,000 Plant & Capital Equipment 5,000 5,000 17,748 18,000 Environmental Restoration 9,700 9,700 9,700 9,700 Cooperative Res. & Development 0 0 5,000 5,000 Congressional

  17. Seismic Studies

    SciTech Connect (OSTI)

    R. Quittmeyer

    2006-09-25

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at Yucca Mountain. (2) For probabilistic analyses supporting the demonstration of compliance with preclosure performance objectives, provide a mean seismic hazard curve for the surface facilities area. Results should be consistent with the PSHA for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at Yucca Mountain. (3) For annual ground motion exceedance probabilities appropriate for postclosure analyses, provide site-specific seismic time histories (acceleration, velocity, and displacement) for the waste emplacement level. Time histories should be consistent with the PSHA and reflect available knowledge on the limits to extreme ground motion at Yucca Mountain. (4) In support of ground-motion site-response modeling, perform field investigations and laboratory testing to provide a technical basis for model inputs. Characterize the repository block and areas in which important-to-safety surface facilities will be sited. Work should support characterization and reduction of uncertainties in inputs to ground-motion site-response modeling. (5) On the basis of rock mechanics, geologic, and seismic information, determine limits on extreme ground motion at Yucca Mountain and document the technical basis for them. (6) Update the ground-motion site-response model, as appropriate, on the basis of new data. Expand and enhance the technical basis for model validation to further increase confidence in the site-response modeling. (7) Document seismic methodologies and approaches in reports to be submitted to the NRC. (8) Address condition reports.

  18. CMPC Marking Resource

    Broader source: Energy.gov (indexed) [DOE]

    All documents containing Nuclear Weapon Data that wereare originated in the DOE or NNSA and transmitted to the DoD, must also be marked Critical Nuclear Weapon Design...

  19. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect (OSTI)

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-05-01

    This semi-annual technical progress report is for Task 4 site evaluation, Task 5 seismic reflection design and acquisition, and Task 6 seismic reflection processing and interpretation on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford. During this reporting period the project had an ASME peer review. The findings and recommendation of the review panel, as well at the project team response to comments, are in Appendix A. After the SUBCON midyear review in Albuquerque, NM and the peer review it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as monitoring to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. Under the rescope of the project, Task 4 would be performed at the Charleston Navy Weapons Station, Charleston, SC and not at the Dynamic Underground Stripping (DUS) project at SRS. The project team had already completed Task 4 at the M-area seepage basin, only a few hundred yards away from the DUS site. Because the geology is the same, Task 4 was not necessary. However, a Vertical Seismic Profile (VSP) was conducted in one well to calibrate the geology to the seismic data. The first deployment to the DUS Site (Tasks 5 and 6) has been completed. Once the steam has been turned off these tasks will be performed again to compare the results to the pre-steam data. The results from the first deployment to the DUS site indicated a seismic amplitude anomaly at the location and depths of the known high concentrations of DNAPL. The deployment to another site with different geologic conditions was supposed to occur during this reporting period. The first site selected was DOE Paducah, Kentucky. After almost eight months of negotiation, site access was denied requiring the selection of another site. An alternate, site the Department of Defense (DOD) Charleston Navy Weapons Station, Charleston, SC was selected in consultation with National Energy Technology Laboratory (NETL) and DOD Navy Facilities Engineering Command Southern Division (NAVFAC) personnel. Tasks 4, 5, and 6 will be performed at the Charleston Navy Weapons Station. Task 4 will be executed twice. The project team had almost completed Task 4 at Paducah before access was denied.

  20. Analysis of ancient-river systems by 3D seismic time-slice technique: A case study in northeast Malay Basin, offshore Terengganu, Malaysia

    SciTech Connect (OSTI)

    Sulaiman, Noorzamzarina; Hamzah, Umar; Samsudin, Abdul Rahim

    2014-09-03

    Fluvial sandstones constitute one of the major clastic petroleum reservoir types in many sedimentary basins around the world. This study is based on the analysis of high-resolution, shallow (seabed to 500 m depth) 3D seismic data which generated three-dimensional (3D) time slices that provide exceptional imaging of the geometry, dimension and temporal and spatial distribution of fluvial channels. The study area is in the northeast of Malay Basin about 280 km to the east of Terengganu offshore. The Malay Basin comprises a thick (> 8 km), rift to post-rift Oligo-Miocene to Pliocene basin-fill. The youngest (Miocene to Pliocene), post-rift succession is dominated by a thick (15 km), cyclic succession of coastal plain and coastal deposits, which accumulated in a humid-tropical climatic setting. This study focuses on the Pleistocene to Recent (500 m thick) succession, which comprises a range of seismic facies analysis of the two-dimensional (2D) seismic sections, mainly reflecting changes in fluvial channel style and river architecture. The succession has been divided into four seismic units (Unit S1-S4), bounded by basin-wide strata surfaces. Two types of boundaries have been identified: 1) a boundary that is defined by a regionally-extensive erosion surface at the base of a prominent incised valley (S3 and S4); 2) a sequence boundary that is defined by more weakly-incised, straight and low-sinuosity channels which is interpreted as low-stand alluvial bypass channel systems (S1 and S2). Each unit displays a predictable vertical change of the channel pattern and scale, with wide low-sinuosity channels at the base passing gradationally upwards into narrow high-sinuosity channels at the top. The wide variation in channel style and size is interpreted to be controlled mainly by the sea-level fluctuations on the widely flat Sunda land Platform.

  1. Towards the Understanding of Induced Seismicity in Enhanced Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Project objectives: To develop a combination of techniques to evaluate the relationship between EGS operations and the induced stress changes throughout the reservoir and the surrounding country rock. PDF icon seismicity_gritto_induced_seismicity.pdf More Documents & Publications Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems (EGS)

  2. Compound and Elemental Analysis At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Nevada Seismic Zone Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical...

  3. Isotopic Analysis At Central Nevada Seismic Zone Region (Laney...

    Open Energy Info (EERE)

    Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes...

  4. Teleseismic-Seismic Monitoring At Walker-Lane Transitional Zone...

    Open Energy Info (EERE)

    Zone Region (Biasi, Et Al., 2009) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity...

  5. Teleseismic-Seismic Monitoring At Walker-Lane Transitional Zone...

    Open Energy Info (EERE)

    Zone Region (Biasi, Et Al., 2008) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity...

  6. Seismic sources

    DOE Patents [OSTI]

    Green, M.A.; Cook, N.G.W.; McEvilly, T.V.; Majer, E.L.; Witherspoon, P.A.

    1987-04-20

    Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Longitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements for more than about one minute. 9 figs.

  7. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect (OSTI)

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400 level receiver array can be used to obtain 3D 9C data. These 9C borehole seismic data provide both compressional wave and shear wave information that can be used for quantitative prediction of rock and pore fluid types. The 400-level borehole receiver array has been deployed successfully in a number of oil and gas wells during the course of this project, and each survey has resulted in marked improvements in imaging of geologic features that are critical for oil or gas production but were previously considered to be below the limits of seismic resolution. This added level of reservoir detail has resulted in improved well placement in the oil and gas fields that have been drilled using the Massive 3D VSP{reg_sign} images. In the future, the 400-level downhole seismic receiver array is expected to continue to improve reservoir characterization and drilling success in deep and complex oil and gas reservoirs.

  8. Seismic sources

    DOE Patents [OSTI]

    Green, Michael A. (Oakland, CA); Cook, Neville G. W. (Lafayette, CA); McEvilly, Thomas V. (Berkeley, CA); Majer, Ernest L. (El Cirrito, CA); Witherspoon, Paul A. (Berkeley, CA)

    1992-01-01

    Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Logitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole relative to a stator that is clamped to the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements at a power level that causes heating to over 150.degree. C. within one minute of operation, but energizing the elements for no more than about one minute.

  9. NREL: Energy Analysis - Mark Ruth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mark Ruth Photo of Mark Ruth. Mark Ruth is the principal project lead of the Strategic Energy Analysis Center. Principal Project Lead - Integrated Energy System Model On staff since 1993 (SEAC staff since 2014) Phone number: 303-384-6874 Email: mark.ruth@nrel.gov Areas of expertise Energy systems and their simulation. Biomass processing to fuels and chemicals Hydrogen production and delivery Transportation issues Primary research interests Tool development Energy systems integration (ESI) Energy

  10. Automating Shallow Seismic Imaging

    SciTech Connect (OSTI)

    Steeples, Don W.

    2004-12-09

    This seven-year, shallow-seismic reflection research project had the aim of improving geophysical imaging of possible contaminant flow paths. Thousands of chemically contaminated sites exist in the United States, including at least 3,700 at Department of Energy (DOE) facilities. Imaging technologies such as shallow seismic reflection (SSR) and ground-penetrating radar (GPR) sometimes are capable of identifying geologic conditions that might indicate preferential contaminant-flow paths. Historically, SSR has been used very little at depths shallower than 30 m, and even more rarely at depths of 10 m or less. Conversely, GPR is rarely useful at depths greater than 10 m, especially in areas where clay or other electrically conductive materials are present near the surface. Efforts to image the cone of depression around a pumping well using seismic methods were only partially successful (for complete references of all research results, see the full Final Technical Report, DOE/ER/14826-F), but peripheral results included development of SSR methods for depths shallower than one meter, a depth range that had not been achieved before. Imaging at such shallow depths, however, requires geophone intervals of the order of 10 cm or less, which makes such surveys very expensive in terms of human time and effort. We also showed that SSR and GPR could be used in a complementary fashion to image the same volume of earth at very shallow depths. The primary research focus of the second three-year period of funding was to develop and demonstrate an automated method of conducting two-dimensional (2D) shallow-seismic surveys with the goal of saving time, effort, and money. Tests involving the second generation of the hydraulic geophone-planting device dubbed the ''Autojuggie'' showed that large numbers of geophones can be placed quickly and automatically and can acquire high-quality data, although not under rough topographic conditions. In some easy-access environments, this device could make SSR surveying considerably more efficient and less expensive, particularly when geophone intervals of 25 cm or less are required. The most recent research analyzed the difference in seismic response of the geophones with variable geophone spike length and geophones attached to various steel media. Experiments investigated the azimuthal dependence of the quality of data relative to the orientation of the rigidly attached geophones. Other experiments designed to test the hypothesis that the data are being amplified in much the same way that an organ pipe amplifies sound have so far proved inconclusive. Taken together, the positive results show that SSR imaging within a few meters of the earth's surface is possible if the geology is suitable, that SSR imaging can complement GPR imaging, and that SSR imaging could be made significantly more cost effective, at least in areas where the topography and the geology are favorable. Increased knowledge of the Earth's shallow subsurface through non-intrusive techniques is of potential benefit to management of DOE facilities. Among the most significant problems facing hydrologists today is the delineation of preferential permeability paths in sufficient detail to make a quantitative analysis possible. Aquifer systems dominated by fracture flow have a reputation of being particularly difficult to characterize and model. At chemically contaminated sites, including U.S. Department of Energy (DOE) facilities and others at Department of Defense (DOD) installations worldwide, establishing the spatial extent of the contamination, along with the fate of the contaminants and their transport-flow directions, is essential to the development of effective cleanup strategies. Detailed characterization of the shallow subsurface is important not only in environmental, groundwater, and geotechnical engineering applications, but also in neotectonics, mining geology, and the analysis of petroleum reservoir analogs. Near-surface seismology is in the vanguard of non-intrusive approaches to increase knowledge of the shallow subsurface; our work is a significant departure from conventional seismic-survey field procedures.

  11. Seismic Monitoring - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Resource Protection Home Cultural Resource Program and Curation Services Ecological Monitoring Environmental Surveillance Meteorology and Climatology Services Seismic...

  12. Assessing Beyond Design Basis Seismic Events and Implications on Seismic

    Office of Environmental Management (EM)

    Risk | Department of Energy Assessing Beyond Design Basis Seismic Events and Implications on Seismic Risk Assessing Beyond Design Basis Seismic Events and Implications on Seismic Risk September 19, 2012 Presenter: Jeffrey Kimball, Technical Specialist (Seismologist) Defense Nuclear Facilities Safety Board Topics Covered: Department of Energy Approach to Natural Phenomena Hazards Analysis and Design (Seismic) Design Basis and Beyond Design Basis Seismic Events Seismic Risk Implications - Key

  13. Mark Gilbertson | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gilbertson About Us Mark Gilbertson - Deputy Assistant Secretary, Site Restoration for Environmental Management Photo of Mark Gilbertson Mr. Mark Gilbertson is currently the Deputy Assistant Secretary (DAS) for Site Restoration within the Office of Environmental Management (EM). He is leading the organization responsible for the remediation of the environmental legacy resulting from five decades of nuclear weapons development and Government-sponsored nuclear energy research. Integral to that

  14. Mark Whitney | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whitney About Us Mark Whitney - Principal Deputy Assistant Secretary for Environmental Management Mark Whitney Mr. Mark Whitney was named Principal Deputy Assistant Secretary for the U.S. Department of Energy (DOE) Office of Environmental Management (EM) in May 2014. A member of the U.S. Senior Executive Service for more than nine years, Mr. Whitney joined DOE in 2005 and has served EM and the National Nuclear Security Administration. Mr. Whitney has held several key DOE positions in which he

  15. Mark Higgins | Department of Energy

    Office of Environmental Management (EM)

    Mark Higgins About Us Mark Higgins - Operations Supervisor, Wind & Water Power Technologies Office Mark Higgins is the Operations Supervisor for the Wind & Water Power Technologies Office. Most Recent Keeping America Competitive: Bringing Down the Cost of Small Wind Turbines January 23 Innovative Deepwater Platform Aims to Harness Offshore Wind and Wave Power March 28 Mt. Wachusett Community College Makes Huge Investment in Wind Power March 14

  16. Mark Johnson | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mark Johnson About Us Mark Johnson - Advanced Manufacturing Office Director Mark Johnson, Ph.D., serves as the Director of the Advanced Manufacturing Office (AMO) in the Office of Energy Efficiency and Renewable Energy (EERE). AMO is focused on creating a fertile innovation environment for advanced manufacturing, enabling vigorous domestic development of new energy-efficient manufacturing processes and materials technologies to reduce the energy intensity and life-cycle energy consumption of

  17. Seismicity Protocol | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seismicity Protocol Seismicity Protocol Project objectives: Develop an updated protocol/best engineering practices to address public and industry issues associated with induced seismicity. PDF icon seismic_majer_induced_protocol.pdf More Documents & Publications Development of an Updated Induced Seismicity Protocol for the Application of Microearthquake (MEQ) Monitoring for Characterizing Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Microearthquake

  18. Seismic Imaging and Monitoring

    SciTech Connect (OSTI)

    Huang, Lianjie

    2012-07-09

    I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

  19. USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE...

    Open Energy Info (EERE)

    some cases, although a significant portion of seismicity remains diffuse and does not cluster into sharply defined structures. The seismic velocity structure reveals heterogeneous...

  20. Using Micro-Seismicity and Seismic Velocities to Map Subsurface...

    Open Energy Info (EERE)

    some cases, although a significant portion of seismicity remains diffuse and does not cluster into sharply defined structures. The seismic velocity structure reveals heterogeneous...

  1. Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  2. Injection monitoring with seismic arrays and adaptive noise cancellation

    SciTech Connect (OSTI)

    Harben, P.E.; Harris, D.B.; Jarpe, S.P.

    1991-01-01

    Although the application of seismic methods, active and passive, to monitor in-situ reservoir stimulation processes is not new, seismic arrays and array processing technology coupled with a new noise cancellation method has not been attempted. Successful application of seismic arrays to passively monitor in-situ reservoir stimulation processes depends on being able to sufficiently cancel the expected large amplitude background seismic noise typical of an oil or geothermal production environment so that small amplitude seismic signals occurring at depth can be detected and located. This report describes the results of a short field experiment conducted to test both the application of seismic arrays for in-situ reservoir stimulation monitoring and the active noise cancellation technique in a real reservoir production environment. Although successful application of these techniques to in-situ reservoir stimulation monitoring would have the greatest payoff in the oil industry, the proof-of-concept field experiment site was chosen to be the Geysers geothermal field in northern California. This site was chosen because of known high seismicity rates, a relatively shallow production depth, cooperation and some cost sharing the UNOCAL Oil Corporation, and the close proximity of the site to LLNL. The body of this report describes the Geysers field experimental configuration and then discusses the results of the seismic array processing and the results of the seismic noise cancellation followed by a brief conclusion. 2 refs., 11 figs.

  3. Passive Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    dense monitoring array of seismometers are installed in the vicinity of a geothermal reservoir with a typical recording duration of a few months.1 The survey design (in...

  4. From: Mark Hanson [mailto:mark@controltecas20.com]

    Office of Environmental Management (EM)

    Mark Hanson [mailto:mark@controltecas20.com] Sent: Thursday, November 07, 2013 3:02 PM To: Nazar, Hasan; 'Nouri, Ali (Franken)'; Brad Geuke Cc: Cymbalsky, John; Ramos, Derrick; Warner, James Subject: RE: DOE EPCA Commercial Refrigeration Standards - EERE-2010-BT-STD-0003 / (RIN) 1904- AC19 John, Ashley, James and Brad, Thanks for your time today and it was a good discussion. We are a growing company and are controlling thousands of the existing low amperage doors the OEM's are using to meet the

  5. Seismicity and Reservoir Fracture Characterization

    Broader source: Energy.gov [DOE]

    Below are the project presentations and respective peer review results for Seismicity and Reservoir Fracture Characterization.

  6. Seismicity Protocol | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seismicity Protocol Seismicity Protocol Project objectives: Develop an updated protocol/best engineering practices to address public and industry issues associated with induced seismicity. PDF icon seismic_majer_induced_protocol.pdf More Documents & Publications Development of an Updated Induced Seismicity Protocol for the Application of Microearthquake (MEQ) Monitoring for Characterizing Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Monitoring the Effect

  7. Method of migrating seismic records

    DOE Patents [OSTI]

    Ober, Curtis C.; Romero, Louis A.; Ghiglia, Dennis C.

    2000-01-01

    The present invention provides a method of migrating seismic records that retains the information in the seismic records and allows migration with significant reductions in computing cost. The present invention comprises phase encoding seismic records and combining the encoded seismic records before migration. Phase encoding can minimize the effect of unwanted cross terms while still allowing significant reductions in the cost to migrate a number of seismic records.

  8. Deepwater seismic acquisition technology

    SciTech Connect (OSTI)

    Caldwell, J.

    1996-09-01

    Although truly new technology is not required for successful acquisition of seismic data in deep Gulf of Mexico waters, it is helpful to review some basic aspects of these seismic surveys. Additionally, such surveys are likely to see early use of some emerging new technology which can improve data quality. Because such items as depth imaging, borehole seismic, 4-D and marine 3-component recording were mentioned in the May 1996 issue of World Oil, they are not discussed again here. However, these technologies will also play some role in the deepwater seismic activities. What is covered in this paper are some new considerations for: (1) longer data records needed in deeper water, (2) some pros and cons of very long steamer use, and (3) two new commercial systems for quantifying data quality.

  9. Congressional House Senate Current Request Marks Marks Approp

    Office of Environmental Management (EM)

    2 FY 2012 FY 2012 FY 2012 ($ in thousands) Congressional House Senate Current Request Marks Marks Approp FOSSIL ENERGY R&D Coal 291,358 289,415 291,358 359,320 Natural Gas Technologies 0 15,000 0 14,575 Unconventional Fossil Energy Technologies 0 0 0 4,858 Program Direction 159,233 120,847 151,729 119,929 Plant & Capital Equipment 16,794 16,794 16,794 16,794 Environmental Restoration 7,897 7,897 7,897 7,897 Special Recruitment Program 700 700 700 700 Subtotal, Fossil Energy R&D

  10. Congressional House Senate Final Request Marks Marks Appropriation

    Office of Environmental Management (EM)

    FY 2011 FY 2011 FY 2011 ($ in thousands) Congressional House Senate Final Request Marks Marks Appropriation FOSSIL ENERGY R&D Coal 403,850 400,100 452,000 389,688 Natural Gas Technologies 0 0 22,000 0 Unconventional Fossil Energy Technologies 0 0 26,000 0 Program Direction 152,033 152,033 170,300 164,725 Plant & Capital Equipment 20,000 20,000 20,000 19,960 Environmental Restoration 10,000 10,000 10,000 9,980 Cooperative Res. & Dev. 0 0 5,000 0 Congressional Directed Projects 0 3,750

  11. Part IV: Section D - Packaging and Marking

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PART I SECTION D PACKAGING AND MARKING DE-AC36-08GO28308 Modification M901 Section D - Page ii PART I SECTION D PACKAGING AND MARKING TABLE OF CONTENTS D.1 Packaging 1 D.2 Marking...

  12. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    F - Seismicity Relocation Analyses Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 F.1 Appendix F Seismicity Relocation Analyses Final Report: High-Resolution...

  13. Seismic Consequence Abstraction

    SciTech Connect (OSTI)

    M. Gross

    2004-10-25

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]).

  14. Mark Henson | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mark Henson February 16, 2012 Mark Henson "Modeling the Production of Microalgal Biodiesel" Published: February 16, 2012 Event Information can be found HERE

  15. Signature of Mark Holecek Signature of Mark Holecek Signature of Ralph B Tennants II

    National Nuclear Security Administration (NNSA)

    Mark Holecek Signature of Mark Holecek Signature of Ralph B Tennants II Signature of Ralph B Tennants II

  16. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

  17. Los Alamos National Laboratory marks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marks 20 years without full-scale nuclear testing September 26, 2012 LOS ALAMOS, New Mexico, Sept. 26, 2012-Two decades ago the last full-scale underground test of a nuclear weapon was conducted by Los Alamos National Laboratory at the Nevada Test Site. The test, code named "Divider," was detonated on Sept. 23, 1992 as the last of an eight-test series called "Julin." The test had an announced yield less than the equivalent of 20,000 tons of TNT. The purpose of the test, also

  18. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    SciTech Connect (OSTI)

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2005-09-29

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.

  19. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    SciTech Connect (OSTI)

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2006-06-30

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.

  20. USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA

    SciTech Connect (OSTI)

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2005-02-01

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.

  1. Controllable seismic source

    DOE Patents [OSTI]

    Gomez, Antonio; DeRego, Paul Jeffrey; Ferrel, Patrick Andrew; Thom, Robert Anthony; Trujillo, Joshua J.; Herridge, Brian

    2014-08-19

    An apparatus for generating seismic waves includes a housing, a strike surface within the housing, and a hammer movably disposed within the housing. An actuator induces a striking motion in the hammer such that the hammer impacts the strike surface as part of the striking motion. The actuator is selectively adjustable to change characteristics of the striking motion and characteristics of seismic waves generated by the impact. The hammer may be modified to change the physical characteristics of the hammer, thereby changing characteristics of seismic waves generated by the hammer. The hammer may be disposed within a removable shock cavity, and the apparatus may include two hammers and two shock cavities positioned symmetrically about a center of the apparatus.

  2. Controllable seismic source

    DOE Patents [OSTI]

    Gomez, Antonio; DeRego, Paul Jeffrey; Ferrell, Patrick Andrew; Thom, Robert Anthony; Trujillo, Joshua J.; Herridge, Brian

    2015-09-29

    An apparatus for generating seismic waves includes a housing, a strike surface within the housing, and a hammer movably disposed within the housing. An actuator induces a striking motion in the hammer such that the hammer impacts the strike surface as part of the striking motion. The actuator is selectively adjustable to change characteristics of the striking motion and characteristics of seismic waves generated by the impact. The hammer may be modified to change the physical characteristics of the hammer, thereby changing characteristics of seismic waves generated by the hammer. The hammer may be disposed within a removable shock cavity, and the apparatus may include two hammers and two shock cavities positioned symmetrically about a center of the apparatus.

  3. Seismic margin review of the Maine Yankee Atomic Power Station: Fragility analysis

    SciTech Connect (OSTI)

    Ravindra, M. K.; Hardy, G. S.; Hashimoto, P. S.; Griffin, M. J.

    1987-03-01

    This Fragility Analysis is the third of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 1 is the Summary Report of the first trial seismic margin review. Volume 2, Systems Analysis, documents the results of the systems screening for the review. The three volumes are part of the Seismic Margins Program initiated in 1984 by the Nuclear Regulatory Commission (NRC) to quantify seismic margins at nuclear power plants. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants.

  4. Seismic analysis applied to the delimiting of a gas reservoir

    SciTech Connect (OSTI)

    Ronquillo, G.; Navarro, M.; Lozada, M.; Tafolla, C.

    1996-08-01

    We present the results of correlating seismic models with petrophysical parameters and well logs to mark the limits of a gas reservoir in sand lenses. To fulfill the objectives of the study, we used a data processing sequence that included wavelet manipulation, complex trace attributes and pseudovelocities inversion, along with several quality control schemes to insure proper amplitude preservation. Based on the analysis and interpretation of the seismic sections, several areas of interest were selected to apply additional signal treatment as preconditioning for petrophysical inversion. Signal classification was performed to control the amplitudes along the horizons of interest, and to be able to find an indirect interpretation of lithologies. Additionally, seismic modeling was done to support the results obtained and to help integrate the interpretation. The study proved to be a good auxiliary tool in the location of the probable extension of the gas reservoir in sand lenses.

  5. Nonstructural seismic restraint guidelines

    SciTech Connect (OSTI)

    Butler, D.M.; Czapinski, R.H.; Firneno, M.J.; Feemster, H.C.; Fornaciari, N.R.; Hillaire, R.G.; Kinzel, R.L.; Kirk, D.; McMahon, T.T.

    1993-08-01

    The Nonstructural Seismic Restraint Guidelines provide general information about how to secure or restrain items (such as material, equipment, furniture, and tools) in order to prevent injury and property, environmental, or programmatic damage during or following an earthquake. All SNL sites may experience earthquakes of magnitude 6.0 or higher on the Richter scale. Therefore, these guidelines are written for all SNL sites.

  6. QER- Comment of Mark Ladd

    Broader source: Energy.gov [DOE]

    Pleases count me in as a very concerned and upset constituant of Conway , Ma. The proposed TNG pipeline through our town , or any town for that matter is sucker punch in the face for all of us. I am very disappointed with Deval Patrick's decision to support a multi billionaire from Houston to jeopordize everyone in the pipeline's path and beyond. This pipeline is a such a bad idea that it could actually be pushed down people's throats because it's so unthinkably bad, surly some government official would protect us from it !!!!! WRONG , big corporations rule everywhere , even in the town I love so much .I do not support this ridiculous project for so many reasons , I truly don't know where to start. Please reject this pipeline. Mark Ladd

  7. Mark Vermilyea | Inventors | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mark Vermilyea Mark Vermilyea Mechanical Engineer Composites Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) "I enjoy the technical and interpersonal challenges of working across research and development teams to solve complicated interdisciplinary problems." -Mark Vermilyea Mark's view of the future? It

  8. Mark D. Mitchell | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mark D. Mitchell About Us Mark D. Mitchell - Communications Support Contractor to ARPA-E Mark Mitchell is a Communications Support Contractor to ARPA-E. Most Recent ARPA-E Celebrates Five Years of Changing What's Possible April 28 Energy Innovators to Convene for 2014 ARPA-E Summit February 20 Interview with ARPA-E: The Future of Semiconductors February 4

  9. CALIBRATION OF SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Wayne D. Pennington; Horacio Acevedo; Aaron Green; Joshua Haataja; Shawn Len; Anastasia Minaeva; Deyi Xie

    2002-10-01

    The project, ''Calibration of Seismic Attributes for Reservoir Calibration,'' is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, including several that are in final stages of preparation or printing; one of these is a chapter on ''Reservoir Geophysics'' for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along ''phantom'' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.

  10. Calibration of Seismic Attributes for Reservoir Characterization

    SciTech Connect (OSTI)

    Wayne D. Pennington

    2002-09-29

    The project, "Calibration of Seismic Attributes for Reservoir Characterization," is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, inlcuding several that are in final stages of preparation or printing; one of these is a chapter on "Reservoir Geophysics" for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.

  11. Use of seismic attributes in geological description of carbonate rocks

    SciTech Connect (OSTI)

    Castrejon-Vacio, F.; Porres-Luna, A.A.

    1994-12-31

    Seismic attributes have been used widely in order to obtain geological description of petroleum reservoirs, especially as a support for the definition of horizontal continuity of strata, with special emphasis on terrigeneous formations. Nevertheless the application of seismic attributes to the study of carbonate and naturally fractured reservoirs has been limited. This paper shows the application of seismic attributes and seismic inversion to the geological and petrophysical characterization of a naturally fractured reservoir with complex lithology, which is characteristic of the most important producing formations in Mexico. The results from these techniques provide the basis for the definition of a realistic geological model, which is of prime concern for the reservoir`s characterization, numerical studies and EOR applications.

  12. Regional seismic discrimination research at LLNL

    SciTech Connect (OSTI)

    Walter, W.R.; Mayeda, K.M.; Goldstein, P.; Patton, H.J.; Jarpe, S.; Glenn, L.

    1995-10-01

    The ability to verify a Comprehensive Test Ban Treaty (CTBT) depends in part on the ability to seismically detect and discriminate between potential clandestine underground nuclear tests and other seismic sources, including earthquakes and mining activities. Regional techniques are necessary to push detection and discrimination levels down to small magnitudes, but existing methods of event discrimination are mainly empirical and show much variability from region to region. The goals of Lawrence Livermore National Laboratory`s (LLNL`s) regional discriminant research are to evaluate the most promising discriminants, improve the understanding of their physical basis and use this information to develop new and more effective discriminants that can be transported to new regions of high monitoring interest. In this report the authors discuss preliminary efforts to geophysically characterize the Middle East and North Africa. They show that the remarkable stability of coda allows one to develop physically based, stable single station magnitude scales in new regions. They then discuss progress to date on evaluating and improving physical understanding and ability to model regional discriminants, focusing on the comprehensive NTS dataset. The authors apply this modeling ability to develop improved discriminants including slopes of P to S ratios. They find combining disparate discriminant techniques is particularly effective in identifying consistent outliers such as shallow earthquakes and mine seismicity. Finally they discuss development and use of new coda and waveform modeling tools to investigate special events.

  13. Seismic Structure And Seismicity Of The Cooling Lava Lake Of...

    Open Energy Info (EERE)

    Of The Cooling Lava Lake Of Kilauea Iki, Hawaii Abstract The use of multiple methods is indispensable for the determination of the seismic properties of a complex body...

  14. Induced Seismicity | Open Energy Information

    Open Energy Info (EERE)

    of Project DOE Funding Total Project Cost Mapping Diffuse Seismicity for Geothermal Reservoir Management with Matched Field Processing California Lawrence Livermore National...

  15. Seismic design technology for breeder reactor structures. Volume 4. Special topics in piping and equipment

    SciTech Connect (OSTI)

    Reddy, D.P.

    1983-04-01

    This volume is divided into five chapters: experimental verification of piping systems, analytical verification of piping restraint systems, seismic analysis techniques for piping systems with multisupport input, development of floor spectra from input response spectra, and seismic analysis procedures for in-core components. (DLC)

  16. Part IV: Section D - Packaging and Marking

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PART I SECTION D PACKAGING AND MARKING DE-AC36-08GO28308 Modification M901 Section D - Page ii PART I SECTION D PACKAGING AND MARKING TABLE OF CONTENTS D.1 Packaging 1 D.2 Marking 1 DE-AC36-08GO28308 Modification M901 Section D - Page 1 of 1 PART I SECTION D PACKAGING AND MARKING D.1 Packaging Preservation, packaging, and packing for shipment or mailing of all work delivered hereunder shall be in accordance with good commercial practice and adequate to insure acceptance by common carrier and

  17. Mark Jankowski: Minnesota Pollution Control Agency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mark Jankowski: Minnesota Pollution Control Agency Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues submit...

  18. Congressman Mark Takai | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Congressman Mark Takai About Us Congressman Mark Takai - Congressman Representing the 1st District of Hawaii Congressman Mark Takai Mark Takai was born and raised on Oahu, Hawaii. He was a 20 year member of the Hawaii State House of Representatives before being elected to Congress. He represented the district of Aiea/Pearl City, first winning his seat at the age of 27. Elected in 2014, Takai represents Hawaii's First Congressional District, a district that encompasses much of Oahu and is one of

  19. Induced Seismicity Impact | Open Energy Information

    Open Energy Info (EERE)

    Seismicity Impact Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleInducedSeismicityImpact&oldid612409" Feedback Contact needs updating...

  20. Seismic & Natural Phenomena Hazards | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    designed to withstand the hazards. CNS maintains a panel of experts known as the Seismic Lessons-Learned Panel, which meets periodically to discuss seismic issues impacting DOE...

  1. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B - PPRP Closure Letter Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 B.1 Appendix B PPRP Closure Letter 2014 Hanford Sitewide Probabilistic Seismic Hazard Analysis...

  2. Elastic-Wavefield Seismic Stratigraphy: A New Seismic Imaging Technology

    SciTech Connect (OSTI)

    Bob A. Hardage; Milo M. Backus; Michael V. DeAngelo; Sergey Fomel; Khaled Fouad; Robert J. Graebner; Paul E. Murray; Randy Remington; Diana Sava

    2006-07-31

    The purpose of our research has been to develop and demonstrate a seismic technology that will provide the oil and gas industry a better methodology for understanding reservoir and seal architectures and for improving interpretations of hydrocarbon systems. Our research goal was to expand the valuable science of seismic stratigraphy beyond the constraints of compressional (P-P) seismic data by using all modes (P-P, P-SV, SH-SH, SV-SV, SV-P) of a seismic elastic wavefield to define depositional sequences and facies. Our objective was to demonstrate that one or more modes of an elastic wavefield may image stratal surfaces across some stratigraphic intervals that are not seen by companion wave modes and thus provide different, but equally valid, information regarding depositional sequences and sedimentary facies within that interval. We use the term elastic wavefield stratigraphy to describe the methodology we use to integrate seismic sequences and seismic facies from all modes of an elastic wavefield into a seismic interpretation. We interpreted both onshore and marine multicomponent seismic surveys to select the data examples that we use to document the principles of elastic wavefield stratigraphy. We have also used examples from published papers that illustrate some concepts better than did the multicomponent seismic data that were available for our analysis. In each interpretation study, we used rock physics modeling to explain how and why certain geological conditions caused differences in P and S reflectivities that resulted in P-wave seismic sequences and facies being different from depth-equivalent S-wave sequences and facies across the targets we studied.

  3. Seismic Data Gathering and Validation

    SciTech Connect (OSTI)

    Coleman, Justin

    2015-02-01

    Three recent earthquakes in the last seven years have exceeded their design basis earthquake values (so it is implied that damage to SSCs should have occurred). These seismic events were recorded at North Anna (August 2011, detailed information provided in [Virginia Electric and Power Company Memo]), Fukushima Daichii and Daini (March 2011 [TEPCO 1]), and Kaswazaki-Kariwa (2007, [TEPCO 2]). However, seismic walk downs at some of these plants indicate that very little damage occurred to safety class systems and components due to the seismic motion. This report presents seismic data gathered for two of the three events mentioned above and recommends a path for using that data for two purposes. One purpose is to determine what margins exist in current industry standard seismic soil-structure interaction (SSI) tools. The second purpose is the use the data to validated seismic site response tools and SSI tools. The gathered data represents free field soil and in-structure acceleration time histories data. Gathered data also includes elastic and dynamic soil properties and structural drawings. Gathering data and comparing with existing models has potential to identify areas of uncertainty that should be removed from current seismic analysis and SPRA approaches. Removing uncertainty (to the extent possible) from SPRAs will allow NPP owners to make decisions on where to reduce risk. Once a realistic understanding of seismic response is established for a nuclear power plant (NPP) then decisions on needed protective measures, such as SI, can be made.

  4. High vertical resolution crosswell seismic imaging

    DOE Patents [OSTI]

    Lazaratos, Spyridon K. (Houston, TX)

    1999-12-07

    A method for producing high vertical resolution seismic images from crosswell data is disclosed. In accordance with one aspect of the disclosure, a set of vertically spaced, generally horizontally extending continuous layers and associated nodes are defined within a region between two boreholes. The specific number of nodes is selected such that the value of a particular characteristic of the subterranean region at each of the nodes is one which can be determined from the seismic data. Once values are established at the nodes, values of the particular characteristic are assigned to positions between the node points of each layer based on the values at node within that layer and without regard to the values at node points within any other layer. A seismic map is produced using the node values and the assigned values therebetween. In accordance with another aspect of the disclosure, an approximate model of the region is established using direct arrival traveltime data. Thereafter, the approximate model is adjusted using reflected arrival data. In accordance with still another aspect of the disclosure, correction is provided for well deviation. An associated technique which provides improvements in ray tracing is also disclosed.

  5. Seismic event classification system

    DOE Patents [OSTI]

    Dowla, Farid U.; Jarpe, Stephen P.; Maurer, William

    1994-01-01

    In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities.

  6. Seismic event classification system

    DOE Patents [OSTI]

    Dowla, F.U.; Jarpe, S.P.; Maurer, W.

    1994-12-13

    In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities. 21 figures.

  7. Downhole hydraulic seismic generator

    DOE Patents [OSTI]

    Gregory, Danny L. (Corrales, NM); Hardee, Harry C. (Albuquerque, NM); Smallwood, David O. (Albuquerque, NM)

    1992-01-01

    A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

  8. Research Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Techniques Research Techniques Print Coming Soon

  9. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    SciTech Connect (OSTI)

    E.N. Lindner

    2004-12-03

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly evaluated and identified. This document supersedes the seismic classifications, assignments, and computations in ''Seismic Analysis for Preclosure Safety'' (BSC 2004a).

  10. Seismicity and seismic stress in the Coso Range, Coso geothermal...

    Open Energy Info (EERE)

    and seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Jump to: navigation, search OpenEI Reference LibraryAdd to...

  11. Handbook of nuclear power plant seismic fragilities, Seismic Safety Margins Research Program

    SciTech Connect (OSTI)

    Cover, L.E.; Bohn, M.P.; Campbell, R.D.; Wesley, D.A.

    1983-12-01

    The Seismic Safety Margins Research Program (SSMRP) has a gola to develop a complete fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. As part of this program, calculations of the seismic risk from a typical commercial nuclear reactor were made. These calculations required a knowledge of the probability of failure (fragility) of safety-related components in the reactor system which actively participate in the hypothesized accident scenarios. This report describes the development of the required fragility relations and the data sources and data reduction techniques upon which they are based. Both building and component fragilities are covered. The building fragilities are for the Zion Unit 1 reactor which was the specific plant used for development of methodology in the program. Some of the component fragilities are site-specific also, but most would be usable for other sites as well.

  12. Advanced Seismic While Drilling System

    SciTech Connect (OSTI)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

  13. Seismic Design Expectations Report | Department of Energy

    Energy Savers [EERE]

    Seismic Design Expectations Report Seismic Design Expectations Report The Seismic Design Expectations Report (SDER) is a tool that assists DOE federal project review teams in evaluating the technical sufficiency of the project seismic design activities prior to Critical Decision (CD) approvals at CD-0, CD-1, CD-2, CD-3 and CD-4. PDF icon Seismic Design Expectations Report More Documents & Publications Natural Phenomena Hazards DOE-STD 1020-2012 & DOE Handbook DOE-STD-1020-2012 DOE

  14. Mark R Fahey | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R Fahey Director of Operations Mark Fahey Argonne National Laboratory 9700 S. Cass Avenue Bldg. 240 / Rm. 2120 Argonne, IL 60439 630-252-1932 mfahey@anl.gov

  15. SolidMarks | Open Energy Information

    Open Energy Info (EERE)

    Product: German project developer found by IdeemaSun and MAGE Solar to develop solar parks across Europe. References: SolidMarks1 This article is a stub. You can help OpenEI...

  16. Mark Hereld | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hereld Manager, Visualization and Data Analysis Mark Hereld Argonne National Laboratory 9700 South Cass Avenue Building 240 - Rm. 4139 Argonne, IL 60439 630-252-4170 hereld@mcs.anl.gov Mark Hereld is the ALCF's Visualization and Data Analysis Manager. He is also a member of the research staff in Argonne's Mathematics and Computer Science Division and a Senior Fellow of the Computation Institute with a joint appointment at the University of Chicago. His work in understanding simulation on future

  17. Down hole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

    1989-01-01

    A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  18. Advanced downhole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

    1991-07-16

    An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  19. Frequent-Interval Seismic CPTu

    Office of Environmental Management (EM)

    Frequent-Interval Seismic CPTu D. Bruce Nothdurft, MSCE, PE, PG SRS Geotechnical Engineering Department Savannah River Nuclear Solutions Alec V. McGillivray, PhD, PE Geotechnical Consultant Brent J. Gutierrez, PhD, PE NPH Engineering Manager, DOE-SR Motivation  The seismic piezocone penetration test (SCPTu) utilized at SRS because it provides rapid and thorough site characterization.  Evaluation of non-linear soil behavior...  detailed stratigraphy  small-strain velocity measurements

  20. Analysis Procedures to Estimate Seismic Demands of Structures...

    Office of Environmental Management (EM)

    to Estimate Seismic Demands of Structures Presentation from the May 2015 Seismic Lessons-Learned Panel Meeting. PDF icon Analysis Procedures to Estimate Seismic Demands of...

  1. Seismic Analysis of Facilities and Evaluation of Risk | Department...

    Office of Environmental Management (EM)

    Seismic Analysis of Facilities and Evaluation of Risk Seismic Analysis of Facilities and Evaluation of Risk Seismic Analysis of Facilities and Evaluation of Risk Michael Salmon,...

  2. Central Nevada Seismic Zone Geothermal Region | Open Energy Informatio...

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Geothermal Region (Redirected from Central Nevada Seismic Zone) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Central Nevada Seismic Zone...

  3. The Uncertainty in the Local Seismic Response Analysis

    SciTech Connect (OSTI)

    Pasculli, A.; Pugliese, A.; Romeo, R. W.; Sano, T.

    2008-07-08

    In the present paper is shown the influence on the local seismic response analysis exerted by considering dispersion and uncertainty in the seismic input as well as in the dynamic properties of soils. In a first attempt a 1D numerical model is developed accounting for both the aleatory nature of the input motion and the stochastic variability of the dynamic properties of soils. The seismic input is introduced in a non-conventional way through a power spectral density, for which an elastic response spectrum, derived--for instance--by a conventional seismic hazard analysis, is required with an appropriate level of reliability. The uncertainty in the geotechnical properties of soils are instead investigated through a well known simulation technique (Monte Carlo method) for the construction of statistical ensembles. The result of a conventional local seismic response analysis given by a deterministic elastic response spectrum is replaced, in our approach, by a set of statistical elastic response spectra, each one characterized by an appropriate level of probability to be reached or exceeded. The analyses have been carried out for a well documented real case-study. Lastly, we anticipate a 2D numerical analysis to investigate also the spatial variability of soil's properties.

  4. 2D Seismic Reflection Data across Central Illinois

    SciTech Connect (OSTI)

    Smith, Valerie; Leetaru, Hannes

    2014-09-30

    In a continuing collaboration with the Midwest Geologic Sequestration Consortium (MGSC) on the Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins project, Schlumberger Carbon Services and WesternGeco acquired two-dimensional (2D) seismic data in the Illinois Basin. This work included the design, acquisition and processing of approximately 125 miles of (2D) seismic reflection surveys running west to east in the central Illinois Basin. Schlumberger Carbon Services and WesternGeco oversaw the management of the field operations (including a pre-shoot planning, mobilization, acquisition and de-mobilization of the field personnel and equipment), procurement of the necessary permits to conduct the survey, post-shoot closure, processing of the raw data, and provided expert consultation as needed in the interpretation of the delivered product. Three 2D seismic lines were acquired across central Illinois during November and December 2010 and January 2011. Traversing the Illinois Basin, this 2D seismic survey was designed to image the stratigraphy of the Cambro-Ordovician sections and also to discern the basement topography. Prior to this survey, there were no regionally extensive 2D seismic data spanning this section of the Illinois Basin. Between the NW side of Morgan County and northwestern border of Douglas County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 101 was the longest at 93 miles in length and ended NE of Decatur, Illinois. Line 501 ran W-E from the Illinois Basin Decatur Project (IBDP) site to northwestern Douglas County and was 25 miles in length. Line 601 was the shortest and ran N-S past the IBDP site and connected lines 101 and 501. All three lines are correlated to well logs at the IBDP site. Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below ~400 millisecond (ms) which made interpretation of the Mt. Simon and Knox sections difficult. The data quality also gradually decreased moving westward across the state. To meet evolving project objectives, in 2012 the seismic data was re-processed using different techniques to enhance the signal quality thereby rendering a more coherent seismic profile for interpreters. It is believed that the seismic degradation could be caused by shallow natural gas deposits and Quaternary sediments (which include abandoned river and stream channels, former ponds, and swamps with peat deposits) that may have complicated or changed the seismic wavelet. Where previously limited by seismic coverage, the seismic profiles have provided valuable subsurface information across central Illinois. Some of the interpretations based on this survey included, but are not limited to: - Stratigraphy generally gently dips to the east from Morgan to Douglas County. - The Knox Supergroup roughly maintains its thickness. There is little evidence for faulting in the Knox. However, at least one resolvable fault penetrates the entire Knox section. - The Eau Claire Formation, the primary seal for the Mt. Simon Sandstone, appears to be continuous across the entire seismic profile. - The Mt. Simon Sandstone thins towards the western edge of the basin. As a result, the highly porous lowermost Mt. Simon section is absent in the western part of the state. - Overall basement dip is from west to east. - Basement topography shows evidence of basement highs with on-lapping patterns by Mt. Simon sediments. - There is evidence of faults within the lower Mt. Simon Sandstone and basement rock that are contemporaneous with Mt. Simon Sandstone deposition. These faults are not active and do not penetrate the Eau Claire Shale. It is believed that these faults are associated with a possible failed rifting event 750 to 560 million years ago during the breakup of the supercontinent Rodinia.

  5. Non-Seismic Geophysical Approaches to Monitoring

    SciTech Connect (OSTI)

    Hoversten, G.M.; Gasperikova, Erika

    2004-09-01

    This chapter considers the application of a number of different geophysical techniques for monitoring geologic sequestration of CO2. The relative merits of the seismic, gravity, electromagnetic (EM) and streaming potential (SP) geophysical techniques as monitoring tools are examined. An example of tilt measurements illustrates another potential monitoring technique, although it has not been studied to the extent of other techniques in this chapter. This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques on two synthetic modeling scenarios. The first scenario represents combined CO2 enhance oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. The second scenario is of a pilot DOE CO2 sequestration experiment scheduled for summer 2004 in the Frio Brine Formation in South Texas, USA. Numerical flow simulations of the CO2 injection process for each case were converted to geophysical models using petrophysical models developed from well log data. These coupled flow simulation geophysical models allow comparrison of the performance of monitoring techniques over time on realistic 3D models by generating simulated responses at different times during the CO2 injection process. These time-lapse measurements are used to produce time-lapse changes in geophysical measurements that can be related to the movement of CO2 within the injection interval.

  6. Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt

    SciTech Connect (OSTI)

    Parra, J.; Collier, H.; Angstman, B.

    1997-08-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

  7. Seismic assessment of buried pipelines

    SciTech Connect (OSTI)

    Al-Chaar, G.; Brady, P.; Fernandez, G.

    1995-12-31

    A structure and its lifelines are closely linked because the disruption of lifeline systems will obstruct emergency service functions that are vitally needed after an earthquake. As an example of the criticality of these systems, the Association of Bay Area Government (ABAG) recorded thousands of leaks in pipelines that resulted in more than twenty million gallons of hazardous materials being released in several recorded earthquakes. The cost of cleaning the spills from these materials was very high. This information supports the development of seismic protection of lifeline systems. The US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL) has, among its missions, the responsibility to develop seismic vulnerability assessment procedures for military installations. Within this mission, a preliminary research program to assess the seismic vulnerability of buried pipeline systems on military installations was initiated. Phase 1 of this research project resulted in two major studies. In the first, evaluating current procedures to seismically design or evaluate existing lifeline systems, the authors found several significant aspects that deserve special consideration and need to be addressed in future research. The second was focused on identifying parameters related to buried pipeline system vulnerability and developing a generalized analytical method to relate these parameters to the seismic vulnerability assessment of existing pipeline systems.

  8. The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis

    Office of Environmental Management (EM)

    Committee (SSHAC) Level 1 Seismic Hazard Analysis | Department of Energy The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 Seismic Hazard Analysis The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 Seismic Hazard Analysis Presentation from the May 2015 Seismic Lessons-Learned Panel Meeting. PDF icon Seismic Hazard Definition: SSHAC Level 1 PSHA at MFC More Documents & Publications The INL Seismic Risk

  9. Seismic Lessons-Learned Panel Meetings | Department of Energy

    Energy Savers [EERE]

    Lessons-Learned Panel Meetings Seismic Lessons-Learned Panel Meetings The Chief of Nuclear Security (CNS) maintains a panel of experts known as the Seismic Lessons-Learned Panel, which meets periodically to discuss seismic issues impacting DOE facilities. September 2008 Seismic Lessons-Learned panel Meeting March 2009 Seismic Lessons-Learned panel Meeting October 2009 Seismic Lessons-Learned panel Meeting May 2010 Seismic Lessons-Learned panel Meeting November 2012 Seismic Lessons-Learned panel

  10. Berkeley Lab Marks Black History Month

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab Marks Black History Month Each February Americans celebrate Black History Month, also known as African American History Month, to recognize the importance of Black history in American history. We profile three employees - Jackie Scoggins, Matt Rice, and Thierry Nouidui - who tell their stories of how they came to Berkeley Lab.

  11. Development of a HT Seismic Tool

    Broader source: Energy.gov [DOE]

    The program objective is to design; fabricate and field test two high temperature (HT) seismic tools in an EGS application.

  12. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... http:www.opentopography.org) - Yakima Ridge, ... Hanford Sitewide Probabilistic Seismic Hazard Analysis ... Rev. 0, Bechtel Hanford, Richland, Washington. ...

  13. NREL: Photovoltaics Research - Mark Campanelli, Ph.D.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mark Campanelli, Ph.D. Postdoctoral Researcher 303-384-6469 Mark.Campanelli@nrel.gov Mark Campanelli graduated with a master's degree and a doctorate in mathematics from Montana...

  14. Seismic Imaging Processing and Migration

    Energy Science and Technology Software Center (OSTI)

    2000-06-26

    Salvo is a 3D, finite difference, prestack, depth migration code for parallel computers. It is also capable of processing 2D and poststack data. The code requires as input a seismic dataset, a velocity model and a file of parameters that allows the user to select various options. The code uses this information to produce a seismic image. Some of the options available to the user include the application of various filters and imaging conditions. Themore » code also incorporates phase encoding (patent applied for) to process multiple shots simultaneously.« less

  15. Seismic, shock, and vibration isolation - 1988

    SciTech Connect (OSTI)

    Chung, H. ); Mostaghel, N. )

    1988-01-01

    This book contains papers presented at a conference on pressure vessels and piping. Topics covered include: Design of R-FBI bearings for seismic isolation; Benefits of vertical and horizontal seismic isolation for LMR nuclear reactor units; and Some remarks on the use and perspectives of seismic isolation for fast reactors.

  16. Mark R. Hahn of the Richland Operations Office presented 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mark R. Hahn of the Richland Operations Office presented 2014 Safety System Oversight Annual Award Mark R. Hahn of the Richland Operations Office presented 2014 Safety System ...

  17. Mark Richey Woodworking Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Mark Richey Woodworking Energy Purchaser Mark Richey Woodworking Location Newburyport MA Coordinates 42.80211, -70.880604 Show Map Loading map... "minzoom":false,"mappingse...

  18. Identification marking by means of laser peening

    DOE Patents [OSTI]

    Hackel, Lloyd A. (Livermore, CA); Dane, C. Brent (Livermore, CA); Harris, Fritz (Rocklin, CA)

    2002-01-01

    The invention is a method and apparatus for marking components by inducing a shock wave on the surface that results in an indented (strained) layer and a residual compressive stress in the surface layer. One embodiment of the laser peenmarking system rapidly imprints, with single laser pulses, a complete identification code or three-dimensional pattern and leaves the surface in a state of deep residual compressive stress. A state of compressive stress in parts made of metal or other materials is highly desirable to make them resistant to fatigue failure and stress corrosion cracking. This process employs a laser peening system and beam spatial modulation hardware or imaging technology that can be setup to impress full three dimensional patterns into metal surfaces at the pulse rate of the laser, a rate that is at least an order of magnitude faster than competing marking technologies.

  19. Seismic expressions of Monterey Formation diagenesis: examples from offshore California

    SciTech Connect (OSTI)

    Roy, M.B.

    1988-03-01

    Diagenesis of the diatomaceous rocks in the Monterey Formation in California coastal and offshore basins involves changes from amorphous biogenic silica to a stable crystalline quartz facies. In the intermediate stage, the transformation undergoes passage from the Opal-A to the Opal-CT phase. Associated with this diagenetic process is a marked increase in bulk densities between the different silica phases, owing to loss of porosity from compaction and solution recrystallization caused by increase in burial load and other physical factors. The sharp density contrast between the silica phases is manifested by an acoustic impedance boundary that may be expressed on seismic records. This seismic event can be distinct and independent of structural configuration, and in many places cuts through stratigraphic boundaries. Several examples of seismic records from offshore California demonstrate the diagenetically caused reflection cutting through Monterey and post-Monterey formations. Current and future exploration efforts in offshore California will continue to center on the widespread Monterey Formation. In addition to being the main source rock, the Monterey is also the reservoir rock. Recent discoveries indicate that oil production is mainly from the highly permeable, fractured, silica-rich sections. It is therefore important to recognize the diagenetic boundaries on seismic records and to delineate the more brittle quartz-rich facies where the reservoir quality is expected to be better than the intermediate Opal-A or Opal-CT facies. Furthermore, these boundaries could also provide good diagenetic traps off the flanks of structures where updip unaltered impermeable rocks hinder fluid migration.

  20. Geothermal Heat Pumps are Scoring High Marks

    SciTech Connect (OSTI)

    2000-08-01

    Geothermal Energy Program Office of Geothermal and Wind Technologies Geothermal Heat Pumps are Scoring High Marks Geothermal heat pumps, one of the clean energy technology stars Geothermal heat pumps (GHPs) are one of the most cost-effective heating, cooling, and water heating systems available for both residential and commercial buildings. GHPs extract heat from the ground during the heating season and discharge waste heat to the ground during the cooling season. The U.S. Environmental Protecti

  1. NREL: Biomass Research - Mark R. Nimlos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R. Nimlos Mark Nimlos is a Principal Scientist and Supervisor for the Biomass Molecular Sciences group in the National Bioenergy Center at the National Renewable Energy Laboratory. Education Ph.D., Chemical Physics, University of Colorado at Boulder, Boulder, CO, 1986 B.S., Chemistry, University of Massachusetts, Boston, MA, 1981 Research Interests and Selected Publications The Biomass Molecular Sciences group performs research in the following areas: Molecular dynamics modeling of cellulases

  2. Mark Holecek | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Mark Holecek | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  3. Mr. Mark Jackson Aluminum Company of America

    Office of Legacy Management (LM)

    _ of Energy Washington, DC 20565 Mr. Mark Jackson Aluminum Company of America 100 Technical Drive Alcoa Center, Pennsylvania 15069-0001 Dear Mr. Jackson: At,the request of the U.S. Department of Energy and with the consent of your company, Oak Ridge National Laboratory performed a radiological survey of the former ALCOA Research Labo,ratory at 600 Freeport Road in New Kensington, Pennsylvania. Three copies of the radiological survey report are enclosed for your information and use. An additional

  4. Microsoft PowerPoint - 2 Mark Gilbertson

    Office of Environmental Management (EM)

    Risk-Informing Environmental Cleanup Priorities Mark Gilbertson Deputy Assistant Secretary Office of Site Restoration Presentation to the Interagency Performance and Risk Assessment Community of Practice Annual Technical Exchange Meeting Richland, WA December 15, 2015 www.energy.gov/EM 2 Tank Waste SNM/SNF TRU Waste LLW & MLLW Facility D&D, Soil & Groundwater $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 Year of Expenditure Dollars (Billions) Year DOE Environmental Cleanup Program * Safeguards and

  5. Frequent-Interval Seismic CPTu

    Broader source: Energy.gov [DOE]

    Frequent-Interval Seismic CPTu D. Bruce Nothdurft, MSCE, PE, PG SRS Geotechnical Engineering Department Savannah River Nuclear Solutions Alec V. McGillivray, PhD, PE Geotechnical Consultant Brent J. Gutierrez, PhD, PE NPH Engineering Manager, DOE-SR

  6. Presentation, Marking OUO Documents - June 2014 | Department of Energy

    Energy Savers [EERE]

    Presentation, Marking OUO Documents - June 2014 Presentation, Marking OUO Documents - June 2014 June 2014 This presentation is solely on how to mark documents containing OUO information. PDF icon Presentation, Marking OUO Documents - June 2014 More Documents & Publications Briefing, DOE's Official Use Only Program - June 2014 Briefing, For Persons With Access to UCNI - June 2014 Briefing, Reviewing Official's UCNI Training

  7. Seismic Velocity Measurements at Expanded Seismic Network Sites

    SciTech Connect (OSTI)

    Woolery, Edward W; Wang, Zhenming

    2005-01-01

    Structures at the Paducah Gaseous Diffusion Plant (PGDP), as well as at other locations in the northern Jackson Purchase of western Kentucky may be subjected to large far-field earthquake ground motions from the New Madrid seismic zone, as well as those from small and moderate-sized local events. The resultant ground motion a particular structure is exposed from such event will be a consequence of the earthquake magnitude, the structures' proximity to the event, and the dynamic and geometrical characteristics of the thick soils upon which they are, of necessity, constructed. This investigation evaluated the latter. Downhole and surface (i.e., refraction and reflection) seismic velocity data were collected at the Kentucky Seismic and Strong-Motion Network expansion sites in the vicinity of the Paducah Gaseous Diffusion Plant (PGDP) to define the dynamic properties of the deep sediment overburden that can produce modifying effects on earthquake waves. These effects are manifested as modifications of the earthquake waves' amplitude, frequency, and duration. Each of these three ground motion manifestations is also fundamental to the assessment of secondary earthquake engineering hazards such as liquefaction.

  8. Seismic Isolation Working Meeting Gap Analysis Report

    SciTech Connect (OSTI)

    Justin Coleman; Piyush Sabharwall

    2014-09-01

    The ultimate goal in nuclear facility and nuclear power plant operations is operating safety during normal operations and maintaining core cooling capabilities during off-normal events including external hazards. Understanding the impact external hazards, such as flooding and earthquakes, have on nuclear facilities and NPPs is critical to deciding how to manage these hazards to expectable levels of risk. From a seismic risk perspective the goal is to manage seismic risk. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components (SSCs)). There are large uncertainties associated with evolving nature of the seismic hazard curves. Additionally there are requirements within DOE and potential requirements within NRC to reconsider updated seismic hazard curves every 10 years. Therefore opportunity exists for engineered solutions to manage this seismic uncertainty. One engineered solution is seismic isolation. Current seismic isolation (SI) designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed, in the American Society of Civil Engineers (ASCE) 4 standard, to be released in 2014, for Light Water Reactors (LWR) facilities using commercially available technology. However, there is a lack of industry application to the nuclear industry and uncertainty with implementing the procedures outlined in ASCE-4. Opportunity exists to determine barriers associated with implementation of current ASCE-4 standard language.

  9. Hanford quarterly seismic monitoring report 96C

    SciTech Connect (OSTI)

    Reidel, S.P.

    1996-09-24

    Seismic monitoring at the Hanford Site was established in 1969 by the United States Geological Survey (USGS) under a contract with the U.S. Atomic Energy Commission. In 1975 the University of Washington assumed responsibility for and expanded the network. In 1979 the Basalt Waste Isolation Program (BWIP) became responsible for collecting seismic data for the site as part of site characterization. Rockwell International Operations followed by Westinghouse Hanford Company (WHC), Geosciences Group, operated the local network and were the contract technical advisors for the Eastern Washington Regional Network operated by the University of Washington. Funding ended for BWIP in December 1988. Seismic Monitoring and the University of Washington contract was then transferred WHC`s Environmental Division. Seismic Monitoring is currently assigned to WHC`s Hanford Technical Services (HTS), part of the Environmental Division. The Seismic Monitoring Analysis and Repair Team (SMART) operates, maintains, and analyzes data from the Hanford Seismic Network (HSN), extending the site historical seismic database and fulfilling U.S. Department of Energy, Richland Operations Office requirements and orders. The Seismic Monitoring Analysis and Repair Team also maintains the Eastern Washington Regional Network (EWRN). The University of Washington uses the data from the EWRN and other seismic networks in the Northwest to provide the SMART with necessary regional input for the seismic hazards analysis at the Hanford Site.

  10. Nuclear component horizontal seismic restraint

    DOE Patents [OSTI]

    Snyder, Glenn J. (Lynchburg, VA)

    1988-01-01

    A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

  11. Tube-wave seismic imaging

    DOE Patents [OSTI]

    Korneev, Valeri A.; Bakulin, Andrey

    2009-10-13

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  12. Tube-wave seismic imaging

    DOE Patents [OSTI]

    Korneev, Valeri A [LaFayette, CA

    2009-05-05

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  13. Subsurface void detection using seismic tomographic imaging

    SciTech Connect (OSTI)

    Gritto, Roland

    2003-06-26

    Tomographic imaging has been widely used in scientific and medical fields to remotely image media in a nondestructive way. This paper introduces a spectrum of seismic imaging applications to detect and characterize voids in coal mines. The application of seismic waves to detect changes in coal relies on two types of waves: body waves refracted along the interface between coal and bedrock (i.e., refracted P-waves) and channel waves that propagate directly through the coal (dispersive wave trains of the Rayleigh or Love type). For example, a P-wave tomography study to find underlying old mine workings in a coal mine in England, produced velocity patterns that revealed increases in velocity where high stress concentrations occur in the rock, which are most likely connected to old pillars left in support of the old working areas. At the same time, low velocities were found in areas of low stress concentrations, which are related to roof collapses indicating the locations of mined areas below. The application of channel wave tomography to directly image the presence of gaseous CO{sub 2} in a low velocity oil reservoir showed that the injected CO{sub 2} followed an ancient flow channel in the reservoir migrating from the injector to the producer well. The study showed how channel waves are preferable over refracted P-waves, as the latter were only marginally affected by the presence of the gas in the low-velocity channel. Similar approaches show great promise for the detection of voids in coal mines. Finally, a newly developed technique, based on scattering theory, revealed that the location and the size of a subsurface cavity could be accurately determined even in the presence of strong correlated and uncorrelated noise.

  14. Passive Seismic Monitoring for Rockfall at Yucca Mountain: Concept Tests

    SciTech Connect (OSTI)

    Cheng, J; Twilley, K; Murvosh, H; Tu, Y; Luke, B; Yfantis, A; Harris, D B

    2003-03-03

    For the purpose of proof-testing a system intended to remotely monitor rockfall inside a potential radioactive waste repository at Yucca Mountain, a system of seismic sub-arrays will be deployed and tested on the surface of the mountain. The goal is to identify and locate rockfall events remotely using automated data collecting and processing techniques. We install seismometers on the ground surface, generate seismic energy to simulate rockfall in underground space beneath the array, and interpret the surface response to discriminate and locate the event. Data will be analyzed using matched-field processing, a generalized beam forming method for localizing discrete signals. Software is being developed to facilitate the processing. To date, a three-component sub-array has been installed and successfully tested.

  15. Technology transfer package on seismic base isolation - Volume I

    SciTech Connect (OSTI)

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume I contains the proceedings of the Workshop on Seismic Base Isolation for Department of Energy Facilities held in Marina Del Rey, California, May 13-15, 1992.

  16. Infrasound Generation from the HH Seismic Hammer.

    SciTech Connect (OSTI)

    Jones, Kyle Richard

    2014-10-01

    The HH Seismic hammer is a large, %22weight-drop%22 source for active source seismic experiments. This system provides a repetitive source that can be stacked for subsurface imaging and exploration studies. Although the seismic hammer was designed for seismological studies it was surmised that it might produce energy in the infrasonic frequency range due to the ground motion generated by the 13 metric ton drop mass. This study demonstrates that the seismic hammer generates a consistent acoustic source that could be used for in-situ sensor characterization, array evaluation and surface-air coupling studies for source characterization.

  17. TGLO - Seismic Permitting webpage | Open Energy Information

    Open Energy Info (EERE)

    Permitting webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: TGLO - Seismic Permitting webpage Abstract This is the Texas General Land...

  18. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the uniform moment magnitude catalogs of crustal and subduction earthquakes, and the databases of earthquakes that were assembled as part of the Hanford Probabilistic Seismic...

  19. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculations and Quality Assurance of Hazard Calculations ... 10.5 10.2 Seismic Hazard Results and Sensitivity at Priority Sites ......

  20. Opportunities for improving regulations governing the seismic...

    Office of Environmental Management (EM)

    Support DOE NPH Design AN APPLICATION OF THE SSHAC LEVEL 3 PROCESS TO THE PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR NUCLEAR FACILITIES AT THE HANFORD SITE, EASTERN WASHINGTON, USA...

  1. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D - Final Hazard Input Documents Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 D.1 Appendix D Final Hazard Input Documents Appendixes D.1 and D.2, respectively,...

  2. Hanford Sitewide Probabilistic Seismic Hazard Analysis - Hanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sitewide Probabilistic Seismic Hazard Analysis Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site...

  3. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G - SSC Data Summary Tables Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 G.1 Appendix G SSC Data Summary Tables This appendix presents the data summary tables that...

  4. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... with a thesis that applied linear system theory to the estimation of seismic site ... loss studies, and securitization risk analyses for the insurance and financial industries. ...

  5. Westinghouse receives high marks for management, operation of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Receives High Marks For Management, Operation of WIPP CARLSBAD, N.M., January 11, 2000 - The Westinghouse Waste Isolation Division (WID) received high marks from the U.S....

  6. Mark Elless, Ph.D. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mark Elless, Ph.D. About Us Mark Elless, Ph.D. - Technology Manager, Bioenergy Technologies Office Most Recent Biofuels and Barbecue Chips: Small Business Develops Process to Create Versatile Chemicals May 16

  7. How is a Document Containing OUO Marked? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    see OUO Stamp with Directions. Page marking: The marking "OFFICIAL USE ONLY" must be placed on the bottom of the front of the document and on the bottom of each interior page...

  8. Calcium Stabilized And Geogrid Reinforced Soil Structures In Seismic Areas

    SciTech Connect (OSTI)

    Rimoldi, Pietro; Intra, Edoardo

    2008-07-08

    In many areas of Italy, and particularly in high seismic areas, there is no or very little availability of granular soils: hence embankments and retaining structures are often built using the locally available fine soil. For improving the geotechnical characteristics of such soils and/or for building steep faced structures, there are three possible techniques: calcium stabilization, geogrid reinforcement, and the combination of both ones, that is calcium stabilized and reinforced soil. The present paper aims to evaluate these three techniques in terms of performance, design and construction, by carrying out FEM modeling and stability analyses of the same reference embankments, made up of soil improved with each one of the three techniques, both in static and dynamic conditions. Finally two case histories are illustrated, showing the practical application of the above outlined techniques.

  9. Summary, UCNI Document Markings - November 2011 | Department of Energy

    Energy Savers [EERE]

    Summary, UCNI Document Markings - November 2011 Summary, UCNI Document Markings - November 2011 November 2011 A brief summary on Marking UCNI Documents and Material. Once an UCNI Reviewing Official has determined that a document or material contains UCNI, the document or material must be marked to ensure its protection. First, though, it is important to understand what constitutes a document and material as defined in 10 CFR 1017.4. Document means the physical medium on or in which information

  10. Security Policy, CMPC Marking Resource | Department of Energy

    Energy Savers [EERE]

    Security Policy, CMPC Marking Resource Security Policy, CMPC Marking Resource January 2015 Examples illustrate markings for matter that contains classified information. A strong and cohesive information security program is integral to national security. The U.S. Government requires certain information to be maintained in confidence to protect our citizens, democratic institutions, and activities within the international security community. Marking notifies holders of classified matter of the

  11. Protocol for Addressing Induced Seismicity Associated with Enhanced...

    Energy Savers [EERE]

    Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems This...

  12. Hostile wells: the borehole seismic challenge | Open Energy Informatio...

    Open Energy Info (EERE)

    Web Site: Hostile wells: the borehole seismic challenge Author William Wills Published Oil and Gas Engineer - Subsea & Seismic, 2013 DOI Not Provided Check for DOI availability:...

  13. On the validation of seismic imaging methods: Finite frequency...

    Office of Scientific and Technical Information (OSTI)

    On the validation of seismic imaging methods: Finite frequency or ray theory? Citation Details In-Document Search Title: On the validation of seismic imaging methods: Finite ...

  14. DOE New Madrid Seismic Zone Electric Utility Workshop Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 The DOE New Madrid...

  15. Joint inversion of electrical and seismic data for Fracture char...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Joint inversion of electrical and seismic data for Fracture char. ...

  16. Characteristics of seismic waves from Soviet peaceful nuclear...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Characteristics of seismic waves from Soviet peaceful nuclear explosions in salt Citation Details In-Document Search Title: Characteristics of seismic waves from...

  17. Protocol for Addressing Induced Seismicity Associated with Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems (EGS) Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems...

  18. Teleseismic-Seismic Monitoring At New River Area (DOE GTP) |...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At New...

  19. Seismic Monitoring a Critical Step in EGS Development | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seismic Monitoring a Critical Step in EGS Development Seismic Monitoring a Critical Step in EGS Development December 3, 2013 - 1:33pm Addthis The Energy Department's Sandia ...

  20. Teleseismic-Seismic Monitoring At Coso Geothermal Area (2006...

    Open Energy Info (EERE)

    Exploration Basis To assess the benefits of surface seismic surveys Notes Different migration procedures were applied to image a synthetic reservoir model and seismic data. After...

  1. SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS | Open Energy Information

    Open Energy Info (EERE)

    assess the benefits of surface seismic surveys in such settings, we applied different migration procedures to image a synthetic reservoir model and seismic data from the Coso...

  2. Application of Random Vibration Theory Methodology for Seismic...

    Energy Savers [EERE]

    Application of Random Vibration Theory Methodology for Seismic Soil-Structure Interaction Analysis Application of Random Vibration Theory Methodology for Seismic Soil-Structure...

  3. The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis...

    Office of Environmental Management (EM)

    SEISMIC HAZARD ANALYSIS FOR NUCLEAR FACILITIES AT THE HANFORD SITE, EASTERN WASHINGTON, USA A Probabilistic Seismic Hazard Analysis Update Review for Two DOE Sites and NGA-East...

  4. Application of the Computer Program SASSI for Seismic SSI Analysis...

    Office of Environmental Management (EM)

    the Computer Program SASSI for Seismic SSI Analysis of WTP Facilities Application of the Computer Program SASSI for Seismic SSI Analysis of WTP Facilities Application of the...

  5. Teleseismic-Seismic Monitoring At Kilauea Summit Area (Chouet...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Kilauea Summit Area (Chouet & Aki, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic...

  6. Central Nevada Seismic Zone Geothermal Region | Open Energy Informatio...

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Central Nevada Seismic Zone Geothermal Region Details Areas (3) Power...

  7. Vertical Seismic Profiling At Rye Patch Area (DOE GTP, 2011)...

    Open Energy Info (EERE)

    Vertical Seismic Profiling At Rye Patch Area (DOE GTP, 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Seismic Profiling At Rye...

  8. Vertical Seismic Profiling At Snake River Plain Region (DOE GTP...

    Open Energy Info (EERE)

    Vertical Seismic Profiling At Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Seismic Profiling At...

  9. Teleseismic-Seismic Monitoring At Coso Geothermal Area (2011...

    Open Energy Info (EERE)

    Date 2011 - 2012 Usefulness not indicated DOE-funding Unknown Exploration Basis Map hydraulic structure within the field from seismic data Notes 2011: 16 years of seismicity were...

  10. Newberry EGS Seismic Velocity Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Templeton, Dennise

    2013-10-01

    We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.

  11. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    SciTech Connect (OSTI)

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our hydrocarbon indicators. Gas saturated reservoirs change reflection amplitudes significantly. The goal for the final project period was to systematically combine and document these various effects for use in deep water exploration and transfer this knowledge as clearly and effectively as possible.

  12. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8.0 Seismic Source Characterization .................................................................................................. 8.1 8.1 Building the SSC Model: Overview and Approach ............................................................ 8.1 8.1.1 Criteria for Defining Seismic Sources ....................................................................... 8.1 8.1.2 Data Evaluation Process ............................................................................................ 8.3

  13. 3D Elastic Seismic Wave Propagation Code

    Energy Science and Technology Software Center (OSTI)

    1998-09-23

    E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.

  14. Seismic hazard analysis at Rocky Flats Plant

    SciTech Connect (OSTI)

    McGuire, R.K.

    1993-10-01

    A probabilistic seismic hazard analysis is being conducted for the DOE Rocky Flats Plant, Jefferson County, Colorado. This is part of the overall review of the seismic exposure to facilities being conducted by DOE. The study has four major elements. (1) The historical seismicity in Colorado is being reviewed and synthesized to estimate historical rates of earthquake activity in the region of the site. (2) The geologic and tectonic evidence in Colorado and along the Front Range is being reviewed to determine appropriate seismic zones, potentially active faults, and constraints on fault slip rates. (3) Earthquake ground motion equations are being derived based on seismological knowledge of the earth`s crust. Site specific soil amplification factors are also being developed using on-site shear wave velocity measurements. (4) The probability of exceedence of various seismic ground motion levels is being calculated based on the inputs developed on tectonic sources, faults, ground motion, and soil amplification. Deterministic ground motion estimates are also being made. This study is a state-of-the-art analysis of seismic hazard. It incorporates uncertainties in the major aspects governing seismic hazard, and has a documented basis founded on solid data interpretations for the ranges of inputs used. The results will be a valid basis on which to evaluate plant structures, equipment, and components for seismic effects.

  15. Seismic Loading for FAST: May 2011 - August 2011

    SciTech Connect (OSTI)

    Asareh, M. A.; Prowell, I.

    2012-08-01

    As more wind farms are constructed in seismically active regions, earthquake loading increases in prominence for design and analysis of wind turbines. Early investigation of seismic load tended to simplify the rotor and nacelle as a lumped mass on top of the turbine tower. This simplification allowed the use of techniques developed for conventional civil structures, such as buildings, to be easily applied to wind turbines. However, interest is shifting to more detailed models that consider loads for turbine components other than the tower. These improved models offer three key capabilities in consideration of base shaking for turbines: 1) The inclusion of aerodynamics and turbine control; 2) The ability to consider component loads other than just tower loads; and 3) An improved representation of turbine response in higher modes by reducing modeling simplifications. Both experimental and numerical investigations have shown that, especially for large modern turbines, it is important to consider interaction between earthquake input, aerodynamics, and operational loads. These investigations further show that consideration of higher mode activity may be necessary in the analysis of the seismic response of turbines. Since the FAST code is already capable of considering these factors, modifications were developed that allow simulation of base shaking. This approach allows consideration of this additional load source within a framework, the FAST code that is already familiar to many researchers and practitioners.

  16. Congressional House Senate Request Marks Marks FOSSIL ENERGY R&D

    Office of Environmental Management (EM)

    3 FY 2013 FY 2013 ($ in thousands) Congressional House Senate Request Marks Marks FOSSIL ENERGY R&D Coal 275,869 384,294 301,622 Natural Gas Technologies 17,000 17,000 22,000 Unconventional Fossil Energy Technologies 0 25,000 5,000 Program Direction 115,753 115,753 120,000 Plant & Capital Equipment 13,294 13,294 13,294 Environmental Restoration 5,897 5,897 5,897 Special Recruitment Program 700 700 700 Subtotal, Fossil Energy R&D 428,513 561,938 468,513 Use of prior year balances

  17. Technology transfer package on seismic base isolation - Volume III

    SciTech Connect (OSTI)

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume III contains supporting materials not included in Volumes I and II.

  18. Regional seismic evaluation of basement control on paleozoic sedimentation in Ohio and West Virginia

    SciTech Connect (OSTI)

    Jovita, D.B.; Wilson, T.H. [West Virginia Univ., Morgantown, WV (United States)

    1995-09-01

    Paleozoic sediments of the central Appalachian lie upon a complexly deformed basement that continued to deform during the Paleozoic. In West Virginia basement is cut by an aulocogen known as the Rome trough. Seismic data reveal that the Rome Trough is an asymmetrical graben with a faulted eastern margin, and generally rotational western margin. Differential subsidence across the western margin decreases exponentially following the early Cambrian inception of the Trough. Displacement of the East Margin fault appears coupled to west-flank rotation. Minor inversion of Trough structure is also observed following the initial phase of rapid subsidence. Inversion influences local sedimentation patterns and results in minor structures that may influence hydrocarbon distribution. Regional seismic evaluation has been extended further west into Ohio to define regional scale subsidence history and local structural reactivation. Three seismic lines have been analyzed in Ohio that extend northwest from West Virginia to the Ohio COCORP line. Seismic expressions of the basement is marked by a relatively coherent reflection event. The basement faults in the distal part have similar offsets and therefore less influence on the sedimentary features. This analysis evaluates the structural affects of Coshocton zone, Cambridge Arch and Burning Spring anticline on the depositional history of Paleozoic sedimentation in Ohio.

  19. Natural fracture characterization using passive seismic illumination

    SciTech Connect (OSTI)

    Nihei, K.T.

    2003-01-08

    The presence of natural fractures in reservoir rock can significantly enhance gas production, especially in tight gas formations. Any general knowledge of the existence, location, orientation, spatial density, and connectivity of natural fractures, as well as general reservoir structure, that can be obtained prior to active seismic acquisition and drilling can be exploited to identify key areas for subsequent higher resolution active seismic imaging. Current practices for estimating fracture properties before the acquisition of surface seismic data are usually based on the assumed geology and tectonics of the region, and empirical or fracture mechanics-based relationships between stratigraphic curvature and fracturing. The objective of this research is to investigate the potential of multicomponent surface sensor arrays, and passive seismic sources in the form of local earthquakes to identify and characterize potential fractured gas reservoirs located near seismically active regions. To assess the feasibility of passive seismic fracture detection and characterization, we have developed numerical codes for modeling elastic wave propagation in reservoir structures containing multiple, finite-length fractures. This article describes our efforts to determine the conditions for favorable excitation of fracture converted waves, and to develop an imaging method that can be used to locate and characterize fractures using multicomponent, passive seismic data recorded on a surface array.

  20. Code for Calculating Regional Seismic Travel Time

    Energy Science and Technology Software Center (OSTI)

    2009-07-10

    The RSTT software computes predictions of the travel time of seismic energy traveling from a source to a receiver through 2.5D models of the seismic velocity distribution within the Earth. The two primary applications for the RSTT library are tomographic inversion studies and seismic event location calculations. In tomographic inversions studies, a seismologist begins with number of source-receiver travel time observations and an initial starting model of the velocity distribution within the Earth. A forwardmore » travel time calculator, such as the RSTT library, is used to compute predictions of each observed travel time and all of the residuals (observed minus predicted travel time) are calculated. The Earth model is then modified in some systematic way with the goal of minimizing the residuals. The Earth model obtained in this way is assumed to be a better model than the starting model if it has lower residuals. The other major application for the RSTT library is seismic event location. Given an Earth model, an initial estimate of the location of a seismic event, and some number of observations of seismic travel time thought to have originated from that event, location codes systematically modify the estimate of the location of the event with the goal of minimizing the difference between the observed and predicted travel times. The second application, seismic event location, is routinely implemented by the military as part of its effort to monitor the Earth for nuclear tests conducted by foreign countries.« less

  1. Seismic Retrofit for Electric Power Systems

    SciTech Connect (OSTI)

    Romero, Natalia; Nozick, Linda K.; Dobson, Ian; Xu, Ningxiong; Jones, Dean A.

    2015-05-01

    Our paper develops a two-stage stochastic program and solution procedure to optimize the selection of seismic retrofit strategies to increase the resilience of electric power systems against earthquake hazards. The model explicitly considers the range of earthquake events that are possible and, for each, an approximation of the distribution of damage experienced. Furthermore, this is important because electric power systems are spatially distributed and so their performance is driven by the distribution of component damage. We also test this solution procedure against the nonlinear integer solver in LINGO 13 and apply the formulation and solution strategy to the Eastern Interconnection, where seismic hazard stems from the New Madrid seismic zone.

  2. Second Anniversary of Northeast Blackout Marked with Progress | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Anniversary of Northeast Blackout Marked with Progress Second Anniversary of Northeast Blackout Marked with Progress August 12, 2005 - 2:41pm Addthis Electric Reliability Standards Made Clearer and Enforceable WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today marked the second anniversary of the Northeast blackout during which 50 million Americans lost electricity by highlighting important progress that has been made to make North American electricity grids more reliable.

  3. DOE Marks First Anniversary of EPAct & Releases National Electric

    Office of Environmental Management (EM)

    Transmission Congestion Study | Department of Energy Marks First Anniversary of EPAct & Releases National Electric Transmission Congestion Study DOE Marks First Anniversary of EPAct & Releases National Electric Transmission Congestion Study August 8, 2006 - 9:32am Addthis WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today marked the one-year anniversary of President Bush's signing of the Energy Policy Act of 2005 (EPAct), highlighting its progress in

  4. DOE Logo, Seal and Word Mark | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Request for Permission to Use the DOE Logo, Seal or Word Mark (Official Graphical Identifiers) The Director, Office of Administration, is the Secretary's designee for approving ...

  5. Written Statement of Mark Whitney Acting Assistant Secretary...

    Energy Savers [EERE]

    Strategic Forces Committee on Armed Services United States House of Representatives (March 24, 2015) Written Statement of Mark Whitney Acting Assistant Secretary for Environmental...

  6. Ames Lab Interns Make Their Research Mark in Industry, Academia...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interns Make Their Research Mark in Industry, Academia and at DOE National Labs Kevin Yang, Science Undergraduate Laboratory Internship - 2008 B.S., Electrical and Computer...

  7. Sandia Energy - Mark Boslough Featured in NOVA Special about...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in NOVA Special about the Chelyabinsk Meteor Scientist Mark Boslough (Discrete Mathematics and Complex Systems Dept.) was featured in NOVA's special program "Meteor Strike,"...

  8. Ribbon cutting marks chemistry laboratory upgrades at Northern...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from Los Alamos National Laboratory Latest Issue: Dec. 2015-Jan. 2016 all issues All Issues submit Ribbon cutting marks chemistry laboratory upgrades at Northern...

  9. Manipulative Virtual Tools for Tool Mark Characterization | The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manipulative Virtual Tools for Tool Mark Characterization DESCRIPTION: The goal of this project is to develop a methodology whereby a three-dimensional (3-D) computer simulation of...

  10. Written Statement of Mark Whitney Acting Assistant Secretary...

    Energy Savers [EERE]

    Energy and Water Development Committee on Appropriations United States House of Representatives Written Statement of Mark Whitney Acting Assistant Secretary for Environmental...

  11. Seismic waveform viewer, processor and calculator

    Energy Science and Technology Software Center (OSTI)

    2015-02-15

    SWIFT is a computer code that is designed to do research level signal analysis on seismic waveforms, including visualization, filtering and measurement. LLNL is using this code, amplitude and global tomography efforts.

  12. Seismic models of a carbonate foreslope-to-basin transition, Picco di Vallandro, Dolomite Alps, northern Italy

    SciTech Connect (OSTI)

    Rudolph, K.W. ); Schlager, W. ); Biddle, K.T. )

    1989-05-01

    Detailed geologic cross sections, augmented by laboratory calibration of lithology and acoustic impedance, have been used to produce synthetic reflection seismic sections of a carbonate foreslope-to-basin transition. Two areas from the Picco di Vallandro region of the Dolomite Alps were modeled: a progradational section and a retrogradational (backstepping) section. The resulting models show how these complex areas of strata interfingering might be displayed on conventional reflection seismic lines. In the area of progradation, rapid stratigraphic thinning below seismic detectibility, coupled with abrupt impedance changes, produces a reflection discontinuity between steeply dipping reflections of the foreslope and gently dipping paralle reflections of the basin section. This apparent downlap surface marks the toe-of-slope for successive clinoforms but dose not correspond to a discrete stratigraphic surface. In the backstepping example, similar stratigraphic thinning and impedance changes create an apparent onlap surface. Wavelet interference causes complications in both examples. These models indicate how stratigraphic complexity can be simplified by the seismic reflection process and suggest that caution should be exercised when using seismic data to construct general models in areas of complex depositional geometries and rapidly changing facies.

  13. Fluid driven torsional dipole seismic source

    DOE Patents [OSTI]

    Hardee, Harry C. (Albuquerque, NM)

    1991-01-01

    A compressible fluid powered oscillating downhole seismic source device capable of periodically generating uncontaminated horizontally-propagated, shear waves is provided. A compressible fluid generated oscillation is created within the device which imparts an oscillation to a housing when the device is installed in a housing such as the cylinder off an existing downhole tool, thereby a torsional seismic source is established. Horizontal waves are transferred to the surrounding bore hole medium through downhole clamping.

  14. MINUTES FROM SEISMIC LESSONS-LEARNED PANEL

    Office of Environmental Management (EM)

    MAY 11, 2010 Background The Chief of Nuclear Safety (CNS) hosted the sixth meeting of the seismic lessons- learned panel at the DOE Forrestal Building on May 11, 2010. This panel was commissioned by CNS in August 2007, and it meets approximately twice per year. These workshops are intended for experts involved in seismic hazard assessments and resulting facility designs across the DOE complex to share experience from their work. Participants John Ake, U.S. Nuclear Regulatory Commission (NRC)

  15. Elimination or Minimization of Oscillation Marks: A Path To Improved Cast Surface Quality

    SciTech Connect (OSTI)

    Dr. Alan W. Cramb

    2007-12-17

    Oscillation marks are the most recognizable feature of continuous casting and can be related to the subsurface defects that can be found on product rolled from continuous cast slabs. The purpose of this work was to develop strategies that can be used on industrial continuous casters to reduce oscillation mark depth and, in particular, to minimize the formation of hook type defects that are prevalent on ultra low carbon grades. The major focus of the work was on developing a technique to allow heat transfer in the meniscus region of the continuous caster to be measured and the effect of mold slag chemistry and chrystallization to be documented. A new experimental technique was developed that allowed the effect of mold flux chemistry and chrystallization on the radiation heat transfer rate to be measured dynamically.

  16. Simplified method to characterize municipal solid waste properties under seismic conditions

    SciTech Connect (OSTI)

    Choudhury, Deepankar Savoikar, Purnanand

    2009-02-15

    The response of municipal solid waste landfills during earthquakes is gaining worldwide attention due to the devastating nature of earthquakes on landfills. Safety code provisions and regulations of various countries require the incorporation of safety measures against seismic hazards in the design of new landfills, as well as for extensions of existing landfills in seismic zones. Determination of dynamic properties is the first step for the analysis of municipal solid waste materials under seismic conditions. Landfill composition and properties, like unit weight, shear wave velocity, shear strength, normalized shear modulus, and material damping, are the most important dynamic properties that have direct impact on the seismic behaviour of landfills, and need to be evaluated carefully. In the present study, based on the extensive data provided by various researchers, the dynamic properties of landfill materials are analyzed using curve-fitting techniques, and simple mathematical equations are proposed. The resulting profiles are compared with laboratory and field data wherever possible. These properties are difficult to generalize and may vary from landfill to landfill. Hence, the proposed simple mathematical models for these landfill properties can be used to design municipal solid waste landfills in the absence of landfill-specific field data under seismic conditions.

  17. ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS

    SciTech Connect (OSTI)

    Helmberger, Donald V.; Tromp, Jeroen; Rodgers, Arthur J.

    2008-10-17

    This quarter, we have focused on several tasks: (1) Building a high-quality catalog of earthquake source parameters for the Middle East and East Asia. In East Asia, we computed source parameters using the CAP method for a set of events studied by Herrman et al., (MRR, 2006) using a complete waveform technique. Results indicated excellent agreement with the moment magnitudes in the range 3.5 -5.5. Below magnitude 3.5 the scatter increases. For events with more than 2-3 observations at different azimuths, we found good agreement of focal mechanisms. Depths were generally consistent, although differences of up to 10 km were found. These results suggest that CAP modeling provides estimates of source parameters at least as reliable as complete waveform modeling techniques. However, East Asia and the Yellow Sea Korean Paraplatform (YSKP) region studied are relatively laterally homogeneous and may not benefit from the CAP methods flexibility to shift waveform segments to account for path-dependent model errors. A more challenging region to study is the Middle East where strong variations in sedimentary basin, crustal thickness and crustal and mantle seismic velocities greatly impact regional wave propagation. We applied the CAP method to a set of events in and around Iran and found good agreement between estimated focal mechanisms and those reported by the Global Centroid Moment Tensor (CMT) catalog. We found a possible bias in the moment magnitudes that may be due to the thick low-velocity crust in the Iranian Plateau. (2) Testing Methods on a Lifetime Regional Data Set. In particular, the recent 2/21/08 Nevada Event and Aftershock Sequence occurred in the middle of USArray, producing over a thousand records per event. The tectonic setting is quite similar to Central Iran and thus provides an excellent testbed for CAP+ at ranges out to 10, including extensive observations of crustal thinning and thickening and various Pnl complexities. Broadband modeling in 1D, 2D, and 3D will be presented. (3) Shallow Crustal Structure and Sparse Network Source Inversions for Southern California. We conducted a detailed test of a recently developed technique, CAPloc, in recovering source parameters including location and depth based on tomographic maps. We tested two-station solutions against 160 well determined events which worked well except for paths crossing deep basins and along mountain ridges.

  18. Final Report: Seismic Hazard Assessment at the PGDP

    SciTech Connect (OSTI)

    Wang, Zhinmeng

    2007-06-01

    Selecting a level of seismic hazard at the Paducah Gaseous Diffusion Plant for policy considerations and engineering design is not an easy task because it not only depends on seismic hazard, but also on seismic risk and other related environmental, social, and economic issues. Seismic hazard is the main focus. There is no question that there are seismic hazards at the Paducah Gaseous Diffusion Plant because of its proximity to several known seismic zones, particularly the New Madrid Seismic Zone. The issues in estimating seismic hazard are (1) the methods being used and (2) difficulty in characterizing the uncertainties of seismic sources, earthquake occurrence frequencies, and ground-motion attenuation relationships. This report summarizes how input data were derived, which methodologies were used, and what the hazard estimates at the Paducah Gaseous Diffusion Plant are.

  19. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect (OSTI)

    Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

    2007-02-28

    In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the movement on the fault appears to have occurred before the youngest lava flow, the 10.5 million year old Elephant Mountain Member was emplaced above the Pomona Member.

  20. Containment venting as a mitigation technique for BWR Mark I plant ATWS

    SciTech Connect (OSTI)

    Harrington, R.M.

    1986-01-01

    Containment venting is studied as a mitigation strategy for preventing or delaying severe fuel damage following hypothetical BWR Anticipated Transient Without SCRAM (ATWS) accidents initiated by MSIV-closure, and compounded by failure of the Standby Liquid Control (SLC) system injection of sodium pentaborate solution and by the failure of manually initiated control rod insertion. The venting of primary containment after reaching 75 psia (0.52 MPa) is found to result in the release of the vented steam inside the reactor building, and to result in inadequate Net Positive Suction Head (NPSH) for any system pumping from the pressure suppression pool. CONTAIN code calculations show that personnel access to large portions of the reactor building would be lost soon after the initiation of venting and that the temperatures reached would be likely to result in independent equipment failures. It is concluded that containment venting would be more likely to cause or to hasten the onset of severe fuel damage than to prevent or to delay it.

  1. Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Gritto, Roland; Dreger, Douglas; Heidbach, Oliver

    2014-08-29

    This DOE funded project was a collaborative effort between Array Information Technology (AIT), the University of California at Berkeley (UCB), the Helmholtz Centre Potsdam - German Research Center for Geosciences (GFZ) and the Lawrence Berkeley National Laboratory (LBNL). It was also part of the European research project GEISER, an international collaboration with 11 European partners from six countries including universities, research centers and industry, with the goal to address and mitigate the problems associated with induced seismicity in Enhanced Geothermal Systems (EGS). The goal of the current project was to develop a combination of techniques, which evaluate the relationship between enhanced geothermal operations and the induced stress changes and associated earthquakes throughout the reservoir and the surrounding country rock. The project addressed the following questions: how enhanced geothermal activity changes the local and regional stress field; whether these activities can induce medium sized seismicity M > 3; (if so) how these events are correlated to geothermal activity in space and time; what is the largest possible event and strongest ground motion, and hence the potential hazard associated with these activities. The development of appropriate technology to thoroughly investigate and address these questions required a number of datasets to provide the different physical measurements distributed in space and time. Because such a dataset did not yet exist for an EGS system in the United State, we used current and past data from The Geysers geothermal field in northern California, which has been in operation since the 1960s. The research addressed the need to understand the causal mechanisms of induced seismicity, and demonstrated the advantage of imaging the physical properties and temporal changes of the reservoir. The work helped to model the relationship between injection and production and medium sized magnitude events that have jeopardized, and in some cases suspended, the generation of energy from EGS systems worldwide.

  2. DOE Logo, Seal and Word Mark | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Graphics » DOE Logo, Seal and Word Mark DOE Logo, Seal and Word Mark The DOE logo, seal, and word mark are official graphical identifiers of the U.S. Department of Energy and are meant for official use only, to represent the Department's official position. They may be used to recognize funding or official support by the Department if the usage has proper qualifying language to explain its presence on non-DOE materials and it is reviewed and explicitly approved by the Department. They cannot be

  3. Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2012-01-01

    Location of seismic lines carried out under DOE funded project Advanced Seismic Data Analysis Program (The Hot Pot Project).

  4. Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Location of seismic lines carried out under DOE funded project Advanced Seismic Data Analysis Program (The Hot Pot Project).

  5. Richland Operations Office FY 14/15 Funding Marks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office FY 1415 Funding Marks PBS PBS Title FY 2014 Omnibus (Enacted) FY 2015 President's Budget FY 2015 Omnibus Allocation RL-0011 NM Stabilization and Disposition - PFP 142,670...

  6. Authors: Carol Burns, Mark Chadwick, John Erickson, David Funk...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear and Particle Futures (N&PF) Pillar Authors: Carol Burns, Mark Chadwick, John ... as composed of four focus areas: Applied Nuclear Science and Engineering (ANS&E), Nuclear, ...

  7. TBU-0002- In the Matter of Mark J. Chugg

    Broader source: Energy.gov [DOE]

    Mark J. Chugg, a former employee of Bechtel BWXT Idaho (BWXT), a Department of Energy (DOE) contractor, appeals the dismissal of his whistleblower complaint filed under 10 C.F.R. Part 708, the DOE...

  8. EA-155 ProMark | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    electric energy to Canada. PDF icon EA-155 ProMark More Documents & Publications EA-196-A Minnesota Power, Sales EA-220-A NRG Power Marketing, Inc EA-232 OGE Energy Resources...

  9. West Valley Demolition Marks Important Accomplishment for EM

    Broader source: Energy.gov [DOE]

    WEST VALLEY, N.Y. – EM marked one of its most significant achievements at the West Valley Demonstration Project (WVDP) with the completion of the site’s first nuclear facility demolition this spring.

  10. Summer 2011 Intern Project- Mark Bigham | Center for Energy Efficient

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Mark Bigham REDUCING THE PRODUCTION COST OF 6-10nm BARIUM TITANATE FOR USE IN BATTERY SAFETY DEVICES Mark Bigham Mechanical Engineering UC Santa Barbara Mentor: Teyeb Ould Ely Faculty Advisor: Dan Morse Department: Molecular, Cellular, and Developmental Biology Creating a cost effective method of producing Barium Titanate is a keystone technology to producing safer electric batteries. Current lithium-ion batteries are prone to explosive failure in a condition known as thermal

  11. Anniversary of Fire, Radiological Events Marks Major Progress at WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 12, 2016 Anniversary of Fire, Radiological Events Marks Major Progress at WIPP February 2016 marks two years since the underground fire and radiological release events forced the temporary closure of the Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. Since that time much progress has been made in the recovery of the underground including mine stability and habitability, initial panel closure, radiological risk remediation and the addition of

  12. DOE Marks First Anniversary of EPAct & Releases National Electric

    Energy Savers [EERE]

    Transmission Congestion Study | Department of Energy First Anniversary of EPAct & Releases National Electric Transmission Congestion Study DOE Marks First Anniversary of EPAct & Releases National Electric Transmission Congestion Study August 8, 2006 - 8:43am Addthis WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today marked the one-year anniversary of President Bush's signing of the Energy Policy Act of 2005 (EPAct), highlighting its progress in

  13. NREL: Biomass Research - Mark F. Davis, Ph.D.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    F. Davis, Ph.D. Photo of Mark Davis Dr. Mark Davis is the Thermochemical Conversion Platform Leader at the National Renewable Energy Laboratory (NREL). He also currently serves as the Focus Area Lead for the characterization and modeling activities in the BioEnergy Science Center (BESC) led by Oak Ridge National Laboratory. His research program is focused on integrating multivariate statistical data analysis and spectroscopic methods such as nuclear magnetic resonance (NMR) and

  14. EM Marks Milestone at Separations Process Research Unit | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Marks Milestone at Separations Process Research Unit EM Marks Milestone at Separations Process Research Unit March 7, 2013 - 12:00pm Addthis Workers construct an enclosure for Building H2 at the Separations Process Research Unit Workers construct an enclosure for Building H2 at the Separations Process Research Unit NISKAYUNA, N.Y. - EM met a major regulatory milestone at the Separations Process Research Unit (SPRU) by completing construction of enclosures and ventilation systems

  15. Mark Peters named an ANS Fellow | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mark Peters named an ANS Fellow By Greg Cunningham * June 3, 2015 Tweet EmailPrint Associate Laboratory Director Mark Peters was honored this week as a Fellow of the American Nuclear Society. Fellow is the highest member status presented by the society, and is granted for outstanding accomplishments in the areas of nuclear science and technology. Peters is one of five people selected this year for Fellows status. ANS commended Peters for his leadership of "the development and implementation

  16. Testimony of Mark Whitney Acting Assistant Secretary for Environmental

    Energy Savers [EERE]

    Management U.S. Department of Energy Before the Subcommittee on Oversight and Investigations Energy and Commerce Committee U.S. House of Representatives WIPP Public Hearing June 2016 | Department of Energy Testimony of Mark Whitney Acting Assistant Secretary for Environmental Management U.S. Department of Energy Before the Subcommittee on Oversight and Investigations Energy and Commerce Committee U.S. House of Representatives WIPP Public Hearing June 2016 Testimony of Mark Whitney Acting

  17. Green Racing Marks Its 25th Competition | Department of Energy

    Office of Environmental Management (EM)

    Racing Marks Its 25th Competition Green Racing Marks Its 25th Competition September 13, 2011 - 5:21pm Addthis One of the competitors from the Michelin Green X Challenge takes center stage outside the National Press Club. | Photo courtesy of Green Racing. One of the competitors from the Michelin Green X Challenge takes center stage outside the National Press Club. | Photo courtesy of Green Racing. Lee Slezak Vehicle Systems and Testing Manager The Green Racing program, a motorsports competition

  18. DOE Marks Major Milestone with Startup of Recovery Act Demonstration

    Office of Environmental Management (EM)

    Project | Department of Energy Marks Major Milestone with Startup of Recovery Act Demonstration Project DOE Marks Major Milestone with Startup of Recovery Act Demonstration Project April 9, 2014 - 10:36am Addthis News Media Contact 202-586-4940 Editor's Note: This post has been updated as of April 11, 2014. TAMPA, FL. - Today, the Department of Energy joined RTI International and Tampa Electric Company (TECO) to celebrate the successful startup of a pilot project to demonstrate a warm gas

  19. Construction on Pantex High Explosives Pressing Facility Reaches 85% Mark |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Field Offices / Welcome to the NNSA Production Office / NPO News Releases / Construction on Pantex High Explosives Pressing Facility ... Construction on Pantex High Explosives Pressing Facility Reaches 85% Mark Work on the National Nuclear Security Administration's (NNSA) High Explosives Pressing Facility at its Pantex Plant, located near Amarillo, Texas, this month passed the 85 percent construction completion mark and is on schedule and under

  20. Construction on Pantex High Explosives Pressing Facility Reaches 85% Mark |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Library / Press Releases / Construction on Pantex High Explosives Pressing Facility ... Construction on Pantex High Explosives Pressing Facility Reaches 85% Mark Press Release Dec 16, 2013 WASHINGTON, D.C. - Work on the National Nuclear Security Administration's (NNSA) High Explosives Pressing Facility at its Pantex Plant, located near Amarillo, Texas, this month passed the 85 percent construction completion mark and is on schedule and under budget.

  1. Teleseismic-Seismic Monitoring At Clear Lake Area (Skokan, 1993...

    Open Energy Info (EERE)

    4 illustrates seismicity from January of 1969 to June of 1977 (Rapolla and Keller, 1984). During this span, most of the seismicity occurred in the region of the Geysers...

  2. Regional Seismic Travel Time Node Get and Set

    Energy Science and Technology Software Center (OSTI)

    2012-10-24

    RSTT_NOGS allows users to easily get and set seismic velocity vs. depth profiles at specified model tessellation nodes. RSTT_NOGS uses the Sandia Seismic Location Baseline Model code that was released under BSD license in 2009.

  3. Microsoft Word - Minutes from Sept 2008 seismic LL panel 10...

    Office of Environmental Management (EM)

    MINUTES FROM SEISMIC LESSONS-LEARNED PANEL SEPTEMBER 23-24, 2008 Background The Chief of Nuclear Safety (CNS) hosted the third meeting of the seismic lessons-learned panel at the...

  4. A Study of SSI Effects Incorporating Seismic Wave Incoherence...

    Office of Environmental Management (EM)

    A Study of SSI Effects Incorporating Seismic Wave Incoherence within the DOE Complex A Study of SSI Effects Incorporating Seismic Wave Incoherence within the DOE Complex A Study of...

  5. Alaska Maximum Number of Active Crews Engaged in Seismic Surveying...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Seismic Surveying (Number of Elements) Alaska Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec...

  6. Optical seismic sensor systems and methods

    DOE Patents [OSTI]

    Beal, A Craig; Cummings, Malcolm E.; Zavriyev, Anton; Christensen, Caleb A.; Lee, Keun

    2015-12-08

    Disclosed is an optical seismic sensor system for measuring seismic events in a geological formation, including a surface unit for generating and processing an optical signal, and a sensor device optically connected to the surface unit for receiving the optical signal over an optical conduit. The sensor device includes at least one sensor head for sensing a seismic disturbance from at least one direction during a deployment of the sensor device within a borehole of the geological formation. The sensor head includes a frame and a reference mass attached to the frame via at least one flexure, such that movement of the reference mass relative to the frame is constrained to a single predetermined path.

  7. Seismic Retrofit for Electric Power Systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Romero, Natalia; Nozick, Linda K.; Dobson, Ian; Xu, Ningxiong; Jones, Dean A.

    2015-05-01

    Our paper develops a two-stage stochastic program and solution procedure to optimize the selection of seismic retrofit strategies to increase the resilience of electric power systems against earthquake hazards. The model explicitly considers the range of earthquake events that are possible and, for each, an approximation of the distribution of damage experienced. Furthermore, this is important because electric power systems are spatially distributed and so their performance is driven by the distribution of component damage. We also test this solution procedure against the nonlinear integer solver in LINGO 13 and apply the formulation and solution strategy to the Eastern Interconnection,more » where seismic hazard stems from the New Madrid seismic zone.« less

  8. SEISMIC MODELING ENGINES PHASE 1 FINAL REPORT

    SciTech Connect (OSTI)

    BRUCE P. MARION

    2006-02-09

    Seismic modeling is a core component of petroleum exploration and production today. Potential applications include modeling the influence of dip on anisotropic migration; source/receiver placement in deviated-well three-dimensional surveys for vertical seismic profiling (VSP); and the generation of realistic data sets for testing contractor-supplied migration algorithms or for interpreting AVO (amplitude variation with offset) responses. This project was designed to extend the use of a finite-difference modeling package, developed at Lawrence Berkeley Laboratories, to the advanced applications needed by industry. The approach included a realistic, easy-to-use 2-D modeling package for the desktop of the practicing geophysicist. The feasibility of providing a wide-ranging set of seismic modeling engines was fully demonstrated in Phase I. The technical focus was on adding variable gridding in both the horizontal and vertical directions, incorporating attenuation, improving absorbing boundary conditions and adding the optional coefficient finite difference methods.

  9. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    SciTech Connect (OSTI)

    Abbott, Robert; Knox, Hunter Anne; James, Stephanie; Lee, Rebekah; Cole, Chris

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  10. Method for processing seismic data to identify anomalous absorption zones

    DOE Patents [OSTI]

    Taner, M. Turhan

    2006-01-03

    A method is disclosed for identifying zones anomalously absorptive of seismic energy. The method includes jointly time-frequency decomposing seismic traces, low frequency bandpass filtering the decomposed traces to determine a general trend of mean frequency and bandwidth of the seismic traces, and high frequency bandpass filtering the decomposed traces to determine local variations in the mean frequency and bandwidth of the seismic traces. Anomalous zones are determined where there is difference between the general trend and the local variations.

  11. Towards the Understanding of Induced Seismicity in Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity Microearthquake Technology for EGS Fracture Characterization

  12. StatesFirst Releases Induced Seismicity Primer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    StatesFirst Releases Induced Seismicity Primer On September 28, the StatesFirst Induced Seismicity Working Group (ISWG) released a primer entitled "Potential Injection-Induced Seismicity Associated with Oil & Gas Development: A Primer on Technical and Regulatory Considerations Informing Risk Management and Mitigation." The report provides guidance in mitigating seismic risks associated with waste water disposal wells, not hydraulic fracturing. The primer is intended to be

  13. Modeling-Computer Simulations At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration...

  14. Teleseismic-Seismic Monitoring At Yellowstone Region (Chatterjee...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Yellowstone Region (Chatterjee, Et Al., 1985) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  15. Los Alamos National Laboratory Plutonium Facility (PF-4) Seismic Safety |

    Office of Environmental Management (EM)

    Department of Energy Laboratory Plutonium Facility (PF-4) Seismic Safety Los Alamos National Laboratory Plutonium Facility (PF-4) Seismic Safety Los Alamos National Laboratory Plutonium Facility (PF-4) Seismic Safety PDF icon Los Alamos National Laboratory Plutonium Facility (PF-4) Seismic Safety More Documents & Publications EIS-0236-SA-06: Draft Supplement Analysis FPD's Perspective Photos - Los Alamos National Labratory - NISA EIS-0236-SA-06: Final Supplement Analysis

  16. Minutes from the Seismic Lessons-Learned Panel Meeting

    Office of Environmental Management (EM)

    Seismic Lessons-Learned Panel Meeting November 14, 2012 Background The Chief of Nuclear Safety (CNS) hosted the seventh meeting of the Seismic Lessons-Learned Panel (SLLP) at the DOE Forrestal Building on November 14, 2012. This panel was commissioned by CNS in August 2007, and it meets as requested by CNS. These meetings are intended for experts involved in seismic hazard assessments and facility seismic design across the DOE complex to share experience from their work. DOE site office staff

  17. DEMONSTRATION OF NONLINEAR SEISMIC SOIL STRUCTURE INTERACTION AND APPLICABILITY TO NEW SYSTEM FRAGILITY CURVES SEISMIC

    SciTech Connect (OSTI)

    Coleman, Justin

    2014-09-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it wasnt the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility).

  18. Down-hole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, H.C.; Hills, R.G.; Striker, R.P.

    1982-10-28

    A down hole periodic seismic generator system is disclosed for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  19. Advanced motor driven clamped borehole seismic receiver

    DOE Patents [OSTI]

    Engler, B.P.; Sleefe, G.E.; Striker, R.P.

    1993-02-23

    A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  20. Advanced motor driven clamped borehole seismic receiver

    DOE Patents [OSTI]

    Engler, Bruce P. (Sandoval County, NM); Sleefe, Gerard E. (Bernalillo County, NM); Striker, Richard P. (Bernalillo County, NM)

    1993-01-01

    A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  1. Nonlinear Seismic Response Of Single Piles

    SciTech Connect (OSTI)

    Cairo, R.; Conte, E.; Dente, G.

    2008-07-08

    In this paper, a method is proposed to analyse the seismic response of single piles under nonlinear soil condition. It is based on the Winkler foundation model formulated in the time domain, which makes use of p-y curves described by the Ramberg-Osgood relationship. The analyses are performed referring to a pile embedded in two-layer soil profiles with different sharp stiffness contrast. Italian seismic records are used as input motion. The calculated bending moments in the pile are compared to those obtained using other theoretical solutions.

  2. Seismic signals from underground cavity collapses and other mining-related failures

    SciTech Connect (OSTI)

    Walter, W.R.; Heuze, F.; Dodge, D.

    1997-07-01

    The sudden collapse of man-made underground cavities have generated seismic signals as large as magnitude 5.4. Collapses are just one of the many types of mining associated seismicity including coalbumps and rockbursts which need to be identified and distinguished from potential clandestine nuclear explosions under the recently signed Comprehensive Test Ban Treaty (CTBT). Collapses, coalbumps and rockbursts are of concern for seismically monitoring a CTBT for a number of reasons. First, they can look like explosions when using some seismic discriminant measures, such M{sub s}:m{sub b}, M{sub o}: m{sub b}, regional P/S ratios and depth. Second, underground nuclear explosions themselves produce cavities that might collapse, possibly aiding in the detection of a clandestine event. Finally, because all mine-related events occur in the vicinity of underground cavities, they may come under special scrutiny because of the concern that very large, specially constructed cavities could be used to evasively decouple a clandestine test. For these reasons mine-related seismicity in both active and former mining regions have the potential to be false alarms under a CTBT. We are investigating techniques to identify collapses, either directly via waveform modeling, or indirectly by combining several seismic discriminants. We are also investigating the source mechanisms of coalbumps and collapses to better understand the performance of seismic discriminants for these events. In particular we have found similarities in point source models of some longwall coalbumps, room- and-pillar mine collapses and NTS nuclear explosion cavity collapses. In order to understand coalbumps we are analyzing events from central Utah recorded at regional distances in Utah and Nevada including at the auxiliary station ELK. Some of these have anomalous, explosion- like high frequency P/S ratios. We are combining this new study with results from previous field work done in 1995 at a Colorado long-wall coal mining operation. Similarly to longwall coal mines in Utah and elsewhere, this Colorado mine completely excavates a 3m high coal seam in 250 m wide panels leaving the material above unsupported. The roof material above the excavated seam eventually collapses resulting in seismic events.

  3. Seismic isolation of two dimensional periodic foundations

    SciTech Connect (OSTI)

    Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.

    2014-07-28

    Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5?Hz to 50?Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.

  4. Recommissioning the K-1600 Seismic Test Facility

    SciTech Connect (OSTI)

    Wynn, C.C. ); Brewer, D.W. )

    1991-10-01

    The Center of Natural Phenomena Engineering (CNPE) was established under the technical direction of Dr. James E. Beavers with a mandate to assess, by analyses and testing, the seismic capacity of building structures that house sensitive processes at the Oak Ridge Y-12 Plant. This mandate resulted in a need to recommission the K-1600 Seismic Test Facility (STF) at the Oak Ridge K-25 Site, which had been shutdown for 6 years. This paper documents the history of the facility and fives some salient construction, operation, and performance details of its 8-ton, 20-foot center of gravity payload bi-axial seismic simulator. A log of activities involved in the restart of this valuable resource is included as Table 1. Some of problems and solutions associated with recommissioning the facility under a relatively limited budget are included. The unique attributes of the shake table are discussed. The original mission and performance requirements are compared to current expanded mission and performance capabilities. Potential upgrades to further improve the capabilities of the test facility as an adjunct to the CNPE are considered. Additional uses for the facility are proposed, including seismic qualification testing of devices unique to enrichment technologies and associated hazardous waste treatment and disposal processes. In summary, the STF restart in conjunction with CNPE has added a vital, and unique facility to the list of current national resources utilized for earthquake engineering research and development. 3 figs., 1 tab.

  5. Modeling and Field Results from Seismic Stimulation

    SciTech Connect (OSTI)

    Majer, E.; Pride, S.; Lo, W.; Daley, T.; Nakagawa, Seiji; Sposito, Garrison; Roberts, P.

    2006-05-30

    Modeling the effect of seismic stimulation employing Maxwell-Boltzmann theory shows that the important component of stimulation is mechanical rather than fluid pressure effects. Modeling using Biot theory (two phases) shows that the pressure effects diffuse too quickly to be of practical significance. Field data from actual stimulation will be shown to compare to theory.

  6. Nonlinear Seismic Correlation Analysis of the JNES/NUPEC Large-Scale Piping System Tests.

    SciTech Connect (OSTI)

    Nie,J.; DeGrassi, G.; Hofmayer, C.; Ali, S.

    2008-06-01

    The Japan Nuclear Energy Safety Organization/Nuclear Power Engineering Corporation (JNES/NUPEC) large-scale piping test program has provided valuable new test data on high level seismic elasto-plastic behavior and failure modes for typical nuclear power plant piping systems. The component and piping system tests demonstrated the strain ratcheting behavior that is expected to occur when a pressurized pipe is subjected to cyclic seismic loading. Under a collaboration agreement between the US and Japan on seismic issues, the US Nuclear Regulatory Commission (NRC)/Brookhaven National Laboratory (BNL) performed a correlation analysis of the large-scale piping system tests using derailed state-of-the-art nonlinear finite element models. Techniques are introduced to develop material models that can closely match the test data. The shaking table motions are examined. The analytical results are assessed in terms of the overall system responses and the strain ratcheting behavior at an elbow. The paper concludes with the insights about the accuracy of the analytical methods for use in performance assessments of highly nonlinear piping systems under large seismic motions.

  7. Induced seismicity associated with enhanced geothermal system

    SciTech Connect (OSTI)

    Majer, Ernest; Majer, Ernest L.; Baria, Roy; Stark, Mitch; Oates, Stephen; Bommer, Julian; Smith, Bill; Asanuma, Hiroshi

    2006-09-26

    Enhanced Geothermal Systems (EGS) offer the potential to significantly add to the world energy inventory. As with any development of new technology, some aspects of the technology has been accepted by the general public, but some have not yet been accepted and await further clarification before such acceptance is possible. One of the issues associated with EGS is the role of microseismicity during the creation of the underground reservoir and the subsequent extraction of the energy. The primary objectives of this white paper are to present an up-to-date review of the state of knowledge about induced seismicity during the creation and operation of enhanced geothermal systems, and to point out the gaps in knowledge that if addressed will allow an improved understanding of the mechanisms generating the events as well as serve as a basis to develop successful protocols for monitoring and addressing community issues associated with such induced seismicity. The information was collected though literature searches as well as convening three workshops to gather information from a wide audience. Although microseismicity has been associated with the development of production and injection operations in a variety of geothermal regions, there have been no or few adverse physical effects on the operations or on surrounding communities. Still, there is public concern over the possible amount and magnitude of the seismicity associated with current and future EGS operations. It is pointed out that microseismicity has been successfully dealt with in a variety of non-geothermal as well as geothermal environments. Several case histories are also presented to illustrate a variety of technical and public acceptance issues. It is concluded that EGS Induced seismicity need not pose any threat to the development of geothermal resources if community issues are properly handled. In fact, induced seismicity provides benefits because it can be used as a monitoring tool to understand the effectiveness of the EGS operations and shed light on the mechanics of the reservoir.

  8. Manipulative Virtual Tools for Tool Mark Characterization | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Manipulative Virtual Tools for Tool Mark Characterization FWP/Project Description: The goal of this project is to develop a methodology whereby a three-dimensional (3-D) computer simulation of a tool tip is generated. Quantitative 3-D data from the suspected tool and evidence toolmark will be acquired and a virtual reality program developed that takes this data and reconstructs a "virtual tool" for computer manipulation to create "virtual tool marks." Duplicate

  9. Diesel prices dip below the 4 dollar mark

    Gasoline and Diesel Fuel Update (EIA)

    Diesel prices dip below the 4 dollar mark The U.S. average retail price for on-highway diesel fuel dipped below the 4-dollar mark for the first time since late January to $3.99 a gallon on Monday. That's down 1.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.15 a gallon, down 2.3 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.92 a gallon, down 2 cents. This

  10. SRS Marks Successful Operational Startup of New Biomass Cogeneration

    Energy Savers [EERE]

    Facility | Department of Energy Marks Successful Operational Startup of New Biomass Cogeneration Facility SRS Marks Successful Operational Startup of New Biomass Cogeneration Facility March 12, 2012 - 12:00pm Addthis Media Contacts Amy Caver (803) 952-7213 March 12, 2012 amy.caver@srs.gov CarolAnn Hibbard, (508) 661-2264 news@ameresco.com AIKEN, S.C. - Today, Under Secretary of Energy Thomas D'Agostino joined U.S. Representative Joe Wilson (R-SC) and other senior officials from the

  11. SRS Recovery Act Program Reaches $1 Billion Mark: Investments Accelerate

    Energy Savers [EERE]

    Cleanup; Support Jobs, Training and Local Economy | Department of Energy Recovery Act Program Reaches $1 Billion Mark: Investments Accelerate Cleanup; Support Jobs, Training and Local Economy SRS Recovery Act Program Reaches $1 Billion Mark: Investments Accelerate Cleanup; Support Jobs, Training and Local Economy March 2, 2011 - 12:00pm Addthis Media Contacts Jim Giusti, DOE (803) 952-7697 james-r.giusti@srs.gov Paivi Nettamo, SRNS (803) 292-2484 paivi.nettamo@srs.gov John Lindsay, SRR (803)

  12. Develpment of a low Cost Method to Estimate the Seismic Signiture of a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothemal Field from Ambient Seismic Noise Analysis | Department of Energy Develpment of a low Cost Method to Estimate the Seismic Signiture of a Geothemal Field from Ambient Seismic Noise Analysis Develpment of a low Cost Method to Estimate the Seismic Signiture of a Geothemal Field from Ambient Seismic Noise Analysis Develpment of a low Cost Method to Estimate the Seismic Signiture of a Geothemal Field from Ambient Seismic Noise Analysis presentation at the April 2013 peer review meeting

  13. May 2015 Seismic Lessons-Learned Panel Meeting Agenda | Department of

    Office of Environmental Management (EM)

    Energy May 2015 Seismic Lessons-Learned Panel Meeting Agenda May 2015 Seismic Lessons-Learned Panel Meeting Agenda Agenda for the May 2015 Seismic Lessons-Learned Panel Meeting held at the Idaho National Laboratory on May 27, 2015. PDF icon Agenda More Documents & Publications The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 Seismic Hazard Analysis November 2012 Seismic Lessons-Learned panel Meeting Risk-Informed Design of Seismic Isolation

  14. Breakthroughs in Seismic and Borehole Characterization of Basalt Sequestration Targets

    SciTech Connect (OSTI)

    Sullivan, E. C.; Hardage, Bob A.; McGrail, B. Peter; Davis, Klarissa N.

    2011-04-01

    Mafic continental flood basalts form a globally important, but under-characterized CO2 sequestration target. The Columbia River Basalt Group (CRBG) in the northwestern U.S. is up to 5 km thick and covers over 168,000 km2. In India, flood basalts are 3 km thick and cover greater than 500,000 km2. Laboratory experiments demonstrate that the CRBG and other basalts react with formation water and super critical (sc) CO2 to precipitate carbonates, thus adding a potential mineral trapping mechanism to the standard trapping mechanisms of most other types of CO2 sequestration reservoirs. Brecciated tops of individual basalt flows in the CRBG form regional aquifers that locally have greater than 30% porosity and three Darcies of permeability. Porous flow tops are potential sites for sequestration of gigatons of scCO2 in areas where the basalts contain unpotable water and are at depths greater than 800 m. In this paper we report on the U.S. DOE Big Sky Regional Carbon Sequestration Partnership surface seismic and borehole geophysical characterization that supports a field test of capacity, integrity, and geochemical reactivity of CRBG reservoirs in eastern Washington, U.S.A. Traditional surface seismic methods have had little success in imaging basalt features in on-shore areas where the basalt is thinly covered by sediment. Processing of the experimental 6.5 km, 5 line 3C seismic swath included constructing an elastic wavefield model, identifying and separating seismic wave modes, and processing the swath as a single 2D line. Important findings include: (1) a wide variety of shear wave energy modes swamp the P-wave seismic records; (2) except at very short geophone offsets, ground roll overprints P-wave signal; and (3) because of extreme velocity contrasts, P-wave events are refracted at incidence angles greater than 7-15 degrees. Subsequent removal of S-wave and other noise during processing resulted in tremendous improvement in image quality. The application of wireline logging to onshore basalts is underexploited. Full waveform sonic logs and resistivity-based image logs acquired in the 1250 m basalt pilot borehole provide powerful tools for evaluating geomechanics and lithofacies. The azimuth of the fast shear wave is parallel to SH and records the changes through time in basalt flow and tectonic stress tensors. Combined with image log data, azimuthal S-wave data provide a borehole technique for assessing basalt emplacement and cooling history that is related to the development of reservoirs and seals, as well as the orientation of tectonic stresses and fracture systems that could affect CO2 transport or containment. Reservoir and seal properties are controlled by basalt lithofacies, and rescaled P- and S- wave slowness curves, integrated with image logs, provide a tool for improved recognition of subsurface lithofacies.

  15. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect (OSTI)

    Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

    2007-05-11

    In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 ft of repeated section. Most of the movement on the fault appears to have occurred before the youngest lava flow, the 10.5-million-year-old Elephant Mountain Member, was emplaced above the Pomona Member.

  16. Seismic Waves, 4th order accurate

    Energy Science and Technology Software Center (OSTI)

    2013-08-16

    SW4 is a program for simulating seismic wave propagation on parallel computers. SW4 colves the seismic wave equations in Cartesian corrdinates. It is therefore appropriate for regional simulations, where the curvature of the earth can be neglected. SW4 implements a free surface boundary condition on a realistic topography, absorbing super-grid conditions on the far-field boundaries, and a kinematic source model consisting of point force and/or point moment tensor source terms. SW4 supports a fully 3-Dmore » heterogeneous material model that can be specified in several formats. SW4 can output synthetic seismograms in an ASCII test format, or in the SAC finary format. It can also present simulation information as GMT scripts, whixh can be used to create annotated maps. Furthermore, SW4 can output the solution as well as the material model along 2-D grid planes.« less

  17. Seismic switch for strong motion measurement

    DOE Patents [OSTI]

    Harben, P.E.; Rodgers, P.W.; Ewert, D.W.

    1995-05-30

    A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

  18. Seismic switch for strong motion measurement

    DOE Patents [OSTI]

    Harben, Philip E. (Oakley, CA); Rodgers, Peter W. (Santa Barbara, CA); Ewert, Daniel W. (Patterson, CA)

    1995-01-01

    A seismic switching device that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period.

  19. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    SciTech Connect (OSTI)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2007-06-30

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.

  20. Development of a hydraulic borehole seismic source

    SciTech Connect (OSTI)

    Cutler, R.P.

    1998-04-01

    This report describes a 5 year, $10 million Sandia/Industry project to develop an advanced borehole seismic source for use in oil and gas exploration and production. The development Team included Sandia, Chevron, Amoco, Conoco, Exxon, Raytheon, Pelton, and GRI. The seismic source that was developed is a vertically oriented, axial point force, swept frequency, clamped, reaction-mass vibrator design. It was based on an early Chevron prototype, but the new tool incorporates a number of improvements which make it far superior to the original prototype. The system consists of surface control electronics, a special heavy duty fiber optic wireline and draw works, a cablehead, hydraulic motor/pump module, electronics module, clamp, and axial vibrator module. The tool has a peak output of 7,000 lbs force and a useful frequency range of 5 to 800 Hz. It can operate in fluid filled wells with 5.5-inch or larger casing to depths of 20,000 ft and operating temperatures of 170 C. The tool includes fiber optic telemetry, force and phase control, provisions to add seismic receiver arrays below the source for single well imaging, and provisions for adding other vibrator modules to the tool in the future. The project yielded four important deliverables: a complete advanced borehole seismic source system with all associated field equipment; field demonstration surveys funded by industry showing the utility of the system; industrial sources for all of the hardware; and a new service company set up by their industrial partner to provide commercial surveys.

  1. LLNL-TR-400563 Seismic Data

    National Nuclear Security Administration (NNSA)

    TR-400563 Seismic Data for Evaluation of Ground Motion Hazards in Las Vegas in Support of Test Site Readiness Ground Motion A. Rodgers January 18, 2008 Disclaimer This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy,

  2. Seismic response of offshore guyed towers

    SciTech Connect (OSTI)

    Jain, A.K.; Bisht, R.S.

    1993-12-31

    Seismic stresses in the offshore Guyed Tower assumes importance because of its flexural modes having smaller periods (in the range of 1 to 3 sec), which may attract considerable seismic forces. Since the displacement of the offshore Guyed Tower is generally guided by the rigid body mode corresponding to the fundamental period which lies between 20 to 40 sec., seismic excitation is relatively unimportant in relation to the towers` overall displacement behavior. The response of offshore Guyed Tower to ransom ground motion (E1 Centro earthquake, 1940) is investigated. The guyed tower is modeled as a uniform shear beam with a rotational spring at the base of the tower. The guylines are represented by a linearized spring whose force-excursion relationship is derived from a separate static analysis of the guylines. The dynamic equation of motion duly takes into account the pressure-drag effect produced due to fluid-structure interaction. The response is obtained in tim- domain using Newmark`s {beta} Time Integration Scheme.

  3. Short-Period Seismic Noise in Vorkuta (Russia)

    SciTech Connect (OSTI)

    Kishkina, S B; Spivak, A A; Sweeney, J J

    2008-05-15

    Cultural development of new subpolar areas of Russia is associated with a need for detailed seismic research, including both mapping of regional seismicity and seismic monitoring of specific mining enterprises. Of special interest are the northern territories of European Russia, including shelves of the Kara and Barents Seas, Yamal Peninsula, and the Timan-Pechora region. Continuous seismic studies of these territories are important now because there is insufficient seismological knowledge of the area and an absence of systematic data on the seismicity of the region. Another task of current interest is the necessity to consider the seismic environment in the design, construction, and operation of natural gas extracting enterprises such as the construction of the North European Gas Pipeline. Issues of scientific importance for seismic studies in the region are the complex geodynamical setting, the presence of permafrost, and the complex tectonic structure. In particular, the Uralian Orogene (Fig. 1) strongly affects the propagation of seismic waves. The existing subpolar seismic stations [APA (67,57{sup o}N; 33,40{sup o}E), LVZ (67,90{sup o}N; 34,65{sup o}E), and NRIL (69,50{sup o}N; 88,40{sup o}E)] do not cover the extensive area between the Pechora and Ob Rivers (Fig. 1). Thus seismic observations in the Vorkuta area, which lies within the area of concern, represent a special interest. Continuous recording at a seismic station near the city of Vorkuta (67,50{sup o}N; 64,11{sup o}E) [1] has been conducted since 2005 for the purpose of regional seismic monitoring and, more specifically, detection of seismic signals caused by local mining enterprises. Current surveys of local seismic noise [7,8,9,11], are particularly aimed at a technical survey for the suitability of the site for installation of a small-aperture seismic array, which would include 10-12 recording instruments, with the Vorkuta seismic station as the central element. When constructed, this seismic array will considerably improve the recording capacity of regional and local seismic events. It will allow detection of signatures of seismic waves propagating in submeridional and sublatitudinal directions. The latter is of special interest not only to access the influence of the Urals on propagation patterns of seismic waves, but also to address other questions, such as the structure and dynamic characteristics of the internal dynamo of the Earth [9,13]. Recording seismic waves at low angular distances from seismically active subpolar zones will allow us to collect data on vortical and convective movements in subpolar lithosphere blocks and at the boundary of the inner core of the Earth, possibly giving essential clues to the modeling of the Earth's electromagnetic field [3,13]. The present study considers basic features of seismic noise at the Vorkuta station obtained through the analysis of seismic records from March, 2006 till December, 2007.

  4. Filtering with Marked Point Process Observations via Poisson Chaos Expansion

    SciTech Connect (OSTI)

    Sun Wei; Zeng Yong; Zhang Shu

    2013-06-15

    We study a general filtering problem with marked point process observations. The motivation comes from modeling financial ultra-high frequency data. First, we rigorously derive the unnormalized filtering equation with marked point process observations under mild assumptions, especially relaxing the bounded condition of stochastic intensity. Then, we derive the Poisson chaos expansion for the unnormalized filter. Based on the chaos expansion, we establish the uniqueness of solutions of the unnormalized filtering equation. Moreover, we derive the Poisson chaos expansion for the unnormalized filter density under additional conditions. To explore the computational advantage, we further construct a new consistent recursive numerical scheme based on the truncation of the chaos density expansion for a simple case. The new algorithm divides the computations into those containing solely system coefficients and those including the observations, and assign the former off-line.

  5. Congressional Final House Final Senate Current Request Mark

    Office of Environmental Management (EM)

    FY 2010 FY 2010 FY 2010 ($ in thousands) Congressional Final House Final Senate Current Request Mark Mark Appropriation FOSSIL ENERGY R&D Coal 368,865 394,315 428,200 393,485 Natural Gas Technologies 25,000 25,000 25,000 17,364 Unconventional Fossil Energy Technologies 0 0 25,000 19,474 Program Direction 158,000 158,000 158,000 158,000 Plant & Capital Equipment 20,000 20,000 20,000 20,000 Environmental Restoration 10,000 10,000 10,000 10,000 Cooperative Res. & Development 0 0 5,000

  6. Probabilistic seismic risk of the territory of Bishkek city, Kyrgyzstan

    SciTech Connect (OSTI)

    Kamchybekov, Murataly Pakirovich

    2008-07-08

    For seismic risk analysis were gathered information about district's seismicity, tectonics, topography, and engineering--geotechnical conditions, which present in apartments, infrastructures and demographies. All of these informations are joined within the limits of GIS for father probabilistic evaluations from different losses levels from earthquake, and also definitions of effective arrangements by reaction. There were given analysis of obtained results with the purpose to take into the consideration and falling of seismic risk's levels.

  7. Protocol for Addressing Induced Seismicity Associated with Enhanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Systems (EGS) | Department of Energy Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems (EGS) Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems (EGS) This document is intended to assist industry and regulators identify important issues and parameters that may be necessary for the evaluation and mitigation of adverse effects of induced seismicity. PDF icon egs-is-protocol-final-draft-20110531.pdf More

  8. Hanford Site-Wide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J Digital Seismic Hazard Products J.1 Appendix J Digital Seismic Hazard Products This appendix contains the digital data associated with the seismic hazard results presented in Chapter 10 for use in subsequent development of soil hazard curves for various facilities. These results include mean and fractile baserock hazard curves, mean and fractile baserock uniform hazard response spectra (UHRS), magnitude and distance deaggregation of the mean rock hazard, and deaggregation earthquake (DE)

  9. Proceedings of the 21st Seismic Research Symposium: Technologies for

    Office of Scientific and Technical Information (OSTI)

    Monitoring The Comprehensive Nuclear Test-Ban Treaty (Conference) | SciTech Connect 1st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear Test-Ban Treaty Citation Details In-Document Search Title: Proceedings of the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear Test-Ban Treaty These proceedings contain papers prepared for the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear-Test-Ban

  10. Proceedings of the 24th Seismic Research Review: Nuclear Explosion

    Office of Scientific and Technical Information (OSTI)

    Monitoring: Innovation and Integration (Conference) | SciTech Connect 4th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration Citation Details In-Document Search Title: Proceedings of the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration These proceedings contain papers prepared for the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration, held 17-19 September, 2002 in Ponte Vedra Beach,

  11. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion

    Office of Scientific and Technical Information (OSTI)

    Monitoring: Building the Knowledge Base (Conference) | SciTech Connect 5th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base Citation Details In-Document Search Title: Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson,

  12. March 2009 Seismic Lessons-Learned panel Meeting

    Broader source: Energy.gov [DOE]

    Enclosed is a summary of discussions at the fourth seismic lessons-learned workshop held in Washington, DC in the last week of March 2009. These workshops, held semiannually, provide an opportunity for experts involved with seismic hazard assessments and design efforts across the DOE complex to share their knowledge and experience. The goal is to improve the Department's performance in assessing seismic hazards and designing faciities to mitigate them.

  13. State of Seismic Methods For Geothermal Reservoir Exploration and Assessment

    Office of Scientific and Technical Information (OSTI)

    -D Seismic Methods For Geothermal Reservoir Exploration and Assessment - Summary E.L Majer Lawrence Berkeley National Laboratory Introduction A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for

  14. Design of the IPIRG-2 simulated seismic forcing function

    SciTech Connect (OSTI)

    Olson, R.; Scott, P.; Wilkowski, G.

    1996-02-01

    A series of pipe system experiments was conducted in IPIRG-2 that used a realistic seismic forcing function. Because the seismic forcing function was more complex than the single-frequency increasing-amplitude sinusoidal forcing function used in the IPIRG-1 pipe system experiments, considerable effort went into designing the function. This report documents the design process for the seismic forcing function used in the IPIRG-2 pipe system experiments.

  15. UNDERSTANDING SEISMIC DESIGN CRITERIA FOR JAPANESE NUCLEAR POWER PLANTS

    Office of Scientific and Technical Information (OSTI)

    UNDERSTANDING SEISMIC DESIGN CRITERIA FOR JAPANESE NUCLEAR POWER PLANTS Y.J. Park and C.H. Hofmayer Brookhaven National Laboratory Upton, Long Island, New York 11973 J.F. Costello U.S. Nuclear Regulatory Commission Washington, D.C. 20555 ABSTRACT This paper summarizes the results of recent survey studies on the seismic design practice for nuclear power plants in Japan. The seismic design codes and standards for both nuclear as well as non- nuclear structures have been reviewed and summarized.

  16. Opportunities for improving regulations governing the seismic safety of

    Office of Environmental Management (EM)

    large nuclear installations | Department of Energy Opportunities for improving regulations governing the seismic safety of large nuclear installations Opportunities for improving regulations governing the seismic safety of large nuclear installations Opportunities for Improving Regulations Governing the Seismic Safety of Large Nuclear Installations Robert J. Budnitz, Ph.D. LBNL University of California, Berkeley, CA 94720 Andrew S. Whittaker, Ph.D., S.E. MCEER University at Buffalo, Buffalo,

  17. Seismic Fracture Characterization Methods for Enhanced Geothermal Systems;

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 Geothermal Technology Program Peer Review Report | Department of Energy Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review PDF icon seismic_022_queen.pdf More Documents & Publications Microearthquake Technology for EGS Fracture

  18. DOE Releases Updated Induced Seismicity Protocol | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Releases Updated Induced Seismicity Protocol DOE Releases Updated Induced Seismicity Protocol January 30, 2012 - 3:45pm Addthis At the 37th Stanford Geothermal Workshop in Stanford, California, the Geothermal Technologies Program at the U.S. Department of Energy (DOE) released an updated Induced Seismicity Protocol. This document supplements the existing International Energy Agency (IEA) protocol of 2009, and is intended to be a living document kept up-to-date with state-of-the-art knowledge and

  19. Seismic hazard methodology for the central and Eastern United States:

    Office of Scientific and Technical Information (OSTI)

    Volume 1, Part 1: Theory: Final report (Technical Report) | SciTech Connect central and Eastern United States: Volume 1, Part 1: Theory: Final report Citation Details In-Document Search Title: Seismic hazard methodology for the central and Eastern United States: Volume 1, Part 1: Theory: Final report The NRC staff concludes that SOG/EPRI Seismic Hazard Methodology, as documented in the topical report and associated submittals, is an acceptable methodology for use in calculating seismic

  20. Protocol for Addressing Induced Seismicity Associated with Enhanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Systems | Department of Energy Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems This Protocol is a living guidance document for geothermal developers, public officials, regulators and the general public that provides a set of general guidelines detailing useful steps to evaluate and manage the effects of induced seismicity related to EGS projects. PDF icon

  1. Idaho National Laboratory (INL) Seismic Risk Assessment Project:

    Office of Environmental Management (EM)

    Implementation of Proposed Methodology at INL and Associated Risk Studies | Department of Energy Risk Assessment Project: Implementation of Proposed Methodology at INL and Associated Risk Studies Idaho National Laboratory (INL) Seismic Risk Assessment Project: Implementation of Proposed Methodology at INL and Associated Risk Studies Presentation from the May 2015 Seismic Lessons-Learned Panel Meeting. PDF icon INL Seismic Risk Assessment Project: Implementation of Proposed Methodology at INL

  2. Sandia's Distributed Energy Lab Marks FY15 Accomplishments, Adds New

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Distributed Energy Lab Marks FY15 Accomplishments, Adds New Capabilities - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery

  3. EM Risk and Cleanup Decision Making Presentation by Mark Gilbertson

    Office of Environmental Management (EM)

    RISK AND CLEANUP DECISION MAKING www.em.doe.gov 1 Mark Gilbertson Deputy Assistant Secretary for Site Restoration Office of Environmental Management May 31, 2012 Presented to Environmental Management Advisory Board Topics * How we got to where we are * Existing environment and health risk www.em.doe.gov 2 * Existing environment and health risk analysis to support decision-making * Considerations going forward The Past Five Years * FY2008 budget assumed ~$6 billion escalated for inflation over

  4. Written Statement of Mark Whitney Acting Assistant Secretary for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Management United States Department of Energy Before the Subcommittee on Strategic Forces Committee on Armed Services United States House of Representatives (March 24, 2015) | Department of Energy Strategic Forces Committee on Armed Services United States House of Representatives (March 24, 2015) Written Statement of Mark Whitney Acting Assistant Secretary for Environmental Management United States Department of Energy Before the Subcommittee on Strategic Forces Committee on

  5. Grad Assistants Make Their Mark | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grad Assistants Make Their ... Grad Assistants Make Their Mark Posted: July 22, 2013 - 3:16pm | Y-12 Report | Volume 10, Issue 1 | 2013 Grad students at Y-12 are a dynamic driving force that directly affects Y-12's mission success. Professionally, it's the ultimate test drive. Thirty University of Tennessee graduate students, in engineering, law, communications, science and business, have each taken a driver's seat at Y-12 and are making notable contributions to core missions. "The grad

  6. The University of Durham Mark 6 VHE gamma ray telescope

    SciTech Connect (OSTI)

    Chadwick, P. M.; Dickinson, M. R.; Dipper, N. A.; Holder, J.; Kendall, T. R.; McComb, T. J. L.; Orford, K. J.; Rayner, S. M.; Roberts, I. D.; Shaw, S. E.; Turver, K. E.

    1997-05-10

    The operation of the University of Durham Mark 6 atmospheric Cerenkov telescope is discussed. The telescope has been used to detect gamma rays at energies {>=}150 GeV and to achieve good discrimination between gamma ray and hadron initiated showers, using both conventional imaging and novel fluctuation measures. The telescope was commissioned in 1995 and a description of its operation is presented. Verification of the performance during observations of PSR B1706-44 is described.

  7. Post Critical Decision-4 Mark Arenaz, Federal Project Director

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    31, 2011 Lessons Learned from the In-Situ Grouting in the Subsurface Disposal Area Post Critical Decision-4 Mark Arenaz, Federal Project Director Summary Protection of the Snake River Plain Aquifer is a major driver for environmental remediation at the Department of Energy's (DOE) Idaho Site. In 2010, the Idaho Cleanup Project (ICP) used in-situ grouting to stabilize buried waste and reduce the migration of specific radioactive contaminates to the aquifer. The action was accomplished using

  8. Microsoft Word - WIPP Marks A Decade of Safe Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marks a Decade of Safe Disposal CARLSBAD, N.M., March 25, 2009 - The nation's first and only deep geologic repository for the disposal of defense-related transuranic (TRU) radioactive waste has safely operated for more than 10 years. The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) began disposal operations March 26, 1999 and today serves as an international model for radioactive waste management. "What this project has accomplished is remarkable," said DOE

  9. MEMORANDUM FOR NEPA FILE FROM: MARK LUSK NEPA DOCUMENT MANAGER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 11, 2011 MEMORANDUM FOR NEPA FILE FROM: MARK LUSK NEPA DOCUMENT MANAGER SUBJECT: Supplement Analysis for the Saft America, Inc. Electric Drive Vehicle Battery and Component Manufacturing Initiative Application, Jacksonville, Florida (DOE/EA-1711) UNew InformationU : Proposed Minor Change to Saft America, Inc. Proposed Project U LocationU : Saft America, Inc. Plant at the Cecil Commerce Center, near Jacksonville, Florida, in Duval County UProposed ByU : Saft America, Inc. 1. U

  10. Kansas City Field Office Mark Holecek Assoc. Admin. & Dep.

    National Nuclear Security Administration (NNSA)

    Kansas City Field Office Mark Holecek Assoc. Admin. & Dep. Under Sec. for Counterterrorism & Counterproliferation (Acting) Jay Tilden NA-80 February 2016 Under Secretary for Nuclear Security & Administrator, NNSA Lt. Gen. Frank G. Klotz, USAF (Ret) Principal Deputy Administrator: Madelyn R. Creedon Deputy Admin. for Defense Programs Brig. Gen. Stephen L. Davis (Acting) NA-10 Deputy Admin. for Defense Nuclear Nonproliferation Anne M. Harrington NA-20 Deputy Admin. for Naval Reactors

  11. Ex Parte Communications with Mark Medenwaldt.pdf

    Office of Environmental Management (EM)

    11, 2012 Ex Parte Communications with Mark Medenwaldt, Caterpillar Global Mining LLC Mr. Medenwaldt inquired, by emails on August 7 and 8, 2012, whether the proposed energy conservation standards rulemaking would affect above ground mobile mining equipment that would have distribution transformers onboard. In response, I sent to him, on August 9 and 14, 2012, the web links to the DOE web page for distribution transformers and referred him to regulations.gov for other comments thus far received

  12. WIPP Marks 12 Years of Operations | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    U.S. DOE Carlsbad Field Office (575) 234-7270 CARLSBAD, N.M - On Saturday, March 26, 2011, the Department of Energy's Waste Isolation Pilot Plant marked another anniversary. It has now been 12 years since WIPP received its first shipment of transuranic (TRU) waste. TRU waste consists of clothing, tools, rags, debris, residues and other disposal items contaminated with radioactive elements - mostly plutonium. "WIPP employees and members of the community cheered when the first shipment of TRU

  13. Mr. Mark Finkelstein State Street,Associates'L..P. II

    Office of Legacy Management (LM)

    Mr. Mark Finkelstein State Street,Associates'L..P. II 210 Lake Street Ithaca, New York I4856 Dear Mr. Finkelstein: ', 'The Oak Ridge Institute forScience',and Education (ORISEj,has recently sent me the enclosed'radiological survey,conducted at the former Ithaca Gun Company forging building. : The radiationilevels measured during, the'survey were similar to the background'levels in the Ithaca 'area. A number of samples were taken for analysis, and all exhibited background ,concentrations of

  14. Microsoft PowerPoint - 4B Mark Phifer

    Office of Environmental Management (EM)

    Performance of Covers and Liners In Performance Assessments Mark Phifer and Roger Seitz (SRNL) and Linda Suttora (DOE-EM) Performance and Risk Assessment Community of Practice Annual Technical Exchange Meeting December 11 and 12, 2014 DOE CERCLA On-Site Disposal Cells (OSDC) * DOE CERCLA OSDCs: - Closed: Weldon Spring, Fernald, and Monticello - Active: Oak Ridge, Hanford, and Idaho National Laboratory (INL) - Proposed: Portsmouth, Paducah, and Oak Ridge * Final Disposition of Large Waste

  15. Assessing Beyond Design Basis Seismic Events and Implications...

    Office of Environmental Management (EM)

    Defense Nuclear Facilities Safety Board Topics Covered: Department of Energy Approach to Natural Phenomena Hazards Analysis and Design (Seismic) Design Basis and Beyond Design...

  16. Evaluation of the SRS Seismic Hazard Considering the EPRI 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of the SRS Seismic Hazard Considering the EPRI 2013 Ground Motion Model Rucker J. Williams, PE - Geotechnical Engineering Lead Shawn Carey, PhD, PE - Structural ...

  17. SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS | Department

    Office of Environmental Management (EM)

    of Energy SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS Seismic Capacity of Threaded, Brazed and Grooved Pipe Joints Brent Gutierrez, PhD, PE George Antaki, PE, F.ASME DOE NPH Conference October 25-26, 2011 PDF icon Seismic Capacity of Threaded, Brazed and Grooved Pipe Joints More Documents & Publications FY2015 Status Report: CIRFT Testing of High-Burnup Used Nuclear Fuel Rods from Pressurized Water Reactor and

  18. Seismic, shock, and vibration isolation 1995. PVP-Volume 319...

    Office of Scientific and Technical Information (OSTI)

    and the application of isolation for seismic protection of civil structures, industrial facilities, and nuclear power plants. As an indication of the increasing acceptance...

  19. Progress and issues in single well seismic imaging | Open Energy...

    Open Energy Info (EERE)

    Paper: Progress and issues in single well seismic imaging Authors Thomas M. Daley, Ernest L. Majer, Roland Gritto and Jerry M. Harris Conference 70th Annual International Meeting...

  20. Field Mapping At Central Nevada Seismic Zone Region (Blewitt...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Central Nevada Seismic Zone Region (Blewitt Et Al, 2005) Exploration Activity...

  1. Development Of Active Seismic Vector-Wavefield Imaging Technology...

    Open Energy Info (EERE)

    Active Seismic Vector-Wavefield Imaging Technology For Geothermal Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Development Of Active...

  2. Minutes from the Seismic Lessons-Learned Panel Meeting

    Office of Environmental Management (EM)

    ... Beyond-Design-Basis Post-Fukushima Seismic Activities at NRC - George Antaki Mr. Antaki ... holders. The three initiatives are: the Fukushima Near-Term Task Force (NTTF) ...

  3. Time-Dependent Seismic Tomography of the Coso Geothermal Area...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Time-Dependent Seismic Tomography of the Coso Geothermal Area, 1996-2004 Abstract...

  4. Time-dependent seismic tomography of the Coso geothermal area...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Time-dependent seismic tomography of the Coso geothermal area, 1996-2004 Abstract...

  5. Teleseismic-Seismic Monitoring At Coso Geothermal Area (2005...

    Open Energy Info (EERE)

    over a longer period of time Notes The permanent 18-station network of three-component digital seismometers at the seismically active Coso geothermal area, California, provides...

  6. Relations Between Seismicity and Deformation During Unrest in...

    Open Energy Info (EERE)

    Relations Between Seismicity and Deformation During Unrest in Long Valley Caldera, California, from 1995 Through 1999 Jump to: navigation, search OpenEI Reference LibraryAdd to...

  7. Teleseismic-Seismic Monitoring (Foulger, 1982) | Open Energy...

    Open Energy Info (EERE)

    with more improvements DOE-funding Unknown Notes General review of passive seismic methods applied to geothermal exploration. References G. Foulger (1982) Geothermal...

  8. The INL Seismic Risk Assessment Project: Requirements for Addressing DOE

    Office of Environmental Management (EM)

    Order 420.1C & A Proposed Generic Methodology | Department of Energy The INL Seismic Risk Assessment Project: Requirements for Addressing DOE Order 420.1C & A Proposed Generic Methodology The INL Seismic Risk Assessment Project: Requirements for Addressing DOE Order 420.1C & A Proposed Generic Methodology Presentation from the May 2015 Seismic Lessons-Learned Panel Meeting. PDF icon The INL Seismic Risk Assessment Project: Requirements for Addressing DOE Order 420.1C & A

  9. Teleseismic-Seismic Monitoring At Geysers Area (Zucca, Et Al...

    Open Energy Info (EERE)

    Monitoring Activity Date Usefulness useful DOE-funding Unknown References J. J. Zucca, L. J. Hutchings, P. W. Kasameyer (1994) Seismic Velocity And Attenuation...

  10. Water Sampling At Central Nevada Seismic Zone Region (Laney,...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity...

  11. Seismic Methods For Resource Exploration In Enhanced Geothermal...

    Open Energy Info (EERE)

    Methods For Resource Exploration In Enhanced Geothermal Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Book: Seismic Methods For Resource Exploration In...

  12. Summation by Parts Finite Difference Approximations for Seismic...

    Office of Scientific and Technical Information (OSTI)

    Conference: Summation by Parts Finite Difference Approximations for Seismic and Seismo-Acoustic Computations Citation Details In-Document Search Title: Summation by Parts Finite...

  13. Integrated Seismic Studies At The Rye Patch Geothermal Reservoir...

    Open Energy Info (EERE)

    carbonate basement and the overlying sedimentary sequence, striking east-west. The geometry of the structure is corroborated by results from a seismic-reflection survey, and by...

  14. 3-D Seismic Methods For Geothermal Reservoir Exploration And...

    Open Energy Info (EERE)

    of fractures on seismic wave propagation are now being applied to image fractures in gas and oil environments. It now may be appropriate to apply these methods, with...

  15. MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION...

    Open Energy Info (EERE)

    system geometry, fluid conduits and fluid compartmentalization critical to geothermal reservoir management. We analyze 16 years of seismicity to improve hypocentral locations...

  16. Seismic Reflection Data and Conceptual Models for Geothermal...

    Open Energy Info (EERE)

    failure of seismic reflection data to image thesubsurface demonstrates the robust reliability of aconceptual model approach to geothermal exploration thatemphasizes the...

  17. Data Acquisition-Manipulation At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005...

  18. Teleseismic-Seismic Monitoring At Newberry Caldera Area (DOE...

    Open Energy Info (EERE)

    Newberry Caldera Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Newberry Caldera Area (DOE GTP)...

  19. Seismic hazard methodology for the central and Eastern United...

    Office of Scientific and Technical Information (OSTI)

    submittals, is an acceptable methodology for use in calculating seismic hazard ... Resource Type: Technical Report Research Org: Electric Power Research Inst., Palo Alto, CA ...

  20. Seismic hazard methodology for the Central and Eastern United...

    Office of Scientific and Technical Information (OSTI)

    Methodology for the Central and Eastern United States.'' This topical report was submitted jointly by the Seismicity Owners Group (SOG) and the Electric Power Research ...

  1. Advanced Seismic Data Analysis Program- The "Hot Pot" Project

    Broader source: Energy.gov [DOE]

    Advanced Seismic Data Analysis Program- The "Hot Pot" Project presentation at the April 2013 peer review meeting held in Denver, Colorado.

  2. November 2012 Seismic Lessons-Learned panel Meeting

    Broader source: Energy.gov [DOE]

    The Chief of Nuclear Safety (CNS) hosted the seventh meeting of the Seismic Lessons-Learned Panel (SLLP) at the DOE Forrestal Building on November 14, 2012. This panel was commissioned by CNS in August 2007, and it meets as requested by CNS. These meetings are intended for experts involved in seismic hazard assessments and facility seismic design across the DOE complex to share experience from their work. DOE site office staff responsible for seismic and other natural phenomena hazard (NPH) assessments are encouraged to participate.

  3. The INL Seismic Risk Assessment Project: Requirements for Addressing...

    Office of Environmental Management (EM)

    Project: Requirements for Addressing DOE Order 420.1C & A Proposed Generic Methodology The INL Seismic Risk Assessment Project: Requirements for Addressing DOE Order...

  4. Idaho National Laboratory (INL) Seismic Risk Assessment Project...

    Office of Environmental Management (EM)

    Risk Assessment Project: Implementation of Proposed Methodology at INL and Associated Risk Studies Idaho National Laboratory (INL) Seismic Risk Assessment Project: Implementation...

  5. A Probabilistic Seismic Hazard Analysis Update Review for Two...

    Office of Environmental Management (EM)

    Ground-Motion Model AN APPLICATION OF THE SSHAC LEVEL 3 PROCESS TO THE PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR NUCLEAR FACILITIES AT THE HANFORD SITE, EASTERN WASHINGTON, USA...

  6. Modeling-Computer Simulations At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration...

  7. Time-dependent seismic tomography and its application to the...

    Open Energy Info (EERE)

    changes in Earth structure are commonly determined using local earthquake tomography computer programs that invert multiple seismic-wave arrival time data sets separately and...

  8. Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs Geothermal Area (Roberts, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  9. Teleseismic-Seismic Monitoring At Lassen Volcanic National Park...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  10. Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  11. Geodetic Survey At Central Nevada Seismic Zone Region (Blewitt...

    Open Energy Info (EERE)

    Geodetic Survey At Central Nevada Seismic Zone Region (Blewitt Et Al, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At...

  12. Geothermometry At Central Nevada Seismic Zone Region (Shevenell...

    Open Energy Info (EERE)

    Geothermometry At Central Nevada Seismic Zone Region (Shevenell & De Rocher, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry...

  13. Teleseismic-Seismic Monitoring At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Northern Basin & Range Region (Biasi, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  14. Geodetic Survey At Central Nevada Seismic Zone Region (Laney...

    Open Energy Info (EERE)

    Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Central Nevada Seismic Zone Region (Laney, 2005) Exploration...

  15. Seismic Imaging of the Earth's Interior (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Romanowicz, Barbara

    2011-04-28

    Summer Lecture Series 2006: Earth scientist Barbara Romanowicz discusses how she explores the deep structure and dynamics of the Earth using seismic tomography.

  16. Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado

  17. NUCLEAR REACTORS; PIPES; SEISMIC EFFECTS; SUPPORTS; DYNAMIC LOADS...

    Office of Scientific and Technical Information (OSTI)

    Limit analysis of pipe clamps Flanders, H.E. Jr. 22 GENERAL STUDIES OF NUCLEAR REACTORS; PIPES; SEISMIC EFFECTS; SUPPORTS; DYNAMIC LOADS; HEAT TRANSFER; HYDRAULICS; REACTOR SAFETY;...

  18. IEEE aims to improve seismic design of power substations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engineer to defined needs and conditions. And there's a huge benefit to the public. "The seismic qualification process is far more efficient and costs are distributed...

  19. DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report

    Office of Environmental Management (EM)

    DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report August 25, 2010 I In nt tr ro od du uc ct ti io on n The DOE New Madrid Seismic Zone Electric Utilities Workshop, held in Memphis, TN for the electric utilities in the seismic zone was a chance to bring together a diverse set of industry partners to discuss the potential effects of an earthquake in the New Madrid and Wabash Valley seismic zones. The electric sector was well represented by Independent Transmission System

  20. Develpment of a low Cost Method to Estimate the Seismic Signiture...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Method to Estimate the Seismic Signiture of a Geothemal Field from Ambient Seismic Noise Analysis Develpment of a low Cost Method to Estimate the Seismic Signiture of a...

  1. Fielding of HT-seismic Tools and Evaluation of HT-FPGA Module...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fielding of HT-seismic Tools and Evaluation of HT-FPGA Module - Development of a HT-seismic Tool; 2010 Geothermal Technology Program Peer Review Report Fielding of HT-seismic Tools...

  2. Electrochemical Techniques

    SciTech Connect (OSTI)

    Chen, Gang; Lin, Yuehe

    2008-07-20

    Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.

  3. Tomographic imaging of rock conditions ahead of mining using the shearer as a seismic source - A feasibility study

    SciTech Connect (OSTI)

    Luo, X.; King, A.; Van de Werken, M.

    2009-11-15

    Roof falls due to poor rock conditions in a coal longwall panel may threaten miner's life and cause significant interruption to mine production. There has been a requirement for technologies that are capable of imaging the rock conditions in longwall coal mining, ahead of the working face and without any interruption to production. A feasibility study was carried out to investigate the characteristics of seismic signals generated by the continuous coal cutter (shearer) and recorded by geophone arrays deployed ahead of the working face, for the purpose of seismic tomographic imaging of roof strata condition before mining. Two experiments were conducted at a coal mine using two arrays of geophones. The experiments have demonstrated that the longwall shearer generates strong and low-frequency (similar to 40 Hz) seismic energy that can be adequately detected by geophones deployed in shallow boreholes along the roadways as far as 300 m from the face. Using noise filtering and signal cross correlation techniques, the seismic arrival times associated with the shearer cutting can be reliably determined. It has proved the concept that velocity variations ahead of the face can be mapped out using tomographic techniques while mining is in progress.

  4. Structure of Precambrian crust in the U. S. from COCORP deep seismic profiling

    SciTech Connect (OSTI)

    Brown, L.D. (Cornell Univ., Ithaca, NY (United States))

    1992-01-01

    COCORP and industry seismic reflection profiles probing beneath the thin veneer of Paleozoic sedimentary rocks of the US mid-continent are mapping a complex, largely unknown three dimensional mosaic of major fault zones and sutures, a highly variable Moho, and extensive sequences of unexplored volcanic and/or sedimentary strata. Key features of the Precambrian suggested by COCORP and other deep profiling include: Pervasive, distributed reflectivity, often diffractive, dominating the middle and lower crust. Moho that is rarely reflective, usually evident as a downward transition of distributed crustal reflectivity into mantle transparency. Volcano-clastic filled graben of the late Proterozoic Keweenawan rift buried beneath Paleozoic strata in Kansas and Michigan. Extensive, subhorizontal Precambrian stratification in the upper crust beneath the east- central US and the Texas-Oklahoma border region, argued to be either an extensive volcano-clastic basin, a voluminous felsic volcanic outpouring or a major intrusive sill complex. Crustal penetrating, dipping reflection zones that mark known (Grenville front) or inferred (Cashocton zone, Trans-Hudson orogen) shear zones. Non-reflective ( ) basement beneath the Appalachian foreland suggesting transparent massifs'' that serve as collisional buttresses during terrane accretion. Deep structure is sometimes at odds with simple extrapolations of surface geology. Clearly deep seismic profiling has only begun to reveal the buried craton in the US. It is time for an integrated program for the systematic exploration of this special scientific frontier.

  5. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    SciTech Connect (OSTI)

    MACKEY TC; RINKER MW; CARPENTER BG; HENDRIX C; ABATT FG

    2009-01-15

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses. The original scope of the project was to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Although Milestone M-48-14 has been met, Revision I is being issued to address external review comments with emphasis on changes in the modeling of anchor bolts connecting the concrete dome and the steel primary tank. The work statement provided to M&D (PNNL 2003) required that a nonlinear soil structure interaction (SSI) analysis be performed on the DSTs. The analysis is required to include the effects of sliding interfaces and fluid sloshing (fluid-structure interaction). SSI analysis has traditionally been treated by frequency domain computer codes such as SHAKE (Schnabel, et al. 1972) and SASSI (Lysmer et al. 1999a). Such frequency domain programs are limited to the analysis of linear systems. Because of the contact surfaces, the response of the DSTs to a seismic event is inherently nonlinear and consequently outside the range of applicability of the linear frequency domain programs. That is, the nonlinear response of the DSTs to seismic excitation requires the use of a time domain code. The capabilities and limitations of the commercial time domain codes ANSYS{reg_sign} and MSC Dytran{reg_sign} for performing seismic SSI analysis of the DSTs and the methodology required to perform the detailed seismic analysis of the DSTs has been addressed in Rinker et al (2006a). On the basis of the results reported in Rinker et al. (2006a), it is concluded that time-domain SSI analysis using ANSYS{reg_sign} is justified for predicting the global response of the DSTs. The most significant difference between the current revision (Revision 1) of this report and the original issue (Revision 0) is the treatment of the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome.

  6. Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau...

    Open Energy Info (EERE)

    Seismic At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Seismic...

  7. Richland Operations Office FY 14/15 Funding Marks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office FY 14/15 Funding Marks PBS PBS Title FY 2014 Omnibus (Enacted) FY 2015 President's Budget FY 2015 Omnibus Allocation RL-0011 NM Stabilization and Disposition - PFP 142,670 168,228 137,130 RL-0012 SNF Stabilization and Disposition 98,369 76,777 67,746 RL-0012 15-D-401 Containerized Sludge Line Item 26,290 46,055 RL-0013 Solid Waste Stabilization and Disposition - 200 Area 130,126 112,371 107,651 RL-0030 Soil and Water Remediation - Groundwater/Vadose Zone 141,500 116,916 184,929 Subtotal

  8. Microsoft Word - MARK YOUR CALENDARS_REV3.doc

    Office of Environmental Management (EM)

    MARK YOUR CALENDARS! The U.S. Department of Energy's (DOE) Transportation External Coordination Working Group (TEC) Meeting will be held September 20-22, 2004 The registration table will open at Noon on September 20 and remain open through September 22. Participation in Topic Group Sessions for topic group members only. Monday, September 20 - The Tribal Topic Group session will meet from 2:00 - 5:00 p.m. Tuesday, September 21 - Topic Groups sessions will be held as follows: - 8:00 a.m. - 12:00

  9. Self-Assembling Sup-porosity: The Effect On Fluid Flow And Seismic Wave Propagation

    SciTech Connect (OSTI)

    Pyrak-Nolte, Laura J.

    2013-04-27

    Fractures and joints in the field often contain debris within the void spaces. Debris originates from many different mechanisms: organic and/or inorganic chemical reactions/mineralization, sediment transport, formation of a fracture, mechanical weathering or combinations of these processes. In many cases, the presence of debris forms a ??sub-porosity? within the fracture void space. This sub-porosity often is composed of material that differs from the fracture walls in mineralogy and morphology. The ??sub-porosity? may partially fill voids that are on the order of hundreds of microns and thereby reduce the local porosity to lengths scales on the order of sub-microns to tens of microns. It is quite clear that a sub-porosity affects fracture porosity, permeability and storativity. What is not known is how the existence/formation of a sub-porosity affects seismic wave propagation and consequently our ability to probe changes in the subsurface caused by the formation or alteration of a sub-porosity. If seismic techniques are to be developed to monitor the injection and containment of phases in sequestration reservoirs or the propping of hydraulically induced fracture to enhance oil & gas production, it is important to understand how a sub-porosity within a fracture affects macroscopic seismic and hydraulic measurements. A sub-porosity will directly affect the interrelationship between the seismic and hydraulic properties of a fracture. This reports contains the results of the three main topics of research that were performed (1) to determine the effect of a sub-porosity composed of spherical grains on seismic wave propagation across fractures, (2) to determine the effect of biofilm growth in pores and between grains on seismic wave propagation in sediment, and (3) to determine the effect of the scale of observation (field-of-view) on monitoring alteration the pore space within a fracture caused by reactive flow. A brief summary of the results for each topic is contained in the report and the full details of the research and approach are contained in the publications found in the Attachment section of this report. A list of presentation and publications of all work associated with this grant is also provided.

  10. Development of an Updated Induced Seismicity Protocol for the Application

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Microearthquake (MEQ) Monitoring for Characterizing Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Development of an Updated Induced Seismicity Protocol for the Application of Microearthquake (MEQ) Monitoring for Characterizing Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Development of an Updated Induced Seismicity Protocol for the Application of Microearthquake (MEQ) Monitoring for

  11. Three-component borehole wall-locking seismic detector

    DOE Patents [OSTI]

    Owen, Thomas E. (Helotes, TX)

    1994-01-01

    A seismic detector for boreholes is described that has an accelerometer sensor block for sensing vibrations in geologic formations of the earth. The density of the seismic detector is approximately matched to the density of the formations in which the detector is utilized. A simple compass is used to orient the seismic detector. A large surface area shoe having a radius approximately equal to the radius of the borehole in which the seismic detector is located may be pushed against the side of the borehole by actuating cylinders contained in the seismic detector. Hydraulic drive of the cylinders is provided external to the detector. By using the large surface area wall-locking shoe, force holding the seismic detector in place is distributed over a larger area of the borehole wall thereby eliminating concentrated stresses. Borehole wall-locking forces up to ten times the weight of the seismic detector can be applied thereby ensuring maximum detection frequency response up to 2,000 hertz using accelerometer sensors in a triaxial array within the seismic detector.

  12. First Quarter Hanford Seismic Report for Fiscal Year 2011

    SciTech Connect (OSTI)

    Rohay, Alan C.; Sweeney, Mark D.; Clayton, Ray E.; Devary, Joseph L.

    2011-03-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 16 local earthquakes during the first quarter of FY 2011. Six earthquakes were located at shallow depths (less than 4 km), seven earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, thirteen earthquakes were located in known swarm areas and three earthquakes were classified as random events. The highest magnitude event (1.8 Mc) was recorded on October 19, 2010 at depth 17.5 km with epicenter located near the Yakima River between the Rattlesnake Mountain and Horse Heaven Hills swarm areas.

  13. First Quarter Hanford Seismic Report for Fiscal Year 2009

    SciTech Connect (OSTI)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-03-15

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. This includes three recently acquired Transportable Array stations located at Cold Creek, Didier Farms, and Phinney Hill. For the Hanford Seismic Network, ten local earthquakes were recorded during the first quarter of fiscal year 2009. All earthquakes were considered as minor with magnitudes (Mc) less than 1.0. Two earthquakes were located at shallow depths (less than 4 km), most likely in the Columbia River basalts; five earthquakes at intermediate depths (between 4 and 9 km), most likely in the sub-basalt sediments); and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, four earthquakes occurred in known swarm areas and six earthquakes were classified as random events.

  14. September 2008 Seismic Lessons-Learned Panel Meeting

    Broader source: Energy.gov [DOE]

    The Chief of Nuclear Safety (CNS) hosted the third meeting of the seismic lessons-learned panel at the DOE Forrestal Building in September 2008. These workshops are intended for experts involved in seismic hazard assessments and resulting facility designs across the DOE complex to share experience from their work. The workshops occur approximately twice per year.

  15. Passive seismic tomography application for cave monitoring in DOZ underground mine PT. Freeport Indonesia

    SciTech Connect (OSTI)

    Nurhandoko, Bagus Endar B.; Wely, Woen; Setiadi, Herlan; Riyanto, Erwin

    2015-04-16

    It is already known that tomography has a great impact for analyzing and mapping unknown objects based on inversion, travel time as well as waveform inversion. Therefore, tomography has used in wide area, not only in medical but also in petroleum as well as mining. Recently, tomography method is being applied in several mining industries. A case study of tomography imaging has been carried out in DOZ ( Deep Ore Zone ) block caving mine, Tembagapura, Papua. Many researchers are undergoing to investigate the properties of DOZ cave not only outside but also inside which is unknown. Tomography takes a part for determining this objective.The sources are natural from the seismic events that caused by mining induced seismicity and rocks deformation activity, therefore it is called as passive seismic. These microseismic travel time data are processed by Simultaneous Iterative Reconstruction Technique (SIRT). The result of the inversion can be used for DOZ cave monitoring. These information must be used for identifying weak zone inside the cave. In addition, these results of tomography can be used to determine DOZ and cave information to support mine activity in PT. Freeport Indonesia.

  16. Seismicity and structure of Akutan and Makushin Volcanoes, Alaska, using joint body and surface wave tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Syracuse, E. M.; Maceira, M.; Zhang, H.; Thurber, C. H.

    2015-02-18

    Joint inversions of seismic data recover models that simultaneously fit multiple constraints while playing upon the strengths of each data type. Here, we jointly invert 14 years of local earthquake body wave arrival times from the Alaska Volcano Observatory catalog and Rayleigh wave dispersion curves based upon ambient noise measurements for local Vp, Vs, and hypocentral locations at Akutan and Makushin Volcanoes using a new joint inversion algorithm.The velocity structure and relocated seismicity of both volcanoes are significantly more complex than many other volcanoes studied using similar techniques. Seismicity is distributed among several areas beneath or beyond the flanks ofmore » both volcanoes, illuminating a variety of volcanic and tectonic features. The velocity structures of the two volcanoes are exemplified by the presence of narrow high-Vp features in the near surface, indicating likely current or remnant pathways of magma to the surface. A single broad low-Vp region beneath each volcano is slightly offset from each summit and centered at approximately 7 km depth, indicating a potential magma chamber, where magma is stored over longer time periods. Differing recovery capabilities of the Vp and Vs datasets indicate that the results of these types of joint inversions must be interpreted carefully.« less

  17. Seismicity and structure of Akutan and Makushin Volcanoes, Alaska, using joint body and surface wave tomography

    SciTech Connect (OSTI)

    Syracuse, E. M.; Maceira, M.; Zhang, H.; Thurber, C. H.

    2015-02-18

    Joint inversions of seismic data recover models that simultaneously fit multiple constraints while playing upon the strengths of each data type. Here, we jointly invert 14 years of local earthquake body wave arrival times from the Alaska Volcano Observatory catalog and Rayleigh wave dispersion curves based upon ambient noise measurements for local Vp, Vs, and hypocentral locations at Akutan and Makushin Volcanoes using a new joint inversion algorithm.The velocity structure and relocated seismicity of both volcanoes are significantly more complex than many other volcanoes studied using similar techniques. Seismicity is distributed among several areas beneath or beyond the flanks of both volcanoes, illuminating a variety of volcanic and tectonic features. The velocity structures of the two volcanoes are exemplified by the presence of narrow high-Vp features in the near surface, indicating likely current or remnant pathways of magma to the surface. A single broad low-Vp region beneath each volcano is slightly offset from each summit and centered at approximately 7 km depth, indicating a potential magma chamber, where magma is stored over longer time periods. Differing recovery capabilities of the Vp and Vs datasets indicate that the results of these types of joint inversions must be interpreted carefully.

  18. Background noise spectra of global seismic stations

    SciTech Connect (OSTI)

    Wada, M.M.; Claassen, J.P.

    1996-08-01

    Over an extended period of time station noise spectra were collected from various sources for use in estimating the detection and location performance of global networks of seismic stations. As the database of noise spectra enlarged and duplicate entries became available, an effort was mounted to more carefully select station noise spectra while discarding others. This report discusses the methodology and criteria by which the noise spectra were selected. It also identifies and illustrates the station noise spectra which survived the selection process and which currently contribute to the modeling efforts. The resulting catalog of noise statistics not only benefits those who model network performance but also those who wish to select stations on the basis of their noise level as may occur in designing networks or in selecting seismological data for analysis on the basis of station noise level. In view of the various ways by which station noise were estimated by the different contributors, it is advisable that future efforts which predict network performance have available station noise data and spectral estimation methods which are compatible with the statistics underlying seismic noise. This appropriately requires (1) averaging noise over seasonal and/or diurnal cycles, (2) averaging noise over time intervals comparable to those employed by actual detectors, and (3) using logarithmic measures of the noise.

  19. Second Quarter Hanford Seismic Report for Fiscal Year 2008

    SciTech Connect (OSTI)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-06-26

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, seven local earthquakes were recorded during the second quarter of fiscal year 2008. The largest event recorded by the network during the second quarter (February 3, 2008 - magnitude 2.3 Mc) was located northeast of Richland in Franklin County at a depth of 22.5 km. With regard to the depth distribution, two earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), three earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and two earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, five earthquakes occurred in swarm areas and two earthquakes were classified as random events.

  20. Measurement of high energy x-ray beam penumbra with Gafchromic trade mark sign EBT radiochromic film

    SciTech Connect (OSTI)

    Cheung Tsang; Butson, Martin J.; Yu, Peter K. N.

    2006-08-15

    High energy x-ray beam penumbra are measured using Gafchromic trade mark sign EBT film. Gafchromic trade mark sign EBT, due to its limited energy dependence and high spatial resolution provide a high level of accuracy for dose assessment in penumbral regions. The spatial resolution of film detector systems is normally limited by the scanning resolution of the densitometer. Penumbral widths (80%/20%) measured at D{sub max} were found to be 2.8, 3.0, 3.2, and 3.4 mm ({+-}0.2 mm) using 5, 10, 20, and 30 cm square field sizes, respectively, for a 6 MV linear accelerator produced x-ray beam. This is compared to 3.2 mm{+-}0.2 mm (Kodak EDR2) and 3.6 mm{+-}0.2 mm (Kodak X-Omat V) at 10 cmx10 cm measured using radiographic film. Using a zero volume extrapolation technique for ionization chamber measurements, the 10 cmx10 cm field penumbra at D{sub max} was measured to be 3.1 mm, a close match to Gafchromic trade mark sign EBT results. Penumbral measurements can also be made at other depths, including the surface, as the film does not suffer significantly from dosimetric variations caused by changing x-ray energy spectra. Gafchromic trade mark sign EBT film provides an adequate measure of penumbral dose for high energy x-ray beams.

  1. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    SciTech Connect (OSTI)

    Wardaya, P. D. Noh, K. A. B. M. Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.

    2014-09-25

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave velocity of rock.

  2. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    SciTech Connect (OSTI)

    MACKEY, T.C.

    2006-03-17

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary tank and contained waste.

  3. Subtask 2.2 - Creating A Numerical Technique for Microseismic Data Inversion

    SciTech Connect (OSTI)

    Anastasia Dobroskok; Yevhen Holubnyak; James Sorensen

    2009-05-01

    Geomechanical and geophysical monitoring are the techniques which can complement each other and provide enhancement in the solutions of many problems of geotechnical engineering. One of the most promising geophysical techniques is passive seismic monitoring. The essence of the technique is recording the acoustic signals produced in the subsurface, either naturally or in response to human activity. The acoustic signals are produced by mechanical displacements on the contacts of structural elements (e.g., faults, boundaries of rock blocks, natural and induced fractures). The process can be modeled by modern numerical techniques developed in geomechanics. The report discusses a study that was aimed at the unification of the passive seismic monitoring and numerical modeling for the monitoring of the hydraulic fracture propagation. The approach adopted in the study consisted of numerical modeling of the seismicity accompanying hydraulic fracture propagation and defining seismic attributes and patterns characterizing the process and fracture parameters. Numerical experiments indicated that the spatial distribution of seismic events is correlated to geometrical parameters of hydrofracture. Namely, the highest density of the events is observed along fracture contour, and projection of the events to the fracture plane makes this effect most pronounced. The numerical experiments also showed that dividing the totality of the events into groups corresponding to the steps of fracture propagation allows for reconstructing the geometry of the resulting fracture more accurately than has been done in the majority of commercial applications.

  4. Seismic energy data analysis of Merapi volcano to test the eruption time prediction using materials failure forecast method (FFM)

    SciTech Connect (OSTI)

    Anggraeni, Novia Antika

    2015-04-24

    The test of eruption time prediction is an effort to prepare volcanic disaster mitigation, especially in the volcano’s inhabited slope area, such as Merapi Volcano. The test can be conducted by observing the increase of volcanic activity, such as seismicity degree, deformation and SO2 gas emission. One of methods that can be used to predict the time of eruption is Materials Failure Forecast Method (FFM). Materials Failure Forecast Method (FFM) is a predictive method to determine the time of volcanic eruption which was introduced by Voight (1988). This method requires an increase in the rate of change, or acceleration of the observed volcanic activity parameters. The parameter used in this study is the seismic energy value of Merapi Volcano from 1990 – 2012. The data was plotted in form of graphs of seismic energy rate inverse versus time with FFM graphical technique approach uses simple linear regression. The data quality control used to increase the time precision employs the data correlation coefficient value of the seismic energy rate inverse versus time. From the results of graph analysis, the precision of prediction time toward the real time of eruption vary between −2.86 up to 5.49 days.

  5. Planning Tools For Seismic Risk Mitigation. Rules And Applications

    SciTech Connect (OSTI)

    De Paoli, Rosa Grazia

    2008-07-08

    Recently, Italian urban planning research in the field of seismic risk mitigation are renewing. In particular, it promotes strategies that integrate urban rehabilitation and aseismic objectives, and also politicizes that are directed to revitalizes urban systems, coupling physical renewal and socio-economic development.In Italy the first law concerning planning for seismic mitigation dates back 1974, the law n. 64 'Regulation for buildings with particular rules for the seismic areas' where the rules for buildings in seismic areas concerning also the local hazard. This law, in fact, forced the municipalities to acquire, during the formation of the plans, a preventive opinion of compatibility between planning conditions and geomorphology conditions of the territory. From this date the conviction that the seismic risk must be considered inside the territorial planning especially in terms of strategies of mitigation has been strengthened.The town planners have started to take an interest in seismic risk in the [80]s when the Irpinia's earthquake took place. The researches developed after this earthquake have established that the principal cause of the collapse of buildings are due to from the wrong location of urban settlements (on slopes or crowns) After Irpinia's earthquake the first researches on seismic risk mitigation, in particular on the aspects related to the hazards and to the urban vulnerability were made.

  6. Post-processing of seismic parameter data based on valid seismic event determination

    DOE Patents [OSTI]

    McEvilly, Thomas V.

    1985-01-01

    An automated seismic processing system and method are disclosed, including an array of CMOS microprocessors for unattended battery-powered processing of a multi-station network. According to a characterizing feature of the invention, each channel of the network is independently operable to automatically detect, measure times and amplitudes, and compute and fit Fast Fourier transforms (FFT's) for both P- and S- waves on analog seismic data after it has been sampled at a given rate. The measured parameter data from each channel are then reviewed for event validity by a central controlling microprocessor and if determined by preset criteria to constitute a valid event, the parameter data are passed to an analysis computer for calculation of hypocenter location, running b-values, source parameters, event count, P- wave polarities, moment-tensor inversion, and Vp/Vs ratios. The in-field real-time analysis of data maximizes the efficiency of microearthquake surveys allowing flexibility in experimental procedures, with a minimum of traditional labor-intensive postprocessing. A unique consequence of the system is that none of the original data (i.e., the sensor analog output signals) are necessarily saved after computation, but rather, the numerical parameters generated by the automatic analysis are the sole output of the automated seismic processor.

  7. Seismic Readings from the Deepest Borehole in the New Madrid Seismic Zone

    SciTech Connect (OSTI)

    Woolery, Edward W; Wang, Zhenming; Sturchio, Neil C

    2006-03-01

    Since the 1980s, the research associated with the UK network has been primarily strong-motion seismology of engineering interest. Currently the University of Kentucky operates a strong-motion network of nine stations in the New Madrid Seismic Zone. A unique feature of the network is the inclusions of vertical strong-motion arrays, each with one or two downhole accelerometers. The deepest borehole array is 260 m below the surfaces at station VASA in Fulton County, Kentucky. A preliminary surface seismic refraction survey was conducted at the site before drilling the hole at VSAS (Woolery and Wang, 2002). The depth to the Paleozoic bedrock at the site was estimated to be approximately 595 m, and the depth to the first very stiff layer (i.e. Porters Creek Clay) was found to be about 260 m. These depths and stratigraphic interpretation correlated well with a proprietary seismic reflection line and the Ken-Ten Oil Exploration No. 1 Sanger hole (Schwalb, 1969), as well as our experience in the area (Street et al., 1995; Woolery et al., 1999).

  8. Tritium glovebox stripper system seismic design evaluation

    SciTech Connect (OSTI)

    Grinnell, J. J.; Klein, J. E.

    2015-09-01

    The use of glovebox confinement at US Department of Energy (DOE) tritium facilities has been discussed in numerous publications. Glovebox confinement protects the workers from radioactive material (especially tritium oxide), provides an inert atmosphere for prevention of flammable gas mixtures and deflagrations, and allows recovery of tritium released from the process into the glovebox when a glovebox stripper system (GBSS) is part of the design. Tritium recovery from the glovebox atmosphere reduces emissions from the facility and the radiological dose to the public. Location of US DOE defense programs facilities away from public boundaries also aids in reducing radiological doses to the public. This is a study based upon design concepts to identify issues and considerations for design of a Seismic GBSS. Safety requirements and analysis should be considered preliminary. Safety requirements for design of GBSS should be developed and finalized as a part of the final design process.

  9. OSI Passive Seismic Experiment at the Former Nevada Test Site

    SciTech Connect (OSTI)

    Sweeney, J J; Harben, P

    2010-11-11

    On-site inspection (OSI) is one of the four verification provisions of the Comprehensive Nuclear Test Ban Treaty (CTBT). Under the provisions of the CTBT, once the Treaty has entered into force, any signatory party can request an on-site inspection, which can then be carried out after approval (by majority voting) of the Executive Council. Once an OSI is approved, a team of 40 inspectors will be assembled to carry out an inspection to ''clarify whether a nuclear weapon test explosion or any other nuclear explosion has been carried out in violation of Article I''. One challenging aspect of carrying out an on-site inspection (OSI) in the case of a purported underground nuclear explosion is to detect and locate the underground effects of an explosion, which may include an explosion cavity, a zone of damaged rock, and/or a rubble zone associated with an underground collapsed cavity. The CTBT (Protocol, Section II part D, paragraph 69) prescribes several types of geophysical investigations that can be carried out for this purpose. One of the methods allowed by the CTBT for geophysical investigation is referred to in the Treaty Protocol as ''resonance seismometry''. This method, which was proposed and strongly promoted by Russia during the Treaty negotiations, is not described in the Treaty. Some clarification about the nature of the resonance method can be gained from OSI workshop presentations by Russian experts in the late 1990s. Our understanding is that resonance seismometry is a passive method that relies on seismic reverberations set up in an underground cavity by the passage of waves from regional and teleseismic sources. Only a few examples of the use of this method for detection of underground cavities have been presented, and those were done in cases where the existence and precise location of an underground cavity was known. As is the case with many of the geophysical methods allowed during an OSI under the Treaty, how resonance seismology really works and its effectiveness for OSI purposes has yet to be determined. For this experiment, we took a broad approach to the definition of ''resonance seismometry''; stretching it to include any means that employs passive seismic methods to infer the character of underground materials. In recent years there have been a number of advances in the use of correlation and noise analysis methods in seismology to obtain information about the subsurface. Our objective in this experiment was to use noise analysis and correlation analysis to evaluate these techniques for detecting and characterizing the underground damage zone from a nuclear explosion. The site that was chosen for the experiment was the Mackerel test in Area 4 of the former Nevada Test Site (now named the Nevada National Security Site, or NNSS). Mackerel was an underground nuclear test of less than 20 kT conducted in February of 1964 (DOENV-209-REV 15). The reason we chose this site is because there was a known apical cavity occurring at about 50 m depth above a rubble zone, and that the site had been investigated by the US Geological Survey with active seismic methods in 1965 (Watkins et al., 1967). Note that the time delay between detonation of the explosion (1964) and the time of the present survey (2010) is nearly 46 years - this would not be typical of an expected OSI under the CTBT.

  10. Geotechnical Seismic Assessment Report for Defense Waste Processing Facility

    SciTech Connect (OSTI)

    McHood, M.

    2000-10-04

    High level waste facilities at the Savannah River Site include several major structures that must meet seismic requirements, including the Defense Waste Processing Facility. Numerous geotechnical and geological investigations have been performed to characterize the in-situ static and dynamic properties of the soil sediments. These investigations have led to conclusions concerning the stability of foundation soils in terms of liquefaction potential and structure settlement. This report reviews past work that addresses seismic soil stability and presents the results of more recent analyses incorporating updated seismic criteria.

  11. A phased approach to induced seismicity risk management

    SciTech Connect (OSTI)

    White, Joshua A.; Foxall, William

    2014-01-01

    This work describes strategies for assessing and managing induced seismicity risk during each phase of a carbon storage project. We consider both nuisance and damage potential from induced earthquakes, as well as the indirect risk of enhancing fault leakage pathways. A phased approach to seismicity management is proposed, in which operations are continuously adapted based on available information and an on-going estimate of risk. At each project stage, specific recommendations are made for (a) monitoring and characterization, (b) modeling and analysis, and (c) site operations. The resulting methodology can help lower seismic risk while ensuring site operations remain practical and cost-effective.

  12. Seismic Attenuation Inversion with t* Using tstarTomog.

    SciTech Connect (OSTI)

    Preston, Leiph

    2014-09-01

    Seismic attenuation is defined as the loss of the seismic wave amplitude as the wave propagates excluding losses strictly due to geometric spreading. Information gleaned from seismic waves can be utilized to solve for the attenuation properties of the earth. One method of solving for earth attenuation properties is called t*. This report will start by introducing the basic theory behind t* and delve into inverse theory as it pertains to how the algorithm called tstarTomog inverts for attenuation properties using t* observations. This report also describes how to use the tstarTomog package to go from observed data to a 3-D model of attenuation structure in the earth.

  13. A phased approach to induced seismicity risk management

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    White, Joshua A.; Foxall, William

    2014-01-01

    This work describes strategies for assessing and managing induced seismicity risk during each phase of a carbon storage project. We consider both nuisance and damage potential from induced earthquakes, as well as the indirect risk of enhancing fault leakage pathways. A phased approach to seismicity management is proposed, in which operations are continuously adapted based on available information and an on-going estimate of risk. At each project stage, specific recommendations are made for (a) monitoring and characterization, (b) modeling and analysis, and (c) site operations. The resulting methodology can help lower seismic risk while ensuring site operations remain practical andmore » cost-effective.« less

  14. SRNL Development of Recovery Processes for Mark-18A Heavy Actinide...

    Office of Scientific and Technical Information (OSTI)

    the Mark-18A. Mark-18A assemblies were irradiated in Savannah River Site (SRS) reactors in the 1970s under extremely high neutron-flux conditions and produced, virtually, ...

  15. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Former St. Marks Refinery in St. Marks, Florida

    SciTech Connect (OSTI)

    Lisell, L.; Mosey, G.

    2010-09-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on a brownfield site in St. Marks, Florida. The site was assessed for possible PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.08/kWh and incentives offered in the State of Florida and from the two accessible utilities, Progress Energy and the City of Tallahassee. According to the site production calculations, the most cost-effective system in terms of return on investment is the fixed-tilt thin film technology. The report recommends financing options that could assist in the implementation of such a system.

  16. SRNL Development of Recovery Processes for Mark-18A Heavy Actinide Targets

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect SRNL Development of Recovery Processes for Mark-18A Heavy Actinide Targets Citation Details In-Document Search Title: SRNL Development of Recovery Processes for Mark-18A Heavy Actinide Targets Savannah River National Laboratory (SRNL) and Oak Ridge National Laboratory (ORNL) are developing plans for the recovery of rare and unique isotopes contained within heavy-actinide target assemblies, specifically the Mark-18A. Mark-18A assemblies were irradiated in

  17. Mark Mathias > General Motors - Fuel Cell Research > Scientific Advisory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Board > The Energy Materials Center at Cornell Mark Mathias General Motors - Fuel Cell Research

  18. May 2015 Seismic Lessons-Learned Panel Meeting | Department of Energy

    Office of Environmental Management (EM)

    May 2015 Seismic Lessons-Learned Panel Meeting May 2015 Seismic Lessons-Learned Panel Meeting The Chief of Nuclear Safety (CNS) hosted the eighth meeting of the Seismic Lessons-Learned Panel (SLLP) at the Idaho National Laboratory on May 27, 2015. A primary topic of discussion was the Idaho National Laboratory Seismic Risk Assessment project. This panel was commissioned by CNS in August 2007, and it meets as requested by CNS. These meetings are intended for experts involved in seismic hazard

  19. A Survey Of Seismic Activity Near Wairakei Geothermal Field,...

    Open Energy Info (EERE)

    Geothermal Field, New Zealand Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Survey Of Seismic Activity Near Wairakei Geothermal Field, New...

  20. Seismicity of the Coso Range, California | Open Energy Information

    Open Energy Info (EERE)

    of the Coso Range, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Seismicity of the Coso Range, California Abstract A 16-station...

  1. Seismic baseline and induction studies- Roosevelt Hot Springs...

    Open Energy Info (EERE)

    magnitude one. The Roosevelt Hot Springs area has low-level seismic activity for Msub L greater than about two; however, microearthquake (Msub L less than or equal to 2)...

  2. Integrated seismic studies at the Rye Patch geothermal reservoir...

    Open Energy Info (EERE)

    seismic studies at the Rye Patch geothermal reservoir Authors R. Gritto, T.M. Daley and E.L. Majer Published Journal Geothermal Resources Council Transactions, 2002 DOI Not...

  3. Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Majer, Ernie; Nelson, James; Robertson-Tait, Ann; Savy, Jean; Wong, Ivan

    2012-01-01

    This Protocol is a living guidance document for geothermal developers, public officials, regulators and the general public that provides a set of general guidelines detailing useful steps to evaluate and manage the effects of induced seismicity related to EGS projects.

  4. Seismic Ground Motion Response Using SHAKE, EERA and NERA for...

    Office of Environmental Management (EM)

    for SRS Soil Profile Seismic Ground Motion Response Using SHAKE, EERA and NERA for SRS Soil Profile Jay Amin - Structural Mechanics, Principal Engineer Shawn Carey, PhD, PE -...

  5. Advanced Seismic data Analysis Program (The "Hot Pot Project...

    Open Energy Info (EERE)

    Share 3,985,570.00 Total Project Cost 8,199,656.00 Principal Investigator(s) Shuman Moore Targets Milestones The proposed project involves the application of advanced seismic...

  6. Discrimination of porosity and fluid saturation using seismic velocity analysis

    DOE Patents [OSTI]

    Berryman, James G. (Danville, CA)

    2001-01-01

    The method of the invention is employed for determining the state of saturation in a subterranean formation using only seismic velocity measurements (e.g., shear and compressional wave velocity data). Seismic velocity data collected from a region of the formation of like solid material properties can provide relatively accurate partial saturation data derived from a well-defined triangle plotted in a (.rho./.mu., .lambda./.mu.)-plane. When the seismic velocity data are collected over a large region of a formation having both like and unlike materials, the method first distinguishes the like materials by initially plotting the seismic velocity data in a (.rho./.lambda., .mu./.lambda.)-plane to determine regions of the formation having like solid material properties and porosity.

  7. Vertical Seismic Profiling At Neal Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    were taken in three different wells. A 60 kg accelerated weight drop and Vibroseis machine was used as the seismic source. Two receiver arrays were used, one was a linear...

  8. Advanced Seismic Probabilistic Risk Assessment Demonstration Project Plan

    SciTech Connect (OSTI)

    Justin Coleman

    2014-09-01

    Idaho National Laboratories (INL) has an ongoing research and development (R&D) project to remove excess conservatism from seismic probabilistic risk assessments (SPRA) calculations. These risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. This report presents a plan for improving our current traditional SPRA process using a seismic event recorded at a nuclear power plant site, with known outcomes, to improve the decision making process. SPRAs are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility).

  9. Vertical Seismic Profiling At Rye Patch Area (Feighner, Et Al...

    Open Energy Info (EERE)

    reflectivity in the area and to obtain velocity information for the design and potential processing of the proposed 3-D seismic survey Feighner et al. (1998). Because the results...

  10. Applicaiton of the Computer Program SASSI for Seismic SSI Analysis...

    Office of Environmental Management (EM)

    of the Computer Program SASSI for Seismic SSI Analysis of WTP Facilities Farhang Ostadan (BNI) & Raman Venkata (DOE-WTP-WED) Presented by Lisa Anderson (BNI) US DOE NPH Workshop...

  11. Alaska Maximum Number of Active Crews Engaged in Seismic Surveying...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 13 4 23 12...

  12. Seismic refraction study of the Raft River geothermal area, Idaho...

    Open Energy Info (EERE)

    refraction study of the Raft River geothermal area, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Seismic refraction study of the Raft...

  13. Advance Seismic Data Analysis Program: (The "Hot Pot Project")

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: To improve geothermal well target selection and reduce drilling risk through an innovative and advanced analytical method for interpreting seismic data to locate deep geothermal structures.

  14. Light Water Reactor Sustainability Program Advanced Seismic Soil Structure Modeling

    SciTech Connect (OSTI)

    Bolisetti, Chandrakanth; Coleman, Justin Leigh

    2015-06-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in some instances the current SPRA approach has large uncertainties, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRA’s are performed by convolving the seismic hazard (this is the estimate of all likely damaging earthquakes at the site of interest) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, 2) fragility or capacity of structures, systems and components (SSC), and 3) systems analysis. Two areas where NLSSI effects may be important in SPRA calculations are, 1) when calculating in-structure response at the area of interest, and 2) calculation of seismic fragilities (current fragility calculations assume a lognormal distribution for probability of failure of components). Some important effects when using NLSSI in the SPRA calculation process include, 1) gapping and sliding, 2) inclined seismic waves coupled with gapping and sliding of foundations atop soil, 3) inclined seismic waves coupled with gapping and sliding of deeply embedded structures, 4) soil dilatancy, 5) soil liquefaction, 6) surface waves, 7) buoyancy, 8) concrete cracking and 9) seismic isolation The focus of the research task presented here-in is on implementation of NLSSI into the SPRA calculation process when calculating in-structure response at the area of interest. The specific nonlinear soil behavior included in the NLSSI calculation presented in this report is gapping and sliding. Other NLSSI effects are not included in the calculation. The results presented in this report document initial model runs in the linear and nonlinear analysis process. Final comparisons between traditional and advanced SPRA will be presented in the September 30th deliverable.

  15. Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems by Ernie Majer, James Nelson, Ann Robertson-Tait, Jean Savy, and Ivan Wong January 2012 | DOE/EE-0662 Cover Image Courtesy of Katie L. Boyle, Lawrence Berkeley National Laboratory i i Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems Preface In June 2009, the New York Times published an article about the public fear of geothermal development causing earthquakes. The article

  16. May 2010 Seismic Lessons-Learned panel Meeting

    Broader source: Energy.gov [DOE]

    The Chief of Nuclear Safety (CNS) hosted the sixth meeting of the seismic lessons-learned panel at the DOE Forrestal Building on May 11, 2010. This panel was commissioned by CNS in August 2007, and it meets approximately twice per year. These workshops are intended for experts involved in seismic hazard assessments and resulting facility designs across the DOE complex to share experience from their work.

  17. Evaluation of Modal Combination Methods for Seismic Response Spectrum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis (Conference) | SciTech Connect Conference: Evaluation of Modal Combination Methods for Seismic Response Spectrum Analysis Citation Details In-Document Search Title: Evaluation of Modal Combination Methods for Seismic Response Spectrum Analysis × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional

  18. Seismic Monitoring a Critical Step in EGS Development | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Seismic Monitoring a Critical Step in EGS Development Seismic Monitoring a Critical Step in EGS Development December 3, 2013 - 12:00am Addthis MagiQ and Sandia National Laboratory developed a high-temperature wellbore deployment system, which comprises a housing package equipped with a latching arm that mechanically clamps the tool system to the borehole wall. The middle section is the arm that swings out and clamps to the wellbore. The ability to accurately locate and characterize

  19. Method for determining formation quality factor from seismic data

    DOE Patents [OSTI]

    Taner, M. Turhan; Treitel, Sven

    2005-08-16

    A method is disclosed for calculating the quality factor Q from a seismic data trace. The method includes calculating a first and a second minimum phase inverse wavelet at a first and a second time interval along the seismic data trace, synthetically dividing the first wavelet by the second wavelet, Fourier transforming the result of the synthetic division, calculating the logarithm of this quotient of Fourier transforms and determining the slope of a best fit line to the logarithm of the quotient.

  20. Seismic hazard methodology for the Central and Eastern United States.

    Office of Scientific and Technical Information (OSTI)

    Volume 1: methodology. Final report (Technical Report) | SciTech Connect Central and Eastern United States. Volume 1: methodology. Final report Citation Details In-Document Search Title: Seismic hazard methodology for the Central and Eastern United States. Volume 1: methodology. Final report A methodology to estimate the hazard of earthquake ground motion at a site has been developed. The methodology consists of systematic procedures to characterize earthquake sources, the seismicity

  1. Seismic hazard methodology for the Central and Eastern United States:

    Office of Scientific and Technical Information (OSTI)

    Volume 1: Part 2, Methodology (Revision 1): Final report (Technical Report) | SciTech Connect Central and Eastern United States: Volume 1: Part 2, Methodology (Revision 1): Final report Citation Details In-Document Search Title: Seismic hazard methodology for the Central and Eastern United States: Volume 1: Part 2, Methodology (Revision 1): Final report Aided by its consultant, the US Geologic Survey (USGS), the Nuclear Regulatory Commission (NRC) reviewed ''Seismic Hazard Methodology for

  2. Summation by Parts Finite Difference Approximations for Seismic and

    Office of Scientific and Technical Information (OSTI)

    Seismo-Acoustic Computations (Conference) | SciTech Connect Conference: Summation by Parts Finite Difference Approximations for Seismic and Seismo-Acoustic Computations Citation Details In-Document Search Title: Summation by Parts Finite Difference Approximations for Seismic and Seismo-Acoustic Computations Authors: Sjogreen, B ; Petersson, N A Publication Date: 2014-08-19 OSTI Identifier: 1165780 Report Number(s): LLNL-PROC-659087 DOE Contract Number: DE-AC52-07NA27344 Resource Type:

  3. Seismic & Natural Phenomena Hazards | Department of Energy

    Energy Savers [EERE]

    & Natural Phenomena Hazards Seismic & Natural Phenomena Hazards Seismic & Natural Phenomena Hazards As part of the CNS role supporting safe operation for DOE nuclear facilities, CNS sponsors efforts to improve nuclear facilities' ability to withstand natural phenomena hazards (NPH). Natural phenomena of primary concern are earthquakes, high winds, floods, extreme precipitation, and volcanic eruptions. We support site efforts to properly characterize NPH and ensure facilities are

  4. October 2009 Seismic Lessons-Learned panel Meeting

    Broader source: Energy.gov [DOE]

    The Chief of Nuclear Safety (CNS) and the Office of Environmental Management (EM) hosted the fifth meeting of the seismic lessons-learned panel at the DOE Forrestal Building on October 6, 2009. This panel was originally commissioned by the CNS in August 2007, and it meets approximately twice per year. These workshops are intended for experts involved in seismic hazard assessments and resulting facility designs across the DOE complex to share experience from their work and improve project performance.

  5. Virginia Regional Seismic Network. Final report (1986--1992)

    SciTech Connect (OSTI)

    Bollinger, G.A.; Sibol, M.S.; Chapman, M.C.; Snoke, J.A. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (US). Seismological Observatory

    1993-07-01

    In 1986, the Virginia Regional Seismic Network was one of the few fully calibrated digital seismic networks in the United States. Continued operation has resulted in the archival of signals from 2,000+ local, regional and teleseismic sources. Seismotectonic studies of the central Virginia seismic zone showed the activity in the western part to be related to a large antiformal structure while seismicity in the eastern portion is associated spatially with dike swarms. The eastern Tennessee seismic zone extends over a 300x50 km area and is the result of a compressive stress field acting at the intersection between two large crustal blocks. Hydroseismicity, which proposes a significant role for meteoric water in intraplate seismogenesis, found support in the observation of common cyclicities between streamflow and earthquake strain data. Seismic hazard studies have provided the following results: (1) Damage areas in the eastern United States are three to five times larger than those observed in the west. (2) Judged solely on the basis of cataloged earthquake recurrence rates, the next major shock in the southeast region will probably occur outside the Charleston, South Carolina area. (3) Investigations yielded necessary hazard parameters (for example, maximum magnitudes) for several sites in the southeast. Basic to these investigations was the development and maintenance of several seismological data bases.

  6. Geophysical Techniques for Monitoring CO2 Movement During Sequestration

    SciTech Connect (OSTI)

    Erika Gasperikova; G. Michael Hoversten

    2005-11-15

    The relative merits of the seismic, gravity, and electromagnetic (EM) geophysical techniques are examined as monitoring tools for geologic sequestration of carbon dioxide (CO{sub 2}). This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques for two synthetic modeling scenarios. The first scenario represents combined CO{sub 2} enhanced oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. EOR/sequestration projects in general and Schrader Bluff in particular represent relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}). This model represents the most difficult end member of a complex spectrum of possible sequestration scenarios. The time-lapse performance of seismic, gravity, and EM techniques are considered for the Schrader Bluff model. The second scenario is a gas field that in general resembles conditions of Rio Vista reservoir in the Sacramento Basin of California. Surface gravity, and seismic measurements are considered for this model.

  7. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    SciTech Connect (OSTI)

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Gttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  8. A Feasibility Study of Non-Seismic Geophysical Methods forMonitoring Geologic CO2 Sequestration

    SciTech Connect (OSTI)

    Gasperikova, Erika; Hoversten, G. Michael

    2006-07-01

    Because of their wide application within the petroleumindustry it is natural to consider geophysical techniques for monitoringof CO2 movement within hydrocarbon reservoirs, whether the CO2 isintroduced for enhanced oil/gas recovery or for geologic sequestration.Among the available approaches to monitoring, seismic methods are by farthe most highly developed and applied. Due to cost considerations, lessexpensive techniques have recently been considered. In this article, therelative merits of gravity and electromagnetic (EM) methods as monitoringtools for geological CO2 sequestration are examined for two syntheticmodeling scenarios. The first scenario represents combined CO2 enhancedoil recovery (EOR) and sequestration in a producing oil field, theSchrader Bluff field on the north slope of Alaska, USA. The secondscenario is a simplified model of a brine formation at a depth of 1,900m.

  9. Annual Hanford Seismic Report for Fiscal Year 2008

    SciTech Connect (OSTI)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-12-29

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During fiscal year 2008, the Hanford Seismic Network recorded 1431 triggers on the seismometer system, which included 112 seismic events in the southeast Washington area and an additional 422 regional and teleseismic events. There were 74 events determined to be local earthquakes relevant to the Hanford Site. The highest-magnitude event (3.7 Mc) occurred on May 18, 2008, and was located approximately 17 km east of Prosser at a depth of 20.5 km. With regard to the depth distribution, 13 earthquakes were located at shallow depths (less than 4 km, most likely in the Columbia River basalts), 45 earthquakes were located at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and 16 earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, 54 earthquakes were located in swarm areas and 20 earthquakes were classified as random events. The May 18 earthquake was the highest magnitude event recorded since 1975 in the vicinity of the Hanford Site (between 46 degrees and 47 degrees north latitude and 119 degrees and 120 degrees west longitude). The event was not reported as being felt on the Hanford Site or causing any damage and was communicated to the Pacific Northwest National Laboratory Operations Center per HSAP communications procedures. The event is not considered to be significant with regard to site safety and not unprecedented given the sites seismic history. The Hanford strong motion accelerometer (SMA) stations at the 200 East Area, 300 Area, and 400 Area were triggered by the May 18 event. The maximum acceleration recorded at the SMA stations (0.17% at the 300 Area) was 12 times smaller than the reportable action level (2% g) for Hanford Site facilities.

  10. Resonant seismic emission of subsurface objects

    SciTech Connect (OSTI)

    Korneev, Valeri A.

    2009-04-15

    Numerical modeling results and field data indicate that some contrasting subsurface objects (such as tunnels, caves, pipes, filled pits, and fluid-filled fractures) are capable of generating durable resonant oscillations after trapping seismic energy. These oscillations consist of surface types of circumferential waves that repeatedly propagate around the object. The resonant emission of such trapped energy occurs primarily in the form of shear body waves that can be detected by remotely placed receivers. Resonant emission reveals itself in the form of sharp resonant peaks for the late parts of the records, when all strong direct and primary reflected waves are gone. These peaks were observed in field data for a buried barrel filled with water, in 2D finite-difference modeling results, and in the exact canonical solution for a fluid-filled sphere. A computed animation for the diffraction of a plane wave upon a low-velocity elastic sphere confirms the generation of resonances by durable surface waves. Resonant emission has characteristic quasi-hyperbolic traveltime patterns on shot gathers. The inversion of these patterns can be performed in the frequency domain after muting the strong direct and primary scattered waves. Subsurface objects can be detected and imaged at a single resonance frequency without an accurate knowledge of source trigger time. The imaging of subsurface objects requires information about the shear velocity distribution in an embedding medium, which can be done interactively during inversion.

  11. Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations

    SciTech Connect (OSTI)

    Brian Toelle

    2008-11-30

    This project, 'Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO{sub 2} Enhanced Oil Recovery Operations', investigated the potential for monitoring CO{sub 2} floods in carbonate reservoirs through the use of standard p-wave seismic data. This primarily involved the use of 4D seismic (time lapse seismic) in an attempt to observe and map the movement of the injected CO{sub 2} through a carbonate reservoir. The differences between certain seismic attributes, such as amplitude, were used for this purpose. This technique has recently been shown to be effective in CO{sub 2} monitoring in Enhanced Oil Recovery (EOR) projects, such as Weyborne. This study was conducted in the Charlton 30/31 field in the northern Michigan Basin, which is a Silurian pinnacle reef that completed its primary production in 1997 and was scheduled for enhanced oil recovery using injected CO{sub 2}. Prior to injection an initial 'Base' 3D survey was obtained over the field and was then processed and interpreted. CO{sub 2} injection within the main portion of the reef was conducted intermittently during 13 months starting in August 2005. During this time, 29,000 tons of CO{sub 2} was injected into the Guelph formation, historically known as the Niagaran Brown formation. By September 2006, the reservoir pressure within the reef had risen to approximately 2000 lbs and oil and water production from the one producing well within the field had increased significantly. The determination of the reservoir's porosity distribution, a critical aspect of reservoir characterization and simulation, proved to be a significant portion of this project. In order to relate the differences observed between the seismic attributes seen on the multiple 3D seismic surveys and the actual location of the CO{sub 2}, a predictive reservoir simulation model was developed based on seismic attributes obtained from the base 3D seismic survey and available well data. This simulation predicted that the CO{sub 2} injected into the reef would remain in the northern portion of the field. Two new wells, the State Charlton 4-30 and the Larsen 3-31, were drilled into the field in 2006 and 2008 respectively and supported this assessment. A second (or 'Monitor') 3D seismic survey was acquired during September 2007 over most of the field and duplicated the first (Base) survey, as much as possible. However, as the simulation and new well data available at that time indicated that the CO{sub 2} was concentrated in the northern portion of the field, the second seismic survey was not acquired over the extreme southern end of the area covered by the original (or Base) 3D survey. Basic processing was performed on the second 3D seismic survey and, finally, 4D processing methods were applied to both the Base and the Monitor surveys. In addition to this 3D data, a shear wave seismic data set was obtained at the same time. Interpretation of the 4D seismic data indicated that a significant amplitude change, not attributable to differences in acquisition or processing, existed at the locations within the reef predicted by the reservoir simulation. The reservoir simulation was based on the porosity distribution obtained from seismic attributes from the Base 3D survey. Using this validated reservoir simulation the location of oil within the reef at the time the Monitor survey was obtained and recommendations made for the drilling of additional EOR wells. The economic impact of this project has been estimated in terms of both enhanced oil recovery and CO{sub 2} sequestration potential. In the northern Michigan Basin alone, the Niagaran reef play is comprised of over 700 Niagaran reefs with reservoirs already depleted by primary production. Potentially there is over 1 billion bbls of oil (original oil in place minus primary recovery) remains in the reefs in Michigan, much of which could be more efficiently mobilized utilizing techniques similar to those employed in this study.

  12. Characterization of fracture reservoirs using static and dynamic data: From sonic and 3D seismic to permeability distribution. Annual report, March 1, 1996--February 28, 1997

    SciTech Connect (OSTI)

    Parra, J.O.; Collier, H.A.; Owen, T.E.

    1997-06-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. They also may connect the borehole to remote zones of better reservoir characteristics. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based on the effects of such conditions on the propagation of acoustic and seismic waves in the rock. The project is a study directed toward the evaluation of acoustic logging and 3D-seismic measurement techniques as well as fluid flow and transport methods for mapping permeability anisotropy and other petrophysical parameters for the understanding of the reservoir fracture systems and associated fluid dynamics. The principal application of these measurement techniques and methods is to identify and investigate the propagation characteristics of acoustic and seismic waves in the Twin Creek hydrocarbon reservoir owned by Union Pacific Resources (UPR) and to characterize the fracture permeability distribution using production data. This site is located in the overthrust area of Utah and Wyoming. UPR drilled six horizontal wells, and presently UPR has two rigs running with many established drill hole locations. In addition, there are numerous vertical wells that exist in the area as well as 3D seismic surveys. Each horizontal well contains full FMS logs and MWD logs, gamma logs, etc.

  13. Peak Ground Velocities for Seismic Events at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    K. Coppersmith; R. Quittmeyer

    2005-02-16

    This report describes a scientific analysis to bound credible horizontal peak ground velocities (PGV) for the repository waste emplacement level at Yucca Mountain. Results are presented as a probability distribution for horizontal PGV to represent uncertainties in the analysis. The analysis also combines the bound to horizontal PGV with results of ground motion site-response modeling (BSC 2004 [DIRS 170027]) to develop a composite hazard curve for horizontal PGV at the waste emplacement level. This result provides input to an abstraction of seismic consequences (BSC 2004 [DIRS 169183]). The seismic consequence abstraction, in turn, defines the input data and computational algorithms for the seismic scenario class of the total system performance assessment (TSPA). Planning for the analysis is documented in Technical Work Plan TWP-MGR-GS-000001 (BSC 2004 [DIRS 171850]). The bound on horizontal PGV at the repository waste emplacement level developed in this analysis complements ground motions developed on the basis of PSHA results. In the PSHA, ground motion experts characterized the epistemic uncertainty and aleatory variability in their ground motion interpretations. To characterize the aleatory variability they used unbounded lognormal distributions. As a consequence of these characterizations, as seismic hazard calculations are extended to lower and lower annual frequencies of being exceeded, the ground motion level increases without bound, eventually reaching levels that are not credible (Corradini 2003 [DIRS 171191]). To provide credible seismic inputs for TSPA, in accordance with 10 Code of Federal Regulations (CFR) 63.102(j) [DIRS 156605], this complementary analysis is carried out to determine reasonable bounding values of horizontal PGV at the waste emplacement level for annual frequencies of exceedance as low as 10{sup -8}. For each realization of the TSPA seismic scenario, the results of this analysis provide a constraint on the values sampled from the horizontal PGV hazard curve for the waste emplacement level. The relation of this analysis to other work feeding the seismic consequence abstraction and the TSPA is shown on Figure 1-1. The ground motion hazard results from the PSHA provide the basis for inputs to a site-response model that determines the effect of site materials on the ground motion at a location of interest (e.g., the waste emplacement level). Peak ground velocity values determined from the site-response model for the waste emplacement level are then used to develop time histories (seismograms) that form input to a model of drift degradation under seismic loads potentially producing rockfall. The time histories are also used to carry out dynamic seismic structural response calculations of the drip shield and waste package system. For the drip shield, damage from seismically induced rockfall also is considered. In the seismic consequence abstraction, residual stress results from the structural response calculations are interpreted in terms of the percentage of the component (drip shield, waste package) damaged as a function of horizontal PGV. The composite hazard curve developed in this analysis, which reflects the results of site-response modeling and the bound to credible horizontal PGV at the waste emplacement level, also feeds the seismic consequence abstraction. The composite hazard curve is incorporated into the TSPA sampling process to bound horizontal PGV and related seismic consequences to values that are credible.

  14. Development of a magnetostrictive borehole seismic source

    SciTech Connect (OSTI)

    Cutler, R.P.; Sleefe, G.E.; Keefe, R.G.

    1997-04-01

    A magnetostrictive borehole seismic source was developed for use in high resolution crosswell surveys in environmental applications. The source is a clamped, vertical-shear, swept frequency, reaction-mass shaker design consisting of a spring pre-loaded magnetostrictive rod with permanent magnet bias, drive coils to induce an alternating magnetic field, and an integral tungsten reaction mass. The actuator was tested extensively in the laboratory. It was then incorporated into an easily deployable clamped downhole tool capable of operating on a standard 7 conductor wireline in borehole environments to 10,000{degrees} deep and 100{degrees}C. It can be used in either PVC or steel cased wells and the wells can be dry or fluid filled. It has a usable frequency spectrum of {approx} 150 to 2000 Hz. The finished tool was successfully demonstrated in a crosswell test at a shallow environmental site at Hanford, Washington. The source transmitted signals with a S/N ratio of 10-15 dB from 150-720 Hz between wells spaced 239 feet apart in unconsolidated gravel. The source was also tested successfully in rock at an oil field test site, transmitting signals with a S/N ratio of 5-15 dB over the full sweep spectrum from 150-2000 Hz between wells spaced 282 feet apart. And it was used successfully on an 11,000{degrees} wireline at a depth of 4550{degrees}. Recommendations for follow-on work include improvements to the clamp, incorporation of a higher sample rate force feedback controller, and increases in the force output of the tool.

  15. Annual Hanford Seismic Report for Fiscal Year 1998

    SciTech Connect (OSTI)

    DC Hartshorn; SP Reidel; AC Rohay

    1998-12-22

    Seismic monitoring at the Hanford Site was established in 1969 by the United States Geological Survey (USGS) under a contract with theJ.J.S. Atomic Energy Commission. In 1975, the University of Washington (UW) assumed responsibility for the network and subsequently expanded it. In 1979, the Basalt Waste o Isolation Program (13WIP) became responsible for collecting seismic data for the Hdord Site as part of site " characterization activities. Rockwell Htiord Operations, followed by Westinghouse Ha&ord Company . (WHC), operated the local network and were the contract technical advisors for the Eastern Washington Regional Network @wRN) operated and maintained by the UW. Funding for BWIP ended in December 1988. Seismic Monitoring and responsibility for the University of Washington contract were then trans- ferred to WHC'S Environmental Division. Maintenance responsibilities for the EWRN were also Assigned to WHC, who made major upgrades to EWRN sites. Effective October 1,1996, Seismic Monitoring was transfemed to the Pacific Northwest National Laboratory (PI@lL*). Seismic Monitoring is part of PNNL's Applied Geology and Geochemistry Group, Energy Technology Division. The Hanford Strong Motion Accelerometer network was constructed during 1997 and came online in May 1997. It operated continuously until September 30, 1997, when it was mothballed due to can- . cellation of fimding. Funding was restored on October 1, 1998, by joint agreement between the U.S. Department of Energy (DOE) and PNNL. Operation of the free-field sites resumed on November 20, 1998.

  16. Megaregional seismic approach to new play concept development

    SciTech Connect (OSTI)

    Bertagne, A.J.; Vuillermoz, C.; Maxwell, R.A.

    1989-03-01

    A megaregional seismic line is a continuous line that traverses more than one basin. After such a line is interpreted using well control, surface geology, and other available data, it serves as a concise expression of our understanding of the geology along a transect and provides a starting point for developing new play concepts. Megaregional seismic lines aid in the development of exploration concepts by providing new insights into (1) what is and is not basement, (2) maturation history and migration pathways, (3) regional structural geology, and (4) regional stratigraphy. An ongoing project to prepare a series of interpreted transcontinental megaregional seismic lines uses a segment that starts in the Arkoma basin of Oklahoma, traverses the Ouachita thrust belt, and terminates at the northern Texas Gulf coastal plain. This segment shows that several potential plays exist, both structural and stratigraphic, between areas of current exploration activity. Regional seismic lines from the Sacramento Valley and the Illinois basin further illustrate how interpretation of long seismic lines can lead to new exploration ideas.

  17. Reversible rigid coupling apparatus and method for borehole seismic transducers

    DOE Patents [OSTI]

    Owen, Thomas E. (Helotes, TX); Parra, Jorge O. (Helotes, TX)

    1992-01-01

    An apparatus and method of high resolution reverse vertical seismic profile (VSP) measurements is shown. By encapsulating the seismic detector and heaters in a meltable substance (such as wax), the seismic detector can be removably secured in a borehole in a manner capable of measuring high resolution signals in the 100 to 1000 hertz range and higher. The meltable substance is selected to match the overall density of the detector package with the underground formation, yet still have relatively low melting point and rigid enough to transmit vibrations to accelerometers in the seismic detector. To minimize voids in the meltable substance upon solidification, the meltable substance is selected for minimum shrinkage, yet still having the other desirable characteristics. Heaters are arranged in the meltable substance in such a manner to allow the lowermost portion of the meltable substance to cool and solidify first. Solidification continues upwards from bottom-to-top until the top of the meltable substance is solidified and the seismic detector is ready for use. To remove, the heaters melt the meltable substance and the detector package is pulled from the borehole.

  18. Mark R. Hahn of the Richland Operations Office presented 2014 Safety System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oversight Annual Award | Department of Energy Mark R. Hahn of the Richland Operations Office presented 2014 Safety System Oversight Annual Award Mark R. Hahn of the Richland Operations Office presented 2014 Safety System Oversight Annual Award May 21, 2015 - 1:18pm Addthis Mark R. Hahn of the Richland Operations Office presented 2014 Safety System Oversight Annual Award About 70 Department of Energy (DOE) federal employees serve as Safety System Oversight (SSO) personnel, providing federal

  19. TBH-0098 - In the Matter of Mark D. Siciliano | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    98 - In the Matter of Mark D. Siciliano TBH-0098 - In the Matter of Mark D. Siciliano This Decision will consider a Motion to Dismiss filed by Battelle Energy Alliance LLC (Battelle), the Management and Operating Contractor for the Department of Energy's (DOE) Idaho National Laboratory (INL), in connection with the pending Complaint of Retaliation filed by Mark Siciliano against Battelle under the DOE's Contractor Employee Protection Program and its governing regulations set forth at 10 C.F.R.

  20. TBZ-0098 - In the Matter of Mark D. Siciliano | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    98 - In the Matter of Mark D. Siciliano TBZ-0098 - In the Matter of Mark D. Siciliano This Decision will consider a Motion to Dismiss filed by Battelle Energy Alliance LLC (Battelle), the Management and Operating Contractor for the Department of Energy's (DOE) Idaho National Laboratory (INL), in connection with the pending Complaint of Retaliation filed by Mark Siciliano against Battelle under the DOE's Contractor Employee Protection Program and its governing regulations set forth at 10 C.F.R.

  1. DOE Names Mark A. Gabriel as New Western Area Power Administration

    Office of Environmental Management (EM)

    Administrator | Department of Energy Mark A. Gabriel as New Western Area Power Administration Administrator DOE Names Mark A. Gabriel as New Western Area Power Administration Administrator April 3, 2013 - 2:53pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON, D.C. - The Energy Department has chosen Mark A. Gabriel to be the new Administrator of the Western Area Power Administration (WAPA) in Lakewood, Colorado, one of four Power Marketing Administrations (PMAs) the Department oversees.

  2. Gen. Klotz thanks W76-1 team for reaching half way mark | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gen. Klotz thanks W76-1 team for reaching half way mark | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  3. UC President Mark Yudof Announces Appointment of Paul Alivisatos as Berkeley Lab Director

    ScienceCinema (OSTI)

    Yudof, Mark

    2013-05-29

    In this video, broadcast to Berkeley Lab staff on Nov. 20, 2009, UC President Mark Yudof announces Paul Alivisatos as the new director of Lawrence Berkeley National Laboratory

  4. Name Affiliation Co-Chairs Mark Ralston BPA Mary Smith Snohomish

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reporting and Verification of Savings Name Affiliation Co-Chairs Mark Ralston BPA Mary Smith Snohomish Participants Bo Downen PPC Brad Cebulko WA Utilities and Transportation...

  5. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Mark Strauch

    Broader source: Energy.gov [DOE]

    Commenter: Mark Strauch 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  6. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Mark Fisher

    Broader source: Energy.gov [DOE]

    Commenter: Mark Fisher 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  7. NNSA Awards Bronze Medal Award to Mark Livesay of Y-12 | National...

    National Nuclear Security Administration (NNSA)

    Award to Mark Livesay of Y-12 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering...

  8. Mark Peters testifies for Congress on nuclear energy 5/19/10

    ScienceCinema (OSTI)

    Peters, Mark

    2013-04-19

    Mark Peters, Deputy Lab Director at Argonne National Laboratory, testifies before Congress on advanced nuclear fuel cycle R&D and the DOE nuclear roadmap. May 19, 2010.

  9. Mark Peters testifies for Congress on nuclear energy 5/19/10

    ScienceCinema (OSTI)

    Mark Peters

    2010-09-01

    Mark Peters, Deputy Lab Director at Argonne National Laboratory, testifies before Congress on advanced nuclear fuel cycle R&D and the DOE nuclear roadmap. May 19, 2010.

  10. Lasers Leave a Mark on Materials - At the Atomic Level | U.S...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lasers Leave a Mark on Materials - At the Atomic Level Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic...

  11. Message from New LPO Executive Director Mark McCall | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Message from New LPO Executive Director Mark McCall Message from New LPO Executive Director Mark McCall August 19, 2015 - 9:47am Addthis Mark A. McCall Mark A. McCall Executive Director of the Loan Programs Office As financing becomes an increasingly important aspect of continuing clean energy's rapid growth, I could not have picked a better time to join the Department's Loan Programs Office (LPO). As one of the nation's largest project finance organizations with $40 billion in remaining

  12. Crosswell seismic measurement of transverse isotropy in V/sub p/ and Q/sup p/

    SciTech Connect (OSTI)

    Johnson, P.A.; Albright, J.N.; Phillips, W.S.

    1986-01-01

    Crosswell seismic measurements of apparent seismic Q/sub p/, V/sub p/, and V/sub s/ were made at the DOE Multi-Well Experiment (MWX) site near Rifle, Colorado. The MWX wells penetrate gas-bearing low permeability sandstones in the Mesa Verde formation at depths between 1950-2010 meters. Numerous measurements of Q/sub p/ were made between angles of 45 and 135 degrees measured from vertical using a modification of the technique of Fehler and Pearson (1984) in which measurement of P-wave amplitude permits the calculation of Q/sub p/, once compensation has been made for the radiation pattern of the source and geometric spreading. The magnitude of Q/sub p/ and V/sub p/ are found to change with propagation angle. Minimum values of Q/sub p/ and maximum values of V/sub p/ were measured parallel to sedimentary layering (15 and 4.75 km/s, respectively). A roughly linear increase in Q/sub p/ and a decrease in V/sub p/ occurs with increasing inclination of propagation paths to horizontal bedding planes. At 50 degrees from vertical a 90 percent increase in Q/sub p/ and a 7 percent decrease in V/sub p/ relative to values in the horizontal direction were measured. No change in V/sub s/ was observed. 12 refs., 3 figs., 1 tab.

  13. Reducing Uncertainty in the Seismic Design Basis for the Waste Treatment Plant, Hanford, Washington

    SciTech Connect (OSTI)

    Brouns, Thomas M.; Rohay, Alan C.; Reidel, Steve; Gardner, Martin G.

    2007-02-27

    The seismic design basis for the Waste Treatment Plant (WTP) at the Department of Energys (DOE) Hanford Site near Richland was re-evaluated in 2005, resulting in an increase by up to 40% in the seismic design basis. The original seismic design basis for the WTP was established in 1999 based on a probabilistic seismic hazard analysis completed in 1996. The 2005 analysis was performed to address questions raised by the Defense Nuclear Facilities Safety Board (DNFSB) about the assumptions used in developing the original seismic criteria and adequacy of the site geotechnical surveys. The updated seismic response analysis used existing and newly acquired seismic velocity data, statistical analysis, expert elicitation, and ground motion simulation to develop interim design ground motion response spectra which enveloped the remaining uncertainties. The uncertainties in these response spectra were enveloped at approximately the 84th percentile to produce conservative design spectra, which contributed significantly to the increase in the seismic design basis.

  14. TGLO - Application to Perform Seismic Work on State-Owned Land...

    Open Energy Info (EERE)

    TGLO - Application to Perform Seismic Work on State-Owned Land Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: TGLO - Application to Perform Seismic Work...

  15. Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity

    Broader source: Energy.gov [DOE]

    This project will develop a model for seismicity-based reservoir characterization (SBRC) by combining rock mechanics; finite element modeling; geo-statistical concepts to establish relationships between micro-seismicity; reservoir flow and geomechanical characteristics.

  16. DOE/EH-0545, Seismic Evaluation Procedure for Equipment in U...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOEEH-0545, Seismic Evaluation Procedure for Equipment in U.S. Department of Energy Facilities, 1997 DOEEH-0545, Seismic Evaluation Procedure for Equipment in U.S. Department of...

  17. U.S. Maximum Number of Active Crews Engaged in Seismic Surveying...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) U.S. Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Year Jan Feb...

  18. Seismic ruggedness of aged electrical components: Final report (Phase 2)

    SciTech Connect (OSTI)

    Gleason, J.F.

    1987-01-01

    Seismic tests on new and aged components have shown that, for many types of commonly used nuclear plant electrical components, deterioration due to aging does not significantly affect the ability of the components to function during and after a seismic event. This was demonstrated for capacitors, circuit breakers, contactors (motor starters), control station assemblies, electronic alarms, electronics, fuses, fuse blocks, inductors, meters, motors, pressure transmitters, power supplies, relays, RTDs, solenoid valves, terminal blocks, time delay relays, transformers and switches. A few switch types (limit, pressure and rotary) were observed to be more prone to contact chatter in an aged condition than in an unaged condition. However, the ability of these devices to switch during and after shaking was not affected by aging. These results can be referenced to eliminate the cost of aging prior to seismic qualification testing for many types of electrical components.

  19. Methods for use in detecting seismic waves in a borehole

    DOE Patents [OSTI]

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2007-02-20

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  20. Development of the Multi-Level Seismic Receiver (MLSR)

    SciTech Connect (OSTI)

    Sleefe, G.E.; Engler, B.P.; Drozda, P.M.; Franco, R.J.; Morgan, J.

    1995-02-01

    The Advanced Geophysical Technology Department (6114) and the Telemetry Technology Development Department (2664) have, in conjunction with the Oil Recovery Technology Partnership, developed a Multi-Level Seismic Receiver (MLSR) for use in crosswell seismic surveys. The MLSR was designed and evaluated with the significant support of many industry partners in the oil exploration industry. The unit was designed to record and process superior quality seismic data operating in severe borehole environments, including high temperature (up to 200{degrees}C) and static pressure (10,000 psi). This development has utilized state-of-the-art technology in transducers, data acquisition, and real-time data communication and data processing. The mechanical design of the receiver has been carefully modeled and evaluated to insure excellent signal coupling into the receiver.

  1. Source-independent full waveform inversion of seismic data

    DOE Patents [OSTI]

    Lee, Ki Ha

    2006-02-14

    A set of seismic trace data is collected in an input data set that is first Fourier transformed in its entirety into the frequency domain. A normalized wavefield is obtained for each trace of the input data set in the frequency domain. Normalization is done with respect to the frequency response of a reference trace selected from the set of seismic trace data. The normalized wavefield is source independent, complex, and dimensionless. The normalized wavefield is shown to be uniquely defined as the normalized impulse response, provided that a certain condition is met for the source. This property allows construction of the inversion algorithm disclosed herein, without any source or source coupling information. The algorithm minimizes the error between data normalized wavefield and the model normalized wavefield. The methodology is applicable to any 3-D seismic problem, and damping may be easily included in the process.

  2. Seismic issues at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Fricke, K.E. )

    1989-11-01

    A seismic expert workshop was held at the Paducah Gaseous Diffusion Plant (PGDP) on March 13--15, 1989. the PGDP is operated by Martin Marietta Energy Systems, Inc. for the United States Department of Energy (DOE). During the last twenty years the design criteria for natural phenomenon hazards has steadily become more demanding at all of the DOE Oak Ridge Operations (ORO) sites. The purpose of the two-day workshop was to review the seismic vulnerability issues of the PGDP facilities. Participants to the workshop included recognized experts in the fields of seismic engineering, seismology and geosciences, and probabilistic analysis, along with engineers and other personnel from Energy Systems. A complete list of the workshop participants is included in the front of this report. 29 refs.

  3. Data Acquisition-Manipulation At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

  4. Geographic Information System At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    DOE-funding Unknown References Mark Coolbaugh, Richard Zehner, Corne Kreemer, David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin,...

  5. Field Mapping At Central Nevada Seismic Zone Region (Shevenell...

    Open Energy Info (EERE)

    References Lisa Shevenell, Mark Coolbaugh, Chris Sladek, Rick Zehner, Chris Kratt, James Faulds, Robin Penfield (2008) Our Evolving Knowledge Of Nevada'S Geothermal Resource...

  6. Geographic Information System At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Unknown References Geoffrey Blewittl, Mark F. Coolbaugh, Don Sawatzky, William Holt, James Davis, Richard A. Bennett (2003) Targeting Of Potential Geothermal Resources In The...

  7. Geodetic Survey At Central Nevada Seismic Zone Region (Blewitt...

    Open Energy Info (EERE)

    Unknown References Geoffrey Blewittl, Mark F. Coolbaugh, Don Sawatzky, William Holt, James Davis, Richard A. Bennett (2003) Targeting Of Potential Geothermal Resources In The...

  8. Field Mapping At Central Nevada Seismic Zone Region (Blewitt...

    Open Energy Info (EERE)

    Unknown References Geoffrey Blewittl, Mark F. Coolbaugh, Don Sawatzky, William Holt, James Davis, Richard A. Bennett (2003) Targeting Of Potential Geothermal Resources In The...

  9. Virtual tool mark generation for efficient striation analysis in forensic science

    SciTech Connect (OSTI)

    Ekstrand, Laura

    2012-11-16

    In 2009, a National Academy of Sciences report called for investigation into the scienti#12;c basis behind tool mark comparisons (National Academy of Sciences, 2009). Answering this call, Chumbley et al. (2010) attempted to prove or disprove the hypothesis that tool marks are unique to a single tool. They developed a statistical algorithm that could, in most cases, discern matching and non-matching tool marks made at di#11;erent angles by sequentially numbered screwdriver tips. Moreover, in the cases where the algorithm misinterpreted a pair of marks, an experienced forensics examiner could discern the correct outcome. While this research served to con#12;rm the basic assumptions behind tool mark analysis, it also suggested that statistical analysis software could help to reduce the examiner's workload. This led to a new tool mark analysis approach, introduced in this thesis, that relies on 3D scans of screwdriver tip and marked plate surfaces at the micrometer scale from an optical microscope. These scans are carefully cleaned to remove noise from the data acquisition process and assigned a coordinate system that mathematically de#12;nes angles and twists in a natural way. The marking process is then simulated by using a 3D graphics software package to impart rotations to the tip and take the projection of the tip's geometry in the direction of tool travel. The edge of this projection, retrieved from the 3D graphics software, becomes a virtual tool mark. Using this method, virtual marks are made at increments of 5#14; and compared to a scan of the evidence mark. The previously developed statistical package from Chumbley et al. (2010) performs the comparison, comparing the similarity of the geometry of both marks to the similarity that would occur due to random chance. The resulting statistical measure of the likelihood of the match informs the examiner of the angle of the best matching virtual mark, allowing the examiner to focus his/her mark analysis on a smaller range of angles. Preliminary results are quite promising. In a study with both sides of 6 screwdriver tips and 34 corresponding marks, the method distinguished known matches from known non-matches with zero false positive matches and only two matches mistaken for non-matches. For matches, it could predict the correct marking angle within #6;5-10#14;. Moreover, on a standard desktop computer, the virtual marking software is capable of cleaning 3D tip and plate scans in minutes and producing a virtual mark and comparing it to a real mark in seconds. These results support several of the professional conclusions of the tool mark analysis com- munity, including the idea that marks produced by the same tool only match if they are made at similar angles. The method also displays the potential to automate part of the comparison process, freeing the examiner to focus on other tasks, which is important in busy, backlogged crime labs. Finally, the method o#11;ers the unique chance to directly link an evidence mark to the tool that produced it while reducing potential damage to the evidence.

  10. Risk-Informed Design of Seismic Isolation Systems for Nuclear Facilities |

    Office of Environmental Management (EM)

    Department of Energy Risk-Informed Design of Seismic Isolation Systems for Nuclear Facilities Risk-Informed Design of Seismic Isolation Systems for Nuclear Facilities Presentation from the May 2015 Seismic Lessons-Learned Panel Meeting. PDF icon Risk-Informed Design of Seismic Isolation Systems for Nuclear Facilities More Documents & Publications Vehicle Technologies Office Merit Review 2015: Development of Industrially Viable Battery Electrode Coatings Verification Method for SSI

  11. Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010

    Office of Scientific and Technical Information (OSTI)

    (Dataset) | Data Explorer Data Explorer Search Results Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010 Title: Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010 Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010. ArcGIS map package containing topographic base map, Township and Range layer, Oski BLM and private leases at time of survey, and locations, with selected shot points, of the five seismic lines. Authors: Michael Lane

  12. Assigning Seismic Design Category to Large Reactors: A Case Study of the ATR

    Broader source: Energy.gov [DOE]

    Assigning Seismic Design Category to Large Reactors: A Case Study of the ATR Stuart Jensen October 21, 2014

  13. Method for FractMethod for Fracture Detection Using Multicomponent Seismic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dataure Detection Using Multicomponent Seismic Data - Energy Innovation Portal Method for FractMethod for Fracture Detection Using Multicomponent Seismic Dataure Detection Using Multicomponent Seismic Data Dr. Bryan DeVault Department of Geophysics Colorado School of Mines Contact CSM About This Technology Technology Marketing SummaryThis invention provides a method for detecting fractures in the subsurface of the earth's crust by using seismic shear waves. DescriptionAdditionally, it can be

  14. Mine seismicity and the Comprehensive Nuclear Test Ban Treaty

    SciTech Connect (OSTI)

    Chiappetta, F.; Heuze, F.; Walter, W.; Hopler, R.; Hsu, V.; Martin, B.; Pearson, C.; Stump, B.; Zipf, K.

    1998-12-09

    Surface and underground mining operations generate seismic ground motions which are created by chemical explosions and ground failures. It may come as a surprise to some that the ground failures (coal bumps, first caves, pillar collapses, rockbursts, etc.) can send signals whose magnitudes are as strong or stronger than those from any mining blast. A verification system that includes seismic, infrasound, hydroacoustic and radionuclide sensors is being completed as part of the CTBT. The largest mine blasts and ground failures will be detected by this system and must be identified as distinct from signals generated by small nuclear explosions. Seismologists will analyze the seismic records and presumably should be able to separate them into earthquake-like and non earthquake-like categories, using a variety of so-called seismic discriminants. Non-earthquake essentially means explosion- or implosion-like. Such signals can be generated not only by mine blasts but also by a variety of ground failures. Because it is known that single-fired chemical explosions and nuclear explosion signals of the same yield give very similar seismic records, the non-earthquake signals will be of concern to the Treaty verification community. The magnitude of the mine-related events is in the range of seismicity created by smaller nuclear explosions or decoupled tests, which are of particular concern under the Treaty. It is conceivable that legitimate mining blasts or some mine-induced ground failures could occasionally be questioned. Information such as shot time, location and design parameters may be all that is necessary to resolve the event identity. In rare instances where the legitimate origin of the event could not be resolved by a consultation and clarification procedure, it might trigger on On-Site Inspection (OSI). Because there is uncertainty in the precise location of seismic event as determined by the International Monitoring System (IMS), the OSI can cover an area of up to 1,000 squared kilometers. In active mining districts this area could include several different mining operations. So, an OSI could be disruptive both to the mining community and to the US Government which must host the foreign inspection team. Accordingly, it is in the best interest of all US parties to try and eliminate the possible occurrence of false alarms. This can be achieved primarily by reducing the ambiguity of mine-induced seismic signals, so that even if these remain visible to the IMS they are clearly consistent with recognizable mining patterns.

  15. Deep Downhole Seismic Testing for Earthquake Engineering Studies

    SciTech Connect (OSTI)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh; Rohay, Alan C.

    2008-10-17

    Downhole seismic testing is one field test that is commonly used to determine compression-wave (P) and shear-wave (S) velocity profiles in geotechnical earthquake engineering investigations. These profiles are required input in evaluations of the responses to earthquake shaking of geotechnical sites and structures at these sites. In the past, traditional downhole testing has generally involved profiling in the 30- to 150-m depth range. As the number of field seismic investigations at locations with critical facilities has increased, profiling depths have also increased. An improved downhole test that can be used for wave velocity profiling to depths of 300 to 600 m or more is presented.

  16. Hanford Site-Wide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Example Application of Approach 3 to Develop Soil Hazard Curves Hanford Site-Wide Probabilistic Seismic Hazard Analysis 2014 Appendix K - Example Application of Approach 3 to Develop Soil Hazard Curves The seismic hazard results presented in Chapter 10.0 represent the hazard at the baserock horizon defined to be at the top of the Wanapum basalts, which is encountered at depths of between 332 and 446 m at the hazard calculation Sites A-E. As discussed in Section 10.5, the recommended approach

  17. Hanford Site-Wide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Revision 1) Example Application of Approach 3 to Develop Soil Hazard Curves Hanford Site-Wide Probabilistic Seismic Hazard Analysis 2014 K.1 Appendix K - Example Application of Approach 3 to Develop Soil Hazard Curves The seismic hazard results presented in Chapter 10.0 represent the hazard at the baserock horizon defined to be at the top of the Wanapum basalts, which is encountered at depths of between 332 and 446 m at the hazard calculation Sites A-E. As discussed in Section 10.5, the

  18. Seismic Analysis of Existing Facilties and Evaluation of Risk (SAFER)

    Office of Environmental Management (EM)

    Seismic Analysis of Facilities and Evaluation of Risk Michael Salmon, LANL Larry, Goen, LANL Voice: 505-665-7244 Fax: 505-665-2897 salmon@lanl.gov 10/22/2008 p. 2, LA-UR 11-06024 Purpose * To discuss LANLs implementation of SAFER and lessons learned * Background * Results * Lessons learned 10/22/2008 p. 3, LA-UR 11-06024 SAFER Project * Project Mission - Conduct quantitative evaluation of seismic risk due to operations of Nuclear and High Hazard (DSA) Facilities at LANL operating under a

  19. I Historical Information H. 6 SeismicIGround Motion Activity

    Office of Legacy Management (LM)

    Historical Information H. 6 SeismicIGround Motion Activity Book 3 Seismic Data from Rulison DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. This page intentionally left blank S E I S M I C D A T A F R O M R U L I S O N ENVIRONMENTAL SCIENCE SERVICES ADMINISTRATION COAST AND GEODETIC SURVEY Prepared By SPECIAL SEISMOLOGICAL ANALYSIS BRANCH James N. Jordan, Chief Sponsored By U .S. ARMS CONTROL AND

  20. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect (OSTI)

    Gary Mavko

    2002-05-01

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) How to quantify elastic properties of clay minerals using Atomic Force Acoustic Microscopy. We show how bulk modulus of clay can be measured using atomic force acoustic microscopy (AFAM) (2) We have successfully measured elastic properties of unconsolidated sediments in an effort to quantify attributes for detection of overpressures from seismic (3) We have initiated efforts for velocity upscaling to quantify long-wavelength and short-wavelength velocity behavior and the scale-dependent dispersion caused by sediment variability in different depositional environments.

  1. Improving Geologic and Engineering Models of Midcontinent Fracture and Karst-Modified Reservoirs Using New 3-D Seismic Attributes

    SciTech Connect (OSTI)

    Susan Nissen; Saibal Bhattacharya; W. Lynn Watney; John Doveton

    2009-03-31

    Our project goal was to develop innovative seismic-based workflows for the incremental recovery of oil from karst-modified reservoirs within the onshore continental United States. Specific project objectives were: (1) to calibrate new multi-trace seismic attributes (volumetric curvature, in particular) for improved imaging of karst-modified reservoirs, (2) to develop attribute-based, cost-effective workflows to better characterize karst-modified carbonate reservoirs and fracture systems, and (3) to improve accuracy and predictiveness of resulting geomodels and reservoir simulations. In order to develop our workflows and validate our techniques, we conducted integrated studies of five karst-modified reservoirs in west Texas, Colorado, and Kansas. Our studies show that 3-D seismic volumetric curvature attributes have the ability to re-veal previously unknown features or provide enhanced visibility of karst and fracture features compared with other seismic analysis methods. Using these attributes, we recognize collapse features, solution-enlarged fractures, and geomorphologies that appear to be related to mature, cockpit landscapes. In four of our reservoir studies, volumetric curvature attributes appear to delineate reservoir compartment boundaries that impact production. The presence of these compartment boundaries was corroborated by reservoir simulations in two of the study areas. Based on our study results, we conclude that volumetric curvature attributes are valuable tools for mapping compartment boundaries in fracture- and karst-modified reservoirs, and we propose a best practices workflow for incorporating these attributes into reservoir characterization. When properly calibrated with geological and production data, these attributes can be used to predict the locations and sizes of undrained reservoir compartments. Technology transfer of our project work has been accomplished through presentations at professional society meetings, peer-reviewed publications, Kansas Geological Survey Open-file reports, Master's theses, and postings on the project website: http://www.kgs.ku.edu/SEISKARST.

  2. Technical specifications manual for the MARK-1 pulsed ionizing radiation detection system. Volume 1

    SciTech Connect (OSTI)

    Lawrence, R.S.; Harker, Y.D.; Jones, J.L.; Hoggan, J.M.

    1993-03-01

    The MARK-1 detection system was developed by the Idaho National Engineering Laboratory for the US Department of Energy Office of Arms Control and Nonproliferation. The completely portable system was designed for the detection and analysis of intense photon emissions from pulsed ionizing radiation sources. This manual presents the technical design specifications for the MARK-1 detection system and was written primarily to assist the support or service technician in the service, calibration, and repair of the system. The manual presents the general detection system theory, the MARK-1 component design specifications, the acquisition and control software, the data processing sequence, and the system calibration procedure. A second manual entitled: Volume 2: Operations Manual for the MARK-1 Pulsed Ionizing Radiation Detection System (USDOE Report WINCO-1108, September 1992) provides a general operational description of the MARK-1 detection system. The Operations Manual was written primarily to assist the field operator in system operations and analysis of the data.

  3. ADAPTION OF NONSTANDARD PIPING COMPONENTS INTO PRESENT DAY SEISMIC CODES

    SciTech Connect (OSTI)

    D. T. Clark; M. J. Russell; R. E. Spears; S. R. Jensen

    2009-07-01

    With spiraling energy demand and flat energy supply, there is a need to extend the life of older nuclear reactors. This sometimes requires that existing systems be evaluated to present day seismic codes. Older reactors built in the 1960s and early 1970s often used fabricated piping components that were code compliant during their initial construction time period, but are outside the standard parameters of present-day piping codes. There are several approaches available to the analyst in evaluating these non-standard components to modern codes. The simplest approach is to use the flexibility factors and stress indices for similar standard components with the assumption that the non-standard component’s flexibility factors and stress indices will be very similar. This approach can require significant engineering judgment. A more rational approach available in Section III of the ASME Boiler and Pressure Vessel Code, which is the subject of this paper, involves calculation of flexibility factors using finite element analysis of the non-standard component. Such analysis allows modeling of geometric and material nonlinearities. Flexibility factors based on these analyses are sensitive to the load magnitudes used in their calculation, load magnitudes that need to be consistent with those produced by the linear system analyses where the flexibility factors are applied. This can lead to iteration, since the magnitude of the loads produced by the linear system analysis depend on the magnitude of the flexibility factors. After the loading applied to the nonstandard component finite element model has been matched to loads produced by the associated linear system model, the component finite element model can then be used to evaluate the performance of the component under the loads with the nonlinear analysis provisions of the Code, should the load levels lead to calculated stresses in excess of Allowable stresses. This paper details the application of component-level finite element modeling to account for geometric and material nonlinear component behavior in a linear elastic piping system model. Note that this technique can be applied to the analysis of B31 piping systems.

  4. Seismic moment summation for historical earthquakes in Italy - tectonic implications

    SciTech Connect (OSTI)

    Westaway, R. )

    1992-10-01

    Tectonic deformation rates in and around the Apennine mountains of Italy are studied using seismic moments estimated from macroseismic effects of historical earthquakes. Northeastward extension in the northern Apennines (north of about 42.5 deg N) accompanies shortening along their northeast flank. Since the seventeenth century, the sparce seismicity in these two zones has included no earthquake with magnitude greater than 6.5 or seismic moment above about 6x10 exp 18 N m. Their spatially averaged deformation rates are only about 0.3 mm/yr, but are equal, such that the extention and shortening balance with no relative motion between their external surroundings. In contrast, the numerous historical earthquakes in the central and southern Apennines with magnitude about 7 and seismic moment about 20x10 exp 18 N m require northeastward relative velocity across the deforming zone up to about 5 mm/yr, matching the expected relative motion of their surroundings. The northern Apennines thus show different senses and rates of deformation from localities farther south, and are thus tectonically distinct at present, in contrast with previous interpretations. 82 refs.

  5. Fabry-Perot MEMS Accelerometers for Advanced Seismic Imaging

    SciTech Connect (OSTI)

    Chisum, Brad

    2015-05-31

    This report summarizes the technical achievements that occurred over the duration of the project. On November 14th, 2014, Lumedyne Technologies Incorporated was acquired. As a result of the acquisition, the work toward seismic imaging applications was suspended indefinitely. This report captures the progress achieved up to that time.

  6. Multiple long-streamer technology speeds seismic survey off Brazil

    SciTech Connect (OSTI)

    Seeley, C.R.

    1995-09-18

    Now that 3D seismic is the survey of choice for most developing areas, the latest trend in conventional marine seismic acquisition has been pulling more streamers (sensor cables) behind each vessel. The goal behind the multi-streamer movement is obtaining the best data set as inexpensively as possible. PGS Exploration Inc. used its R/V Atlantic Explorer, pulling four seismic streamers measuring 4,000 m each with 160 recording channels/streamer, to complete a survey in 77 days--13 to 18 days earlier than planned--for Petroleo Brasileiro SA (Petrobras) in the Cabo Frio area of the Campos basin in Brazilian territorial waters. The survey was conducted from Jan. 19 to Apr. 4 in an area southeast of the existing Campos development, site of at least nine world records for deepwater production. It was performed in water depths ranging from 130 m to 2,000 m. Petrobras desired the 3D survey, the first int hat part of the Campos basin and the first turnkey 3D seismic contract signed by Petrobras, after its discovery of Guarajuba field last year in that region. The paper describes data acquisition and processing.

  7. Brady 1D seismic velocity model ambient noise prelim

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mellors, Robert J.

    2013-10-25

    Preliminary 1D seismic velocity model derived from ambient noise correlation. 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 km. Poorly constrained with increasing depth.

  8. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect (OSTI)

    Gary Mavko

    2003-06-30

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) Methods for detection of stress-induced velocity anisotropy in sands. (2) We have initiated efforts for velocity upscaling to quantify long-wavelength and short-wavelength velocity behavior and the scale-dependent dispersion caused by sediment variability in different depositional environments.

  9. NNSA conducts second seismic source physics experiment | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration conducts second seismic source physics experiment | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases

  10. Implementing New Methods of Laser Marking of Items in the Nuclear Material Control and Accountability System at SSC RF-IPPE: An Automated Laser Marking System

    SciTech Connect (OSTI)

    Regoushevsky, V I; Tambovtsev, S D; Dvukhsherstnov, V G; Efimenko, V F; Ilyantsev, A I; Russ III, G P

    2009-05-18

    For over ten years SSC RF-IPPE, together with the US DOE National Laboratories, has been working on implementing automated control and accountability methods for nuclear materials and other items. Initial efforts to use adhesive bar codes or ones printed (painted) onto metal revealed that these methods were inconvenient and lacked durability under operational conditions. For NM disk applications in critical stands, there is the additional requirement that labels not affect the neutron characteristics of the critical assembly. This is particularly true for the many stainless-steel clad disks containing highly enriched uranium (HEU) and plutonium that are used at SSC RF-IPPE for modeling nuclear power reactors. In search of an alternate method for labeling these disks, we tested several technological options, including laser marking and two-dimensional codes. As a result, the method of laser coloring was chosen in combination with Data Matrix ECC200 symbology. To implement laser marking procedures for the HEU disks and meet all the nuclear material (NM) handling standards and rules, IPPE staff, with U.S. technical and financial support, implemented an automated laser marking system; there are also specially developed procedures for NM movements during laser marking. For the laser marking station, a Zenith 10F system by Telesis Technologies (10 watt Ytterbium Fiber Laser and Merlin software) is used. The presentation includes a flowchart for the automated system and a list of specially developed procedures with comments. Among other things, approaches are discussed for human-factor considerations. To date, markings have been applied to numerous steel-clad HEU disks, and the work continues. In the future this method is expected to be applied to other MC&A items.

  11. Seismic modal analysis and system interaction

    SciTech Connect (OSTI)

    Lin, Chi Wen ); Wang, Chung Yi ); Chen, W.W. ); Gutierrez, B. . Savannah River Site)

    1993-01-01

    Separate abstracts were prepared for the technical papers presented at the American Society of Mechanical Engineers 1993 Pressure Vessels and Piping Conference on July 25--29 in Denver, Colorado. This volume contains sixteen papers presented under the session title of Modal Analysis and Systems Interactions Techniques. The intent of these sessions is to provide a common forum for the researchers to have a broad exchange of views on many pressing subjects concerning the design and analysis of nuclear and waste facilities.

  12. Fielding of HT-seismic Tools and Evaluation of HT-FPGA Module - Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of a HT-seismic Tool; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Fielding of HT-seismic Tools and Evaluation of HT-FPGA Module - Development of a HT-seismic Tool; 2010 Geothermal Technology Program Peer Review Report Fielding of HT-seismic Tools and Evaluation of HT-FPGA Module - Development of a HT-seismic Tool; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review PDF icon hightemp_020_henfling.pdf More

  13. NSR&D Program Fiscal Year (FY) 2015 Call for Proposals Mitigation of Seismic Risk at Nuclear Facilities using Seismic Isolation

    SciTech Connect (OSTI)

    Coleman, Justin

    2015-02-01

    Seismic isolation (SI) has the potential to drastically reduce seismic response of structures, systems, or components (SSCs) and therefore the risk associated with large seismic events (large seismic event could be defined as the design basis earthquake (DBE) and/or the beyond design basis earthquake (BDBE) depending on the site location). This would correspond to a potential increase in nuclear safety by minimizing the structural response and thus minimizing the risk of material release during large seismic events that have uncertainty associated with their magnitude and frequency. The national consensus standard America Society of Civil Engineers (ASCE) Standard 4, Seismic Analysis of Safety Related Nuclear Structures recently incorporated language and commentary for seismically isolating a large light water reactor or similar large nuclear structure. Some potential benefits of SI are: 1) substantially decoupling the SSC from the earthquake hazard thus decreasing risk of material release during large earthquakes, 2) cost savings for the facility and/or equipment, and 3) applicability to both nuclear (current and next generation) and high hazard non-nuclear facilities. Issue: To date no one has evaluated how the benefit of seismic risk reduction reduces cost to construct a nuclear facility. Objective: Use seismic probabilistic risk assessment (SPRA) to evaluate the reduction in seismic risk and estimate potential cost savings of seismic isolation of a generic nuclear facility. This project would leverage ongoing Idaho National Laboratory (INL) activities that are developing advanced (SPRA) methods using Nonlinear Soil-Structure Interaction (NLSSI) analysis. Technical Approach: The proposed study is intended to obtain an estimate on the reduction in seismic risk and construction cost that might be achieved by seismically isolating a nuclear facility. The nuclear facility is a representative pressurized water reactor building nuclear power plant (NPP) structure. Figure 1: Project activities The study will consider a representative NPP reinforced concrete reactor building and representative plant safety system. This study will leverage existing research and development (R&D) activities at INL. Figure 1 shows the proposed study steps with the steps in blue representing activities already funded at INL and the steps in purple the activities that would be funded under this proposal. The following results will be documented: 1) Comparison of seismic risk for the non-seismically isolated (non-SI) and seismically isolated (SI) NPP, and 2) an estimate of construction cost savings when implementing SI at the site of the generic NPP.

  14. Field site investigation: Effect of mine seismicity on groundwater hydrology

    SciTech Connect (OSTI)

    Ofoegbu, G.I.; Hsiung, S.; Chowdhury, A.H.; Philip, J.

    1995-04-01

    The results of a field investigation on the groundwater-hydrologic effect of mining-induced earthquakes are presented in this report. The investigation was conducted at the Lucky Friday Mine, a silver-lead-zinc mine in the Coeur d`Alene Mining District of Idaho. The groundwater pressure in sections of three fracture zones beneath the water table was monitored over a 24-mo period. The fracture zones were accessed through a 360-m-long inclined borehole, drilled from the 5,700 level station of the mine. The magnitude, source location, and associated ground motions of mining-induced seismic events were also monitored during the same period, using an existing seismic instrumentation network for the mine, augmented with additional instruments installed specifically for the project by the center for Nuclear Waste Regulatory Analyses (CNWRA). More than 50 seismic events of Richter magnitude 1.0 or larger occurred during the monitoring period. Several of these events caused the groundwater pressure to increase, whereas a few caused it to decrease. Generally, the groundwater pressure increased as the magnitude of seismic event increased; for an event of a given magnitude, the groundwater pressure increased by a smaller amount as the distance of the observation point from the source of the event increased. The data was examined using regression analysis. Based on these results, it is suggested that the effect of earthquakes on groundwater flow may be better understood through mechanistic modeling. The mechanical processes and material behavior that would need to be incorporated in such a model are examined. They include a description of the effect of stress change on the permeability and water storage capacity of a fracture rock mass; transient fluid flow; and the generation and transmission of seismic waves through the rock mass.

  15. Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    2012-01-01

    Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

  16. Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

  17. 3-D seismic velocity and attenuation structures in the geothermal field

    SciTech Connect (OSTI)

    Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  18. DOE Moab Project Reaches Halfway Mark in Mill Tailings Removal 2.5 Million

    Office of Environmental Management (EM)

    Hours Safely Worked | Department of Energy Moab Project Reaches Halfway Mark in Mill Tailings Removal 2.5 Million Hours Safely Worked DOE Moab Project Reaches Halfway Mark in Mill Tailings Removal 2.5 Million Hours Safely Worked January 20, 2016 - 12:00pm Addthis DOE Moab Project Reaches Halfway Mark in Mill Tailings Removal 2.5 Million Hours Safely Worked Media Contact Wendee Ryan, S&K Aerospace Public Affairs Manager, (970) 257-2145 (Grand Junction, CO) - The U.S. Department of Energy

  19. SRS Crosses Halfway Mark on Closing Another High-Level Waste Tank |

    Energy Savers [EERE]

    Department of Energy SRS Crosses Halfway Mark on Closing Another High-Level Waste Tank SRS Crosses Halfway Mark on Closing Another High-Level Waste Tank February 25, 2016 - 12:20pm Addthis Work is more than halfway complete on grouting Tank 12, the eighth to be operationally closed at Savannah River Site. Work is more than halfway complete on grouting Tank 12, the eighth to be operationally closed at Savannah River Site. AIKEN, S.C. - Savannah River Site (SRS) moved past the halfway mark

  20. Marking the End of One Recovery Act Chapter and the Beginning of Another |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Marking the End of One Recovery Act Chapter and the Beginning of Another Marking the End of One Recovery Act Chapter and the Beginning of Another September 30, 2010 - 3:53pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Today, September 30th, 2010, marks one of the most critical milestones for the Recovery Act. Not only is it the end of the Federal fiscal year, it's also the deadline stipulated by Recovery Act legislation for the