Sample records for mark bolinger lawrence

  1. Butler Lawrence

    E-Print Network [OSTI]

    Rowley, Clarence W.

    Apartments Wegman Arrive Wegman Depart Wal Mart Trader Apartments Lawrence Apartments Wegman Arrive Wegman Princeton Station Graduate College Wegman

  2. Butler Lawrence

    E-Print Network [OSTI]

    Rowley, Clarence W.

    Apartments Wegman Arrive Wegman Depart Wal Mart Trader Apartments Lawrence Apartments Wegman Arrive Wegman Station Graduate College Wegman Arrive Wegman Depart Wal Mart Trader

  3. UC President Mark Yudof Announces Appointment of Paul Alivisatos as Berkeley Lab Director

    ScienceCinema (OSTI)

    Yudof, Mark

    2013-05-29T23:59:59.000Z

    In this video, broadcast to Berkeley Lab staff on Nov. 20, 2009, UC President Mark Yudof announces Paul Alivisatos as the new director of Lawrence Berkeley National Laboratory

  4. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -of Energy Last DayLauraGasSecurityLawrence

  5. Quantifying the value that wind power provides as a hedge against volatile natural gas prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2002-01-01T23:59:59.000Z

    Gas Pricing by Regulated Natural Gas Utilities, Docket No.A HEDGE AGAINST VOLATILE NATURAL GAS PRICES Mark Bolinger,A HEDGE AGAINST VOLATILE NATURAL GAS PRICES Mark Bolinger,

  6. Berkeley Program Offers New Option for Financing Residential PV Systems

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01T23:59:59.000Z

    Vehicle for Residential PV Installations: Opportunities andfor Financing Residential PV Systems Mark Bolinger, Lawrencefor residential photovoltaic (PV) systems. Though financing

  7. Ernest Orlando Lawrence Awards Ceremony for 2011 Award Winners (Presentations, including remarks by Energy Secretary, Dr. Steven Chu)

    ScienceCinema (OSTI)

    Chu, Steven (U.S. Energy Secretary)

    2012-06-28T23:59:59.000Z

    The winners for 2011 of the Department of Energy's Ernest Orlando Lawrence Award were recognized in a ceremony held May 21, 2012. Dr. Steven Chu and others spoke of the importance of the accomplishments and the prestigious history of the award. The recipients of the Ernest Orlando Lawrence Award for 2011 are: Riccardo Betti (University of Rochester); Paul C. Canfield (Ames Laboratory); Mark B. Chadwick (Los Alamos National Laboratory); David E. Chavez (Los Alamos National Laboratory); Amit Goyal (Oak Ridge National Laboratory); Thomas P. Guilderson (Lawrence Livermore National Laboratory); Lois Curfman McInnes (Argonne National Laboratory); Bernard Matthew Poelker (Thomas Jeffereson National Accelerator Facility); and Barry F. Smith (Argonne National Laboratory).

  8. Ernest Orlando Lawrence Awards Ceremony for 2011 Award Winners (Presentations, including remarks by Energy Secretary, Dr. Steven Chu)

    SciTech Connect (OSTI)

    Chu, Steven (U.S. Energy Secretary) [U.S. Energy Secretary

    2012-05-21T23:59:59.000Z

    The winners for 2011 of the Department of Energy's Ernest Orlando Lawrence Award were recognized in a ceremony held May 21, 2012. Dr. Steven Chu and others spoke of the importance of the accomplishments and the prestigious history of the award. The recipients of the Ernest Orlando Lawrence Award for 2011 are: Riccardo Betti (University of Rochester); Paul C. Canfield (Ames Laboratory); Mark B. Chadwick (Los Alamos National Laboratory); David E. Chavez (Los Alamos National Laboratory); Amit Goyal (Oak Ridge National Laboratory); Thomas P. Guilderson (Lawrence Livermore National Laboratory); Lois Curfman McInnes (Argonne National Laboratory); Bernard Matthew Poelker (Thomas Jeffereson National Accelerator Facility); and Barry F. Smith (Argonne National Laboratory).

  9. Mark Gendron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'llMappingMaria Goeppert-Mayer,Mark-Gendron

  10. Enterprise Assessments Targeted Review, Lawrence Livermore National...

    Broader source: Energy.gov (indexed) [DOE]

    February 2015 Targeted Review of the Safety-Class Room Ventilation Systems and Associated Final Filtration Stages, and Review of Federal Assurance Capability at the Lawrence...

  11. Independent Activity Report, Lawrence Livermore National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory - March 2011 March 2011 Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program Effectiveness Review HIAR-LLNL-2011-03-25 This...

  12. Consent Order, Lawrence Livermore National National Security...

    Energy Savers [EERE]

    for deficiencies associated with the Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program On October 29, 2010, the U.S. Department of Energy (DOE)...

  13. Preliminary Notice of Violation, Lawrence Livermore National...

    Broader source: Energy.gov (indexed) [DOE]

    to the Unplanned Personnel Contaminations and Radioactive Material Intakes at the Hazardous Waste Management Facilities at the Lawrence Livermore National Laboratory,...

  14. Analysis Activities at Lawrence Livermore National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation on Lawrence Livermore’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  15. LBNL/PUB-5515 Ernest Orlando Lawrence

    E-Print Network [OSTI]

    LBNL/PUB-5515 Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed ............................................2 Grant Logan Jonathan Wurtele Wim Leemans Enabling High Energy Density Physics at LBNL

  16. Independent Oversight Review, Lawrence Livermore National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    controls have been implemented to reduce the risk associated with events resulting from a fire or explosion at nuclear facilities. Independent Oversight Review, Lawrence Livermore...

  17. Independent Activity Report, Lawrence Livermore National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    technicians, and the Alameda County Fire Department to a fire in a fume hood containing a depleted uranium part. Independent Activity Report, Lawrence Livermore National Laboratory...

  18. Lawrence Weinstein Old Dominion University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -of Energy LastLawrence

  19. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

    E-Print Network [OSTI]

    LBNL-58713 LBNL-58713 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Report on Applicability Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. LBNL-58713 ii #12 serves as the technical basis for this report. LBNL-58713 iii #12;In this report we applied

  20. Lessons Learned by Lawrence Livermore National Laboratory Activity...

    Energy Savers [EERE]

    Learned by Lawrence Livermore National Laboratory Activity-level Work Planning & Control Lessons Learned by Lawrence Livermore National Laboratory Activity-level Work...

  1. Vannevar Bush and Ernest Lawrence -- Two key individuals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lyman James Briggs, Arthur Holly Compton, Harold Clayton Urey, Ernest O. Lawrence and Edgar Murphee. Again, Lawrence was solidifying his position of strength and ability to...

  2. UCRL-ID-119170 LAWRENCE LIVERMORE NATIONAL LABORATORY

    E-Print Network [OSTI]

    . WorkperformedundertheauspicesoftheU.S.DepartmentofEnergybyLawrenceLivermoreNationalLaboratoryunder Contract W-7405-Eng-48. #12

  3. Independent Oversight Inspection, Lawrence Livermore National Laboratory- February 2009

    Broader source: Energy.gov [DOE]

    Inspection of Emergency Management at the Livermore Site Office and Lawrence Livermore National Laboratory

  4. Independent Oversight Inspection, Lawrence Livermore National Laboratory- May 2007

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Programs at the Lawrence Livermore National Laboratory

  5. Independent Oversight Inspection, Lawrence Livermore National Laboratory- June 2005

    Broader source: Energy.gov [DOE]

    Inspection of Emergency Management at the Livermore Site Office and Lawrence Livermore National Laboratory

  6. Independent Oversight Review, Lawrence Livermore National Laboratory- September 2011

    Broader source: Energy.gov [DOE]

    Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory

  7. Site Visit Report, Lawrence Livermore National Laboratory- March 2010

    Broader source: Energy.gov [DOE]

    Review of the Lawrence Livermore National Laboratory Identified Defective Department of Transportation Hazardous Material Packages

  8. Records Management Plan Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    Records Management Plan Page 1 Lawrence Berkeley National Laboratory Environment, Health and Safety Division Environmental Services Group Environmental Restoration Program Records Management Plan May 2007 #12;#12;Records Management Plan Page 3 TABLE OF CONTENTS 1 INTRODUCTION

  9. Learning by doing: The evolution of state support for photovoltaics

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2003-01-01T23:59:59.000Z

    of State Support for Photovoltaics Mark Bolinger and Ryantarget the installation of photovoltaics (PV) in one way orwidespread popularity of photovoltaics (PV), along with its

  10. Full Steam Ahead for PV in US Homes?

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01T23:59:59.000Z

    Full Steam Ahead for PV in US Homes? Mark Bolinger, Galenutility-scale photovoltaic (PV) installations in the yearsimplications for PV rebate program administrators, PV system

  11. Community Wind: Once Again Pushing the Envelope of Project Finance

    E-Print Network [OSTI]

    bolinger, Mark A.

    2011-01-01T23:59:59.000Z

    Ormand (Oregon Trail Wind Farm, LLC). 2010. PersonalOrganization Harnesses Wind Energy. ” Novogradac Journal ofMark Bolinger. 2010. 2009 Wind Technologies Market Report.

  12. Quantifying the value that energy efficiency and renewable energy provide as a hedge against volatile natural gas prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Bachrach, Devra; Golove, William

    2002-01-01T23:59:59.000Z

    Gas Pricing by Regulated Natural Gas Utilities, Docket No.a Hedge Against Volatile Natural Gas Prices Mark Bolinger,wake of unprecedented natural gas price volatility during

  13. Lawrence Berkeley National Laboratory Center for Computational Sciences and Engineering

    E-Print Network [OSTI]

    ' & $ % Lawrence Berkeley National Laboratory Center for Computational Sciences and Engineering Combustion Richard Pember Phillip Colella Louis Howell Ann Almgren John Bell William Crutchfield Vincent Beckner Center for Computational Sciences and Engineering Lawrence Berkeley National Laboratory Keith

  14. DOE Selects Lawrence Livermore National Security, LLC to Manage...

    Office of Environmental Management (EM)

    and operating contractor for DOE's National Nuclear Security Administration's (NNSA) Lawrence Livermore National Laboratory in California. "Livermore National Laboratory...

  15. Lawrence Berkeley National Laboratory University of California

    E-Print Network [OSTI]

    Eisen, Michael

    Lawrence Berkeley National Laboratory University of California Internal Audit T.L. HAMILTON Division Director Materials Sciences R.A. SEGALMAN Division Director, Acting Energy Sciences D.J. DEPAOLO Associate Laboratory Director Computational Research D.L. BROWN Division Director National Energy Research

  16. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

    E-Print Network [OSTI]

    of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air

  17. Lawrence E. Carlson Professor of Mechanical Engineering

    E-Print Network [OSTI]

    Carlson, Lawrence E.

    Education, American Society of Mechanical Engineers, pp. 31-33. Solar Stirling Engine 2Cam Rock ClimbingPortfolio Lawrence E. Carlson Professor of Mechanical Engineering Founding Co-Director, Integrated Teaching and Learning Program and Laboratory University of Colorado at Boulder #12;ENGINEERING EDUCATION

  18. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

    E-Print Network [OSTI]

    LBNL 53484 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Heat Recovery in Building Envelopes Program, of the U.S. Department of Energy under contract No. DE-AC03-76SF00098. #12;HEAT RECOVERY because of heat recovery within the building envelope. The major objective of this study was to provide

  19. Method of intrinsic marking

    DOE Patents [OSTI]

    Adams, David P; McDonald, Joel Patrick; Jared, Bradley Howell; Hodges, V. Carter; Hirschfeld, Deidre; Blair, Dianna S

    2014-04-01T23:59:59.000Z

    A method of pulsed laser intrinsic marking can provide a unique identifier to detect tampering or counterfeiting.

  20. Howard S. Marks

    Broader source: Energy.gov [DOE]

    Howard Marks is a Program Analyst with the Office of Energy Efficiency and Renewable Energy's Biomass Program.

  1. Event Marks Addition of Historical Girl Scout Collection to KU Libraries

    E-Print Network [OSTI]

    2007-04-09T23:59:59.000Z

    12/5/13 KU Libraries: Event Marks Addition of Historical Girl Scout Collection to KU Libraries www.lib.ku.edu/news/girlscouts.shtml 1/1 Contact Us KU Libraries Lawrence, Kansas 66045 (785) 864-8983 RESEARCH TOOLS AND EXPERTISE FOR TWENTY... Request Articles, Books,… Friends & Benefactors Suggestions Event Marks Addition of Historical Girl Scout Collection to KU Libraries KU Libraries hosted an event on Saturday, March 31 to commemorate the gift of a significant collection of papers...

  2. Geothermal programs at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Kasameyer, P.W.; Younker, L.W.

    1987-07-10T23:59:59.000Z

    Lawrence Livermore National Laboratory has a number of geothermal programs supported through two offices in the Department of Energy: the Office of Renewable Technologies, Geothermal Technologies Division, and the Office of Basic Energy Sciences, Division of Engineering, Mathematics and Geosciences. Within these programs, we are carrying out research in injection monitoring, optical instrumentation for geothermal wells, seismic imaging methods, geophysical and drilling investigations of young volcanic systems in California, and fundamental studies of the rock and mineral properties.

  3. Lawrence Livermore National Laboratory Summer Employment Summary

    SciTech Connect (OSTI)

    Wilson, A J

    2002-08-06T23:59:59.000Z

    This document will serve as a summary of my work activities as a summer employee for the Lawrence Livermore National Laboratory (LLNL). The intent of this document is to provide an overview of the National Ignition Facility (NIF) project, to explain the role of the department that I am working for, and to discuss my specific assigned tasks and their impact on the NIF project as a whole.

  4. Life sciences: Lawrence Berkeley Laboratory, 1988

    SciTech Connect (OSTI)

    Not Available

    1989-07-01T23:59:59.000Z

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs.

  5. Mark Engelhard | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mark Engelhard Recent Highlights Better Battery Performance Lithium (Li) metal has long been considered one of the most attractive anode materials, but large-scale application of...

  6. CURRICULUM VITAE NAME: Richard Lawrence Taylor

    E-Print Network [OSTI]

    : Frazer Jarvis (senior lecturer, Sheffield University), Karsten Bucker (hedge fund), Kevin Buzzard (University of Essen), Mark Dickinson (software), Sam Williams (film), Russ Mann (finance), David Savitt

  7. Independent Oversight Review of the Lawrence Livermore National...

    Energy Savers [EERE]

    Laboratory's health services and to conduct an Accreditation Association of Ambulatory Health Care accreditation survey. Independent Oversight Review of the Lawrence Livermore...

  8. CARTOGRAPHIC BASE FILES AT LAWRENCE BERKELEY LABORATORY: 1978. INVENTORY

    E-Print Network [OSTI]

    Burkhart, B.R.

    2011-01-01T23:59:59.000Z

    BERKELEY LABORATORY: 1978 INVENTORY f(ECEfVED tAWRENCE!FILES AT LAWRENCE BERKELEY LABORATORY: 1978 INVENTORY B. R.1979 ABSTRACT This inventory describes the cartographic base

  9. Concurrence' Lawrence Livermore National Laboratory FY2015 Ten...

    National Nuclear Security Administration (NNSA)

    manufacturing * Special nuclear materials-plutonium and tritium * High performance computing FY2015 Ten Year Site Plan Limited Report Page 3 of 6 Lawrence Livermore...

  10. First-of-a-kind supercomputer at Lawrence Livermore available...

    National Nuclear Security Administration (NNSA)

    by a partnership of Cray, Intel and Lawrence Livermore, this Cray CS300 high performance computing cluster is available for collaborative projects with industry through...

  11. DOE's Oak Ridge and Lawrence Berkeley National Labs Join with...

    Office of Environmental Management (EM)

    that Oak Ridge National Laboratory (ORNL) and Lawrence Berkeley National Laboratory (LBNL) have joined with Dow Chemical Company as part of a Cooperative Research and...

  12. Analysis of Minimizers of the Lawrence-Doniach Energy for ...

    E-Print Network [OSTI]

    2014-04-07T23:59:59.000Z

    an asymptotic formula for the minimum Lawrence-Doniach energy as e and the ... In this case, an analysis of the behavior of energy minimizers and their.

  13. CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Energy Savers [EERE]

    LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Engineering Services 541330 Drafting Services 541340 Geophysical Surveying and Mapping Services...

  14. LAWRENCE BERKELEY NATIONAL LABORATORY REPORT NO. LBNL-59202 ERNEST ORLANDO LAWRENCE

    E-Print Network [OSTI]

    information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air

  15. Lawrence Berkeley Laboratory 1994 site environmental report

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory`s environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  16. Lawrence Livermore National Laboratory (LLNL): Hydrogen Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment of Energy LaunchingLAWRENCE63725

  17. Lawrence Livermore National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment of EnergyLawrence Livermore

  18. INSPECTION REPORT Government Vehicle Utilization at Lawrence

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOralGovernment Vehicle Utilization at Lawrence Livermore

  19. Lawrence Berkeley National Laboratory Technology Marketing Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News Releases Tribune carriesLauraLawrenceEnergy

  20. Lawrence Livermore National Laboratory, P. O. Box

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -of Energy LastLawrence Livermore National

  1. Lawrence, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow Tank JumpLatvia:Lawrence, Massachusetts:

  2. National Nuclear Security Administration Lawrence Livermore

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB -Reports| NationalryLawrence Livermore

  3. Pressure safety program Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Borzileri, C.; Traini, M.

    1992-10-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) is a Research and Development facility. Programs include research in: nuclear weapons, energy, environmental, biomedical, and other DOE funded programs. LLNL is managed by the University of California for the Department of Energy. Many research and development programs require the use of pressurized fluid systems. In the early 1960`s, courses were developed to train personnel to safely work with pressurized systems. These courses served as a foundation for the Pressure Safety Program. The Pressure Safety Program is administered by the Pressure Safety Manager through the Hazards Control Department, and responsibilities include: (1) Pressure Safety course development and training, (2) Equipment documentation, tracking and inspections/retests, (3) Formal and informal review of pressure systems. The program uses accepted codes and standards and closely follows the DOE Pressure Safety Guidelines Manual. This manual was developed for DOE by Lawrence Livermore National Laboratory. The DOE Pressure Safety Guidelines Manual defines five (5) basic elements which constitute this Pressure Safety Program. These elements are: (1) A Pressure Safety Manual, (2) A Safety Committee, (3) Personnel who are trained and qualified, (4) Documentation and accountability for each pressure vessel or system, (5) Control of the selection and the use of high pressure hardware.

  4. AN ECONOMIC EVALUATION OF THE ST. LAWRENCE RIVER-EASTERN

    E-Print Network [OSTI]

    AN ECONOMIC EVALUATION OF THE ST. LAWRENCE RIVER-EASTERN LAKE ONTARIO BASS FISHERY The St. Lawrence information on the economic importance of the bass fishery, considered by many to be one of the best smallmouth bass fisheries in the world. The economic value of this recreational fishery should be taken

  5. Draft Environmental Impact Report LAWRENCE BERKELEY NATIONAL LABORATORY

    E-Print Network [OSTI]

    Lee, Jason R.

    . LBNL Transportation Demand Management Plan F-1 G. U.S. Department of Energy Policy StatementDraft Environmental Impact Report LAWRENCE BERKELEY NATIONAL LABORATORY LONG-RANGE DEVELOPMENT PLAN Seattle Tampa 201074 Draft Environmental Impact Report LAWRENCE BERKELEY NATIONAL LABORATORY LONG

  6. Lesson Learned by Lawrence Livermore National Laboratory Activity-level Work Planning and Control

    Broader source: Energy.gov [DOE]

    Slide Presentation by Donna J. Governor, Lawrence Livermore National Laboratory. Lessons Learned by Lawrence Livermore National Laboratory Activity-Level Work Planning & Control.

  7. CURRICULUM VITAE NAME: Richard Lawrence Taylor

    E-Print Network [OSTI]

    Distinguished Lecture Series. PhD STUDENTS: Frazer Jarvis (Sheffield University), Karsten Buecker (hedge fund¨ultel (University of Essen), Mark Dickinson (software), Sam Williams (film), Russ Mann (fi- nance), David Savitt

  8. CURRICULUM VITAE NAME: Richard Lawrence Taylor

    E-Print Network [OSTI]

    at the University of Washington, Seattle. PhD STUDENTS: Frazer Jarvis (senior lecturer, Sheffield University Federal Fluminense, Brazil), Oliver B¨ultel (University of Essen), Mark Dickinson (software), Sam Williams

  9. Lawrence Berkeley Laboratory Affirmative Action Program. Revised

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    The Lawrence Berkeley Laboratory`s Affirmative Action Program (AAP) serves as a working document that describes current policies, practices, and results in the area of affirmative action. It represents the Laboratory`s framework for an affirmative approach to increasing the representation of people of color and women in segments of our work force where they have been underrepresented and taking action to increase the employment of persons with disabilities and special disabled and Vietnam era veterans. The AAP describes the hierarchy of responsibility for Laboratory affirmative action, the mechanisms that exist for full Laboratory participation in the AAP, the policies and procedures governing recruitment at all levels, the Laboratory`s plan for monitoring, reporting, and evaluating affirmative action progress, and a description of special affirmative action programs and plans the Laboratory has used and will use in its efforts to increase the representation and retention of groups historically underrepresented in our work force.

  10. Independent Oversight Inspection, Lawrence Livermore National Laboratory, Summary Report- July 2002

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health and Emergency Management at the Lawrence Livermore National Laboratory

  11. Independent Oversight Inspection, Lawrence Livermore National Laboratory, Volume I- December 2004

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Management at the Lawrence Livermore National Laboratory

  12. Lawrence Berkeley National Laboratory Facilities Division- Optimizing Activity-level Work Planning and Control Lessons Learned

    Broader source: Energy.gov [DOE]

    Presenter: Ken Fletcher, Deputy Division Director for Facilities, Lawrence Berkeley National Laboratory

  13. Lawrence Livermore National Laboratory 2007 Annual Report

    SciTech Connect (OSTI)

    Chrzanowski, P; Walter, K

    2008-04-25T23:59:59.000Z

    Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that started with a view toward the potential threat of terrorist use of biological weapons. As featured in our annual report, activities in this area have grown to many important projects contributing to homeland security and disease prevention and control. At times transformation happens in large steps. Such was the case when nuclear testing stopped in the early 1990s. As one of the nation's nuclear weapon design laboratories, Livermore embarked on the Stockpile Stewardship Program. The objectives are to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile and to develop a science-based, thorough understanding of the performance of nuclear weapons. The ultimate goal is to sustain confidence in an aging stockpile without nuclear testing. Now is another time of major change for the Laboratory as the nation is resizing its nuclear deterrent and NNSA begins taking steps to transform the nuclear weapons complex to meet 21st-century national security needs. As you will notice in the opening commentary to each section of this report, the Laboratory's senior management team is a mixture of new and familiar faces. LLNS drew the best talent from its parent organizations--Bechtel National, UC, Babcock & Wilcox, the Washington Group Division of URS, and Battelle--to lead the Laboratory. We are honored to take on the responsibility and see a future with great opportunities for Livermore to apply its exceptional science and technology to important national problems. We will work with NNSA to build on the successful Stockpile Stewardship Program and transform the nation's nuclear weapons complex to become smaller, safer, more secure, and more cost effective. Our annual report highlights progress in many relevant areas. Laboratory scientists are using astonishing computational capabilities--including BlueGene/L, the world's fastest supercomputer with a revolutionary architecture and over 200,000 processors--to gain key insights about performance of aging nuclear weapons. What we learn will help us sustain the stockpile without nuclear testing. Preparations are underway to start experiments at

  14. Nano-High: Lawrence Berkeley National Laboratory Lecture on Materials

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  15. 11. 2.. 30 LBNL-41343 ERNEST ORLANDO LAWRENCE

    E-Print Network [OSTI]

    11. 2.. 30 LBNL-41343 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Steady-State Solution Berkeley National Laboratory is an equal opportunity employer. #12;LBNL-41343 STEADY-STATE SOLUTION

  16. Lawrence B. Flanagan Craig S. Cook James R. Ehleringer

    E-Print Network [OSTI]

    Ehleringer, Jim

    Lawrence B. Flanagan á Craig S. Cook James R. Ehleringer Unusually low carbon isotope ratios limited overlap in species distributions inside and out- side these gardens. Solar exposure in hanging

  17. To: Mansueti, Lawrence Subject: RE: Pepco Scheduled Line Repair...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sent: Monday, January 29, 2007 6:28 PM To: Mansueti, Lawrence Subject: RE: Pepco Scheduled Line Repair Dec. 1-20, 2006 Larry, Regarding the planned line outage,...

  18. Lawrence Livermore National Laboratory Environmental Report 2010

    SciTech Connect (OSTI)

    Jones, H E; Bertoldo, N A; Campbell, C G; Cerruti, S J; Coty, J D; Dibley, V R; Doman, J L; Grayson, A R; MacQueen, D H; Wegrecki, A M; Armstrong, D H; Brigdon, S L; Heidecker, K R; Hollister, R K; Khan, H N; Lee, G S; Nelson, J C; Paterson, L E; Salvo, V J; Schwartz, W W; Terusaki, S H; Wilson, K R; Woods, J M; Yimbo, P O; Gallegos, G M; Terrill, A A; Revelli, M A; Rosene, C A; Blake, R G; Woollett, J S; Kumamoto, G

    2011-09-14T23:59:59.000Z

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2010 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2010: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL's groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9). The report uses System International units, consistent with the federal Metric Conversion Act of 1975 and Executive Order 12770, Metric Usage in Federal Government Programs (1991). For ease of comparison to environmental reports issued prior to 1991, dose values and many radiological measurements are given in both metric and U.S. customary units. A conversion table is provided in the glossary.

  19. Revealing the Hidden Value that the Federal Investment Tax Credit and Treasury Cash Grant Provide To Community Wind Projects

    E-Print Network [OSTI]

    Bolinger, Mark A.

    2011-01-01T23:59:59.000Z

    Mark Bolinger. 2009. 2008 Wind Technologies Market Report.EA/EMP/reports/2008-wind- technologies.pdf Wiser, Ryan, MarkBuild a Durable Market for Wind Power in the United States”

  20. Mark Jankowski: Minnesota Pollution Control Agency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mark Jankowski: Minnesota Pollution Control Agency March 1, 2015 Mark Jankowski now at Minnesota Pollution Control Agency - 2 - Mark Jankowski worked at the Lab twice: first after...

  1. Bibliography of Yucca Mountain Project (YMP) publications at Lawrence Livermore National Laboratory, September 1977--March 1997

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This report consists of a listing of Lawrence Livermore National Laboratory`s research items on the Yucca Mountain Project.

  2. Request for Qualifications for Developers for the Lawrence Berkeley National Lab (LBNL)

    E-Print Network [OSTI]

    Walker, Matthew P.

    Request for Qualifications for Developers for the Lawrence Berkeley National Lab (LBNL) Second for the Lawrence Berkeley National Lab (LBNL) Second Campus at the Richmond Field Station I. Introduction for the Lawrence Berkeley National Lab (LBNL) Second Campus. The Second Campus will be home to a state

  3. Eurographics Symposium on Rendering 2010 Jason Lawrence and Marc Stamminger

    E-Print Network [OSTI]

    Sen, Pradeep

    Eurographics Symposium on Rendering 2010 Jason Lawrence and Marc Stamminger (Guest Editors) Volume 29 (2010), Number 4 Compressive estimation for signal integration in rendering Pradeep Sen and Soheil Darabi Advanced Graphics Lab, University of New Mexico Abstract In rendering applications, we are often

  4. Building Footprints (Shapefile) of University of Kansas, Lawrence Campus

    E-Print Network [OSTI]

    Houser, Rhonda

    2011-02-18T23:59:59.000Z

    Data layer geneated with Intention to have basic building dataset for data analysis and generation of maps, for Lawrence Campus of the University of Kansas. Building outlines were digitized using ArcMap in ca. 2007 from aerial photograph to create...

  5. LUNAR MINERALS James Papike, Lawrence Taylor, and Steven Simon

    E-Print Network [OSTI]

    Rathbun, Julie A.

    LUNAR MINERALS James Papike, Lawrence Taylor, and Steven Simon The lunar rocks described--make it easy to distinguish them from terrestrial rocks. However, the minerals that make up lunar rocks are (with a few notable exceptions) minerals that are also found on Earth. Both lunar and terrestrial rocks

  6. Lawrence Berkeley Laboratory Institutional Plan FY 1995--2000

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    This report presents the details of the mission and strategic plan for Lawrence Berkeley Laboratory during the fiscal years of 1995--2000. It presents summaries of current programs and potential changes; critical success factors such as human resources; management practices; budgetary allowances; and technical and administrative initiatives.

  7. Lawrence Berkeley National Laboratory Safety Assessment Document (SAD)

    E-Print Network [OSTI]

    Knowles, David William

    Lawrence Berkeley National Laboratory Safety Assessment Document (SAD) for the Advanced Light Assessment Document, Rev. 7 (May 29, 2009) ii Signature Page for Rev. 7 of the ALS SAD Prepared by: ALS EHS Program Manager Date: Reviewed by: ALS Deputy Division Director Date: ALS Deputy for Operations

  8. Community Wind: Once Again Pushing the Envelope of Project Finance

    E-Print Network [OSTI]

    bolinger, Mark A.

    2011-01-01T23:59:59.000Z

    Parke LLP’s Project Finance Newswire, June 2008, pp. 18-26.the Envelope of Project Finance Mark Bolinger Environmentalthe envelope of wind project finance in the U.S. – in many

  9. agri power project: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy projects, including wind, closed- and open-loop biomass, geothermal, Bolinger, Mark 2009-01-01 117 The Jubilee ISW Project I: simulated ISW and weak lensing maps and...

  10. Understanding Trends in Wind Turbine Prices Over the Past Decade

    E-Print Network [OSTI]

    Bolinger, Mark

    2012-01-01T23:59:59.000Z

    Mark Bolinger. 2011. 2010 Wind Technologies Market Report.G. Sinden, A. Zervos. 2011a. “Wind Energy. ” In IPCC SpecialWashington, D.C. : American Wind Energy Association. Aubrey,

  11. Industrial ecology at Lawrence Livermore National Laboratory summary statement

    SciTech Connect (OSTI)

    Gilmartin, T.J.

    1996-05-21T23:59:59.000Z

    This statement summarizes Lawrence Livermore National Laboratory`s committment to making important scientific, technological, and business contributions to global sustainability. The quest has many aspects, some socio-political or economic and some technological, and some in which the soft and hard sciences become indistinguishable, as in visionary national strategies, like Holland`s, and futuristic regional and city development plans, like those of Kagoshima and Chattanooga.

  12. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    SciTech Connect (OSTI)

    Not Available

    1985-01-01T23:59:59.000Z

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

  13. Labour Relations Research Collection / Mark Thompson (collector)

    E-Print Network [OSTI]

    Handy, Todd C.

    Labour Relations Research Collection / Mark Thompson (collector) Compiled by Erwin Wodarczak (2004 catalogue) #12;Collection Description Labour Relations Research Collection / Mark Thompson (collector). ­ 1967-1996. 5.81 m of textual records. Collector's Biographical Sketch Mark Thompson received his

  14. Integrated Framework toward a Closed Loop Measurement and Verification Shankar Earni, Phil Coleman, Mark Sanders, Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    of electricity at least hourly. These data, coupled with data from the energy management control systems, provide to integrate M&V and commissioning activities into the ESPC process, combining M&V activities and advanced&M) expenses, albeit with little capital funding. One recent directive, the Energy Independence and Security

  15. Small Town Germans: The Germans of Lawrence, Kansas, from 1854 to 1918

    E-Print Network [OSTI]

    Rampelmann, Katja

    1993-01-01T23:59:59.000Z

    considering the influence of other German settlements in Douglas County. The small town of Eudora, seven miles east of Lawrence and the farming community of Stull, formerly known as Deer Creek, between Lawrence and Topeka, played important roles... as the area's largest commercial center, many Eudora and Stull Germans came to Lawrence to do their major shopping. But Eudora Germans soon founded their own clubs, such as a Turnverein, and German speaking churches. Stull Germans often went to Topeka...

  16. SCFA lead lab technical assistance at Lawrence Berkeley National Laboratory: Baseline review of three groundwater plumes

    E-Print Network [OSTI]

    Hazen, Terry

    2002-01-01T23:59:59.000Z

    Lab Technical Assistance #114 Lawrence Berkeley National Laboratory – Baseline Review of Three Groundwater Plumes Page 21 LBNL-51386 the Savannah River

  17. 10 Questions for a Scientist: Dr. Adam Weber of Lawrence Berkeley...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    your research at Lawrence Berkeley National Laboratory? AW: Throughout my career at LBNL, my group has focused on thermal and water management, especially in relation to...

  18. Mark Lausten | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketingSmartManufacturingMarch8,ofMark D.Mark Lausten

  19. Mark Lessans | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketingSmartManufacturingMarch8,ofMark D.Mark

  20. Mark Whitney | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketingSmartManufacturingMarch8,ofMark D.MarkWhitney

  1. Mark Boulton UCL, June 2013

    E-Print Network [OSTI]

    Saunders, Mark

    Mark Boulton UCL, June 2013 Monday, 24 June 13 This presentation is about responsive design, but it, on the left', that's only valid for a certain size. This talk is about responsive design, but not the code. It 13 There's just not enough information in wireframes to describe responsive design. UNLESS, you

  2. December 12, 2003 Mark Walker

    E-Print Network [OSTI]

    to comment on the future power supply role of the Bonneville Power Administration ("BPA"). SUB is a municipal SW 6th Avenue, Suite 1100 Portland, Oregon 97204-1348 Re:Future Role Of The Bonneville PowerDecember 12, 2003 Mark Walker Director of Public Affairs Northwest Power & Conservation Council 851

  3. Lawrence Berkeley National Laboratory 1995 site environmental report

    SciTech Connect (OSTI)

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01T23:59:59.000Z

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment.

  4. Electroplating waste minimization at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Dini, J.W.; Steffani, C.P.

    1992-04-01T23:59:59.000Z

    This paper describes efforts on waste minimization in the electroplating facility at Lawrence Livermore National Laboratory (LLNL). Issues that are covered include: elimination of cadmium plating, copper cyanide plating, hexavalent chromium plating and vapor degreasing, segregation of cyanide solutions, changing rinsing practices, recycling of rinse water, changing cleaning of aluminum parts and rejuvenation of gold plating solutions. Discussion is also presented on other issues currently being worked and these include: combining electroplating and physical vapor deposition, elimination of all cyanide plating processes, and recycling of electroless nickel and spent acid solutions.

  5. Precision and manufacturing at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Saito, T.T.; Wasley, R.J.; Stowers, I.F.; Donaldson, R.R.; Thompson, D.C.

    1993-11-01T23:59:59.000Z

    Precision Engineering is one of Lawrence Livermore National Laboratory`s core strengths. This paper discusses the past and present current technology transfer efforts of LLNL`s Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machining Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.

  6. Westar's Lawrence Energy Center wins for not blinking on safety

    SciTech Connect (OSTI)

    Peltier, R.

    2007-07-15T23:59:59.000Z

    It took Westar Energy eight years to upgrade the Lawrence Energy Center to burn Powder River Basin coal. Its zero lost-time accident record during the eight-year, million-man-hour project is a testament to Westar's commitment to workplace safety. The plant won the Powder River Basin Coal Users' Group plant of the year award for 2006. The article describes all the changes implemented at the plant, including replacing and upgrading controls for the belt conveyor, replacing the coal crushers, minimising dust and modifying coal bunkers, to cope with the increased volatility of Powder River Basin coal. Modifications were made to minimise slagging and fouling of boilers. 10 photos.

  7. Lawrence Livermore National Laboratory's Laboratory Directed Research and Development Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment of EnergyLawrence

  8. Lawrence Livermore National Security Enforcement Letter (NEL-2013-03)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment of EnergyLawrencePenrose C.

  9. Lawrence Berkeley National Laboratory (LBNL) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow Tank JumpLatvia: EnergyLavon,Lawrence

  10. Recovery Act Funded Projects at the Lawrence Berkeley National Laboratory

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In additionEnergy Environmental cleanupLawrence

  11. St. Lawrence County, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity CorpSpringfield, Tennessee:InformationLawrence

  12. Mark Redekopp, All rights reserved Electrical Engineering

    E-Print Network [OSTI]

    Leahy, Richard M.

    © Mark Redekopp, All rights reserved Electrical Engineering at USC What it means to you... Mark Redekopp redekopp@usc.edu ENGR 101 #12;© Mark Redekopp, All rights reserved What is Electrical Engineering #12;© Mark Redekopp, All rights reserved What is Electrical Engineering · The key partner and enabling

  13. Numerical Simulations of Compact Binaries Lawrence E. Kidder

    E-Print Network [OSTI]

    Maryland at College Park, University of

    , Mark Scheel, Bela Szilagyi, Kip Thorne CITA: Harald Pfeiffer Motivation: Gravitational waves Properties gauge source functions key to get common horizon [Lindblom, Szilagyi; arXiv:0904.4873 (2009)] Change

  14. From: Mark Hanson [mailto:mark@controltecas20.com]

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil Energy FY 2010FrequentlyScienceMakingDavidMark

  15. Lawrence Livermore National Laboratory environmental report for 1990

    SciTech Connect (OSTI)

    Sims, J.M.; Surano, K.A.; Lamson, K.C.; Balke, B.K.; Steenhoven, J.C.; Schwoegler, D.R. (eds.)

    1990-01-01T23:59:59.000Z

    This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore National Laboratory (LLNL) and presents summary information about environmental compliance for 1990. To evaluate the effect of LLNL operations on the local environment, measurements of direct radiation and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent surface water, groundwater, vegetation, and foodstuff were made at both the Livermore site and at Site 300 nearly. LLNL's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment was evaluated. Aside from an August 13 observation of silver concentrations slightly above guidelines for discharges to the sanitary sewer, all the monitoring data demonstrated LLNL compliance with environmental laws and regulations governing emission and discharge of materials to the environment. In addition, the monitoring data demonstrated that the environmental impacts of LLNL are minimal and pose no threat to the public to or to the environment. 114 refs., 46 figs., 79 tabs.

  16. The Computation Directorate at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Cook, L

    2006-09-07T23:59:59.000Z

    The Computation Directorate at Lawrence Livermore National Laboratory has four major areas of work: (1) Programmatic Support -- Programs are areas which receive funding to develop solutions to problems or advance basic science in their areas (Stockpile Stewardship, Homeland Security, the Human Genome project). Computer scientists are 'matrixed' to these programs to provide computer science support. (2) Livermore Computer Center (LCC) -- Development, support and advanced planning for the large, massively parallel computers, networks and storage facilities used throughout the laboratory. (3) Research -- Computer scientists research advanced solutions for programmatic work and for external contracts and research new HPC hardware solutions. (4) Infrastructure -- Support for thousands of desktop computers and numerous LANs, labwide unclassified networks, computer security, computer-use policy.

  17. Mark Johnson | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyGlossary ofHomeJC3 BulletinProjectMark Johnson About Us

  18. Mark Gilbertson | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketingSmartManufacturingMarch8,ofMark D.

  19. Mark Higgins | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 2012 (MECSEnergy PlansMaterials for CleanMark

  20. Mark Reeves Associate Director, Commercialization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHz WaterMark B. Chadwick,

  1. QER- Comment of Mark Ladd

    Broader source: Energy.gov [DOE]

    Pleases count me in as a very concerned and upset constituant of Conway , Ma. The proposed TNG pipeline through our town , or any town for that matter is sucker punch in the face for all of us. I am very disappointed with Deval Patrick's decision to support a multi billionaire from Houston to jeopordize everyone in the pipeline's path and beyond. This pipeline is a such a bad idea that it could actually be pushed down people's throats because it's so unthinkably bad, surly some government official would protect us from it !!!!! WRONG , big corporations rule everywhere , even in the town I love so much .I do not support this ridiculous project for so many reasons , I truly don't know where to start. Please reject this pipeline. Mark Ladd

  2. Nano-High: Lawrence Berkeley National Laboratory Lecture on the "compassionate instinct"

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  3. Redeveloping Lawrence, Massachusetts' [sic] Historic Mill District : insights into adaptive reuse in untested residential markets

    E-Print Network [OSTI]

    Clark, Heather, 1978-

    2004-01-01T23:59:59.000Z

    Lawrence, Massachusetts is one of a number of post-industrial cities in the northeastern United States that has the potential to convert underutilized industrial buildings into a valuable community asset, namely housing. ...

  4. Lawrence Livermore Site Office Manager Joins EM’s Senior Leadership Team

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – EM Acting Assistant Secretary Dave Huizenga announced today that Alice Williams, manager of the DOE National Nuclear Security Administration (NNSA) Lawrence Livermore Site Office has joined the EM senior leadership team.

  5. Nano-High: Lawrence Berkeley National Laboratory Lecture on Good Sugars

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  6. Nano-High: Lawrence Berkeley National Laboratory Lecture on Bad Sugars

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  7. A guide to source materials of the life and work of Lawrence B. Anderson '30

    E-Print Network [OSTI]

    Laguette, Victoria.

    1998-01-01T23:59:59.000Z

    From 1933 to 1976, Professor Lawrence B. Anderson taught in the MIT Department of Architecture, and from 1947 to 1971, he served as its chairman and dean. Concurrently, from 1937 to 1972 , he was principal partner in the ...

  8. Two energy scales and slow crossover in YbAl3 Jon Lawrence

    E-Print Network [OSTI]

    Lawrence, Jon

    crystals of YbInCu4 (Lawrence, Shapiro et al, PRB55 (1997) 14467) that the spin fluctuations in IV, PRB 50 (1994) 9882 Murani, PRB 50 (1994) 9882 #12;Anderson Impurity Model (AIM) Although intended

  9. VWA-0007- In the Matter of C. Lawrence Cornett, Maria Elena Torano Associates, Inc.

    Broader source: Energy.gov [DOE]

    This Decision involves a complaint filed by C. Lawrence Cornett (Complainant) under the Department of Energy's Contractor Employee Protection Program, 10 C.F.R. Part 708. Complainant contends that...

  10. VWA-0008- In the Matter of C. Lawrence Cornett, Maria Elena Torano Associates, Inc.

    Broader source: Energy.gov [DOE]

    This Decision involves a complaint filed by C. Lawrence Cornett (Complainant) under the Department of Energy's Contractor Employee Protection Program, 10 C.F.R. Part 708. Complainant contends that...

  11. Building community assets through individual development accounts : growing a strategic network in Lawrence, Massachusetts

    E-Print Network [OSTI]

    Wu, Cindy C. (Cindy Cin-Wei)

    2007-01-01T23:59:59.000Z

    This thesis aims to inform the decision-making process for growing an asset-building program through strategic partnerships with other community-based organizations (CBOs). The impetus for this paper came from Lawrence ...

  12. Lawrence Berkeley National Laboratory Advanced Light Source Beamline 1.4

    E-Print Network [OSTI]

    Levenson, UC student at beamline1.4. #12;3 Table of Contents ABOUT LBNL......................................................................................................................4 THE LBNL calculation Second calculation · Janis He-3 cryostat #12;4 About LBNL The LBNL The Lawrence Berkeley National

  13. NOAA Technical Memorandum ERL GLERL-24 UPPER ST. LAWRENCE RIVER HYDRAULIC TRANSIENT MODEL

    E-Print Network [OSTI]

    of the St. Lawrence Seaway in 1959. Operation of the power dam is governed by the water level in Lake interests of national and international power, navigation, recreation, industrial, and domestic users

  14. Great Lakes-St. Lawrence River Basin Water Resources Compact (multi-state)

    Broader source: Energy.gov [DOE]

    This Act describes the management of the Great Lakes - St. Lawrence River basin, and regulates water withdrawals, diversions, and consumptive uses from the basin. The Act establishes a Council,...

  15. Cavitation Thermometry Using Molecular and Continuum Sonoluminescence Lawrence S. Bernstein* and Mitchell R. Zakin

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    Cavitation Thermometry Using Molecular and Continuum Sonoluminescence Lawrence S. Bernstein (SB) sonoluminescence (SL) is explored as a probe of bubble temperature during cavitational collapse discrete intervals along the cavitational collapse time line, thus yielding different cavitation

  16. Lady Chatterley's Lover as a rhetorical response: justification for D. H. Lawrence's mask of Oliver Mellors

    E-Print Network [OSTI]

    McCracken, David Scott

    1988-01-01T23:59:59.000Z

    of the novel. As a result, Lawrence rhetorically crafted his work's setting and characterization to motivate his readers toward modifying his situation's exigences. While canposing his three drafts, Lawrence was affected by his tuberculosis and by Frieda...'s egocentricity. Lingering Victorian morality, established English industrialism, and accepted Freudian psychology further constrained the production and the effectiveness of his last novel. B th gll~~Ch tt 1 ' I &, th 1 not a failure as a rhetorical response...

  17. Lawrence Livermore National Laboratory Underground Coal Gasification project

    SciTech Connect (OSTI)

    Thorsness, C.B.; Britten, J.A.

    1989-10-15T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) has been actively developing Underground Coal Gasification (UCG) technology for 15 years. The goal of the project has been to develop a fundamental technological understanding of UCG and foster the commercialization of the process. In striving to achieve this goal the LLNL project has carried out laboratory experiments, developed mathematical models, actively participated in technology transfer programs, and conducted field test experiments. As a result of this work the Controlled Retracting Injection Point (CRIP) concept was developed which helps insure optimum performance of an underground gasifier in a flat seam, and provides a means to produce multiple gasification cavities. The LLNL field work culminated in the Rocky Mountain I field test in which a gasifier using the CRIP technology generated gas of a quality equal to that of surface gasifiers. This last test and others preceding it have demonstrated beyond any reasonable doubt, that UCG is technically feasible in moderately thick coal seams at modest depths. 2 refs., 2 tabs.

  18. Environmental Survey preliminary report, Lawrence Livermore National Laboratory, Livermore, California

    SciTech Connect (OSTI)

    Not Available

    1987-12-01T23:59:59.000Z

    This report presents the preliminary findings from the first phase of the Environmental Survey of the Department of Energy (DOE) Lawrence Livermore National Laboratory (LLNL), conducted December 1 through 19, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with LLNL. The Survey covers all environmental media all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at LLNL, and interviews with site personnel. A Sampling and Analysis Plan was developed to assist in further assessing certain of the environmental problems identified during performance of on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory. When completed, the results will be incorporated into the LLNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the LLNL Survey. 70 refs., 58 figs., 52 tabs.,

  19. Tiger Team assessment of the Lawrence Berkeley Laboratory, Washington, DC

    SciTech Connect (OSTI)

    Not Available

    1991-02-01T23:59:59.000Z

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment of the Lawrence Berkeley Laboratory (LBL) conducted from January 14 through February 15, 1991. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety, and health (ES H) programs at LBL. The Tiger Team concluded that curtailment of cessation of any operations at LBL is not warranted. However, the number and breadth of findings and concerns from this assessment reflect a serious condition at this site. In spite of its late start, LBL has recently made progress in increasing ES H awareness at all staff levels and in identifying ES H deficiencies. Corrective action plans are inadequate, however, many compensatory actions are underway. Also, LBL does not have the technical expertise or training programs nor the tracking and followup to effectively direct and control sitewide guidance and oversight by DOE of ES H activities at LBL. As a result of these deficiencies, the Tiger Team has reservations about LBL's ability to implement effective actions in a timely manner and, thereby, achieve excellence in their ES H program. 4 figs., 24 tabs.

  20. Research collaboration opportunities at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Budwine, C.M.

    1996-09-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) is a major research facility within the Department of Energy (DOE) complex. LLNL`s traditional mission is in Defense Programs, including a significant effort in non-proliferation and arms control. In terms of disciplinary areas, over 50% of our present research efforts are in the fields of large-scale computing, high energy-density physics, energy and environmental sciences, engineering, materials research, manufacturing, and biotechnology. The present decade presents new challenges to LLNL. Many factors have influenced us in modifying our research approach. The main driver is the realization that many scientific problems in our mission areas can best be solved by collaborative teams of experts. At LLNL we excel in physical sciences, but we need the expertise of many others, beyond our established areas of expertise. For example, to find an acceptable solution to reduce earthquake damage requires contributions from engineering, soil mechanics, hydrology, materials sciences, Geosciences, computer modeling, economics, law, and political science. In the pursuit of our mission goals, we are soliciting increased research collaborations with university faculty and students. The scientific and national security challenges facing us and our nation today are unprecedented. Pooling talents from universities, other research organizations, and the national laboratories will be an important approach to finding viable solutions.

  1. Lawrence Livermore National Laboratory Working Reference Material Production Pla

    SciTech Connect (OSTI)

    Amy Wong; Denise Thronas; Robert Marshall

    1998-11-04T23:59:59.000Z

    This Lawrence Livermore National Laboratory (LLNL) Working Reference Material Production Plan was written for LLNL by the Los Alamos National Laboratory to address key elements of producing seven Pu-diatomaceous earth NDA Working Reference Materials (WRMS). These WRMS contain low burnup Pu ranging in mass from 0.1 grams to 68 grams. The composite Pu mass of the seven WRMS was designed to approximate the maximum TRU allowable loading of 200 grams Pu. This document serves two purposes: first, it defines all the operations required to meet the LLNL Statement of Work quality objectives, and second, it provides a record of the production and certification of the WRMS. Guidance provided in ASTM Standard Guide C1128-89 was used to ensure that this Plan addressed all the required elements for producing and certifying Working Reference Materials. The Production Plan was written to provide a general description of the processes, steps, files, quality control, and certification measures that were taken to produce the WRMS. The Plan identifies the files where detailed procedures, data, quality control, and certification documentation and forms are retained. The Production Plan is organized into three parts: a) an initial section describing the preparation and characterization of the Pu02 and diatomaceous earth materials, b) middle sections describing the loading, encapsulation, and measurement on the encapsulated WRMS, and c) final sections describing the calculations of the Pu, Am, and alpha activity for the WRMS and the uncertainties associated with these quantities.

  2. NREL: Biomass Research - Mark R. Nimlos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R. Nimlos Mark Nimlos is a Principal Scientist and Supervisor for the Biomass Molecular Sciences group in the National Bioenergy Center at the National Renewable Energy Laboratory....

  3. Adapting to Climate Change and Variability in the Great Lakes-St. Lawrence Basin Great Lakes-St. Lawrence Basin Project

    E-Print Network [OSTI]

    ; this is the adaptation component. Communication of climate change information to various publicsAdapting to Climate Change and Variability in the Great Lakes-St. Lawrence Basin 52 Great Lakes in response to potential climate change and variability. When we were preparing for this talk on what we have

  4. DHS-STEM Internship at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Feldman, B

    2008-08-18T23:59:59.000Z

    This summer I had the fortunate opportunity through the DHS-STEM program to attend Lawrence Livermore National Laboratories (LLNL) to work with Tom Slezak on the bioinformatics team. The bioinformatics team, among other things, helps to develop TaqMan and microarray probes for the identification of pathogens. My main project at the laboratory was to test such probe identification capabilities against metagenomic (unsequenced) data from around the world. Using various sequence analysis tools (Vmatch and Blastall) and several we developed ourselves, about 120 metagenomic sequencing projects were compared against a collection of all completely sequenced genomes and Lawrence Livermore National Laboratory's (LLNL) current probe database. For the probes, the Blastall algorithms compared each individual metagenomic project using various parameters allowing for the natural ambiguities of in vitro hybridization (mismatches, deletions, insertions, hairpinning, etc.). A low level cutoff was used to eliminate poor sequence matches, and to leave a large variety of higher quality matches for future research into the hybridization of sequences with mutations and variations. Any hits with at least 80% base pair conservation over 80% of the length of the match. Because of the size of our whole genome database, we utilized the exact match algorithm of Vmatch to quickly search and compare genomes for exact matches with varying lower level limits on sequence length. I also provided preliminary feasibility analyses to support a potential industry-funded project to develop a multiplex assay on several genera and species. Each genus and species was evaluated based on the amount of sequenced genomes, amount of near neighbor sequenced genomes, presence of identifying genes--metabolistic or antibiotic resistant genes--and the availability of research on the identification of the specific genera or species. Utilizing the bioinformatic team's software, I was able to develop and/or update several TaqMan probes for these and develop a plan of identification for the more difficult ones. One suggestion for a genus with low conservation was to separate species into several groups and look for probes within these and then use a combination of probes to identify a genus. This has the added benefit of also providing subgenus identification in larger genera. During both projects I had developed a set of computer programs to simplify or consolidate several processes. These programs were constructed with the intent of being reused to either repeat these results, further this research, or to start a similar project. A big problem in the bioinformatic/sequencing field is the variability of data storage formats which make using data from various sources extremely difficult. Excluding for the moment the many errors present in online database genome sequences, there are still many difficulties in converting one data type into another successfully every time. Dealing with hundreds of files, each hundreds of megabytes, requires automation which in turn requires good data mining software. The programs I developed will help ease this issue and make more genomic sources available for use. With these programs it is extremely easy to gather the data, cleanse it, convert it and run it through some analysis software and even analyze the output of this software. When dealing with vast amounts of data it is vital for the researcher to optimize the process--which became clear to me with only ten weeks to work with. Due to the time constraint of the internship, I was unable to finish my metagenomic project; I did finish with success, my second project, discovering TaqMan identification for genera and species. Although I did not complete my first project I made significant findings along the way that suggest the need for further research on the subject. I found several instances of false positives in the metagenomic data from our microarrays which indicates the need to sequence more metagenomic samples. My initial research shows the importance of expanding our known metagenomic

  5. WASHINGTON --Budget experts gave high marks for courage and low marks for

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    WASHINGTON -- Budget experts gave high marks for courage and low marks for the details in a bold-Wis., chairman of the House Budget Committee, would reverse retirement policies that became staples of American

  6. Community Relations Plan for Lawrence Berkeley Laboratory. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    The Lawrence Berkeley Laboratory (LBL) has applied to the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC), for renewal of its Hazardous Waste Handling Facility Permit. A permit is required under Resource Conservation and Recovery Act (RCRA) regulations. The permit will allow LBL to continue using its current hazardous waste handling facility, upgrade the existing facility, and construct a replacement facility. The new facility is scheduled for completion in 1995. The existing facility will be closed under RCRA guidelines by 1996. As part of the permitting process, LBL is required to investigate areas of soil and groundwater contamination at its main site in the Berkeley Hills. The investigations are being conducted by LBL`s Environmental Restoration Program and are overseen by a number of regulatory agencies. The regulatory agencies working with LBL include the California Environmental Protection Agency`s Department of Toxic Substances Control, the California Regional Water Quality Control Board, the Bay Area Air Quality Management District, the East Bay Municipal Utilities District, and the Berkeley Department of Environmental Health. RCRA requires that the public be informed of LBL`s investigations and site cleanup, and that opportunities be available for the public to participate in making decisions about how LBL will address contamination issues. LBL has prepared this Community Relations Plan (CRP) to describe activities that LBL will use to keep the community informed of environmental restoration progress and to provide for an open dialogue with the public on issues of importance. The CRP documents the community`s current concerns about LBL`s Environmental Restoration Program. Interviews conducted between February and April 1993 with elected officials, agency staff, environmental organizations, businesses, site neighbors, and LBL employees form the basis for the information contained in this document.

  7. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.

  8. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.

  9. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.

  10. Exploring Viral Genomics at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Kilpatrick, K; Hiddessen, A

    2007-08-22T23:59:59.000Z

    This summer I had the privilege of working at Lawrence Livermore National Laboratory under the Nonproliferation, Homeland and International Security Directorate in the Chemical and Biological Countermeasures Division. I worked exclusively on the Viral Identification and Characterization Initiative (VICI) project focusing on the development of multiplexed polymerase chain reaction (PCR) assays. The goal of VICI is to combine several disciplines such as molecular biology, microfluidics, and bioinformatics in order to detect viruses and identify them in order to effectively and quickly counter infectious disease, natural or engineered. The difficulty in such a countermeasure is that little is known about viral diversity due to the ever changing nature of these organisms. In response, VICI is developing a new microfluidic bioanalytical platform to detect known and unknown viruses by analyzing every virus in a sample by isolating them into picoliter sized droplets on a microchip and individually analyzing them. The sample will be injected into a channel of oil to form droplets that will contain viral nucleic acids that will be amplified using PCR. The multiplexed PCR assay will produce a series of amplicons for a particular virus genome that provides an identifying signature. A device will then detect whether or not DNA is present in the droplet and will sort the empty droplets from the rest. From this point, the amplified DNA is released from the droplets and analyzed using capillary gel electrophoresis in order to read out the series of amplicons and thereby determine the identity of each virus. The following figure depicts the microfluidic process. For the abovementioned microfluidic process to work, a method for detecting amplification of target viral nucleic acids that does not interfere with the multiplexed biochemical reaction is required for downstream sorting and analysis. In this report, the successful development of a multiplexed PCR assay using SYBR Green I as a fluorescent dye to detect amplification of viral DNA that can later be integrated into microfluidic PCR system for sorting and analysis is shown.

  11. Autonomy for Aurora's Mars Missions Mark Woods,

    E-Print Network [OSTI]

    Fisher, Michael

    Autonomy for Aurora's Mars Missions Mark Woods, SciSys Ltd., Clothier Road, Bristol, UK BS4 5SS Email: mark.woods@scisys.co.uk Tel: +44 117 9717251 ESA's Aurora programme incorporates a strategy for European involvement in future robotic and human exploration of our Solar System. The Aurora roadmap calls

  12. UNDERWATER PAINT MARKING OF PORPOISES1

    E-Print Network [OSTI]

    UNDERWATER PAINT MARKING OF PORPOISES1 Identification of individual animals has always been, and that was easy to apply at sea. Even a temporary mark permitting positive iden- tification for only a few hours would be a boon. Paint seemed an answer (Schevill 1966). Materials and Methods Several standard paint

  13. Molecular Simulation of Nanofluids Mark J. Biggs

    E-Print Network [OSTI]

    Adler, Joan

    Molecular Simulation of Nanofluids Mark J. Biggs School of Chemical Engineering, The University of Adelaide, South Australia, Australia, 5005. mark.biggs@adelaide.edu.au Models of nanofluid systems ­ which suited in many cases to those of nanofluid systems. It is for this reason that molecular simulation has

  14. Butler Hibben Princeton Grad Lawrence Wegmans Wegmans Walmart Trader Butler Apts Magie Station College Apts (arrive) (depart) Joe's Apts

    E-Print Network [OSTI]

    Bou-Zeid, Elie

    Butler Hibben Princeton Grad Lawrence Wegmans Wegmans Walmart Trader Butler Apts Magie Station Wegmans Wegmans Walmart Trader Butler Apts Magie Station College Apts (arrive) (depart) Joe's Apts

  15. Inspection Report "Personal Property Management at Lawrence Livermore National Laboratory"

    SciTech Connect (OSTI)

    None

    2009-05-01T23:59:59.000Z

    The Department of Energy's (DOE's) Lawrence Livermore National Laboratory (Livermore) is a premier research and development institution for science and technology supporting the core mission of national security. According to Livermore, as of November 2008 the Laboratory managed 64,933 items of Government personal property valued at about $1 billion. At the beginning of Fiscal Year 2008, Livermore reported 249 DOE property items valued at about $1.3 million that were missing, unaccounted for, or stolen during Fiscal Year 2007. Livermore centrally tracks property utilizing the Sunflower Assets system (Sunflower), which reflects the cradle to grave history of each property item. Changes in the custodianship and/or location of a property item must be timely reported by the custodian to the respective property center representative for updating in Sunflower. In Fiscal Year 2008, over 2,000 individuals were terminated as a result of workforce reduction at Livermore, of which about 750 received a final notification of termination on the same day that they were required to depart the facility. All of these terminations potentially necessitated updates to the property database, but the involuntary terminations had the potential to pose particular challenges because of the immediacy of individuals departures. The objective of our inspection was to evaluate the adequacy of Livermore's internal controls over Government property. Based upon the results of our preliminary field work, we particularly focused on personal property assigned to terminated individuals and stolen laptop computers. We concluded that Livermore's internal controls over property could be improved, which could help to reduce the number of missing, unaccounted for, or stolen property items. Specifically, we found that: (1) The location and/or custodian of approximately 18 percent of the property items in our sample, which was drawn from the property assigned to individuals terminated on short notice in 2008, was inaccurately reflected in Sunflower. The data in this system is relied upon for tracking purposes, so inaccurate entries could increase the probability of property not being located during inventories and, thus, being reported as 'lost' or 'missing'. We believe that providing formal training to property custodians, which was not being done at the time of our inspection, could help improve this situation. (2) Some property custodians were not adequately protecting their Government laptop computers when taking them offsite, and they were not held accountable for the subsequent theft of the laptops. We made several recommendations to management intended to improve property controls at Livermore.

  16. Mark Jankowski: Minnesota Pollution Control Agency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHz WaterMark B. Chadwick, 2011MarkMark

  17. Lawrence O. "Larry" Bailey, Jr., Joins Carlsbad Field Office as Deputy Manager

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -of Energy LastLawrence LivermoreLawrence

  18. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffrey L80'sInside IceLawrence BerkeleyLawrence

  19. Marine and Petroleum Geology 25 (2008) 271288 Surface and subsurface signatures of gas seepage in the St. Lawrence

    E-Print Network [OSTI]

    Long, Bernard

    2008-01-01T23:59:59.000Z

    parts of the St. Lawrence platform and suggest the presence of a mature hydrocarbon source an open-window to the petroleum system and provide indirect evidence for the presence of mature source are characterized by seismic chimneys that may be traced down to the autochthonous Paleozoic rocks (St. Lawrence

  20. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    SciTech Connect (OSTI)

    Coty, J

    2009-03-16T23:59:59.000Z

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site is largely developed yet its surface water system encompasses two arroyos, an engineered detention basin (Lake Haussmann), storm channels, and wetlands. Conversely, the more rural Site 300 includes approximately 7,000 acres of largely undeveloped land with many natural tributaries, riparian habitats, and wetland areas. These wetlands include vernal pools, perennial seeps, and emergent wetlands. The watersheds within which the Laboratory's sites lie provide local and community ecological functions and services which require protection. These functions and services include water supply, flood attenuation, groundwater recharge, water quality improvement, wildlife and aquatic habitats, erosion control, and (downstream) recreational opportunities. The Laboratory employs a watershed approach to protect these surface water systems. The intent of this approach, presented in this document, is to provide an integrated effort to eliminate or minimize any adverse environmental impacts of the Laboratory's operations and enhance the attributes of these surface water systems, as possible and when reasonable, to protect their value to the community and watershed. The Laboratory's watershed approach to surface water protection will use the U.S. Environmental Protection Agency's Watershed Framework and guiding principles of geographic focus, scientifically based management and partnerships1 as a foundation. While the Laboratory's unique site characteristics result in objectives and priorities that may differ from other industrial sites, these underlying guiding principles provide a structure for surface water protection to ensure the Laboratory's role in environmental stewardship and as a community partner in watershed protection. The approach includes pollution prevention, continual environmental improvement, and supporting, as possible, community objectives (e.g., protection of the San Francisco Bay watershed).

  1. Transition Period High Water Marks - May 2009.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Contract High Water Mark (CHWM) contracts in May 2009, BPA is publishing initial Transition Period High Water Marks (THWMs) and Above-Rate-Period High Water Mark (Above-RHWM)...

  2. DESIGNING AN ENVIRONMENTAL SHOWCASE: THE SAN FRANCISCO Dale Sartor, Rick Diamond, Lawrence Berkeley National Laboratory,

    E-Print Network [OSTI]

    Diamond, Richard

    public and private sector activities, but it will also have high-visibility, with over eight million, and to reduce energy consumption by 30% or more. Fully occupied, the baseline energy cost at the Presidio, Lawrence Berkeley National Laboratory, Andy Walker, National Renewable Energy Laboratory Michael Giller

  3. Design for Reliability: Case Studies in Manufacturing Process Synthesis Y. Lawrence Yao*, and Chao Liu

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    Design for Reliability: Case Studies in Manufacturing Process Synthesis Y. Lawrence Yao*, and Chao of manufacturing process design is to determine a set of process parameters for a manufacturing task. The design. Such a methodology is illustrated in case studies involving process design of laser forming of sheet metal, in which

  4. Gas Dynamic Effects On Laser Cut Quality Kai Chen, Y. Lawrence Yao, and Vijay Modi

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    Gas Dynamic Effects On Laser Cut Quality Kai Chen, Y. Lawrence Yao, and Vijay Modi Department are very sensitive to gas jet pressure and nozzle standoff distance. Do a high gas pressure and a small shows the same behavior (i.e., discontinuity as gas pressure and standoff change

  5. E.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division

    E-Print Network [OSTI]

    material areas (work areas where unsealed radioactive material is handled) and radioactive material storage) 75A Old Hazardous Waste Facility 75S Tritium Storage Locker 76 Radioanalytical Laboratory 83 LifeE.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division Environmental

  6. Lawrence Livermore National Laboratory Proposal to Participate in the Carbon and

    E-Print Network [OSTI]

    for hydrogen storage. These materials have intrinsic high storage capacity with active carbon nanostructureLawrence Livermore National Laboratory Proposal to Participate in the Carbon and Metal Hydride storage Tanks are the "ace in the hole" storage technology Vacuum Shell Insulation Composite Overwrap

  7. Modeling Sensorineural Hearing Loss, W. Jesteadt (Ed), Lawrence Erlbaum Associates, February 1997

    E-Print Network [OSTI]

    Jenison, Rick L.

    1 Modeling Sensorineural Hearing Loss, W. Jesteadt (Ed), Lawrence Erlbaum Associates, February 1997 University of Wisconsin, Department of Psychology Madison, WI 53706 Running Head: Model of Cortical the conse- quences of sensorineural hearing loss. Robertson and Irvine (1989) have demonstrated reorganiza

  8. EIS-0133: Decontamination and Waste Treatment Facility for the Lawrence Livermore National Laboratory Livermore, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s San Francisco Operations Office developed this statement to analyze the potential environmental and socioeconomic impacts of alternatives for constructing and operating a Decontamination and Waste Treatment Facility for nonradioactive (hazardous and nonhazardous) mixed and radioactive wastes at Lawrence Livermore National Laboratory.

  9. Lawrence Berkeley National Laboratory Arboricultural Operations Safety Requirements LBNL Arboricultural Operation Safety Requirements

    E-Print Network [OSTI]

    Eisen, Michael

    Lawrence Berkeley National Laboratory Arboricultural Operations Safety Requirements 1 of 3 LBNL reviewed with LBNL Facilities Electric Shop (6023)? * IF THE ANSWER TO 3E WAS NO, STOP THIS WORK ACTIVITY AND CONTACT FACILITIES ELECTRIC SHOP a. Name of LBNL individual consulted? #12;LBNL Arboricultural Operations

  10. Leadership in Science Lawrence Berkeley National Laboratory (LBNL) has been a

    E-Print Network [OSTI]

    Leadership in Science 13 Lawrence Berkeley National Laboratory (LBNL) has been a driving force founding, in 1931. As the birthplace of accelerator-based physics and nuclear medicine, LBNL has evolved approaches to the science and engineering of complex biosystems. LBNL is operated by the University

  11. Naysaying the Neutron Scattering Society Lawrence Cranberg, Jill Trewhella, and Henry R. Glyde

    E-Print Network [OSTI]

    Glyde, Henry R.

    Naysaying the Neutron Scattering Society Lawrence Cranberg, Jill Trewhella, and Henry R. Glyde, Austin Naysaying the Neutron Scattering Society The news story announcing the estab- lishment of the Neutron Scattering Society of America (June, page 73) raises a number of questions, and further

  12. Lyapunov Vector Fields for Autonomous UAV Flight Control1 Dale A. Lawrence2

    E-Print Network [OSTI]

    Frew, Eric W.

    Lyapunov Vector Fields for Autonomous UAV Flight Control1 Dale A. Lawrence2 , Eric. W. Frew3 that incorporate Lyapunov stability properties to produce simple, globally stable vector fields in 3D. Use of the vector field is considered, using Lyapunov techniques to show global stability of heading and path

  13. Studies in Process Simplification Ashok Dandekar Dewayne E. Perry Lawrence G. Votta

    E-Print Network [OSTI]

    Perry, Dewayne E.

    Studies in Process Simplification Ashok Dandekar Dewayne E. Perry Lawrence G. Votta Fujitsu Network@research.bell-labs.com votta@research.bell-labs.com Abstract One of the major problems with software development processes is their complexity. Hence, one of the primary motivations in process improvement is the simplification

  14. adams mark hotel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Adams, Mark 7 Computational Support for Play Testing Game Sketches Adam M. Smith , Mark J. Nelson Fission and Nuclear Technologies Websites Summary: Computational...

  15. EM's Richland Operations Office Marks Milestone in Preparing...

    Office of Environmental Management (EM)

    Richland Operations Office Marks Milestone in Preparing its Highest-Risk Facility for Demolition EM's Richland Operations Office Marks Milestone in Preparing its Highest-Risk...

  16. The Mark II Vertex Drift Chamber

    SciTech Connect (OSTI)

    Alexander, J.P.; Baggs, R.; Fujino, D.; Hayes, K.; Hoard, C.; Hower, N.; Hutchinson, D.; Jaros, J.A.; Koetke, D.; Kowalski, L.A.

    1989-03-01T23:59:59.000Z

    We have completed constructing and begun operating the Mark II Drift Chamber Vertex Detector. The chamber, based on a modified jet cell design, achieves 30 {mu}m spatial resolution and <1000 {mu}m track-pair resolution in pressurized CO{sub 2} gas mixtures. Special emphasis has been placed on controlling systematic errors including the use of novel construction techniques which permit accurate wire placement. Chamber performance has been studied with cosmic ray tracks collected with the chamber located both inside and outside the Mark II. Results on spatial resolution, average pulse shape, and some properties of CO{sub 2} mixtures are presented. 10 refs., 12 figs., 1 tab.

  17. Mark Henson | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHz WaterMark B. Chadwick, 2011Mark

  18. Variational Gaussian Process Classifiers Mark N. Gibbs

    E-Print Network [OSTI]

    MacKay, David J.C.

    Variational Gaussian Process Classifiers Mark N. Gibbs Cavendish Laboratory Cambridge CB3 0HE United Kingdom David J.C. MacKay \\Lambda Cavendish Laboratory Cambridge CB3 0HE United Kingdom Submitted­linear interpolation tool (Williams 1995; Williams and Rasmussen 1996), but it is not straightforward to solve

  19. School Of Architecture Mark Robbins, Dean

    E-Print Network [OSTI]

    McConnell, Terry

    School Of Architecture Mark Robbins, Dean 201 Slocum Hall soa.syr.edu About The College Dean's Message Architecture is a complex discipline that organizes diverse human needs and interests, ranging from the pragmatic to the visionary. Syracuse Architecture offers a professional education rooted

  20. A Web Site Navigation Engine Mark Levene

    E-Print Network [OSTI]

    Levene, Mark

    A Web Site Navigation Engine Mark Levene Department of Computer Science Birkbeck College site-specific search engines is that they are not able to pick up the "scent of information" [5 is looking for. Moreover, Hearst [2] argues that next gener- ation site-specific search engines should

  1. October 18, 2007 Mr. Mark Walker

    E-Print Network [OSTI]

    Council 851 SW 6th Avenue, Suite 1100 Portland, OR 97204 Dear Mark, Comment on "Carbon Dioxide Footprint done a good job in characterizing the CO2 impacts of a range of actions on the power system. However of the proposed actions. For example, breaching dams or lowering reservoirs below Minimum Operating Pool would

  2. Computing Valuation Popov Forms Mark Giesbrecht1

    E-Print Network [OSTI]

    Labahn, George

    Computing Valuation Popov Forms Mark Giesbrecht1 , George Labahn1 , and Yang Zhang2 1 School. Popov forms and weak Popov forms of matrices over non- commutative valuation domains are defined rings. In the computer alge- bra area, Abramov and Bronstein [1] gave a method to calculate the ranks

  3. Programming Environments for Novices Mark Guzdial

    E-Print Network [OSTI]

    Guzdial, Mark

    Programming Environments for Novices Mark Guzdial College of Computing, Georgia Institute of Technology guzdial@cc.gatech.edu May 7, 2003 1 Specializing Environments for Novices The task of specializing programming environments for novices begins with the recog- nition that programming is a hard skill to learn

  4. Mark Walker Director of Public Affairs

    E-Print Network [OSTI]

    the Bonneville Power Administration, which has not raised its conservation budget. If others can increaseMark Walker Director of Public Affairs Northwest Power and Conservation Council Dear Mr. Walker, According to your recent study, "A Retrospective Look at the Northwest Power and Conservation Council

  5. 3 445b 0377240 2 Mark Elless

    E-Print Network [OSTI]

    Hoffman, Forrest M.

    Integrated Demonstration Program coordinated by Kim Nuhfer, Fernald Environmental Restoration Management-term equilibration study involvingtwo uranium-contaminated soils at the Department of Energy's Fernald Environmental_ ........ ~ .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . -~ .. ~~ _ ......... --- #12;Solubility Measurement of Uranium in Uranium-Contaminated Soils S . Y.Lee, Mark Elless

  6. MarkPearce-KTHStockholm-Stockholm Skolors Kosmiska Ntverk

    E-Print Network [OSTI]

    Haviland, David

    antenna Sensors Pressure sensor GPS receiver MarkPearce-KTHStockholm- #12;MarkPearce-KTHStockholm- t(GPS 1) ­ t(GPS 2) [ns] t(GPS1)­t(GPS2)[ns] Trigger no. #12;MarkPearce-KTHStockholm- Photo: P. Walck #12;Mark

  7. EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to build, permit, and operate the Explosive Waste Treatment Facility to treat explosive waste at the U.S. Department of Energy's Lawrence...

  8. Evaluation of Blue Confirmation Lights on Red Light Running at Signalized Intersections in Lawrence, Kansas: A Case Study

    E-Print Network [OSTI]

    Boakye, Kwaku Frimpong

    2014-08-31T23:59:59.000Z

    of Lawrence installed confirmation lights at six left-turn approaches of two signalized intersections (treatment sites) where RLR was prevalent. This study was conducted to evaluate the effectiveness of the confirmation lights. RLR violation data were...

  9. EA-1065: Proposed Construction and Operation of a Genome Sequencing Facility in Building 64 at Lawrence Berkeley Laboratory, Berkeley, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to modify 14,900 square feet of an existing building (Building 64) at the U.S. Department of Energy's Lawrence Berkeley Laboratory to...

  10. EA-1087: Proposed Induction Linac System Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to modify existing Building 51B at the U.S. Department of Energy's Lawrence Berkeley National Laboratory to install and conduct experiments...

  11. 2003 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-05-23T23:59:59.000Z

    Annual Illness and Injury Surveillance Program report for 2003 for Lawrence Livermore National Lab. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  12. Development of a Novel Depleted Uranium Treatment Process at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Gates-Anderson, D; Bowers, J; Laue, C; Fitch, T

    2007-01-22T23:59:59.000Z

    A three-stage process was developed at Lawrence Livermore National Laboratory to treat potentially pyrophoric depleted uranium metal wastes. The three-stage process includes waste sorting/rinsing, acid dissolution of the waste metal with a hydrochloric and phosphoric acid solution, and solidification of the neutralized residuals from the second stage with clay. The final product is a solid waste form that can be transported to and disposed of at a permitted low-level radioactive waste disposal site.

  13. Pavement Through the Prairie, Wheels in the Wetlands: The battle over a road in Lawrence, Kansas

    E-Print Network [OSTI]

    Heiman, Kelly

    2012-04-01T23:59:59.000Z

    of the Haskell-Baker Wetlands and the South Lawrence Trafficway." Genuine Kansas. No date. http://www.genuinekansas.com/history_baker_w etlands_controversy_timeline_kansas.htm 113 contemporaneous with the initial release of the Draft Environmental Impact...." Environmental History. (2010) 15 (2): 194. that recognized the environment as a critical national issue, historian Ann Vileisis argues, "... citizen activists in their communities dealt with broad choices facing the society at large: to embrace boundless...

  14. Nuclear Science and Physics Data from the Isotopes Project, Lawrence Berkeley National Laboratory (LBNL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Isotopes Project pages at Lawrence Berkeley National Laboratory have been a source of nuclear data and reference information since the mid-nineties. Almost all of the data, the results of analyses, the specialized charts and interfaces, and the extensive bibiographic references are fed to the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory and maintained there. The Isotope Project pages at LBNL provide a glimpse of early versions for many of the nuclear data resources.

  15. Identification marking by means of laser peening

    DOE Patents [OSTI]

    Hackel, Lloyd A. (Livermore, CA); Dane, C. Brent (Livermore, CA); Harris, Fritz (Rocklin, CA)

    2002-01-01T23:59:59.000Z

    The invention is a method and apparatus for marking components by inducing a shock wave on the surface that results in an indented (strained) layer and a residual compressive stress in the surface layer. One embodiment of the laser peenmarking system rapidly imprints, with single laser pulses, a complete identification code or three-dimensional pattern and leaves the surface in a state of deep residual compressive stress. A state of compressive stress in parts made of metal or other materials is highly desirable to make them resistant to fatigue failure and stress corrosion cracking. This process employs a laser peening system and beam spatial modulation hardware or imaging technology that can be setup to impress full three dimensional patterns into metal surfaces at the pulse rate of the laser, a rate that is at least an order of magnitude faster than competing marking technologies.

  16. Useful Cycles in Probabilistic Roadmap Dennis Nieuwenhuisen Mark H. Overmars

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Useful Cycles in Probabilistic Roadmap Graphs Dennis Nieuwenhuisen Mark H. Overmars institute; Useful Cycles in Probabilistic Roadmap Graphs Dennis Nieuwenhuisen Mark H. Overmars December 2004 useful cycles to the roadmap graph. 1 Introduction Automated motion planning has become important

  17. Heavy Metals in Glass Beads Used in Pavement Markings

    E-Print Network [OSTI]

    Mangalgiri, Kiranmayi

    2012-07-16T23:59:59.000Z

    Pavement markings are vital for safely navigating roadways. The nighttime visibility of pavement markings is enhanced by addition of retroreflective glass beads, most of which are made from recycled glass. Concern has been raised over the presence...

  18. Mark D. Mitchell | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketingSmartManufacturingMarch8,ofMark D. Mitchell

  19. Mark Holecek | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'llMappingMariaHereld Manager,Mark Holecek |

  20. Mark R Fahey | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'llMappingMariaHereld Manager,Mark HolecekR

  1. Mark Vermilyea | Inventors | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'llMappingMariaHereld Manager,Mark

  2. Less Acres and Variable Yield Mark Ohio's Crops

    E-Print Network [OSTI]

    Jones, Michelle

    developing technologies and cropping systems that are efficient in capturing solar energy, sus- tainable overLess Acres and Variable Yield Mark Ohio's Crops From 1994 to 2004, the combined acreage of soybean Pathology Dr. Mark Loux Horticulture and Crop Science Dr. Robert Mullen School of Natural Resources Dr. Mark

  3. 1Option:UCRL#! Option:Additional Information! Lawrence Livermore National Laboratory

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    :Additional Information! Lawrence Livermore National Laboratory We replicate sound speeds for N2 for pressures to 25 kbars Laboratory We also replicate sound speed data for CH4 to 35 kbars and isotherms for CO2 to 10 kbars #12, SiO2, Fe3O4, CaCO3, Ni (solid, liquid), Al2SiO5, AlN (b1-solid, b4-solid), NiO, Al6O13Si2, FeS2, Si

  4. Signal and Image Processing Research at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Roberts, R S; Poyneer, L A; Kegelmeyer, L M; Carrano, C J; Chambers, D H; Candy, J V

    2009-06-29T23:59:59.000Z

    Lawrence Livermore National Laboratory is a large, multidisciplinary institution that conducts fundamental and applied research in the physical sciences. Research programs at the Laboratory run the gamut from theoretical investigations, to modeling and simulation, to validation through experiment. Over the years, the Laboratory has developed a substantial research component in the areas of signal and image processing to support these activities. This paper surveys some of the current research in signal and image processing at the Laboratory. Of necessity, the paper does not delve deeply into any one research area, but an extensive citation list is provided for further study of the topics presented.

  5. EIS-0028: Lawrence Livermore National Laboratory and Sandia National Laboratories- Livermore Sites, Livermore, CA

    Broader source: Energy.gov [DOE]

    The statement assesses the potential impacts associated with current operation of the Lawrence Livermore National Laboratory and Sandia National Laboratories , Livermore, adjacent sites. This includes the impacts from postulated accidents associated with the activities. Various effluents including radioactive ones are released to the environment. However, a continuing comprehensive monitoring program is carried out to assist in the control of hazardous effluents. Alternatives considered to current operation of the laboratories include: (1) shutdown and decommissioning, (2) total or partial relocation, (3) scaling down those operations having greatest impact , and (4) wider use of alternate technologies having reduced impact .

  6. Associated Western Universities summer participant program at the Lawrence Livermore National Laboratory, Summer 1997

    SciTech Connect (OSTI)

    Williams, B.

    1997-08-01T23:59:59.000Z

    The Associated Western Universities, Inc. (AWU) supports a student summer program at Lawrence Livermore National Laboratory (LLNL). This program is structured so that honors undergraduate students may participate in the Laboratory`s research program under direct supervision of senior Laboratory scientists. Included in this report is a list of the AWU participants for the summer of 1997. All students are required to submit original reports of their summer activities in a format of their own choosing. These unaltered student reports constitute the major portion of this report.

  7. Lawrence Berkeley National Laboratory (LBNL): Fuel Cell and Hydrogen Activities Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment of Energy LaunchingLAWRENCE

  8. Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News Releases Tribune carriesLauraLawrence

  9. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffrey L80'sInside IceLawrence Berkeley

  10. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearchIdahoKansas Regions(SC)Lawrence

  11. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearchIdahoKansasLawrence Berkeley National

  12. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearchIdahoKansasLawrence Berkeley

  13. XL-DC/Mark V Options You can customize the XL-DC and Mark V

    E-Print Network [OSTI]

    Berns, Hans-Gerd

    administrator with the NTP Time Server Protocol, network status, and statistics. This feature implements SNMP. XL-DC Mark V Network Time Server Telecommunications Interface Frequency Measurement STD Time Interface Low Phase Noise Output Network Interface Loss of Lock Alarm STD Programmable Pulse Output

  14. Marking Streets to Improve Parking Density

    E-Print Network [OSTI]

    Xu, Chao

    2015-01-01T23:59:59.000Z

    Street parking spots for automobiles are a scarce commodity in most urban environments. The heterogeneity of car sizes makes it inefficient to rigidly define fixed-sized spots. Instead, unmarked streets in cities like New York leave placement decisions to individual drivers, who have no direct incentive to maximize street utilization. In this paper, we explore the effectiveness of two different behavioral interventions designed to encourage better parking, namely (1) educational campaigns to encourage parkers to "kiss the bumper" and reduce the distance between themselves and their neighbors, or (2) painting appropriately-spaced markings on the street and urging drivers to "hit the line". Through analysis and simulation, we establish that the greatest densities are achieved when lines are painted to create spots roughly twice the length of average-sized cars. Kiss-the-bumper campaigns are in principle more effective than hit-the-line for equal degrees of compliance, although we believe that the visual cues of...

  15. Lawrence Residence 

    E-Print Network [OSTI]

    Raiford Stripling Associates, Inc.; Stripling, Raiford L.

    1962-01-01T23:59:59.000Z

    interpreted as of turbidity-flow origin. The embayment 1s filled with a dominant shale section wh1ch contains microfauna believed to represent bathyal depths. , Cores retrieved from fields in Jefferson County, southeast Texas, were studied to examine... shale samples Shell Hebert Ranch 1-C and Humble 1 Port Acres Gas Unit 1 48 14 Scanning electron micrographs of characteristic Frio foraminifera from selected wells including Shell Hebert Ranch 1-C and Humble 1 Port Acres Gas Unit 1, Jefferson County...

  16. Lawrence Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -of Energy Last DayLaura H. Greene,honored

  17. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to share its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.

  18. Lawrence Livermore National Laboratory Emergency Response Capability 2009 Baseline Needs Assessment Performance Assessment

    SciTech Connect (OSTI)

    Sharry, J A

    2009-12-30T23:59:59.000Z

    This document was prepared by John A. Sharry, LLNL Fire Marshal and Division Leader for Fire Protection and was reviewed by Sandia/CA Fire Marshal, Martin Gresho. This document is the second of a two-part analysis of Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2009 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2004 BNA, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures. On October 1, 2007, LLNL contracted with the Alameda County Fire Department to provide emergency response services. The level of service called for in that contract is the same level of service as was provided by the LLNL Fire Department prior to that date. This Compliance Assessment will evaluate fire department services beginning October 1, 2008 as provided by the Alameda County Fire Department.

  19. Eric J. Glover, Gary W. Flake, Steve Lawrence, William P. Birmingham, Andries Kruger, C. Lee Giles, David M. Pennock. Improving Category Specific Web Search by Learning Query Modifications, Symposium on Applications and

    E-Print Network [OSTI]

    Pennock, David M.

    Eric J. Glover, Gary W. Flake, Steve Lawrence, William P. Birmingham, Andries Kruger, C. Lee Giles J. Glover 1;2 , Gary W. Flake 1 , Steve Lawrence 1 , William P. Birmingham 2 , Andries Kruger 1 , C

  20. Eric J. Glover, Gary W. Flake, Steve Lawrence, William P. Birmingham, Andries Kruger, C. Lee Giles, David M. Pennock. Improving Category Specific Web Search by Learning Query Modifications, Symposium on Applications and

    E-Print Network [OSTI]

    Pennock, David M.

    Eric J. Glover, Gary W. Flake, Steve Lawrence, William P. Birmingham, Andries Kruger, C. Lee Giles J. Glover ¢¡ £ , Gary W. Flake , Steve Lawrence , William P. Birmingham £ , Andries Kruger

  1. This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. Status of DPSSL Development

    E-Print Network [OSTI]

    by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. Status

  2. SRS reactor stack plume marking tests

    SciTech Connect (OSTI)

    Petry, S.F.

    1992-03-01T23:59:59.000Z

    Tests performed in 105-K in 1987 and 1988 demonstrated that the stack plume can successfully be made visible (i.e., marked) by introducing smoke into the stack breech. The ultimate objective of these tests is to provide a means during an emergency evacuation so that an evacuee can readily identify the stack plume and evacuate in the opposite direction, thus minimizing the potential of severe radiation exposure. The EPA has also requested DOE to arrange for more tests to settle a technical question involving the correct calculation of stack downwash. New test canisters were received in 1988 designed to produce more smoke per unit time; however, these canisters have not been evaluated, because normal ventilation conditions have not been reestablished in K Area. Meanwhile, both the authorization and procedure to conduct the tests have expired. The tests can be performed during normal reactor operation. It is recommended that appropriate authorization and procedure approval be obtained to resume testing after K Area restart.

  3. The Making of Beauty: Aesthetic Spaces in the Fiction of D. H. Lawrence, Muriel Spark, and Virginia Woolf 

    E-Print Network [OSTI]

    Lee, Joori

    2013-08-01T23:59:59.000Z

    This dissertation rethinks textual images of the other’s beauty, depicted in works by D. H. Lawrence, Muriel Spark, and Virginia Woolf, whose fascination with the other, called by this dissertation the beloved, urged them to inscribe the beloved’s...

  4. Ozone production efficiency in an urban area Lawrence I. Kleinman, Peter H. Daum, Yin-Nan Lee, Linda J. Nunnermacker,

    E-Print Network [OSTI]

    Ozone production efficiency in an urban area Lawrence I. Kleinman, Peter H. Daum, Yin-Nan Lee; accepted 1 August 2002; published 14 December 2002. [1] Ozone production efficiency can be defined and observational results on ozone production efficiency based on measurements made from aircraft flights

  5. Observations of ice thickness and frazil ice in the St. Lawrence Island polynya from satellite imagery, upward looking sonar, and

    E-Print Network [OSTI]

    Washington at Seattle, University of

    . The combination of the SAR imagery and ULS observations also allow measurement of the pack ice advection velocityObservations of ice thickness and frazil ice in the St. Lawrence Island polynya from satellite define a thermal ice thickness from the AVHRR retrieval of ice surface temperature combined

  6. A Plea for Simpler Electricity Tariffs Philip E. Coleman and Christopher T. Payne, Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    A Plea for Simpler Electricity Tariffs Philip E. Coleman and Christopher T. Payne, Lawrence asserts that electric rate structures in the United States are often so confusing that even large a simplified declaration (in tariffs and/or bills) to electricity customers of what their marginal costs are

  7. 1 | Valuing Ecosystem Services provided by Edinburgh's Trees | Tony Hutchings, Vicki Lawrence & Andy Brunt | 06/03/2013

    E-Print Network [OSTI]

    1 | Valuing Ecosystem Services provided by Edinburgh's Trees | Tony Hutchings, Vicki Lawrence & Andy Brunt | 06/03/2013 Estimating the Value of Edinburgh's Trees Estimating the Ecosystem Services Ecosystem Services provided by Edinburgh's Trees: Results of a 2011 Survey Estimating the Value of Edinburgh

  8. Seismic imaging of oil production rate Valeri A. Korneev, Dmitry Silin, Lawrence Berkeley National Laboratory, Berkeley, California

    E-Print Network [OSTI]

    Korneev, Valeri A.

    1 Seismic imaging of oil production rate Valeri A. Korneev, Dmitry Silin, Lawrence Berkeley to the square root of the product of frequency of the signal and the mobility of the fluid in the reservoir. This provides an opportunity for locating the most productive zones of the field before drilling

  9. The Corossol structure: A possible impact crater on the seafloor of the northwestern Gulf of St. Lawrence, Eastern Canada

    E-Print Network [OSTI]

    . Lawrence, Eastern Canada Patrick LAJEUNESSE1* , Guillaume ST-ONGE2 , Jacques LOCAT3 , Mathieu J. DUCHESNE4 de geographie, Universite Laval, Quebec City, Quebec G1V 0A6, Canada 2 Canada Research Chair, Rimouski, Quebec G5L 3A1, Canada 3 Departement de geologie et de genie geologique, Universite Laval, Quebec

  10. Extending Sledgehammer with SMT Solvers Jasmin Christian Blanchette1, , Sascha Bhme1, and Lawrence C. Paulson2

    E-Print Network [OSTI]

    Paulson, Lawrence C.

    Extending Sledgehammer with SMT Solvers Jasmin Christian Blanchette1, , Sascha Böhme1, and Lawrence extended Sledgehammer to invoke satisfiability modulo theories (SMT) solvers as well, exploiting its relevance filter and parallel architecture. Isabelle users are now pleasantly surprised by SMT proofs

  11. 2002 Small Mammal Inventory at Lawrence Livermore National Laboratory, Site 300

    SciTech Connect (OSTI)

    West, E; Woollett, J

    2004-11-16T23:59:59.000Z

    To assist the University of California in obtaining biological assessment information for the ''2004 Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory (LLNL)'', Jones & Stokes conducted an inventory of small mammals in six major vegetation communities at Site 300. These communities were annual grassland, native grassland, oak savanna, riparian corridor, coastal scrub, and seep/spring wetlands. The principal objective of this study was to assess the diversity and abundance of small mammal species in these communities, as well as the current status of any special-status small mammal species found in these communities. Surveys in the native grassland community were conducted before and after a controlled fire management burn of the grasslands to qualitatively evaluate any potential effects of fire on small mammals in the area.

  12. Federal Facility Compliance Act: Conceptual Site Treatment Plan for Lawrence Livermore National Laboratory, Livermore, California

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    The Department of Energy (DOE) is required by section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (the Act), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The Act requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the State or EPA for approval, approval with modification, or disapproval. The Lawrence Livermore National Laboratory (LLNL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the Act and is being provided to California, the US Environmental Protection Agency (EPA), and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix 1.1 of this document. Please note that Appendix 1.1 appears as Appendix A, pages A-1 and A-2 in this document.

  13. Environmental monitoring at the Lawrence Livermore National Laboratory: Annual report, 1987

    SciTech Connect (OSTI)

    Holland, R.C.; Brekke, D.D.

    1988-04-01T23:59:59.000Z

    This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore Laboratory (LLNL) for 1987. To evaluate the effect of LLNL operations on the local environment, measurements were made of direct radiation and a variety of radionuclides and chemical pollutants in ambient air, soil, sewage effluents, surface water, groundwater, vegetation, foodstuff, and milk at both the Livermore site and nearby Site 300. Evaluations were made of LLNL's compliance with the applicable guides, standards, and limits for radiological and nonradiological releases to the environment. The data indicates that the only releases in excess of applicable standards were four releases to the sanitary sewer. LLNL operations had no adverse impact on the environment during 1987. 65 refs., 24 figs.

  14. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  15. Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300

    SciTech Connect (OSTI)

    MacDonnell, B.A.; Obenauf, K.S. [Golder Associates, Inc., Alameda, CA (United States)

    1996-08-01T23:59:59.000Z

    The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline.

  16. Recent results from the EBIT and Super EBIT at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Marrs, R.E.

    1996-10-07T23:59:59.000Z

    The electron beam ion trap (EBIT), and the higher-energy Super EBIT at Lawrence Livermore National Laboratory can produce any highly charged ion. These highly charged ions are used in a variety of research programs. Recent results from four different experiments are reviewed here. K-shell ionization cross sections have been measured for the hydrogenlike ions of several elements, and L-shell ionization cross sections have been measured for uranium ions. A measurement of the ground-state hyperfine transition in hydrogenlike {sup 165}H{sup 66+} is notable because of the complete absence of Doppler shifts. A cryogenic Penning trap, injected with EBIT ions, has been used to observe a single highly charged ion as it recombines by sequential electron capture from H{sub 2} gas. A large sputtered ion yield, suggesting a surface Coulomb explosion, has been observed from insulators bombarded with very highly charged EBIT ions. 21 refs., 11 figs.

  17. Reducing the solid waste stream: reuse and recycling at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Wilson, K. L.

    1997-08-01T23:59:59.000Z

    In Fiscal Year (FY) 1996 Lawrence Livermore National Laboratory (LLNL) increased its solid waste diversion by 365 percent over FY 1992 in five solid waste categories - paper, cardboard, wood, metals, and miscellaneous. (LLNL`s fiscal year is from October 1 to September 30.) LLNL reused/ recycled 6,387 tons of waste, including 340 tons of paper, 455 tons of scrap wood, 1,509 tons of metals, and 3,830 tons of asphalt and concrete (Table1). An additional 63 tons was diverted from landfills by donating excess food, selling toner cartridges for reconditioning, using rechargeable batteries, redirecting surplus equipment to other government agencies and schools, and comporting plant clippings. LLNL also successfully expanded its demonstration program to recycle and reuse construction and demolition debris as part of its facility-wide, comprehensive solid waste reduction programs.

  18. Remedial investigation of the High-Explosives (HE) Process Area, Lawrence Livermore National Laboratory Site 300

    SciTech Connect (OSTI)

    Crow, N.B.; Lamarre, A.L.

    1990-08-01T23:59:59.000Z

    This report presents the results of a Remedial Investigation (RI) to define the extent of high explosives (HE) compounds and volatile organic compounds (VOCs) found in the soil, rocks, and ground water of the HE Process Area of Lawrence Livermore National Laboratory's (LLNL) Site 300 Facility. The report evaluates potential public health environmental risks associated with these compounds. Hydrogeologic information available before February 15, 1990, is included; however, chemical analyses and water-level data are reported through March 1990. This report is intended to assist the California Regional Water Quality Control Board (RWQCB)--Central Valley Region and the US Environmental Protection Agency (EPA) in evaluating the extent of environmental contamination of the LLNL HE Process Area and ultimately in designing remedial actions. 90 refs., 20 figs., 7 tabs.

  19. Useful Cycles in Probabilistic Roadmap Dennis Nieuwenhuisen Mark H. Overmars

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Useful Cycles in Probabilistic Roadmap Graphs Dennis Nieuwenhuisen Mark H. Overmars institute Cycles in Probabilistic Roadmap Graphs Dennis Nieuwenhuisen Mark H. Overmars December 2004 Abstract Over to the roadmap graph. 1 Introduction Automated motion planning has become important in various fields. Originally

  20. Database Managament IS&M Option Mark Levene

    E-Print Network [OSTI]

    Levene, Mark

    Database Managament IS&M Option Mark Levene Email: m.levene@dcs.bbk.ac.uk Web: http://www.dcs.bbk.ac.uk/~mark/ Lecture Plan 1. Introduction to Databases 2. Data Modelling with the Entity-Relationship Model 3 and Referential Integrity 4. Querying a Relational Database (a) Querying a Single Table (b) Aggregating

  1. ORIGINAL PAPER Hunter feedback of individually marked wild boar

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ORIGINAL PAPER Hunter feedback of individually marked wild boar Sus scrofa L.: dispersal 2009 # Springer-Verlag 2009 Abstract Increasing wild boar (Sus scrofa L.) population densities all over of wild boar in southwestern Mecklenburg-Western Pomerania. From 152 marked wild boar, 105 have been

  2. Signature of Mark Holecek Signature of Mark Holecek Signature of Ralph B Tennants II

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby Dietrich Signature ofMark Holecek

  3. School of Law Catalog 2007-2008 Vol. 2008, No. 1, May 30, 2007 Periodical postage paid at Lawrence, KS 66045

    E-Print Network [OSTI]

    School of Law Catalog 2007-2008 Vol. 2008, No. 1, May 30, 2007 Periodical postage paid at Lawrence ........................................................ 3 The University of Kansas Administration .................................. 3 School of Law Administration ................................................. 3 The School of Law and Its Programs

  4. Final Report for the Arroyo Las Positas Maintenance Impact Study, Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    van Hattem, M; Paterson, L

    2006-01-12T23:59:59.000Z

    In 2000, the Lawrence Livermore National Laboratory's (LLNL) Environmental Protection Department, in coordination with Plant Engineering (PE), began dredging sections of the Arroyo Las Positas (ALP) to alleviate concerns about flooding of sensitive facilities within the mainsite of Lawrence Livermore National Laboratory. In order to reduce potential impacts on the federally threatened California red-legged frog (Rana aurora draytonii), LLNL proposed to dredge sections of the ALP in a ''checkerboard pattern'', resulting in a mosaic of open water habitat and vegetated sections (Figure 1). The Arroyo Las Positas Management Plan (Plan) was coordinated with both state and federal agencies including the U.S. Fish and Wildlife Service (USFWS), California Department of Fish and Game (CDF&G), San Francisco Regional Water Quality Control Board (SFRWQCB), and the Army Corp of Engineers (ACOE). Water Discharge Requirements (WDRs) were issued for this project on December 30, 1999 (Order No. 99-086) by the SFRWQCB. Provision 19 of the WDRs outlined a five-year (2000 through 2004) Maintenance Impact Study (MIS) that LLNL began in coordination with dredging work that was conducted as part of the Arroyo Las Positas Management Plan. Provision 20 of these WDRs requires LLNL to submit a final report of the results of the Maintenance Impact Study for this project to the SFRWQCB. The purpose of this report is to present the results of the Maintenance Impact Study for Arroyo Las Positas and meet the requirements of Provision 20. A description of the annual monitoring included in this Maintenance Impact Study is included in the methods section of this report. Initially the Plan called for dredging the entire length of the Arroyo Las Positas (approximately 6,981 linear feet) over a 5-year period to minimize temporal impacts on the California red-legged frog. Dredging occurred in 2000 ({approx}1,300 ft.), 2001 ({approx}800 ft.), and 2002 ({approx}1,200 ft.), which constituted approximately 3,300 ft., or roughly half of the entire Plan (Figure 2). Logistical challenges and unanticipated cost influenced the decision to terminate the project prior to completion, and re-evaluate the long-term management goals for the ALP. No dredging was conducted in the final two years of the plan (2003 and 2004).

  5. LITERARY DESTINATIONS: MARK TWAIN'S HOUSES AND LITERARY TOURISM

    E-Print Network [OSTI]

    Lowe, Hilary Iris

    2009-12-10T23:59:59.000Z

    Mark Twain has been commemorated for more than eighty-five years at his various houses. His birthplace in Florida, Missouri, his boyhood home in Hannibal, Missouri, his adult home in Hartford, Connecticut, and his summer retreat at Quarry Farm...

  6. Interpretation and aggregation of marks in classroom learning partner

    E-Print Network [OSTI]

    Wu, Kenneth D

    2008-01-01T23:59:59.000Z

    This thesis explores the mark understanding problem in the context of a Tablet-PC-based classroom interaction system. It presents a novel method for interpreting digital ink strokes on background images, and aggregating ...

  7. Statistics 221 Statistical Computing Methods Instructor: Mark Irwin

    E-Print Network [OSTI]

    Irwin, Mark E.

    Linear algebra, Statistics 111, and knowledge of a computer programming language. Statistics 220 (1988). Elements of Statistical Computing: Numerical Computation. CRC Press. Splus / R: Venables WNStatistics 221 ­ Statistical Computing Methods Instructor: Mark Irwin Office: Science Center 235

  8. TBU-0002- In the Matter of Mark J. Chugg

    Broader source: Energy.gov [DOE]

    Mark J. Chugg, a former employee of Bechtel BWXT Idaho (BWXT), a Department of Energy (DOE) contractor, appeals the dismissal of his whistleblower complaint filed under 10 C.F.R. Part 708, the DOE...

  9. On deterministic packet marking Andrey Belenky, Nirwan Ansari *

    E-Print Network [OSTI]

    Ansari, Nirwan

    On deterministic packet marking Andrey Belenky, Nirwan Ansari * New Jersey Institute of Technology- vents only SYN Flood type (D)DoS attacks and is useless against other types of anonymous attacks

  10. Institute of Geophysics and Planetary Physics (IGPP), Lawrence Livermore National Laboratory (LLNL): Quinquennial report, November 14-15, 1996

    SciTech Connect (OSTI)

    Tweed, J.

    1996-10-01T23:59:59.000Z

    This Quinquennial Review Report of the Lawrence Livermore National Laboratory (LLNL) branch of the Institute for Geophysics and Planetary Physics (IGPP) provides an overview of IGPP-LLNL, its mission, and research highlights of current scientific activities. This report also presents an overview of the University Collaborative Research Program (UCRP), a summary of the UCRP Fiscal Year 1997 proposal process and the project selection list, a funding summary for 1993-1996, seminars presented, and scientific publications. 2 figs., 3 tabs.

  11. Incised marks on Late Helladic and Late Minoan III pottery

    E-Print Network [OSTI]

    Hirschfeld, Nicolle Elise

    1990-01-01T23:59:59.000Z

    INICISED MARKS ON LATE HELLADIC AND LATE MINOAN III POTTERY A Thesis by NICOLLE ELISE HIRSCHFELD Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the dey'ee of MASTER OF ARTS... December 1990 Major Subject: Anthropology INCISED MARKS ON LATE HELLADIC AND LATE MINOAN III POTTERY A Thesis by NICOLLE ELISE HIRSCHFELD Approved as to style and content by: George F, Bass (Chair of Committee) c~) Frederick H. van Doorninck, Jr...

  12. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    SciTech Connect (OSTI)

    Chartock, Mike (ed.); Hansen, Todd (ed.)

    1999-08-01T23:59:59.000Z

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

  13. Building an internet-based workflow system - the case of Lawrence Livermore National Laboratories` Zephyr project

    SciTech Connect (OSTI)

    Jordan, C. W., LLNL

    1998-04-01T23:59:59.000Z

    Lawrence Livermore National Laboratories` Zephyr System provides a showcase for the ways in which emerging technologies can help streamline procurement processes and improve the coordination between participants in engineering projects by allowing collaboration in ways that have not been possible before. The project also shows the success of a highly pragmatic approach that was initiated by the end user community, and that intentionally covered standard situations, rather than aiming at also automating the exceptions. By helping push purchasing responsibilities down to the end user, thereby greatly reducing the involvement of the purchasing department in operational activities, it was possible to streamline the process significantly resulting in time savings of up to 90%, major cost reductions, and improved quality. Left with less day-to- day purchasing operations, the purchasing department has more time for strategic tasks such as selecting and pre-qualifying new suppliers, negotiating blanket orders, or implementing new procurement systems. The case shows once more that the use of information technologies can result in major benefits when aligned with organizational adjustments.

  14. Cancer risks from soil emissions of volatile organic compounds at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Dibley, V. R., LLNL

    1998-02-01T23:59:59.000Z

    The emission isolation flux chamber (EIFC) methodology was applied to Superfund investigations at the Lawrence Livermore National Laboratory Site 300 to determine if on-site workers were exposed to VOCs volatilizing from the subsurface and what, if any, health risks could be attributed to the inhalation of the VOCs volatilizing from the subsurface. During July and August of 1996, twenty, eighteen, and twenty six VOC soil vapor flux samples were collected in the Building 830, 832, and 854 areas, respectively using EIFCS. The VOC concentrations in the vapor samples were used to calculate soil flux rates which were used as input into an air dispersion model to calculate ambient air exposure-point concentrations. The exposure-point concentrations were compared to EPA Region IX Preliminary Remediation Goals (PRGs). Buildings 830 and 832 exposure-point concentrations were less then the PRGs therefore no cancer risks were calculated. The cancer risks for Building 854 ranged from 1.6 x 10{sup -7} to 2.1 x 10{sup -6}. The resultant inhalation cancer risks were all within the acceptable range, implying that on-site workers were not exposed to VOC vapors volatilizing from the subsurface soil that could have significant cancer risks. Therefore remediation in these areas would not be necessary.

  15. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It also summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.

  16. Summary Report of Summer 2009 NGSI Human Capital Development Efforts at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Dougan, A; Dreicer, M; Essner, J; Gaffney, A; Reed, J; Williams, R

    2009-11-16T23:59:59.000Z

    In 2009, Lawrence Livermore National Laboratory (LLNL) engaged in several activities to support NA-24's Next Generation Safeguards Initiative (NGSI). This report outlines LLNL's efforts to support Human Capital Development (HCD), one of five key components of NGSI managed by Dunbar Lockwood in the Office of International Regimes and Agreements (NA-243). There were five main LLNL summer safeguards HCD efforts sponsored by NGSI: (1) A joint Monterey Institute of International Studies/Center for Nonproliferation Studies-LLNL International Safeguards Policy and Information Analysis Course; (2) A Summer Safeguards Policy Internship Program at LLNL; (3) A Training in Environmental Sample Analysis for IAEA Safeguards Internship; (4) Safeguards Technology Internships; and (5) A joint LLNL-INL Summer Safeguards Lecture Series. In this report, we provide an overview of these five initiatives, an analysis of lessons learned, an update on the NGSI FY09 post-doc, and an update on students who participated in previous NGSI-sponsored LLNL safeguards HCD efforts.

  17. Site safety plan for Lawrence Livermore National Laboratory CERCLA investigations at site 300. Revision 2

    SciTech Connect (OSTI)

    Kilmer, J.

    1997-08-01T23:59:59.000Z

    Various Department of Energy Orders incorporate by reference, health and safety regulations promulgated by the Occupational Safety and Health Administration (OSHA). One of the OSHA regulations, 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, requires that site safety plans are written for activities such as those covered by work plans for Site 300 environmental investigations. Based upon available data, this Site Safety Plan (Plan) for environmental restoration has been prepared specifically for the Lawrence Livermore National Laboratory Site 300, located approximately 15 miles east of Livermore, California. As additional facts, monitoring data, or analytical data on hazards are provided, this Plan may need to be modified. It is the responsibility of the Environmental Restoration Program and Division (ERD) Site Safety Officer (SSO), with the assistance of Hazards Control, to evaluate data which may impact health and safety during these activities and to modify the Plan as appropriate. This Plan is not `cast-in-concrete.` The SSO shall have the authority, with the concurrence of Hazards Control, to institute any change to maintain health and safety protection for workers at Site 300.

  18. Overview of crash and impact analysis at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Logan, R.W.; Tokarz, F.J.

    1993-08-05T23:59:59.000Z

    This work provides a brief overview of past and ongoing efforts at Lawrence Livermore National Laboratory (LLNL) in the area of finite-element modeling of crash and impact problems. The process has been one of evolution in several respects. One aspect of the evolution has been the continual upgrading and refinement of the DYNA, NIKE, and TOPAZ family of finite-element codes. The major missions of these codes involve problems where the dominant factors are high-rate dynamics, quasi-statics, and heat transfer, respectively. However, analysis of a total event, whether it be a shipping container drop or an automobile/barrier collision, may require use or coupling or two or more of these codes. Along with refinements in speed, contact capability, and element technology, material model complexity continues to evolve as more detail is demanded from the analyses. A more recent evolution has involved the mix of problems addressed at LLNL and the direction of the technology thrusts. A pronounced increase in collaborative efforts with the civilian and private sector has resulted in a mix of complex problems involving synergism between weapons applications (shipping container, earth penetrator, missile carrier, ship hull damage) and a more broad base of problems such as vehicle impacts as discussed herein.

  19. Construction quality assurance for Pit 6 landfill closure, Lawrence Livermore National Laboratory, Site 300

    SciTech Connect (OSTI)

    NONE

    1997-10-30T23:59:59.000Z

    Golder Construction Services, Inc. (GCS), under contract to the Regents of the University of California, Lawrence Livermore National Laboratory (LLNL), provided the construction quality assurance (CQA) observation and testing during the construction of the Site 300, Pit 6 landfill closure cover. The cap construction was performed as a CERCLA non-time-critical removal action from June 2 to August 29, 1997. the project site is located 18 miles east of Livermore on Tesla Road and approximately 10 miles southwest of Tracy on Corral Hollow Road in San Joaquin County, California. This report certifies that the LLNL, Site 300, Pit 6, Landfill Closure was constructed in accordance with the construction specifications and design drawings. This report documents construction activities and CQA monitoring and testing for construction of the Pit 6 Landfill Closure. Golder Associates, Inc. of Oakland, California was the design engineering firm responsible for preparation of the drawings and specifications. CQA services were provided by GCS, of Roseville, California, under supervision of a California registered civil Engineer.

  20. Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data

    SciTech Connect (OSTI)

    Cena, R. J.; Thorsness, C. B.

    1981-08-21T23:59:59.000Z

    The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

  1. Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, 1996 Annual Report

    SciTech Connect (OSTI)

    Ryerson, F. J., Institute of Geophysics and Planetary Physics

    1998-03-23T23:59:59.000Z

    The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and in related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, and Riverside, and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography and space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the five branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in seismology, geochemistry, cosmochemistry, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and was originally organized into three centers: Geosciences, stressing seismology; High-Pressure Physics, stressing experiments using the two-stage light-gas gun at LLNL; and Astrophysics, stressing theoretical and computational astrophysics. In 1994, the activities of the Center for High-Pressure Physics were merged with those of the Center for Geosciences. The Center for Geosciences, headed by Frederick Ryerson, focuses on research in geophysics and geochemistry. The Astrophysics Research Center, headed by Charles Alcock, provides a home for theoretical and observational astrophysics and serves as an interface with the Physics and Space Technology Department's Laboratory for Experimental Astrophysics and with other astrophysics efforts at LLNL. The IGPP branch at LLNL (as well as the branch at Los Alamos) also facilitates scientific collaborations between researchers at the UC campuses and those at the national laboratories in areas related to earth science, planetary science, and astrophysics. It does this by sponsoring the University Collaborative Research Program (UCRP), which provides funds to UC campus scientists for joint research projects with LLNL. The goals of the UCRP are to enrich research opportunities for UC campus scientists by making available to them some of LLNL's unique facilities and expertise, and to broaden the scientific program at LLNL through collaborative or interdisciplinary work with UC campus researchers. UCRP funds (provided jointly by the Regents of the University of California and by the Director of LLNL) are awarded annually on the basis of brief proposals, which are reviewed by a committee of scientists from UC campuses, LLNL programs, and external universities and research organizations. Typical annual funding for a collaborative research project ranges from $5,000 to $25,000. Funds are used for a variety of purposes, including salary support for visiting graduate students, postdoctoral fellows, and faculty; released-time salaries for LLNL scientists; and costs for experimental facilities. Although the permanent LLNL staff assigned to IGPP is relatively small (presently about five full-time equivalents), IGPP's research centers have become vital research organizations. This growth has been possible because of IGPP support for a substantial group of resident postdoctoral fellows; because of the 20 or more UCRP projects funded each year; and because IGPP hosts a variety of visitors, guests, and faculty members (from both UC and other institutions) on sabbatical leave. To focus attention on areas of topical interest i

  2. Environmental impact report addendum for the continued operation of Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Weston, R. F. [Roy F. Weston, Inc. (United States)

    1996-10-01T23:59:59.000Z

    An environmental impact statement/environmental impact report (ES/EIR) for the continued operation and management of Lawrence Livermore National Laboratory (LLNL) was prepared jointly by the U.S. Department of Energy (DOE) and the University of California (UC). The scope of the document included near-term (within 5-10 years) proposed projects. The UC Board of Regents, as state lead agency under the California Environmental Quality Act (CEQA), certified and adopted the EIR by issuing a Notice of Determination on November 20, 1992. The DOE, as the lead federal agency under the National Environmental Policy Act (NEPA), adopted a Record of Decision for the ES on January 27, 1993 (58 Federal Register [FR] 6268). The DOE proposed action was to continue operation of the facility, including near-term proposed projects. The specific project evaluated by UC was extension of the contract between UC and DOE for UC`s continued operation and management of LLNL (both sites) from October 1, 1992, through September 30, 1997. The 1992 ES/EIR analyzed impacts through the year 2002. The 1992 ES/EIR comprehensively evaluated the potential environmental impacts of operation and management of LLNL within the near-term future. Activities evaluated included programmatic enhancements and modifications of facilities and programs at the LLNL Livermore site and at LLNL`s Experimental Test Site (Site 300) in support of research and development missions 2048 established for LLNL by Congress and the President. The evaluation also considered the impacts of infrastructure and building maintenance, minor modifications to buildings, general landscaping, road maintenance, and similar routine support activities.

  3. Application of system simulation for engineering the technical computing environment of the Lawrence

    SciTech Connect (OSTI)

    Boyd, V; Edmunds, T; Minuzzo, K; Powell, E; Roche, L.

    1998-09-15T23:59:59.000Z

    This report summarizes an investigation performed by Lawrence Livermore National Laboratory s (LLNL) Scientific Computing Communications Department (SCCD) and the Garland Location of Raytheon Systems Company (RSC) from April through August.1998. The study assessed the applicability and benefits of utilizing System Simulation in architecting and deploying technical computing assets at LLNL, particularly in support of the ASCI program and associated scientific computing needs. The recommendations and other reported findings reflect the consensus of the investigation team. The investigation showed that there are potential benefits to performing component level simulation within SCCD in support of the ASCI program. To illustrate this, a modeling exercise was conducted by the study team that generated results consistent with measured operational performance. This activity demonstrated that a relatively modest effort could improve the toolset for making architectural trades and improving levels of understanding for managing operational practices. This capability to evaluate architectural trades was demonstrated by evaluating some of the productivity impacts of changing one of the design parameters of an existing file transfer system. The use of system simulation should be tailored to the local context of resource requirements/limitations, technology plans/processes/issues, design and deployment schedule, and organizational factors. In taking these matters into account, we recommend that simulation modeling be employed within SCCD on a limited basis for targeted engineering studies, and that an overall performance engineering program be established to better equip the Systems Engineering organization to direct future architectural decisions and operational practices. The development of an end-to-end modeling capability and enterprise-level modeling system within SCCD is not warranted in view of the associated development requirements and difficulty in determining firm operational performance requirements in advance of the critical architectural decisions. These recommendations also account for key differences between the programmatic and institutional environments at LLNL and RSC.

  4. Application of system simulation for engineering the technical computing environment of the Lawrence Livermore National Laboratorie

    SciTech Connect (OSTI)

    Boyd, V; Edmunds, T; Minuzzo, K; Powell, E; Roche, L

    1998-09-15T23:59:59.000Z

    This report summarizes an investigation performed by Lawrence Livermore National Laboratory? s (LLNL) Scientific Computing & Communications Department (SCCD) and the Garland Location of Raytheon Systems Company (RSC) from April through August.1998. The study assessed the applicability and benefits of utilizing System Simulation in architecting and deploying technical computing assets at LLNL, particularly in support of the ASCI program and associated scientific computing needs. The recommendations and other reported findings reflect the consensus of the investigation team. The investigation showed that there are potential benefits to performing component level simulation within SCCD in support of the ASCI program. To illustrate this, a modeling exercise was conducted by the study team that generated results consistent with measured operational performance. This activity demonstrated that a relatively modest effort could improve the toolset for making architectural trades and improving levels of understanding for managing operational practices. This capability to evaluate architectural trades was demonstrated by evaluating some of the productivity impacts of changing one of the design parameters of an existing file transfer system. The use of system simulation should be tailored to the local context of resource requirements/limitations, technology plans/processes/issues, design and deployment schedule, and organizational factors. In taking these matters into account, we recommend that simulation modeling be employed within SCCD on a limited basis for targeted engineering studies, and that an overall performance engineering program be established to better equip the Systems Engineering organization to direct future architectural decisions and operational practices. The development of an end-to-end modeling capability and enterprise-level modeling system within SCCD is not warranted in view of the associated development requirements and difficulty in determining firm operational performance requirements in advance of the critical architectural decisions. These recommendations also account for key differences between the programmatic and institutional environments at LLNL and RSC.

  5. Studies in Non-Malleable Commitment

    E-Print Network [OSTI]

    Lee, Chen-Kuei

    2013-01-01T23:59:59.000Z

    2008. [WC81] Mark N. Wegman and J. Lawrence Carter. New HashJ. Lawrence Carter and Mark N. Wegman. Universal Classes of

  6. Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-01-10T23:59:59.000Z

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

  7. Irreducibility of the Lawrence-Krammer representation of the BMW algebra of type $A_{n-1}$

    E-Print Network [OSTI]

    Levaillant, Claire Isabelle

    2008-01-01T23:59:59.000Z

    It is known that the Lawrence-Krammer representation of the Artin group of type $A_{n-1}$ based on the two parameters $t$ and $q$ that was used by Krammer and independently by Bigelow to show the linearity of the Braid group on $n$ strands is generically irreducible. Here, we recover this result and show further that for some complex specializations of the parameters the representation is reducible. We give all the values of the parameters for which the representation is reducible as well as the dimensions of the invariant subspaces. We deduce some results of semisimplicity of the Birman-Murakami-Wenzl algebra of type $A_{n-1}$.

  8. Workshop on Revisions to SE 2004 Mark Ardis David Budgen

    E-Print Network [OSTI]

    Ardis, Mark

    Workshop on Revisions to SE 2004 Mark Ardis David Budgen Stevens Institute of Technology University-day workshop on needed revisions to Software Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering (SE 2004). A brief overview of the current guidelines and their revision

  9. Author List Mark Baker and Rajkumar Buyya 3

    E-Print Network [OSTI]

    Melbourne, University of

    135 y Department of Computer Science University of Virginia Charlottesville, VA 22903­2242 z: xd2a@cs.virginia.edu, zhang@cs.wm.edu Mark Baker and Geoffrey Fox 154 y Division of Computer Science: fnitin, mraghug@cdacb.ernet.in Alfred C. Weaver 301 Department of Computer Science University of Virginia

  10. Solving the Robots Gathering Problem Mark Cieliebak1

    E-Print Network [OSTI]

    Prencipe, Giuseppe

    Solving the Robots Gathering Problem Mark Cieliebak1 , Paola Flocchini2 , Giuseppe Prencipe3 a set of n > 2 simple autonomous mobile robots (decentralized, asynchronous, no common coordinate system) moving freely in the plane and able to sense the posi- tions of the other robots. W e study the primitive

  11. THIS YEAR MARKS A PIVOTAL moment in international efforts to

    E-Print Network [OSTI]

    THIS YEAR MARKS A PIVOTAL moment in international efforts to fight extreme poverty. Following to address extreme poverty in its many dimensions ­ income poverty, hunger, disease, lack of adequate shelter improved and millions could be saved every year, but only if the world takes bold steps in 2005

  12. Magneto-Optical Cooling of Atoms Mark G. Raizen1

    E-Print Network [OSTI]

    Raizen, Mark G.

    , it was not clear how to optimally integrate the above techniques, and a direct comparison with laser coolingMagneto-Optical Cooling of Atoms Mark G. Raizen1 , Dmitry Budker2,3 , Simon Rochester3 , Julia, Weizmann Institute of Science, Rehovot, Israel Abstract We propose an alternative method to laser cooling

  13. Interpretation as Abduction Jerry R. Hobbs, Mark Stickel,

    E-Print Network [OSTI]

    Hobbs, Jerry R.

    Interpretation as Abduction Jerry R. Hobbs, Mark Stickel, Douglas Appelt, and Paul Martin Artificial Intelligence Center SRI International Abstract Abduction is inference to the best explanation. In the TACITUS project at SRI we have developed an approach to abductive inference, called ``weighted abduction

  14. Interpretation as Abduction Jerry R. Hobbs, Mark Stickel,

    E-Print Network [OSTI]

    Hobbs, Jerry R.

    Interpretation as Abduction Jerry R. Hobbs, Mark Stickel, Douglas Appelt, and Paul Martin Arti#12;cial Intelligence Center SRI International Abstract Abduction is inference to the best explanation. In the TACITUS project at SRI we have developed an approach to abductive inference, called \\weighted abduction

  15. Artificial intelligence based on Darwin's idea By Mark Baard

    E-Print Network [OSTI]

    Bongard, Josh

    Artificial intelligence based on Darwin's idea By Mark Baard January 31, 2011 PROTOTYPES, his robots' artificial brains evolved not in isolation, but in conjunction with their changing bodies yielding. The result is a grip that is firm enough to lift a fragile object, but which requires none

  16. Thermo-optic photonic crystal light modulator Mark T. Tinkera

    E-Print Network [OSTI]

    Lee, Jeong-Bong

    Thermo-optic photonic crystal light modulator Mark T. Tinkera and Jeong-Bong Lee Department be capable of driving substantial changes in the refractive index through the thermo-optic effect. Since the thermo-optic coefficient of silicon is approximately 2.4 10-4 K-1 over this temperature range

  17. A low memory, highly concurrent multigrid algorithm Mark F. Adams

    E-Print Network [OSTI]

    Adams, Mark

    A low memory, highly concurrent multigrid algorithm Mark F. Adams Abstract We examine what., the continued increase in the number of transistors on a chip, requires that algorithms be highly concurrent;engineers and may require that we develop algorithms for radically different machine models with respect

  18. Mark Your Calendar! Indiana's only statewide wind power

    E-Print Network [OSTI]

    Ginzel, Matthew

    Mark Your Calendar! Indiana's only statewide wind power conference is July 21-22, 2010. WIndiana in Track 1. Wind power supply chain information will be in Track 2. Track 3 is an expanded Community Wind 2010. First, there will be three separate session tracks to choose from. Big Wind will be represented

  19. Patent Holdup and Royalty Stacking* Mark A. Lemley**

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    Reply Patent Holdup and Royalty Stacking* Mark A. Lemley** & Carl Shapiro*** We argued in our article, Patent Holdup and Royalty Stacking,1 that the threat to obtain a permanent injunction can greatly enhance a patent holder's negotiating power, leading to royalty rates that exceed a benchmark level based

  20. ECN Marking for Congestion Control in Multihop Wireless Networks

    E-Print Network [OSTI]

    Siris, Vasilios A.

    ECN Marking for Congestion Control in Multihop Wireless Networks Vasilios A. Siris and Despina an approach to increase TCP's fair- ness in multihop wireless networks, using ECN as a congestion signalling demonstrate that our approach can improve TCP's fairness in a multihop wireless network compared to drop tail

  1. GeothermalHeat Extraction Anna Przybycin Feliks Nueske Mark Riesland

    E-Print Network [OSTI]

    Kornhuber, Ralf

    : 70% 32.8 m3/d water extraction - Extraction temperature: 12°C = aquifer temperature Injection the cold-water plume reaches the extraction well Is this realistic under practical considerations? ProbablyGeothermal­Heat Extraction Anna Przybycin ­ Feliks Nueske ­ Mark Riesland #12;1) Hydrogeological

  2. A Wave Analysis of the Subset Sum Problem Mark Jelasity

    E-Print Network [OSTI]

    Jelasity, Márk

    A Wave Analysis of the Subset Sum Problem M´ark Jelasity Research Group of Artificial Intelligence the wave model, a novel approach on analyzing the behavior of GAs. Our aim is to give techniques that have and effective heuristics on certain problem classes. The wave analysis is the process of building wave models

  3. Dynamic Power Management at HP Tajana Simunic Mark Smith

    E-Print Network [OSTI]

    Simunic, Tajana

    Dynamic Power Management at HP Tajana Simunic Mark Smith Hewlett-Packard Laboratory Palo Alto performance for power. The transitions between states are controlled by commands issued by a power manager to the power management policy. The most common power management policy is a timeout policy. Predictive

  4. Organizational Memory: Processes, Boundary Objects, and Trajectories Mark S. Ackerman

    E-Print Network [OSTI]

    Ackerman, Mark S.

    Organizational Memory: Processes, Boundary Objects, and Trajectories Mark S. Ackerman Information 7751 krys@watson.ibm.com Abstract The term organizational memory is due for an overhaul. Memory appears and analyzing organizational memory. 1. Introduction After nearly ten years of research, the term organizational

  5. Modeling Centralized Organization of Organizational Change Mark Hoogendoorn1

    E-Print Network [OSTI]

    Treur, Jan

    . This model takes into account different phases in a change process considered in Organization Theory, organization verification 1 Introduction Within the literature on Organization Theory changing organizationsModeling Centralized Organization of Organizational Change Mark Hoogendoorn1 , Catholijn M. Jonker2

  6. Aisle Marking Requirements permanent workplace aisles should have appropriate

    E-Print Network [OSTI]

    Cohen, Robert E.

    , lead acid, laptop · tape battery terminals as a fire prevention measure prior to placing them such as mercury, lead, cadmium, and nickel which can contaminate the environment when batteries are improperly that are clearly visible may not need markings ­ aisles that lead to emergency exits and have difficult

  7. The Michigan Blueberry Industry Mark Longstroth and Eric Hanson

    E-Print Network [OSTI]

    The Michigan Blueberry Industry Mark Longstroth and Eric Hanson Michigan State University Blueberries are native to Michigan. Lowbush blueberries are common in the Upper Peninsula and the northern. The development of the modern blueberry industry began in the early 1900s. In Michigan, Dr. Stanley Johnston led

  8. Command Line Arguments in Ada95 Mark Allen Weiss

    E-Print Network [OSTI]

    Weiss, Mark Allen

    Command Line Arguments in Ada95 Mark Allen Weiss School of Computer Science Florida International (additional) arguments: ''­w'' and ''echo args.adb''. These are known as command line arguments. Command line on a command line can be accessed in an Ada program. In Ada83 there was no standard way of doing this. Ada95

  9. SEQUENTIAL BUCKLING: A VARIATIONAL ANALYSIS MARK A. PELETIER \\Lambda

    E-Print Network [OSTI]

    Peletier, Mark

    ­ tudinal direction can buckle in a localized manner. By this we mean that the lateral deflectionSEQUENTIAL BUCKLING: A VARIATIONAL ANALYSIS MARK A. PELETIER \\Lambda Abstract. We examine has infinite length, and its lateral deflection is represented by u : R ! R. Deformation takes place

  10. MIXPLORATION: Rethinking the Audio Mixer Interface Mark Cartwright

    E-Print Network [OSTI]

    Pardo, Bryan

    MIXPLORATION: Rethinking the Audio Mixer Interface Mark Cartwright Northwestern University Queen Mary University of London josh.reiss@eecs.qmul.ac.uk ABSTRACT A typical audio mixer interface mixing options. In this work, we rethink the mixer interface, describing an alternative inter- face

  11. Lawrence Livermore National Laboratory Workshop Characterization of Pathogenicity, Virulence and Host-Pathogen Interactions

    SciTech Connect (OSTI)

    Krishnan, A

    2006-08-30T23:59:59.000Z

    The threats of bio-terrorism and newly emerging infectious diseases pose serious challenges to the national security infrastructure. Rapid detection and diagnosis of infectious disease in human populations, as well as characterizing pathogen biology, are critical for reducing the morbidity and mortality associated with such threats. One of the key challenges in managing an infectious disease outbreak, whether through natural causes or acts of overt terrorism, is detection early enough to initiate effective countermeasures. Much recent attention has been directed towards the utility of biomarkers or molecular signatures that result from the interaction of the pathogen with the host for improving our ability to diagnose and mitigate the impact of a developing infection during the time window when effective countermeasures can be instituted. Host responses may provide early signals in blood even from localized infections. Multiple innate and adaptive immune molecules, in combination with other biochemical markers, may provide disease-specific information and new targets for countermeasures. The presence of pathogen specific markers and an understanding of the molecular capabilities and adaptations of the pathogen when it interacts with its host may likewise assist in early detection and provide opportunities for targeting countermeasures. An important question that needs to be addressed is whether these molecular-based approaches will prove useful for early diagnosis, complement current methods of direct agent detection, and aid development and use of countermeasures. Lawrence Livermore National Laboratory (LLNL) will host a workshop to explore the utility of host- and pathogen-based molecular diagnostics, prioritize key research issues, and determine the critical steps needed to transition host-pathogen research to tools that can be applied towards a more effective national bio-defense strategy. The workshop will bring together leading researchers/scientists in the area of host-pathogen interactions as well as policy makers from federal agencies. The main objectives of the workshop are: (1) to assess the current national needs, capabilities, near-term technologies, and future challenges in applying various diagnostics tools to public health and bio-defense; (2) to evaluate the utility and feasibility of host-response and pathogen biomarker profiling in the diagnosis and management of infectious diseases; and (3) to create a comprehensive developmental strategy from proof-of-concept, through validation, to deployment of appropriate advanced technology for the clinical/public health and bio-defense environments.

  12. Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SA examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.

  13. HOMING AND FISHERIES CONTRIBUTION OF MARKED COHO SALMON,

    E-Print Network [OSTI]

    ramp. We transported the fish in two tank trucks, each 3,785 I (l,OOO-gal) capacity. Each truck to the Youngs Bay release. On 16 and 17 May 1973, we hauled 107,707 Ad-LV marked coho salmon weighing 1,835 kg (4,045 lb) in the same two tank trucks used for the Youngs Bay release. The fish were transported

  14. Lawrence Livermore National Laboratory Emergency Response Capability Baseline Needs Assessment Requirement Document

    SciTech Connect (OSTI)

    Sharry, J A

    2009-12-30T23:59:59.000Z

    This revision of the LLNL Fire Protection Baseline Needs Assessment (BNA) was prepared by John A. Sharry, LLNL Fire Marshal and LLNL Division Leader for Fire Protection and reviewed by Martin Gresho, Sandia/CA Fire Marshal. The document follows and expands upon the format and contents of the DOE Model Fire Protection Baseline Capabilities Assessment document contained on the DOE Fire Protection Web Site, but only address emergency response. The original LLNL BNA was created on April 23, 1997 as a means of collecting all requirements concerning emergency response capabilities at LLNL (including response to emergencies at Sandia/CA) into one BNA document. The original BNA documented the basis for emergency response, emergency personnel staffing, and emergency response equipment over the years. The BNA has been updated and reissued five times since in 1998, 1999, 2000, 2002, and 2004. A significant format change was performed in the 2004 update of the BNA in that it was 'zero based.' Starting with the requirement documents, the 2004 BNA evaluated the requirements, and determined minimum needs without regard to previous evaluations. This 2010 update maintains the same basic format and requirements as the 2004 BNA. In this 2010 BNA, as in the previous BNA, the document has been intentionally divided into two separate documents - the needs assessment (1) and the compliance assessment (2). The needs assessment will be referred to as the BNA and the compliance assessment will be referred to as the BNA Compliance Assessment. The primary driver for separation is that the needs assessment identifies the detailed applicable regulations (primarily NFPA Standards) for emergency response capabilities based on the hazards present at LLNL and Sandia/CA and the geographical location of the facilities. The needs assessment also identifies areas where the modification of the requirements in the applicable NFPA standards is appropriate, due to the improved fire protection provided, the remote location and low population density of some the facilities. As such, the needs assessment contains equivalencies to the applicable requirements. The compliance assessment contains no such equivalencies and simply assesses the existing emergency response resources to the requirements of the BNA and can be updated as compliance changes independent of the BNA update schedule. There are numerous NFPA codes and standards and other requirements and guidance documents that address the subject of emergency response. These requirements documents are not always well coordinated and may contain duplicative or conflicting requirements or even coverage gaps. Left unaddressed, this regulatory situation results in frequent interpretation of requirements documents. Different interpretations can then lead to inconsistent implementation. This BNA addresses this situation by compiling applicable requirements from all identified sources (see Section 5) and analyzing them collectively to address conflict and overlap as applicable to the hazards presented by the LLNL and Sandia/CA sites (see Section 7). The BNA also generates requirements when needed to fill any identified gaps in regulatory coverage. Finally, the BNA produces a customized simple set of requirements, appropriate for the DOE protection goals, such as those defined in DOE O 420.1B, the hazard level, the population density, the topography, and the site layout at LLNL and Sandia/CA that will be used as the baseline requirements set - the 'baseline needs' - for emergency response at LLNL and Sandia/CA. A template approach is utilized to accomplish this evaluation for each of the nine topical areas that comprise the baseline needs for emergency response. The basis for conclusions reached in determining the baseline needs for each of the topical areas is presented in Sections 7.1 through 7.9. This BNA identifies only mandatory requirements and establishes the minimum performance criteria. The minimum performance criteria may not be the level of performance desired Lawrence Livermore National Laboratory or Sandia/CA

  15. The Analysis of Interference Effects in the Sum Frequency Spectra of Water Interfaces Mac G. Brown, Elizabeth A. Raymond, Heather C. Allen, Lawrence F. Scatena, and

    E-Print Network [OSTI]

    Richmond, Geraldine L.

    The Analysis of Interference Effects in the Sum Frequency Spectra of Water Interfaces Mac G. Brown, Elizabeth A. Raymond, Heather C. Allen, Lawrence F. Scatena, and Geraldine L. Richmond* Department involve the surface of liquid water. Unfortunately, obtaining spectral fits to vibrational spectra

  16. Business Career Services Center | 1300 Sunnyside Ave. Rm. 125 | Lawrence, KS 66045 | (785) 864-5591 | www.business.ku.edu

    E-Print Network [OSTI]

    Business Career Services Center | 1300 Sunnyside Ave. Rm. 125 | Lawrence, KS 66045 | (785) 864-5591 | www.business.ku.edu - 1 - What Can I Do With A Major In INFORMATION SYSTEMS? This handout will provide education. You'll gain a solid foundation in the various business disciplines and gain an understanding

  17. Dr. Paul Alivisatos was appointed as the seventh director of Lawrence Berkeley National Laboratory by the University of California (UC) Board

    E-Print Network [OSTI]

    Eisen, Michael

    Dr. Paul Alivisatos was appointed as the seventh director of Lawrence Berkeley National Laboratory. Yudof, Alivisatos was named interim director of Berkeley Lab on January 21, 2009, replacing former, Alivisatos was the deputy director of Berkeley Lab, serving as the lab's chief research officer, overseeing

  18. Irreducibility of the Lawrence-Krammer representation of the BMW algebra of type $A_{n-1}$, PhD thesis California Institute of Technology 2008

    E-Print Network [OSTI]

    Levaillant, Claire

    2009-01-01T23:59:59.000Z

    Given two nonzero complex parameters $l$ and $m$, we construct by the mean of knot theory a matrix representation of size $\\chl$ of the BMW algebra of type $A_{n-1}$ with parameters $l$ and $m$ over the field $\\Q(l,r)$, where $m=\\unsurr-r$. As a representation of the braid group on $n$ strands, it is equivalent to the Lawrence-Krammer representation that was introduced by Lawrence and Krammer to show the linearity of the braid groups. We prove that the Lawrence-Krammer representation is generically irreducible, but that for some values of the parameters $l$ and $r$, it becomes reducible. In particular, we show that for these values of the parameters $l$ and $r$, the BMW algebra is not semisimple. When the representation is reducible, the action on a proper invariant subspace of the Lawrence-Krammer space must be a Hecke algebra action. It allows us to describe the invariant subspaces when the representation is reducible.

  19. Tube-wave Effects in Cross-Well Seismic Data at Stratton Field Valeri Korneev, Lawrence Berkeley National Laboratory, Jorge Parra, South-West Research Institute,

    E-Print Network [OSTI]

    Korneev, Valeri A.

    Tube-wave Effects in Cross-Well Seismic Data at Stratton Field Valeri Korneev, Lawrence Berkeley vertical plane. The data were collected in the receiver wells Ward159 and Ward145, while sources were The analysis of crosswell seismic data for a gas reservoir in Texas revealed two newly detected seismic wave

  20. The Trans-Pacific Lesson of Mark Twain's 'War-Prayer'

    E-Print Network [OSTI]

    Hsu, Hua

    2009-01-01T23:59:59.000Z

    1928. Twain, Mark. The War Prayer. With drawings by JohnBiography as an epigraph to The War-Prayer n.p. ). They mayc Lesson of Mark Twain’s “War-Prayer” Hua HSU Written in

  1. The Vision of the Other in Mark Twain's 'War-Prayer'

    E-Print Network [OSTI]

    Zehr, Martin

    2009-01-01T23:59:59.000Z

    Little, 1929. Twain, Mark. The War-Prayer. New York: Harper,New Perspectives on “The War-Prayer” Essayson “The War-Prayer” The Vision of the Other in Mark Twain’

  2. Determination of the Presence Conditions of Pavement Markings using Image Processing

    E-Print Network [OSTI]

    Ge, Hancheng

    2012-10-19T23:59:59.000Z

    Pavement markings, as a form of traffic control devices, play a crucial role in safely guiding drivers. Restriping pavement markings is an important task in the maintenance of traffic control devices. Every year state agencies spend a lot of money...

  3. NNSA Awards Bronze Medal Award to Mark Livesay of Y-12 | National...

    National Nuclear Security Administration (NNSA)

    Field Offices Welcome to the NNSA Production Office NPO News Releases NNSA Awards Bronze Medal Award to Mark ... NNSA Awards Bronze Medal Award to Mark Livesay of Y-12...

  4. Uncertainties Affecting BOSFN for the Mark 15 Assembly

    SciTech Connect (OSTI)

    Hamm, L.L.

    2001-08-09T23:59:59.000Z

    Technical and transient protection limits are specified on the nominal burnout safety factor, BOSFN, to avoid significant release of fission products caused by local film boiling burnout. The risk of fission product release, BOR, due to film boiling burnout is statistically determined where allowances are made to account for differences between the nominal assembly and the actual assembly. This report describes the calculational model behind BOR and how the specific numerical values were estimated. The data listed in this report enable damage calculations with COBAD to be performed for the Mark 15 assembly.

  5. EM Marks Milestone at Separations Process Research Unit | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EM Highlights AdvisoryLeadersEnergy Marks

  6. Mark Your Calendars! 2015 DOE LM Independent Stakeholder Satisfaction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketingSmartManufacturingMarch8,ofMark

  7. How is a document containing UCNI marked? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar PowerCommercialEnergy Star|document containing UCNI marked?

  8. Mark Richey Woodworking Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconvertersourcesourceCharacterizationMark Richey

  9. Testimony of Mark Whitney Acting Assistant Secretary for Environmental Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest for Pumping System Efficiency TestMark Whitney Acting

  10. Mark Your Calendars! 2015 DOE LM Independent Stakeholder Satisfaction

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC) Richard Cowart,Department ofCommercialDepartmentMark

  11. U.S., Peru Mark 10 Years of Nuclear and Radiological Security...

    National Nuclear Security Administration (NNSA)

    , Peru Mark 10 Years of Nuclear and Radiological Security Collaboration, Dedicate Secure Radiological Transportation Vehicle | National Nuclear Security Administration Facebook...

  12. Highly Connected Random Geometric Graphs Paul Balister #+ Bela Bollobas +# Amites Sarkar + Mark Walters #

    E-Print Network [OSTI]

    Banaji,. Murad

    Highly Connected Random Geometric Graphs Paul Balister #+ Bâ??ela Bollobâ??as +#§ Amites Sarkar +¶ Mark

  13. A critical constant for the knearest neighbour model Paul Balister # Bela Bollobas #+ Amites Sarkar # Mark Walters #

    E-Print Network [OSTI]

    Banaji,. Murad

    Sarkar # Mark Walters # November 7, 2008 Abstract Let P be a Poisson process of intensity one in a square

  14. Immix: A Mark-Region Garbage Collector with Space Efficiency, Fast Collection, and Mutator Performance

    E-Print Network [OSTI]

    McKinley, Kathryn S.

    Immix: A Mark-Region Garbage Collector with Space Efficiency, Fast Collection, and Mutator. The garbage collector therefore directly deter- mines program performance by making a classic space-time trade canonical tracing garbage collectors: semi-space, mark-sweep, and mark-compact each sacrifice one ob

  15. 31 October 2005 Mark Oreglia, EFI HEPsem 1 Status of the International

    E-Print Network [OSTI]

    organization and tasks will be organized internationally, not regionally #12;31 October 2005 Mark Oreglia, EFI31 October 2005 Mark Oreglia, EFI HEPsem 1 Status of the International Linear Collider Project Mark interaction strength with standard model particles. · Straight blue line gives the standard model predictions

  16. Background sources and masks for Mark II detector at PEP

    SciTech Connect (OSTI)

    Kadyk, J.

    1981-06-01T23:59:59.000Z

    The shielding masks currently at use in several of the current experiments at PEP are the result of an early organized effort to understand the sources of particle background expected at PEP, followed by the evolution of the conceptual designs into actual hardware. The degree and kind of background particle loading which could be tolerated was expected to differ significantly among the different experiments, and several designs emerged from the common study. Qualitatively, the types of radiations studied were, Synchrotron Radiation (SR), Beam Gas Bremsstrahlung (BGB), and, to a limited extent others, e.g., Electroproduction (EP). Calculations will be given of predicted occupancies in the pipe counter and other sensitive elements at small radius, since these will be most susceptible to the SR and BGB backgrounds. The calculations presented in this note are specific to the Mark II detector. Some general statements will be made first about the character of each of the various types of backgrounds considered, then some detailed calculations made for application to the Mark II detector.

  17. INTEGRATED ENERGY SYSTEMS: PRODUCTIVITY & BUILDING SCIENCE

    E-Print Network [OSTI]

    . Mark Modera, Aeroseal Inc. Andy Rhoades, Thomas Properties Group. Stephen Selkowitz, Lawrence Berkeley

  18. Analyses of corium spreading in Mark I containment geometry

    SciTech Connect (OSTI)

    Sienicki, J.J.; Chu, C.C.; Farmer, M.T.

    1991-01-01T23:59:59.000Z

    An assessment of melt spreading in the Mark I system has been carried out using the MELTSPREAD-1 computer code together with supporting analyses. Application of MELTSPREAD-1 confirms the calculation of shell survival in a wet containment for the most probable melt release conditions from NUREG/CR-5423. According to MELTSPREAD-1, a dry containment also may not be threatened by melt spreading. This reflects the heat losses undergone by the melt in the process of spreading to the shell conservatively neglected in NUREG/CR-5423. However, there exist parameter ranges outside the most probable set where shell failure may be calculated. Accounting for the breakup and quenching of melt relocating through a deep layer of subcooled water also conservatively neglected in NUREG/CR-5423 can reduce the set of parameter variations for which containment failure is calculated in the wet case.

  19. Analyses of corium spreading in Mark I containment geometry

    SciTech Connect (OSTI)

    Sienicki, J.J.; Chu, C.C.; Farmer, M.T.

    1991-12-31T23:59:59.000Z

    An assessment of melt spreading in the Mark I system has been carried out using the MELTSPREAD-1 computer code together with supporting analyses. Application of MELTSPREAD-1 confirms the calculation of shell survival in a wet containment for the most probable melt release conditions from NUREG/CR-5423. According to MELTSPREAD-1, a dry containment also may not be threatened by melt spreading. This reflects the heat losses undergone by the melt in the process of spreading to the shell conservatively neglected in NUREG/CR-5423. However, there exist parameter ranges outside the most probable set where shell failure may be calculated. Accounting for the breakup and quenching of melt relocating through a deep layer of subcooled water also conservatively neglected in NUREG/CR-5423 can reduce the set of parameter variations for which containment failure is calculated in the wet case.

  20. TASS Mark IV Photometric Survey of the Northern Sky

    E-Print Network [OSTI]

    Thomas F. Droege; Michael W. Richmond; Michael P. Sallman; Robert P. Creager

    2006-10-17T23:59:59.000Z

    The Amateur Sky Survey (TASS) is a loose confederation of amateur and professional astronomers. We describe the design and construction of our Mark IV systems, a set of wide-field telescopes with CCD cameras which take simultaneous images in the $V$ and $I_C$ passbands. We explain our observational procedures and the pipeline which processes and reduces the images into lists of stellar positions and magnitudes. We have compiled a large database of measurements for stars in the northern celestial hemisphere with $V$-band magnitudes in the range 7 < V < 13. This paper describes data taken over the four-year period starting November, 2001. One of our results is a catalog of repeated measurements on the Johnson-Cousins system for over 4.3 million stars.

  1. Energy Management and Control Systems and their Use for Performance Monitoring in the LoanSTAR Program, Technical Report prepared for the Lawrence Berkeley Laboratory, University of California, Energy and Environment Division

    E-Print Network [OSTI]

    Heinemeier, K. E.; Akbari, H.

    1993-01-01T23:59:59.000Z

    ESL-TR-93/06-02 LBL-33114 UC-350 LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA ENERGY AND ENVIRONMENT DIVISION ENERGY MANAGEMENT AND CONTROL SYSTEMS AND THEIR USE FOR PERFORMANCE MONITORING IN THE LOANSTAR PROGRAM Final Report Prepared...

  2. Dr. Stirling A. Colgate has been a staff physicist at Lawrence Livermore National Lab. (1952-1965) and was a staff member at Los Alamos National Laboratory, [LANL] from 1976 to 1991 and from

    E-Print Network [OSTI]

    Dr. Stirling A. Colgate has been a staff physicist at Lawrence Livermore National Lab. (1952 in WW II in the US Merchant Marine. Dr. Stirling A. Colgate is an associate staff member at Los Alamos

  3. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011, Part 2

    SciTech Connect (OSTI)

    Pawloski, G A

    2012-01-30T23:59:59.000Z

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done to support several different programs that desire access to the ground surface above expended underground nuclear tests. The programs include: the Borehole Management Program, the Environmental Restoration Program, and the National Center for Nuclear Security Gas-Migration Experiment. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Evaluation of cavity collapse and crater formation is input into the safety decisions. Subject matter experts from the LLNL Containment Program who participated in weapons testing activities perform these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. The evaluations do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011 was published on March 2, 2011. This report, considered Part 2 of work undertaken in calendar year 2011, compiles evaluations requested after the March report. The following unclassified summary statements describe collapse evolution and crater stability in response to a recent request to review 6 LLNL test locations in Yucca Flat, Rainier Mesa, and Pahute Mesa. They include: Baneberry in U8d; Clearwater in U12q; Wineskin in U12r, Buteo in U20a and Duryea in nearby U20a1; and Barnwell in U20az.

  4. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Former St. Marks Refinery in St. Marks, Florida

    SciTech Connect (OSTI)

    Lisell, L.; Mosey, G.

    2010-09-01T23:59:59.000Z

    This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on a brownfield site in St. Marks, Florida. The site was assessed for possible PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.08/kWh and incentives offered in the State of Florida and from the two accessible utilities, Progress Energy and the City of Tallahassee. According to the site production calculations, the most cost-effective system in terms of return on investment is the fixed-tilt thin film technology. The report recommends financing options that could assist in the implementation of such a system.

  5. Environmental Assessment for the proposed Induction Linac System Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA), (DOE/EA-1087) evaluating the proposed action to modify existing Building 51B at Lawrence Berkeley National Laboratory (LBNL) to install and conduct experiments on a new Induction Linear Accelerator System. LBNL is located in Berkeley, California and operated by the University of California (UC). The project consists of placing a pre-fabricated building inside Building 51B to house a new 10 MeV heavy ion linear accelerator. A control room and other support areas would be provided within and directly adjacent to Building 51B. The accelerator system would be used to conduct tests, at reduced scale and cost, many features of a heavy-ion accelerator driver for the Department of Energy`s inertial fusion energy program. Based upon information and analyses in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969. Therefore, an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  6. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2010

    SciTech Connect (OSTI)

    Pawloski, G A

    2011-01-03T23:59:59.000Z

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done at the request of Navarro-Interra LLC, and supports environmental restoration efforts by the Department of Energy, National Nuclear Security Administration for the Nevada Site Office. Safety decisions must be made before a surface crater area, or potential surface crater area, can be reentered for any work. Our statements on cavity collapse and surface crater formation are input into their safety decisions. These statements do not include the effects of erosion that may modify the surface collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty.

  7. Serving the Nation for Fifty Years: 1952 - 2002 Lawrence Livermore National Laboratory [LLNL], Fifty Years of Accomplishments

    DOE R&D Accomplishments [OSTI]

    2002-00-00T23:59:59.000Z

    For 50 years, Lawrence Livermore National Laboratory has been making history and making a difference. The outstanding efforts by a dedicated work force have led to many remarkable accomplishments. Creative individuals and interdisciplinary teams at the Laboratory have sought breakthrough advances to strengthen national security and to help meet other enduring national needs. The Laboratory's rich history includes many interwoven stories -- from the first nuclear test failure to accomplishments meeting today's challenges. Many stories are tied to Livermore's national security mission, which has evolved to include ensuring the safety, security, and reliability of the nation's nuclear weapons without conducting nuclear tests and preventing the proliferation and use of weapons of mass destruction. Throughout its history and in its wide range of research activities, Livermore has achieved breakthroughs in applied and basic science, remarkable feats of engineering, and extraordinary advances in experimental and computational capabilities. From the many stories to tell, one has been selected for each year of the Laboratory's history. Together, these stories give a sense of the Laboratory -- its lasting focus on important missions, dedication to scientific and technical excellence, and drive to made the world more secure and a better place to live.

  8. Lawrence Livermore National Laboratory interests and capabilities for research on the ecological effects of global climatic and atmospheric change

    SciTech Connect (OSTI)

    Amthor, J.S.; Houpis, J.L.; Kercher, J.R.; Ledebuhr, A.; Miller, N.L.; Penner, J.E.; Robison, W.L.; Taylor, K.E.

    1994-09-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) has interests and capabilities in all three types of research that must be conducted in order to understand and predict effects of global atmospheric and climatic (i.e., environmental) changes on ecological systems and their functions (ecosystem function is perhaps most conveniently defined as mass and energy exchange and storage). These three types of research are: (1) manipulative experiments with plants and ecosystems; (2) monitoring of present ecosystem, landscape, and global exchanges and pools of energy, elements, and compounds that play important roles in ecosystem function or the physical climate system, and (3) mechanistic (i.e., hierarchic and explanatory) modeling of plant and ecosystem responses to global environmental change. Specific experimental programs, monitoring plans, and modeling activities related to evaluation of ecological effects of global environmental change that are of interest to, and that can be carried out by LLNL scientists are outlined. Several projects have the distinction of integrating modeling with empirical studies resulting in an Integrated Product (a model or set of models) that DOE or any federal policy maker could use to assess ecological effects. The authors note that any scheme for evaluating ecological effects of atmospheric and climatic change should take into account exceptional or sensitive species, in particular, rare, threatened, or endangered species.

  9. Preliminary report of the past and present uses, storage, and disposal of hazardous materials at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Dreicer, M.

    1985-12-01T23:59:59.000Z

    This report contains the findings of a records search performed to survey the past and present use, storage, and disposal of hazardous materials and wastes at the Lawrence Livermore National Laboratory (LLNL) site. This report provides a point of departure for further planning of environmental protection activities at the site. This report was conducted using the LLNL archives and library, documents from the US Navy, old LLNL Plant Engineering blueprint files, published articles and reports, Environmental Protection Program records, employee interviews, and available aerial photographs. Sections I and II of this report provide an introduction to the LLNL site and its environmental characteristics. Several tenants have occupied the site prior to the establishment of LLNL, currently operated by the University of California for the US Department of Energy. Section III of this report contains information on environmentally related operations of early site users, the US Navy and California Research and Development. Section IV of this report contains information on the handling of hazardous materials and wastes by LLNL programs. The information is presented in 12 sub-sections, one for each currently operating LLNL program. General site areas, i.e., garbage trenches, the traffic circle landfill, the taxi strip, and old ammunition bunkers are discussed in Section V. 12 refs., 23 figs., 27 tabs.

  10. DOE Names Mark A. Gabriel as New Western Area Power Administration...

    Energy Savers [EERE]

    Power Pundits LLC in Conifer, Colorado, a management consulting firm specializing in the energy industry. "The Western Area Power Administration is truly fortunate to have Mark...

  11. Mark Peters testifies for Congress on nuclear energy 5/19/10

    ScienceCinema (OSTI)

    Mark Peters

    2010-09-01T23:59:59.000Z

    Mark Peters, Deputy Lab Director at Argonne National Laboratory, testifies before Congress on advanced nuclear fuel cycle R&D and the DOE nuclear roadmap. May 19, 2010.

  12. Mark Peters testifies for Congress on nuclear energy 5/19/10

    ScienceCinema (OSTI)

    Peters, Mark

    2013-04-19T23:59:59.000Z

    Mark Peters, Deputy Lab Director at Argonne National Laboratory, testifies before Congress on advanced nuclear fuel cycle R&D and the DOE nuclear roadmap. May 19, 2010.

  13. GPUfs: Integrating a File System with GPUs MARK SILBERSTEIN, University of Texas at Austin

    E-Print Network [OSTI]

    Witchel, Emmett

    types of intensively parallel computations from data mining to molecular dynamics simulations [NVI. Silberstein and I. Keidar, Electrical Engineering Department, Technion; email: {mark; idish

  14. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Mark Strauch

    Broader source: Energy.gov [DOE]

    Commenter: Mark Strauch 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  15. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Mark Fisher

    Broader source: Energy.gov [DOE]

    Commenter: Mark Fisher 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  16. austrian triga-mark-ii reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation of non-steady state neutron kinetics of the TRIGA Mark II reactor Vienna CERN Preprints Summary: This paper presents an algorithm for numerical simulations of...

  17. On the Breakdown of Quantum Search with Spatially Distributed Marked Vertices

    E-Print Network [OSTI]

    Thomas G. Wong

    2015-04-07T23:59:59.000Z

    Grover's algorithm finds one of $k$ "marked" items in an \\emph{unstructured} "database" of size $N$ in time $O(\\!\\sqrt{N/k})$, and the algorithm's parameter(s) and runtime are unchanged no matter which of the $k$ items are marked. For \\emph{structured} search by continuous-time quantum walk, however, we show that rearranging the marked elements can cause the parameter(s) or runtime to vary such that, without prior knowledge of the spatial distribution of the marked elements, a potentially sub-exponential number of configurations would need to be tried, meaning it would be better to not run the search algorithm at all.

  18. Scent marking in wild banded mongooses: 2. Intrasexual overmarking and competition between males

    E-Print Network [OSTI]

    RĂĽedi, Peter

    Scent marking in wild banded mongooses: 2. Intrasexual overmarking and competition between males on wild banded mongooses, Mungos mungo, suggests that overmarking may primarily affect behavioural mating

  19. Virtual tool mark generation for efficient striation analysis in forensic science

    SciTech Connect (OSTI)

    Ekstrand, Laura [Ames Laboratory

    2012-11-16T23:59:59.000Z

    In 2009, a National Academy of Sciences report called for investigation into the scienti#12;c basis behind tool mark comparisons (National Academy of Sciences, 2009). Answering this call, Chumbley et al. (2010) attempted to prove or disprove the hypothesis that tool marks are unique to a single tool. They developed a statistical algorithm that could, in most cases, discern matching and non-matching tool marks made at di#11;erent angles by sequentially numbered screwdriver tips. Moreover, in the cases where the algorithm misinterpreted a pair of marks, an experienced forensics examiner could discern the correct outcome. While this research served to con#12;rm the basic assumptions behind tool mark analysis, it also suggested that statistical analysis software could help to reduce the examiner's workload. This led to a new tool mark analysis approach, introduced in this thesis, that relies on 3D scans of screwdriver tip and marked plate surfaces at the micrometer scale from an optical microscope. These scans are carefully cleaned to remove noise from the data acquisition process and assigned a coordinate system that mathematically de#12;nes angles and twists in a natural way. The marking process is then simulated by using a 3D graphics software package to impart rotations to the tip and take the projection of the tip's geometry in the direction of tool travel. The edge of this projection, retrieved from the 3D graphics software, becomes a virtual tool mark. Using this method, virtual marks are made at increments of 5#14; and compared to a scan of the evidence mark. The previously developed statistical package from Chumbley et al. (2010) performs the comparison, comparing the similarity of the geometry of both marks to the similarity that would occur due to random chance. The resulting statistical measure of the likelihood of the match informs the examiner of the angle of the best matching virtual mark, allowing the examiner to focus his/her mark analysis on a smaller range of angles. Preliminary results are quite promising. In a study with both sides of 6 screwdriver tips and 34 corresponding marks, the method distinguished known matches from known non-matches with zero false positive matches and only two matches mistaken for non-matches. For matches, it could predict the correct marking angle within #6;5-10#14;. Moreover, on a standard desktop computer, the virtual marking software is capable of cleaning 3D tip and plate scans in minutes and producing a virtual mark and comparing it to a real mark in seconds. These results support several of the professional conclusions of the tool mark analysis com- munity, including the idea that marks produced by the same tool only match if they are made at similar angles. The method also displays the potential to automate part of the comparison process, freeing the examiner to focus on other tasks, which is important in busy, backlogged crime labs. Finally, the method o#11;ers the unique chance to directly link an evidence mark to the tool that produced it while reducing potential damage to the evidence.

  20. 2001-2002 Wet Season Branchiopod Survey Report, Lawrence Livermore National Laboratory, Site 300, Alameda and San Joaquin Counties, California

    SciTech Connect (OSTI)

    Weber, W; Woollett, J

    2004-11-16T23:59:59.000Z

    Condor County Consulting on behalf of Lawrence Livermore National Laboratory (LLNL) has performed wet season surveys for listed branchiopods at Site 300, located in eastern Alameda County and western San Joaquin County. LLNL is collecting information for the preparation of an EIS covering ongoing explosives testing and related activities on Site 300. Related activities include maintenance of fire roads and annual control burns of approximately 607 hectares (1500 acres). Control burns typically take place on the northern portion of the site. Because natural branchiopod habitat is sparse on Site 300, it is not surprising that listed branchiopods were not observed during this 2001-2002 wet season survey. Although the site is large, a majority of it has topography and geology that precludes the formation of static seasonal pools. Even the relatively gentle topography of the northern half of the site contains few areas where water pools for more than two weeks. The rock outcrops found on the site did not provide suitable habitat for listed branchiopods. Most of the habitat available to branchiopods on the site is puddles that form in roadbeds and dry quickly. The one persistent pool on the site, the larger of the two modified vernal pools and the only one to fill this season, is occupied by two branchiopod species that require long-lived pools to reach maturity. In short, there is little habitat available on the site for branchiopods and most of the habitat present is generally too short-lived to support the branchiopod species that do occur at Site 300.

  1. Office of Inspector General report on audit of renovation and new construction projects at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    NONE

    1997-06-05T23:59:59.000Z

    The Oakland Operations Office (Oakland) is responsible for acquiring facilities needed to satisfy mission needs and to do so at the least cost to the Department of Energy (Department). The objective of the audit was to determine if proposed renovation and new construction projects at the Lawrence Livermore National Laboratory (Livermore) met mission needs while minimizing cost to the Government. In pursuing three projects, estimated to cost over $78 million, Livermore had not demonstrated that it had selected the best alternatives for meeting the Department`s needs while minimizing cost. Livermore was able to pursue these projects because Oakland did not ensure that the laboratory had performed cost and benefit analyses of all alternatives. Further, Oakland did not establish benchmarks to assess the reasonableness of the total costs of designing, constructing, and managing these projects. As a result, it was likely that the Department was spending more than necessary on renovation and new construction projects at Livermore. Although the projects met mission needs, it was recommended that the Manager, Oakland: (1) require Livermore to perform analyses of expected costs and benefits for alternatives; (2) evaluate the adequacy of Livermore`s cost and benefit analyses of alternatives; (3) establish benchmarks based on industry and other government agency cost data to assess the reasonableness of Livermore`s total design, construction, and project management costs; and (4) select the alternative that meets established needs at the least cost to the Government. Oakland agreed with the recommendations and will implement them starting with the Fiscal Year 1999 project submission and validation.

  2. Nanoscale Science, Engineering and Technology Research Directions

    E-Print Network [OSTI]

    Wu, Zhigang

    Alivisatos, Lawrence Berkeley National Laboratory (LBNL) Mark Alper, Lawrence Berkeley National Laboratory and Processing (Organic): A. P. Alivisatos (LBNL) 5. Controlled Synthesis and Processing (Inorganic): R. S

  3. Modeling for Seasonal Marked Point Processes: An Analysis of Evolving Hurricane Occurrences

    E-Print Network [OSTI]

    Kottas, Athanasios

    Modeling for Seasonal Marked Point Processes: An Analysis of Evolving Hurricane Occurrences Sai and for the conditional mark distribution. The motivating application involves the analysis of hurricane landfalls the evolution of the intensity of the process of hurricane landfall occurrences, and the respective maximum wind

  4. Tectonic geomorphology of Australia MARK C. QUIGLEY1*, DAN CLARK2 & MIKE SANDIFORD3

    E-Print Network [OSTI]

    Sandiford, Mike

    Tectonic geomorphology of Australia MARK C. QUIGLEY1*, DAN CLARK2 & MIKE SANDIFORD3 1 Department, Victoria 3010, Australia *Corresponding author (e-mail: mark.quigley@canterbury.ac.nz) Abstract 2003b; Quigley et al. 2006; Hillis et al. 2008). Thus, although large parts of the Australian landscape

  5. Constant Propagation with Conditional MARK N. WEGMAN and F. KENNETH ZADECK

    E-Print Network [OSTI]

    Cytron, Ron K.

    Constant Propagation with Conditional Branches MARK N. WEGMAN and F. KENNETH ZADECK IBM T. J Symposium on Principles of Programming Languages, 1985. Authors' current addresses: Mark N. Wegman, IBM T. J on Programming Languages and Systems, Vol. 13, No. 2, April 1991, Pages 181-210. #12;182 . M. N. Wegman and F. K

  6. Reinforcement Learning in MirrorBot Cornelius Weber, David Muse, Mark Elshaw, and Stefan Wermter

    E-Print Network [OSTI]

    Weber, Cornelius

    Reinforcement Learning in MirrorBot Cornelius Weber, David Muse, Mark Elshaw, and Stefan Wermter Hybrid Intelligent Systems, SCAT, University of Sunderland, UK {cornelius.weber, david.muse, mark C. Weber et al. 2 A Visually Guided Robotic Docking Task Grasping of an object is a fundamental task

  7. Reinforcement Learning in MirrorBot Cornelius Weber, David Muse, Mark Elshaw, and Stefan Wermter

    E-Print Network [OSTI]

    Weber, Cornelius

    Reinforcement Learning in MirrorBot Cornelius Weber, David Muse, Mark Elshaw, and Stefan Wermter Hybrid Intelligent Systems, SCAT, University of Sunderland, UK {cornelius.weber, david.muse, mark. Weber et al. 2 A Visually Guided Robotic Docking Task Grasping of an object is a fundamental task

  8. Capture-Ready Power Plants -Options, Technologies and Economics Mark C. Bohm

    E-Print Network [OSTI]

    1 Capture-Ready Power Plants - Options, Technologies and Economics by Mark C. Bohm Bachelor and Policy Program #12;2 #12;3 Capture-ready Power Plants ­ Options, Technologies and Costs by Mark C. Bohm for the Degree of Master of Science in Technology and Policy ABSTRACT A plant can be considered to be capture

  9. m:\\disability\\policies\\marking-dyslexia.doc THE UNIVERSITY OF SUSSEX

    E-Print Network [OSTI]

    Sussex, University of

    m:\\disability\\policies\\marking-dyslexia.doc THE UNIVERSITY OF SUSSEX Policy and Procedures for a reason relating to his or her disability. 1.2 Dyslexia is a registered disability under the Disability editor could put right. #12;m:\\disability\\policies\\marking-dyslexia.doc 2.3.2 The written work

  10. Sentry selection in wireless networks Paul Balister, Bela Bollobas, Amites Sarkar, and Mark Walters

    E-Print Network [OSTI]

    Banaji,. Murad

    Sentry selection in wireless networks Paul Balister, B´ela Bollob´as, Amites Sarkar, and Mark grants CNS-0721983, CCF- 0728928 and DMS-0906634. Amites Sarkar Department of Mathematics, Western Washington University, Bellingham, WA 98225, USA, e-mail: amites.sarkar@wwu.edu Mark Walters School

  11. Clemson's Logo System Any mark that is intended to represent Clemson University is the prop-

    E-Print Network [OSTI]

    Stuart, Steven J.

    15 3 Clemson's Logo System Any mark that is intended to represent Clemson University is the prop guidelines will be evaluated on a case-by-case basis. Logos at this level must contain a wordmark or Tiger five marks preferably use level one logos (masterbrand symbols), brand fonts and Clemson Orange

  12. Technical specifications manual for the MARK-1 pulsed ionizing radiation detection system. Volume 1

    SciTech Connect (OSTI)

    Lawrence, R.S.; Harker, Y.D.; Jones, J.L.; Hoggan, J.M.

    1993-03-01T23:59:59.000Z

    The MARK-1 detection system was developed by the Idaho National Engineering Laboratory for the US Department of Energy Office of Arms Control and Nonproliferation. The completely portable system was designed for the detection and analysis of intense photon emissions from pulsed ionizing radiation sources. This manual presents the technical design specifications for the MARK-1 detection system and was written primarily to assist the support or service technician in the service, calibration, and repair of the system. The manual presents the general detection system theory, the MARK-1 component design specifications, the acquisition and control software, the data processing sequence, and the system calibration procedure. A second manual entitled: Volume 2: Operations Manual for the MARK-1 Pulsed Ionizing Radiation Detection System (USDOE Report WINCO-1108, September 1992) provides a general operational description of the MARK-1 detection system. The Operations Manual was written primarily to assist the field operator in system operations and analysis of the data.

  13. Reservoir Characterization of Bridgeport and Cypress Sandstones in Lawrence Field Illinois to Improve Petroleum Recovery by Alkaline-Surfactant-Polymer Flood

    SciTech Connect (OSTI)

    Seyler, Beverly; Grube, John; Huff, Bryan; Webb, Nathan; Damico, James; Blakley, Curt; Madhavan, Vineeth; Johanek, Philip; Frailey, Scott

    2012-12-21T23:59:59.000Z

    Within the Illinois Basin, most of the oilfields are mature and have been extensively waterflooded with water cuts that range up to 99% in many of the larger fields. In order to maximize production of significant remaining mobile oil from these fields, new recovery techniques need to be researched and applied. The purpose of this project was to conduct reservoir characterization studies supporting Alkaline-Surfactant-Polymer Floods in two distinct sandstone reservoirs in Lawrence Field, Lawrence County, Illinois. A project using alkaline-surfactantpolymer (ASP) has been established in the century old Lawrence Field in southeastern Illinois where original oil in place (OOIP) is estimated at over a billion barrels and 400 million barrels have been recovered leaving more than 600 million barrels as an EOR target. Radial core flood analysis using core from the field demonstrated recoveries greater than 20% of OOIP. While the lab results are likely optimistic to actual field performance, the ASP tests indicate that substantial reserves could be recovered even if the field results are 5 to 10% of OOIP. Reservoir characterization is a key factor in the success of any EOR application. Reservoirs within the Illinois Basin are frequently characterized as being highly compartmentalized resulting in multiple flow unit configurations. The research conducted on Lawrence Field focused on characteristics that define reservoir compartmentalization in order to delineate preferred target areas so that the chemical flood can be designed and implemented for the greatest recovery potential. Along with traditional facies mapping, core analyses and petrographic analyses, conceptual geological models were constructed and used to develop 3D geocellular models, a valuable tool for visualizing reservoir architecture and also a prerequisite for reservoir simulation modeling. Cores were described and potential permeability barriers were correlated using geophysical logs. Petrographic analyses were used to better understand porosity and permeability trends in the region and to characterize barriers and define flow units. Diagenetic alterations that impact porosity and permeability include development of quartz overgrowths, sutured quartz grains, dissolution of feldspar grains, formation of clay mineral coatings on grains, and calcite cementation. Many of these alterations are controlled by facies. Mapping efforts identified distinct flow units in the northern part of the field showing that the Pennsylvanian Bridgeport consists of a series of thick incised channel fill sequences. The sandstones are about 75-150 feet thick and typically consist of medium grained and poorly sorted fluvial to distributary channel fill deposits at the base. The sandstones become indistinctly bedded distributary channel deposits in the main part of the reservoir before fining upwards and becoming more tidally influenced near their top. These channel deposits have core permeabilities ranging from 20 md to well over 1000 md. The tidally influenced deposits are more compartmentalized compared to the thicker and more continuous basal fluvial deposits. Fine grained sandstones that are laterally equivalent to the thicker channel type deposits have permeabilities rarely reaching above 250 md. Most of the unrecovered oil in Lawrence Field is contained in Pennsylvanian Age Bridgeport sandstones and Mississippian Age Cypress sandstones. These reservoirs are highly complex and compartmentalized. Detailed reservoir characterization including the development of 3-D geologic and geocellular models of target areas in the field were completed to identify areas with the best potential to recover remaining reserves including unswept and by-passed oil. This project consisted of tasks designed to compile, interpret, and analyze the data required to conduct reservoir characterization for the Bridgeport and Cypress sandstones in pilot areas in anticipation of expanded implementation of ASP flooding in Lawrence Field. Geologic and geocellular modeling needed for reservoir characterization and res

  14. Eastern Gas Shales Project: Pennsylvania No. 5 well, Lawrence County. Phase III report, summary of laboratory analyses and mechanical characterization results

    SciTech Connect (OSTI)

    none,

    1981-10-01T23:59:59.000Z

    This summary presents a detailed characterization of the Devonian Shale occurrence in the EGSP-Pennsylvania No. 5 well. Information provided includes a stratigraphic summary and lithology and fracture analyses resulting from detailed core examinations and geophysical log interpretations at the EGSP Core Laboratory. Plane of weakness orientations stemming from a program of physical properties testing at Michigan Technology University are also summarized; the results of physical properties testing are dealt with in detail in the accompanying report. The data presented was obtained from the study of approximately 604 feet of core retrieved from a well drilled in Lawrence County of west-central Pennsylvania.

  15. Lawrence G Brown: Publications

    E-Print Network [OSTI]

    In Geometric methods in operator algebras (Kyoto, 1983), volume 123 of Pitman Res. Notes Math. Ser., pages 1-35. Longman Sci. Tech., Harlow, 1986.

  16. Attila Lawrence Professor

    E-Print Network [OSTI]

    Hemmers, Oliver

    in the Designed Environment Research Methods management of a medium size design/construction company. 1978; Theory of the Built Environment

  17. St. Lawrence Cattaraugus

    E-Print Network [OSTI]

    Keinan, Alon

    Demographics. March 2012. Data Source: 2010 Census TIGER/Line® Shapefiles. PENNSYLVANIA VERMONT NEW HAMPSHIRE on Applied Demographics. March 2012. Data Source: 2010 Census TIGER/Line® Shapefiles. 0 10 Miles Ż New York by Cornell Program on Applied Demographics. March 2012. Data Source: 2010 Census TIGER/Line® Shapefiles. 0 10

  18. Lawrence Berkeley Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -of Energy Last DayLaura H. Greene,honorede

  19. Lawrence Berkeley Laboratory I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -of Energy Last DayLaura H.

  20. A. Lawrence Bryan, Jr.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2,generationPhysicsA2 September 9 -

  1. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are hereNews item slideshowLaboratory

  2. Ernest Orlando Lawrence Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) / EnvironmentalStoriesPublicErin Abernethy

  3. E.O. Lawrence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work with JeffersonFluctuation-driven magnetic

  4. A Mirror Neuron Inspired Hierarchical Network for Action Selection Mark Elshaw, Cornelius Weber, Alex Zochios, Stefan Wermter

    E-Print Network [OSTI]

    Weber, Cornelius

    A Mirror Neuron Inspired Hierarchical Network for Action Selection Mark Elshaw, Cornelius Weber of Sunderland, UK [Mark.Elshaw,Cornelius.Weber,Stefan.Wermter]@sunderland.ac.uk Abstract In this paper we

  5. Scent marking in wild banded mongooses: 3. Intrasexual overmarking Neil R. Jordan a,*, Francis Mwanguhya a,b,1

    E-Print Network [OSTI]

    RĂĽedi, Peter

    Scent marking in wild banded mongooses: 3. Intrasexual overmarking in females Neil R. Jordan a, this is the first study to investigate female over- marking in any wild mammal. First, although we found some

  6. Impact of marking strategy on aggregated ows in a di erentiated services network

    E-Print Network [OSTI]

    Reddy, Narasimha

    to check them for conformance to service contracts. This paper looks at the impact of marking strategies em that are experiencing congestion while remaining within the service contract. The impact of such a strategy

  7. Trade Marks and Domain Names: There's a lot in a name 

    E-Print Network [OSTI]

    Waelde, Charlotte

    Over two years ago, it was predicted that the end of the Internet was nigh unless there were concerted efforts put into place to solve the problems associated with domain names and trade mark clashes. Certainly, the ...

  8. Y-12 Construction hits one million-hour mark without a lost-time...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction hits one ... Y-12 Construction hits one million-hour mark without a lost-time accident Posted: August 30, 2012 - 5:30pm The B&W Y-12 Direct-Hire Construction team has...

  9. MANUFACTURERS: ALERTPRODUCT "MARK" REQUIRED FOR U.S. EXPORTS TO EUROPE!

    E-Print Network [OSTI]

    TO U.S. MANUFACTURERS: ALERTPRODUCT "MARK" REQUIRED FOR U.S. EXPORTS TO EUROPE! U.S. Department we export to Europe fall within the scope of Module A, U.S. manufacturers can readily apply the CE

  10. Stay on marked paths to avoid poison ivy. Watch young children carefully around river and creeks.

    E-Print Network [OSTI]

    Shyy, Wei

    Caution · Stay on marked paths to avoid poison ivy. · Watch young children carefully around river or outdoor cooking are not permitted. Poison Ivy Hours · Trails and gardens open 8 am to dusk. · Conservatory

  11. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials

    E-Print Network [OSTI]

    Ritchie, Robert

    Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement. Keywords: Hydrogen embrittlement; Intergranular cracking; Grain-boundary engineering; Special boundaries,e,* a Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA b

  12. MINIMUM REJECTION SCHEDULING IN ALL-PHOTONIC NETWORKS Nahid Saberi and Mark J. Coates

    E-Print Network [OSTI]

    MINIMUM REJECTION SCHEDULING IN ALL-PHOTONIC NETWORKS Nahid Saberi and Mark J. Coates Department of Electrical and Computer Engineering McGill University Montreal, QC, Canada E-mail: nahid.saberi

  13. An Asset Management Framework Based on Field Performance of Pavement Markings

    E-Print Network [OSTI]

    Madiri, Sam

    2011-08-08T23:59:59.000Z

    Performance-based asset management provides a strategic framework for managing transportation infrastructure to improve existing procedures for resource allocation. The importance of comprehensive management of pavement marking assets not only...

  14. FIA-12-0019- In the Matter of Mark D. Siciliano

    Broader source: Energy.gov [DOE]

    The Department of Energy’s (DOE) Office of Hearings and Appeals (OHA) Director granted in part and denied in all other respects a Freedom of Information Act (FOIA) Appeal filed by Mark D. Siciliano (Appellant).

  15. An evaluation of pavement markings and raised pavement markers at left exit lane drops

    E-Print Network [OSTI]

    Lance, Marty Tina

    1994-01-01T23:59:59.000Z

    components; more drivers are affected, interactions in the traffic stream are more turbulent, and the potential for confusion and accidents is substantially greater. Exit-only signs and pavement markings are two methods used to communicate an exit lane drop...

  16. Adaptive Packet Marking for Maintaining EndtoEnd Throughput in a Differentiated Services Internet

    E-Print Network [OSTI]

    . In a differentiated services architecture, packets are classified and marked with appropriate ToS [12] value on their ToS values. While the simplicity of the differentiated services architecture is definitely appealing

  17. Feature Space Transformation using Equation Discovery Freek Stulp, Mark Pfluger, Michael Beetz

    E-Print Network [OSTI]

    Cremers, Daniel

    Feature Space Transformation using Equation Discovery Freek Stulp, Mark Pfl¨uger, Michael Beetz Intelligent Autonomous Systems Group, Technische Universit¨at M¨unchen, Munich, Germany {stulp,pflueger,beetz

  18. UNDERGRADUATE JOURNAL IN NANOSCIENCE AND NANOTECHNOLOGY Professor Mark Hersam, editor; Kathleen Cook, managing editor

    E-Print Network [OSTI]

    Shull, Kenneth R.

    UNDERGRADUATE JOURNAL IN NANOSCIENCE AND NANOTECHNOLOGY Professor Mark Hersam, editor; Kathleen journal dedicated to nanoscience and nanotechnology. Aspiring authors went through a peer-review process fashioned after professional journals around the country. They gained valuable educational experience

  19. Dynamic Sociometry in Particle Swarm Optimization Mark Richards and Dan Ventura

    E-Print Network [OSTI]

    Martinez, Tony R.

    Dynamic Sociometry in Particle Swarm Optimization Mark Richards and Dan Ventura Computer Science Department Brigham Young University {mdr,ventura}@cs.byu.edu Abstract. The performance of Particle Swarm

  20. Nonadiabatic phonons within the doped graphene layers of XC6 compounds Mark P. M. Dean,1,* Christopher A. Howard,2 Siddharth S. Saxena,1 and Mark Ellerby2

    E-Print Network [OSTI]

    Sheldon, Nathan D.

    Nonadiabatic phonons within the doped graphene layers of XC6 compounds Mark P. M. Dean,1 a systematic study of the phonons and the electron-phonon interaction within the doped graphene layers of these compounds. The out-of-plane carbon phonon softens as the spacing of the graphene layers is reduced

  1. Infrastructure Required for Tag/Mark Application, Detection, and Recovery Tag/Mark & release Juvenile fish migration Adult fish migration Mortality*Ocean residency

    E-Print Network [OSTI]

    Juvenile fish migration Adult fish migration Mortality*Ocean residency Adipose fin clip Marking trailers N processing Otolith Insulated box, thermal chilling system, lab processing, smolt traps N/A Fish traps, fish *Fish mortality data may be collected at any stage of the fish life cycle from harvest, recovered

  2. Denial of Service attacks: path reconstruction for IP traceback using Adjusted Probabilistic Packet Marking

    E-Print Network [OSTI]

    Dube, Raghav

    2005-02-17T23:59:59.000Z

    DENIAL OF SERVICE ATTACKS: PATH RECONSTRUCTION FOR IP TRACEBACK USING ADJUSTED PROBABILISTIC PACKET MARKING A Thesis by RAGHAV DUBE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 2004 Major Subject: Electrical Engineering DENIAL OF SERVICE ATTACKS: PATH RECONSTRUCTION FOR IP TRACEBACK USING ADJUSTED PROBABILISTIC PACKET MARKING A Thesis by RAGHAV DUBE Submitted to Texas A&M University...

  3. TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300

    SciTech Connect (OSTI)

    Eddy-Dilek, C.; Miles, D.; Abitz, R.

    2009-08-14T23:59:59.000Z

    The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in the remedial decision making. The site should redo the risk calculations as the future use scenario has changed for the site. As a result, the existing model is based on very conservative assumptions that result in calculation of unreasonably low cleanup goals. Specifically, the review team proposes that LLNL consider: (1) Revising the industrial worker scenario to a reasonable maximum exposure (RME) for a site worker that performs a weekly walk down of the area for two hours for 25 years (or an alternative RME if the exposure scenario changes); (2) Revising the ESSI of 2 mg U per kg soil for the deer mouse to account for less than 0.05 of the total ingested uranium being adsorbed by the gut; (3) Revising bioaccumulation factors (BAFs) for vegetation and invertebrates that are based on 100 mg of soluble uranium per kg of soil, as the uranium concentration in the slope soil does not average 100 mg/kg and it is not all in a soluble form; and (4) Measuring actual contaminant concentrations in air particulates at the site and using the actual values to support risk calculations. The team recommends that the site continue a phased approach during remediation. The activities should focus on elimination of the principal threats to groundwater by excavating (1) source material from the firing table and alluvial deposits, and (2) soil hotspots from the surrounding slopes with concentrations of U-235 and U-238 that pose unacceptable risk. This phased approach allows the remediation path to be driven by the results of each phase. This reduces the possibility of costly 'surprises', such as failure of soil treatment, and reduces the impact of remediation on endangered habitat. Treatment of the excavated material with physical separation equipment may result in a decreased volume of soil for disposal if the DU is concentrated in the fine-grained fraction, which can then be disposed of in an offsite facility at a considerable cost savings. Based on existing data and a decision to implement the recommended phased approach, the cost of characterization, excavation and physical

  4. AUTOMATED REAL TIME PAVEMENT MARKING RETROREFLECTIVITY MEASUREMENTS Norbert H. Maerz, University of Missouri-Rolla, 1006 Kingshighway, Rolla MO, 65409-0660, USA. Tel: (573) 341-

    E-Print Network [OSTI]

    Maerz, Norbert H.

    LASERLUX® : AUTOMATED REAL TIME PAVEMENT MARKING RETROREFLECTIVITY MEASUREMENTS Norbert H. Maerz retroreflectometer is being used to measure the retroreflectivity of pavement lane markings. This vehicle-mounted retroreflectometer provides the measurements needed for proper highway pavement marking management. Quick, simple

  5. Submission of Notice of Termination of Coverage Under the National Pollutant Discharge Elimination System General Permit No. CAS000002 for WDID No. 201C349114, Lawrence Livermore National Laboratory Ignition Facility Construction Project

    SciTech Connect (OSTI)

    Brunckhorst, K

    2009-04-21T23:59:59.000Z

    This is the completed Notice of Termination of Coverage under the General Permit for Storm Water Discharges Associated with Construction Activity. Construction activities at the National Ignition Facility Construction Project at Lawrence Livermore National Laboratory are now complete. The Notice of Termination includes photographs of the completed construction project and a vicinity map.

  6. Role of Lawrence Livermore National Laboratory in the Laboratory to Laboratory Nuclear Materials Protection, Control and Accounting (MPC&A) Program

    SciTech Connect (OSTI)

    Blasy, J.A.; Koncher, T.R.; Ruhter, W.D.

    1995-05-02T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) is participating in a US Department of Energy sponsored multi-laboratory cooperative effort with the Russian Federation nuclear institutes to reduce risks of nuclear weapons proliferation by strengthening systems of nuclear materials protection, control, and accounting in both countries. This program is called the Laboratory-to-Laboratory Nuclear Materials Protection, Control, and Accounting (MPC&A) Program and it is designed to complement other US-Russian MPC&A programs such as the government-to-govermment (NunnLugar) programs. LLNL`s role in this program has been to collaborate with various Russian institutes in several areas. One of these is integrated safeguards and security planning and analysis, including the performing of vulnerability assessments. In the area of radiation measurements LLNL is cooperating with various institutes on gamma-ray measurement and analysis techniques for plutonium and uranium accounting. LLNL is also participating in physical security upgrades including entry control and portals.

  7. Independent Oversight Inspection of Environment, Safety, and Health Management at the Lawrence Livermore National Laboratory, Technical Appendices, Volume II, December 2004

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Independent Oversight and Performance Assurance (OA), within the Office of Security and Safety Performance Assurance (SSA), conducted an inspection of environment, safety, and health (ES&H) at the DOE Lawrence Livermore National Laboratory (LLNL) during October and November 2004. The inspection was performed by the OA Office of Environment, Safety and Health Evaluations. Volume II of this report provides four technical appendices (C through F) containing detailed results of the OA review. Appendix C provides the results of the review of the application of the core functions of ISM for LLNL work activities. Appendix D presents the results of the review of NNSA, LSO, and contractor feedback and continuous improvement processes. Appendix E presents the results of the review of Plutonium Building essential safety system functionality, and Appendix F presents the results of the review of management of the selected focus areas.

  8. Safety Basis Requirements for Nonnuclear Facilities at Lawrence Livermore National Laboratory Site-Specific Work Smart Standard Revision 3 December 2006

    SciTech Connect (OSTI)

    Beach, D; Brereton, S; Failor, R; Hildum, J; Ingram, C; Spagnolo, S; van Warmerdam, C

    2007-06-07T23:59:59.000Z

    This standard establishes requirements that, when coupled with Lawrence Livermore National Laboratory's (LLNL's) Integrated Safety Management System (ISMS) methods and other Work Smart Standards for assuring worker safety, assure that the impacts of nonnuclear operations authorized in LLNL facilities are well understood and controlled in a manner that protects the health of workers, the public, and the environment. All LLNL facilities shall be classified based on potential for adverse impact of operations to the health of co-located (i.e., nearby) workers and the public in accordance with this standard, Title 10 Code of Federal Regulations (10 CFR) 830, Subpart B, and Department of Energy Order (DOE O) 420.2A.

  9. EXPERIMENTAL STUDY TO EVALUATE CORROSION OF THE F-CANYON DISSOLVER DURING THEUNIRRADIATED MARK-42 CAMPAIGN

    SciTech Connect (OSTI)

    Mickalonis, J; Kerry Dunn, K

    1999-08-01T23:59:59.000Z

    Unirradiated Mark 42 fuel tubes are to be dissolved in an upcoming campaign in F-canyon. Savannah River Technology Center (SRTC)/Chemical & Hydrogen Technology Section (CHTS) identified a flow sheet for the dissolution of these Mark 42 fuel tubes which required a more aggressive dissolver solution than previously required for irradiated Mark 42 fuel tubes. Subsequently, SRTC/MTS was requested to develop and perform a corrosion testing program to assess the impact of new flow sheets on corrosion of the dissolver wall. The two primary variables evaluated were the fluoride and aluminum concentrations of the dissolver solution. Fluoride was added as Calcium Fluoride (CaF{sub 2}) while the aluminum was added either as metallic aluminum, which was subsequently dissolved, or as the chemical aluminum nitrate (Al(NO{sub 3}){sub 3}). The dissolved aluminum metal was used to simulate the dissolution of the aluminum from the Mark 42 cladding and fuel matrix. Solution composition for the corrosion tests bracketed the flow sheet for the Mark 42. Corrosion rates of AISI Type 304 stainless steel coupons, both welded and non-welded coupons, were calculated from measured weight losses and post-test concentrations of soluble Fe, Cr and Ni. The corrosion rates, which ranged between 2.7 and 32.5 mpy, were calculated from both the one day and the one week weight losses. These corrosion rates indicated a relatively mild corrosion on the dissolver vessel. The welded coupons consistently had a higher corrosion rate than the non-welded coupons. The difference between the two decreased as the solution aggressiveness decreased. In these test solutions, aggressiveness corresponded with the fluoride concentration. Based on the results of this study, any corrosion occurring during the Mark 42 Campaign is not expected to have a deleterious effect on the dissolver vessel.

  10. Query complexity for searching multiple marked states from an unsorted database

    E-Print Network [OSTI]

    Bin Shang

    2006-04-10T23:59:59.000Z

    An important and usual problem is to search all states we want from a database with a large number of states. In such, recall is vital. Grover's original quantum search algorithm has been generalized to the case of multiple solutions, but no one has calculated the query complexity in this case. We will use a generalized algorithm with higher precision to solve such a search problem that we should find all marked states and show that the practical query complexity increases with the number of marked states. In the end we will introduce an algorithm for the problem on a ``duality computer'' and show its advantage over other algorithms.

  11. Mark S. Wrighton, 1983 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHz WaterMark B. Chadwick,Mark S.

  12. Mark Bowers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'llMappingMaria Goeppert-Mayer,

  13. Mark Heer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'llMappingMaria

  14. Mark Herrmann

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'llMappingMariaHereld Manager,

  15. Industrial Applications of ASF+SDF Mark van den Brand,1

    E-Print Network [OSTI]

    van Deursen, Arie

    Industrial Applications of ASF+SDF Mark van den Brand,1 Arie van Deursen,2 Paul Klint,1 2 Steven companies have used the algebraic specification formalism ASF+SDF. Bank MeesPierson has specified a language address such questions in the context of the algebraic specification formalism ASF+SDF. We report on our

  16. Therapeutic and diagnostic applications of dendrimers for cancer treatment Jesse B. Wolinsky, Mark W. Grinstaff

    E-Print Network [OSTI]

    Therapeutic and diagnostic applications of dendrimers for cancer treatment Jesse B. Wolinsky, Mark and diagnostic purposes for the treatment of cancer, including advances in the delivery of anti.V. Keywords: Dendrimer; Local Therapy; Nanoparticle; Cancer Treatment; Drug-conjugates; Drug Delivery Contents

  17. The year 2004 marked the 15th anniversary of the founding of the ecotourism company Rainforest

    E-Print Network [OSTI]

    Edwards, Paul N.

    Expeditions: Planning for the Future Ross School of Business student Kate Elliot and Research AssociateThe year 2004 marked the 15th anniversary of the founding of the ecotourism company Rainforest Expeditions (RFE). A decade and a half of experience led the company's cofounders, Eduardo Nycander and Kurt

  18. Stable Statistics of the Blogograph Mark Goldberg, Malik Magdon-Ismail, Stephen Kelley, Konstantin Mertsalov

    E-Print Network [OSTI]

    Goldberg, Mark

    Stable Statistics of the Blogograph Mark Goldberg, Malik Magdon-Ismail, Stephen Kelley, Konstantin on the social network's dynamics. In this paper, we present a number of non-trivial statistics believe that sta- ble statistics can be used to identify anomalous behavior at all levels: that of a node

  19. Capture-Ready Coal Plants -Options, Technologies and Economics Mark C. Bohm1

    E-Print Network [OSTI]

    1 Capture-Ready Coal Plants - Options, Technologies and Economics Mark C. Bohm1 , Howard J. Herzog1 be employed during the initial design and construction of a both pulverized coal and integrated gasification the Internet in the summer of 2006 [7]. Introduction Interest in the construction of coal-fired power

  20. Capture-ready coal plants--Options, technologies and Mark C. Bohm a

    E-Print Network [OSTI]

    Capture-ready coal plants--Options, technologies and economics Mark C. Bohm a , Howard J. Herzog a. Introduction Interest in the construction of coal-fired power generation has increased significantly in recent the construction of coal-fired plants. Worldwide, the installed capacity of coal-fired plants is expected

  1. RoadmapMethodsforProteinFolding MarkMoll, DavidSchwarz, LydiaE.Kavraki

    E-Print Network [OSTI]

    Kavraki, Lydia E.

    RoadmapMethodsforProteinFolding MarkMoll, DavidSchwarz, LydiaE.Kavraki Abstract--Protein folding, and get a coarse view of the energy landscape. Keywords: protein folding, folding kinetics, roadmap methods, conformation sampling techniques, energy landscape. 1 Introduction Protein folding refers

  2. Application of mark-recapture models to estimation of the population size of plants

    E-Print Network [OSTI]

    Alexander, Helen M.; Slade, Norman A.; Kettle, W. Dean

    1997-06-01T23:59:59.000Z

    observed in a particular year may greatly underestimate the true population size, just as a count of animals in traps does not adequately estimate the total number of animals in an area. Using a family of closed population models (CAPTURE), we applied mark...

  3. Dry Friction and Impact Dynamics in Railway Vehicles Dan Erik Petersen Mark Hoffmann

    E-Print Network [OSTI]

    Dry Friction and Impact Dynamics in Railway Vehicles Dan Erik Petersen Mark Hoffmann c973539 c Piotrowski. This model successfully takes into account damping due to dry friction in the suspension links due to dry friction. The wheelsets are constrained by guidance structures of the freight wagon

  4. A RELATIVE TRACE FORMULA FOR A COMPACT RIEMANN KIMBALL MARTIN, MARK MCKEE, AND ERIC WAMBACH

    E-Print Network [OSTI]

    Martin, Kimball

    A RELATIVE TRACE FORMULA FOR A COMPACT RIEMANN SURFACE KIMBALL MARTIN, MARK MCKEE, AND ERIC WAMBACH Abstract. We study a relative trace formula for a compact Riemann surface with respect to a closed geodesic estimates on the lengths of geodesic segments which start and end orthogonally on C. Variant trace formulas

  5. Sample Dissertation Proposal Outlines (Should Be Confirmed with Advisor) by Mark Warschauer, 11 January 2010

    E-Print Network [OSTI]

    Loudon, Catherine

    1 Sample Dissertation Proposal Outlines (Should Be Confirmed with Advisor) by Mark Warschauer, 11 January 2010 These two sample dissertation proposal outlines ­ one for a standard dissertation and one for a three-article dissertation ­ are being provided as examples only. There is no standard dissertation

  6. Slack: Maximizing Performance Under Technological Constraints Brian Fields Rastislav Bodik Mark D. Hill

    E-Print Network [OSTI]

    Hill, Mark D.

    Slack: Maximizing Performance Under Technological Constraints Brian Fields Rastislav Bod´ik Mark D delay, power, and circuit complexity) by resorting to non- uniform designs that provide resources in their own right. To this end, we develop slack for use in creating con- trol policies that match program

  7. Graduate Fellowship Opportunity 2012-2013 Mark Gorrell Zero Waste Fellowship

    E-Print Network [OSTI]

    Silver, Whendee

    student research in plastics as they relate to health, the environment, and global waste and recycling environmental organization that has operated Berkeley's curbside recycling program, the first in the nationGraduate Fellowship Opportunity 2012-2013 Mark Gorrell Zero Waste Fellowship Submittal Deadline

  8. Urocortin 3 Marks Mature Human Primary and Embryonic Stem Cell-Derived Pancreatic Alpha and Beta

    E-Print Network [OSTI]

    Sander, Maike

    Urocortin 3 Marks Mature Human Primary and Embryonic Stem Cell-Derived Pancreatic Alpha and Beta (Ucn 3) is abundantly and exclusively expressed in mouse pancreatic beta cells where it regulates of mouse beta cells. These observations identify Ucn 3 as a potential beta cell maturation marker

  9. Friction Stir Welding of Hydrided Titanium Alloys Mark Taylor, D.P. Field

    E-Print Network [OSTI]

    Collins, Gary S.

    Friction Stir Welding of Hydrided Titanium Alloys Mark Taylor, D.P. Field Multi-Scale Engineering for Undergraduates program under grant number EEC-0754370 During Friction Stir Welding (FSW), a non-consumable tool-state welding process, much frictional heating and force is required of the tool. This steep demand on the tool

  10. ELECTRONIC TEXTILES FOR IN SITU BIOMECHANICAL MEASUREMENTS Tom Martin*, Thurmon Lockhart, Mark Jones, and Josh Edmison

    E-Print Network [OSTI]

    ELECTRONIC TEXTILES FOR IN SITU BIOMECHANICAL MEASUREMENTS Tom Martin*, Thurmon Lockhart, Mark textile (e-textile) system capable of assessing a suite of biomechanical measures. Unlike laboratory- based systems, this system would be worn by a soldier and could be used in a range of environmental

  11. Microfluid Innovations AssayMarkTM Programmable Assay System IMPACT STATEMENT

    E-Print Network [OSTI]

    Ginzel, Matthew

    Microfluid Innovations AssayMarkTM Programmable Assay System NEED IMPACT STATEMENT INITIATIVE-on-a-Chip (LoC) designs. Developing new microfluidic assays or scaling existing assays to microfluidic scale at microfluidic-scale offers significant benefits over traditional bench- scale assays, ranging from lower sample

  12. SIGNAL SUBSPACE SPEECH ENHANCEMENT WITH PERCEPTUAL POST-FILTERING Mark Klein and Peter Kabal

    E-Print Network [OSTI]

    Kabal, Peter

    SIGNAL SUBSPACE SPEECH ENHANCEMENT WITH PERCEPTUAL POST-FILTERING Mark Klein and Peter Kabal the enhanced speech spectra. By utilizing a perceptual filter, averaging is per- formed in a manner similar In most speech enhancement systems, musical noise can be at- tributed to errors in measuring noise

  13. A Requirement Ontology for Engineering Jinxin Lin, Mark S. Fox and Taner Bilgic

    E-Print Network [OSTI]

    Fox, Mark S.

    by different members in a concurrent engineer­ ing team may be contradictory since different authors may have1 A Requirement Ontology for Engineering Design Jinxin Lin, Mark S. Fox and Taner Bilgic Enterprise Integration Laboratory, Dept. of Industrial Engineering University of Toronto, Toronto, Canada M5S 3G9 tel: +1

  14. Metastability and chimera states in modular delay and pulse-coupled oscillator Mark Wildiea)

    E-Print Network [OSTI]

    Shanahan, Murray

    Metastability and chimera states in modular delay and pulse-coupled oscillator networks Mark of a large number of "chimera" states characterized by coexistent synchronized and desynchronized subsystems, and a critical region is found that maximizes indices of both metastability and the prevalence of chimera states

  15. Patterns of extinction and biodiversity in the fossil record Ricard V. Sole and Mark Newman

    E-Print Network [OSTI]

    Newman, Mark

    extinction of all time took place, killing at least 90% of all species on the Earth, and ending the eraPatterns of extinction and biodiversity in the fossil record Ricard V. Sol´e and Mark Newman Santa in biodiversity towards the present, punctuated by a number of large extinction events which wiped out a signi#2

  16. Sir --As 27 April 2004 marks ten years of multiracial democracy in South Africa,

    E-Print Network [OSTI]

    Sir -- As 27 April 2004 marks ten years of multiracial democracy in South Africa, it is appropriate, engineering and technology. The strategy rightly notes that, given South Africa's correspondence NATURE|VOL428 of Research in South Africa (CAPRISA), University of KwaZulu-Natal, King George V Avenue, Durban 4041, South

  17. Model-checking Access Control Policies Dimitar P. Guelev Mark Ryan Pierre Yves Schobbens

    E-Print Network [OSTI]

    Ryan, Mark

    of sophisticated access control systems, such as those which can be described using our model, is indirect pathsModel-checking Access Control Policies Dimitar P. Guelev Mark Ryan Pierre Yves Schobbens July 9, 2004 Abstract We present a model of access control which provides fine-grained data-dependent control

  18. Brazil Week "Vanderbilt"and the Vanderbilt logo are registered trademarks and service marks of

    E-Print Network [OSTI]

    Bordenstein, Seth

    Brazil Week "Vanderbilt"and the Vanderbilt logo are registered trademarks and service marks of Citizenship in Late-Nineteenth-Century Brazil" 4:00 p.m. Buttrick Hall 123 Futebol Tournament All are invited.d.larson@vanderbilt.edu. 5:30 p.m. Alumni Lawn Wednesday SEPT World on Wednesday "Vanderbilt and Brazil: Past Present

  19. Robust Codes for Fault Attack Resistant Cryptographic Konrad J. Kulikowski, Mark G. Karpovsky, Alexander Taubin

    E-Print Network [OSTI]

    Karpovsky, Mark

    Robust Codes for Fault Attack Resistant Cryptographic Hardware Konrad J. Kulikowski, Mark G algorithms are vulner- able to fault analysis attacks. To detect these attacks we propose an architec- ture by an attacker. Architectures based on these codes have fewer undetectable er- rors than linear codes

  20. GroupWeb: A WWW Browser as Real Time Groupware Saul Greenberg and Mark Roseman

    E-Print Network [OSTI]

    Greenberg, Saul

    and conferencing. Keywords Word wide web, groupware, shared visual workspaces. INTRODUCTION The World Wide Web and navigate World Wide Web pages in real time. Its groupware features include document and view slavingGroupWeb: A WWW Browser as Real Time Groupware Saul Greenberg and Mark Roseman Department

  1. ARTEMIS MARK-IV, THE NEW GREEKFRENCH DIGITAL RADIO SPECTROGRAPH AT THERMOPYLES, GREECE

    E-Print Network [OSTI]

    Athens, University of

    ARTEMIS MARK-IV, THE NEW GREEK­FRENCH DIGITAL RADIO SPECTROGRAPH AT THERMOPYLES, GREECE D. MAROULIS the new digital solar radio spectrograph located at the Thermopyles station, Greece, operated. MAROULIS ET AL. planetary shocks, the acceleration of energetic particles from solar and interplan- etary

  2. Crystallization and layering induced by heating a reactive porous Mark A. Hallworth and Herbert E. Huppert

    E-Print Network [OSTI]

    Huppert, Herbert

    is heated, convective processes cause solidification in a remote region. These concepts suggest novel postCrystallization and layering induced by heating a reactive porous medium Mark A. Hallworth; accepted 8 June 2004; published 2 July 2004. [1] Normally heating causes melting and not solidification

  3. Creating Small Roadmaps for Solving Motion Planning Problems # Roland Geraerts and Mark H. Overmars

    E-Print Network [OSTI]

    Geraerts, R.J.

    Creating Small Roadmaps for Solving Motion Planning Problems # Roland Geraerts and Mark H. Overmars,markov}@cs.uu.nl Abstract--- In robot motion planning, many algorithms have been proposed that create a roadmap from which on the quality of the roadmap, i.e. they do not promise that a path will always be found in the roadmap if one

  4. Creating Small Roadmaps for Solving Motion Planning Problems Roland Geraerts and Mark H. Overmars

    E-Print Network [OSTI]

    Geraerts, R.J.

    Creating Small Roadmaps for Solving Motion Planning Problems Roland Geraerts and Mark H. Overmars,markov}@cs.uu.nl Abstract-- In robot motion planning, many algorithms have been proposed that create a roadmap from which on the quality of the roadmap, i.e. they do not promise that a path will always be found in the roadmap if one

  5. Mark L. McFarland, Associate Professor and Extension Water Resources Specialist;

    E-Print Network [OSTI]

    the disinfection process. Also flush out household plumbing, including the water heater. Make sure the waterER-011 6-06 Mark L. McFarland, Associate Professor and Extension Water Resources Specialist; Diane E. Boellstorff, Program Specialist Water Quality; Tony L. Provin, Associate Professor and Extension

  6. How Run-of-River Operation Affects Hydropower Generation Henriette I. Jager Mark S. Bevelhimer

    E-Print Network [OSTI]

    Jager, Henriette I.

    How Run-of-River Operation Affects Hydropower Generation and Value Henriette I. Jager Ć Mark S) are mandated to protect aquatic biota, (2) decrease hydropower generation per unit flow, and (3) decrease energy revenue. We tested these three assump- tions by reviewing hydropower projects with license

  7. Short-Term Hurricane Impacts on a Neotropical Community of Marked Birds and Implications for Early-

    E-Print Network [OSTI]

    Winker, Kevin

    Short-Term Hurricane Impacts on a Neotropical Community of Marked Birds and Implications for Early- Stage Community Resilience Andrew B. Johnson1,2 , Kevin Winker1 * 1 University of Alaska Museum birds, following this community through the catastrophic destruction of its forest habitat by Hurricane

  8. Control of Electron Transfer Rates in Liquid Crystalline Media Mark Lilichenko and Dmitry V. Matyushov*

    E-Print Network [OSTI]

    Matyushov, Dmitry

    The biological environment for photosynthetic charge separa- tion1 and media employed for solar energy conversionControl of Electron Transfer Rates in Liquid Crystalline Media Mark Lilichenko and Dmitry V; In Final Form: December 17, 2002 The solvent reorganization energy of electron-transfer reactions

  9. FREE ENERGY AS A GEOMETRIC INVARIANT MARK POLLICOTT and HOWARD WEISS

    E-Print Network [OSTI]

    FREE ENERGY AS A GEOMETRIC INVARIANT MARK POLLICOTT and HOWARD WEISS The University of Manchester and The Pennsylvania State University February 28, 2005 4:22pm Abstract. The free energy plays a fundamental role in statistical and condensed matter physics. A related notion of free energy plays an important role in the study

  10. "Least Squares Fitting" Using Artificial Neural Networks YARON DANON and MARK J. EMBRECHTS

    E-Print Network [OSTI]

    Danon, Yaron

    "Least Squares Fitting" Using Artificial Neural Networks YARON DANON and MARK J. EMBRECHTS process changes the internal parameters (weights) of the network such that the neural net can represent a backpropagation fit to various continuous functions will be presented, showing properties of neural network fitted

  11. Optical fiber-based fluorescent viscosity sensor Mark A. Haidekker and Walter J. Akers

    E-Print Network [OSTI]

    Theodorakis, Emmanuel

    Optical fiber-based fluorescent viscosity sensor Mark A. Haidekker and Walter J. Akers Department to molecular rotors in solution. An optical fiber-based fluorescent vis- cosity sensor may be used in real, we sought to develop an optical fiber-based sensor that could re- port changes in fluid viscosity

  12. Asset management and climate change Andrew Dlugolecki andMark Mansley

    E-Print Network [OSTI]

    Watson, Andrew

    TECHNIQUES 8 ENERGY EFFICIENCY 9 POLICY IMPLICATIONS OF CLIMATE CHANGE 10 UK Mitigation Policy 10 Climate 626351 07940 538781 andlug@btopenworld.com mark@claros.co.uk #12;2 Contents SUMMARY 3 INTRODUCTION commentators) to guide corporate strategy, but so far this has not happened (Mansley,2000). Other studies have

  13. Integrated Regulation for Energy-Efficient Digital Circuits and Mark Horowitz2

    E-Print Network [OSTI]

    Alon, Elad

    Integrated Regulation for Energy-Efficient Digital Circuits Elad Alon1 and Mark Horowitz2 1 regulation can reduce the effective supply impedance of digital circuits without increasing their total power dissipation. This can be achieved with a push-pull regulator topology that uses a second, higher- than

  14. TITANIUM--2002 79.1 References that include a section mark () are found in the Internet

    E-Print Network [OSTI]

    TITANIUM--2002 79.1 1 References that include a section mark (§) are found in the Internet References Cited section. TITANIUM By Joseph Gambogi Domestic survey data and tables were prepared by Robin C, international data coordinator. International Corp., Monico Alloys, Inc., SMP Co., and Wogen Titanium Ltd

  15. TITANIUM--2003 78.1 References that include a section mark () are found in the Internet

    E-Print Network [OSTI]

    TITANIUM--2003 78.1 1 References that include a section mark (§) are found in the Internet References Cited section. TITANIUM By Joseph Gambogi Domestic survey data and tables were prepared by Robin C status to imports of unwrought titanium from Russia and Kazakhstan. Kazakhstan's Ust-Kamenogorsk Titanium

  16. 1 Edoardo Airoldi Harvard University 2 Mark Alber University of Notre Dame

    E-Print Network [OSTI]

    Levy, Doron

    University 31 Rong Chen Rutgers University 32 Duan Chen Michigan State University 33 Zhan Chen Michigan state Mary Ann Horn National Science Foundation 75 Langhua Hu Michigan state university 76 He Huang Purdue1 Edoardo Airoldi Harvard University 2 Mark Alber University of Notre Dame 3 Edward Allen Wake

  17. USE OF UNIVERSITY OF MICHIGAN NAME AND MARKS IN POLITICAL CAMPAIGNS OR BY POLITICAL ORGANIZATIONS

    E-Print Network [OSTI]

    Kamat, Vineet R.

    USE OF UNIVERSITY OF MICHIGAN NAME AND MARKS IN POLITICAL CAMPAIGNS OR BY POLITICAL ORGANIZATIONS and political organizations may not use the trademarks of the University of Michigan as part of their campaign materials or communications. For instance, they may not use the Block-M, the University seal, the Michigan

  18. Academy of Natural Sciences An Effective Trapping and Marking Method for Aquatic Beetles

    E-Print Network [OSTI]

    Aiken, Ron

    suffer from one or more deficiencies. Glass bottles are heavy, awkwardto store and subject to vandalismin, Hydradephaga,marking, trapping] The first discussion of bottle traps used to studyaquaticbeetlesin North trapand a varietyof othersam- pling devices used in his studies in California ponds. His bottle trap

  19. The Effects of HighSpeed Networks on Multimedia Jitter Mark Claypool

    E-Print Network [OSTI]

    Claypool, Mark

    The Effects of High­Speed Networks on Multimedia Jitter Mark Claypool claypool@cs.wpi.edu Worcester@cs.umn.edu University of Minnesota Computer Science Department Minneapolis, MN, USA Abstract Jitter can cause silent measure the effects of high­speed networks on jitter in a multimedia stream. We incorporate our jitter

  20. Joanna Marks, Julia Isaacs, and Timothy Smeeding Institute for Research on Poverty

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Joanna Marks, Julia Isaacs, and Timothy Smeeding Institute for Research on Poverty University of Wisconsin­Madison September 2010 Wisconsin Poverty Report: New Measure, Broader View #12;ACKNOWLEDGMENTS on Poverty at the University of Wisconsin­Madison, and the Brookings Institution. We thank several Wisconsin

  1. A Jitter Attenuating Timing Chain Suwen Yang, Mark R. Greenstreet and Jihong Ren #

    E-Print Network [OSTI]

    Greenstreet, Mark

    A Jitter Attenuating Timing Chain Suwen Yang, Mark R. Greenstreet and Jihong Ren # {swyang, mrg}@cs.ubc.ca, jihongr@gmail.com Abstract A long chain of inverters and wire segments will am­ plify clock jitter and drop timing pulses due to inter­ symbol interference. We present a jitter attenuating buffer based

  2. The Effects of Jitter on the Perceptual Quality of Video Mark Claypool

    E-Print Network [OSTI]

    Claypool, Mark

    The Effects of Jitter on the Perceptual Quality of Video Mark Claypool Jonathan Tanner fclaypool, Internet video often suffers from packet loss and jitter, degrading the user's perceived quality of the video. Understanding the effects of delay, loss and jitter on media quality is critical for choosing

  3. SINGLE-PHASE LIQUID HEAT TRANSFER IN PLAIN AND ENHANCED MICROCHANNELS Mark E. Steinke

    E-Print Network [OSTI]

    Kandlikar, Satish

    SINGLE-PHASE LIQUID HEAT TRANSFER IN PLAIN AND ENHANCED MICROCHANNELS Mark E. Steinke Systems upon the understanding of the fundamental heat transfer processes that occur in these systems. There have been great advancements in our understanding of the heat transfer and fluid flow mechanisms

  4. Policy-Based Cognitive Radios David Wilkins, Grit Denker, Mark-Oliver Stehr,

    E-Print Network [OSTI]

    Policy-Based Cognitive Radios David Wilkins, Grit Denker, Mark-Oliver Stehr, Daniel Elenius, Rukman: firstname.lastname@sri.com April 2, 2007 Abstract We present a new language for expressing policies that unanticipated policy types can be encoded. We also describe a Policy Reasoner that reasons about CoRaL policies

  5. Controlled nanostructrures formation by ultra fast laser pulses for color marking

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Controlled nanostructrures formation by ultra fast laser pulses for color marking B. Dusser1, 2 of surface and the subsequent upgrades in material properties is a strong outcome of ultra fast laser. We demonstrate in this work, the possibility of achieving material modifications using ultra short

  6. SEMI-TOPOLOGICAL K-THEORY OF REAL VARIETIES Eric M. Friedlander and Mark E. Walker

    E-Print Network [OSTI]

    the definition of Ksemi to real varieties, establish nu- merous foundational properties of our theorySEMI-TOPOLOGICAL K-THEORY OF REAL VARIETIES Eric M. Friedlander and Mark E. Walker Abstract. The semi-topological K-theory of real varieties, KRsemi(-), is an ori- ented multiplicative (generalized

  7. SEMITOPOLOGICAL KTHEORY OF REAL VARIETIES Eric M. Friedlander and Mark E. Walker #

    E-Print Network [OSTI]

    information about algebraic K­theory. In this paper, we extend the definition of K semi to real varietiesSEMI­TOPOLOGICAL K­THEORY OF REAL VARIETIES Eric M. Friedlander and Mark E. Walker # Abstract. The semi­topological K­theory of real varieties, KR semi (-), is an ori­ ented multiplicative (generalized

  8. V.1Semi-topological K-Theory Eric M. Friedlander and Mark E. Walker *

    E-Print Network [OSTI]

    ....................................................................................... 878 1.2 Definition of Semi-topological K-Theory ........................................ 881 SemiV.1Semi-topological K-Theory Eric M. Friedlander and Mark E. Walker * 1.1 Introduction-topological K-Theory of Projective Varieties: Ksemi ....................... 883 Semi-topological K-Theory

  9. Slit and robo: expression patterns in lung development Mark A. Anselmoa

    E-Print Network [OSTI]

    Wu, Jane Y.

    Slit and robo: expression patterns in lung development Mark A. Anselmoa , Sussie Dalvina , Parthak and elongation. Indirect evidence implicates Slit and Robo in lung development. We now demonstrate that Slit-2 and Slit-3 are developmentally regulated in embryonic murine lung. Immunohistochemistry demonstrates Slit-2

  10. Policy Gradient Planning for Environmental Decision Making with Existing Mark Crowley and David Poole

    E-Print Network [OSTI]

    Poole, David

    Policy Gradient Planning for Environmental Decision Making with Existing Simulators Mark Crowley policies for sustainable harvest planning of a forest. Introduction In many environmental and natural and David Poole University of British Columbia crowley@cs.ubc.ca poole@cs.ubc.ca Abstract In environmental

  11. TUNGSTEN--2003 79.1 References that include a section mark () are found in the Internet

    E-Print Network [OSTI]

    Stockpile (NDS) and increases in stocks held by U.S. industry. No U.S. tungsten mine production was reported reported in 2001. Salient U.S. tungsten statistics and world tungsten concentrate production for 2003TUNGSTEN--2003 79.1 1 References that include a section mark (§) are found in the Internet

  12. Upper Oceanic Energy Response to Tropical Cyclone Passage JOHN A. KNAFF AND MARK DEMARIA

    E-Print Network [OSTI]

    Schubert, Wayne H.

    Upper Oceanic Energy Response to Tropical Cyclone Passage JOHN A. KNAFF AND MARK DEMARIA NOAA is investigated using a 6-yr daily record of data-driven analyses of two measures of upper ocean energy content information and the upper ocean response. Upper oceanic energy decreases in these metrics are shown to persist

  13. Goals and Objectives for User Interface Software Bill Betts, David Burlingame, Gerhard Fischer, Jim Foley, Mark Green, David Kasik, Stephen T . Kerr, Dan Olsen, James Thomas

    E-Print Network [OSTI]

    Fischer, Gerhard

    Foley, Mark Green, David Kasik, Stephen T . Kerr, Dan Olsen, James Thomas This written report summarizes

  14. Reinforcement Learning Embedded in Brains Cornelius Weber1, Mark Elshaw2, Stefan Wermter3, Jochen Triesch1 and

    E-Print Network [OSTI]

    Triesch, Jochen

    7 Reinforcement Learning Embedded in Brains and Robots Cornelius Weber1, Mark Elshaw2, Stefan that learn and are adaptive (Wermter, Weber & Elshaw, 2004; Wermter, Weber, Elshaw, Panchev et al., 2004: Reinforcement Learning: Theory and Applications, Book edited by Cornelius Weber, Mark Elshaw and Norbert Michael

  15. Comparison of the Recently proposed Super Marx Generator Approach to Thermonuclear Ignition with the DT Laser Fusion-Fission Hybrid Concept by the Lawrence Livermore National Laboratory

    E-Print Network [OSTI]

    Winterberg, Friedwardt

    2009-01-01T23:59:59.000Z

    The recently proposed Super Marx generator pure deuterium micro-detonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser DT fusion-fission hybrid concept (LiFE) [1]. In a Super Marx generator a large number of ordinary Marx generators charge up a much larger second stage ultra-high voltage Marx generator, from which for the ignition of a pure deuterium micro-explosion an intense GeV ion beam can be extracted. A typical example of the LiFE concept is a fusion gain of 30, and a fission gain of 10, making up for a total gain of 300, with about 10 times more energy released into fission as compared to fusion. This means a substantial release of fission products, as in fusion-less pure fission reactors. In the Super Marx approach for the ignition of a pure deuterium micro-detonation a gain of the same magnitude can in theory be reached [2]. If feasible, the Super Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of ther...

  16. Lawrence Livermore National Laboratory safeguards and security quarterly progress report to the U.S. Department of Energy. Quarter ending December 31, 1996

    SciTech Connect (OSTI)

    Davis, G.; Mansur, D.L.; Ruhter, W.D.; Strauch, M.S.

    1997-01-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the First Quarter of Fiscal Year 1997 (October through December, 1996). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise. These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in four areas: (1) safeguards technology; (2) safeguards and material accountability; (3) computer security--distributed systems; and (4) physical and personnel security support. The remainder of this report describes the activities in each of these four areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.

  17. Lawrence Livermore National Laboratory Safeguards and Security quarterly progress report to the US Department of Energy: Quarter ending December 31, 1993

    SciTech Connect (OSTI)

    Davis, G.; Mansur, D.L.; Ruhter, W.D.; Steele, E.; Strait, R.S.

    1994-01-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the first quarter of fiscal year 1994 (October through December, 1993). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise. These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in five areas: (1) Safeguards Technology, (2) Safeguards and Decision Support, (3) Computer Security, (4) DOE Automated Physical Security, and (5) DOE Automated Visitor Access Control System. This report describes the activities in each of these five areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.

  18. Lawrence Livermore National Laboratory safeguards and security quarterly progress report to the US Department of Energy: Quarter ending September 30, 1993

    SciTech Connect (OSTI)

    Ruhter, W.D.; Strait, R.S.; Mansur, D.L.; Davis, G.

    1993-10-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the fourth quarter of Fiscal Year 1993 (July through September, 1993). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise. These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in five areas: Safeguards Technology, Safeguard System Studies, Computer Security, DOE Automated Physical Security and DOE Automated Visitor Access Control System. The remainder of this report describes the activities in each of these five areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.

  19. Valley splitting theory of SiGe/Si/SiGe quantum wells Mark Friesen,1,

    E-Print Network [OSTI]

    Coppersmith, Susan N.

    Valley splitting theory of SiGe/Si/SiGe quantum wells Mark Friesen,1, * Sucismita Chutia,1 Charles an effective mass theory for SiGe/Si/SiGe quantum wells, with an emphasis on calculating the valley splitting interface, with characteristic energy splittings of order 0.1­1 meV for the case of SiGe/Si/SiGe quantum

  20. Validation of Flow Sheet for Dissolution and Downstream Processing of Mark 42 Compacts and Sweepings

    SciTech Connect (OSTI)

    Crooks, W.J. III

    2000-12-06T23:59:59.000Z

    Unirradiated Mark 42 compact material was successfully dissolved in various laboratory tests. Assuming a dissolver charge of 10,000 grams of plutonium added to 8000 liters, the dissolver solution optimized with the lowest fluoride concentration was 0.25 molar fluoride-2.0 g/L boron-8 molar nitric acid. This 0.25 molar fluoride achieved a successful codissolution of plutonium oxide and aluminum in less than 15 hours. Based on a 30 minute dissolution of aluminum and measured corrosion rates using this dissolver solution, MTS assessed that the impact on the dissolver integrity due to corrosion from this campaign should be small. All dissolution tests in this work were achieved in the absence of a mercury catalyst, and therefore, to minimize waste and reduce chemical exposure to workers, the use of mercury for the dissolution of Mark 42 compact material is not recommended. The purpose of this report is determine an appropriate dissolver solution composition that will dissolve unirradiated Mark 42 compacts and sweepings in an F-Canyon dissolver within a 24 hour heating period

  1. Safety Evaluation Report related to Hydrogen Control Owners Group assessment of Mark 3 containments

    SciTech Connect (OSTI)

    Li, C.Y.; Kudrick, J.A.

    1990-10-01T23:59:59.000Z

    Title 10 of the Code of Federal Regulations (10 CFR), Section 50.44 Standards for Combustible Gas Control System in Light-Water-Cooled Power Reactors,'' requires that systems be provided to control hydrogen concentration in the containment atmosphere following an accident to ensure that containment integrity is maintained. The purpose of this report is to provide regulatory guidance to licensees with Mark III containments with regard to demonstrating compliance with 10 CFR 50.44, Section (c)(3)(vi) and (c)(3)(vii). In this report, the staff provides its evaluation of the generic methodology proposed by the Hydrogen Control Owners Group. This generic methodology is documented in Topical Report HGN-112-NP, Generic Hydrogen Control Information for BWR/6 Mark III Containments.'' In addition, the staff has recommended that the vulnerability to interruption of power to the hydrogen igniters be evaluated further on a plant-specific basis as part of the individual plant examination of the plants with Mark III containments. 10 figs., 1 tab.

  2. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Gallegos, G; Daniels, J; Wegrecki, A

    2007-10-01T23:59:59.000Z

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showing the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.

  3. High Temperature Superconductors: From Delivery to Applications (Presentation from 2011 Ernest Orlando Lawrence Award-winner, Dr. Amit Goyal, and including introduction by Energy Secretary, Dr. Steven Chu)

    ScienceCinema (OSTI)

    Goyal, Amit (Oak Ridge National Laboratory)

    2012-06-28T23:59:59.000Z

    Dr. Amit Goyal, a high temperature superconductivity (HTS) researcher at Oak Ridge National Laboratory, was named a 2011 winner of the Department of Energy's Ernest Orlando Lawrence Award honoring U.S. scientists and engineers for exceptional contributions in research and development supporting DOE and its mission. Winner of the award in the inaugural category of Energy Science and Innovation, Dr. Goyal was cited for his work in 'pioneering research and transformative contributions to the field of applied high temperature superconductivity, including fundamental materials science advances and technical innovations enabling large-scale applications of these novel materials.' Following his basic research in grain-to-grain supercurrent transport, Dr. Goyal focused his energy in transitioning this fundamental understanding into cutting-edge technologies. Under OE sponsorship, Dr. Goyal co-invented the Rolling Assisted Bi-Axially Textured Substrate technology (RABiTS) that is used as a substrate for second generation HTS wires. OE support also led to the invention of Structural Single Crystal Faceted Fiber Substrate (SSIFFS) and the 3-D Self Assembly of Nanodot Columns. These inventions and associated R&D resulted in 7 R&D 100 Awards including the 2010 R&D Magazine's Innovator of the Year Award, 3 Federal Laboratory Consortium Excellence in Technology Transfer National Awards, a DOE Energy100 Award and many others. As a world authority on HTS materials, Dr. Goyal has presented OE-sponsored results in more than 150 invited talks, co-authored more than 350 papers and is a fellow of 7 professional societies.

  4. High Temperature Superconductors: From Delivery to Applications (Presentation from 2011 Ernest Orlando Lawrence Award-winner, Dr. Amit Goyal, and including introduction by Energy Secretary, Dr. Steven Chu)

    SciTech Connect (OSTI)

    Goyal, Amit (Oak Ridge National Laboratory) [Oak Ridge National Laboratory

    2012-05-22T23:59:59.000Z

    Dr. Amit Goyal, a high temperature superconductivity (HTS) researcher at Oak Ridge National Laboratory, was named a 2011 winner of the Department of Energy's Ernest Orlando Lawrence Award honoring U.S. scientists and engineers for exceptional contributions in research and development supporting DOE and its mission. Winner of the award in the inaugural category of Energy Science and Innovation, Dr. Goyal was cited for his work in 'pioneering research and transformative contributions to the field of applied high temperature superconductivity, including fundamental materials science advances and technical innovations enabling large-scale applications of these novel materials.' Following his basic research in grain-to-grain supercurrent transport, Dr. Goyal focused his energy in transitioning this fundamental understanding into cutting-edge technologies. Under OE sponsorship, Dr. Goyal co-invented the Rolling Assisted Bi-Axially Textured Substrate technology (RABiTS) that is used as a substrate for second generation HTS wires. OE support also led to the invention of Structural Single Crystal Faceted Fiber Substrate (SSIFFS) and the 3-D Self Assembly of Nanodot Columns. These inventions and associated R&D resulted in 7 R&D 100 Awards including the 2010 R&D Magazine's Innovator of the Year Award, 3 Federal Laboratory Consortium Excellence in Technology Transfer National Awards, a DOE Energy100 Award and many others. As a world authority on HTS materials, Dr. Goyal has presented OE-sponsored results in more than 150 invited talks, co-authored more than 350 papers and is a fellow of 7 professional societies.

  5. Calculation of Savannah River K Reactor Mark-22 assembly LOCA/ECS power limits

    SciTech Connect (OSTI)

    Fischer, S.R.; Farman, R.F.; Birdsell, S.A.

    1992-02-01T23:59:59.000Z

    This paper summarizes the results of TRAC-PF1/MOD3 calculations of Mark-22 fuel assembly of loss-of-coolant accident/emergency cooling system (LOCA/ECS) power limits for the Savannah River Site (SRS) K Reactor. This effort was part of a larger effort undertaken by the Los Alamos National Laboratory for the US Department of Energy to perform confirmatory power limits calculations for the SRS K Reactor. A method using a detailed three-dimensional (3D) TRAC model of the Mark-22 fuel assembly was developed to compute LOCA/ECS power limits. Assembly power was limited to ensure that no point on the fuel assembly walls would exceed the local saturation temperature. The detailed TRAC model for the Mark-22 assembly consisted of three concentric 3D vessel components which simulated the two targets, two fuel tubes, and three main flow channels of the fuel assembly. The model included 100% eccentricity between the assembly annuli and a 20% power tilt. Eccentricity in the radial alignment of the assembly annuli arises because axial spacer ribs that run the length of the fuel and targets are used. Wall-shear, interfacial-shear, and wall heat-transfer correlations were developed and implemented in TRAC-PF1/MOD3 specifically for modeling flow and heat transfer in the narrow ribbed annuli encountered in the Mark-22 fuel assembly design. We established the validity of these new constitutive models using separate-effects benchmarks. TRAC system calculations of K Reactor indicated that the limiting ECS-phase accident is a double-ended guillonite break in a process water line at the pump discharge (i.e., a PDLOCA). The fuel assembly with the minimum cooling potential is identified from this system calculation. Detailed assembly calculations then were performed using appropriate boundary conditions obtained from this limiting system LOCA. Coolant flow rates and pressure boundary conditions were obtained from this system calculation and applied to the detailed assembly model.

  6. Calculation of Savannah River K Reactor Mark-22 assembly LOCA/ECS power limits

    SciTech Connect (OSTI)

    Fischer, S.R.; Farman, R.F.; Birdsell, S.A.

    1992-01-01T23:59:59.000Z

    This paper summarizes the results of TRAC-PF1/MOD3 calculations of Mark-22 fuel assembly of loss-of-coolant accident/emergency cooling system (LOCA/ECS) power limits for the Savannah River Site (SRS) K Reactor. This effort was part of a larger effort undertaken by the Los Alamos National Laboratory for the US Department of Energy to perform confirmatory power limits calculations for the SRS K Reactor. A method using a detailed three-dimensional (3D) TRAC model of the Mark-22 fuel assembly was developed to compute LOCA/ECS power limits. Assembly power was limited to ensure that no point on the fuel assembly walls would exceed the local saturation temperature. The detailed TRAC model for the Mark-22 assembly consisted of three concentric 3D vessel components which simulated the two targets, two fuel tubes, and three main flow channels of the fuel assembly. The model included 100% eccentricity between the assembly annuli and a 20% power tilt. Eccentricity in the radial alignment of the assembly annuli arises because axial spacer ribs that run the length of the fuel and targets are used. Wall-shear, interfacial-shear, and wall heat-transfer correlations were developed and implemented in TRAC-PF1/MOD3 specifically for modeling flow and heat transfer in the narrow ribbed annuli encountered in the Mark-22 fuel assembly design. We established the validity of these new constitutive models using separate-effects benchmarks. TRAC system calculations of K Reactor indicated that the limiting ECS-phase accident is a double-ended guillonite break in a process water line at the pump discharge (i.e., a PDLOCA). The fuel assembly with the minimum cooling potential is identified from this system calculation. Detailed assembly calculations then were performed using appropriate boundary conditions obtained from this limiting system LOCA. Coolant flow rates and pressure boundary conditions were obtained from this system calculation and applied to the detailed assembly model.

  7. Heat Transfer Characteristics of Mark 15 Slugs for Different Bonding Conditions

    SciTech Connect (OSTI)

    McAllister, J.E. Jr.

    2001-08-13T23:59:59.000Z

    A numerical heat transfer model based on the HEATING53 conduction code was developed to analyze poor bonding around the endcap of the outer Mark 15 slug. An analytical model could not be developed because of non-uniform heat generation in the core and the arrangement of the various materials in the cylindrical geometry. Results for air gaps are also included; however, they are not considered reasonable poor bond cases because the 300 area inspection tests can detect slugs with air gaps. This reports discusses the test results.

  8. Electrical equipment performance under severe accident conditions (BWR/Mark 1 plant analysis): Summary report

    SciTech Connect (OSTI)

    Bennett, P.R.; Kolaczkowski, A.M.; Medford, G.T.

    1986-09-01T23:59:59.000Z

    The purpose of the Performance Evaluation of Electrical Equipment during Severe Accident States Program is to determine the performance of electrical equipment, important to safety, under severe accident conditions. In FY85, a method was devised to identify important electrical equipment and the severe accident environments in which the equipment was likely to fail. This method was used to evaluate the equipment and severe accident environments for Browns Ferry Unit 1, a BWR/Mark I. Following this work, a test plan was written in FY86 to experimentally determine the performance of one selected component to two severe accident environments.

  9. Mark B. Chadwick, 2011 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHz WaterMark B. Chadwick, 2011 The

  10. Mark H. Thiemens, 1998 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHz WaterMark B. Chadwick, 2011

  11. Mark Mathias > General Motors - Fuel Cell Research > Scientific Advisory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'llMappingMariaHereld Manager,Mark Holecek

  12. Welcome to this week's edition of Friday marks the first day of summer! In spite of the heat,

    E-Print Network [OSTI]

    Weber, David J.

    Welcome to this week's edition of Friday marks the first day of summer! In spite of the heat, we and offers the potential for functional recovery from injuries and diseases of the adult brain. Finally

  13. MARK R. T. DALE, SHAWN FRANCIS, CHARLES J. KREBS, & VILIS 0. NAMS 7.1 Tree Community at Kluane

    E-Print Network [OSTI]

    Krebs, Charles J.

    7 Trees MARK R. T. DALE, SHAWN FRANCIS, CHARLES J. KREBS, & VILIS 0. NAMS 7.1 Tree Community perpendicular to the main trench (the Alsek, Slims, and Jarvis rivers), can funnel katabatic and glacial winds

  14. MONADS WITH ARITIES AND THEIR ASSOCIATED CLEMENS BERGER, PAUL-ANDRE MELLI`ES AND MARK WEBER

    E-Print Network [OSTI]

    Melliès, Paul-André - Laboratoire Preuves, Programmes et Systèmes, Université Paris 7

    WEBER Abstract. After a review of the concept of "monad with arities" we show that the category BERGER, PAUL-ANDR´E MELLI`ES AND MARK WEBER terminology is also motivated by another example; namely

  15. Gary M. Bone, Andrew Lambert and Mark Edwards Abstract This paper describes the development of a novel

    E-Print Network [OSTI]

    Bone, Gary

    Gary M. Bone, Andrew Lambert and Mark Edwards Abstract ­ This paper describes the development from the top of a pile was described by Taylor, Blake and Cox [3]. They used a wrist-mounted camera

  16. Impact of the CE mark approval on exit opportunities and validation for early stage medical device companies

    E-Print Network [OSTI]

    Kothari, Ashish (Ashish Shrikant)

    2011-01-01T23:59:59.000Z

    The aim of this thesis was to look at the impact of acquiring the CE marking approval on the outcome of early stage medical device companies, specifically its impact on strategic acquisition opportunities and on valuation. ...

  17. Marking Algorithms for Service Differentiation of TCP Traffic Technical Report: University of Virginia, CS-2003-04

    E-Print Network [OSTI]

    Sadeh, Norman M.

    Marking Algorithms for Service Differentiation of TCP Traffic Technical Report: University typically provide loss, throughput, and delay differentiation. However, proposals for class-based Qo of packet losses and achievable throughput. Ignoring this coupling may result in poor service

  18. Quantitative study of amplitude noise effects on dynamical localization Daniel A. Steck, Valery Milner, Windell H. Oskay, and Mark G. Raizen

    E-Print Network [OSTI]

    Texas at Austin. University of

    Milner, Windell H. Oskay, and Mark G. Raizen Department of Physics, The University of Texas at Austin

  19. Mark Solovey. Shaky Foundations: The PoliticsPatronageSocial Science Nexus in Cold War Shaky Foundations: The PoliticsPatronageSocial Science Nexus in Cold War America by

    E-Print Network [OSTI]

    Solovey, Mark

    Mark Solovey. Shaky Foundations: The Politics­Patronage­Social Science Nexus in Cold War America. Shaky Foundations: The Politics­Patronage­Social Science Nexus in Cold War America by Mark Solovey). CATHY GERE Mark Solovey. Shaky Foundations: The Poli- tics­Patronage­Social Science Nexus in Cold War

  20. Literacy and its discontents: modernist anxiety and the literacy fiction of Virginia Woolf, E. M. Forster, D. H. Lawrence and Aldous Huxley

    E-Print Network [OSTI]

    DuPlessis, Nicole Mara

    2008-10-10T23:59:59.000Z

    their artistic ideals using writen media. McLuhan proposes “consciousnes” as an alternative to “the lineal structuring of rational life by phonetic literacy [that] has involved us in an interlocking set of consistencies.” He says that “consciousnes is regarded... as the mark of a rational being, yet there is nothing lineal or sequential about the total field of awarenes that exists in any moment of consciousnes. Consciousnes is not a verbal proces” (UM 85). Although Modernists such as Woolf and Joyce had to rely...

  1. Blockade of the ERK pathway markedly sensitizes tumor cells to HDAC inhibitor-induced cell death

    SciTech Connect (OSTI)

    Ozaki, Kei-ichi [Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521 (Japan); Minoda, Ai [Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521 (Japan); Kishikawa, Futaba [Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521 (Japan); Kohno, Michiaki [Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521 (Japan)]. E-mail: kohnom@net.nagasaki-u.ac.jp

    2006-01-27T23:59:59.000Z

    Constitutive activation of the extracellular signal-regulated kinase (ERK) pathway is associated with the neoplastic phenotype of a large number of human tumor cells. Although specific blockade of the ERK pathway by treating such tumor cells with potent mitogen-activated protein kinase/ERK kinase (MEK) inhibitors completely suppresses their proliferation, it by itself shows only a modest effect on the induction of apoptotic cell death. However, these MEK inhibitors markedly enhance the efficacy of histone deacetylase (HDAC) inhibitors to induce apoptotic cell death: such an enhanced cell death is observed only in tumor cells in which the ERK pathway is constitutively activated. Co-administration of MEK inhibitor markedly sensitizes tumor cells to HDAC inhibitor-induced generation of reactive oxygen species, which appears to mediate the enhanced cell death induced by the combination of these agents. These results suggest that the combination of MEK inhibitors and HDAC inhibitors provides an efficient chemotherapeutic strategy for the treatment of tumor cells in which the ERK pathway is constitutively activated.

  2. Identification and assessment of containment and release management strategies for a BWR Mark I containment

    SciTech Connect (OSTI)

    Lin, C.C.; Lehner, J.R. (Brookhaven National Lab., Upton, NY (United States))

    1991-09-01T23:59:59.000Z

    This report identifies and assesses accident management strategies which could be important for preventing containment failure and/or mitigating the release of fission products during a severe accident in a BWR plant with a Mark 1 type of containment. Based on information available from probabilistic risk assessments and other existing severe accident research, and using simplified containment and release event trees, the report identifies the challenges a Mark 1 containment could face during the course of a severe accident, the mechanisms behind these challenges, and the strategies that could be used to mitigate the challenges. A safety objective tree is developed which provides the connection between the safety objectives, the safety functions, the challenges, and the strategies. The strategies were assessed by applying them to certain severe accident sequence categories which have one or more of the following characteristics: have high probability of core damage or high consequences, lead to a number of challenges, and involve the failure of multiple systems. 59 refs., 55 figs., 27 tabs.

  3. Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov OfficeAdministrationSecurityimpactsW56

  4. The probability of Mark-I containment failure by melt-attack of the liner

    SciTech Connect (OSTI)

    Theofanous, T.G.; Yan, H. [California Univ., Santa Barbara, CA (United States). Dept. of Chemical and Nuclear Engineering; Podowski, M.Z. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Nuclear Engineering and Engineering Physics] [and others

    1993-11-01T23:59:59.000Z

    This report is a followup to the work presented in NUREG/CR-5423 addressing early failure of a BWR Mark I containment by melt attack of the liner, and it constitutes a part of the implementation of the Risk-Oriented Accident Analysis Methodology (ROAAM) employed therein. In particular, it expands the quantification to include four independent evaluations carried out at Rensselaer Polytechnic Institute, Argonne National Laboratories, Sandia National Laboratories and ANATECH, Inc. on the various portions of the phenomenology involved. These independent evaluations are included here as Parts II through V. The results, and their integration in Part I, demonstrate the substantial synergism and convergence necessary to recognize that the issue has been resolved.

  5. Jiangcheng Bao Y. Lawrence Yao

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    system, it is easier to incorporate laser forming into an automatic manufacturing system. Material, NY 10027 Analysis and Prediction of Edge Effects in Laser Bending Laser forming of sheet metal offers forming of some materials and shapes that are not possible now. In single-axis laser bending of plates

  6. Wenwu Zhang* Y. Lawrence Yao

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    for silicon-based micro-engines 4 , while tungsten-coated polysilicon micro-engines show much higher wear of these metal microstructures, such as micro- electromechanical actuators, metal gears, and metal switches, ex to the micro-devices, since thermal effects are typically shielded by an ablative coating, and the water

  7. Serializability in Multidatabases Ramon Lawrence

    E-Print Network [OSTI]

    Lawrence, Ramon

    are quite recent. For instance, in [7] the authors present a probabilistic method able to rank nodes

  8. Anubha Bhatla Y. Lawrence Yao

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    their degradation and physical properties. In this paper, the effects of laser irradiation using the third harmonic acid PGA are particularly attractive since they are approved by the United States Food and Drug Adminis

  9. Lawrence Livermore National Laboratory Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News Releases Tribune

  10. Santer of Lawrence Livermore National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch Briefs TheSanket A. Deshmukh ArgonneSanta8 6/1/2011

  11. Lawrence Berkeley National Laboratory Overview

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999Inspections InspectionOctober 14, 2014Energy TheProject

  12. Lawrence Berkeley National Laboratory Overview

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999Inspections InspectionOctober 14, 2014Energy

  13. E.O. Lawrence Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work with JeffersonFluctuation-driven magneticscientists

  14. Final report of the mark and recovery estimates of fish populations in three heated reservoirs of Texas

    E-Print Network [OSTI]

    Yeh, Chi Fu

    1971-01-01T23:59:59.000Z

    OF SCIENCE August 1971 Major Subject: Fisheries Science MARK Al;0 RECOVERY ESTIMATES OF FISH BPBiLATIOMS IK THINE HEATED HRSERVOIHS OF T~~ A Thesis CHI FU 'IM~ AFproved a. to style and content by: e s Dr. H. K. Strawn Chairman of' Committee H ad ot...& Dr. Kirk Strawn Estimates of fish populations in Lake Bastrop& Lake Nasvrorthy and North Lake, Texas were made by mark and recapture techniques. The lakes were divided into four, seven and, three strata respective- ly. Fish capt&u"od in each...

  15. A robotic system used to trace marks on a 3-D surface employing vision and direction sensing

    E-Print Network [OSTI]

    Chang, Po Lam

    1986-01-01T23:59:59.000Z

    A ROBOTIC SYSTEM USED TO TRACE MARKS ON A 3-D SURFACE EMPLOYING VISION AND DIRECTION SENSING A Thesis by PO LAM CHANG Submitted to the Graduate College of Texas AkM University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE August 1986 Major Subject: Mechanical Engineering A ROBOTIC SYSTEM USED TO TRACE MARKS ON A 3-D SURFACE EMPLOYING VISION AND DIRECTION SENSING A Thesis by PO LAM CHANG Approved as to style and content by: Oren Masory (Chairman...

  16. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 6. Summary

    SciTech Connect (OSTI)

    Peterson, S

    2007-09-05T23:59:59.000Z

    Throughout fifty-three years of operations, an estimated 792,000 Ci (29,300 TBq) of tritium have been released to the atmosphere at the Livermore site of Lawrence Livermore National Laboratory (LLNL); about 75% was tritium gas (HT) primarily from the accidental releases of 1965 and 1970. Routine emissions contributed slightly more than 100,000 Ci (3,700 TBq) HT and about 75,000 Ci (2,800 TBq) tritiated water vapor (HTO) to the total. A Tritium Dose Reconstruction was undertaken to estimate both the annual doses to the public for each year of LLNL operations and the doses from the few accidental releases. Some of the dose calculations were new, and the others could be compared with those calculated by LLNL. Annual doses (means and 95% confidence intervals) to the potentially most exposed member of the public were calculated for all years using the same model and the same assumptions. Predicted tritium concentrations in air were compared with observed mean annual concentrations at one location from 1973 onwards. Doses predicted from annual emissions were compared with those reported in the past by LLNL. The highest annual mean dose predicted from routine emissions was 34 {micro}Sv (3.4 mrem) in 1957; its upper confidence limit, based on very conservative assumptions about the speciation of the release, was 370 {micro}Sv (37 mrem). The upper confidence limits for most annual doses were well below the current regulatory limit of 100 {micro}Sv (10 mrem) for dose to the public from release to the atmosphere; the few doses that exceeded this were well below the regulatory limits of the time. Lacking the hourly meteorological data needed to calculate doses from historical accidental releases, ingestion/inhalation dose ratios were derived from a time-dependent accident consequence model that accounts for the complex behavior of tritium in the environment. Ratios were modified to account for only those foods growing at the time of the releases. The highest dose from an accidental release was calculated for a release of about 1,500 Ci HTO that occurred in October 1954. The likely dose for this release was probably less than 360 {micro}Sv (36 mrem), but, because of many unknowns (e.g., release-specific meteorological and accidental conditions) and conservative assumptions, the uncertainty was very high. As a result, the upper confidence limit on the predictions, considered a dose that could not have been exceeded, was estimated to be 2 mSv (200 mrem). The next highest dose, from the 1970 accidental release of about 290,000 Ci (10,700 TBq) HT when wind speed and wind direction were known, was one-third as great. Doses from LLNL accidental releases were well below regulatory reporting limits. All doses, from both routine and accidental releases, were far below the level (3.6 mSv [360 mrem] per year) at which adverse health effects have been documented in the literature.

  17. Calculation of Transactinide Homolog Isotope Production Reactions Possible with the Center for Accelerator Mass Spectrometry (CAMS) at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Moody, K J; Shaughnessy, D A; Gostic, J M

    2011-11-29T23:59:59.000Z

    The LLNL heavy element group has been investigating the chemical properties of the heaviest elements over the past several years. The properties of the transactinides (elements with Z > 103) are often unknown due to their low production rates and short half-lives, which require lengthy cyclotron irradiations in order to make enough atoms for statistically significant evaluations of their chemistry. In addition, automated chemical methods are often required to perform consistent and rapid chemical separations on the order of minutes for the duration of the experiment, which can last from weeks to months. Separation methods can include extraction chromatography, liquid-liquid extraction, or gas-phase chromatography. Before a lengthy transactinide experiment can be performed at an accelerator, a large amount of preparatory work must be done both to ensure the successful application of the chosen chemical system to the transactinide chemistry problem being addressed, and to evaluate the behavior of the lighter elemental homologs in the same chemical system. Since transactinide chemistry is literally performed on one single atom, its chemical properties cannot be determined from bulk chemical matrices, but instead must be inferred from the behavior of the lighter elements that occur in its chemical group and in those of its neighboring elements. By first studying the lighter group homologs in a particular chemical system, when the same system is applied to the transactinide element under investigation, its decay properties can be directly compared to those of the homologues, thereby allowing an inference of its own chemistry. The Center for Accelerator Mass Spectrometry (CAMS) at Lawrence Livermore National Laboratory (LLNL) includes a 1 MV Tandem accelerator, capable of accelerating light ions such as protons to energies of roughly 15 MeV. By using the CAMS beamline, tracers of transactinide homolog elements can be produced both for development of chemical systems and for evaluation of homolog chemical properties. CAMS also offers an environment for testing these systems 'online' by incorporating automated chemical systems into the beamline so that tracers can be created, transported, and chemically separated all on the shorter timescales required for transactinide experiments. Even though CAMS is limited in the types and energies of ions they can accelerate, there are still a wide variety of reactions that can be performed there with commercially available target materials. The half-lives of these isotopes vary over a range that could be used for both online chemistry (where shorter half-lives are required) and benchtop tracers studies (where longer lived isotopes are preferred). In this document, they present a summary of tracer production reactions that could be performed at CAMS, specifically for online, automated chemical studies. They are from chemical groups four through seven, 13, and 14, which would be appropriate for studies of elements 104-107, 113, and 114. Reactions were selected that had (a) commercially available target material, (b) half-lives long enough for transport from a target chamber to an automated chemistry system, and (c) cross-sections at CAMS available projectile energies that were large enough to produce enough atoms to result in a statistically relevant signal after losses for transport and chemistry were considered. In addition, the resulting product atoms had to decay with an observable gamma-ray using standard Ge gamma-ray detectors. The table includes calculations performed for both metal targets and their corresponding oxides.

  18. Report on Department of Homeland Security Sponsored Research Project at Lawrence Livermore National Laboratory on Preparation for an Improvised Nuclear Device Event

    SciTech Connect (OSTI)

    A., B

    2008-07-31T23:59:59.000Z

    Following the events of September 11th, a litany of imaginable horribles was trotted out before an anxious and concerned public. To date, government agencies and academics are still grappling with how to best respond to such catastrophes, and as Senator Lieberman's quote says above, now is the time to plan and prepare for such events. One of the nation's worst fears is that terrorists might detonate an improvised nuclear device (IND) in an American city. With 9/11 serving as the catalyst, the government and many NGOs have invested money into research and development of response capabilities throughout the country. Yet, there is still much to learn about how to best respond to an IND event. My summer 2008 internship at Lawrence Livermore National Laboratory afforded me the opportunity to look in depth at the preparedness process and the research that has been conducted on this issue. While at the laboratory I was tasked to collect, combine, and process research on how cities and the federal government can best prepare for the horrific prospect of an IND event. Specific projects that I was involved with were meeting reports, research reviews, and a full project report. Working directly with Brooke Buddemeier and his support team at the National Atmospheric Release Advisory Center, I was able to witness first hand, preparation for meetings with response planners to inform them of the challenges that an IND event would pose to the affected communities. In addition, I supported the Homeland Security Institute team (HSI), which was looking at IND preparation and preparing a Congressional report. I participated in meetings at which local responders expressed their concerns and contributed valuable information to the response plan. I specialized in the psycho-social aspects of an IND event and served as a technical advisor to some of the research groups. Alongside attending and supporting these meetings, I worked on an independent research project which collected information from across disciplines to outline where the state of knowledge on IND response is. In addition, the report looked at meetings that were held over the summer in various cities. The meetings were attended by both federal responders and local responders. The meetings explored issues regarding IND preparation and how to mitigate the effects of an IND detonation. Looking at the research and current preparation activity the report found that the state of knowledge in responding and communicating is a mixed bag. Some aspects of an IND attack are well understood, some are not, but much is left to synthesize. The effects of an IND would be devastating, yet much can be done to mitigate those effects through education, preparation, and research. A major gap in current knowledge is how to effectively communicate with the public before an attack. Little research on the effectiveness of public education has been done, but it is likely that educating the public about the effects of an IND and how to best protect oneself could save many lives.

  19. Lawrence Livermore National Laboratory (LLNL) Experimental Test Site (Site 300) Salinity Evaluation and Minimization Plan for Cooling Towers and Mechanical Equipment Discharges

    SciTech Connect (OSTI)

    Daily III, W D

    2010-02-24T23:59:59.000Z

    This document was created to comply with the Central Valley Regional Water Quality Control Board (CVRWQCB) Waste Discharge Requirement (Order No. 98-148). This order established new requirements to assess the effect of and effort required to reduce salts in process water discharged to the subsurface. This includes the review of technical, operational, and management options available to reduce total dissolved solids (TDS) concentrations in cooling tower and mechanical equipment water discharges at Lawrence Livermore National Laboratory's (LLNL's) Experimental Test Site (Site 300) facility. It was observed that for the six cooling towers currently in operation, the total volume of groundwater used as make up water is about 27 gallons per minute and the discharge to the subsurface via percolation pits is 13 gallons per minute. The extracted groundwater has a TDS concentration of 700 mg/L. The cooling tower discharge concentrations range from 700 to 1,400 mg/L. There is also a small volume of mechanical equipment effluent being discharged to percolation pits, with a TDS range from 400 to 3,300 mg/L. The cooling towers and mechanical equipment are maintained and operated in a satisfactory manner. No major leaks were identified. Currently, there are no re-use options being employed. Several approaches known to reduce the blow down flow rate and/or TDS concentration being discharged to the percolation pits and septic systems were reviewed for technical feasibility and cost efficiency. These options range from efforts as simple as eliminating leaks to implementing advanced and innovative treatment methods. The various options considered, and their anticipated effect on water consumption, discharge volumes, and reduced concentrations are listed and compared in this report. Based on the assessment, it was recommended that there is enough variability in equipment usage, chemistry, flow rate, and discharge configurations that each discharge location at Site 300 should be considered separately when deciding on an approach for reducing the salt discharge to the subsurface. The smaller units may justify moderate changes to equipment, and may benefit from increased cleaning frequencies, more accurate and suitable chemical treatment, and sources of make up water and discharge re-use. The larger cooling towers would be more suitable for automated systems where they don't already exist, re-circulation and treatment of blow down water, and enhanced chemical dosing strategies. It may be more technically feasible and cost efficient for the smaller cooling towers to be replaced by closed loop dry coolers or hybrid towers. There are several potential steps that could be taken at each location to reduce the TDS concentration and/or water use. These include: sump water filtration, minimization of drift, accurate chemical dosing, and use of scale and corrosion coupons for chemical calibration. The implementation of some of these options could be achieved by a step-wise approach taken at two representative facilities. Once viable prototype systems have been proven in the field, systematic implementation should proceed for the remaining systems, with cost, desired reduction, and general feasibility taken into consideration for such systems.

  20. Source term attenuation by water in the Mark I boiling water reactor drywell

    SciTech Connect (OSTI)

    Powers, D.A. [Sandia National Labs., Albuquerque, NM (United States)

    1993-09-01T23:59:59.000Z

    Mechanistic models of aerosol decontamination by an overlying water pool during core debris/concrete interactions and spray removal of aerosols from a Mark I drywell atmosphere are developed. Eighteen uncertain features of the pool decontamination model and 19 uncertain features of the model for the rate coefficient of spray removal of aerosols are identified. Ranges for values of parameters that characterize these uncertain features of the models are established. Probability density functions for values within these ranges are assigned according to a set of rules. A Monte Carlo uncertainty analysis of the decontamination factor produced by water pools 30 and 50 cm deep and subcooled 0--70 K is performed. An uncertainty analysis for the rate constant of spray removal of aerosols is done for water fluxes of 0.25, 0.01, and 0.001 cm{sup 3} H{sub 2}O/cm{sup 2}-s and decontamination factors of 1.1, 2, 3.3, 10, 100, and 1000.