National Library of Energy BETA

Sample records for marius stan computational

  1. Marius Stan Returning to Reddit To Tie Up Loose Ends

    Broader source: Energy.gov [DOE]

    Marius Stan, computational scientist and Breaking Bad actor, will be returning to Reddit once again to tie up loose ends by answering questions.

  2. Marius Stan | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Ph.D. (Chemistry), Romanian Academy, Institute of Physical Chemistry, Bucharest, Romania, 1997. B.S. (Physics), University of Bucharest, Bucharest, Romania, 1986. Contact Us For ...

  3. Microsoft PowerPoint - Marius Stan.update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... * Performance Assessment Peer Review Panels International nuclear power plant ... analysis for corrosion depth of the spent nuclear fuel canister has been studied using ...

  4. Stan Calvert | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stan Calvert About Us Stan Calvert - Wind Systems Integration Team Lead, Wind & Water Power Program Stan Calvert is the Wind Systems Integration Team Lead for the Wind and Water ...

  5. Sandia's Stan Atcitty winner of the Presidential Early Career...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy ... Stan was nominated for the PECASE award by DOE's Office of Electricity Delivery and Energy ...

  6. Argonne OutLoud: Science and Cinema (July 17, 2014) | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Science and Cinema (July 17, 2014) Share Topic Community Outreach Marius Stan presented "Science and Cinema" at the Argonne OutLoud Lecture Series on Thursday, July 17, 2014. The lecture will examine the unexpected connections between the two fields of science and cinema. Marius Stan is a Senior Computational Energy Scientist whose research is aimed at discovering or designing materials, structures and device architectures for nuclear energy and energy storage. Stan has

  7. Stan Watkins Named Department of Energy Facility Representative of the Year

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stan Calvert About Us Stan Calvert - Wind Systems Integration Team Lead, Wind & Water Power Program Stan Calvert is the Wind Systems Integration Team Lead for the Wind and Water Power Program. Most Recent Today's Forecast: Improved Wind Predictions July 20 | National Nuclear Security Administration | (NNSA)

    Stan Watkins Named Department of Energy Facility Representative of the Year May 15, 2009 Microsoft Office document icon R-09-02

  8. Stan Bull, Long-Time NREL Leader, Named AAAS Fellow - News Releases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stan Bull, Long-Time NREL Leader, Named AAAS Fellow January 11, 2011 Stanley R. Bull, former associate director for Science and Technology at the U.S. Department of Energy's...

  9. Nucleosynthesis Woosley, Stan 79 ASTRONOMY AND ASTROPHYSICS SciDAC...

    Office of Scientific and Technical Information (OSTI)

    SciDAC 2, Computational Astrophysics Consortium, Supernovae, Computations Final project report for UCSC's participation in the Computational Astrophysics Consortium -...

  10. Present and Future Computing Requirements Radiative Transfer of Astrophysical Explosions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requirements Radiative Transfer of Astrophysical Explosions Daniel Kasen (UCB/LBNL) SciDAC computational astrophysics consortium Stan Woosley, Ann Almgren, John Bell, Haitao Ma, Peter Nugent, Rollin Thomas, Weiquin Zhang, Adam Burrows, Jason Nordhaus, Louis Howell, Mike Zingale topics and open questions * thermonuclear supernova: What are the progenitors: 1 or 2 white dwarfs? How does the nuclear runaway ignite and develop? How regular are these "standard candles" for cosmology? * core

  11. computers

    National Nuclear Security Administration (NNSA)

    Each successive generation of computing system has provided greater computing power and energy efficiency.

    CTS-1 clusters will support NNSA's Life Extension Program and...

  12. Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing and Storage Requirements Computing and Storage Requirements for FES J. Candy General Atomics, San Diego, CA Presented at DOE Technical Program Review Hilton Washington DC/Rockville Rockville, MD 19-20 March 2013 2 Computing and Storage Requirements Drift waves and tokamak plasma turbulence Role in the context of fusion research * Plasma performance: In tokamak plasmas, performance is limited by turbulent radial transport of both energy and particles. * Gradient-driven: This turbulent

  13. computers

    National Nuclear Security Administration (NNSA)

    California.

    Retired computers used for cybersecurity research at Sandia National...

  14. Computations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computations - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  15. Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Advanced Scientific Computing Research in the Department of Energy Office of Science under contract number DE-AC02-05CH11231. ! Application and System Memory Use, Configuration, and Problems on Bassi Richard Gerber Lawrence Berkeley National Laboratory NERSC User Services ScicomP 13 Garching bei München, Germany, July 17, 2007 ScicomP 13, July 17, 2007, Garching Overview * About Bassi * Memory on Bassi * Large Page Memory (It's Great!) * System Configuration * Large Page

  16. Liliana Stan | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liisa O'Neill About Us Liisa O'Neill - Former New Media Specialist, Office of Public Affairs Liisa O'Neill A former online news producer, Liisa O'Neill served in the Office of Public Affairs as a New Media Specialist from May to December 2011. A graduate of New York University, Liisa O'Neill spent four years at ABC News and the New York Daily News, before moving to Washington, D.C., where she was an online communications consultant working with clean energy nonprofits, political campaigns and

  17. Computing Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Videos Computing

  18. Computing Frontier: Distributed Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Frontier: Distributed Computing and Facility Infrastructures Conveners: Kenneth Bloom 1 , Richard Gerber 2 1 Department of Physics and Astronomy, University of Nebraska-Lincoln 2 National Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory 1.1 Introduction The field of particle physics has become increasingly reliant on large-scale computing resources to address the challenges of analyzing large datasets, completing specialized computations and

  19. Computer, Computational, and Statistical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCS Computer, Computational, and Statistical Sciences Computational physics, computer science, applied mathematics, statistics and the integration of large data streams are central ...

  20. Compute nodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compute nodes Compute nodes Click here to see more detailed hierachical map of the topology of a compute node. Last edited: 2015-03-30 20:55:24...

    1. Computer System,

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      undergraduate summer institute http:isti.lanl.gov (Educational Prog) 2016 Computer System, Cluster, and Networking Summer Institute Purpose The Computer System,...

    2. Computing Information

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Information From here you can find information relating to: Obtaining the right computer accounts. Using NIC terminals. Using BooNE's Computing Resources, including: Choosing your desktop. Kerberos. AFS. Printing. Recommended applications for various common tasks. Running CPU- or IO-intensive programs (batch jobs) Commonly encountered problems Computing support within BooNE Bringing a computer to FNAL, or purchasing a new one. Laptops. The Computer Security Program Plan for MiniBooNE The

    3. Computing Sciences

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Division The Computational Research Division conducts research and development in mathematical modeling and simulation, algorithm design, data storage, management and...

    4. Computing Resources

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Cluster-Image TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Computing Resources The TRACC Computational Clusters With the addition of a new cluster called Zephyr that was made operational in September of this year (2012), TRACC now offers two clusters to choose from: Zephyr and our original cluster that has now been named Phoenix. Zephyr was acquired from Atipa technologies, and it is a 92-node system with each node having two AMD

    5. Computer Security

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      computer security Computer Security All JLF participants must fully comply with all LLNL computer security regulations and procedures. A laptop entering or leaving B-174 for the sole use by a US citizen and so configured, and requiring no IP address, need not be registered for use in the JLF. By September 2009, it is expected that computers for use by Foreign National Investigators will have no special provisions. Notify maricle1@llnl.gov of all other computers entering, leaving, or being moved

    6. Compute Nodes

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Compute Nodes Compute Nodes Quad CoreAMDOpteronprocessor Compute Node Configuration 9,572 nodes 1 quad-core AMD 'Budapest' 2.3 GHz processor per node 4 cores per node (38,288 total cores) 8 GB DDR3 800 MHz memory per node Peak Gflop rate 9.2 Gflops/core 36.8 Gflops/node 352 Tflops for the entire machine Each core has their own L1 and L2 caches, with 64 KB and 512KB respectively 2 MB L3 cache shared among the 4 cores Compute Node Software By default the compute nodes run a restricted low-overhead

    7. Stanly County, North Carolina: Energy Resources | Open Energy...

      Open Energy Info (EERE)

      Carolina New London, North Carolina Norwood, North Carolina Oakboro, North Carolina Red Cross, North Carolina Richfield, North Carolina Stanfield, North Carolina Retrieved...

    8. Exascale Computing

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      DesignForward FastForward CAL Partnerships Shifter: User Defined Images Archive APEX Home » R & D » Exascale Computing Exascale Computing Moving forward into the exascale era, NERSC users place will place increased demands on NERSC computational facilities. Users will be facing increased complexity in the memory subsystem and node architecture. System designs and programming models will have to evolve to face these new challenges. NERSC staff are active in current initiatives addressing

    9. Computer Science

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Cite Seer Department of Energy provided open access science research citations in chemistry, physics, materials, engineering, and computer science IEEE Xplore Full text...

    10. Compute Nodes

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      low-overhead operating system optimized for high performance computing called "Cray Linux Environment" (CLE). This OS supports only a limited number of system calls and UNIX...

    11. Computational Science

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      ... Advanced Materials Laboratory Center for Integrated Nanotechnologies Combustion Research Facility Computational Science Research Institute Joint BioEnergy Institute About EC News ...

    12. Computing and Computational Sciences Directorate - Contacts

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Home About Us Contacts Jeff Nichols Associate Laboratory Director Computing and Computational Sciences Becky Verastegui Directorate Operations Manager Computing and...

    13. Computing and Computational Sciences Directorate - Divisions

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      CCSD Divisions Computational Sciences and Engineering Computer Sciences and Mathematics Information Technolgoy Services Joint Institute for Computational Sciences National Center for Computational Sciences

    14. Compute Nodes

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Nodes Quad CoreAMDOpteronprocessor Compute Node Configuration 9,572 nodes 1 quad-core AMD 'Budapest' 2.3 GHz processor per node 4 cores per node (38,288 total cores) 8 GB...

    15. Exascale Computing

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computing Exascale Computing CoDEx Project: A Hardware/Software Codesign Environment for the Exascale Era The next decade will see a rapid evolution of HPC node architectures as power and cooling constraints are limiting increases in microprocessor clock speeds and constraining data movement. Applications and algorithms will need to change and adapt as node architectures evolve. A key element of the strategy as we move forward is the co-design of applications, architectures and programming

    16. LHC Computing

      SciTech Connect (OSTI)

      Lincoln, Don

      2015-07-28

      The LHC is the world’s highest energy particle accelerator and scientists use it to record an unprecedented amount of data. This data is recorded in electronic format and it requires an enormous computational infrastructure to convert the raw data into conclusions about the fundamental rules that govern matter. In this video, Fermilab’s Dr. Don Lincoln gives us a sense of just how much data is involved and the incredible computer resources that makes it all possible.

    17. Computational mechanics

      SciTech Connect (OSTI)

      Goudreau, G.L.

      1993-03-01

      The Computational Mechanics thrust area sponsors research into the underlying solid, structural and fluid mechanics and heat transfer necessary for the development of state-of-the-art general purpose computational software. The scale of computational capability spans office workstations, departmental computer servers, and Cray-class supercomputers. The DYNA, NIKE, and TOPAZ codes have achieved world fame through our broad collaborators program, in addition to their strong support of on-going Lawrence Livermore National Laboratory (LLNL) programs. Several technology transfer initiatives have been based on these established codes, teaming LLNL analysts and researchers with counterparts in industry, extending code capability to specific industrial interests of casting, metalforming, and automobile crash dynamics. The next-generation solid/structural mechanics code, ParaDyn, is targeted toward massively parallel computers, which will extend performance from gigaflop to teraflop power. Our work for FY-92 is described in the following eight articles: (1) Solution Strategies: New Approaches for Strongly Nonlinear Quasistatic Problems Using DYNA3D; (2) Enhanced Enforcement of Mechanical Contact: The Method of Augmented Lagrangians; (3) ParaDyn: New Generation Solid/Structural Mechanics Codes for Massively Parallel Processors; (4) Composite Damage Modeling; (5) HYDRA: A Parallel/Vector Flow Solver for Three-Dimensional, Transient, Incompressible Viscous How; (6) Development and Testing of the TRIM3D Radiation Heat Transfer Code; (7) A Methodology for Calculating the Seismic Response of Critical Structures; and (8) Reinforced Concrete Damage Modeling.

    18. Computational mechanics

      SciTech Connect (OSTI)

      Raboin, P J

      1998-01-01

      The Computational Mechanics thrust area is a vital and growing facet of the Mechanical Engineering Department at Lawrence Livermore National Laboratory (LLNL). This work supports the development of computational analysis tools in the areas of structural mechanics and heat transfer. Over 75 analysts depend on thrust area-supported software running on a variety of computing platforms to meet the demands of LLNL programs. Interactions with the Department of Defense (DOD) High Performance Computing and Modernization Program and the Defense Special Weapons Agency are of special importance as they support our ParaDyn project in its development of new parallel capabilities for DYNA3D. Working with DOD customers has been invaluable to driving this technology in directions mutually beneficial to the Department of Energy. Other projects associated with the Computational Mechanics thrust area include work with the Partnership for a New Generation Vehicle (PNGV) for ''Springback Predictability'' and with the Federal Aviation Administration (FAA) for the ''Development of Methodologies for Evaluating Containment and Mitigation of Uncontained Engine Debris.'' In this report for FY-97, there are five articles detailing three code development activities and two projects that synthesized new code capabilities with new analytic research in damage/failure and biomechanics. The article this year are: (1) Energy- and Momentum-Conserving Rigid-Body Contact for NIKE3D and DYNA3D; (2) Computational Modeling of Prosthetics: A New Approach to Implant Design; (3) Characterization of Laser-Induced Mechanical Failure Damage of Optical Components; (4) Parallel Algorithm Research for Solid Mechanics Applications Using Finite Element Analysis; and (5) An Accurate One-Step Elasto-Plasticity Algorithm for Shell Elements in DYNA3D.

    19. Computing Resources

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Resources This page is the repository for sundry items of information relevant to general computing on BooNE. If you have a question or problem that isn't answered here, or a suggestion for improving this page or the information on it, please mail boone-computing@fnal.gov and we'll do our best to address any issues. Note about this page Some links on this page point to www.everything2.com, and are meant to give an idea about a concept or thing without necessarily wading through a whole website

    20. Computational trigonometry

      SciTech Connect (OSTI)

      Gustafson, K.

      1994-12-31

      By means of the author`s earlier theory of antieigenvalues and antieigenvectors, a new computational approach to iterative methods is presented. This enables an explicit trigonometric understanding of iterative convergence and provides new insights into the sharpness of error bounds. Direct applications to Gradient descent, Conjugate gradient, GCR(k), Orthomin, CGN, GMRES, CGS, and other matrix iterative schemes will be given.

    1. Advanced Scientific Computing Research

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Advanced Scientific Computing Research Advanced Scientific Computing Research Discovering, ... The DOE Office of Science's Advanced Scientific Computing Research (ASCR) program ...

    2. Theory, Simulation, and Computation

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computer, Computational, and Statistical Sciences (CCS) Division is an international ... and statistics The deployment and integration of computational technology, ...

    3. Computing at JLab

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      JLab --- Accelerator Controls CAD CDEV CODA Computer Center High Performance Computing Scientific Computing JLab Computer Silo maintained by webmaster@jlab.org...

    4. Computational Combustion

      SciTech Connect (OSTI)

      Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

      2004-08-26

      Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

    5. RATIO COMPUTER

      DOE Patents [OSTI]

      Post, R.F.

      1958-11-11

      An electronic computer circuit is described for producing an output voltage proportional to the product or quotient of tbe voltages of a pair of input signals. ln essence, the disclosed invention provides a computer having two channels adapted to receive separate input signals and each having amplifiers with like fixed amplification factors and like negatlve feedback amplifiers. One of the channels receives a constant signal for comparison purposes, whereby a difference signal is produced to control the amplification factors of the variable feedback amplifiers. The output of the other channel is thereby proportional to the product or quotient of input signals depending upon the relation of input to fixed signals in the first mentioned channel.

    6. Computer System,

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      System, Cluster, and Networking Summer Institute New Mexico Consortium and Los Alamos National Laboratory HOW TO APPLY Applications will be accepted JANUARY 5 - FEBRUARY 13, 2016 Computing and Information Technology undegraduate students are encouraged to apply. Must be a U.S. citizen. * Submit a current resume; * Offcial University Transcript (with spring courses posted and/or a copy of spring 2016 schedule) 3.0 GPA minimum; * One Letter of Recommendation from a Faculty Member; and * Letter of

    7. Computing Events

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Events Computing Events Spotlighting the most advanced scientific and technical applications in the world! Featuring exhibits of the latest and greatest technologies from industry, academia and government research organizations; many of these technologies will be seen for the first time in Denver. Supercomputing Conference 13 Denver, Colorado November 17-22, 2013 Spotlighting the most advanced scientific and technical applications in the world, SC13 will bring together the international

    8. Computing and Computational Sciences Directorate - Computer Science and

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Mathematics Division Computer Science and Mathematics Division The Computer Science and Mathematics Division (CSMD) is ORNL's premier source of basic and applied research in high-performance computing, applied mathematics, and intelligent systems. Our mission includes basic research in computational sciences and application of advanced computing systems, computational, mathematical and analysis techniques to the solution of scientific problems of national importance. We seek to work

    9. Computing Resources | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computing Resources Mira Cetus and Vesta Visualization Cluster Data and Networking Software JLSE Computing Resources Theory and Computing Sciences Building Argonne's Theory and Computing Sciences (TCS) building houses a wide variety of computing systems including some of the most powerful supercomputers in the world. The facility has 25,000 square feet of raised computer floor space and a pair of redundant 20 megavolt amperes electrical feeds from a 90 megawatt substation. The building also

    10. High Performance Computing

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      HPC INL Logo Home High-Performance Computing INL's high-performance computing center provides general use scientific computing capabilities to support the lab's efforts in advanced...

    11. Applications of Parallel Computers

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computers Applications of Parallel Computers UCB CS267 Spring 2015 Tuesday & Thursday, 9:30-11:00 Pacific Time Applications of Parallel Computers, CS267, is a graduate-level course...

    12. Theory, Modeling and Computation

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Theory, Modeling and Computation Theory, Modeling and Computation The sophistication of modeling and simulation will be enhanced not only by the wealth of data available from MaRIE but by the increased computational capacity made possible by the advent of extreme computing. CONTACT Jack Shlachter (505) 665-1888 Email Extreme Computing to Power Accurate Atomistic Simulations Advances in high-performance computing and theory allow longer and larger atomistic simulations than currently possible.

    13. advanced simulation and computing

      National Nuclear Security Administration (NNSA)

      Each successive generation of computing system has provided greater computing power and energy efficiency.

      CTS-1 clusters will support NNSA's Life Extension Program and...

    14. Computational Physics and Methods

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      2 Computational Physics and Methods Performing innovative simulations of physics phenomena on tomorrow's scientific computing platforms Growth and emissivity of young galaxy ...

    15. Computer hardware fault administration

      DOE Patents [OSTI]

      Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

      2010-09-14

      Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

    16. Applied & Computational Math

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      & Computational Math - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Twitter Google + Vimeo GovDelivery SlideShare Applied & Computational Math HomeEnergy ...

    17. Molecular Science Computing | EMSL

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      computational and state-of-the-art experimental tools, providing a cross-disciplinary environment to further research. Additional Information Computing user policies Partners...

    18. Computational Earth Science

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      6 Computational Earth Science We develop and apply a range of high-performance computational methods and software tools to Earth science projects in support of environmental ...

    19. Cosmic Reionization On Computers | Argonne Leadership Computing...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      its Cosmic Reionization On Computers (CROC) project, using the Adaptive Refinement Tree (ART) code as its main simulation tool. An important objective of this research is to make...

    20. Computational Science and Engineering

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computational Science and Engineering NETL's Computational Science and Engineering competency consists of conducting applied scientific research and developing physics-based simulation models, methods, and tools to support the development and deployment of novel process and equipment designs. Research includes advanced computations to generate information beyond the reach of experiments alone by integrating experimental and computational sciences across different length and time scales. Specific

    1. Parallel computing works

      SciTech Connect (OSTI)

      Not Available

      1991-10-23

      An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of many computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.

    2. Computational Fluid Dynamics

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      scour-tracc-cfd TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Computational Fluid Dynamics Overview of CFD: Video Clip with Audio Computational fluid dynamics (CFD) research uses mathematical and computational models of flowing fluids to describe and predict fluid response in problems of interest, such as the flow of air around a moving vehicle or the flow of water and sediment in a river. Coupled with appropriate and prototypical

    3. Polymorphous computing fabric

      DOE Patents [OSTI]

      Wolinski, Christophe Czeslaw; Gokhale, Maya B.; McCabe, Kevin Peter

      2011-01-18

      Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

    4. Cognitive Computing for Security.

      SciTech Connect (OSTI)

      Debenedictis, Erik; Rothganger, Fredrick; Aimone, James Bradley; Marinella, Matthew; Evans, Brian Robert; Warrender, Christina E.; Mickel, Patrick

      2015-12-01

      Final report for Cognitive Computing for Security LDRD 165613. It reports on the development of hybrid of general purpose/ne uromorphic computer architecture, with an emphasis on potential implementation with memristors.

    5. Computers in Commercial Buildings

      U.S. Energy Information Administration (EIA) Indexed Site

      Government-owned buildings of all types, had, on average, more than one computer per person (1,104 computers per thousand employees). They also had a fairly high ratio of...

    6. Computers for Learning

      Broader source: Energy.gov [DOE]

      Through Executive Order 12999, the Computers for Learning Program was established to provide Federal agencies a quick and easy system for donating excess and surplus computer equipment to schools...

    7. developing-compute-efficient

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Developing Compute-efficient, Quality Models with LS-PrePost 3 on the TRACC Cluster Oct. ... with an emphasis on applying these capabilities to build computationally efficient models. ...

    8. Fermilab | Science at Fermilab | Computing | Grid Computing

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      which would collect more data than any computing center in existence could process. ... consortium grid called Open Science Grid, so they initiated a project known as FermiGrid. ...

    9. Advanced Scientific Computing Research

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Advanced Scientific Computing Research Advanced Scientific Computing Research Discovering, developing, and deploying computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to the Department of Energy. Get Expertise Pieter Swart (505) 665 9437 Email Pat McCormick (505) 665-0201 Email Dave Higdon (505) 667-2091 Email Fulfilling the potential of emerging computing systems and architectures beyond today's tools and techniques to deliver

    10. Computational Structural Mechanics

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      load-2 TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Computational Structural Mechanics Overview of CSM Computational structural mechanics is a well-established methodology for the design and analysis of many components and structures found in the transportation field. Modern finite-element models (FEMs) play a major role in these evaluations, and sophisticated software, such as the commercially available LS-DYNA® code, is

    11. Computers-BSA.ppt

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Energy Computers, Electronics and Electrical Equipment (2010 MECS) Computers, Electronics and Electrical Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Computers, Electronics and Electrical Equipment Sector (NAICS 334, 335) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Computers, Electronics and Electrical Equipment (123.71 KB) More Documents

    12. Computing and Computational Sciences Directorate - Information Technology

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computational Sciences and Engineering The Computational Sciences and Engineering Division (CSED) is ORNL's premier source of basic and applied research in the field of data sciences and knowledge discovery. CSED's science agenda is focused on research and development related to knowledge discovery enabled by the explosive growth in the availability, size, and variability of dynamic and disparate data sources. This science agenda encompasses data sciences as well as advanced modeling and

    13. Computing and Computational Sciences Directorate - Information Technology

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Information Technology Information Technology (IT) at ORNL serves a diverse community of stakeholders and interests. From everyday operations like email and telecommunications to institutional cluster computing and high bandwidth networking, IT at ORNL is responsible for planning and executing a coordinated strategy that ensures cost-effective, state-of-the-art computing capabilities for research and development. ORNL IT delivers leading-edge products to users in a risk-managed portfolio of

    14. Mathematical and Computational Epidemiology

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Mathematical and Computational Epidemiology Search Site submit Contacts | Sponsors Mathematical and Computational Epidemiology Los Alamos National Laboratory change this image and alt text Menu About Contact Sponsors Research Agent-based Modeling Mixing Patterns, Social Networks Mathematical Epidemiology Social Internet Research Uncertainty Quantification Publications People Mathematical and Computational Epidemiology (MCEpi) Quantifying model uncertainty in agent-based simulations for

    15. BNL ATLAS Grid Computing

      ScienceCinema (OSTI)

      Michael Ernst

      2010-01-08

      As the sole Tier-1 computing facility for ATLAS in the United States and the largest ATLAS computing center worldwide Brookhaven provides a large portion of the overall computing resources for U.S. collaborators and serves as the central hub for storing,

    16. Computing environment logbook

      DOE Patents [OSTI]

      Osbourn, Gordon C; Bouchard, Ann M

      2012-09-18

      A computing environment logbook logs events occurring within a computing environment. The events are displayed as a history of past events within the logbook of the computing environment. The logbook provides search functionality to search through the history of past events to find one or more selected past events, and further, enables an undo of the one or more selected past events.

    17. COMPUTATIONAL SCIENCE CENTER

      SciTech Connect (OSTI)

      DAVENPORT, J.

      2005-11-01

      The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

    18. Scalable optical quantum computer

      SciTech Connect (OSTI)

      Manykin, E A; Mel'nichenko, E V [Institute for Superconductivity and Solid-State Physics, Russian Research Centre 'Kurchatov Institute', Moscow (Russian Federation)

      2014-12-31

      A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr{sup 3+}, regularly located in the lattice of the orthosilicate (Y{sub 2}SiO{sub 5}) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)

    19. Sandia Energy - High Performance Computing

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      High Performance Computing Home Energy Research Advanced Scientific Computing Research (ASCR) High Performance Computing High Performance Computingcwdd2015-03-18T21:41:24+00:00...

    20. Computing and Computational Sciences Directorate - Computer Science and

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Mathematics Division - Meetings and Workshops Awards Awards Night 2012 R&D LEADERSHIP, DIRECTOR LEVEL Winner: Brian Worley Organization: Computational Sciences & Engineering Division Citation: For exemplary program leadership of a successful and growing collaboration with the Department of Defense and for successfully initiating and providing oversight of a new data program with the Centers for Medicare and Medicaid Services. TECHNICAL SUPPORT Winner: Michael Matheson Organization:

    1. COMPUTATIONAL SCIENCE CENTER

      SciTech Connect (OSTI)

      DAVENPORT, J.

      2006-11-01

      Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together

    2. Scientific Cloud Computing Misconceptions

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Scientific Cloud Computing Misconceptions Scientific Cloud Computing Misconceptions July 1, 2011 Part of the Magellan project was to understand both the possibilities and the limitations of cloud computing in the pursuit of science. At a recent conference, Magellan investigator Shane Canon outlined some persistent misconceptions about doing science in the cloud - and what Magellan has taught us about them. » Read the ISGTW story. » Download the slides (PDF, 4.1MB

    3. Edison Electrifies Scientific Computing

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Edison Electrifies Scientific Computing Edison Electrifies Scientific Computing NERSC Flips Switch on New Flagship Supercomputer January 31, 2014 Contact: Margie Wylie, mwylie@lbl.gov, +1 510 486 7421 The National Energy Research Scientific Computing (NERSC) Center recently accepted "Edison," a new flagship supercomputer designed for scientific productivity. Named in honor of American inventor Thomas Alva Edison, the Cray XC30 will be dedicated in a ceremony held at the Department of

    4. Energy Aware Computing

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Partnerships Shifter: User Defined Images Archive APEX Home » R & D » Energy Aware Computing Energy Aware Computing Dynamic Frequency Scaling One means to lower the energy required to compute is to reduce the power usage on a node. One way to accomplish this is by lowering the frequency at which the CPU operates. However, reducing the clock speed increases the time to solution, creating a potential tradeoff. NERSC continues to examine how such methods impact its operations and its

    5. NERSC Computer Security

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Security NERSC Computer Security NERSC computer security efforts are aimed at protecting NERSC systems and its users' intellectual property from unauthorized access or modification. Among NERSC's security goal are: 1. To protect NERSC systems from unauthorized access. 2. To prevent the interruption of services to its users. 3. To prevent misuse or abuse of NERSC resources. Security Incidents If you think there has been a computer security incident you should contact NERSC Security as soon as

    6. Computer Architecture Lab

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      FastForward CAL Partnerships Shifter: User Defined Images Archive APEX Home » R & D » Exascale Computing » CAL Computer Architecture Lab The goal of the Computer Architecture Laboratory (CAL) is engage in research and development into energy efficient and effective processor and memory architectures for DOE's Exascale program. CAL coordinates hardware architecture R&D activities across the DOE. CAL is a joint NNSA/SC activity involving Sandia National Laboratories (CAL-Sandia) and

    7. Personal Computer Inventory System

      Energy Science and Technology Software Center (OSTI)

      1993-10-04

      PCIS is a database software system that is used to maintain a personal computer hardware and software inventory, track transfers of hardware and software, and provide reports.

    8. Applied Computer Science

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      7 Applied Computer Science Innovative co-design of applications, algorithms, and architectures in order to enable scientific simulations at extreme scale Leadership Group Leader ...

    9. 60 Years of Computing | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      60 Years of Computing 60 Years of Computing

    10. Software and High Performance Computing

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computational physics, computer science, applied mathematics, statistics and the ... a fully operational supercomputing environment Providing Current Capability Scientific ...

    11. ELECTRONIC DIGITAL COMPUTER

      DOE Patents [OSTI]

      Stone, J.J. Jr.; Bettis, E.S.; Mann, E.R.

      1957-10-01

      The electronic digital computer is designed to solve systems involving a plurality of simultaneous linear equations. The computer can solve a system which converges rather rapidly when using Von Seidel's method of approximation and performs the summations required for solving for the unknown terms by a method of successive approximations.

    12. Computer Processor Allocator

      Energy Science and Technology Software Center (OSTI)

      2004-03-01

      The Compute Processor Allocator (CPA) provides an efficient and reliable mechanism for managing and allotting processors in a massively parallel (MP) computer. It maintains information in a database on the health. configuration and allocation of each processor. This persistent information is factored in to each allocation decision. The CPA runs in a distributed fashion to avoid a single point of failure.

    13. Indirection and computer security.

      SciTech Connect (OSTI)

      Berg, Michael J.

      2011-09-01

      The discipline of computer science is built on indirection. David Wheeler famously said, 'All problems in computer science can be solved by another layer of indirection. But that usually will create another problem'. We propose that every computer security vulnerability is yet another problem created by the indirections in system designs and that focusing on the indirections involved is a better way to design, evaluate, and compare security solutions. We are not proposing that indirection be avoided when solving problems, but that understanding the relationships between indirections and vulnerabilities is key to securing computer systems. Using this perspective, we analyze common vulnerabilities that plague our computer systems, consider the effectiveness of currently available security solutions, and propose several new security solutions.

    14. Computing and Computational Sciences Directorate - Information Technology

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Oak Ridge Climate Change Science Institute Jim Hack Oak Ridge National Laboratory (ORNL) has formed the Oak Ridge Climate Change Science Institute (ORCCSI) that will develop and execute programs for the multi-agency, multi-disciplinary climate change research partnerships at ORNL. Led by Director Jim Hack and Deputy Director Dave Bader, the Institute will integrate scientific projects in modeling, observations, and experimentation with ORNL's powerful computational and informatics capabilities

    15. Computational Nuclear Structure | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Excellent scaling is achieved by the production Automatic Dynamic Load Balancing (ADLB) library on the BG/P. Computational Nuclear Structure PI Name: David Dean Hai Nam PI Email: namha@ornl.gov deandj@ornl.gov Institution: Oak Ridge National Laboratory Allocation Program: INCITE Allocation Hours at ALCF: 15 Million Year: 2010 Research Domain: Physics Researchers from Oak Ridge and Argonne national laboratories are using complementary techniques, including Green's Function Monte Carlo, the No

    16. woosley.pptx

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Astrophysical Modeling * Cosmology - Mike Norman * Type Ia Supernovae - Stan Woosley and John Bell * Core-collapse Supernovae - (Adam Burrows), Stan Woosley, and John Bell * General Relativistic Applications - ? Physics Turbulence/resolution Radiation transport COMPUTATIONAL ASTROPHYSICS CONSORTIUM * Improve our understanding of supernovae of all types through the use of large scale computing. * Design codes for the efficient study of hydrodynamics and radiation transport on the largest, fastest

    17. Computers as tools

      SciTech Connect (OSTI)

      Eriksson, I.V.

      1994-12-31

      The following message was recently posted on a bulletin board and clearly shows the relevance of the conference theme: {open_quotes}The computer and digital networks seem poised to change whole regions of human activity -- how we record knowledge, communicate, learn, work, understand ourselves and the world. What`s the best framework for understanding this digitalization, or virtualization, of seemingly everything? ... Clearly, symbolic tools like the alphabet, book, and mechanical clock have changed some of our most fundamental notions -- self, identity, mind, nature, time, space. Can we say what the computer, a purely symbolic {open_quotes}machine,{close_quotes} is doing to our thinking in these areas? Or is it too early to say, given how much more powerful and less expensive the technology seems destinated to become in the next few decades?{close_quotes} (Verity, 1994) Computers certainly affect our lives and way of thinking but what have computers to do with ethics? A narrow approach would be that on the one hand people can and do abuse computer systems and on the other hand people can be abused by them. Weli known examples of the former are computer comes such as the theft of money, services and information. The latter can be exemplified by violation of privacy, health hazards and computer monitoring. Broadening the concept from computers to information systems (ISs) and information technology (IT) gives a wider perspective. Computers are just the hardware part of information systems which also include software, people and data. Information technology is the concept preferred today. It extends to communication, which is an essential part of information processing. Now let us repeat the question: What has IT to do with ethics? Verity mentioned changes in {open_quotes}how we record knowledge, communicate, learn, work, understand ourselves and the world{close_quotes}.

    18. Convergence: Computing and communications

      SciTech Connect (OSTI)

      Catlett, C.

      1996-12-31

      This paper highlights the operations of the National Center for Supercomputing Applications (NCSA). NCSA is developing and implementing a national strategy to create, use, and transfer advanced computing and communication tools and information technologies for science, engineering, education, and business. The primary focus of the presentation is historical and expected growth in the computing capacity, personal computer performance, and Internet and WorldWide Web sites. Data are presented to show changes over the past 10 to 20 years in these areas. 5 figs., 4 tabs.

    19. Computing and Computational Sciences Directorate - National Center for

      Broader source: All U.S. Department of Energy (DOE) Office Webpages

      Computational Sciences Search Go! ORNL * Find People * Contact * Site Index * Comments Home Divisions and Centers Computational Sciences and Engineering Computer Science and Mathematics Information Technology Joint Institute for Computational Sciences National Center for Computational Sciences Supercomputing Projects Awards Employment Opportunities Student Opportunities About Us Organization In the News Contact Us Visitor Information ORNL Research Areas Neutron Sciences Biological Systems

    20. Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      a n n u a l r e p o r t 2 0 1 2 Argonne Leadership Computing Facility Director's Message .............................................................................................................................1 About ALCF ......................................................................................................................................... 2 IntroDuCIng MIrA Introducing Mira

    1. Quantum steady computation

      SciTech Connect (OSTI)

      Castagnoli, G. )

      1991-08-10

      This paper reports that current conceptions of quantum mechanical computers inherit from conventional digital machines two apparently interacting features, machine imperfection and temporal development of the computational process. On account of machine imperfection, the process would become ideally reversible only in the limiting case of zero speed. Therefore the process is irreversible in practice and cannot be considered to be a fundamental quantum one. By giving up classical features and using a linear, reversible and non-sequential representation of the computational process - not realizable in classical machines - the process can be identified with the mathematical form of a quantum steady state. This form of steady quantum computation would seem to have an important bearing on the notion of cognition.

    2. Edison Electrifies Scientific Computing

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      ... Deployment of Edison was made possible in part by funding from DOE's Office of Science and the DARPA High Productivity Computing Systems program. DOE's Office of Science is the ...

    3. Cloud computing security.

      SciTech Connect (OSTI)

      Shin, Dongwan; Claycomb, William R.; Urias, Vincent E.

      2010-10-01

      Cloud computing is a paradigm rapidly being embraced by government and industry as a solution for cost-savings, scalability, and collaboration. While a multitude of applications and services are available commercially for cloud-based solutions, research in this area has yet to fully embrace the full spectrum of potential challenges facing cloud computing. This tutorial aims to provide researchers with a fundamental understanding of cloud computing, with the goals of identifying a broad range of potential research topics, and inspiring a new surge in research to address current issues. We will also discuss real implementations of research-oriented cloud computing systems for both academia and government, including configuration options, hardware issues, challenges, and solutions.

    4. Advanced Simulation and Computing

      National Nuclear Security Administration (NNSA)

      NA-ASC-117R-09-Vol.1-Rev.0 Advanced Simulation and Computing PROGRAM PLAN FY09 October 2008 ASC Focal Point Robert Meisner, Director DOE/NNSA NA-121.2 202-586-0908 Program Plan Focal Point for NA-121.2 Njema Frazier DOE/NNSA NA-121.2 202-586-5789 A Publication of the Office of Advanced Simulation & Computing, NNSA Defense Programs i Contents Executive Summary ----------------------------------------------------------------------------------------------- 1 I. Introduction

    5. New TRACC Cluster Computer

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      TRACC Cluster Computer With the addition of a new cluster called Zephyr that was made operational in September of this year (2012), TRACC now offers two clusters to choose from: Zephyr and our original cluster that has now been named Phoenix. Zephyr was acquired from Atipa technologies, and it is a 92-node system with each node having two AMD 16 core, 2.3 GHz, 32 GB processors. See also Computing Resources.

    6. Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Argonne National Laboratory | 9700 South Cass Avenue | Argonne, IL 60439 | www.anl.gov | September 2013 alcf_keyfacts_fs_0913 Key facts about the Argonne Leadership Computing Facility User support and services Skilled experts at the ALCF enable researchers to conduct breakthrough science on the Blue Gene system in key ways. Catalysts are computational scientist with domain expertise and work directly with project principal investigators to maximize discovery and reduce time-to- solution.

    7. Applied Computer Science

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      7 Applied Computer Science Innovative co-design of applications, algorithms, and architectures in order to enable scientific simulations at extreme scale Leadership Group Leader Linn Collins Email Deputy Group Leader (Acting) Bryan Lally Email Climate modeling visualization Results from a climate simulation computed using the Model for Prediction Across Scales (MPAS) code. This visualization shows the temperature of ocean currents using a green and blue color scale. These colors were

    8. Stencil Computation Optimization

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Stencil Computation Optimization and Auto-tuning on State-of-the-Art Multicore Architectures Kaushik Datta ∗† , Mark Murphy † , Vasily Volkov † , Samuel Williams ∗† , Jonathan Carter ∗ , Leonid Oliker ∗† , David Patterson ∗† , John Shalf ∗ , and Katherine Yelick ∗† ∗ CRD/NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA † Computer Science Division, University of California at Berkeley, Berkeley, CA 94720, USA Abstract Understanding the most

    9. Compute Reservation Request Form

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Compute Reservation Request Form Compute Reservation Request Form Users can request a scheduled reservation of machine resources if their jobs have special needs that cannot be accommodated through the regular batch system. A reservation brings some portion of the machine to a specific user or project for an agreed upon duration. Typically this is used for interactive debugging at scale or real time processing linked to some experiment or event. It is not intended to be used to guarantee fast

    10. Computing | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Computing Computing Fun fact: Most systems require air conditioning or chilled water to cool super powerful supercomputers, but the Olympus supercomputer at Pacific Northwest National Laboratory is cooled by the location's 65 degree groundwater. Traditional cooling systems could cost up to $61,000 in electricity each year, but this more efficient setup uses 70 percent less energy. | Photo courtesy of PNNL. Fun fact: Most systems require air conditioning or chilled water to cool super powerful

    11. Computation supporting biodefense

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Conference on High-Speed Computing LANL / LLNL / SNL Salishan Lodge, Gleneden Beach, Oregon 24 April 2003 Murray Wolinsky murray@lanl.gov The Role of Computation in Biodefense 1. Biothreat 101 2. Bioinformatics 101 Examples 3. Sequence analysis: mpiBLAST Feng 4. Detection: KPATH Slezak 5. Protein structure: ROSETTA Strauss 6. Real-time epidemiology: EpiSIMS Eubank 7. Forensics: VESPA Myers, Korber 8. Needs System level analytical capabilities Enhanced phylogenetic algorithms Novel

    12. Computational Earth Science

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      6 Computational Earth Science We develop and apply a range of high-performance computational methods and software tools to Earth science projects in support of environmental health, cleaner energy, and national security. Contact Us Group Leader Carl Gable Deputy Group Leader Gilles Bussod Email Profile pages header Search our Profile pages Hari Viswanathan inspects a microfluidic cell used to study the extraction of hydrocarbon fuels from a complex fracture network. EES-16's Subsurface Flow

    13. Computational Modeling | Bioenergy | NREL

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computational Modeling NREL uses computational modeling to increase the efficiency of biomass conversion by rational design using multiscale modeling, applying theoretical approaches, and testing scientific hypotheses. model of enzymes wrapping on cellulose; colorful circular structures entwined through blue strands Cellulosomes are complexes of protein scaffolds and enzymes that are highly effective in decomposing biomass. This is a snapshot of a coarse-grain model of complex cellulosome

    14. Computational Physics and Methods

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      2 Computational Physics and Methods Performing innovative simulations of physics phenomena on tomorrow's scientific computing platforms Growth and emissivity of young galaxy hosting a supermassive black hole as calculated in cosmological code ENZO and post-processed with radiative transfer code AURORA. image showing detailed turbulence simulation, Rayleigh-Taylor Turbulence imaging: the largest turbulence simulations to date Advanced multi-scale modeling Turbulence datasets Density iso-surfaces

    15. Intro to computer programming, no computer required! | Argonne...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      ... "Computational thinking requires you to think in abstractions," said Papka, who spoke to computer science and computer-aided design students at Kaneland High School in Maple Park about ...

    16. Computing and Computational Sciences Directorate - Joint Institute for

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computational Sciences Joint Institute for Computational Sciences To help realize the full potential of new-generation computers for advancing scientific discovery, the University of Tennessee (UT) and Oak Ridge National Laboratory (ORNL) have created the Joint Institute for Computational Sciences (JICS). JICS combines the experience and expertise in theoretical and computational science and engineering, computer science, and mathematics in these two institutions and focuses these skills on

    17. in High Performance Computing Computer System, Cluster, and Networking...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      iSSH v. Auditd: Intrusion Detection in High Performance Computing Computer System, Cluster, and Networking Summer Institute David Karns, New Mexico State University Katy Protin,...

    18. Extensible Computational Chemistry Environment

      Energy Science and Technology Software Center (OSTI)

      2012-08-09

      ECCE provides a sophisticated graphical user interface, scientific visualization tools, and the underlying data management framework enabling scientists to efficiently set up calculations and store, retrieve, and analyze the rapidly growing volumes of data produced by computational chemistry studies. ECCE was conceived as part of the Environmental Molecular Sciences Laboratory construction to solve the problem of researchers being able to effectively utilize complex computational chemistry codes and massively parallel high performance compute resources. Bringing themore » power of these codes and resources to the desktops of researcher and thus enabling world class research without users needing a detailed understanding of the inner workings of either the theoretical codes or the supercomputers needed to run them was a grand challenge problem in the original version of the EMSL. ECCE allows collaboration among researchers using a web-based data repository where the inputs and results for all calculations done within ECCE are organized. ECCE is a first of kind end-to-end problem solving environment for all phases of computational chemistry research: setting up calculations with sophisticated GUI and direct manipulation visualization tools, submitting and monitoring calculations on remote high performance supercomputers without having to be familiar with the details of using these compute resources, and performing results visualization and analysis including creating publication quality images. ECCE is a suite of tightly integrated applications that are employed as the user moves through the modeling process.« less

    19. Information Science, Computing, Applied Math

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Information Science, Computing, Applied Math Information Science, Computing, Applied Math National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Computer, Computational, and Statistical Sciences (CCS)» High Performance Computing (HPC)» Extreme Scale Computing, Co-design» supercomputing into the future Overview Los Alamos Asteroid Killer

    20. computers | National Nuclear Security Administration

      National Nuclear Security Administration (NNSA)

      computers NNSA Announces Procurement of Penguin Computing Clusters to Support Stockpile Stewardship at National Labs The National Nuclear Security Administration's (NNSA's) Lawrence Livermore National Laboratory today announced the awarding of a subcontract to Penguin Computing - a leading developer of high-performance Linux cluster computing systems based in Silicon Valley - to bolster computing for stockpile... Sandia donates 242 computers to northern California schools Sandia National

    1. Information Science, Computing, Applied Math

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Information Science, Computing, Applied Math Information Science, Computing, Applied Math National security depends on science and technology. The United States relies on Los ...

    2. Computer simulation | Open Energy Information

      Open Energy Info (EERE)

      Computer simulation Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Computer simulation Author wikipedia Published wikipedia, 2013 DOI Not Provided...

    3. Super recycled water: quenching computers

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Super recycled water: quenching computers Super recycled water: quenching computers New facility and methods support conserving water and creating recycled products. Using reverse ...

    4. NREL: Computational Science Home Page

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      high-performance computing, computational science, applied mathematics, scientific data management, visualization, and informatics. NREL is home to the largest high performance...

    5. Fermilab | Science at Fermilab | Computing

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computing Computing is indispensable to science at Fermilab. High-energy physics experiments generate an astounding amount of data that physicists need to store, analyze and ...

    6. Michael Levitt and Computational Biology

      Office of Scientific and Technical Information (OSTI)

      ... Additional Web Pages: 3 Scientists Win Chemistry Nobel for Complex Computer Modeling, npr Stanford's Nobel Chemistry Prize Honors Computer Science, San Jose Mercury News Without ...

    7. Advanced Scientific Computing Research (ASCR)

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      ... ASCR's programs have helped establish computation as a third pillar of science along with theory and physical experiments. Sandia has extensive ASCR programs in Computer Science ...

    8. Human-computer interface

      DOE Patents [OSTI]

      Anderson, Thomas G.

      2004-12-21

      The present invention provides a method of human-computer interfacing. Force feedback allows intuitive navigation and control near a boundary between regions in a computer-represented space. For example, the method allows a user to interact with a virtual craft, then push through the windshield of the craft to interact with the virtual world surrounding the craft. As another example, the method allows a user to feel transitions between different control domains of a computer representation of a space. The method can provide for force feedback that increases as a user's locus of interaction moves near a boundary, then perceptibly changes (e.g., abruptly drops or changes direction) when the boundary is traversed.

    9. An introduction to computer viruses

      SciTech Connect (OSTI)

      Brown, D.R.

      1992-03-01

      This report on computer viruses is based upon a thesis written for the Master of Science degree in Computer Science from the University of Tennessee in December 1989 by David R. Brown. This thesis is entitled An Analysis of Computer Virus Construction, Proliferation, and Control and is available through the University of Tennessee Library. This paper contains an overview of the computer virus arena that can help the reader to evaluate the threat that computer viruses pose. The extent of this threat can only be determined by evaluating many different factors. These factors include the relative ease with which a computer virus can be written, the motivation involved in writing a computer virus, the damage and overhead incurred by infected systems, and the legal implications of computer viruses, among others. Based upon the research, the development of a computer virus seems to require more persistence than technical expertise. This is a frightening proclamation to the computing community. The education of computer professionals to the dangers that viruses pose to the welfare of the computing industry as a whole is stressed as a means of inhibiting the current proliferation of computer virus programs. Recommendations are made to assist computer users in preventing infection by computer viruses. These recommendations support solid general computer security practices as a means of combating computer viruses.

    10. Synchronizing compute node time bases in a parallel computer

      DOE Patents [OSTI]

      Chen, Dong; Faraj, Daniel A; Gooding, Thomas M; Heidelberger, Philip

      2015-01-27

      Synchronizing time bases in a parallel computer that includes compute nodes organized for data communications in a tree network, where one compute node is designated as a root, and, for each compute node: calculating data transmission latency from the root to the compute node; configuring a thread as a pulse waiter; initializing a wakeup unit; and performing a local barrier operation; upon each node completing the local barrier operation, entering, by all compute nodes, a global barrier operation; upon all nodes entering the global barrier operation, sending, to all the compute nodes, a pulse signal; and for each compute node upon receiving the pulse signal: waking, by the wakeup unit, the pulse waiter; setting a time base for the compute node equal to the data transmission latency between the root node and the compute node; and exiting the global barrier operation.

    11. Synchronizing compute node time bases in a parallel computer

      DOE Patents [OSTI]

      Chen, Dong; Faraj, Daniel A; Gooding, Thomas M; Heidelberger, Philip

      2014-12-30

      Synchronizing time bases in a parallel computer that includes compute nodes organized for data communications in a tree network, where one compute node is designated as a root, and, for each compute node: calculating data transmission latency from the root to the compute node; configuring a thread as a pulse waiter; initializing a wakeup unit; and performing a local barrier operation; upon each node completing the local barrier operation, entering, by all compute nodes, a global barrier operation; upon all nodes entering the global barrier operation, sending, to all the compute nodes, a pulse signal; and for each compute node upon receiving the pulse signal: waking, by the wakeup unit, the pulse waiter; setting a time base for the compute node equal to the data transmission latency between the root node and the compute node; and exiting the global barrier operation.

    12. MHD computations for stellarators

      SciTech Connect (OSTI)

      Johnson, J.L.

      1985-12-01

      Considerable progress has been made in the development of computational techniques for studying the magnetohydrodynamic equilibrium and stability properties of three-dimensional configurations. Several different approaches have evolved to the point where comparison of results determined with different techniques shows good agreement. 55 refs., 7 figs.

    13. Computer Security Risk Assessment

      Energy Science and Technology Software Center (OSTI)

      1992-02-11

      LAVA/CS (LAVA for Computer Security) is an application of the Los Alamos Vulnerability Assessment (LAVA) methodology specific to computer and information security. The software serves as a generic tool for identifying vulnerabilities in computer and information security safeguards systems. Although it does not perform a full risk assessment, the results from its analysis may provide valuable insights into security problems. LAVA/CS assumes that the system is exposed to both natural and environmental hazards and tomore » deliberate malevolent actions by either insiders or outsiders. The user in the process of answering the LAVA/CS questionnaire identifies missing safeguards in 34 areas ranging from password management to personnel security and internal audit practices. Specific safeguards protecting a generic set of assets (or targets) from a generic set of threats (or adversaries) are considered. There are four generic assets: the facility, the organization''s environment; the hardware, all computer-related hardware; the software, the information in machine-readable form stored both on-line or on transportable media; and the documents and displays, the information in human-readable form stored as hard-copy materials (manuals, reports, listings in full-size or microform), film, and screen displays. Two generic threats are considered: natural and environmental hazards, storms, fires, power abnormalities, water and accidental maintenance damage; and on-site human threats, both intentional and accidental acts attributable to a perpetrator on the facility''s premises.« less

    14. computation | National Nuclear Security Administration

      National Nuclear Security Administration (NNSA)

      computation Groundbreaking Leader of Computation at LLNL Retires Dona Crawford, Associate Director for Computation at NNSA's Lawrence Livermore National Laboratory (LLNL), announced her retirement last week after 15 years of leading Livermore's Computation Directorate. "Dona has successfully led a multidisciplinary 1000-person team that develops and deploys

    15. Fermilab | Science at Fermilab | Computing | Networking

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Detectors and Computing Detectors and Computing Computing Networking Physicists are constantly exchanging information, within Fermilab and between Fermilab and collaborating ...

    16. Computer Science and Information Technology Student Pipeline

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      in the areas of Computer Science, Information Technology, Management Information Systems, Computer Security, Software Engineering, Computer Engineering, and Electrical Engineering. ...

    17. SCC: The Strategic Computing Complex

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      SCC: The Strategic Computing Complex SCC: The Strategic Computing Complex The Strategic Computing Complex (SCC) is a secured supercomputing facility that supports the calculation, modeling, simulation, and visualization of complex nuclear weapons data in support of the Stockpile Stewardship Program. The 300,000-square-foot, vault-type building features an unobstructed 43,500-square-foot computer room, which is an open room about three-fourths the size of a football field. The Strategic Computing

    18. Magellan: A Cloud Computing Testbed

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Magellan News & Announcements Archive Petascale Initiative Exascale Computing APEX Home » R & D » Archive » Magellan: A Cloud Computing Testbed Magellan: A Cloud Computing Testbed Cloud computing is gaining a foothold in the business world, but can clouds meet the specialized needs of scientists? That was one of the questions NERSC's Magellan cloud computing testbed explored between 2009 and 2011. The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Oce

    19. Software and High Performance Computing

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Software and High Performance Computing Software and High Performance Computing Providing world-class high performance computing capability that enables unsurpassed solutions to complex problems of strategic national interest Contact thumbnail of Kathleen McDonald Head of Intellectual Property, Business Development Executive Kathleen McDonald Richard P. Feynman Center for Innovation (505) 667-5844 Email Software Computational physics, computer science, applied mathematics, statistics and the

    20. Computer Algebra System

      Energy Science and Technology Software Center (OSTI)

      1992-05-04

      DOE-MACSYMA (Project MAC''s SYmbolic MAnipulation system) is a large computer programming system written in LISP. With DOE-MACSYMA the user can differentiate, integrate, take limits, solve systems of linear or polynomial equations, factor polynomials, expand functions in Laurent or Taylor series, solve differential equations (using direct or transform methods), compute Poisson series, plot curves, and manipulate matrices and tensors. A language similar to ALGOL-60 permits users to write their own programs for transforming symbolic expressions. Franzmore » Lisp OPUS 38 provides the environment for the Encore, Celerity, and DEC VAX11 UNIX,SUN(OPUS) versions under UNIX and the Alliant version under Concentrix. Kyoto Common Lisp (KCL) provides the environment for the SUN(KCL),Convex, and IBM PC under UNIX and Data General under AOS/VS.« less

    1. Exploratory Experimentation and Computation

      SciTech Connect (OSTI)

      Bailey, David H.; Borwein, Jonathan M.

      2010-02-25

      We believe the mathematical research community is facing a great challenge to re-evaluate the role of proof in light of recent developments. On one hand, the growing power of current computer systems, of modern mathematical computing packages, and of the growing capacity to data-mine on the Internet, has provided marvelous resources to the research mathematician. On the other hand, the enormous complexity of many modern capstone results such as the Poincare conjecture, Fermat's last theorem, and the classification of finite simple groups has raised questions as to how we can better ensure the integrity of modern mathematics. Yet as the need and prospects for inductive mathematics blossom, the requirement to ensure the role of proof is properly founded remains undiminished.

    2. From Federal Computer Week:

      National Nuclear Security Administration (NNSA)

      Federal Computer Week: Energy agency launches performance-based pay system By Richard W. Walker Published on March 27, 2008 The Energy Department's National Nuclear Security Administration has launched a new performance- based pay system involving about 2,000 of its 2,500 employees. NNSA officials described the effort as a pilot project that will test the feasibility of the new system, which collapses the traditional 15 General Schedule pay bands into broader pay bands. The new structure

    3. GPU Computational Screening

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      GPU Computational Screening of Carbon Capture Materials J. Kim 1 , A Koniges 1 , R. Martin 1 , M. Haranczyk 1 , J. Swisher 2 , and B. Smit 1,2 1 Lawrence Berkeley National Laboratory, Berkeley, CA 94720 2 Department of Chemical Engineering, University of California, Berkeley, Berkeley, CA 94720 E-mail: jihankim@lbl.gov Abstract. In order to reduce the current costs associated with carbon capture technologies, novel materials such as zeolites and metal-organic frameworks that are based on

    4. Computed Tomography Status

      DOE R&D Accomplishments [OSTI]

      Hansche, B. D.

      1983-01-01

      Computed tomography (CT) is a relatively new radiographic technique which has become widely used in the medical field, where it is better known as computerized axial tomographic (CAT) scanning. This technique is also being adopted by the industrial radiographic community, although the greater range of densities, variation in samples sizes, plus possible requirement for finer resolution make it difficult to duplicate the excellent results that the medical scanners have achieved.

    5. Cloud Computing Services

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computing Services - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

    6. Development of computer graphics

      SciTech Connect (OSTI)

      Nuttall, H.E.

      1989-07-01

      The purpose of this project was to screen and evaluate three graphics packages as to their suitability for displaying concentration contour graphs. The information to be displayed is from computer code simulations describing air-born contaminant transport. The three evaluation programs were MONGO (John Tonry, MIT, Cambridge, MA, 02139), Mathematica (Wolfram Research Inc.), and NCSA Image (National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign). After a preliminary investigation of each package, NCSA Image appeared to be significantly superior for generating the desired concentration contour graphs. Hence subsequent work and this report describes the implementation and testing of NCSA Image on both an Apple MacII and Sun 4 computers. NCSA Image includes several utilities (Layout, DataScope, HDF, and PalEdit) which were used in this study and installed on Dr. Ted Yamada`s Mac II computer. Dr. Yamada provided two sets of air pollution plume data which were displayed using NCSA Image. Both sets were animated into a sequential expanding plume series.

    7. Computing for Finance

      ScienceCinema (OSTI)

      None

      2011-10-06

      The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing ? from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followed by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained

    8. Computing for Finance

      ScienceCinema (OSTI)

      None

      2011-10-06

      The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing ? from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followed by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained

    9. Computing for Finance

      SciTech Connect (OSTI)

      2010-03-24

      The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing – from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followed by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has

    10. High Performance Computing at the Oak Ridge Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      High Performance Computing at the Oak Ridge Leadership Computing Facility Go to Menu Page 2 Outline * Our Mission * Computer Systems: Present, Past, Future * Challenges Along the Way * Resources for Users Go to Menu Page 3 Our Mission Go to Menu Page 4 * World's most powerful computing facility * Nation's largest concentration of open source materials research * $1.3B budget * 4,250 employees * 3,900 research guests annually * $350 million invested in modernization * Nation's most diverse energy

    11. Computational Electronics and Electromagnetics

      SciTech Connect (OSTI)

      DeFord, J.F.

      1993-03-01

      The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust area fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.

    12. Computer generated holographic microtags

      DOE Patents [OSTI]

      Sweatt, W.C.

      1998-03-17

      A microlithographic tag comprising an array of individual computer generated holographic patches having feature sizes between 250 and 75 nanometers is disclosed. The tag is a composite hologram made up of the individual holographic patches and contains identifying information when read out with a laser of the proper wavelength and at the proper angles of probing and reading. The patches are fabricated in a steep angle Littrow readout geometry to maximize returns in the -1 diffracted order. The tags are useful as anti-counterfeiting markers because of the extreme difficulty in reproducing them. 5 figs.

    13. computational-hydraulics

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      and Aerodynamics using STAR-CCM+ for CFD Analysis March 21-22, 2012 Argonne, Illinois Dr. Steven Lottes This email address is being protected from spambots. You need JavaScript enabled to view it. A training course in the use of computational hydraulics and aerodynamics CFD software using CD-adapco's STAR-CCM+ for analysis will be held at TRACC from March 21-22, 2012. The course assumes a basic knowledge of fluid mechanics and will make extensive use of hands on tutorials. CD-adapco will issue

    14. Computing for Finance

      ScienceCinema (OSTI)

      None

      2011-10-06

      The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing ? from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followed by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained

    15. Multiprocessor computing for images

      SciTech Connect (OSTI)

      Cantoni, V. ); Levialdi, S. )

      1988-08-01

      A review of image processing systems developed until now is given, highlighting the weak points of such systems and the trends that have dictated their evolution through the years producing different generations of machines. Each generation may be characterized by the hardware architecture, the programmability features and the relative application areas. The need for multiprocessing hierarchical systems is discussed focusing on pyramidal architectures. Their computational paradigms, their virtual and physical implementation, their programming and software requirements, and capabilities by means of suitable languages, are discussed.

    16. Computer generated holographic microtags

      DOE Patents [OSTI]

      Sweatt, William C.

      1998-01-01

      A microlithographic tag comprising an array of individual computer generated holographic patches having feature sizes between 250 and 75 nanometers. The tag is a composite hologram made up of the individual holographic patches and contains identifying information when read out with a laser of the proper wavelength and at the proper angles of probing and reading. The patches are fabricated in a steep angle Littrow readout geometry to maximize returns in the -1 diffracted order. The tags are useful as anti-counterfeiting markers because of the extreme difficulty in reproducing them.

    17. Announcement of Computer Software

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      F 241.4 (10-01) (Replaces ESTSC F1 and ESTSC F2) All Other Editions Are Obsolete UNITED STATES DEPARTMENT OF ENERGY ANNOUNCEMENT OF COMPUTER SOFTWARE OMB Control Number 1910-1400 (OMB Burden Disclosure Statement is on last page of Instructions) Record Status (Select One): New Package Software Revision H. Description/Abstract PART I: STI SOFTWARE DESCRIPTION A. Software Title SHORT NAME OR ACRONYM KEYWORDS IN CONTEXT (KWIC) TITLE B. Developer(s) E-MAIL ADDRESS(ES) C. Site Product Number 1. DOE

    18. Scanning computed confocal imager

      DOE Patents [OSTI]

      George, John S. (Los Alamos, NM)

      2000-03-14

      There is provided a confocal imager comprising a light source emitting a light, with a light modulator in optical communication with the light source for varying the spatial and temporal pattern of the light. A beam splitter receives the scanned light and direct the scanned light onto a target and pass light reflected from the target to a video capturing device for receiving the reflected light and transferring a digital image of the reflected light to a computer for creating a virtual aperture and outputting the digital image. In a transmissive mode of operation the invention omits the beam splitter means and captures light passed through the target.

    19. Introduction to High Performance Computing

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Introduction to High Performance Computing Introduction to High Performance Computing June 10, 2013 Photo on 7 30 12 at 7.10 AM Downloads Download File Gerber-HPC-2.pdf...

    20. Computer Wallpaper | The Ames Laboratory

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computer Wallpaper We've incorporated the tagline, Creating Materials and Energy Solutions, into a computer wallpaper so you can display it on your desktop as a constant reminder....

    1. History | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Leadership Computing The Argonne Leadership Computing Facility (ALCF) was established at Argonne National Laboratory in 2004 as part of a U.S. Department of Energy (DOE) initiative dedicated to enabling leading-edge computational capabilities to advance fundamental discovery and understanding in a broad range of scientific and engineering disciplines. Supported by the Advanced Scientific Computing Research (ASCR) program within DOE's Office of Science, the ALCF is one half of the DOE Leadership

    2. Super recycled water: quenching computers

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Super recycled water: quenching computers Super recycled water: quenching computers New facility and methods support conserving water and creating recycled products. Using reverse osmosis to "super purify" water allows the system to reuse water and cool down our powerful yet thirsty computers. January 30, 2014 Super recycled water: quenching computers LANL's Sanitary Effluent Reclamation Facility, key to reducing the Lab's discharge of liquid. Millions of gallons of industrial

    3. Present and Future Computing Requirements

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computational Cosmology DES LSST Presenter: Salman Habib Argonne National Laboratory Jim Ahrens (LANL) Scott Dodelson (FNAL) Katrin Heitmann (ANL) Peter Nugent (LBNL) Anze Slosar (BNL) Risa Wechsler (SLAC) 1 Cosmic Frontier Computing Collaboration Computational Cosmology SciDAC-3 Project Ann Almgren (LBNL) Nick Gnedin (FNAL) Dave Higdon (LANL) Rob Ross (ANL) Martin White (UC Berkeley/ LBNL) Large Scale Production Computing and Storage Requirements for High Energy Physics Research A DOE Technical

    4. MELCOR computer code manuals

      SciTech Connect (OSTI)

      Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L.; Hodge, S.A.; Hyman, C.R.; Sanders, R.L.

      1995-03-01

      MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.

    5. Computing architecture for autonomous microgrids

      DOE Patents [OSTI]

      Goldsmith, Steven Y.

      2015-09-29

      A computing architecture that facilitates autonomously controlling operations of a microgrid is described herein. A microgrid network includes numerous computing devices that execute intelligent agents, each of which is assigned to a particular entity (load, source, storage device, or switch) in the microgrid. The intelligent agents can execute in accordance with predefined protocols to collectively perform computations that facilitate uninterrupted control of the microgrid.

    6. Computing architecture for autonomous microgrids

      DOE Patents [OSTI]

      Goldsmith, Steven Y.

      2015-09-29

      A computing architecture that facilitates autonomously controlling operations of a microgrid is described herein. A microgrid network includes numerous computing devices that execute intelligent agents, each of which is assigned to a particular entity (load, source, storage device, or switch) in the microgrid. The intelligent agents can execute in accordance with predefined protocols to collectively perform computations that facilitate uninterrupted control of the .

    7. Noise tolerant spatiotemporal chaos computing

      SciTech Connect (OSTI)

      Kia, Behnam; Kia, Sarvenaz; Ditto, William L.; Lindner, John F.; Sinha, Sudeshna

      2014-12-01

      We introduce and design a noise tolerant chaos computing system based on a coupled map lattice (CML) and the noise reduction capabilities inherent in coupled dynamical systems. The resulting spatiotemporal chaos computing system is more robust to noise than a single map chaos computing system. In this CML based approach to computing, under the coupled dynamics, the local noise from different nodes of the lattice diffuses across the lattice, and it attenuates each other's effects, resulting in a system with less noise content and a more robust chaos computing architecture.

    8. Computer memory management system

      DOE Patents [OSTI]

      Kirk, III, Whitson John

      2002-01-01

      A computer memory management system utilizing a memory structure system of "intelligent" pointers in which information related to the use status of the memory structure is designed into the pointer. Through this pointer system, The present invention provides essentially automatic memory management (often referred to as garbage collection) by allowing relationships between objects to have definite memory management behavior by use of coding protocol which describes when relationships should be maintained and when the relationships should be broken. In one aspect, the present invention system allows automatic breaking of strong links to facilitate object garbage collection, coupled with relationship adjectives which define deletion of associated objects. In another aspect, The present invention includes simple-to-use infinite undo/redo functionality in that it has the capability, through a simple function call, to undo all of the changes made to a data model since the previous `valid state` was noted.

    9. AMRITA -- A computational facility

      SciTech Connect (OSTI)

      Shepherd, J.E.; Quirk, J.J.

      1998-02-23

      Amrita is a software system for automating numerical investigations. The system is driven using its own powerful scripting language, Amrita, which facilitates both the composition and archiving of complete numerical investigations, as distinct from isolated computations. Once archived, an Amrita investigation can later be reproduced by any interested party, and not just the original investigator, for no cost other than the raw CPU time needed to parse the archived script. In fact, this entire lecture can be reconstructed in such a fashion. To do this, the script: constructs a number of shock-capturing schemes; runs a series of test problems, generates the plots shown; outputs the LATEX to typeset the notes; performs a myriad of behind-the-scenes tasks to glue everything together. Thus Amrita has all the characteristics of an operating system and should not be mistaken for a common-or-garden code.

    10. Sandia National Laboratories: Advanced Simulation and Computing:

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computational Systems & Software Environment Computational Systems & Software Environment Advanced Simulation and Computing Computational Systems & Software Environment Integrated Codes Physics & Engineering Models Verification & Validation Facilities Operation & User Support Research & Collaboration Contact ASC Advanced Simulation and Computing Computational Systems & Software Environment Crack Modeling The Computational Systems & Software Environment

    11. CLAMR (Compute Language Adaptive Mesh Refinement)

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      CLAMR (Compute Language Adaptive Mesh Refinement) CLAMR (Compute Language Adaptive Mesh Refinement) CLAMR (Compute Language Adaptive Mesh Refinement) is being developed as a DOE...

    12. Paul C. Messina | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      He led the Computational and Computer Science component of Caltech's research project funded by the Academic Strategic Alliances Program of the Accelerated Strategic Computing ...

    13. Other World Computing | Open Energy Information

      Open Energy Info (EERE)

      World Computing Jump to: navigation, search Name Other World Computing Facility Other World Computing Sector Wind energy Facility Type Community Wind Facility Status In Service...

    14. Computer_Vision

      Energy Science and Technology Software Center (OSTI)

      2002-10-04

      The Computer_Vision software performs object recognition using a novel multi-scale characterization and matching algorithm. To understand the multi-scale characterization and matching software, it is first necessary to understand some details of the Computer Vision (CV) Project. This project has focused on providing algorithms and software that provide an end-to-end toolset for image processing applications. At a high-level, this end-to-end toolset focuses on 7 coy steps. The first steps are geometric transformations. 1) Image Segmentation. Thismore » step essentially classifies pixels in foe input image as either being of interest or not of interest. We have also used GENIE segmentation output for this Image Segmentation step. 2 Contour Extraction (patent submitted). This takes the output of Step I and extracts contours for the blobs consisting of pixels of interest. 3) Constrained Delaunay Triangulation. This is a well-known geometric transformation that creates triangles inside the contours. 4 Chordal Axis Transform (CAT) . This patented geometric transformation takes the triangulation output from Step 3 and creates a concise and accurate structural representation of a contour. From the CAT, we create a linguistic string, with associated metrical information, that provides a detailed structural representation of a contour. 5.) Normalization. This takes an attributed linguistic string output from Step 4 and balances it. This ensures that the linguistic representation accurately represents the major sections of the contour. Steps 6 and 7 are implemented by the multi-scale characterization and matching software. 6) Multi scale Characterization. This takes as input the attributed linguistic string output from Normalization. Rules from a context free grammar are applied in reverse to create a tree-like representation for each contour. For example, one of the grammar’s rules is L -> (LL ). When an (LL) is seen in a string, a parent node is created that points to

    15. Python and computer vision

      SciTech Connect (OSTI)

      Doak, J. E.; Prasad, Lakshman

      2002-01-01

      This paper discusses the use of Python in a computer vision (CV) project. We begin by providing background information on the specific approach to CV employed by the project. This includes a brief discussion of Constrained Delaunay Triangulation (CDT), the Chordal Axis Transform (CAT), shape feature extraction and syntactic characterization, and normalization of strings representing objects. (The terms 'object' and 'blob' are used interchangeably, both referring to an entity extracted from an image.) The rest of the paper focuses on the use of Python in three critical areas: (1) interactions with a MySQL database, (2) rapid prototyping of algorithms, and (3) gluing together all components of the project including existing C and C++ modules. For (l), we provide a schema definition and discuss how the various tables interact to represent objects in the database as tree structures. (2) focuses on an algorithm to create a hierarchical representation of an object, given its string representation, and an algorithm to match unknown objects against objects in a database. And finally, (3) discusses the use of Boost Python to interact with the pre-existing C and C++ code that creates the CDTs and CATS, performs shape feature extraction and syntactic characterization, and normalizes object strings. The paper concludes with a vision of the future use of Python for the CV project.

    16. Computational Fluid Dynamics Library

      Energy Science and Technology Software Center (OSTI)

      2005-03-04

      CFDLib05 is the Los Alamos Computational Fluid Dynamics LIBrary. This is a collection of hydrocodes using a common data structure and a common numerical method, for problems ranging from single-field, incompressible flow, to multi-species, multi-field, compressible flow. The data structure is multi-block, with a so-called structured grid in each block. The numerical method is a Finite-Volume scheme employing a state vector that is fully cell-centered. This means that the integral form of the conservation lawsmore » is solved on the physical domain that is represented by a mesh of control volumes. The typical control volume is an arbitrary quadrilateral in 2D and an arbitrary hexahedron in 3D. The Finite-Volume scheme is for time-unsteady flow and remains well coupled by means of time and space centered fluxes; if a steady state solution is required, the problem is integrated forward in time until the user is satisfied that the state is stationary.« less

    17. Parallel Computing Summer Research Internship

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Students Parallel Computing Summer Research Internship Creates next-generation leaders in HPC research and applications development Contacts Program Co-Lead Robert (Bob) Robey Email Program Co-Lead Gabriel Rockefeller Email Program Co-Lead Hai Ah Nam Email Professional Staff Assistant Nickole Aguilar Garcia (505) 665-3048 Email 2016: Students Peter Ahrens Peter Ahrens Electrical Engineering & Computer Science BS UC Berkeley Jenniffer Estrada Jenniffer Estrada Computer Science MS Youngstown

    18. Bioinformatics Computing Consultant Position Available

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Bioinformatics Computing Consultant Position Available Bioinformatics Computing Consultant Position Available October 31, 2011 by Katie Antypas NERSC and the Joint Genome Institute (JGI) are searching for two individuals who can help biologists exploit advanced computing platforms. JGI provides production sequencing and genomics for the Department of Energy. These activities are critical to the DOE missions in areas related to clean energy generation and environmental characterization and

    19. Careers | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Careers at Argonne Looking for a unique opportunity to work at the forefront of high-performance computing? At the Argonne Leadership Computing Facility, we are helping to redefine what's possible in computational science. With some of the most powerful supercomputers in the world and a talented and diverse team of experts, we enable researchers to pursue groundbreaking discoveries that would otherwise not be possible. Check out our open positions below. For the most current listing of

    20. computational-fluid-dynamics-training

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Table of Contents Date Location Advanced Hydraulic and Aerodynamic Analysis Using CFD March 27-28, 2013 Argonne TRACC Argonne, IL Computational Hydraulics and Aerodynamics using STAR-CCM+ for CFD Analysis March 21-22, 2012 Argonne TRACC Argonne, IL Computational Hydraulics and Aerodynamics using STAR-CCM+ for CFD Analysis March 30-31, 2011 Argonne TRACC Argonne, IL Computational Hydraulics for Transportation Workshop September 23-24, 2009 Argonne TRACC West Chicago, IL

    1. Computational Cosmology | Argonne National Laboratory

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computational Cosmology Computational Cosmology To study the mysterious dark sector we use powerful simulations on state-of-the-art high-performance computers, run at Argonne and elsewhere. By developing specialized codes for these supercomputers, and by comparing their results to observations from deep surveys of the sky, we aim to answer some of the most fundamental questions in physics: What is dark matter made of? What is the nature of dark energy? Does general relativity need to be

    2. computing | National Nuclear Security Administration

      National Nuclear Security Administration (NNSA)

      computing | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

    3. GPAW | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      to build documentation for our new computing resource. Feedback Form GPAW What is ... NOTE: The calculation must fit in memory. Frequently Asked Questions How do I restart a ...

    4. Parallel Computing Summer Research Internship

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      should have basic experience with a scientific computing language, such as C, C++, Fortran and with the LINUX operating system. Duration & Location The program will last ten...

    5. Bioinformatics Computing Consultant Position Available

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      You can read more about the positions and apply at jobs.lbl.gov: Bioinformatics High Performance Computing Consultant (job number: 73194) and Software Developer for High...

    6. Parallel Computing Summer Research Internship

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Recommended Reading & Resources Parallel Computing Summer Research Internship Creates next-generation leaders in HPC research and applications development Contacts Program Co-Lead ...

    7. Thrusts in High Performance Computing

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      in HPC 1 Thrusts in High Performance Computing Science at Scale Petaflops to Exaflops Science through Volume Thousands to Millions of Simulations Science in Data Petabytes to ...

    8. Institutional computing (IC) information session

      SciTech Connect (OSTI)

      Koch, Kenneth R; Lally, Bryan R

      2011-01-19

      The LANL Institutional Computing Program (IC) will host an information session about the current state of unclassified Institutional Computing at Los Alamos, exciting plans for the future, and the current call for proposals for science and engineering projects requiring computing. Program representatives will give short presentations and field questions about the call for proposals and future planned machines, and discuss technical support available to existing and future projects. Los Alamos has started making a serious institutional investment in open computing available to our science projects, and that investment is expected to increase even more.

    9. Parallel Computing Summer Research Internship

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Professional Staff Assistant Nickole Aguilar Garcia (505) 665-3048 Email 2016: Students Peter Ahrens Peter Ahrens Electrical Engineering & Computer Science BS UC Berkeley Jenniffer ...

    10. Presentation: High Performance Computing Applications

      Office of Energy Efficiency and Renewable Energy (EERE)

      A briefing to the Secretary's Energy Advisory Board on High Performance Computing Applications delivered by Frederick H. Streitz, Lawrence Livermore National Laboratory.

    11. Integrated Computational Materials Engineering (ICME) for Mg...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      More Documents & Publications Integrated Computational Materials Engineering (ICME) for Mg: International Pilot Project Integrated Computational Materials Engineering (ICME) for ...

    12. Computation Directorate 2008 Annual Report

      SciTech Connect (OSTI)

      Crawford, D L

      2009-03-25

      Whether a computer is simulating the aging and performance of a nuclear weapon, the folding of a protein, or the probability of rainfall over a particular mountain range, the necessary calculations can be enormous. Our computers help researchers answer these and other complex problems, and each new generation of system hardware and software widens the realm of possibilities. Building on Livermore's historical excellence and leadership in high-performance computing, Computation added more than 331 trillion floating-point operations per second (teraFLOPS) of power to LLNL's computer room floors in 2008. In addition, Livermore's next big supercomputer, Sequoia, advanced ever closer to its 2011-2012 delivery date, as architecture plans and the procurement contract were finalized. Hyperion, an advanced technology cluster test bed that teams Livermore with 10 industry leaders, made a big splash when it was announced during Michael Dell's keynote speech at the 2008 Supercomputing Conference. The Wall Street Journal touted Hyperion as a 'bright spot amid turmoil' in the computer industry. Computation continues to measure and improve the costs of operating LLNL's high-performance computing systems by moving hardware support in-house, by measuring causes of outages to apply resources asymmetrically, and by automating most of the account and access authorization and management processes. These improvements enable more dollars to go toward fielding the best supercomputers for science, while operating them at less cost and greater responsiveness to the customers.

    13. Constructing the ASCI computational grid

      SciTech Connect (OSTI)

      BEIRIGER,JUDY I.; BIVENS,HUGH P.; HUMPHREYS,STEVEN L.; JOHNSON,WILBUR R.; RHEA,RONALD E.

      2000-06-01

      The Accelerated Strategic Computing Initiative (ASCI) computational grid is being constructed to interconnect the high performance computing resources of the nuclear weapons complex. The grid will simplify access to the diverse computing, storage, network, and visualization resources, and will enable the coordinated use of shared resources regardless of location. To match existing hardware platforms, required security services, and current simulation practices, the Globus MetaComputing Toolkit was selected to provide core grid services. The ASCI grid extends Globus functionality by operating as an independent grid, incorporating Kerberos-based security, interfacing to Sandia's Cplant{trademark},and extending job monitoring services. To fully meet ASCI's needs, the architecture layers distributed work management and criteria-driven resource selection services on top of Globus. These services simplify the grid interface by allowing users to simply request ''run code X anywhere''. This paper describes the initial design and prototype of the ASCI grid.

    14. Can Cloud Computing Address the Scientific Computing Requirements...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      the ever-increasing computational needs of scientists, Department of Energy ... and as the largest funder of basic scientific research in the U.S., DOE was interested in ...

    15. Oak Ridge National Laboratory - Computing and Computational Sciences

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Directorate Oak Ridge to acquire next generation supercomputer Oak Ridge to acquire next generation supercomputer The U.S. Department of Energy's (DOE) Oak Ridge Leadership Computing Facility (OLCF) has signed a contract with IBM to bring a next-generation supercomputer to Oak Ridge National Laboratory (ORNL). The OLCF's new hybrid CPU/GPU computing system, Summit, will be delivered in 2017. (more) Links Department of Energy Consortium for Advanced Simulation of Light Water Reactors Extreme

    16. GPU Computing - Dirac.pptx

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      GPU Computing with Dirac Hemant Shukla 2 Architectural Differences 2 ALU Cache DRAM Control Logic DRAM CPU GPU 512 cores 10s t o 1 00s o f t hreads p er c ore Latency i s h idden b y f ast c ontext switching Less t han 2 0 c ores 1---2 t hreads p er c ore Latency i s h idden b y l arge c ache 3 Programming Models 3 CUDA (Compute Unified Device Architecture) OpenCL Microsoft's DirectCompute Third party wrappers are also available for Python, Perl, Fortran, Java, Ruby, Lua, MATLAB, IDL, and

    17. HEP Computing | Argonne National Laboratory

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      HEP Computing A number of computing resources are available for HEP employees and visitors. Problem Report or Service Request - Send email to the computing group and log it on the Problem Report Page. (Note: You need to be connected to the ANL network or to be running VPN to submit a problem report.) New Users or Visitors - Start here if you are new to Argonne HEP. Password Help Email Windows Desktops Laptops Linux Users HEP Division FAQs - Find answers for commonly requested information here.

    18. Introduction to computers: Reference guide

      SciTech Connect (OSTI)

      Ligon, F.V.

      1995-04-01

      The ``Introduction to Computers`` program establishes formal partnerships with local school districts and community-based organizations, introduces computer literacy to precollege students and their parents, and encourages students to pursue Scientific, Mathematical, Engineering, and Technical careers (SET). Hands-on assignments are given in each class, reinforcing the lesson taught. In addition, the program is designed to broaden the knowledge base of teachers in scientific/technical concepts, and Brookhaven National Laboratory continues to act as a liaison, offering educational outreach to diverse community organizations and groups. This manual contains the teacher`s lesson plans and the student documentation to this introduction to computer course.

    19. The Computational Physics Program of the national MFE Computer Center

      SciTech Connect (OSTI)

      Mirin, A.A.

      1989-01-01

      Since June 1974, the MFE Computer Center has been engaged in a significant computational physics effort. The principal objective of the Computational Physics Group is to develop advanced numerical models for the investigation of plasma phenomena and the simulation of present and future magnetic confinement devices. Another major objective of the group is to develop efficient algorithms and programming techniques for current and future generations of supercomputers. The Computational Physics Group has been involved in several areas of fusion research. One main area is the application of Fokker-Planck/quasilinear codes to tokamaks. Another major area is the investigation of resistive magnetohydrodynamics in three dimensions, with applications to tokamaks and compact toroids. A third area is the investigation of kinetic instabilities using a 3-D particle code; this work is often coupled with the task of numerically generating equilibria which model experimental devices. Ways to apply statistical closure approximations to study tokamak-edge plasma turbulence have been under examination, with the hope of being able to explain anomalous transport. Also, we are collaborating in an international effort to evaluate fully three-dimensional linear stability of toroidal devices. In addition to these computational physics studies, the group has developed a number of linear systems solvers for general classes of physics problems and has been making a major effort at ascertaining how to efficiently utilize multiprocessor computers. A summary of these programs are included in this paper. 6 tabs.

    20. Fermilab | Science at Fermilab | Computing | High-performance...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Lattice QCD Farm at the Grid Computing Center at Fermilab. Lattice QCD Farm at the Grid Computing Center at Fermilab. Computing High-performance Computing A workstation computer ...

    1. Power throttling of collections of computing elements

      DOE Patents [OSTI]

      Bellofatto, Ralph E.; Coteus, Paul W.; Crumley, Paul G.; Gara, Alan G.; Giampapa, Mark E.; Gooding; Thomas M.; Haring, Rudolf A.; Megerian, Mark G.; Ohmacht, Martin; Reed, Don D.; Swetz, Richard A.; Takken, Todd

      2011-08-16

      An apparatus and method for controlling power usage in a computer includes a plurality of computers communicating with a local control device, and a power source supplying power to the local control device and the computer. A plurality of sensors communicate with the computer for ascertaining power usage of the computer, and a system control device communicates with the computer for controlling power usage of the computer.

    2. Filtration theory using computer simulations

      SciTech Connect (OSTI)

      Bergman, W.; Corey, I.

      1997-08-01

      We have used commercially available fluid dynamics codes based on Navier-Stokes theory and the Langevin particle equation of motion to compute the particle capture efficiency and pressure drop through selected two- and three-dimensional fiber arrays. The approach we used was to first compute the air velocity vector field throughout a defined region containing the fiber matrix. The particle capture in the fiber matrix is then computed by superimposing the Langevin particle equation of motion over the flow velocity field. Using the Langevin equation combines the particle Brownian motion, inertia and interception mechanisms in a single equation. In contrast, most previous investigations treat the different capture mechanisms separately. We have computed the particle capture efficiency and the pressure drop through one, 2-D and two, 3-D fiber matrix elements. 5 refs., 11 figs.

    3. Filtration theory using computer simulations

      SciTech Connect (OSTI)

      Bergman, W.; Corey, I.

      1997-01-01

      We have used commercially available fluid dynamics codes based on Navier-Stokes theory and the Langevin particle equation of motion to compute the particle capture efficiency and pressure drop through selected two- and three- dimensional fiber arrays. The approach we used was to first compute the air velocity vector field throughout a defined region containing the fiber matrix. The particle capture in the fiber matrix is then computed by superimposing the Langevin particle equation of motion over the flow velocity field. Using the Langevin equation combines the particle Brownian motion, inertia and interception mechanisms in a single equation. In contrast, most previous investigations treat the different capture mechanisms separately. We have computed the particle capture efficiency and the pressure drop through one, 2-D and two, 3-D fiber matrix elements.

    4. Tukey | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Tukey has a total of 96 compute nodes; each node has 16 CPU cores and two NVIDIA Tesla ... per CPU, 16 cores total) GPUs: Two NVIDIA Tesla M2070 GPUs per node Memorynode: 64GB RAM ...

    5. SSRL Computer Account Request Form

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      SSRL/LCLS Computer Account Request Form August 2009 Fill in this form and sign the security statement mentioned at the bottom of this page to obtain an account. Your Name: __________________________________________________________ Institution: ___________________________________________________________ Mailing Address: ______________________________________________________ Email Address: _______________________________________________________ Telephone:

    6. Quantum Computing: Solving Complex Problems

      ScienceCinema (OSTI)

      DiVincenzo, David [IBM Watson Research Center

      2009-09-01

      One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.

    7. Computing at SSRL Home Page

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      contents you are looking for have moved. You will be redirected to the new location automatically in 5 seconds. Please bookmark the correct page at http://www-ssrl.slac.stanford.edu/content/staff-resources/computer-networking-group

    8. Automatic computation of transfer functions

      DOE Patents [OSTI]

      Atcitty, Stanley; Watson, Luke Dale

      2015-04-14

      Technologies pertaining to the automatic computation of transfer functions for a physical system are described herein. The physical system is one of an electrical system, a mechanical system, an electromechanical system, an electrochemical system, or an electromagnetic system. A netlist in the form of a matrix comprises data that is indicative of elements in the physical system, values for the elements in the physical system, and structure of the physical system. Transfer functions for the physical system are computed based upon the netlist.

    9. Mira | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computing Resources Mira Cetus and Vesta Visualization Cluster Data and Networking Software JLSE Featured Videos Mira: Argonne's 10-Petaflop Supercomputer Mira's Dedication Ceremony Introducing Mira: Our Next-Generation Supercomputer Mira Mira Ushers in a New Era of Scientific Supercomputing As one of the fastest supercomputers, Mira, our 10-petaflops IBM Blue Gene/Q system, is capable of 10 quadrillion calculations per second. With this computing power, Mira can do in one day what it would take

    10. Parallel Computing Summer Research Internship

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Recommended Reading & Resources Parallel Computing Summer Research Internship Creates next-generation leaders in HPC research and applications development Contacts Program Co-Lead Robert (Bob) Robey Email Program Co-Lead Gabriel Rockefeller Email Program Co-Lead Hai Ah Nam Email Professional Staff Assistant Nickole Aguilar Garcia (505) 665-3048 Email Recommended Reading & References The Parallel Computing Summer Research Internship covers a broad range of topics that you may not have

    11. computational-hydraulics-for-transportation

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Transportation Workshop Sept. 23-24, 2009 Argonne TRACC Dr. Steven Lottes This email address is being protected from spambots. You need JavaScript enabled to view it. Announcement pdficon small The Transportation Research and Analysis Computing Center at Argonne National Laboratory will hold a workshop on the use of computational hydraulics for transportation applications. The goals of the workshop are: Bring together people who are using or would benefit from the use of high performance cluster

    12. Parallel Computing Summer Research Internship

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      LaboratoryNational Security Education Center Menu About Seminar Series Summer Schools Workshops Viz Collab IS&T Projects NSEC » Information Science and Technology Institute (ISTI) » Summer School Programs » Parallel Computing Parallel Computing Summer Research Internship Creates next-generation leaders in HPC research and applications development Contacts Program Co-Lead Robert (Bob) Robey Email Program Co-Lead Gabriel Rockefeller Email Program Co-Lead Hai Ah Nam Email Professional Staff

    13. Computer Assisted Virtual Environment - CAVE

      SciTech Connect (OSTI)

      Erickson, Phillip; Podgorney, Robert; Weingartner, Shawn; Whiting, Eric

      2014-01-14

      Research at the Center for Advanced Energy Studies is taking on another dimension with a 3-D device known as a Computer Assisted Virtual Environment. The CAVE uses projection to display high-end computer graphics on three walls and the floor. By wearing 3-D glasses to create depth perception and holding a wand to move and rotate images, users can delve into data.

    14. Vesta | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] Vesta Vesta is the ALCF's test and development platform, serving as a launching pad for researchers planning to use Mira. Vesta has the same architecture as Mira, but on a much smaller scale (two computer racks compared to Mira's 48 racks). This system enables researchers to debug and scale up codes for the Blue Gene/Q architecture in

    15. Cooley | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Changes from Tukey to Cooley Compiling and Linking Using Cobalt on Cooley Visit on Cooley Paraview on Cooley ParaView Tutorial VNC on Cooley Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] Cooley The primary purpose of Cooley is to analyze and visualize data produced on Mira. Equipped with state-of-the-art graphics processing units (GPUs), Cooley converts computational data from Mira

    16. Secure computing for the 'Everyman'

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Secure computing for the 'Everyman' Secure computing for the 'Everyman' If implemented on a wide scale, quantum key distribution technology could ensure truly secure commerce, banking, communications and data transfer. September 2, 2014 This small device developed at Los Alamos National Laboratory uses the truly random spin of light particles as defined by laws of quantum mechanics to generate a random number for use in a cryptographic key that can be used to securely transmit information

    17. Computer Assisted Virtual Environment - CAVE

      ScienceCinema (OSTI)

      Erickson, Phillip; Podgorney, Robert; Weingartner, Shawn; Whiting, Eric

      2014-06-09

      Research at the Center for Advanced Energy Studies is taking on another dimension with a 3-D device known as a Computer Assisted Virtual Environment. The CAVE uses projection to display high-end computer graphics on three walls and the floor. By wearing 3-D glasses to create depth perception and holding a wand to move and rotate images, users can delve into data.

    18. Computational Sciences and Engineering Division

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      If you have questions or comments regarding any of our research and development activities, how to work with ORNL and the Computational Sciences and Engineering (CSE) Division, or the content of this website please contact one of the following people: If you have questions regarding CSE technologies and capabilities, job opportunities, working with ORNL and the CSE Division, intellectual property, etc., contact, Shaun S. Gleason, Ph.D. Division Director, Computational Sciences and Engineering

    19. Computer modeling helps manage wildfires

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computer modeling helps manage wildfires Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Computer modeling helps manage wildfires Technology increases preparedness, improves firefighting strategies. September 1, 2016 Smoke over the Jemez Mountains during the 2011 Las Conchas wildfire. Smoke over the Jemez Mountains during the 2011 Las Conchas wildfire. Contacts Director, Community

    20. Proposal for grid computing for nuclear applications

      SciTech Connect (OSTI)

      Idris, Faridah Mohamad; Ismail, Saaidi; Haris, Mohd Fauzi B.; Sulaiman, Mohamad Safuan B.; Aslan, Mohd Dzul Aiman Bin.; Samsudin, Nursuliza Bt.; Ibrahim, Maizura Bt.; Ahmad, Megat Harun Al Rashid B. Megat; Yazid, Hafizal B.; Jamro, Rafhayudi B.; Azman, Azraf B.; Rahman, Anwar B. Abdul; Ibrahim, Mohd Rizal B. Mamat; Muhamad, Shalina Bt. Sheik; Hassan, Hasni; Abdullah, Wan Ahmad Tajuddin Wan; Ibrahim, Zainol Abidin; Zolkapli, Zukhaimira; Anuar, Afiq Aizuddin; Norjoharuddeen, Nurfikri; and others

      2014-02-12

      The use of computer clusters for computational sciences including computational physics is vital as it provides computing power to crunch big numbers at a faster rate. In compute intensive applications that requires high resolution such as Monte Carlo simulation, the use of computer clusters in a grid form that supplies computational power to any nodes within the grid that needs computing power, has now become a necessity. In this paper, we described how the clusters running on a specific application could use resources within the grid, to run the applications to speed up the computing process.

    1. Yuri Alexeev | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Yuri Alexeev Assistant Computational Scientist Yury Alekseev Argonne National Laboratory 9700 South Cass Avenue Building 240 - Rm. 1126 Argonne IL, 60439 630-252-0157 yuri@alcf.anl.gov Yuri Alexeev is an Assistant Computational Scientist at the Argonne Leadership Computing Facility where he applies his skills, knowledge and experience for using and enabling computational methods in chemistry and biology for high-performance computing on next-generation high-performance computers. Yuri is

    2. Computer Accounts | Stanford Synchrotron Radiation Lightsource

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computer Accounts Each user group must have a computer account. Additionally, all persons using these accounts are responsible for understanding and complying with the terms outlined in the "Use of SLAC Information Resources". Links are provided below for computer account forms and the computer security agreement which must be completed and sent to the appropriate contact person. SSRL does not charge for use of its computer systems. Forms X-ray/VUV Computer Account Request Form

    3. advanced simulation and computing | National Nuclear Security...

      National Nuclear Security Administration (NNSA)

      NNSA's missions get a boost from brain-inspired, radically different computer design The first computers to contribute to the nation's nuclear security work used thousands of ...

    4. Improved computer models support genetics research

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      February Simple computer models unravel genetic stress reactions in cells Simple computer models unravel genetic stress reactions in cells Integrated biological and...

    5. LANL computer model boosts engine efficiency

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      LANL computer model boosts engine efficiency LANL computer model boosts engine efficiency The KIVA model has been instrumental in helping researchers and manufacturers understand...

    6. Energy Storage Computational Tool | Open Energy Information

      Open Energy Info (EERE)

      Energy Storage Computational Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Storage Computational Tool AgencyCompany Organization: Navigant Consulting...

    7. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Wednesday, 26 August 2009 00:00 Rotaxanes are...

    8. Compare Activities by Number of Computers

      U.S. Energy Information Administration (EIA) Indexed Site

      of Computers Office buildings contained the most computers per square foot, followed by education and outpatient health care buildings. Education buildings were the only type...

    9. Thermoelectric Materials by Design, Computational Theory and...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      by Design, Computational Theory and Structure Thermoelectric Materials by Design, Computational Theory and Structure 2009 DOE Hydrogen Program and Vehicle Technologies Program...

    10. PREPARING FOR EXASCALE: ORNL Leadership Computing Application...

      Office of Scientific and Technical Information (OSTI)

      This effort targeted science teams whose projects received large computer allocation ... the proposed time frame will require disruptive changes in computer hardware and software. ...

    11. Computational Procedures for Determining Parameters in Ramberg...

      Office of Scientific and Technical Information (OSTI)

      2 RAMBO: A Computer Code for Determining Parameters in Ramberg-Osgood Elastoplastic Model Based on Modulus and Damping Versus Strain ABSTRACT A computer code, RAMBO, is ...

    12. Computational procedures for determining parameters in Ramberg...

      Office of Scientific and Technical Information (OSTI)

      A computer code, RAMBO, is developed for obtaining the values of parameters in the ... DAMPING; HYSTERESIS; SHEAR; STRAINS; COMPUTER CODES; MECHANICAL PROPERTIES; TENSILE ...

    13. NERSC Enhances PDSF, Genepool Computing Capabilities

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computing Capabilities NERSC Enhances PDSF, Genepool Computing Capabilities Linux cluster expansion speeds data access and analysis January 3, 2014 Christmas came early for...

    14. Personal Computing Equipment | Open Energy Information

      Open Energy Info (EERE)

      Computing Equipment Jump to: navigation, search TODO: Add description List of Personal Computing Equipment Incentives Retrieved from "http:en.openei.orgwindex.php?titlePersona...

    15. Extreme Scale Computing, Co-Design

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Information Science, Computing, Applied Math Extreme Scale Computing, Co-design Publications Publications Ramon Ravelo, Qi An, Timothy C. Germann, and Brad Lee Holian, ...

    16. Predictive Capability Maturity Model for computational modeling...

      Office of Scientific and Technical Information (OSTI)

      Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 97 MATHEMATICAL METHODS AND COMPUTING; 99 GENERAL AND MISCELLANEOUSMATHEMATICS, COMPUTING, ...

    17. Computer Science and Information Technology Student Pipeline

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Divisions recruit and hire promising undergraduate and graduate students in the areas of Computer Science, Information Technology, Management Information Systems, Computer...

    18. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      based on molecular magnets that may make them suitable as qubits for quantum computers. Chemistry Aids Quantum Computing Quantum bits or qubits are the fundamental...

    19. Accerelate Your Vision | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Our Catalysts are computational scientists with domain expertise in areas such as chemistry, materials science, fusion, nuclear physics, plasma physics, computer science, ...

    20. About ALCF | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      discoveries and engineering breakthroughs for humanity by designing and providing world-leading computing facilities in partnership with the computational science community. ...

    1. ALCF Acknowledgment Policy | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User ...

    2. NREL: Energy Systems Integration - Computational Science and...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computational Science and Visualization Computational science and visualization capabilities at NREL propel technology innovation as a research tool by which scientists and ...

    3. Data triage enables extreme-scale computing

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Data triage enables extreme-scale computing Data triage enables extreme-scale computing Data selection and triage are important techniques for large-scale data, which can ...

    4. Applications for Postdoctoral Fellowship in Computational Science...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Applications for Postdoctoral Fellowship in Computational Science at Berkeley Lab due November 26 October 15, 2012 by Francesca Verdier Researchers in computer science, applied ...

    5. Mathematics and Computer Science Division | Argonne National...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Mathematics and Computer Science Division To help solve some of the nation's most critical scientific problems, the Mathematics and Computer Science (MCS) Division at Argonne ...

    6. Significant Enhancement of Computational Efficiency in Nonlinear Multiscale Battery Model for Computer Aided Engineering

      SciTech Connect (OSTI)

      Smith, Kandler; Graf, Peter; Jun, Myungsoo; Yang, Chuanbo; Li, Genong; Li, Shaoping; Hochman, Amit; Tselepidakis, Dimitrios

      2015-06-09

      This presentation provides an update on improvements in computational efficiency in a nonlinear multiscale battery model for computer aided engineering.

    7. The computational physics program of the National MFE Computer Center

      SciTech Connect (OSTI)

      Mirin, A.A.

      1988-01-01

      The principal objective of the Computational Physics Group is to develop advanced numerical models for the investigation of plasma phenomena and the simulation of present and future magnetic confinement devices. Another major objective of the group is to develop efficient algorithms and programming techniques for current and future generation of supercomputers. The computational physics group is involved in several areas of fusion research. One main area is the application of Fokker-Planck/quasilinear codes to tokamaks. Another major area is the investigation of resistive magnetohydrodynamics in three dimensions, with applications to compact toroids. Another major area is the investigation of kinetic instabilities using a 3-D particle code. This work is often coupled with the task of numerically generating equilibria which model experimental devices. Ways to apply statistical closure approximations to study tokamak-edge plasma turbulence are being examined. In addition to these computational physics studies, the group has developed a number of linear systems solvers for general classes of physics problems and has been making a major effort at ascertaining how to efficiently utilize multiprocessor computers.

    8. FUNCTION GENERATOR FOR ANALOGUE COMPUTERS

      DOE Patents [OSTI]

      Skramstad, H.K.; Wright, J.H.; Taback, L.

      1961-12-12

      An improved analogue computer is designed which can be used to determine the final ground position of radioactive fallout particles in an atomic cloud. The computer determines the fallout pattern on the basis of known wind velocity and direction at various altitudes, and intensity of radioactivity in the mushroom cloud as a function of particle size and initial height in the cloud. The output is then displayed on a cathode-ray tube so that the average or total luminance of the tube screen at any point represents the intensity of radioactive fallout at the geographical location represented by that point. (AEC)

    9. Argonne Lea Computing F A

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Lea Computing F A r g o n n e L e a d e r s h i p C o m p u t i n g FA c i l i t y 2 0 1 3 S c i e n c e H i g H l i g H t S Argonne leadership computing Facility C O N T E N T S About ALCF ...............................................................................................................................2 MirA...............................................................................................................................................3 SCienCe DireCtor'S MeSSAge

    10. Supporting collaborative computing and interaction

      SciTech Connect (OSTI)

      Agarwal, Deborah; McParland, Charles; Perry, Marcia

      2002-05-22

      To enable collaboration on the daily tasks involved in scientific research, collaborative frameworks should provide lightweight and ubiquitous components that support a wide variety of interaction modes. We envision a collaborative environment as one that provides a persistent space within which participants can locate each other, exchange synchronous and asynchronous messages, share documents and applications, share workflow, and hold videoconferences. We are developing the Pervasive Collaborative Computing Environment (PCCE) as such an environment. The PCCE will provide integrated tools to support shared computing and task control and monitoring. This paper describes the PCCE and the rationale for its design.

    11. Computations

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

    12. Computing

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      ... located about 10,000 light years away in the host galaxy of the supernova. (Credit: Beijing Planetarium Jin Ma) Machine learning helps discover the most luminous supernova in ...

    13. Computer

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      simulation of three-dimensional heavy ion beam trajectory imaging techniques used for magnetic field estimation C. Ling, K. A. Connor, D. R. Demers, R. J. Radke, and P. M. Schoch a͒ ECSE Department, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA ͑Received 28 August 2007; accepted 6 October 2007; published online 26 November 2007͒ A magnetic field mapping technique via heavy ion beam trajectory imaging is being developed on the Madison Symmetric Torus reversed field pinch. This

    14. Radiological Worker Computer Based Training

      Energy Science and Technology Software Center (OSTI)

      2003-02-06

      Argonne National Laboratory has developed an interactive computer based training (CBT) version of the standardized DOE Radiological Worker training program. This CD-ROM based program utilizes graphics, animation, photographs, sound and video to train users in ten topical areas: radiological fundamentals, biological effects, dose limits, ALARA, personnel monitoring, controls and postings, emergency response, contamination controls, high radiation areas, and lessons learned.

    15. New challenges in computational biochemistry

      SciTech Connect (OSTI)

      Honig, B.

      1996-12-31

      The new challenges in computational biochemistry to which the title refers include the prediction of the relative binding free energy of different substrates to the same protein, conformational sampling, and other examples of theoretical predictions matching known protein structure and behavior.

    16. PERTURBATION APPROACH FOR QUANTUM COMPUTATION

      SciTech Connect (OSTI)

      G. P. BERMAN; D. I. KAMENEV; V. I. TSIFRINOVICH

      2001-04-01

      We discuss how to simulate errors in the implementation of simple quantum logic operations in a nuclear spin quantum computer with many qubits, using radio-frequency pulses. We verify our perturbation approach using the exact solutions for relatively small (L = 10) number of qubits.

    17. Experimental Mathematics and Computational Statistics

      SciTech Connect (OSTI)

      Bailey, David H.; Borwein, Jonathan M.

      2009-04-30

      The field of statistics has long been noted for techniques to detect patterns and regularities in numerical data. In this article we explore connections between statistics and the emerging field of 'experimental mathematics'. These includes both applications of experimental mathematics in statistics, as well as statistical methods applied to computational mathematics.

    18. Parallel computing in enterprise modeling.

      SciTech Connect (OSTI)

      Goldsby, Michael E.; Armstrong, Robert C.; Shneider, Max S.; Vanderveen, Keith; Ray, Jaideep; Heath, Zach; Allan, Benjamin A.

      2008-08-01

      This report presents the results of our efforts to apply high-performance computing to entity-based simulations with a multi-use plugin for parallel computing. We use the term 'Entity-based simulation' to describe a class of simulation which includes both discrete event simulation and agent based simulation. What simulations of this class share, and what differs from more traditional models, is that the result sought is emergent from a large number of contributing entities. Logistic, economic and social simulations are members of this class where things or people are organized or self-organize to produce a solution. Entity-based problems never have an a priori ergodic principle that will greatly simplify calculations. Because the results of entity-based simulations can only be realized at scale, scalable computing is de rigueur for large problems. Having said that, the absence of a spatial organizing principal makes the decomposition of the problem onto processors problematic. In addition, practitioners in this domain commonly use the Java programming language which presents its own problems in a high-performance setting. The plugin we have developed, called the Parallel Particle Data Model, overcomes both of these obstacles and is now being used by two Sandia frameworks: the Decision Analysis Center, and the Seldon social simulation facility. While the ability to engage U.S.-sized problems is now available to the Decision Analysis Center, this plugin is central to the success of Seldon. Because Seldon relies on computationally intensive cognitive sub-models, this work is necessary to achieve the scale necessary for realistic results. With the recent upheavals in the financial markets, and the inscrutability of terrorist activity, this simulation domain will likely need a capability with ever greater fidelity. High-performance computing will play an important part in enabling that greater fidelity.

    19. Computer Science and Information Technology Student Pipeline

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Science and Information Technology Student Pipeline Program Description Los Alamos National Laboratory's High Performance Computing and Information Technology Divisions recruit and hire promising undergraduate and graduate students in the areas of Computer Science, Information Technology, Management Information Systems, Computer Security, Software Engineering, Computer Engineering, and Electrical Engineering. Students are provided a mentor and challenging projects to demonstrate their

    20. Cosmic Reionization On Computers | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Numerical model of cosmic reionization Numerical model of cosmic reionization. Brown non-transparent fog renders neutral gas, glowing blue is dense ionized gas (which becomes completely transparent when it is not dense); yellow dots are galaxies. Credit: Nick Gnedin, Fermilab Cosmic Reionization On Computers PI Name: Nickolay Gnedin PI Email: gnedin@fnal.gov Institution: Fermilab Allocation Program: INCITE Allocation Hours at ALCF: 74 Million Year: 2015 Research Domain: Physics Cosmic

    1. Internode data communications in a parallel computer

      DOE Patents [OSTI]

      Archer, Charles J.; Blocksome, Michael A.; Miller, Douglas R.; Parker, Jeffrey J.; Ratterman, Joseph D.; Smith, Brian E.

      2013-09-03

      Internode data communications in a parallel computer that includes compute nodes that each include main memory and a messaging unit, the messaging unit including computer memory and coupling compute nodes for data communications, in which, for each compute node at compute node boot time: a messaging unit allocates, in the messaging unit's computer memory, a predefined number of message buffers, each message buffer associated with a process to be initialized on the compute node; receives, prior to initialization of a particular process on the compute node, a data communications message intended for the particular process; and stores the data communications message in the message buffer associated with the particular process. Upon initialization of the particular process, the process establishes a messaging buffer in main memory of the compute node and copies the data communications message from the message buffer of the messaging unit into the message buffer of main memory.

    2. Broadcasting a message in a parallel computer

      DOE Patents [OSTI]

      Berg, Jeremy E.; Faraj, Ahmad A.

      2011-08-02

      Methods, systems, and products are disclosed for broadcasting a message in a parallel computer. The parallel computer includes a plurality of compute nodes connected together using a data communications network. The data communications network optimized for point to point data communications and is characterized by at least two dimensions. The compute nodes are organized into at least one operational group of compute nodes for collective parallel operations of the parallel computer. One compute node of the operational group assigned to be a logical root. Broadcasting a message in a parallel computer includes: establishing a Hamiltonian path along all of the compute nodes in at least one plane of the data communications network and in the operational group; and broadcasting, by the logical root to the remaining compute nodes, the logical root's message along the established Hamiltonian path.

    3. Internode data communications in a parallel computer

      DOE Patents [OSTI]

      Archer, Charles J; Blocksome, Michael A; Miller, Douglas R; Parker, Jeffrey J; Ratterman, Joseph D; Smith, Brian E

      2014-02-11

      Internode data communications in a parallel computer that includes compute nodes that each include main memory and a messaging unit, the messaging unit including computer memory and coupling compute nodes for data communications, in which, for each compute node at compute node boot time: a messaging unit allocates, in the messaging unit's computer memory, a predefined number of message buffers, each message buffer associated with a process to be initialized on the compute node; receives, prior to initialization of a particular process on the compute node, a data communications message intended for the particular process; and stores the data communications message in the message buffer associated with the particular process. Upon initialization of the particular process, the process establishes a messaging buffer in main memory of the compute node and copies the data communications message from the message buffer of the messaging unit into the message buffer of main memory.

    4. Link failure detection in a parallel computer

      DOE Patents [OSTI]

      Archer, Charles J.; Blocksome, Michael A.; Megerian, Mark G.; Smith, Brian E.

      2010-11-09

      Methods, apparatus, and products are disclosed for link failure detection in a parallel computer including compute nodes connected in a rectangular mesh network, each pair of adjacent compute nodes in the rectangular mesh network connected together using a pair of links, that includes: assigning each compute node to either a first group or a second group such that adjacent compute nodes in the rectangular mesh network are assigned to different groups; sending, by each of the compute nodes assigned to the first group, a first test message to each adjacent compute node assigned to the second group; determining, by each of the compute nodes assigned to the second group, whether the first test message was received from each adjacent compute node assigned to the first group; and notifying a user, by each of the compute nodes assigned to the second group, whether the first test message was received.

    5. TORCH Computational Reference Kernels - A Testbed for Computer Science Research

      SciTech Connect (OSTI)

      Kaiser, Alex; Williams, Samuel Webb; Madduri, Kamesh; Ibrahim, Khaled; Bailey, David H.; Demmel, James W.; Strohmaier, Erich

      2010-12-02

      For decades, computer scientists have sought guidance on how to evolve architectures, languages, and programming models in order to improve application performance, efficiency, and productivity. Unfortunately, without overarching advice about future directions in these areas, individual guidance is inferred from the existing software/hardware ecosystem, and each discipline often conducts their research independently assuming all other technologies remain fixed. In today's rapidly evolving world of on-chip parallelism, isolated and iterative improvements to performance may miss superior solutions in the same way gradient descent optimization techniques may get stuck in local minima. To combat this, we present TORCH: A Testbed for Optimization ResearCH. These computational reference kernels define the core problems of interest in scientific computing without mandating a specific language, algorithm, programming model, or implementation. To compliment the kernel (problem) definitions, we provide a set of algorithmically-expressed verification tests that can be used to verify a hardware/software co-designed solution produces an acceptable answer. Finally, to provide some illumination as to how researchers have implemented solutions to these problems in the past, we provide a set of reference implementations in C and MATLAB.

    6. Computation Directorate 2007 Annual Report

      SciTech Connect (OSTI)

      Henson, V E; Guse, J A

      2008-03-06

      If there is a single word that both characterized 2007 and dominated the thoughts and actions of many Laboratory employees throughout the year, it is transition. Transition refers to the major shift that took place on October 1, when the University of California relinquished management responsibility for Lawrence Livermore National Laboratory (LLNL), and Lawrence Livermore National Security, LLC (LLNS), became the new Laboratory management contractor for the Department of Energy's (DOE's) National Nuclear Security Administration (NNSA). In the 55 years under the University of California, LLNL amassed an extraordinary record of significant accomplishments, clever inventions, and momentous contributions in the service of protecting the nation. This legacy provides the new organization with a built-in history, a tradition of excellence, and a solid set of core competencies from which to build the future. I am proud to note that in the nearly seven years I have had the privilege of leading the Computation Directorate, our talented and dedicated staff has made far-reaching contributions to the legacy and tradition we passed on to LLNS. Our place among the world's leaders in high-performance computing, algorithmic research and development, applications, and information technology (IT) services and support is solid. I am especially gratified to report that through all the transition turmoil, and it has been considerable, the Computation Directorate continues to produce remarkable achievements. Our most important asset--the talented, skilled, and creative people who work in Computation--has continued a long-standing Laboratory tradition of delivering cutting-edge science even in the face of adversity. The scope of those achievements is breathtaking, and in 2007, our accomplishments span an amazing range of topics. From making an important contribution to a Nobel Prize-winning effort to creating tools that can detect malicious codes embedded in commercial software; from

    7. 2011 Computation Directorate Annual Report

      SciTech Connect (OSTI)

      Crawford, D L

      2012-04-11

      From its founding in 1952 until today, Lawrence Livermore National Laboratory (LLNL) has made significant strategic investments to develop high performance computing (HPC) and its application to national security and basic science. Now, 60 years later, the Computation Directorate and its myriad resources and capabilities have become a key enabler for LLNL programs and an integral part of the effort to support our nation's nuclear deterrent and, more broadly, national security. In addition, the technological innovation HPC makes possible is seen as vital to the nation's economic vitality. LLNL, along with other national laboratories, is working to make supercomputing capabilities and expertise available to industry to boost the nation's global competitiveness. LLNL is on the brink of an exciting milestone with the 2012 deployment of Sequoia, the National Nuclear Security Administration's (NNSA's) 20-petaFLOP/s resource that will apply uncertainty quantification to weapons science. Sequoia will bring LLNL's total computing power to more than 23 petaFLOP/s-all brought to bear on basic science and national security needs. The computing systems at LLNL provide game-changing capabilities. Sequoia and other next-generation platforms will enable predictive simulation in the coming decade and leverage industry trends, such as massively parallel and multicore processors, to run petascale applications. Efficient petascale computing necessitates refining accuracy in materials property data, improving models for known physical processes, identifying and then modeling for missing physics, quantifying uncertainty, and enhancing the performance of complex models and algorithms in macroscale simulation codes. Nearly 15 years ago, NNSA's Accelerated Strategic Computing Initiative (ASCI), now called the Advanced Simulation and Computing (ASC) Program, was the critical element needed to shift from test-based confidence to science-based confidence. Specifically, ASCI/ASC accelerated

    8. NERSC seeks Computational Systems Group Lead

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      seeks Computational Systems Group Lead NERSC seeks Computational Systems Group Lead January 6, 2011 by Katie Antypas Note: This position is now closed. The Computational Systems Group provides production support and advanced development for the supercomputer systems at NERSC. Manage the Computational Systems Group (CSG) which provides production support and advanced development for the supercomputer systems at NERSC (National Energy Research Scientific Computing Center). These systems, which

    9. Extreme Scale Computing, Co-design

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Information Science, Computing, Applied Math » Extreme Scale Computing, Co-design Extreme Scale Computing, Co-design Computational co-design may facilitate revolutionary designs in the next generation of supercomputers. Get Expertise Tim Germann Physics and Chemistry of Materials Email Allen McPherson Energy and Infrastructure Analysis Email Turab Lookman Physics and Condensed Matter and Complex Systems Email Computational co-design involves developing the interacting components of a

    10. Advanced Computing Tech Team | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Advanced Computing Tech Team Advanced Computing Tech Team Advanced Computing Tech Team The Advanced Computing Tech Team is working with the DOE Energy Technology Offices, the Office of Science, and the National Nuclear Security Administration to deliver technologies that will be used to create new scientific insights into complex physical systems. Advanced computing technologies have been used for decades to provide better understanding of the performance and reliability of the nuclear stockpile

    11. NERSC Enhances PDSF, Genepool Computing Capabilities

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Enhances PDSF, Genepool Computing Capabilities NERSC Enhances PDSF, Genepool Computing Capabilities Linux cluster expansion speeds data access and analysis January 3, 2014 Christmas came early for users of the Parallel Distributed Systems Facility (PDSF) and Genepool systems at Department of Energy's National Energy Research Scientific Computer Center (NERSC). Throughout November members of NERSC's Computational Systems Group were busy expanding the Linux computing resources that support PDSF's

    12. Theory & Computation > Research > The Energy Materials Center at Cornell

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Theory & Computation In This Section Computation & Simulation Theory & Computation Computation & Simulation

    13. Addressing Failures in Exascale Computing

      SciTech Connect (OSTI)

      Snir, Marc; Wisniewski, Robert; Abraham, Jacob; Adve, Sarita; Bagchi, Saurabh; Balaji, Pavan; Belak, J.; Bose, Pradip; Cappello, Franck; Carlson, Bill; Chien, Andrew; Coteus, Paul; DeBardeleben, Nathan; Diniz, Pedro; Engelmann, Christian; Erez, Mattan; Fazzari, Saverio; Geist, Al; Gupta, Rinku; Johnson, Fred; Krishnamoorthy, Sriram; Leyffer, Sven; Liberty, Dean; Mitra, Subhasish; Munson, Todd; Schreiber, Rob; Stearley, Jon; Van Hensbergen, Eric

      2014-01-01

      We present here a report produced by a workshop on Addressing failures in exascale computing' held in Park City, Utah, 4-11 August 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system, discuss existing knowledge on resilience across the various hardware and software layers of an exascale system, and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, and academia, and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.

    14. Thermal Hydraulic Computer Code System.

      Energy Science and Technology Software Center (OSTI)

      1999-07-16

      Version 00 RELAP5 was developed to describe the behavior of a light water reactor (LWR) subjected to postulated transients such as loss of coolant from large or small pipe breaks, pump failures, etc. RELAP5 calculates fluid conditions such as velocities, pressures, densities, qualities, temperatures; thermal conditions such as surface temperatures, temperature distributions, heat fluxes; pump conditions; trip conditions; reactor power and reactivity from point reactor kinetics; and control system variables. In addition to reactor applications,more » the program can be applied to transient analysis of other thermal‑hydraulic systems with water as the fluid. This package contains RELAP5/MOD1/029 for CDC computers and RELAP5/MOD1/025 for VAX or IBM mainframe computers.« less

    15. Numerical computation of Pop plot

      SciTech Connect (OSTI)

      Menikoff, Ralph

      2015-03-23

      The Pop plot — distance-of-run to detonation versus initial shock pressure — is a key characterization of shock initiation in a heterogeneous explosive. Reactive burn models for high explosives (HE) must reproduce the experimental Pop plot to have any chance of accurately predicting shock initiation phenomena. This report describes a methodology for automating the computation of a Pop plot for a specific explosive with a given HE model. Illustrative examples of the computation are shown for PBX 9502 with three burn models (SURF, WSD and Forest Fire) utilizing the xRage code, which is the Eulerian ASC hydrocode at LANL. Comparison of the numerical and experimental Pop plot can be the basis for a validation test or as an aid in calibrating the burn rate of an HE model. Issues with calibration are discussed.

    16. Scalasca | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Data Transfer Debugging & Profiling Performance Tools & APIs Tuning MPI on BG/Q Tuning and Analysis Utilities (TAU) HPCToolkit HPCTW mpiP gprof Profiling Tools Darshan PAPI BG/Q Performance Counters BGPM Openspeedshop Scalasca BG/Q DGEMM Performance Automatic Performance Collection (AutoPerf) Software & Libraries IBM References Cooley Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource.

    17. TRIDAC host computer functional specification

      SciTech Connect (OSTI)

      Hilbert, S.M.; Hunter, S.L.

      1983-08-23

      The purpose of this document is to outline the baseline functional requirements for the Triton Data Acquisition and Control (TRIDAC) Host Computer Subsystem. The requirements presented in this document are based upon systems that currently support both the SIS and the Uranium Separator Technology Groups in the AVLIS Program at the Lawrence Livermore National Laboratory and upon the specific demands associated with the extended safe operation of the SIS Triton Facility.

    18. GAMESS | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Performance Tools & APIs Software & Libraries Boost CPMD Code_Saturne GAMESS GPAW GROMACS LAMMPS MADNESS QBox IBM References Cooley Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] GAMESS What Is GAMESS? The General Atomic and Molecular Electronic Structure System (GAMESS) is a general ab initio quantum chemistry package. For more information on GAMESS, see the Gordon research

    19. Policies | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Accounts Policy Account Sponsorship & Retention Policy ALCC Quarterly Report Policy ALCF Acknowledgment Policy Data Policy INCITE Quarterly Report Policy Job Scheduling Policy on BG/Q Job Scheduling Policies on Cooley Pullback Policy Refund Policy Software Policy User Authentication Policy Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] Policies Official policies and procedures of the ALCF.

    20. Projects | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Projects bgclang Compiler Hal Finkel Cobalt Scheduler Bill Allcock, Paul Rich, Brian Toonen, Tom Uram GLEAN: Scalable In Situ Analysis and I/O Acceleration on Leadership Computing Systems Michael E. Papka, Venkat Vishwanath, Mark Hereld, Preeti Malakar, Joe Insley, Silvio Rizzi, Tom Uram Petrel: Data Management and Sharing Pilot Ian Foster, Michael E. Papka, Bill Allcock, Ben Allen, Rachana Ananthakrishnan, Lukasz Lacinski The Swift Parallel Scripting Language for ALCF Systems Michael Wilde,

    1. Parallel Computing Summer Research Internship

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Mentors Parallel Computing Summer Research Internship Creates next-generation leaders in HPC research and applications development Contacts Program Co-Lead Robert (Bob) Robey Email Program Co-Lead Gabriel Rockefeller Email Program Co-Lead Hai Ah Nam Email Professional Staff Assistant Nickole Aguilar Garcia (505) 665-3048 Email 2016: Mentors Bob Robey Bob Robey XCP-2: EULERIAN CODES Bob Robey is a Research Scientist in the Eulerian Applications group at Los Alamos National Laboratory. He is the

    2. Parallel Computing Summer Research Internship

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Guide to Los Alamos Parallel Computing Summer Research Internship Creates next-generation leaders in HPC research and applications development Contacts Program Co-Lead Robert (Bob) Robey Email Program Co-Lead Gabriel Rockefeller Email Program Co-Lead Hai Ah Nam Email Professional Staff Assistant Nickole Aguilar Garcia (505) 665-3048 Email Guide to Los Alamos During your 10-week internship, we hope you have the opportunity to explore and enjoy Los Alamos and the surrounding area. Here are some

    3. MADNESS | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Software & Libraries Boost CPMD Code_Saturne GAMESS GPAW GROMACS LAMMPS MADNESS QBox IBM References Cooley Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] MADNESS Overview MADNESS is a numerical tool kit used to solve integral differential equations using multi-resolution analysis and a low-rank separation representation. MADNESS can solve multi-dimensional equations, currently up

    4. Advanced Simulation and Computing Program

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Advanced Simulation and Computing (ASC) Program Unstable intermixing of heavy (sulfur hexafluoride) and light fluid (air). Show Caption Turbulence generated by unstable fluid flow. Show Caption Examining the effects of a one-megaton nuclear energy source detonated on the surface of an asteroid. Show Caption Los Alamos National Laboratory is home to two of the world's most powerful supercomputers, each capable of performing more than 1,000 trillion operations per second. The newer one, Cielo, was

    5. Molecular Science Computing: 2010 Greenbook

      SciTech Connect (OSTI)

      De Jong, Wibe A.; Cowley, David E.; Dunning, Thom H.; Vorpagel, Erich R.

      2010-04-02

      This 2010 Greenbook outlines the science drivers for performing integrated computational environmental molecular research at EMSL and defines the next-generation HPC capabilities that must be developed at the MSC to address this critical research. The EMSL MSC Science Panel used EMSL’s vision and science focus and white papers from current and potential future EMSL scientific user communities to define the scientific direction and resulting HPC resource requirements presented in this 2010 Greenbook.

    6. Michael Levitt and Computational Biology

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Michael Levitt and Computational Biology Resources with Additional Information * Publications Michael Levitt Courtesy of Linda A. Cicero / Stanford News Service Michael Levitt, PhD, professor of structural biology at the Stanford University School of Medicine, has won the 2013 Nobel Prize in Chemistry. ... Levitt ... shares the ... prize with Martin Karplus ... and Arieh Warshel ... "for the development of multiscale models for complex chemical systems." Levitt's work focuses on

    7. gdb | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Allinea DDT Core File Settings Determining Memory Use Using VNC with a Debugger bgq_stack gdb Coreprocessor Runjob termination TotalView Performance Tools & APIs Software & Libraries IBM References Cooley Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] gdb Using gdb Preliminaries You should prepare a debug version of your code: Compile using -O0 -g If you are using the XL

    8. QBox | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Data Transfer Debugging & Profiling Performance Tools & APIs Software & Libraries Boost CPMD Code_Saturne GAMESS GPAW GROMACS LAMMPS MADNESS QBox IBM References Cooley Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] QBox What is Qbox? Qbox is a C++/MPI scalable parallel implementation of first-principles molecular dynamics (FPMD) based on the plane-wave, pseudopotential

    9. Towards Energy-Centric Computing and Computer Architecture

      SciTech Connect (OSTI)

      2011-02-09

      Technology forecasts indicate that device scaling will continue well into the next decade. Unfortunately, it is becoming extremely difficult to harness this increase in the number of transistorsinto performance due to a number of technological, circuit, architectural, methodological and programming challenges.In this talk, I will argue that the key emerging showstopper is power. Voltage scaling as a means to maintain a constant power envelope with an increase in transistor numbers is hitting diminishing returns. As such, to continue riding the Moore's law we need to look for drastic measures to cut power. This is definitely the case for server chips in future datacenters,where abundant server parallelism, redundancy and 3D chip integration are likely to remove programming, reliability and bandwidth hurdles, leaving power as the only true limiter.I will present results backing this argument based on validated models for future server chips and parameters extracted from real commercial workloads. Then I use these results to project future research directions for datacenter hardware and software.About the speakerBabak Falsafi is a Professor in the School of Computer and Communication Sciences at EPFL, and an Adjunct Professor of Electrical and Computer Engineering and Computer Science at Carnegie Mellon. He is thefounder and the director ofthe Parallel Systems Architecture Laboratory (PARSA) at EPFL where he conducts research onarchitectural support for parallel programming, resilient systems, architectures to break the memory wall, and analytic and simulation tools for computer system performance evaluation.In 1999, in collaboration with T. N. Vijaykumar he showed for the first time that, contrary to conventional wisdom,multiprocessors do not needrelaxed memory consistency models (and the resulting convoluted programming interfaces found and used in modern systems) to achieve high performance. He is a recipient of an NSF CAREER award in 2000

    10. Toward Molecular Catalysts by Computer

      SciTech Connect (OSTI)

      Raugei, Simone; DuBois, Daniel L.; Rousseau, Roger J.; Chen, Shentan; Ho, Ming-Hsun; Bullock, R. Morris; Dupuis, Michel

      2015-02-17

      Rational design of molecular catalysts requires a systematic approach to designing ligands with specific functionality and precisely tailored electronic and steric properties. It then becomes possible to devise computer protocols to predict accurately the required properties and ultimately to design catalysts by computer. In this account we first review how thermodynamic properties such as oxidation-reduction potentials (E0), acidities (pKa), and hydride donor abilities (ΔGH-) form the basis for a systematic design of molecular catalysts for reactions that are critical for a secure energy future (hydrogen evolution and oxidation, oxygen and nitrogen reduction, and carbon dioxide reduction). We highlight how density functional theory allows us to determine and predict these properties within “chemical” accuracy (~ 0.06 eV for redox potentials, ~ 1 pKa unit for pKa values, and ~ 1.5 kcal/mol for hydricities). These quantities determine free energy maps and profiles associated with catalytic cycles, i.e. the relative energies of intermediates, and help us distinguish between desirable and high-energy pathways and mechanisms. Good catalysts have flat profiles that avoid high activation barriers due to low and high energy intermediates. We illustrate how the criterion of a flat energy profile lends itself to the prediction of design points by computer for optimum catalysts. This research was carried out in the Center for Molecular Electro-catalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle.

    11. GPU COMPUTING FOR PARTICLE TRACKING

      SciTech Connect (OSTI)

      Nishimura, Hiroshi; Song, Kai; Muriki, Krishna; Sun, Changchun; James, Susan; Qin, Yong

      2011-03-25

      This is a feasibility study of using a modern Graphics Processing Unit (GPU) to parallelize the accelerator particle tracking code. To demonstrate the massive parallelization features provided by GPU computing, a simplified TracyGPU program is developed for dynamic aperture calculation. Performances, issues, and challenges from introducing GPU are also discussed. General purpose Computation on Graphics Processing Units (GPGPU) bring massive parallel computing capabilities to numerical calculation. However, the unique architecture of GPU requires a comprehensive understanding of the hardware and programming model to be able to well optimize existing applications. In the field of accelerator physics, the dynamic aperture calculation of a storage ring, which is often the most time consuming part of the accelerator modeling and simulation, can benefit from GPU due to its embarrassingly parallel feature, which fits well with the GPU programming model. In this paper, we use the Tesla C2050 GPU which consists of 14 multi-processois (MP) with 32 cores on each MP, therefore a total of 448 cores, to host thousands ot threads dynamically. Thread is a logical execution unit of the program on GPU. In the GPU programming model, threads are grouped into a collection of blocks Within each block, multiple threads share the same code, and up to 48 KB of shared memory. Multiple thread blocks form a grid, which is executed as a GPU kernel. A simplified code that is a subset of Tracy++ [2] is developed to demonstrate the possibility of using GPU to speed up the dynamic aperture calculation by having each thread track a particle.

    12. Controlling data transfers from an origin compute node to a target compute node

      DOE Patents [OSTI]

      Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.

      2011-06-21

      Methods, apparatus, and products are disclosed for controlling data transfers from an origin compute node to a target compute node that include: receiving, by an application messaging module on the target compute node, an indication of a data transfer from an origin compute node to the target compute node; and administering, by the application messaging module on the target compute node, the data transfer using one or more messaging primitives of a system messaging module in dependence upon the indication.

    13. Scott Runnels of Computational Physics

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Scott Runnels of Computational Physics to teach at West Point March 19, 2013 LOS ALAMOS, N. M., March 19, 2013- Under an agreement between Los Alamos National Laboratory and the U.S. Military Academy, Scott Runnels has been selected for a two-year faculty post in the Department of Physics and Nuclear Engineering at West Point. The teaching position is intended to strengthen the ties between the U.S. national laboratories and the U.S. military academies by bringing in a top scientist to teach at

    14. computational-hydaulics-march-30

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      and Aerodynamics using STAR-CCM+ for CFD Analysis March 30-31, 2011 Argonne, Illinois Dr. Steven Lottes This email address is being protected from spambots. You need JavaScript enabled to view it. Announcement pdficon small A training course in the use of computational hydraulics and aerodynamics CFD software using CD-adapco's STAR-CCM+ for analysis was held at TRACC from March 30-31, 2011. The course assumes a basic knowledge of fluid mechanics and made extensive use of hands on tutorials.

    15. An Arbitrary Precision Computation Package

      Energy Science and Technology Software Center (OSTI)

      2003-06-14

      This package permits a scientist to perform computations using an arbitrarily high level of numeric precision (the equivalent of hundreds or even thousands of digits), by making only minor changes to conventional C++ or Fortran-90 soruce code. This software takes advantage of certain properties of IEEE floating-point arithmetic, together with advanced numeric algorithms, custom data types and operator overloading. Also included in this package is the "Experimental Mathematician's Toolkit", which incorporates many of these facilitiesmore » into an easy-to-use interactive program.« less

    16. computational-structural-mechanics-training

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Table of Contents Date Location Training Course: HyperMesh and HyperView April 12-14, 2011 Argonne TRACC Argonne, IL Introductory Course: Developing Compute-efficient, Quality Models with LS-PrePost® 3 on the TRACC Cluster October 21-22, 2010 Argonne TRACC West Chicago, IL Modeling and Simulation with LS-DYNA®: Insights into Modeling with a Goal of Providing Credible Predictive Simulations February 11-12, 2010 Argonne TRACC West Chicago, IL Introductory Course: Using LS-OPT® on the TRACC

    17. Collectively loading an application in a parallel computer

      DOE Patents [OSTI]

      Aho, Michael E.; Attinella, John E.; Gooding, Thomas M.; Miller, Samuel J.; Mundy, Michael B.

      2016-01-05

      Collectively loading an application in a parallel computer, the parallel computer comprising a plurality of compute nodes, including: identifying, by a parallel computer control system, a subset of compute nodes in the parallel computer to execute a job; selecting, by the parallel computer control system, one of the subset of compute nodes in the parallel computer as a job leader compute node; retrieving, by the job leader compute node from computer memory, an application for executing the job; and broadcasting, by the job leader to the subset of compute nodes in the parallel computer, the application for executing the job.

    18. The Brain: Key To a Better Computer

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Brain: Key To a Better Computer - Sandia Energy Energy Search Icon Sandia Home Locations ... Twitter Google + Vimeo Newsletter Signup SlideShare The Brain: Key To a Better Computer ...

    19. Computer Networking Group | Stanford Synchrotron Radiation Lightsource

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computer Networking Group Do you need help? For assistance please submit a CNG Help Request ticket. CNG Logo Chris Ramirez SSRL Computer and Networking Group (650) 926-2901 | email ...

    20. Computer network control plane tampering monitor

      DOE Patents [OSTI]

      Michalski, John T.; Tarman, Thomas D.; Black, Stephen P.; Torgerson, Mark D.

      2010-06-08

      A computer network control plane tampering monitor that detects unauthorized alteration of a label-switched path setup for an information packet intended for transmission through a computer network.

    1. NERSC Intern Wins Award for Computing Achievement

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      (NCWIT) Aspirations in Computing award on Saturday, March 16, 2013 in a ceremony in San Jose, CA. The award honors young women at the high school level for their computing-related...

    2. Human Brain vs. Computer | GE Global Research

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computer Processors Beat the Human Mind in the Future? Click to email this to a friend ... Can Computer Processors Beat the Human Mind in the Future? 2013.01.29 Chief Scientist Jim ...

    3. Significant Enhancement of Computational Efficiency in Nonlinear Multiscale Battery Model for Computer Aided Engineering (Presentation)

      SciTech Connect (OSTI)

      Kim, G.; Pesaran, A.; Smith, K.; Graf, P.; Jun, M.; Yang, C.; Li, G.; Li, S.; Hochman, A.; Tselepidakis, D.; White, J.

      2014-06-01

      This presentation discusses the significant enhancement of computational efficiency in nonlinear multiscale battery model for computer aided engineering in current research at NREL.

    4. High Performance Computational Biology: A Distributed computing Perspective (2010 JGI/ANL HPC Workshop)

      ScienceCinema (OSTI)

      Konerding, David [Google, Inc

      2011-06-08

      David Konerding from Google, Inc. gives a presentation on "High Performance Computational Biology: A Distributed Computing Perspective" at the JGI/Argonne HPC Workshop on January 26, 2010.

    5. NERSC National Energy Research Scientific Computing Center

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      National Energy Research Scientific Computing Center 2007 Annual Report National Energy Research Scientific Computing Center 2007 Annual Report Ernest Orlando Lawrence Berkeley National Laboratory 1 Cyclotron Road, Berkeley, CA 94720-8148 This work was supported by the Director, Office of Science, Office of Ad- vanced Scientific Computing Research of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. LBNL-1143E, October 2008 iii National Energy Research Scientific Computing

    6. Future Computing Needs for Innovative Confinement Concepts

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      of Plasma Science and Innovation Center Current Computing Utilization and Resources Near Term Needs Concluding Comments Future Computing Needs for Innovative Confinement Concepts Charlson C. Kim charlson@aa.washington.edu Plasma Science and Innovation Center University of Washington, Seattle August 3, 2010 Large Scale Computing Needs for Fusion Energy Science Workshop Rockville, MD Charlson C. Kim, PSI-Center Future Computing Needs of ICC's Introduction of Plasma Science and Innovation Center

    7. Validating Computer-Designed Proteins for Vaccines

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Validating Computer-Designed Proteins for Vaccines Validating Computer-Designed Proteins for Vaccines Print Thursday, 21 August 2014 12:05 In the struggle to keep up with microbes whose rapid mutations outpace our ability to produce vaccines, the human race has a powerful ally: computers. Researchers have now figured out a way to use computational protein design to generate small, stable proteins that accurately mimic key viral structures; these can then be used in vaccines to induce potent

    8. Visitor Hanford Computer Access Request - Hanford Site

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Visitor Hanford Computer Access Request Visitor Hanford Computer Access Request Visitor Hanford Computer Access Request Visitor Hanford Computer Access Request Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size The U.S. Department of Energy (DOE), Richland Operations Office (RL), in compliance with the 'Tri-Party Agreement Databases, Access Mechanism and Procedures' document, DOE/RL-93-69, Revision 5; set forth the requirements for access to the Hanford Site

    9. MECS 2006- Computer, Electronics and Appliances

      Office of Energy Efficiency and Renewable Energy (EERE)

      Manufacturing Energy Footprint for Computer, Electronics and Appliances (NAICS 334, 335) Sector with Total Energy Input, October 2012 (MECS 2006)

    10. Fermilab | Science | Particle Physics | Scientific Computing

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Scientific Computing Feynman Computing Center State-of-the-art computing facilities and expertise drive successful research in experimental and theoretical particle physics. Fermilab is a pioneer in managing "big data" and counts scientific computing as one of its core competencies. For scientists to understand the huge amounts of raw information coming from particle physics experiments, they must process, analyze and compare the information to simulations. To accomplish these feats,

    11. User Guides | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Allocations Mira/Cetus/Vesta Cooley Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] User Guides Information and instructions on system access, computing environment, running jobs, debugging and tuning performance for our computing resources at the ALCF. How to Get an Allocation How to get an Allocation: You must be awarded an allocation in order to use our computer systems. Please

    12. NERSC Intern Wins Award for Computing Achievement

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Intern Wins Award for Computing Achievement NERSC Intern Wins Award for Computing Achievement March 27, 2013 Linda Vu, lvu@lbl.gov, +1 510 495 2402 ncwit1 Stephanie Cabanela, a student intern in the National Energy Research Scientific Computing Center's (NERSC) Operation Technologies Group was honored with the Bay Area Affiliate National Center for Women and Information Technology (NCWIT) Aspirations in Computing award on Saturday, March 16, 2013 in a ceremony in San Jose, CA. The award honors

    13. Computational Spectroscopy of Heterogeneous Interfaces | Argonne...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      N. Brawand, University of Chicago Computational Spectroscopy of Heterogeneous Interfaces ... Year: 2016 Research Domain: Materials Science The interfaces between solids, ...

    14. Computational Research and Theory (CRT) Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computational Research and Theory (CRT) Facility Community Environmental Documents Tours Community Programs Friends of Berkeley Lab ⇒ Navigate Section Community Environmental Documents Tours Community Programs Friends of Berkeley Lab Project Description Wang Hall, previously the Computational Research and Theory Facility, is the new home for high performance computing at LBNL and houses the National Energy Research Scientific Computing Center (NERSC). NERSC supports DOE's mission to discover,

    15. PNNL: Staff Search - Fundamental & Computational Sciences Directorate

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Divisions Advanced Computing, Mathematics & Data Atmospheric Sciences & Global Change Biological Sciences Physical Sciences User Facilities Environmental Molecular Sciences ...

    16. Computing contingency statistics in parallel.

      SciTech Connect (OSTI)

      Bennett, Janine Camille; Thompson, David; Pebay, Philippe Pierre

      2010-09-01

      Statistical analysis is typically used to reduce the dimensionality of and infer meaning from data. A key challenge of any statistical analysis package aimed at large-scale, distributed data is to address the orthogonal issues of parallel scalability and numerical stability. Many statistical techniques, e.g., descriptive statistics or principal component analysis, are based on moments and co-moments and, using robust online update formulas, can be computed in an embarrassingly parallel manner, amenable to a map-reduce style implementation. In this paper we focus on contingency tables, through which numerous derived statistics such as joint and marginal probability, point-wise mutual information, information entropy, and {chi}{sup 2} independence statistics can be directly obtained. However, contingency tables can become large as data size increases, requiring a correspondingly large amount of communication between processors. This potential increase in communication prevents optimal parallel speedup and is the main difference with moment-based statistics where the amount of inter-processor communication is independent of data size. Here we present the design trade-offs which we made to implement the computation of contingency tables in parallel.We also study the parallel speedup and scalability properties of our open source implementation. In particular, we observe optimal speed-up and scalability when the contingency statistics are used in their appropriate context, namely, when the data input is not quasi-diffuse.

    17. Microsoft PowerPoint - PetascaleComputing-042005

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      05 SRC Computers, Inc. ALL RIGHTS RESERVED www.srccomputers.com FPGA Based FPGA Based Petascale Petascale Computing Computing Dan Poznanovic Dan Poznanovic SRC Computers, Inc. SRC Computers, Inc. The The Salishan Salishan Conference on High Conference on High - - Speed Computing Speed Computing April 20, 2005 April 20, 2005 poz@srccomp.com poz@srccomp.com Copyright© 2005 SRC Computers, Inc. ALL RIGHTS RESERVED www.srccomputers.com Dan Poznanovic Dan Poznanovic SRC Computers, Inc. SRC Computers,

    18. Computer System Retirement Guidelines | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Computer System Retirement Guidelines Computer System Retirement Guidelines The System Retirement template contains DOE headquarters-specific information that may be adapted for use by any site or organization Computer System Retirement Guidelines (218.58 KB) More Documents & Publications DOE F 1324.9 LM Records and Information Management Transition Guidance (May 2016) Records Management Handbook

    19. Argonne's Laboratory computing center - 2007 annual report.

      SciTech Connect (OSTI)

      Bair, R.; Pieper, G. W.

      2008-05-28

      Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (1012 floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2007, there were over 60 active projects representing a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and

    20. Foundational Tools for Petascale Computing

      SciTech Connect (OSTI)

      Miller, Barton

      2014-05-19

      The Paradyn project has a history of developing algorithms, techniques, and software that push the cutting edge of tool technology for high-end computing systems. Under this funding, we are working on a three-year agenda to make substantial new advances in support of new and emerging Petascale systems. The overall goal for this work is to address the steady increase in complexity of these petascale systems. Our work covers two key areas: (1) The analysis, instrumentation and control of binary programs. Work in this area falls under the general framework of the Dyninst API tool kits. (2) Infrastructure for building tools and applications at extreme scale. Work in this area falls under the general framework of the MRNet scalability framework. Note that work done under this funding is closely related to work done under a contemporaneous grant, “High-Performance Energy Applications and Systems”, SC0004061/FG02-10ER25972, UW PRJ36WV.

    1. Addressing failures in exascale computing

      SciTech Connect (OSTI)

      Snir, Marc; Wisniewski, Robert W.; Abraham, Jacob A.; Adve, Sarita; Bagchi, Saurabh; Balaji, Pavan; Belak, Jim; Bose, Pradip; Cappello, Franck; Carlson, William; Chien, Andrew A.; Coteus, Paul; Debardeleben, Nathan A.; Diniz, Pedro; Engelmann, Christian; Erez, Mattan; Saverio, Fazzari; Geist, Al; Gupta, Rinku; Johnson, Fred; Krishnamoorthy, Sriram; Leyffer, Sven; Liberty, Dean; Mitra, Subhasish; Munson, Todd; Schreiber, Robert; Stearly, Jon; Van Hensbergen, Eric

      2014-05-01

      We present here a report produced by a workshop on “Addressing Failures in Exascale Computing” held in Park City, Utah, August 4–11, 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system; discuss existing knowledge on resilience across the various hardware and software layers of an exascale system; and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, and academia; and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.

    2. Collective network for computer structures

      DOE Patents [OSTI]

      Blumrich, Matthias A; Coteus, Paul W; Chen, Dong; Gara, Alan; Giampapa, Mark E; Heidelberger, Philip; Hoenicke, Dirk; Takken, Todd E; Steinmacher-Burow, Burkhard D; Vranas, Pavlos M

      2014-01-07

      A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to the needs of a processing algorithm.

    3. Radiological Safety Analysis Computer Program

      Energy Science and Technology Software Center (OSTI)

      2001-08-28

      RSAC-6 is the latest version of the RSAC program. It calculates the consequences of a release of radionuclides to the atmosphere. Using a personal computer, a user can generate a fission product inventory; decay and in-grow the inventory during transport through processes, facilities, and the environment; model the downwind dispersion of the activity; and calculate doses to downwind individuals. Internal dose from the inhalation and ingestion pathways is calculated. External dose from ground surface andmore » plume gamma pathways is calculated. New and exciting updates to the program include the ability to evaluate a release to an enclosed room, resuspension of deposited activity and evaluation of a release up to 1 meter from the release point. Enhanced tools are included for dry deposition, building wake, occupancy factors, respirable fraction, AMAD adjustment, updated and enhanced radionuclide inventory and inclusion of the dose-conversion factors from FOR 11 and 12.« less

    4. Collective network for computer structures

      DOE Patents [OSTI]

      Blumrich, Matthias A.; Coteus, Paul W.; Chen, Dong; Gara, Alan; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Takken, Todd E.; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos M.

      2011-08-16

      A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices ate included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network and class structures. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to needs of a processing algorithm.

    5. ASCR Workshop on Quantum Computing for Science

      SciTech Connect (OSTI)

      Aspuru-Guzik, Alan; Van Dam, Wim; Farhi, Edward; Gaitan, Frank; Humble, Travis; Jordan, Stephen; Landahl, Andrew J; Love, Peter; Lucas, Robert; Preskill, John; Muller, Richard P.; Svore, Krysta; Wiebe, Nathan; Williams, Carl

      2015-06-01

      This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms for linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.

    6. Cupola Furnace Computer Process Model

      SciTech Connect (OSTI)

      Seymour Katz

      2004-12-31

      The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

    7. Computation & Simulation > Theory & Computation > Research > The Energy

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Materials Center at Cornell Theory & Computation View Slideshow › This page has images associated with it. Click above to view. computational_2 computational_3 In This Section Computation & Simulation Computation & Simulation Extensive combinatorial results and ongoing basic research at the Cornell Energy Materials Center hold great promise for finding a new generation of fuel cell electrocatalysts. This research has also generated a growing library of results which is an

    8. Large Scale Computing and Storage Requirements for Advanced Scientific...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2014 ASCRFrontcover.png Large Scale Computing and Storage Requirements for ...

    9. Chameleon: A Computer Science Testbed as Application of Cloud...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Chameleon: A Computer Science Testbed as Application of Cloud Computing Event Sponsor: Mathematics and Computing Science Brownbag Lunch Start Date: Dec 15 2015 - 12:00pm Building...

    10. Previous Computer Science Award Announcements | U.S. DOE Office...

      Office of Science (SC) Website

      Previous Computer Science Award Announcements Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop ...

    11. Locating hardware faults in a parallel computer

      DOE Patents [OSTI]

      Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

      2010-04-13

      Locating hardware faults in a parallel computer, including defining within a tree network of the parallel computer two or more sets of non-overlapping test levels of compute nodes of the network that together include all the data communications links of the network, each non-overlapping test level comprising two or more adjacent tiers of the tree; defining test cells within each non-overlapping test level, each test cell comprising a subtree of the tree including a subtree root compute node and all descendant compute nodes of the subtree root compute node within a non-overlapping test level; performing, separately on each set of non-overlapping test levels, an uplink test on all test cells in a set of non-overlapping test levels; and performing, separately from the uplink tests and separately on each set of non-overlapping test levels, a downlink test on all test cells in a set of non-overlapping test levels.

    12. Impact analysis on a massively parallel computer

      SciTech Connect (OSTI)

      Zacharia, T.; Aramayo, G.A.

      1994-06-01

      Advanced mathematical techniques and computer simulation play a major role in evaluating and enhancing the design of beverage cans, industrial, and transportation containers for improved performance. Numerical models are used to evaluate the impact requirements of containers used by the Department of Energy (DOE) for transporting radioactive materials. Many of these models are highly compute-intensive. An analysis may require several hours of computational time on current supercomputers despite the simplicity of the models being studied. As computer simulations and materials databases grow in complexity, massively parallel computers have become important tools. Massively parallel computational research at the Oak Ridge National Laboratory (ORNL) and its application to the impact analysis of shipping containers is briefly described in this paper.

    13. Performing an allreduce operation on a plurality of compute nodes of a parallel computer

      DOE Patents [OSTI]

      Faraj, Ahmad

      2012-04-17

      Methods, apparatus, and products are disclosed for performing an allreduce operation on a plurality of compute nodes of a parallel computer. Each compute node includes at least two processing cores. Each processing core has contribution data for the allreduce operation. Performing an allreduce operation on a plurality of compute nodes of a parallel computer includes: establishing one or more logical rings among the compute nodes, each logical ring including at least one processing core from each compute node; performing, for each logical ring, a global allreduce operation using the contribution data for the processing cores included in that logical ring, yielding a global allreduce result for each processing core included in that logical ring; and performing, for each compute node, a local allreduce operation using the global allreduce results for each processing core on that compute node.

    14. Validating Computer-Designed Proteins for Vaccines

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Validating Computer-Designed Proteins for Vaccines Print In the struggle to keep up with microbes whose rapid mutations outpace our ability to produce vaccines, the human race has a powerful ally: computers. Researchers have now figured out a way to use computational protein design to generate small, stable proteins that accurately mimic key viral structures; these can then be used in vaccines to induce potent neutralizing antibodies. The results were validated in part using protein structures

    15. Validating Computer-Designed Proteins for Vaccines

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Validating Computer-Designed Proteins for Vaccines Print In the struggle to keep up with microbes whose rapid mutations outpace our ability to produce vaccines, the human race has a powerful ally: computers. Researchers have now figured out a way to use computational protein design to generate small, stable proteins that accurately mimic key viral structures; these can then be used in vaccines to induce potent neutralizing antibodies. The results were validated in part using protein structures

    16. Validating Computer-Designed Proteins for Vaccines

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Validating Computer-Designed Proteins for Vaccines Print In the struggle to keep up with microbes whose rapid mutations outpace our ability to produce vaccines, the human race has a powerful ally: computers. Researchers have now figured out a way to use computational protein design to generate small, stable proteins that accurately mimic key viral structures; these can then be used in vaccines to induce potent neutralizing antibodies. The results were validated in part using protein structures

    17. Validating Computer-Designed Proteins for Vaccines

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Validating Computer-Designed Proteins for Vaccines Print In the struggle to keep up with microbes whose rapid mutations outpace our ability to produce vaccines, the human race has a powerful ally: computers. Researchers have now figured out a way to use computational protein design to generate small, stable proteins that accurately mimic key viral structures; these can then be used in vaccines to induce potent neutralizing antibodies. The results were validated in part using protein structures

    18. Venkatram Vishwanath | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Venkatram Vishwanath Computer Scientist, Data Science Group Lead Venkatram Vishwanath Argonne National Laboratory 9700 S. Cass Avenue Building 240 - Rm. 4141 Argonne, IL 60439 630-252-4971 venkat@anl.gov Venkatram Vishwanath is a computer scientist at Argonne National Laboratory. He is the Data Science group lead at the Argonne leadership computing facility (ALCF). His current focus is on algorithms, system software, and workflows to facilitate data-centric applications on supercomputing

    19. INCITE Program | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      INCITE Program Innovative and Novel Computational Impact on Theory and Experiment (INCITE) Program The INCITE program provides allocations to computationally intensive, large-scale research projects that aim to address "grand challenges" in science and engineering. The program conducts a two-part review of all proposals: a peer review by an international panel of experts and a computational-readiness review. The annual call for proposals is issued in April and the allocations are

    20. Improved computer models support genetics research

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      February » Simple computer models unravel genetic stress reactions in cells Simple computer models unravel genetic stress reactions in cells Integrated biological and computational methods provide insight into why genes are activated. February 8, 2013 When complete, these barriers will be a portion of the NMSSUP upgrade. This molecular structure depicts a yeast transfer ribonucleic acid (tRNA), which carries a single amino acid to the ribosome during protein construction. A combined

    1. National Energy Research Scientific Computing Center

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Scientific Computing Center 2004 annual report Cover image: Visualization based on a simulation of the density of a fuel pellet after it is injected into a tokamak fusion reactor. See page 40 for more information. National Energy Research Scientific Computing Center 2004 annual report Ernest Orlando Lawrence Berkeley National Laboratory * University of California * Berkeley, California 94720 This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing

    2. Digital computer operation of a nuclear reactor

      DOE Patents [OSTI]

      Colley, R.W.

      1982-06-29

      A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

    3. Digital computer operation of a nuclear reactor

      DOE Patents [OSTI]

      Colley, Robert W.

      1984-01-01

      A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

    4. Introduction to High Performance Computing Using GPUs

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      HPC Using GPUs Introduction to High Performance Computing Using GPUs July 11, 2013 NERSC, NVIDIA, and The Portland Group presented a one-day workshop "Introduction to High Performance Computing Using GPUs" on July 11, 2013 in Room 250 of Sutardja Dai Hall on the University of California, Berkeley, campus. Registration was free and open to all NERSC users; Berkeley Lab Researchers; UC students, faculty, and staff; and users of the Oak Ridge Leadership Computing Facility. This workshop

    5. Center for Computational Excellence | Argonne National Laboratory

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Center for Computational Excellence The Center for Computational Excellence (CCE) provides the connections, resources, and expertise that facilitate a more common HEP computing environment and when possible move away from experiment-specific software. This means helping members of the community connect to one another to avoid reinventing the wheel by find existing solutions or engineering experiment-independent solutions. HEP-CCE activity will take place under three types of programs. The first

    6. Shaping Future Supercomputing Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      0 1 1 a n n u a l r e p o r t Shaping Future Supercomputing Argonne Leadership Computing Facility ANL-12/22 Argonne Leadership Computing Facility 2 0 1 1 a l c f a n n u a l r e p o r t w w w . a l c f . a n l . g o v Contents Overview .......................................2 Mira ..............................................4 Science Highlights ...........................8 Computing Resources ..................... 26 2011 ALCF Publications .................. 28 2012 INCITE Projects

    7. Marta Garcia Martinez | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Marta Garcia Martinez Principal Project Specialist - Computational Science Marta Garcia Martinez Argonne National Laboratory 9700 South Cass Avenue Building 240 - Rm. 1132 Argonne IL, 60439 630-252-0091 mgarcia@alcf.anl.gov http://web.alcf.anl.gov/~mgarcia/ Marta García is a Principal Project Specialist - Computational Science. She is part of the Catalyst Team, where she focuses on assisting Computational Fluid Dynamics projects to maximize and accelerate their research on ALCF resources. She

    8. High Performance Computing Student Career Resources

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      HPC » Students High Performance Computing Student Career Resources Explore the multiple dimensions of a career at Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. Contact Us Student Liaison Josephine Kilde (505) 667-5086 Email High Performance Computing Capabilities The High Performance Computing (HPC) Division supports the Laboratory mission by managing world-class Supercomputing Centers. Our

    9. Improved computer models support genetics research

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Simple computer models unravel genetic stress reactions in cells Simple computer models unravel genetic stress reactions in cells Integrated biological and computational methods provide insight into why genes are activated. February 8, 2013 When complete, these barriers will be a portion of the NMSSUP upgrade. This molecular structure depicts a yeast transfer ribonucleic acid (tRNA), which carries a single amino acid to the ribosome during protein construction. A combined experimental and

    10. Computational Spectroscopy of Heterogeneous Interfaces | Argonne Leadership

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computing Facility electronic properties of aqueous solutions of NaCl with density functional theory and hybrid functionals The INCITE team computed the electronic properties of aqueous solutions of NaCl with density functional theory and hybrid functionals. For some samples with many body perturbation theory (GW), they determined the interplay of cations and anions on the energy levels of the solution. Alex Gaiduk, University of Chicago Computational Spectroscopy of Heterogeneous Interfaces

    11. Present and Future Computing Requirements for PETSc

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      and Future Computing Requirements for PETSc Jed Brown jedbrown@mcs.anl.gov Mathematics and Computer Science Division, Argonne National Laboratory Department of Computer Science, University of Colorado Boulder NERSC ASCR Requirements for 2017 2014-01-15 Extending PETSc's Hierarchically Nested Solvers ANL Lois C. McInnes, Barry Smith, Jed Brown, Satish Balay UChicago Matt Knepley IIT Hong Zhang LBL Mark Adams Linear solvers, nonlinear solvers, time integrators, optimization methods (merged TAO)

    12. Software/Computing | Argonne National Laboratory

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Software/Computing Software/Computing Argonne is the central site for work on database and data management. The group has key responsibilities in the design and implementation of the I/O model which must provided distributed access to many petabytes of data for both event reconstruction and physics analysis. The group deployed a number of HEP packages on the BlueGene/Q supercomputer of the Argonne Leadership Computing Facility, and currently generates CPU-intensive Monte Carlo event samples for

    13. Computationally Efficient Multiconfigurational Reactive Molecular Dynamics

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      | Argonne Leadership Computing Facility Computationally Efficient Multiconfigurational Reactive Molecular Dynamics Authors: Takefumi Yamashita, Yuxing Peng, Chris Knight, Gregory A. Voth It is a computationally demanding task to explicitly simulate the electronic degrees of freedom in a system to observe the chemical transformations of interest, while at the same time sampling the time and length scales required to converge statistical properties and thus reduce artifacts due to initial

    14. Multicore: Fallout from a Computing Evolution

      ScienceCinema (OSTI)

      Yelick, Kathy [Director, NERSC

      2009-09-01

      July 22, 2008 Berkeley Lab lecture: Parallel computing used to be reserved for big science and engineering projects, but in two years that's all changed. Even laptops and hand-helds use parallel processors. Unfortunately, the software hasn't kept pace. Kathy Yelick, Director of the National Energy Research Scientific Computing Center at Berkeley Lab, describes the resulting chaos and the computing community's efforts to develop exciting applications that take advantage of tens or hundreds of processors on a single chip.

    15. Covered Product Category: Computers | Department of Energy

      Office of Environmental Management (EM)

      of hazardous materials and end-of-life management). ... Standby power is the electricity consumed by a product when ... costs 9 in energy consumption per computer over the ...

    16. 2015 Annual Report - Argonne Leadership Computing Facility

      SciTech Connect (OSTI)

      Collins, James R.; Papka, Michael E.; Cerny, Beth A.; Coffey, Richard M.

      2015-01-01

      The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

    17. Graham Fletcher | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Graham Fletcher is a Principal Project Specialist in Computational Science at the ALCF with a background in quantum chemistry and supercomputing. His research interests focus on ...

    18. Nichols A. Romero | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      naromero@alcf.anl.gov Nichols A. Romero is a computational scientist and the technical lead for the team that supports ALCF projects in biology, chemistry and materials. ...

    19. Extreme Scale Computing, Co-design

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Extreme Scale Computing, Co-design Informing system design, ensuring productive and efficient code Project Description To address the increasingly complex problems of the modern ...

    20. Modeling of Geothermal Reservoirs: Fundamental Processes, Computer...

      Open Energy Info (EERE)

      of Geothermal Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

    1. Computable General Equilibrium Models for Sustainability Impact...

      Open Energy Info (EERE)

      Publications, Softwaremodeling tools User Interface: Other Website: iatools.jrc.ec.europa.eudocsecolecon2006.pdf Computable General Equilibrium Models for Sustainability...

    2. Computational Actinide Chemistry: Reliable Predictions and New...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computational Actinide Chemistry: Reliable Predictions and New Concepts PI Name: David ... 100 Million Year: 2014 Research Domain: Chemistry The project will obtain some of the ...

    3. BETO Webinar: Computational Studies of Lignocellulose Deconstruction...

      Energy Savers [EERE]

      Sugars and Biological Conversion of Sugars to Hydrocarbons High Level Computational Chemistry Approaches to the Prediction of Energetic Properties of Chemical Hydrogen Storage ...

    4. Applying computationally efficient schemes for biogeochemical...

      Office of Scientific and Technical Information (OSTI)

      Sponsoring Org: USDOE Office of Science (SC) Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES; 97 MATHEMATICS AND COMPUTING Word Cloud ...

    5. Integrated Computational Materials Engineering (ICME) for Mg...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon lm012li2011o.pdf More Documents & Publications Integrated Computational Materials Engineering ...

    6. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the...

    7. Adrian C. Pope | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Adrian C. Pope Assistant Computational Scientist Argonne National Laboratory 9700 S. Cass Avenue Building 240 - Rm. 11213 Argonne, IL 60439 630-252-8745 apope

    8. Anouar Benali | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Anouar Benali Assistant Computational Scientist Anouar Benali Argonne National Laboratory 9700 South Cass Avenue Building 240 - Rm. 2127 Argonne, IL 60439 630-252-0058 benali@anl

    9. 2014 Annual Report - Argonne Leadership Computing Facility

      SciTech Connect (OSTI)

      Collins, James R.; Papka, Michael E.; Cerny, Beth A.; Coffey, Richard M.

      2014-01-01

      The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

    10. ACM TOMS replicated computational results initiative (Journal...

      Office of Scientific and Technical Information (OSTI)

      Journal Article: ACM TOMS replicated computational results initiative Citation Details ... OSTI Identifier: 1235340 Report Number(s): SAND--2015-20790J Journal ID: ISSN 0098-3500; ...

    11. Understanding and Improving Computational Science Storage Access...

      Office of Scientific and Technical Information (OSTI)

      Title: Understanding and Improving Computational Science Storage Access Through Continuous Characterization Authors: Carns, P. ; Harms, K. ; Allcock, W. ; Bacon, C. ; Lang, S. ; ...

    12. ALCC Program | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Projects Publications ALCF Tech Reports Industry Collaborations ALCC Program ASCR Leadership Computing Challenge (ALCC) Program The ALCC program allocates resources to projects...

    13. SC e-journals, Computer Science

      Office of Scientific and Technical Information (OSTI)

      Computer Science ACM Letters on Programming Languages and Systems (LOPLAS) ACM Transactions on Applied Perception (TAP) ACM Transactions on Architecture and Code Optimization ...

    14. SIAM Conference on Computational Science and Engineering

      SciTech Connect (OSTI)

      2003-01-01

      The Second SIAM Conference on Computational Science and Engineering was held in San Diego from February 10-12, 2003. Total conference attendance was 553. This is a 23% increase in attendance over the first conference. The focus of this conference was to draw attention to the tremendous range of major computational efforts on large problems in science and engineering, to promote the interdisciplinary culture required to meet these large-scale challenges, and to encourage the training of the next generation of computational scientists. Computational Science & Engineering (CS&E) is now widely accepted, along with theory and experiment, as a crucial third mode of scientific investigation and engineering design. Aerospace, automotive, biological, chemical, semiconductor, and other industrial sectors now rely on simulation for technical decision support. For federal agencies also, CS&E has become an essential support for decisions on resources, transportation, and defense. CS&E is, by nature, interdisciplinary. It grows out of physical applications and it depends on computer architecture, but at its heart are powerful numerical algorithms and sophisticated computer science techniques. From an applied mathematics perspective, much of CS&E has involved analysis, but the future surely includes optimization and design, especially in the presence of uncertainty. Another mathematical frontier is the assimilation of very large data sets through such techniques as adaptive multi-resolution, automated feature search, and low-dimensional parameterization. The themes of the 2003 conference included, but were not limited to: Advanced Discretization Methods; Computational Biology and Bioinformatics; Computational Chemistry and Chemical Engineering; Computational Earth and Atmospheric Sciences; Computational Electromagnetics; Computational Fluid Dynamics; Computational Medicine and Bioengineering; Computational Physics and Astrophysics; Computational Solid Mechanics and Materials; CS

    15. Thermodynamic properties of indan: Experimental and computational...

      Office of Scientific and Technical Information (OSTI)

      Thermodynamic properties of indan: Experimental and computational results This content will become publicly available on March 13, 2018 Prev Next Title: Thermodynamic ...

    16. SciTech Connect: "high performance computing"

      Office of Scientific and Technical Information (OSTI)

      Advanced Search Term Search Semantic Search Advanced Search All Fields: "high performance computing" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

    17. Computational Challenges for Nanostructure Solar Cells

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Challenges for Nanostructure Solar Cells Computational Challenges for Nanostructure Solar Cells ZZ2.jpg Key Challenges: Current nanostructure solar cells often have energy...

    18. Visualization Gallery from the Computational Research Division...

      Office of Scientific and Technical Information (OSTI)

      Visualization Gallery from the Computational Research Division at Lawrence Berkeley ... Data from Enhanced Geothermal Systems; 3) PointCloudXplore: Visualization and ...

    19. Innovative Computational Tools for Reducing Exploration Risk...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Computational Tools for Reducing Exploration Risk Through Integration of Water-Rock ... More Documents & Publications track 4: enhanced geothermal systems (EGS) | geothermal 2015 ...

    20. NERSC seeks Computational Systems Group Lead

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      and advanced development for the supercomputer systems at NERSC (National Energy Research Scientific Computing ... workload demands within hiring and budget constraints. ...

    1. Manufacturing Energy and Carbon Footprint - Sector: Computer...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Computers, Electronics and Electrical Equipment (NAICS 334, 335) Process Energy Electricity and Steam Generation Losses Process Losses 5 Nonprocess Losses 493 46 Steam Distribution ...

    2. National Energy Research Scientific Computing Center

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      ... use include on-demand computing functionality for ... mega-electron volts per meter before the metal breaks down. ... been collaborating with earth scientists at Berkeley Lab ...

    3. Computational Scientist | Princeton Plasma Physics Lab

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Department, with interest in leadership class computing of gyrokinetic fusion edge plasma research. A candidate who has knowledge in hybrid parallel programming with MPI, OpenMP,...

    4. Computer virus information update CIAC-2301

      SciTech Connect (OSTI)

      Orvis, W.J.

      1994-01-15

      While CIAC periodically issues bulletins about specific computer viruses, these bulletins do not cover all the computer viruses that affect desktop computers. The purpose of this document is to identify most of the known viruses for the MS-DOS and Macintosh platforms and give an overview of the effects of each virus. The authors also include information on some windows, Atari, and Amiga viruses. This document is revised periodically as new virus information becomes available. This document replaces all earlier versions of the CIAC Computer virus Information Update. The date on the front cover indicates date on which the information in this document was extracted from CIAC`s Virus database.

    5. Integrated Computational Materials Engineering (ICME) for Mg...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Project (Part 1) Integrated Computational Materials Engineering (ICME) for Mg: International Pilot Project (Part 1) 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

    6. The Magellan Final Report on Cloud Computing

      SciTech Connect (OSTI)

      ,; Coghlan, Susan; Yelick, Katherine

      2011-12-21

      The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR), was to investigate the potential role of cloud computing in addressing the computing needs for the DOE Office of Science (SC), particularly related to serving the needs of mid- range computing and future data-intensive computing workloads. A set of research questions was formed to probe various aspects of cloud computing from performance, usability, and cost. To address these questions, a distributed testbed infrastructure was deployed at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computing Center (NERSC). The testbed was designed to be flexible and capable enough to explore a variety of computing models and hardware design points in order to understand the impact for various scientific applications. During the project, the testbed also served as a valuable resource to application scientists. Applications from a diverse set of projects such as MG-RAST (a metagenomics analysis server), the Joint Genome Institute, the STAR experiment at the Relativistic Heavy Ion Collider, and the Laser Interferometer Gravitational Wave Observatory (LIGO), were used by the Magellan project for benchmarking within the cloud, but the project teams were also able to accomplish important production science utilizing the Magellan cloud resources.

    7. Salishan: Conference on High Speed Computing

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      ... of Notre Dame, and William Harrod, DARPA Exascale Ambitions What, me worry? : S > ... Systems (HPCS) (pdf), Robert Graybill, DARPA High-End Computing Revitalization (pdf), ...

    8. System Overview | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Machine Overview Machine Overview is a reference for the login and compile nodes, IO nodes, and compute nodes of the BGQ system. Machine Partitions Machine Partitions is a ...

    9. high performance computing | National Nuclear Security Administration

      National Nuclear Security Administration (NNSA)

      Livermore National Laboratory (LLNL), announced her retirement last week after 15 years of leading Livermore's Computation Directorate. "Dona has successfully led a ...

    10. Ni Clusterbank Replacement Project | Argonne Leadership Computing...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Ni Clusterbank Replacement Project Event Sponsor: Argonne Leadership Computing Facility Seminar Start Date: Oct 20 2015 - 12:00pm BuildingRoom: Building 241Room D173...

    11. Climate Modeling using High-Performance Computing

      SciTech Connect (OSTI)

      Mirin, A A

      2007-02-05

      The Center for Applied Scientific Computing (CASC) and the LLNL Climate and Carbon Science Group of Energy and Environment (E and E) are working together to improve predictions of future climate by applying the best available computational methods and computer resources to this problem. Over the last decade, researchers at the Lawrence Livermore National Laboratory (LLNL) have developed a number of climate models that provide state-of-the-art simulations on a wide variety of massively parallel computers. We are now developing and applying a second generation of high-performance climate models. Through the addition of relevant physical processes, we are developing an earth systems modeling capability as well.

    12. Computational Design of Interfaces for Photovoltaics | Argonne...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computational Design of Interfaces for Photovoltaics PI Name: Noa Marom PI Email: nmarom@tulane.edu Institution: Tulane University Allocation Program: ALCC Allocation Hours at...

    13. Inexpensive computer data-acquisition system

      SciTech Connect (OSTI)

      Galvin, J.E.; Brown, I.G.

      1985-10-01

      A system based on an Apple II+ personal computer is used for on-line monitoring of ion-beam characteristics in accelerator ion source development.

    14. Computers in Commercial Buildings - Table 3

      U.S. Energy Information Administration (EIA) Indexed Site

      Back to Computers in Commercial Buildings Specific questions may be directed to: Jay Olsen jay.olsen@eia.doe.gov http:www.eia.govconsumptioncommercialdataarchive...

    15. Computers in Commercial Buildings - Table 2

      U.S. Energy Information Administration (EIA) Indexed Site

      Back to Computers in Commercial Buildings Specific questions may be directed to: Jay Olsen jay.olsen@eia.doe.gov http:www.eia.govconsumptioncommercialdataarchive...

    16. Computers in Commercial Buildings - Table 4

      U.S. Energy Information Administration (EIA) Indexed Site

      Back to Computers in Commercial Buildings Specific questions may be directed to: Jay Olsen jay.olsen@eia.doe.gov http:www.eia.govconsumptioncommercialdataarchive...

    17. Computers in Commercial Buildings - Table 1

      U.S. Energy Information Administration (EIA) Indexed Site

      Back to Computers in Commercial Buildings Specific questions may be directed to: Jay Olsen jay.olsen@eia.doe.gov http:www.eia.govconsumptioncommercialdataarchive...

    18. Smart Grid Computational Tool | Open Energy Information

      Open Energy Info (EERE)

      project benefits. The Smart Grid Computational Tool employs the benefit analysis methodology that DOE uses to evaluate the Recovery Act smart grid projects. How it works: The...

    19. Library and Compiler Tracking | Argonne Leadership Computing...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. Feedback Form Library and Compiler Tracking...

    20. Discretionary Allocation Request | Argonne Leadership Computing...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      ... Fusion Energy, Magnetic Fusion Materials Science, Condensed Matter and Materials Physics ... This may include information such as: - computational methods - programming model - ...

    1. Early Science Program | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      In addition to fostering application readiness, the ESP allows researchers to pursue innovative computational science projects not possible on today's leadership-class ...

    2. Mira Computational Readiness Assessment | Argonne Leadership...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      INCITE Program 5 Checks & 5 Tips for INCITE Mira Computational Readiness Assessment ALCC Program Director's Discretionary (DD) Program Early Science Program INCITE 2016 Projects ...

    3. Director's Discretionary (DD) Program | Argonne Leadership Computing...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Science at ALCF Allocation Programs INCITE Program ALCC Program Director's Discretionary ... working toward an INCITE or ALCC allocation to help them achieve computational readiness. ...

    4. Addressing Failures in Exascale Computing (Technical Report)...

      Office of Scientific and Technical Information (OSTI)

      J. ; Hensbergen, E. V. 1 less + Show Author Affiliations (Mathematics and Computer Science) Publication Date: 2013-04-24 OSTI Identifier: 1078029 Report Number(s): ANL...

    5. Web Articles | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Web Articles Susan Coghlan Two ALCF staff members recognized by Argonne's Board of Governors On August 4, Susan Coghlan and John "Skip" Reddy of the Argonne Leadership Computing ...

    6. Hal Finkel | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Hal Finkel Assistant Computational Scientist Hal Finkel Argonne National Laboratory 9700 South Cass Avenue Building 240 - Rm. 2126 Argonne, IL 60439 630-252-0023 hfinkel...

    7. Radiation Detection Computational Benchmark Scenarios

      SciTech Connect (OSTI)

      Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.; McDonald, Ben S.

      2013-09-24

      Modeling forms an important component of radiation detection development, allowing for testing of new detector designs, evaluation of existing equipment against a wide variety of potential threat sources, and assessing operation performance of radiation detection systems. This can, however, result in large and complex scenarios which are time consuming to model. A variety of approaches to radiation transport modeling exist with complementary strengths and weaknesses for different problems. This variety of approaches, and the development of promising new tools (such as ORNL’s ADVANTG) which combine benefits of multiple approaches, illustrates the need for a means of evaluating or comparing different techniques for radiation detection problems. This report presents a set of 9 benchmark problems for comparing different types of radiation transport calculations, identifying appropriate tools for classes of problems, and testing and guiding the development of new methods. The benchmarks were drawn primarily from existing or previous calculations with a preference for scenarios which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22. From a technical perspective, the benchmarks were chosen to span a range of difficulty and to include gamma transport, neutron transport, or both and represent different important physical processes and a range of sensitivity to angular or energy fidelity. Following benchmark identification, existing information about geometry, measurements, and previous calculations were assembled. Monte Carlo results (MCNP decks) were reviewed or created and re-run in order to attain accurate computational times and to verify agreement with experimental data, when present. Benchmark information was then conveyed to ORNL in order to guide testing and development of hybrid calculations. The results of those ADVANTG calculations were then sent to PNNL for

    8. DOE to Invest $16 Million in Computer Design of Materials

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      DOE to Invest $16 Million in Computer Design of Materials

    9. Topological one-way quantum computation on verified logical cluster...

      Office of Scientific and Technical Information (OSTI)

      NOISE; QUANTUM COMPUTERS; QUBITS; STAR CLUSTERS; THREE-DIMENSIONAL CALCULATIONS; TOPOLOGY; VERIFICATION COMPUTERS; INFORMATION; MATHEMATICS; QUANTUM INFORMATION Word Cloud ...

    10. Invited book review for AIAA Journal of verification of computer...

      Office of Scientific and Technical Information (OSTI)

      Country of Publication: United States Language: English Subject: 99 GENERAL AND MISCELLANEOUSMATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; COMPUTER CODES; VERIFICATION; SANDIA ...

    11. Introduction to the session: Computing with biomolecules

      SciTech Connect (OSTI)

      Head, T.; Yokomori, Takashi

      1996-12-31

      This session presents three distinct presentations: the first presentation deals with the design of a photosensitive receptor from the protein bacteriorhodopsin; the second presentation deals with biocomputing applications using DNA molecules and enzymes to implement algorithmic computations. The third presentation discusses the computational generative capabilities of DNA subsegments.

    12. Debugging a high performance computing program

      DOE Patents [OSTI]

      Gooding, Thomas M.

      2014-08-19

      Methods, apparatus, and computer program products are disclosed for debugging a high performance computing program by gathering lists of addresses of calling instructions for a plurality of threads of execution of the program, assigning the threads to groups in dependence upon the addresses, and displaying the groups to identify defective threads.

    13. Debugging a high performance computing program

      DOE Patents [OSTI]

      Gooding, Thomas M.

      2013-08-20

      Methods, apparatus, and computer program products are disclosed for debugging a high performance computing program by gathering lists of addresses of calling instructions for a plurality of threads of execution of the program, assigning the threads to groups in dependence upon the addresses, and displaying the groups to identify defective threads.

    14. Multiprocessor computer overset grid method and apparatus

      DOE Patents [OSTI]

      Barnette, Daniel W.; Ober, Curtis C.

      2003-01-01

      A multiprocessor computer overset grid method and apparatus comprises associating points in each overset grid with processors and using mapped interpolation transformations to communicate intermediate values between processors assigned base and target points of the interpolation transformations. The method allows a multiprocessor computer to operate with effective load balance on overset grid applications.

    15. Low Mach Number Models in Computational Astrophysics

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Ann Almgren Low Mach Number Models in Computational Astrophysics February 4, 2014 Ann Almgren. Berkeley Lab Downloads Almgren-nug2014.pdf | Adobe Acrobat PDF file Low Mach Number Models in Computational Astrophysics - Ann Almgren, Berkeley Lab Last edited: 2016-04-29 11:34:50

    16. Guide to Preventing Computer Software Piracy

      Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

      2001-07-12

      Guide to Preventing Computer Software Piracy It is the intent of the Department of Energy (DOE) to issue guidance in accordance with Federal CIO Council recommendations and in compliance with Executive Order 13103. The guidance in this document is based on the CIO Council's recommendations in reference to computer software piracy, and applies to all DOE elements. Canceled by DOE N 205.18

    17. Argonne's Magellan Cloud Computing Research Project

      ScienceCinema (OSTI)

      Beckman, Pete

      2013-04-19

      Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF), discusses the Department of Energy's new $32-million Magellan project, which designed to test how cloud computing can be used for scientific research. More information: http://www.anl.gov/Media_Center/News/2009/news091014a.html

    18. Pacing a data transfer operation between compute nodes on a parallel computer

      DOE Patents [OSTI]

      Blocksome, Michael A.

      2011-09-13

      Methods, systems, and products are disclosed for pacing a data transfer between compute nodes on a parallel computer that include: transferring, by an origin compute node, a chunk of an application message to a target compute node; sending, by the origin compute node, a pacing request to a target direct memory access (`DMA`) engine on the target compute node using a remote get DMA operation; determining, by the origin compute node, whether a pacing response to the pacing request has been received from the target DMA engine; and transferring, by the origin compute node, a next chunk of the application message if the pacing response to the pacing request has been received from the target DMA engine.

    19. Interstitial computing : utilizing spare cycles on supercomputers.

      SciTech Connect (OSTI)

      Clearwater, Scott Harvey; Kleban, Stephen David

      2003-06-01

      This paper presents an analysis of utilizing unused cycles on supercomputers through the use of many small jobs. What we call 'interstitial computing,' is important to supercomputer centers for both productivity and political reasons. Interstitial computing makes use of the fact that small jobs are more or less fungible consumers of compute cycles that are more efficient for bin packing than the typical jobs on a supercomputer. An important feature of interstitial computing is that it not have a significant impact on the makespan of native jobs on the machine. Also, a facility can obtain higher utilizations that may only be otherwise possible with more complicated schemes or with very long wait times. The key contribution of this paper is that it provides theoretical and empirical guidelines for users and administrators for how currently unused supercomputer cycles may be exploited. We find that that interstitial computing is a more effective means for increasing machine utilization than increasing native job run times or size.

    20. A Survey of Techniques for Approximate Computing

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Mittal, Sparsh

      2016-03-18

      Approximate computing trades off computation quality with the effort expended and as rising performance demands confront with plateauing resource budgets, approximate computing has become, not merely attractive, but even imperative. Here, we present a survey of techniques for approximate computing (AC). We discuss strategies for finding approximable program portions and monitoring output quality, techniques for using AC in different processing units (e.g., CPU, GPU and FPGA), processor components, memory technologies etc., and programming frameworks for AC. Moreover, we classify these techniques based on several key characteristics to emphasize their similarities and differences. Finally, the aim of this paper is tomore » provide insights to researchers into working of AC techniques and inspire more efforts in this area to make AC the mainstream computing approach in future systems.« less

    1. Predictive Dynamic Security Assessment through Advanced Computing

      SciTech Connect (OSTI)

      Huang, Zhenyu; Diao, Ruisheng; Jin, Shuangshuang; Chen, Yousu

      2014-11-30

      Abstract— Traditional dynamic security assessment is limited by several factors and thus falls short in providing real-time information to be predictive for power system operation. These factors include the steady-state assumption of current operating points, static transfer limits, and low computational speed. This addresses these factors and frames predictive dynamic security assessment. The primary objective of predictive dynamic security assessment is to enhance the functionality and computational process of dynamic security assessment through the use of high-speed phasor measurements and the application of advanced computing technologies for faster-than-real-time simulation. This paper presents algorithms, computing platforms, and simulation frameworks that constitute the predictive dynamic security assessment capability. Examples of phasor application and fast computation for dynamic security assessment are included to demonstrate the feasibility and speed enhancement for real-time applications.

    2. Intranode data communications in a parallel computer

      DOE Patents [OSTI]

      Archer, Charles J; Blocksome, Michael A; Miller, Douglas R; Ratterman, Joseph D; Smith, Brian E

      2013-07-23

      Intranode data communications in a parallel computer that includes compute nodes configured to execute processes, where the data communications include: allocating, upon initialization of a first process of a compute node, a region of shared memory; establishing, by the first process, a predefined number of message buffers, each message buffer associated with a process to be initialized on the compute node; sending, to a second process on the same compute node, a data communications message without determining whether the second process has been initialized, including storing the data communications message in the message buffer of the second process; and upon initialization of the second process: retrieving, by the second process, a pointer to the second process's message buffer; and retrieving, by the second process from the second process's message buffer in dependence upon the pointer, the data communications message sent by the first process.

    3. Intranode data communications in a parallel computer

      DOE Patents [OSTI]

      Archer, Charles J; Blocksome, Michael A; Miller, Douglas R; Ratterman, Joseph D; Smith, Brian E

      2014-01-07

      Intranode data communications in a parallel computer that includes compute nodes configured to execute processes, where the data communications include: allocating, upon initialization of a first process of a computer node, a region of shared memory; establishing, by the first process, a predefined number of message buffers, each message buffer associated with a process to be initialized on the compute node; sending, to a second process on the same compute node, a data communications message without determining whether the second process has been initialized, including storing the data communications message in the message buffer of the second process; and upon initialization of the second process: retrieving, by the second process, a pointer to the second process's message buffer; and retrieving, by the second process from the second process's message buffer in dependence upon the pointer, the data communications message sent by the first process.

    4. (Sparsity in large scale scientific computation)

      SciTech Connect (OSTI)

      Ng, E.G.

      1990-08-20

      The traveler attended a conference organized by the 1990 IBM Europe Institute at Oberlech, Austria. The theme of the conference was on sparsity in large scale scientific computation. The conference featured many presentations and other activities of direct interest to ORNL research programs on sparse matrix computations and parallel computing, which are funded by the Applied Mathematical Sciences Subprogram of the DOE Office of Energy Research. The traveler presented a talk on his work at ORNL on the development of efficient algorithms for solving sparse nonsymmetric systems of linear equations. The traveler held numerous technical discussions on issues having direct relevance to the research programs on sparse matrix computations and parallel computing at ORNL.

    5. Low latency, high bandwidth data communications between compute nodes in a parallel computer

      DOE Patents [OSTI]

      Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.

      2010-11-02

      Methods, parallel computers, and computer program products are disclosed for low latency, high bandwidth data communications between compute nodes in a parallel computer. Embodiments include receiving, by an origin direct memory access (`DMA`) engine of an origin compute node, data for transfer to a target compute node; sending, by the origin DMA engine of the origin compute node to a target DMA engine on the target compute node, a request to send (`RTS`) message; transferring, by the origin DMA engine, a predetermined portion of the data to the target compute node using memory FIFO operation; determining, by the origin DMA engine whether an acknowledgement of the RTS message has been received from the target DMA engine; if the an acknowledgement of the RTS message has not been received, transferring, by the origin DMA engine, another predetermined portion of the data to the target compute node using a memory FIFO operation; and if the acknowledgement of the RTS message has been received by the origin DMA engine, transferring, by the origin DMA engine, any remaining portion of the data to the target compute node using a direct put operation.

    6. Method for transferring data from an unsecured computer to a secured computer

      DOE Patents [OSTI]

      Nilsen, Curt A.

      1997-01-01

      A method is described for transferring data from an unsecured computer to a secured computer. The method includes transmitting the data and then receiving the data. Next, the data is retransmitted and rereceived. Then, it is determined if errors were introduced when the data was transmitted by the unsecured computer or received by the secured computer. Similarly, it is determined if errors were introduced when the data was retransmitted by the unsecured computer or rereceived by the secured computer. A warning signal is emitted from a warning device coupled to the secured computer if (i) an error was introduced when the data was transmitted or received, and (ii) an error was introduced when the data was retransmitted or rereceived.

    7. Section 23: Models and Computer Codes

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Application-2014 for the Waste Isolation Pilot Plant Models and Computer Codes (40 CFR § 194.23) United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Models and Computer Codes (40 CFR § 194.23) Table of Contents 23.0 Models and Computer Codes (40 CFR § 194.23) 23.1 Requirements 23.2 40 CFR § 194.23(a)(1) 23.2.1 Background 23.2.2 1998 Certification Decision 23.2.3 Changes in the CRA-2004 23.2.4

    8. Fermilab computing at the Intensity Frontier

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Group, Craig; Fuess, S.; Gutsche, O.; Kirby, M.; Kutschke, R.; Lyon, A.; Norman, A.; Perdue, G.; Sexton-Kennedy, E.

      2015-12-23

      The Intensity Frontier refers to a diverse set of particle physics experiments using high- intensity beams. In this paper I will focus the discussion on the computing requirements and solutions of a set of neutrino and muon experiments in progress or planned to take place at the Fermi National Accelerator Laboratory located near Chicago, Illinois. In addition, the experiments face unique challenges, but also have overlapping computational needs. In principle, by exploiting the commonality and utilizing centralized computing tools and resources, requirements can be satisfied efficiently and scientists of individual experiments can focus more on the science and less onmore » the development of tools and infrastructure.« less

    9. Fermilab computing at the Intensity Frontier

      SciTech Connect (OSTI)

      Group, Craig; Fuess, S.; Gutsche, O.; Kirby, M.; Kutschke, R.; Lyon, A.; Norman, A.; Perdue, G.; Sexton-Kennedy, E.

      2015-12-23

      The Intensity Frontier refers to a diverse set of particle physics experiments using high- intensity beams. In this paper I will focus the discussion on the computing requirements and solutions of a set of neutrino and muon experiments in progress or planned to take place at the Fermi National Accelerator Laboratory located near Chicago, Illinois. In addition, the experiments face unique challenges, but also have overlapping computational needs. In principle, by exploiting the commonality and utilizing centralized computing tools and resources, requirements can be satisfied efficiently and scientists of individual experiments can focus more on the science and less on the development of tools and infrastructure.

    10. Method and system for benchmarking computers

      DOE Patents [OSTI]

      Gustafson, John L.

      1993-09-14

      A testing system and method for benchmarking computer systems. The system includes a store containing a scalable set of tasks to be performed to produce a solution in ever-increasing degrees of resolution as a larger number of the tasks are performed. A timing and control module allots to each computer a fixed benchmarking interval in which to perform the stored tasks. Means are provided for determining, after completion of the benchmarking interval, the degree of progress through the scalable set of tasks and for producing a benchmarking rating relating to the degree of progress for each computer.

    11. Traffic information computing platform for big data

      SciTech Connect (OSTI)

      Duan, Zongtao Li, Ying Zheng, Xibin Liu, Yan Dai, Jiting Kang, Jun

      2014-10-06

      Big data environment create data conditions for improving the quality of traffic information service. The target of this article is to construct a traffic information computing platform for big data environment. Through in-depth analysis the connotation and technology characteristics of big data and traffic information service, a distributed traffic atomic information computing platform architecture is proposed. Under the big data environment, this type of traffic atomic information computing architecture helps to guarantee the traffic safety and efficient operation, more intelligent and personalized traffic information service can be used for the traffic information users.

    12. About the Advanced Computing Tech Team | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      About the Advanced Computing Tech Team About the Advanced Computing Tech Team The Advanced Computing Tech Team is made up of representatives from DOE and its national laboratories who are involved with developing and using advanced computing tools. The following is a list of some of those programs and what how they are currently using advanced computing in pursuit of their respective missions. Advanced Science Computing Research (ASCR) The mission of the Advanced Scientific Computing Research

    13. Large Scale Computing and Storage Requirements for Advanced Scientific

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computing Research: Target 2014 Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2014 ASCRFrontcover.png Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research An ASCR / NERSC Review January 5-6, 2011 Final Report Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research, Report of the Joint ASCR / NERSC Workshop conducted January 5-6, 2011 Goals This workshop is being

    14. Applications in Data-Intensive Computing

      SciTech Connect (OSTI)

      Shah, Anuj R.; Adkins, Joshua N.; Baxter, Douglas J.; Cannon, William R.; Chavarría-Miranda, Daniel; Choudhury, Sutanay; Gorton, Ian; Gracio, Deborah K.; Halter, Todd D.; Jaitly, Navdeep; Johnson, John R.; Kouzes, Richard T.; Macduff, Matt C.; Marquez, Andres; Monroe, Matthew E.; Oehmen, Christopher S.; Pike, William A.; Scherrer, Chad; Villa, Oreste; Webb-Robertson, Bobbie-Jo M.; Whitney, Paul D.; Zuljevic, Nino

      2010-04-01

      This book chapter, to be published in Advances in Computers, Volume 78, in 2010 describes applications of data intensive computing (DIC). This is an invited chapter resulting from a previous publication on DIC. This work summarizes efforts coming out of the PNNL's Data Intensive Computing Initiative. Advances in technology have empowered individuals with the ability to generate digital content with mouse clicks and voice commands. Digital pictures, emails, text messages, home videos, audio, and webpages are common examples of digital content that are generated on a regular basis. Data intensive computing facilitates human understanding of complex problems. Data-intensive applications provide timely and meaningful analytical results in response to exponentially growing data complexity and associated analysis requirements through the development of new classes of software, algorithms, and hardware.

    15. High Performance Computing Data Center Metering Protocol

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      1.5% of all electricity used in the US at that time. The report then suggested that the overall consumption would rise ... computers utilized by end users, and servers and ...

    16. Wei Jiang | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Wei Jiang Assistant Computational Scientist Wei Jiang Argonne National Laboratory 9700 S. Cass Avenue Building 240 - Rm. 2128 Argonne IL, 60439 630-252-8688 wjiang@alcf.anl.gov...

    17. Validating Computer-Designed Proteins for Vaccines

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Validating Computer-Designed Proteins for Vaccines Print In the struggle to keep up with microbes whose rapid mutations outpace our ability to produce vaccines, the human race has...

    18. Distributed Real-Time Computing with Harness

      SciTech Connect (OSTI)

      Di Saverio, Emanuele; Cesati, Marco; Di Biagio, Christian; Pennella, Guido; Engelmann, Christian

      2007-01-01

      Modern parallel and distributed computing solutions are often built onto a ''middleware'' software layer providing a higher and common level of service between computational nodes. Harness is an adaptable, plugin-based middleware framework for parallel and distributed computing. This paper reports recent research and development results of using Harness for real-time distributed computing applications in the context of an industrial environment with the needs to perform several safety critical tasks. The presented work exploits the modular architecture of Harness in conjunction with a lightweight threaded implementation to resolve several real-time issues by adding three new Harness plug-ins to provide a prioritized lightweight execution environment, low latency communication facilities, and local timestamped event logging.

    19. High Performance Computing Facility Operational Assessment, CY...

      Office of Scientific and Technical Information (OSTI)

      At 2.33 petaflops peak performance, the Cray XT Jaguar delivered more than 1.4 billion core hours in calendar year (CY) 2011 to researchers around the world for computational ...

    20. Interdisciplinary Engineer (Electrical/Electronics/Nuclear/Computer)

      Broader source: Energy.gov [DOE]

      THIS IS AN INTERDISCIPLINARY POSITION AND MAY BE FILLED WITH ANY OF THE FOLLOWING OCCUPATIONS: Electrical Engineer, GS-0850-13 Electronics Engineer, GS-0855-13 Nuclear Engineer, GS-0840-13 Computer...

    1. Computer Model Buildings Contaminated with Radioactive Material

      Energy Science and Technology Software Center (OSTI)

      1998-05-19

      The RESRAD-BUILD computer code is a pathway analysis model designed to evaluate the potential radiological dose incurred by an individual who works or lives in a building contaminated with radioactive material.

    2. Session on computation in biological pathways

      SciTech Connect (OSTI)

      Karp, P.D.; Riley, M.

      1996-12-31

      The papers in this session focus on the development of pathway databases and computational tools for pathway analysis. The discussion involves existing databases of sequenced genomes, as well as techniques for studying regulatory pathways.

    3. THE CENTER FOR DATA INTENSIVE COMPUTING

      SciTech Connect (OSTI)

      GLIMM,J.

      2001-11-01

      CDIC will provide state-of-the-art computational and computer science for the Laboratory and for the broader DOE and scientific community. We achieve this goal by performing advanced scientific computing research in the Laboratory's mission areas of High Energy and Nuclear Physics, Biological and Environmental Research, and Basic Energy Sciences. We also assist other groups at the Laboratory to reach new levels of achievement in computing. We are ''data intensive'' because the production and manipulation of large quantities of data are hallmarks of scientific research in the 21st century and are intrinsic features of major programs at Brookhaven. An integral part of our activity to accomplish this mission will be a close collaboration with the University at Stony Brook.

    4. THE CENTER FOR DATA INTENSIVE COMPUTING

      SciTech Connect (OSTI)

      GLIMM,J.

      2003-11-01

      CDIC will provide state-of-the-art computational and computer science for the Laboratory and for the broader DOE and scientific community. We achieve this goal by performing advanced scientific computing research in the Laboratory's mission areas of High Energy and Nuclear Physics, Biological and Environmental Research, and Basic Energy Sciences. We also assist other groups at the Laboratory to reach new levels of achievement in computing. We are ''data intensive'' because the production and manipulation of large quantities of data are hallmarks of scientific research in the 21st century and are intrinsic features of major programs at Brookhaven. An integral part of our activity to accomplish this mission will be a close collaboration with the University at Stony Brook.

    5. Quantum Process Matrix Computation by Monte Carlo

      Energy Science and Technology Software Center (OSTI)

      2012-09-11

      The software package, processMC, is a python script that allows for the rapid modeling of small , noisy quantum systems and the computation of the averaged quantum evolution map.

    6. High Performance Computing Data Center (Fact Sheet)

      SciTech Connect (OSTI)

      Not Available

      2014-08-01

      This two-page fact sheet describes the new High Performance Computing Data Center in the ESIF and talks about some of the capabilities and unique features of the center.

    7. High Performance Computing Data Center (Fact Sheet)

      SciTech Connect (OSTI)

      Not Available

      2012-08-01

      This two-page fact sheet describes the new High Performance Computing Data Center being built in the ESIF and talks about some of the capabilities and unique features of the center.

    8. Beyond moore computing research challenge workshop report.

      SciTech Connect (OSTI)

      Huey, Mark C.; Aidun, John Bahram

      2013-10-01

      We summarize the presentations and break out session discussions from the in-house workshop that was held on 11 July 2013 to acquaint a wider group of Sandians with the Beyond Moore Computing research challenge.

    9. Parallel Programming with MPI | Argonne Leadership Computing...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Balaji, MCS Rajeev Thakur, MCS Ken Raffenetti, MCS Halim Amer, MCS Event Website: https:www.mcs.anl.gov%7Eraffenetpermalinksargonne16mpi.php The Mathematics and Computer ...

    10. Bringing Advanced Computational Techniques to Energy Research

      SciTech Connect (OSTI)

      Mitchell, Julie C

      2012-11-17

      Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

    11. Validating Computer-Designed Proteins for Vaccines

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      apply to a variety of other vaccine targets, such as human immunodeficiency virus and influenza. Wanted: Dead or Computed As strange as it sounds, most vaccines are composed of...

    12. PCs and Computer Terminals in Commercial Buildings

      U.S. Energy Information Administration (EIA) Indexed Site

      thousand users would be much lower. The more PCs and computer terminals used in a given building, the greater the impact on the building's energy consumption. By this measure,...

    13. Douglas Jacobsen! NERSC Bioinformatics Computing Consultant

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      013 Structure of the Genepool System --- 2 --- compute n odes gpint n odes high p riority & interac6ve nodes fpga web services database services login n odes filesystems ssh ...

    14. THE CENTER FOR DATA INTENSIVE COMPUTING

      SciTech Connect (OSTI)

      GLIMM,J.

      2002-11-01

      CDIC will provide state-of-the-art computational and computer science for the Laboratory and for the broader DOE and scientific community. We achieve this goal by performing advanced scientific computing research in the Laboratory's mission areas of High Energy and Nuclear Physics, Biological and Environmental Research, and Basic Energy Sciences. We also assist other groups at the Laboratory to reach new levels of achievement in computing. We are ''data intensive'' because the production and manipulation of large quantities of data are hallmarks of scientific research in the 21st century and are intrinsic features of major programs at Brookhaven. An integral part of our activity to accomplish this mission will be a close collaboration with the University at Stony Brook.

    15. Christopher J. Knight | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Christopher J. Knight Assistant Computational Scientist Christopher Knight Argonne National Laboratory 9700 S. Cass Avenue Building 240 - Rm. 1132 Argonne, IL 60439 630-252-9793 knightc@anl

    16. Computes Generalized Electromagnetic Interactions Between Structures

      Energy Science and Technology Software Center (OSTI)

      1999-02-20

      Object oriented software for computing generalized electromagnetic interactions between structures in the frequency domains. The software is based on integral equations. There is also a static integral equation capability.

    17. Annihilating nanoscale defects | Argonne Leadership Computing...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      ... at the Argonne Leadership Computing Facility, a DOE Office of Science User Facility. ... Their long-term goal, with support from the DOE's Office of Science, is to arrive at an ...

    18. Fermilab | Science at Fermilab | Computing | Mass Storage

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Data is stored on tapes in Central Mass Storage. Data is stored on tapes in Central Mass Storage. Computing Mass Storage Fermilab stores tens of petabytes of scientific data in its ...

    19. Interdisciplinary Engineer (Electrical/Electronics/Nuclear/Computer)

      Broader source: Energy.gov [DOE]

      THIS IS AN INTERDISCIPLINARY POSITION AND MAY BE FILLED WITH ANY OF THE FOLLOWING OCCUPATIONS: Electrical Engineer, GS-0850-12 Electronics Engineer, GS-0855-12 Nuclear Engineer, GS-0840-12 Computer...

    20. Validating Computer-Designed Proteins for Vaccines

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computed As strange as it sounds, most vaccines are composed of actual dead viruses and bacteria. The idea is that presenting a dead form of the pathogen will fake your body into...

    1. Validating Computer-Designed Proteins for Vaccines

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      keep up with microbes whose rapid mutations outpace our ability to produce vaccines, the human race has a powerful ally: computers. Researchers have now figured out a way to use...

    2. OCIO Technology Summit: High Performance Computing

      Office of Energy Efficiency and Renewable Energy (EERE)

      Last week, the Office of the Chief Information Officer sponsored a Technology Summit on High Performance Computing (HPC), hosted by the Chief Technology Officer.  This was the eleventh in a series...

    3. RESRAD Computer Code - Evaluation of Radioactively Contaminated...

      Office of Environmental Management (EM)

      then to improve the models within the codes, to operate on new computer platforms, to use new state of science radiation dose and risk factors, and to calculate cleanup criteria ...

    4. Innovative & Novel Computational Impact on Theory & Experiement...

      Office of Science (SC) Website

      DOE Leadership Computing Web Site External link Last modified: 352016 7:57:43 PM Share Page Share with Facebook Facebook External link Share with Twitter Twitter External link ...

    5. Our Teams | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      About Overview History Staff Directory Our Teams User Advisory Council Careers Margaret Butler Fellowship Visiting Us Contact Us Expert Teams World-Class Expertise Our talented and diverse staff help make the ALCF one of the world's premier centers for computational science and engineering. Catalysts Catalysts are computational scientists who work directly with project teams to maximize and accelerate their research efforts. With multidisciplinary domain expertise, a deep knowledge of the ALCF

    6. Science at ALCF | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Featured Science Simulation of cosmic reionization Cosmic Reionization On Computers Nickolay Gnedin Allocation Program: INCITE Allocation Hours: 65 Million Science at ALCF Allocation Program - Any - INCITE ALCC ESP Director's Discretionary Year Year -Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 Research Domain - Any - Physics Mathematics Computer Science Chemistry Earth Science Energy Technologies Materials Science Engineering Biological Sciences Apply sort descending An example of a

    7. Account Information | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Account Information Accounts and Access FAQ Connect & Log In Using CRYPTOCards Disk Space Quota Management Allocations Mira/Cetus/Vesta Cooley Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] Account Information All computing carried out on the ALCF systems is associated with a user "account." This account is used to log onto the login servers and run jobs on the

    8. computational-fluid-dynamics-student-thesis

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Fluid Dynamics Student Thesis Abstract DEVELOPMENT OF A THREE-DIMENSIONAL SCOURING METHODOLOGY AND ITS IMPLEMENTATION IN A COMMERCIAL CFD CODE FOR OPEN CHANNEL FLOW OVER A FLOODED BRIDGE DECK The Computational Fluid Dynamics staff at TRACC is supporting three students from Northern Illinois University who are working for a Masters degree. The CFD staff is directing the thesis research and working with them on three projects: (1) a three-dimensional scour computation methodology for pressure flow

    9. Avanced Large-scale Integrated Computational Environment

      Energy Science and Technology Software Center (OSTI)

      1998-10-27

      The ALICE Memory Snooper is a software applications programming interface (API) and library for use in implementing computational steering systems. It allows distributed memory parallel programs to publish variables in the computation that may be accessed over the Internet. In this way, users can examine and even change the variables in their running application remotely. The API and library ensure the consistency of the variables across the distributed memory system.

    10. Timothy Williams | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Timothy Williams Deputy Director of Science Timothy Williams Argonne National Laboratory 9700 South Cass Avenue Building 240 - Rm. 2129 Argonne, IL 60439 630-252-1154 tjwilliams@anl.gov http://alcf.anl.gov/~zippy Tim Williams is a computational scientist at the Argonne Leadership Computing Facility (ALCF), where he serves as Deputy Director of Science. He is manager of the Early Science Program, which prepares scientific applications for early use of the facility's next-generation

    11. Vitali Morozov | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Vitali Morozov Principal Application Performance Engineer Vitali Morozov Argonne National Laboratory 9700 South Cass Avenue Building 240 - Rm. 1127 Argonne, IL 60439 630 252-7068 morozov@anl.gov Vitali Morozov is a Principal Application Performance Engineer at the ALCF. He received his B.S. in Mathematics from Novosibirsk State University, and a Ph.D. in Computer Science from Ershov's Institute for Informatics Systems, Novosibirsk, Russia. At Argonne since 2001, he has been working on computer

    12. ACM TOMS replicated computational results initiative

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Heroux, Michael Allen

      2015-06-03

      In this study, the scientific community relies on the peer review process for assuring the quality of published material, the goal of which is to build a body of work we can trust. Computational journals such as The ACM Transactions on Mathematical Software (TOMS) use this process for rigorously promoting the clarity and completeness of content, and citation of prior work. At the same time, it is unusual to independently confirm computational results.

    13. Accounts & Access | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Account Information Accounts and Access FAQ Connect & Log In Using CRYPTOCards Disk Space Quota Management Allocations Mira/Cetus/Vesta Cooley Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] Accounts & Access Account Information Account Information: All computing carried out on the ALCF systems is associated with a user "account." This account is used to log onto the

    14. CDF computing and event data models

      SciTech Connect (OSTI)

      Snider, F.D.; /Fermilab

      2005-12-01

      The authors discuss the computing systems, usage patterns and event data models used to analyze Run II data from the CDF-II experiment at the Tevatron collider. A critical analysis of the current implementation and design reveals some of the stronger and weaker elements of the system, which serve as lessons for future experiments. They highlight a need to maintain simplicity for users in the face of an increasingly complex computing environment.

    15. Advances and Challenges in Computational Plasma Science

      SciTech Connect (OSTI)

      W.M. Tang; V.S. Chan

      2005-01-03

      Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behavior. Recent advances in simulations of magnetically-confined plasmas are reviewed in this paper with illustrative examples chosen from associated research areas such as microturbulence, magnetohydrodynamics, and other topics. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology.

    16. Extreme Scale Computing, Co-Design

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Information Science, Computing, Applied Math » Extreme Scale Computing, Co-design » Publications Publications Ramon Ravelo, Qi An, Timothy C. Germann, and Brad Lee Holian, "Large-scale molecular dynamics simulations of shock induced plasticity in tantalum single crystals," AIP Conference Proceedings 1426, 1263-1266 (2012). Frank J. Cherne, Guy Dimonte, and Timothy C. Germann, "Richtymer-Meshkov instability examined with large-scale molecular dynamics simulations," AIP

    17. Extreme Scale Computing, Co-design

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Extreme Scale Computing, Co-design Informing system design, ensuring productive and efficient code Project Description To address the increasingly complex problems of the modern world, scientists at Los Alamos are pushing the scale of computing to the extreme, forming partnerships with other national laboratories and industry to develop supercomputers that can achieve "exaflop" speeds-that is, a quintillion (a million trillion) calculations per second. To put such speed in perspective,

    18. Kalyan Kumaran | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Kalyan Kumaran Deputy Director of Science - Advanced Technologies & Data Kalyan Kumaran Argonne National Laboratory 9700 South Cass Avenue Building 240 - Rm. 1125 Argonne, IL 60439 630-252 5941 kumaran@anl.gov Dr. Kalyan Kumaran (Kumar) is a Senior Computer Scientist and the Deputy Director of Science-Advanced Technologies & Data at Argonne's Leadership Computing Facility (LCF). In this role he is responsible for the performance engineering, data science and data visualization teams and

    19. LANL computer model boosts engine efficiency

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      LANL computer model boosts engine efficiency LANL computer model boosts engine efficiency The KIVA model has been instrumental in helping researchers and manufacturers understand combustion processes, accelerate engine development and improve engine design and efficiency. September 25, 2012 KIVA simulation of an experimental engine with DOHC quasi-symmetric pent-roof combustion chamber and 4 valves. KIVA simulation of an experimental engine with DOHC quasi-symmetric pent-roof combustion chamber

    20. Lattice QCD | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      1 Research Domain: Physics We propose to use the Argonne Leadership Class Computing Facility's BlueGene/P and the Oak Ridge Leadership Class Computing Facility's Cray XT4/XT5 to dramatically advance our research in lattice quantum chromodynamics and other strongly coupled field theories of importance to the study of high energy and nuclear physics. This research addresses fundamental questions in high energy and nuclear physics, and is directly related to major experimental programs in these

    1. Sandia National Laboratories: Advanced Simulation and Computing

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Facebook Twitter YouTube Flickr RSS Advanced Simulation and Computing Advanced Simulation and Computing Taking on the World's Complex Challenges Advancing Science Frontiers Our research is producing new scientific insights about the world in which we live and assists in certifying the safety and reliability of the nation's nuclear weapons stockpile. Technology Provides the Tools Growth in data and the software and hardware demands needed for physics-based answers and predictive capabilities are

    2. Sandia National Laboratories: Careers: Computer Science

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computer Science Red Storm photo Sandia's supercomputing research is reaching for tomorrow's exascale performance while solving real-world problems today. Computer scientists and engineers at Sandia work on a variety of projects that range from research to full life-cycle product development and support. For example, their research activities cover both "bits and bytes" operating systems-level research and leading-edge information technology research in areas such as distributed

    3. Mark Hereld | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Hereld Manager, Visualization and Data Analysis Mark Hereld Argonne National Laboratory 9700 South Cass Avenue Building 240 - Rm. 4139 Argonne, IL 60439 630-252-4170 hereld@mcs.anl.gov Mark Hereld is the ALCF's Visualization and Data Analysis Manager. He is also a member of the research staff in Argonne's Mathematics and Computer Science Division and a Senior Fellow of the Computation Institute with a joint appointment at the University of Chicago. His work in understanding simulation on future

    4. Michael Papka | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Papka Division Director Michael Papka Argonne National Laboratory 9700 South Cass Avenue Building 240 - Rm. 4134 Argonne, IL 60439 630-252-1556 papka@anl.gov http://papka.alcf.anl.gov Michael E. Papka is the Director of the ALCF. He is also Argonne's Deputy Associate Laboratory Director for Computing, Environment and Life Sciences. Both his laboratory leadership roles and his research interests relate to high-performance computing in support of scientific discovery. Dr. Papka holds a Senior

    5. High energy neutron Computed Tomography developed

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      High energy neutron Computed Tomography developed High energy neutron Computed Tomography developed LANSCE now has a high-energy neutron imaging capability that can be deployed on WNR flight paths for unclassified and classified objects. May 9, 2014 Neutron tomography horizontal "slice" of a tungsten and polyethylene test object containing tungsten carbide BBs. Neutron tomography horizontal "slice" of a tungsten and polyethylene test object containing tungsten carbide BBs.

    6. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Wednesday, 26 August 2009 00:00 Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the "axle," that threads through a ring called a macrocycle. Because the rings can spin around and slide along the axle, rotaxanes are promising components of molecular machines. While most rotaxanes have been entirely

    7. Introducing Aurora | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Aurora Announcement Press Conference: DOE announces next-gen supercomputer Aurora to be built at Argonne Introducing Aurora Author: ALCF staff April 9, 2015 Facebook Twitter LinkedIn Google E-mail Printer-friendly version Today, U.S. Department of Energy Under Secretary for Science and Energy Lynn Orr announced two new High Performance Computing (HPC) awards that continue to advance U.S. leadership in developing exascale computing. The announcement was made alongside leaders from Argonne

    8. BETO Webinar: Computational Studies of Lignocellulose Deconstruction |

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Department of Energy Webinar: Computational Studies of Lignocellulose Deconstruction BETO Webinar: Computational Studies of Lignocellulose Deconstruction Dr. Gnanakaran of Los Alamos National Laboratory (LANL) presented LANL's molecular research on lignocellulose on April 15, 2013, at the Bioenergy Technologies Office's webinar series. april2013_lanl_webinar.pdf (5.81 MB) More Documents & Publications Process Design and Economics for the Conversion of Lignocellulosic Biomass to

    9. Computational Studies of Nucleosome Stability | Argonne Leadership

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computing Facility nucleosome 1KX5 Image of the nucleosome 1KX5 from the Protein Data Bank (from X. Zhu, TACC). This DNA/protein complex will serve as the primary target of simulation studies to be performed by the Schatz group as part of the INCITE program. Computational Studies of Nucleosome Stability PI Name: George Schatz PI Email: schatz@chem.northwestern.edu Institution: Northwestern University Allocation Program: INCITE Allocation Hours at ALCF: 20 Million Year: 2013 Research Domain:

    10. ACM TOMS replicated computational results initiative

      SciTech Connect (OSTI)

      Heroux, Michael Allen

      2015-06-03

      In this study, the scientific community relies on the peer review process for assuring the quality of published material, the goal of which is to build a body of work we can trust. Computational journals such as The ACM Transactions on Mathematical Software (TOMS) use this process for rigorously promoting the clarity and completeness of content, and citation of prior work. At the same time, it is unusual to independently confirm computational results.

    11. Code_Saturne | Argonne Leadership Computing Facility

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Data Transfer Debugging & Profiling Performance Tools & APIs Software & Libraries Boost CPMD Code_Saturne GAMESS GPAW GROMACS LAMMPS MADNESS QBox IBM References Cooley Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] Code_Saturne What is Code_Saturne? Code_Saturne is general-purpose Computational Fluid Dynamics (CFD) software of Électricité de France (EDF), one of the

    12. Collaboration to advance high-performance computing

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Collaboration to advance high-performance computing Collaboration to advance high-performance computing LANL and EMC will enhance, design, build, test, and deploy new cutting-edge technologies to meet some of the most difficult information technology challenges. December 21, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

    13. Computational Materials Science | Materials Science | NREL

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Computational Materials Science An image of interconnecting, sphere- and square-shaped particles that appears to be floating in space NREL's computational materials science capabilities span many research fields and interests. Electronic, Optical, and Transport Properties of Photovoltaic Materials Material properties and defect physics of Si, CdTe, III-V, CIGS, CZTS, and hybrid perovskite compounds Reconstruction of, and defect formation on, semiconductor surfaces Electronic and transport

    14. Extreme Scale Computing to Secure the Nation

      SciTech Connect (OSTI)

      Brown, D L; McGraw, J R; Johnson, J R; Frincke, D

      2009-11-10

      Since the dawn of modern electronic computing in the mid 1940's, U.S. national security programs have been dominant users of every new generation of high-performance computer. Indeed, the first general-purpose electronic computer, ENIAC (the Electronic Numerical Integrator and Computer), was used to calculate the expected explosive yield of early thermonuclear weapons designs. Even the U. S. numerical weather prediction program, another early application for high-performance computing, was initially funded jointly by sponsors that included the U.S. Air Force and Navy, agencies interested in accurate weather predictions to support U.S. military operations. For the decades of the cold war, national security requirements continued to drive the development of high performance computing (HPC), including advancement of the computing hardware and development of sophisticated simulation codes to support weapons and military aircraft design, numerical weather prediction as well as data-intensive applications such as cryptography and cybersecurity U.S. national security concerns continue to drive the development of high-performance computers and software in the U.S. and in fact, events following the end of the cold war have driven an increase in the growth rate of computer performance at the high-end of the market. This mainly derives from our nation's observance of a moratorium on underground nuclear testing beginning in 1992, followed by our voluntary adherence to the Comprehensive Test Ban Treaty (CTBT) beginning in 1995. The CTBT prohibits further underground nuclear tests, which in the past had been a key component of the nation's science-based program for assuring the reliability, performance and safety of U.S. nuclear weapons. In response to this change, the U.S. Department of Energy (DOE) initiated the Science-Based Stockpile Stewardship (SBSS) program in response to the Fiscal Year 1994 National Defense Authorization Act, which requires, 'in the absence of nuclear

    15. High-performance computing for airborne applications

      SciTech Connect (OSTI)

      Quinn, Heather M; Manuzzato, Andrea; Fairbanks, Tom; Dallmann, Nicholas; Desgeorges, Rose

      2010-06-28

      Recently, there has been attempts to move common satellite tasks to unmanned aerial vehicles (UAVs). UAVs are significantly cheaper to buy than satellites and easier to deploy on an as-needed basis. The more benign radiation environment also allows for an aggressive adoption of state-of-the-art commercial computational devices, which increases the amount of data that can be collected. There are a number of commercial computing devices currently available that are well-suited to high-performance computing. These devices range from specialized computational devices, such as field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), to traditional computing platforms, such as microprocessors. Even though the radiation environment is relatively benign, these devices could be susceptible to single-event effects. In this paper, we will present radiation data for high-performance computing devices in a accelerated neutron environment. These devices include a multi-core digital signal processor, two field-programmable gate arrays, and a microprocessor. From these results, we found that all of these devices are suitable for many airplane environments without reliability problems.

    16. Exploring HPCS Languages in Scientific Computing

      SciTech Connect (OSTI)

      Barrett, Richard F; Alam, Sadaf R; de Almeida, Valmor F; Bernholdt, David E; Elwasif, Wael R; Kuehn, Jeffery A; Poole, Stephen W; Shet, Aniruddha G

      2008-01-01

      As computers scale up dramatically to tens and hundreds of thousands of cores, develop deeper computational and memory hierarchies, and increased heterogeneity, developers of scientific software are increasingly challenged to express complex parallel simulations effectively and efficiently. In this paper, we explore the three languages developed under the DARPA High-Productivity Computing Systems (HPCS) program to help address these concerns: Chapel, Fortress, and X10. These languages provide a variety of features not found in currently popular HPC programming environments and make it easier to express powerful computational constructs, leading to new ways of thinking about parallel programming. Though the languages and their implementations are not yet mature enough for a comprehensive evaluation, we discuss some of the important features, and provide examples of how they can be used in scientific computing. We believe that these characteristics will be important to the future of high-performance scientific computing, whether the ultimate language of choice is one of the HPCS languages or something else.

    17. A common language for computer security incidents

      SciTech Connect (OSTI)

      John D. Howard; Thomas A Longstaff

      1998-10-01

      Much of the computer security information regularly gathered and disseminated by individuals and organizations cannot currently be combined or compared because a common language has yet to emerge in the field of computer security. A common language consists of terms and taxonomies (principles of classification) which enable the gathering, exchange and comparison of information. This paper presents the results of a project to develop such a common language for computer security incidents. This project results from cooperation between the Security and Networking Research Group at the Sandia National Laboratories, Livermore, CA, and the CERT{reg_sign} Coordination Center at Carnegie Mellon University, Pittsburgh, PA. This Common Language Project was not an effort to develop a comprehensive dictionary of terms used in the field of computer security. Instead, the authors developed a minimum set of high-level terms, along with a structure indicating their relationship (a taxonomy), which can be used to classify and understand computer security incident information. They hope these high-level terms and their structure will gain wide acceptance, be useful, and most importantly, enable the exchange and comparison of computer security incident information. They anticipate, however, that individuals and organizations will continue to use their own terms, which may be more specific both in meaning and use. They designed the common language to enable these lower-level terms to be classified within the common language structure.

    18. Sandia National Laboratories: Research: Research Foundations: Computing and

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Information Science Research Foundations Bioscience Computing and Information Science Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Computing and Information Science Red Storm photo Our approach Vertically integrated, scalable supercomputing Goal Increase capability while reducing the space and power requirements of future computing systems by changing the nature of computing devices, computer

    19. Computer System, Cluster, and Networking Summer Institute Program Description

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      System, Cluster, and Networking Summer Institute Program Description The Computer System, Cluster, and Networking Summer Institute (CSCNSI) is a focused technical enrichment program targeting third-year college undergraduate students currently engaged in a computer science, computer engineering, or similar major. The program emphasizes practical skill development in setting up, configuring, administering, testing, monitoring, and scheduling computer systems, supercomputer clusters, and computer

    20. Mobile computing device configured to compute irradiance, glint, and glare of the sun

      DOE Patents [OSTI]

      Gupta, Vipin P; Ho, Clifford K; Khalsa, Siri Sahib

      2014-03-11

      Described herein are technologies pertaining to computing the solar irradiance distribution on a surface of a receiver in a concentrating solar power system or glint/glare emitted from a reflective entity. A mobile computing device includes at least one camera that captures images of the Sun and the entity of interest, wherein the images have pluralities of pixels having respective pluralities of intensity values. Based upon the intensity values of the pixels in the respective images, the solar irradiance distribution on the surface of the entity or glint/glare corresponding to the entity is computed by the mobile computing device.