Powered by Deep Web Technologies
Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Marine and Hydrokinetic Energy Research & Development | Department...  

Energy Savers [EERE]

Energy Research & Development Marine and Hydrokinetic Energy Research & Development The Water Power Program's marine and hydrokinetic research and development (R&D) efforts focus...

2

Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY...  

Office of Scientific and Technical Information (OSTI)

Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY SYSTEM FOR ON-SHORE POWER GENERATION Marine & Hydrokinetic Technology Readiness Initiative DE-EE0003636 TIDAL...

3

Energy 101: Marine and Hydrokinetic Energy  

SciTech Connect (OSTI)

See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

None

2013-04-29T23:59:59.000Z

4

Energy 101: Marine and Hydrokinetic Energy  

ScienceCinema (OSTI)

See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

None

2014-06-26T23:59:59.000Z

5

Marine and Hydrokinetic | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Marine and Hydrokinetic Marine and Hydrokinetic Marine and Hydrokinetic The Water Power Program's marine and hydrokinetic research and development (R&D) efforts focus on advancing technologies that capture energy from the nation's oceans and rivers. Unlike hydropower, marine and hydrokinetics represent an emerging industry with hundreds of potentially viable technologies. The program is therefore leading efforts to prove functionality; evaluate technical and economic viability; and generate cost, performance, and reliability data for a variety of devices. Marine and hydrokinetic energy technologies convert the energy of waves, tides, and river and ocean currents into electricity. The Department of Energy's "Marine and Hydrokinetic 101" video explains how these technologies work and highlights some of the Water Power Program's efforts

6

Marine and Hydrokinetic Energy Projects  

Broader source: Energy.gov [DOE]

This report covers the Wind and Water Power Technologies Office’s marine and hydrokinetic projects from fiscal years 2008 to 2014.

7

Marine and Hydrokinetic Resources | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Resources Marine and Hydrokinetic Resources Jump to: navigation, search << Return to the MHK database homepage Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 Current/Tidal/Riverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more about Marine and Hydrokinetic Resource Assessment and Characterization click on this link. Current/Tidal/Riverine Tile Current.jpg To find out more about Tidal Energy click on this link and for Current Energy this link. Wave Wave 02.jpg To find out more about Wave Energy click on this link. Ocean Thermal Energy Conversion (OTEC) Ocean Thermo 04.jpg To find out more about OTEC Energy click on this link. << Return to the MHK database homepage

8

Marine and Hydrokinetic Resources | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Resources Marine and Hydrokinetic Resources (Redirected from Wave) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 Current/Tidal/Riverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more about Marine and Hydrokinetic Resource Assessment and Characterization click on this link. Current/Tidal/Riverine Tile Current.jpg To find out more about Tidal Energy click on this link and for Current Energy this link. Wave Wave 02.jpg To find out more about Wave Energy click on this link. Ocean Thermal Energy Conversion (OTEC) Ocean Thermo 04.jpg To find out more about OTEC Energy click on this link. << Return to the MHK database homepage

9

Energy 101: Marine & Hydrokinetic Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Marine & Hydrokinetic Energy Marine & Hydrokinetic Energy Energy 101: Marine & Hydrokinetic Energy August 13, 2013 - 10:54am Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings, and cities. The oceans represent a largely untapped renewable energy resource with potential to provide clean electricity to coastal communities and cities across the United States. In this edition of Energy 101, learn how the Energy Department is supporting research on a range of innovative marine and hydrokinetic energy technologies to capture energy from waves and currents. For more information on marine and hydrokinetic energy from the Office of Energy Efficiency and Renewable Energy, visit the Water Power Program

10

Energy 101: Marine and Hydrokinetic Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Marine and Hydrokinetic Energy Marine and Hydrokinetic Energy Energy 101: Marine and Hydrokinetic Energy Addthis Below is the text version for the Energy 101: Marine & Hydrokinetic Energy video. The words "Energy 101: Marine & Hydrokinetic Energy" appear onscreen. Montage of renewable energy technologies ending with shots of ocean waves. We all know energy can come from the wind and the sun, but there's a plentiful renewable resource covering more than 75% of the planet that you might not have thought about: our water! The movement of the ocean's waves, tides, and currents carries energy that can be harnessed and converted into electricity to power our homes, buildings and cities. The words "Kinetic Energy" appear onscreen with shots of ocean scientists at sea. The words "Marine & Hydrokinetic" appear onscreen.

11

Marine and Hydrokinetic Technology Database | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Database Marine and Hydrokinetic Technology Database Jump to: navigation, search Introduction The U.S. Department of Energy's Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Using the Database (1) Map illustrates marine & hydrokinetic demonstration projects around the

12

Category:Marine and Hydrokinetic Technology Projects | Open Energy  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Projects Marine and Hydrokinetic Technology Projects Jump to: navigation, search Dictionary.png Looking for the Marine and Hydrokinetic Technology Database? Click here for a user-friendly list of Marine and Hydrokinetic Technology Projects. This category has the default of form Form:Marine and Hydrokinetic Technology Project. Pages in category "Marine and Hydrokinetic Technology Projects" The following 200 pages are in this category, out of 379 total. (previous 200) (next 200) 4 MHK Projects/40MW Lewis project A MHK Projects/ADM 3 MHK Projects/ADM 4 MHK Projects/ADM 5 MHK Projects/Admirality Inlet Tidal Energy Project MHK Projects/Agucadoura MHK Projects/Alaska 1 MHK Projects/Alaska 13 MHK Projects/Alaska 17 MHK Projects/Alaska 18 MHK Projects/Alaska 24 MHK Projects/Alaska 25

13

Scientific Solutions (TRL 5 6 Component)- Underwater Active Acoustic Monitoring Network for Marine and Hydrokinetic Energy  

Broader source: Energy.gov [DOE]

Scientific Solutions (TRL 5 6 Component) - Underwater Active Acoustic Monitoring Network for Marine and Hydrokinetic Energy

14

Marine and Hydrokinetic Technology Resources | Department of...  

Broader source: Energy.gov (indexed) [DOE]

hydrokinetic (MHK) energy technologies convert the energy of waves, tides, and river and ocean currents into electricity. The Department of Energy's "Marine and Hydrokinetic 101"...

15

Form:Marine and Hydrokinetic Technology | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Marine and Hydrokinetic Technology Jump to: navigation, search Add a Marine and Hydrokinetic Technology Input the name of your Marine and Hydrokinetic Technology below to add it to the registry. If your technology is already in the registry, the form will be populated with that technology's fields and you may edit. MHK_Technologies/ Submit The text entered into this field will be used as the name of the project being defined. All projects are automatically prefixed with MHK_Technologies/. The field is case sensitive so be sure to capitalize in the correct areas and type the full title properly. << Return to the Marine and Hydrokinetic Database Retrieved from "http://en.openei.org/w/index.php?title=Form:Marine_and_Hydrokinetic_Technology&oldid=680669"

16

Category:Marine and Hydrokinetic Technologies | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technologies Marine and Hydrokinetic Technologies Jump to: navigation, search Dictionary.png Looking for the Marine and Hydrokinetic Technology Database? Click here for a user-friendly list of Marine and Hydrokinetic Technologies. This category has the default of form Form:Marine and Hydrokinetic Technology. Pages in category "Marine and Hydrokinetic Technologies" The following 200 pages are in this category, out of 282 total. (previous 200) (next 200) 1 MHK Technologies/14 MW OTECPOWER A MHK Technologies/Aegir Dynamo MHK Technologies/AirWEC MHK Technologies/Anaconda bulge tube drives turbine MHK Technologies/AquaBuoy MHK Technologies/Aquanator MHK Technologies/Aquantis MHK Technologies/Archimedes Wave Swing MHK Technologies/Atlantis AN 150 MHK Technologies/Atlantis AR 1000

17

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Glossary Marine and Hydrokinetic Technology Glossary Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

18

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Glossary Marine and Hydrokinetic Technology Glossary (Redirected from Hybrid) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

19

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Glossary Marine and Hydrokinetic Technology Glossary (Redirected from Attenuator) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

20

Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Awards $37 Million for Marine and Hydrokinetic Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development September 9, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced selections for more than $37 million in funding to accelerate the technological and commercial readiness of emerging marine and hydrokinetic (MHK) technologies, which seek to generate renewable electricity from the nation's oceans and free-flowing rivers and streams. The 27 projects range from concept studies and component design research to prototype development and in-water device testing. This unprecedented level of funding will advance the ability of marine and hydrokinetic energy technologies to

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy  

Broader source: Energy.gov (indexed) [DOE]

$37 Million for Marine and Hydrokinetic $37 Million for Marine and Hydrokinetic Energy Technology Development Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development September 9, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced selections for more than $37 million in funding to accelerate the technological and commercial readiness of emerging marine and hydrokinetic (MHK) technologies, which seek to generate renewable electricity from the nation's oceans and free-flowing rivers and streams. The 27 projects range from concept studies and component design research to prototype development and in-water device testing. This unprecedented level of funding will advance the ability of marine and hydrokinetic energy technologies to

22

Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic...  

Energy Savers [EERE]

for Competitive Marine and Hydrokinetic (MHK) Demonstrations at the Navy's Wave Energy Test Site (WETS) Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic (MHK)...

23

Form:Marine and Hydrokinetic Technology Project | Open Energy Information  

Open Energy Info (EERE)

Form Form Edit History Facebook icon Twitter icon » Form:Marine and Hydrokinetic Technology Project Jump to: navigation, search Add a Marine and Hydrokinetic Technology Project Input the name of your Marine and Hydrokinetic Technology Project below to add it to the registry. If your project is already in the registry, the form will be populated with that project's fields and you may edit. MHK_Projects/ Submit The text entered into this field will be used as the name of the project being defined. All projects are automatically prefixed with MHK_Projects/. The field is case sensitive so be sure to capitalize in the correct areas and type the full title properly. << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=Form:Marine_and_Hydrokinetic_Technology_Project&oldid=688143"

24

Marine and Hydrokinetic Technology Glossary  

Broader source: Energy.gov [DOE]

Learn about the basic technologies and key terms used to describe marine and hydrokinetic technologies.

25

Title: Sustainable Communities Based on a New Clean Energy Source -Marine & Hydrokinetic Power: Roosevelt Island and Beyond  

E-Print Network [OSTI]

Title: Sustainable Communities Based on a New Clean Energy Source - Marine & Hydrokinetic Power Earth Hour "a symbol of our commitment to sustainable energy for all," and underscored the need to "fuel hydrokinetic farm in the U.S. Verdant envisions marine & hydrokinetic (MHK) power as the basis of a new local

Angenent, Lars T.

26

Simulating environmental changes due to marine hydrokinetic energy installations.  

SciTech Connect (OSTI)

Marine hydrokinetic (MHK) projects will extract energy from ocean currents and tides, thereby altering water velocities and currents in the site's waterway. These hydrodynamics changes can potentially affect the ecosystem, both near the MHK installation and in surrounding (i.e., far field) regions. In both marine and freshwater environments, devices will remove energy (momentum) from the system, potentially altering water quality and sediment dynamics. In estuaries, tidal ranges and residence times could change (either increasing or decreasing depending on system flow properties and where the effects are being measured). Effects will be proportional to the number and size of structures installed, with large MHK projects having the greatest potential effects and requiring the most in-depth analyses. This work implements modification to an existing flow, sediment dynamics, and water-quality code (SNL-EFDC) to qualify, quantify, and visualize the influence of MHK-device momentum/energy extraction at a representative site. New algorithms simulate changes to system fluid dynamics due to removal of momentum and reflect commensurate changes in turbulent kinetic energy and its dissipation rate. A generic model is developed to demonstrate corresponding changes to erosion, sediment dynamics, and water quality. Also, bed-slope effects on sediment erosion and bedload velocity are incorporated to better understand scour potential.

Jones, Craig A. (Sea Engineering Inc., Santa Cruz, CA); James, Scott Carlton; Roberts, Jesse Daniel (Sandia National Laboratories, Albuquerque, NM); Seetho, Eddy

2010-08-01T23:59:59.000Z

27

Marine and Hydrokinetic Technology Readiness Level | Open Energy  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Readiness Level Marine and Hydrokinetic Technology Readiness Level Jump to: navigation, search << Return to the MHK database homepage This field indicates the stage of development/deployment that technologies, which are undergoing partial or full-scale device testing, are currently in. Contents 1 TRL 1-3: Discovery / Concept Definition / Early Stage Development, Design, and Engineering 2 TRL 4: Proof of Concept 3 TRL 5/6: System Integration and Technology Laboratory Demonstration 4 TRL 7/8: Open Water System Testing, Demonstration, and Operation 5 TRL 9: Commercial-Scale Production / Application TRL 1-3: Discovery / Concept Definition / Early Stage Development, Design, and Engineering The purpose of this stage is to evaluate, to the largest extent possible, the scientific or technical merit and feasibility of ideas that appear to

28

Template:Marine and Hydrokinetic Technology | Open Energy Information  

Open Energy Info (EERE)

Technology Technology Jump to: navigation, search This is the Marine and Hydrokinetic Technology template. It is designed for use by MHK Technologies Pages. To define an MHK Technology, please use this form. Parameters Image - Associated image file. (optional) Primary Organization - Field def missing! Project(s) where this technology is utilized - Field def missing! Technology Resource - Field def missing! Technology Type - Field def missing! Technology Readiness Level - Field def missing! Technology Description - Field def missing! Designed to Operate with Shore Connection - Field def missing! Power Transfer Method - Field def missing! Water Column Location - Field def missing! Mooring Configuration - Field def missing! Optimum Marine/Riverline Conditions - Field def missing!

29

Marine and Hydrokinetic Renewable Energy Devices, Potential Navigational Hazards and Mitigation Measures  

SciTech Connect (OSTI)

On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies. A technical report addressing our findings is available on this Science and Technology Information site under the Product Title, "Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures". This product is a brochure, primarily for project developers, that summarizes important issues in that more comprehensive report, identifies locations where that report can be downloaded, and identifies points of contact for more information.

Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

2009-12-01T23:59:59.000Z

30

Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures  

SciTech Connect (OSTI)

On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies, as summarized herein. The contract also required cooperation with the U.S. Coast Guard (USCG) and two recipients of awards (Pacific Energy Ventures and reVision) in a sub-topic area to develop a protocol to identify streamlined, best-siting practices. Over the period of this contract, PCCI and our sub-consultants, David Basco, Ph.D., and Neil Rondorf of Science Applications International Corporation, met with USCG headquarters personnel, with U.S. Army Corps of Engineers headquarters and regional personnel, with U.S. Navy regional personnel and other ocean users in order to develop an understanding of existing practices for the identification of navigational impacts that might occur during construction, operation, maintenance, and decommissioning. At these same meetings, “standard” and potential mitigation measures were discussed so that guidance could be prepared for project developers. Concurrently, PCCI reviewed navigation guidance published by the USCG and international community. This report summarizes the results of this effort, provides guidance in the form of a checklist for assessing the navigational impacts of potential marine and hydrokinetic projects, and provides guidance for improving the existing navigational guidance promulgated by the USCG in Navigation Vessel Inspection Circular 02 07. At the request of the USCG, our checklist and mitigation guidance was written in a generic nature so that it could be equally applied to offshore wind projects. PCCI teleconferenced on a monthly basis with DOE, Pacific Energy Ventures and reVision in order to share information and review work products. Although the focus of our effort was on marine and hydrokinetic technologies, as defined above, this effort drew upon earlier work by the USCG on offshore wind renewable energy installations. The guidance provided herein can be applied equally to marine and hydrokinetic technologies and to offshore wind, which are collectively referred to by the USCG as Renewable Energy Installations.

Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

2009-12-10T23:59:59.000Z

31

Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic (MHK) Demonstrations at the Navy’s Wave Energy Test Site (WETS)  

Broader source: Energy.gov [DOE]

On March 24, 2014, the U.S. Department of Energy (DOE) announced a Notice of Intent to issue a funding opportunity titled “Competitive Marine and Hydrokinetic (MHK) Demonstrations at the Navy’s Wave Energy Test Site (WETS).”

32

Assessing the Effects of Marine and Hydrokinetic Energy Development on Marine and Estuarine Resources  

SciTech Connect (OSTI)

The world’s oceans and estuaries offer an enormous potential to meet the nation’s growing demand for energy. The use of marine and hydrokinetic (MHK) devices to harness the power of wave and tidal energy could contribute significantly toward meeting federal- and state-mandated renewable energy goals while supplying a substantial amount of clean energy to coastal communities. Locations along the eastern and western coasts of the United States between 40° and 70° north latitude are ideal for MHK deployment, and recent estimates of energy potential for the coasts of Washington, Oregon, and California suggest that up to 25 gigawatts could be generated from wave and tidal devices in these areas. Because energy derived from wave and tidal devices is highly predictable, their inclusion in our energy portfolio could help balance available sources of energy production, including hydroelectric, coal, nuclear, wind, solar, geothermal, and others.

Ward, Jeffrey A.; Schultz, Irvin R.; Woodruff, Dana L.; Roesijadi, Guritno; Copping, Andrea E.

2010-07-30T23:59:59.000Z

33

Live Webinar on the Marine and Hydrokinetic Demonstrations at The Navy's Wave Energy Test Site Funding Opportunity Announcement  

Broader source: Energy.gov [DOE]

On Wednesday, May 7, 2014 from 3:00 PM - 4:30 PM EDT the Water Power Program will hold an informational webinar on the Marine and Hydrokinetic (MHK) Demonstrations at The Navy's Wave Energy Test...

34

Sandia National Laboratories: marine hydrokinetic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydrokinetic Sandia Funded to Model Power Pods for Utility-Scale Wave-Energy Converter On September 16, 2014, in Computational Modeling & Simulation, Energy, News, News & Events,...

35

Marine & Hydrokinetic Technologies (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the U.S. Department of Energy's Water Power Program. The program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new technologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity.

Not Available

2010-04-01T23:59:59.000Z

36

US Synthetic Corp (TRL 4 Component)- The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines  

Broader source: Energy.gov [DOE]

US Synthetic Corp (TRL 4 Component) - The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

37

Report to Congress on the Potential Environmental Effects of Marine and Hydrokinetic Energy Technologies  

Broader source: Energy.gov [DOE]

This report focuses on potential impacts of marine and hydrokinetic technologies to aquatic environments (i.e. rivers, estuaries, and oceans), fish and fish habitats, ecological relationships, and other marine and freshwater aquatic resources.

38

Department of Energy Awards $37 Million for Marine and Hydrokinetic...  

Office of Environmental Management (EM)

and free-flowing rivers represent a promising energy source located close to centers of electricity demand. The Department of Energy is working with industry, universities,...

39

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Technology Glossary Technology Glossary (Redirected from Axial Flow Turbine) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

40

Marine & Hydrokinetic Technologies (Fact Sheet) | Department...  

Energy Savers [EERE]

Sheet) Marine & Hydrokinetic Technologies (Fact Sheet) This fact sheet describes the Wind and Water Power Program's current approach to supporting the development and...

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Marine and Hydrokinetic Resource Assessment and Characterization...  

Energy Savers [EERE]

Characterization Marine and Hydrokinetic Resource Assessment and Characterization The Water Power Program has released reports and maps that assess the resource potential of the...

42

Request for Information for Marine and Hydrokinetic Field Measurements  

Broader source: Energy.gov [DOE]

The Energy Department’s Water Power Program is seeking feedback from the marine and hydrokinetic (MHK) industry regarding the verification and validation of advanced open source MHK design tools and models.

43

Marine & Hydrokinetic Technologies  

Broader source: Energy.gov [DOE]

This fact sheet describes the U.S. Department of Energy’s Wind and Water Power Program efforts to develop advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients.

44

2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy Water Power Program conducted the 2014 peer review meeting on marine and hydrokinetic technologies February 24–27.

45

Inflow Characterization for Marine and Hydrokinetic Energy Devices. FY-2011: Annual Progress Report  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory (PNNL), in collaboration with the Applied Physics Laboratory at the University of Washington (APL-UW), has carried out a detailed preliminary fluid flow field study at site selected for testing of marine and hydrokinetic turbines using Acoustic Doppler Velocimetry (ADV) measurements, Acoustic Doppler Current Profiler (ADCP) measurements, and Conductivity, Temperature and Depth (CTD) measurements. In FY-2011 these measurements were performed continuously for two weeks, in order to collect data during neap and spring tides, as well as during diurnal tidal variations.

Richmond, Marshall C.; Durgesh, Vibhav; Thomson, Jim; Polagye, Brian

2011-06-09T23:59:59.000Z

46

MHK Technologies/In stream River Hydrokinetics | Open Energy Information  

Open Energy Info (EERE)

In stream River Hydrokinetics In stream River Hydrokinetics < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization ABS Alaskan Inc Technology Resource Click here Current Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description New Energy Corporation EnCurrent vertical axis turbine mounted on pontoon barge Technology Dimensions Device Testing Date Submitted 10:01.5 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/In_stream_River_Hydrokinetics&oldid=680959" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version

47

Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental Shelf  

Broader source: Energy.gov (indexed) [DOE]

the Interior the Interior Bureau of Ocean Energy Management Office of Renewable Energy Programs OCS EIS/EA BOEM 2013-01140 Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental Shelf Offshore Florida Revised Environmental Assessment OCS EIS/EA BOEM 2013-01140 Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental Shelf Offshore Florida Revised Environmental Assessment Author Bureau of Ocean Energy Management Office of Renewable Energy Programs Published by U.S. Department of the Interior Bureau of Ocean Energy Management Office of Renewable Energy Programs August 2013 iii FINDING OF NO SIGNIIFCANT IMPACT Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental

48

Potential Impacts of Hydrokinetic and Wave Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...

49

Marine & Hydrokinetic Technologies (Fact Sheet)  

SciTech Connect (OSTI)

This document described the U.S. Department of Energy's Water Power Program efforts to promote the development and deployment of advanced water power devices.

Not Available

2011-07-01T23:59:59.000Z

50

DOE Announces Marine and Hydrokinetic Open Data Effort | Department...  

Office of Environmental Management (EM)

Open Data Effort April 10, 2014 - 3:39pm Addthis In an effort to improve future data management and access, DOE's Water Power Program is standing up a Marine and Hydrokinetics...

51

Marine and Hydrokinetic (MHK) Technology Development Risk Management Framework Webinar  

Broader source: Energy.gov [DOE]

Over the years, the global marine and hydrokinetic (MHK) industry has suffered a number of technological and commercial setbacks, including some that resulted in bankruptcy. To help reduce the...

52

Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Marine and Hydrokinetic Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop W. Musial, M. Lawson, and S. Rooney National Renewable Energy Laboratory Technical Report NREL/TP-5000-57605 February 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop W. Musial, M. Lawson, and S. Rooney National Renewable Energy Laboratory Prepared under Task No. WA09.3406

53

Inflow Characterization for Marine and Hydrokinetic Energy Devices. FY-2010 Annual Progress Report  

SciTech Connect (OSTI)

Marine and Hydro Kinetic devices (MHK) are being widely studied as a source of renewable energy. The Marrowstone Island site is a potential location for installing MHK devices because the tidal currents observed that are sufficient for power generation. In order to quantify the effects of turbulence on MHK devices and the surrounding environment at this site, a prelimi- nary fluid flow field study was conducted here by the Pacific Northwest National Lab (PNNL) in collaboration with the Applied Physics Lab at the University of Washington (APL-UW). This study entailed continuous The Acoustic Doppler Velocimetry (ADV), Acoustic Doppler Current Profiler (ADCP) and Conductivity, Temperature and Depth (CTD) measurements from May 4, 2010 to May 22, 2010, in order to obtain information about turbulence effects during different tidal conditions. The instruments used for collecting the above measurements were deployed at the Marrowstone site using a R/V Jack Robertson provided by the University of Washington (APL-UW). All the measurements were taken at the site with an average depth of 22 m below the sea surface. ADV acquired velocity data at 32 Hz sampling frequency at 4.6 m above the seabed, and ADCP acquired velocity profile data at a sampling frequency of 2 Hz, from a height of 2.6 m above the seabed to the surface with a bin resolution of 0.5 m. The ADV and ADCP measurements showed that the horizontal velocity had a turbulence intensity of 10%. Further- more, the spectral analysis from ADV measurements showed that the flow is fully turbulent with -5/3 slope in the inertial sub-range of the spectra. Moreover, the temporal-frequency analysis showed presence of ”eddies” at high frequencies. These preliminary studies provided initial flow field and site characteristics, showed the limitations of the instruments used and highlighted changes that need to be made in the experimental setup for deployment in FY-2011 studies.

Richmond, Marshall C.; Durgesh, Vibhav; Thomson, Jim; Polagye, Brian

2011-01-31T23:59:59.000Z

54

DOE Announces Webinars on Residential Energy Efficiency, Marine and Hydrokinetic Technology Development Risk Management, and More  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are...

55

EA-1965: Florida Atlantic University Southeast National Marine Renewable Energy Center’s Offshore Marine Hydrokinetic Technology Testing Project, Florida  

Broader source: Energy.gov [DOE]

The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic University’s South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMREC’s experimental current generation turbine and the deployment and operation of their Small-Scale Ocean Current Turbine Test Berth, sited on the outer continental shelf (OCS) in waters off the coast of Ft Lauderdale, Florida. SNMREC would demonstrate the test berth site readiness by testing their pilot-scale experimental ocean current turbine unit at that location. The Bureau of Ocean Energy Management (BOEM) conducted an Environmental Assessment to analyze the impacts associated with leasing OCS lands to FAU SNMREC, per their jurisdictional responsibilities under the Outer Continental Shelf Lands Act. DOE was a cooperating agency in this process and based on the EA, DOE issued a Finding of No Significant Impact.

56

New Request for Information on Strategy to Advance the Marine and Hydrokinetic Energy Industry  

Broader source: Energy.gov [DOE]

The Energy Department’s Water Power Program is seeking feedback from the MHK industry, academia, research laboratories, government agencies, and other stakeholders regarding the Program’s activities and priorities in MHK.

57

Marine and Hydrokinetic Technology Development and Testing |...  

Broader source: Energy.gov (indexed) [DOE]

floating, metal test unit floating in the ocean. Northwest National Marine Renewable Energy Center: Advanced Assessment and Device Testing NNMREC is designing, installing, and...

58

Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.  

SciTech Connect (OSTI)

This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

Bull, Diana L; Ochs, Margaret Ellen

2013-09-01T23:59:59.000Z

59

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Marine & Hydrokinetic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Marine & Hydrokinetic Data Marine & Hydrokinetic Data This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables densities within a few kilometers of a linear array, even for fixed terminator devices. The total available energy resource along the U.S. continental shelf edge,

60

Effects of Electromagnetic Fields on Fish and Invertebrates Task 2.1.3: Effects on Aquatic Organisms Fiscal Year 2012 Progress Report Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect (OSTI)

Energy generated by the world’s oceans and rivers offers the potential to make substantial contributions to the domestic and global renewable energy supply. However, the marine and hydrokinetic (MHK) energy industry faces challenges related to siting, permitting, construction, and operation of pilotand commercial-scale facilities. One of the challenges is to understand the potential effects to marine organisms from electromagnetic fields, which are produced as a by-product of transmitting power from offshore to onshore locations through underwater transmission cables. This report documents the progress of the third year of research (fiscal year 2012) to investigate environmental issues associated with marine and hydrokinetic energy (MHK) generation. This work was conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy (EERE) Wind and Water Technologies Office. The report addresses the effects of electromagnetic fields (EMFs) on selected marine species where significant knowledge gaps exist. The species studied this fiscal year included one fish and two crustacean species: the Atlantic halibut (Hippoglossus hippoglossus), Dungeness crab (Metacarcinus magister), and American lobster (Homarus americanus).

Woodruff, Dana L.; Cullinan, Valerie I.; Copping, Andrea E.; Marshall, Kathryn E.

2013-05-20T23:59:59.000Z

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Review of Recent Literature Relevant to the Environmental Effects of Marine and Hydrokinetic Energy Devices Task 2.1.3: Effects on Aquatic Organisms – Fiscal Year 2011 Progress Report Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect (OSTI)

A literature search was conducted by using the Web of Science® Databases component of the ISI Web of KnowledgeSM to identify recent articles that would be useful to help assess the potential environmental effects of renewable energy development in the ocean, with emphasis on marine mammals, seabirds, and fish. Several relatively recent general review articles that included possible effects of marine renewable energy devices on marine mammals and seabirds were examined to begin the search process (e.g., Boehlert et al. 2008; Thompson et al. 2008; Simas et al. 2009). From these articles, several general topics of potential environmental effects on marine mammals, seabirds, and fish were derived. These topics were used as the primary search factors. Searches were conducted with reference to the potential effects of offshore wind farms and MHK devices on marine mammals, seabirds, and fish. Additional sources were identified by cross-checking the Web of Science databases for articles that cited the review articles. It also became clear that often the potential effects were offered as hypotheses that often were not supported by the presentation of appropriate documentation. Therefore, the search was refined and focused on trying to obtain the necessary information to support or challenge a proposed potential effect to a specific concern. One of the expressed concerns regarding MHK devices is that placing wave parks in coastal waters could compromise the migration patterns of whales. Disruption of the annual migration of the gray whale (Eschrichtius robustus), which swims at least 30,000 km on its round trip from breeding grounds in Baja California to feeding areas in the Bering Sea, is of particular concern. Among the hypothesized effects on the migrating gray whales are increased predation risk by constricting migration corridor to between array and shore or by forcing the whales to swim into deeper waters, increased metabolic energy costs and delays in reaching the destinations, and interrupting feeding by blocking access to benthic areas under arrays. The literature search focused on identifying published studies that could provide information to evaluate these concerns. The results were developed into a case study that evaluated the potential effects of the placement of wave parks in coastal waters along the migration route of the gray whale. Wave parks and other MHK arrays may have additional effects on gray whales and other marine mammals, including entanglement in mooring lines and interference with communications among other effects, that were not included in this case study. The case study results were rewritten into a simpler form that would be suitable for placement on a web blog

Kropp, Roy K.

2011-09-30T23:59:59.000Z

62

2014 Water Power Program Peer Review: Marine and Hydrokinetic Technologies, Compiled Presentations (Presentation)  

SciTech Connect (OSTI)

This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Marine and Hydrokinetic Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

Not Available

2014-02-01T23:59:59.000Z

63

First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project...  

Office of Science (SC) Website

First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project in North America Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR...

64

Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement...  

Energy Savers [EERE]

Call: Supporting Research and Testing for MHK Presentation from the 2011 Water Program Peer Review 2014 Water Power Program Peer Review Compiled Presentations: Marine and...

65

River Hydrokinetic Resource Atlas | Open Energy Information  

Open Energy Info (EERE)

River Hydrokinetic Resource Atlas River Hydrokinetic Resource Atlas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: River Hydrokinetic Resource Atlas Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Water Power Resource Type: Maps, Software/modeling tools User Interface: Website Website: maps.nrel.gov/river_atlas Country: United States Web Application Link: maps.nrel.gov/river_atlas Cost: Free UN Region: Northern America Coordinates: 39.7412019515°, -105.172290802° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7412019515,"lon":-105.172290802,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

66

2011 Marine and Hydrokinetic Device Modeling Workshop: Final Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PROGRAM PROGRAM � 2011 Marine Hydrokinetic Device Modeling Workshop: Final Report March 1, 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,

67

Effects of Tidal Turbine Noise on Fish Hearing and Tissues - Draft Final Report - Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect (OSTI)

Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This project was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/Chinook/CKPUG.cfm); the fish used in this experiment were hatchery raised and their populations are not in danger of depletion. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Experimental results indicate that non-lethal, low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

2011-09-30T23:59:59.000Z

68

Sandia National Laboratories: Investigations on Marine Hydrokinetic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Turbine Foil Structural Health Monitoring Presented at GMREC METS On June 26, 2014, in Energy, News, News & Events, Renewable Energy, Systems Analysis, Water Power...

69

Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement...  

Energy Savers [EERE]

verification and validation o Environmental monitoring and permitting o Wave energy conversion (WEC) devices * How can future events of a similar nature be improved? The remainder...

70

Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water Power Program (WWPP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Power Program Water Power Program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new tech- nologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renew- able, emissions-free resource to generate environmentally sustainable and cost-effective electricity. The program's research and development efforts fall under two categories: Technology Development and Market Acceleration. Technology Development The Water Power Program works with industry partners, universities, and the Department of Energy's national

71

Education Toolbox Search | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

21 - 30 of 175 results. Video Energy 101: Marine and Hydrokinetic Energy See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents...

72

Euro Wave Energy | Open Energy Information  

Open Energy Info (EERE)

Euro Wave Energy Region: Norway Sector: Marine and Hydrokinetic Website: http:www.eurowaveenergy.com This company is listed in the Marine and Hydrokinetic Technology Database....

73

Blue Motion Energy | Open Energy Information  

Open Energy Info (EERE)

Energy Region: Netherlands Sector: Marine and Hydrokinetic Website: http:http:www.bluemotionen This company is listed in the Marine and Hydrokinetic Technology Database. This...

74

Energy Department Announces $7.25 Million for Projects to Advance America’s Emerging Marine & Hydrokinetic Industry  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department announced today $7.25 million for six organizations that will continue to advance water power as a viable resource for America’s clean energy portfolio.

75

Tethys: The Marine and Hydrokinetic Technology Environmental Impacts Knowledge Management System -- Requirements Specification -- Version 1.0  

SciTech Connect (OSTI)

The marine and hydrokinetic (MHK) environmental impacts knowledge management system (KMS), dubbed Tethys after the mythical Greek goddess of the seas, is being developed for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy Wind and Hydropower Technologies Program (WHTP) by Pacific Northwest National Laboratory (PNNL). This requirements specification establishes the essential capabilities required of Tethys and clarifies for WHTP and the Tethys development team the results that must be achieved by the system.

Butner, R. Scott; Snowden-Swan, Lesley J.; Ellis, Peter C.

2010-11-09T23:59:59.000Z

76

MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Piscataqua Tidal Hydrokinetic Energy Project Piscataqua Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1055,"lon":-70.7912,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

77

MHK Technologies/Deep water capable hydrokinetic turbine | Open Energy  

Open Energy Info (EERE)

water capable hydrokinetic turbine water capable hydrokinetic turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage 275px Technology Profile Primary Organization Hills Inc Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description It is an axial flow shrouded turbine direct connected to a water pump that delivers water to an on shore genetator Being completely water proof and submersible the device can operate at any water depth Mooring Configuration An array of turbines are teathered to a cable that is anchored via a dead weight Optimum Marine/Riverline Conditions This system is designed for use in Florida s Gulf Stream however any constant ocean current is suitable

78

Preliminary Screening Analysis for the Environmental Risk Evaluation System: Task 2.1.1: Evaluating Effects of Stressors – Fiscal Year 2010 Progress Report: Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect (OSTI)

Possible environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term effects. An understanding of risk associated with likely interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help reduce the level of uncertainty and focus regulatory actions and scientific studies on interactions of most concern. As a first step in developing the Pacific Northwest National Laboratory (PNNL) Environmental Risk Evaluation System (ERES), PNNL scientists conducted a preliminary risk screening analysis on three initial MHK cases - a tidal project in Puget Sound using Open Hydro turbines, a wave project off the coast of Oregon using Ocean Power Technologies point attenuator buoys, and a riverine current project in the Mississippi River using Free Flow turbines. Through an iterative process, the screening analysis revealed that top-tier stressors in all three cases were the effects of the dynamic physical presence of the device (e.g., strike), accidents, and effects of the static physical presence of the device (e.g., habitat alteration). Receptor interactions with these stressors at the four highest tiers of risk were dominated by marine mammals (cetaceans and pinnipeds) and birds (diving and non-diving); only the riverine case (Free Flow) included different receptors in the third tier (fish) and the fourth tier (benthic invertebrates). Although this screening analysis provides a preliminary analysis of vulnerability of environmental receptors to stressors associated with MHK installations, probability analysis, especially of risk associated with chemical toxicity and accidents such as oil spills or lost gear, will be necessary to further understand high-priority risks. Subject matter expert review of this process and results is required and is planned for the first quarter of FY11. Once expert review is finalized, the screening analysis phase of ERES will be complete.

Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.

2010-11-15T23:59:59.000Z

79

MHK Technologies/Hydrokinetic Power Barge | Open Energy Information  

Open Energy Info (EERE)

Power Barge Power Barge < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hydrokinetic Power Barge.jpg Technology Profile Primary Organization Onsite Recovered Energy LP Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Vurbine proprietary technology design and assembly mounted on a horizontal shaft on a twin hull pontoon or barge CAT or SWATH combines reaction and impulse technologies which can efficiently harvest hydrokinetic energy from flowing water in a low impact application Technology Dimensions Device Testing Date Submitted 36:51.7 << Return to the MHK database homepage

80

Resolute Marine Energy Inc | Open Energy Information  

Open Energy Info (EERE)

Resolute Marine Energy Inc Resolute Marine Energy Inc Jump to: navigation, search Name Resolute Marine Energy Inc Address 3 Post Office Square 3rd floor Place Massachusetts Zip 02109-3905 Country United States Sector Marine and Hydrokinetic Product Resolute is a wave-power technology developer operating in Massachusetts. Year founded 2007 Number of employees 12 Phone number 917-626-6790 Website http://www.resolutemarine.com References Resolute Marine Energy LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Ocean Trials Ver 2 SurgeWEC Ocean Testing 1 This company is involved in the following MHK Technologies: AirWEC SurgeWEC

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Assessment of hydrokinetic energy near Rose Dhu Island, Georgia  

Science Journals Connector (OSTI)

The presented study reports on numerical simulations of flows in tidal channels near Rose Dhu Island GA which is used to identify hotspots of hydrokinetic energy and to assess the tidal stream energy potential at this site. The numerical simulations are complemented with field measurements of local currentvelocities and water surface heights which are used to validate the simulations. Both velocity distributions and water surface heights as predicted by the numerical model are in good agreement with observed data. The simulations reveal a tidal asymmetry in the encompassing Ogeechee estuary with the ebb tidecurrents dominating over the floodtide ones. The model is able to successfully predict the distribution of discharge into the smaller creeks around Rose Dhu Island and thereby capturing the location of local hotspots of hydrokinetic energy. It is found that local hotspots do exist near the island and the analysis suggests the maximum available annual power of 4.75?MW with a peak estimated extraction surpassing 4?KW during Spring tides.

Sandeep Bomminayuni; Brittany Bruder; Thorsten Stoesser; Kevin Haas

2012-01-01T23:59:59.000Z

82

2011 Marine Hydrokinetic Device Modeling Workshop: Final Report; March 1, 2011  

SciTech Connect (OSTI)

This report summarizes the NREL Marine and Hydrokinetic Device Modeling Workshop. The objectives for the modeling workshop were to: (1) Review the designs of existing MHK device prototypes and discuss design and optimization procedures; (2) Assess the utility and limitations of modeling techniques and methods presently used for modeling MHK devices; (3) Assess the utility and limitations of modeling methods used in other areas, such as naval architecture and ocean engineering (e.g., oil & gas industry); and (4) Identify the necessary steps to link modeling with other important components that analyze MHK devices (e.g., tank testing, PTO design, mechanical design).

Li, Y.; Reed, M.; Smith, B.

2011-10-01T23:59:59.000Z

83

Performance measurements of cylindrical- and spherical-helical cross-flow marine hydrokinetic turbines, with estimates of exergy efficiency  

Science Journals Connector (OSTI)

Abstract Power and drag (or thrust) measurements were performed in a towing tank for two different helical cross-flow marine hydrokinetic energy conversion devices—a cylindrical Gorlov Helical Turbine (GHT) and a Lucid Spherical Turbine (LST). The turbines are compared with respect to their various design parameters, with the GHT overall operating at higher power and drag coefficients. An estimate for the exergy efficiency of a turbine in free flow is formulated using momentum theory, and this quantity is computed for both devices. The GHT's exergy efficiency advantage over the LST was higher than that based on the power coefficient. Momentum theory-based blockage corrections were applied to the measurements and compared with the non-corrected data. The results presented here will help increase the amount of experimental data for helical devices in the literature, which is necessary for the development of more accurate engineering tools that take into account the unique three-dimensional nature of these devices.

Peter Bachant; Martin Wosnik

2015-01-01T23:59:59.000Z

84

Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water...  

Energy Savers [EERE]

Department of Energy's Water Power Program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and...

85

Request for Information Regarding the Testing of Marine and Hydrokinet...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program is seeking to better understand the current state of development of existing wave energy converter systems and current energy converter systems nearing one of two...

86

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Marine & Hydrokinet...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Renewable Energy's Water Power Program site. For Geographic Information System (GIS) MHK resource data, access the Data Resources page. If you have difficulty accessing...

87

Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop  

Broader source: Energy.gov [DOE]

The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community, and to collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry.

88

Simulating Blade-Strike on Fish passing through Marine Hydrokinetic Turbines  

SciTech Connect (OSTI)

The study reported here evaluated the occurrence, frequency, and intensity of blade strike of fish on an axial-flow marine hydrokinetic turbine by using two modeling approaches: a conventional kinematic formulation and a proposed Lagrangian particle- based scheme. The kinematic model included simplifying assumptions of fish trajectories such as distribution and velocity. The proposed method overcame the need for such simplifications by integrating the following components into a computational fluid dynamics (CFD) model: (i) advanced eddy-resolving flow simulation, (ii) generation of ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The test conditions to evaluate the blade-strike probability and fish survival rate were: (i) the turbulent environment, (ii) the fish size, and (iii) the approaching flow velocity. The proposed method offered the ability to produce potential fish trajectories and their interaction with the rotating turbine. Depending upon the scenario, the percentile of particles that registered a collision event ranged from 6% to 19% of the released sample size. Next, by using a set of experimental correlations of the exposure-response of living fish colliding with moving blades, the simulated collision data were used as input variables to estimate the survival rate of fish passing through the operating turbine. The resulting survival rates were greater than 96% in all scenarios, which is comparable to or better than known survival rates for conventional hydropower turbines. The figures of strike probability and mortality rate were amplified by the kinematic model. The proposed method offered the advantage of expanding the evaluation of other mechanisms of stress and injury on fish derived from hydrokinetic turbines and related devices.

Romero Gomez, Pedro DJ; Richmond, Marshall C.

2014-06-16T23:59:59.000Z

89

Effects of Electromagnetic Fields on Fish and Invertebrates: Task 2.1.3: Effects on Aquatic Organisms - Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect (OSTI)

This fiscal year (FY) 2011 progress report (Task 2.1.3 Effects on Aquatic Organisms, Subtask 2.3.1.1 Electromagnetic Fields) describes studies conducted by PNNL as part of the DOE Wind and Water Power Program to examine the potential effects of electromagnetic fields (EMF) from marine and hydrokinetic devices on aquatic organisms, including freshwater and marine fish and marine invertebrates. In this report, we provide a description of the methods and results of experiments conducted in FY 2010-FY 2011 to evaluate potential responses of selected aquatic organisms. Preliminary EMF laboratory experiments during FY 2010 and 2011 entailed exposures with representative fish and invertebrate species including juvenile coho salmon (Oncorhynchus kisutch), Atlantic halibut (Hippoglossus hippoglossus), California halibut (Paralicthys californicus), rainbow trout (Oncorhynchus mykiss), and Dungeness crab (Metacarcinus magister). These species were selected for their ecological, commercial, and/or recreational importance, as well as their potential to encounter an MHK device or transmission cable during part or all of their life cycle. Based on previous studies, acute effects such as mortality were not expected to occur from EMF exposures. Therefore, our measurement endpoints focused on behavioral responses (e.g., detection of EMF, interference with feeding behavior, avoidance or attraction to EMF), developmental changes (i.e., growth and survival from egg or larval stage to juvenile), and exposure markers indicative of physiological responses to stress. EMF intensities during the various tests ranged from 0.1 to 3 millitesla, representing a range of upper bounding conditions reported in the literature. Experiments to date have shown there is little evidence to indicate distinct or extreme behavioral responses in the presence of elevated EMF for the species tested. Several developmental and physiological responses were observed in the fish exposures, although most were not statistically significant. Additional species are currently planned for laboratory testing in the next fiscal year (e.g. an elasmobranch, American lobster) to provide a broader assessment of species important to stakeholders. The collective responses of all species will be assessed in terms of life stage, exposure scenarios, and biological relevance, to address current uncertainties related to effects of EMF on aquatic organisms.

Woodruff, Dana L.; Schultz, Irvin R.; Marshall, Kathryn E.; Ward, Jeffrey A.; Cullinan, Valerie I.

2012-05-01T23:59:59.000Z

90

Water Energy | Department of Energy  

Office of Environmental Management (EM)

tax issues; and finance. Source: Stoel Rives LLP. EERE Video Resources Energy 101: Hydroelectric Power Energy 101: Marine and Hydrokinetic Energy News Articles and Blogs Energy...

91

Office of Energy Efficiency & Renewable Energy Video Gallery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Renewable Energy Video Gallery Energy 101: Lighting Choices Energy 101: Hydroelectric Power Energy 101: Marine and Hydrokinetic Energy Energy 101: Feedstocks for...

92

Videos | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

101: Biofuels Energy 101: Algae-to-Fuel Energy 101: Lighting Choices Energy 101: Hydroelectric Power Wide Bandgap Semiconductors Energy 101: Marine and Hydrokinetic Energy...

93

MHK Projects/Indian River Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Tidal Hydrokinetic Energy Project Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6853,"lon":-75.0694,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

94

MHK Projects/Passamaquoddy Tribe Hydrokinetic Project | Open Energy  

Open Energy Info (EERE)

Passamaquoddy Tribe Hydrokinetic Project Passamaquoddy Tribe Hydrokinetic Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0234,"lon":-67.0672,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

95

MHK Projects/Atchafalaya River Hydrokinetic Project II | Open Energy  

Open Energy Info (EERE)

Atchafalaya River Hydrokinetic Project II Atchafalaya River Hydrokinetic Project II < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.9828,"lon":-91.7994,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

96

MHK Projects/Sakonnet River Hydrokinetic Project | Open Energy Information  

Open Energy Info (EERE)

Sakonnet River Hydrokinetic Project Sakonnet River Hydrokinetic Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6224,"lon":-71.2153,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

97

MHK Projects/Yukon River Hydrokinetic Turbine Project | Open Energy  

Open Energy Info (EERE)

Yukon River Hydrokinetic Turbine Project Yukon River Hydrokinetic Turbine Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.7883,"lon":-141.198,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

98

Marine Hydroelectric Company | Open Energy Information  

Open Energy Info (EERE)

Hydroelectric Company Address: 24040 Camino Del Avion A 107 Place: Monarch Beach Sector: Marine and Hydrokinetic Year Founded: 1983 Phone Number: (949) 361-6474 Website: http:...

99

Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigating the Influence of Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code D.C. Maniaci Pennsylvania State University Y. Li National Renewable Energy Laboratory Presented at the Oceans 11 Conference Kona, Hawaii September 19-21, 2011 Conference Paper NREL/CP-5000-52306 October 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

100

Multimedia | Department of Energy  

Energy Savers [EERE]

Energy and Manufacturing Competitiveness Summit Introduction Alcoa and ArcelorMittal One Panel One Roof, DOE Powering Solar Workforce Energy 101: Marine and Hydrokinetic Energy...

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code  

SciTech Connect (OSTI)

This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. This paper summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30{sup o} of yaw.

Maniaci, D. C.; Li, Y.

2011-10-01T23:59:59.000Z

102

Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code: Preprint  

SciTech Connect (OSTI)

This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. It summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30 degrees of yaw.

Maniaci, D. C.; Li, Y.

2012-04-01T23:59:59.000Z

103

Aviation Enterprises Ltd see Marine Current Turbines Ltd | Open Energy  

Open Energy Info (EERE)

Enterprises Ltd see Marine Current Turbines Ltd Enterprises Ltd see Marine Current Turbines Ltd Jump to: navigation, search Name Aviation Enterprises Ltd see Marine Current Turbines Ltd Sector Marine and Hydrokinetic Website http://http://www.escoot.co.uk Region United Kingdom LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Aviation_Enterprises_Ltd_see_Marine_Current_Turbines_Ltd&oldid=678251" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties About us

104

Dartmouth Wave Energy | Open Energy Information  

Open Energy Info (EERE)

Dartmouth Wave Energy Jump to: navigation, search Name: Dartmouth Wave Energy Region: United Kingdom Sector: Marine and Hydrokinetic Website: http:www.dartmouthwaveenergy This...

105

marine energy | OpenEI Community  

Open Energy Info (EERE)

marine energy marine energy Home Kch's picture Submitted by Kch(24) Member 9 April, 2013 - 13:30 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine energy MHK ocean energy The generalized Cost Breakdown Structure (CBS) for marine and hydrokinetic (MHK) projects is a hierarchical structure designed to facilitate the collection and organization of lifecycle costs of any type of MHK project, including wave energy converters and current energy convertners. At a high level, the categories in the CBS will be applicable to all projects; at a detailed level, however, the CBS includes many cost categories that will pertain to one project but not others. It is expected that many of the detailed levels of the CBS will be populated with "NA" or left blank.Upload

106

AW Energy | Open Energy Information  

Open Energy Info (EERE)

Name: AW Energy Address: Lars Sonckin kaari 16 Place: Espoo Zip: FI-02600 Region: Finland Sector: Marine and Hydrokinetic Phone Number: +358 9 7262404 Website: http:...

107

Energy Department Announces Funding for Demonstration and Testing of Advanced Wave and Tidal Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $10 million to strengthen the U.S. marine and hydrokinetic (MHK) energy industry, including wave and tidal energy sources.

108

Green Wave Energy Corp GWEC | Open Energy Information  

Open Energy Info (EERE)

Energy Corp GWEC Jump to: navigation, search Name: Green Wave Energy Corp GWEC Region: United States Sector: Marine and Hydrokinetic Website: http:http:greenwaveenergyc This...

109

Hydropower Appropriations | Department of Energy  

Office of Environmental Management (EM)

Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Marine and Hydrokinetic Energy Projects Water Power Program: 2011 Peer Review Report...

110

Onsite Recovered Energy LP | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Onsite Recovered Energy LP Address: Centurion Region: South Africa Sector: Marine and Hydrokinetic Year Founded: 2009 Phone Number: +27 (0)83...

111

Tocardo Tidal Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Tocardo Tidal Energy Ltd Address: De Weel 20 Place: Zijdewind Zip: 1736KB Region: Netherlands Sector: Marine and Hydrokinetic Phone Number: 31 226 423411 Website: http:...

112

Marine energy  

Science Journals Connector (OSTI)

...improve as the cost of gas rises and carbon...horizontal axis turbine (similar to wind...similar to a wind turbine rotor) mounted on...difficulties in maintaining progress in a new marine technology...Lunar Energy uses a turbine designed by Rotech...energy. A recent report by the Carbon Trust...

2007-01-01T23:59:59.000Z

113

Education Toolbox Search | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and...

114

Sandia National Laboratories: river current energy converters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is a partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

115

Sandia National Laboratories: wave energy converters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is a partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

116

Wave Energy Technology New Zealand | Open Energy Information  

Open Energy Info (EERE)

Wave Energy Technology New Zealand Address: PO Box 25456 Panama St Place: Wellington Zip: 6146 Region: New Zealand Sector: Marine and Hydrokinetic Year Founded: 2003 Phone Number:...

117

User:GregZiebold/Sector test | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Ocean Renewable Energy Services Vehicles Wind energy Retrieved from "http:en.openei.orgwindex.php?titleUser:GregZieboldSectortest&oldid20763...

118

Proceedings of the Hydrokinetic and Wave Energy Technologies...  

Energy Savers [EERE]

Energy Conversion Technologies on Aquatic Environments Before the House Science and Technology Subcommittee on Energy and Environment Water Power Program: 2011 Peer Review Report...

119

Before the House Science and Technology Subcommittee on Energy and Environment  

Broader source: Energy.gov [DOE]

Subject: Marine and Hydrokinetic Energy Technology: Finding the Path to Commercialization By: Jacques Beaudry-Losique, Deputy Assistant Secretary for Renewable Energy

120

Direct - drive permanent magnet synchronous generator design for hydrokinetic energy extraction .  

E-Print Network [OSTI]

??"Hydrokinetic turbines deliver lower shaft speeds when compared to both steam and wind turbines. Hence, a water wheel generator must operate at speeds as low… (more)

Kashyap, Amshumaan Raghunatha

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

U.S. Department of Energy Wind and Water Power Program Funding...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Office Funding in the United States: MARINE AND HYDROKINETIC ENERGY PROJECTS Fiscal Years 2008 - 2014 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER...

122

SITING PROTOCOLS FOR MARINE AND HYDROKINETIC ENERGY PROJECTS  

SciTech Connect (OSTI)

Project Objective: The purpose of this project is to identify and address regulatory issues that affect the cost, time and the management of potential effects as it relates to siting and permitting advanced water power technologies. Background: The overall goal of this effort is to reduce the cost, time and effort of managing potential effects from the development advanced water power projects as it relates to the regulatory process in siting and permitting. To achieve this goal, a multi-disciplinary team will collect and synthesize existing information regarding regulatory processes into a user-friendly online format. In addition, the team will develop a framework for project planning and assessment that can incorporate existing and new information. The team will actively collaborate and coordinate with other efforts that support or influence regulatory process. Throughout the process, the team will engage in an iterative, collaborative process for gathering input and testing ideas that involves the relevant stakeholders across all sectors at the national, regional, and all state levels.

Kopf, Steven; Klure, Justin; Hofford, Anna; McMurray, Greg; Hampton, Therese

2012-07-15T23:59:59.000Z

123

Siting Methodologies for Hydrokinetics  

Broader source: Energy.gov [DOE]

Report that provides an overview of the federal and state regulatory framework for hydrokinetic projects.

124

Multnomah County Hydrokinetic Feasibility Study: Final Feasibility Study Report  

SciTech Connect (OSTI)

HDR has completed a study of the technical, regulatory, and economic feasibility of installing hydrokinetic turbines under the Morrison, Broadway, and Sellwood bridges. The primary objective of installing hydrokinetic turbines is a demonstration of in-stream hydrokinetic technologies for public education and outreach. Due to the low gradient of the Lower Willamette and the effects of the tide, velocities in the area in consideration are simply not high enough to economically support a commercial installation. While the velocities in the river may at times provide enough energy for a commercial turbine to reach capacity, the frequency and duration of high flow events which provide suitable velocities is not sufficient to support a commercial hydrokinetic installation. We have observed that over an 11 year period, daily average velocities in the Lower Willamette exceeded a nominal cut-in speed of 0.75 m/s only 20% of the time, leaving net zero power production for the remaining 80% of days. The Sellwood Bridge site was estimated to have the best hydrokinetic resource, with an estimated average annual production of about 9,000 kWh. The estimated production could range from 2,500 kWh to 15,000 kWh. Based on these energy estimates, the amount of revenue generated through either a power purchase agreement (PPA) or recovered through net metering is not sufficient to repay the project costs within the life of the turbine. The hydrokinetic resource at the Morrison and Broadway Bridges is slightly smaller than at the Sellwood Bridge. While the Broadway and Morrison Bridges have existing infrastructure that could be utilized, the project is not expected to generate enough revenue to repay the investment. Despite low velocities and energy production, the sites themselves are favorable for installation of a demonstration or experimental project. With high public interest in renewable energy, the possibility exists to develop a hydrokinetic test site which could provide developers and scientists a location to temporarily deploy and test hydrokinetic devices, and also function as an educational tool for the general public. Bridge piers provide an excellent pre-existing anchor point for hydrokinetic devices, and existing infrastructure at the Morrison and Broadway Bridges may reduce installation costs. Opportunity exists to partner with local universities with engineering and environmental interest in renewable energy. A partnership with Portland State University�¢����s engineering school could provide students with an opportunity to learn about hydrokinetics through senior design projects. Oregon State University and University of Washington, which are partnered through the Northwest National Marine Renewable Energy Center (NNMREC) to study and test hydrokinetic technology, are also relatively local to the site. In addition to providing an opportunity for both public and private entities to learn technically about in-stream kinetics, this approach will encourage grant funding for outreach, education, and product development, while also serving as a positive community relations opportunity for the County and its partners.

Stephen Spain

2012-03-15T23:59:59.000Z

125

Request for Information Regarding the Testing of Marine and Hydrokinetic Systems  

Broader source: Energy.gov [DOE]

The Energy Department’s Water Power Program is seeking information from the MHK industry, academia, research laboratories, government agencies, and other stakeholders on the development details of MHK systems that have the greatest potential for commercial viability.

126

Marine energy  

Science Journals Connector (OSTI)

...have been considered in Argentina, Australia, Canada...benefit of carbon-free energy is to be realized...location power (MW) energy (TWh1) operational...Cape Keraudren 600 1.1 Argentina San Jose/Neuvo 600...prototype. Figure 14 Lunar Energy tidal stream device...

2007-01-01T23:59:59.000Z

127

Atlantisstrom | Open Energy Information  

Open Energy Info (EERE)

Atlantisstrom Region: Germany Sector: Marine and Hydrokinetic Website: http:http:www.atlantisstro This company is listed in the Marine and Hydrokinetic Technology Database....

128

Green Cat Renewables | Open Energy Information  

Open Energy Info (EERE)

Green Cat Renewables Region: Scotland Sector: Marine and Hydrokinetic Website: http:http:www.greencatrene This company is listed in the Marine and Hydrokinetic Technology...

129

E CO Energi | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name: E CO Energi Address: PO Box 255 Sentrum Zip: 103 Region: Norway Sector: Marine and Hydrokinetic Phone Number: + 47 24 11 69 00 Website: http:http:...

130

Wave Energy AS | Open Energy Information  

Open Energy Info (EERE)

Wave Energy AS Address: Opstadveien 11C Place: Aalgaard Zip: 4330 Region: Norway Sector: Marine and Hydrokinetic Phone Number: (+47) 51 6109 30 Website: http:www.waveenergy.no...

131

Deployment Effects of Marin Renewable Energy Technologies  

SciTech Connect (OSTI)

Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for Identifying Key Environmental Concerns This is the second report in the sequence and describes the results of conceptual feasibility studies of tidal power plants deployed in Tacoma Narrows, Washington. The Narrows contain many of the same competing stakeholder interactions identified at other tidal power sites and serves as a representative case study. Tidal power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize impacts, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informs the process of selecting representative tidal power devices. The selection criteria is that such devices are at an advanced stage of development to reduce technical uncertainties and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. A number of other developers are also at an advanced stage of development including Verdant Power, which has demonstrated an array of turbines in the East River of New York, Clean Current, which has demonstrated a device off Race Rocks, BC, and OpenHydro, which has demonstrated a device at the European Marine Energy Test Center and is on the verge of deploying a larger device in the Bay of Fundy. MCT demonstrated their device both at Devon (UK) and Strangford Narrows (Northern Ireland). Furthermore OpenHydro, CleanCurrent, and MCT are the three devices being installed at the Minas Passage (Canada). Environmental effects will largely scale with the size of tidal power development. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nom

Brian Polagye; Mirko Previsic

2010-06-17T23:59:59.000Z

132

Before the Subcommittee on Water and Power- Senate Committee on Energy and Natural Resourses  

Broader source: Energy.gov [DOE]

Subject: The Marine and Hydrokinetic Renewable Energy Act of 2013 By: Mike Carr, Senior Advisor to the Director, Energy Policy and Systmes Analysis; and Principal Deputy Assistant Secretary Office of Energy Efficiency and Renewable Energy

133

BOEM Issues First Renewable Energy Lease for MHK Technology Testing...  

Office of Environmental Management (EM)

3rd, 2014 the Bureau of Ocean Energy Management (BOEM) issued the first ever lease to test marine and hydrokinetic (MHK) energy devices in federal waters to Florida Atlantic...

134

Sustainable Marine Energy | Open Energy Information  

Open Energy Info (EERE)

Marine Energy Jump to: navigation, search Name: Sustainable Marine Energy Address: Trinity Wharf, Trinity Road, East Cowes, Place: Isle of Wight, Zip: PO32 6RF Sector: Marine and...

135

Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments  

Broader source: Energy.gov [DOE]

The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments.

136

Ryan Sun Chee Fore | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ryan Sun Chee Fore About Us Ryan Sun Chee Fore - Marine and Hydrokinetic Technology Manager Most Recent Riding the Clean Energy Wave: New Projects Aim to Improve Water Power...

137

Energy Department Announces $4 Million for University Consortium to Advance America’s Water Power Industry  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $4 million to engage America’s research universities in the effort to accelerate the development of the emerging marine and hydrokinetic (MHK) energy industry in the United States.

138

BOEM Issues First Renewable Energy Lease for MHK Technology Testing in Federal Waters  

Broader source: Energy.gov [DOE]

On June 3rd, 2014 the Bureau of Ocean Energy Management (BOEM) issued the first ever lease to test marine and hydrokinetic (MHK) energy devices in federal waters to Florida Atlantic University (FAU...

139

Assessment of Tidal Energy Removal Impacts on Physical Systems: Development of MHK Module and Analysis of Effects on Hydrodynamics  

SciTech Connect (OSTI)

In this report we describe (1) the development, test, and validation of the marine hydrokinetic energy scheme in a three-dimensional coastal ocean model (FVCOM); and (2) the sensitivity analysis of effects of marine hydrokinetic energy configurations on power extraction and volume flux in a coastal bay. Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics and Subtask 2.1.2.3, Screening Analysis, for fiscal year 2011 of the Environmental Effects of Marine and Hydrokinetic Energy project.

Yang, Zhaoqing; Wang, Taiping

2011-09-01T23:59:59.000Z

140

Water Power for a Clean Energy Future (Fact Sheet)  

SciTech Connect (OSTI)

Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

Not Available

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Simulating Collisions for Hydrokinetic Turbines  

SciTech Connect (OSTI)

Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

2013-10-01T23:59:59.000Z

142

1st Advanced Marine Renewable Energy Instrumentation Experts Workshop: April 5-7, 2011  

SciTech Connect (OSTI)

The U.S. marine energy industry is actively pursuing development of offshore wind and marine hydrokinetic (MHK) energy systems. Experience in the wind energy sector demonstrates that new technology development requires thorough measurement and characterization of the environmental conditions prevalent at installation sites and of technology operating in the field. Presently, there are no turn-key instrumentation system solutions that meet the measurement needs of the marine energy industry. The 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop brought together technical experts from government laboratories, academia, and industry representatives from marine energy, wind, offshore oil and gas, and instrumentation developers to present and discuss the instrumentation needs of the marine energy industry. The goals of the meeting were to: (1) Share the latest relevant knowledge among technical experts; (2) Review relevant state-of-the-art field measurement technologies and methods; (3) Review lessons learned from recent field deployments; (4) Identify synergies across different industries; (5) Identify gaps between existing and needed instrumentation capabilities; (6) Understand who are the leading experts; (7) Provide a forum where stakeholders from the marine energy industry could provide substantive input in the development of new marine energy field deployable instrumentation packages.

Not Available

2011-10-01T23:59:59.000Z

143

DOE Announces Webinars on Better Buildings Challenge K-12 Education Partners, a Marine and Hydrokinetic Funding Opportunity, and More  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts.

144

Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review  

Science Journals Connector (OSTI)

The energy in flowing river streams, tidal currents or other artificial water channels is being considered as viable source of renewable power. Hydrokinetic conversion systems, albeit mostly at its early stage of development, may appear suitable in harnessing energy from such renewable resources. A number of resource quantization and demonstrations have been conducted throughout the world and it is believed that both in-land water resources and offshore ocean energy sector will benefit from this technology. In this paper, starting with a set of basic definitions pertaining to this technology, a review of the existing and upcoming conversion schemes, and their fields of applications are outlined. Based on a comprehensive survey of various hydrokinetic systems reported to date, general trends in system design, duct augmentation, and placement methods are deduced. A detailed assessment of various turbine systems (horizontal and vertical axis), along with their classification and qualitative comparison, is presented. In addition, the progression of technological advancements tracing several decades of R&D efforts are highlighted.

M.J. Khan; G. Bhuyan; M.T. Iqbal; J.E. Quaicoe

2009-01-01T23:59:59.000Z

145

UEK Corporation | Open Energy Information  

Open Energy Info (EERE)

UEK Corporation UEK Corporation Jump to: navigation, search Name UEK Corporation Place Annapolis, Maryland Zip 21403 Sector Hydro, Ocean Product Annapolis-based developer & manufacturer of hydro-kinetic turbines to harness river, tidal and ocean currents. References UEK Corporation[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Atchafalaya River Hydrokinetic Project II Chitokoloki Project Coal Creek Project Half Moon Cove Tidal Project Indian River Tidal Hydrokinetic Energy Project Luangwa Zambia Project Minas Basin Bay of Fundy Commercial Scale Demonstration Old River Outflow Channel Project Passamaquoddy Tribe Hydrokinetic Project

146

International Marine Renewable Energy Conference  

Broader source: Energy.gov [DOE]

The International Marine Renewable Energy Conference (IMREC) offers researchers, technology developers, policy makers, NGOs, and industry representatives the opportunity to discuss financing...

147

EA-1965: Florida Atlantic University Southeast National Marine Renewable  

Broader source: Energy.gov (indexed) [DOE]

5: Florida Atlantic University Southeast National Marine 5: Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida EA-1965: Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida SUMMARY The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic University's South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMREC's experimental current generation turbine and the deployment and operation of their Small-Scale Ocean Current Turbine Test Berth, sited on the outer continental shelf (OCS) in waters off the coast of Ft Lauderdale, Florida.

148

Marine Current Turbines Ltd | Open Energy Information  

Open Energy Info (EERE)

Turbines Ltd Turbines Ltd Jump to: navigation, search Name Marine Current Turbines Ltd (MCT) Place Bristol, United Kingdom Zip BS34 8PD Sector Marine and Hydrokinetic Product Developer of tidal stream turbine technology for exploiting flowing water in general and tidal streams in particular. Coordinates 51.454513°, -2.58791° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.454513,"lon":-2.58791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

149

Southeast National Marine Renewable Energy Center (FAU) | Department...  

Office of Environmental Management (EM)

Southeast National Marine Renewable Energy Center (FAU) Southeast National Marine Renewable Energy Center (FAU) Southeast National Marine Renewable Energy Center (FAU)...

150

Seawind Marine | Open Energy Information  

Open Energy Info (EERE)

Seawind Marine Seawind Marine Jump to: navigation, search Name Seawind Marine Place Plymouth, England, United Kingdom Zip PL1 5NE Sector Services, Wind energy Product Focused on project management, engineering, construction and operations services for the wind energy industry. Coordinates 43.75681°, -87.984809° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.75681,"lon":-87.984809,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

151

Sandia National Laboratories: Marine Energy Technology Symposium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Marine Energy Technology Symposium Wave Energy Resource Characterization at US Test Sites On September 16, 2014, in Computational Modeling & Simulation, Energy, News, News &...

152

Assessment and Mapping of the Riverine Hydrokinetic Resource in the  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Abstract This report describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. The assessment provides estimates of the gross, naturally available resource, termed the

153

OES-IA Annex IV: Environmental Effects of Marine and Hydrokinetic Devices - Report from the Experts’ Workshop September 27th – 28th 2010 Clontarf Castle, Dublin Ireland  

SciTech Connect (OSTI)

An experts' workshop was convened in Dublin Ireland September 27th – 28th 2010 in support of IEA Ocean Energy Systems Implementing Agreement Annex IV. PNNL was responsible for organizing the content of the workshop, overseeing the contractors (Irish Marine Institute) hosting the event, presenting material on Annex IV and materials applicable to the workshop intent. PNNL is also overseeing a contractor (Wave Energy Center/University of Plymouth – WEC/UP) in the collection and analysis of the Annex IV data. Fifty-eight experts from 8 countries attended the workshop by invitation, spending two days discussing the needs of Annex IV. Presentations by DOE (background on Annex IV), PNNL (process for developing Annex IV; presentation of the draft database for PNNL project, plans for incorporating Annex IV data), WEC/UP on the environmental effect matrix, and four MHK developers (two from the UK, one from Ireland and one from Sweden; each discussing their own projects and lessons learned for measuring and mitigating environmental effects, as well as interactions with consenting [permitting] processes) helped provide background. The workshop participants worked part of the time in the large group and most of the time in four smaller breakout groups. Participants engaged in the process and provided a wealth of examples of MHK environmental work, particularly in the European nations. They provided practical and actionable advice on the following: • Developing the Annex IV database, with specific uses and audiences • Strong consensus that we should collect detailed metadata on available data sets, rather than attempting to draw in copious datasets. The participants felt there would then be an opportunity to then ask for specific set of data as needed, with specific uses and ownership of the data specified. This is particularly important as many data collected, particularly in Europe but also in Canada, are proprietary; developers were not comfortable with the idea of handing over all their environmental effects data, but all said they would entertain the request if they specifics were clear. • The recommendation was to collect metadata via an online interactive form, taking no more than one hour to complete. • Although the idea of cases representing the “best practices” was recognized as useful, the participants pointed out that there are currently so few MHK projects in the water, that any and all projects were appropriate to highlight as “cases”. There was also discomfort at the implication that “best practices” implied “lesser practices”; this being unhelpful to a new and emerging industry. • Workshop participants were asked if they were willing to continue to engage in the Annex IV process; all expressed willingness. The workshop was successful in adequately addressing its objectives and through participation and interaction in the breakout sessions around the various topics. As a result of the workshop, many delegates are now better informed and have a greater understanding of the potential environmental effects of MHK devices on the marine environment. There is now a greater sense of understanding of the issues involved and consensus by those regulators, developers and scientists who attended the workshop. A strong network has also been built over the two days between European and US/Canadian technical experts in wave and tidal energy.

Copping, Andrea E.; O'Toole, Michael J.

2010-12-02T23:59:59.000Z

154

Related Financial Opportunities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

water power facilities: marine and hydrokinetic (MHK) power installations, hydroelectric power installations, and hydropower efficiency improvements. Businesses that begin...

155

Shafir Civil Marine Engineering | Open Energy Information  

Open Energy Info (EERE)

Shafir Civil Marine Engineering Shafir Civil Marine Engineering Jump to: navigation, search Name Shafir Civil & Marine Engineering Place Israel Sector Services Product Services include infrastructure works, contracting, bridge construction and sewer line construction. References Shafir Civil & Marine Engineering[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Shafir Civil & Marine Engineering is a company located in Israel . References ↑ "Shafir Civil & Marine Engineering" Retrieved from "http://en.openei.org/w/index.php?title=Shafir_Civil_Marine_Engineering&oldid=350808" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

156

Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents  

Broader source: Energy.gov [DOE]

Laboratory testing of new hydrokinetic energy device to harness energy in slow-moving water currents.

157

Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States  

Broader source: Energy.gov [DOE]

Report that describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters.

158

Environmental Effects of Hydrokinetic Turbines on Fish: Desktop...  

Broader source: Energy.gov (indexed) [DOE]

Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies This...

159

Massachusetts: New Report States That Hydrokinetic Turbines Have...  

Energy Savers [EERE]

New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish Massachusetts: New Report States That Hydrokinetic Turbines Have Minimal Environmental...

160

Sandia National Laboratories: Sandia Releases Open-Source Hydrokinetic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ateECEnergyComputational Modeling & SimulationSandia Releases Open-Source Hydrokinetic Turbine Design Model, CACTUS Sandia Releases Open-Source Hydrokinetic Turbine Design Model,...

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

New Report States That Hydrokinetic Turbines Have Minimal Environmenta...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish August...

162

Marin Energy Authority | Open Energy Information  

Open Energy Info (EERE)

Energy Authority Energy Authority Jump to: navigation, search Name Marin Energy Authority Place California Utility Id 56692 Utility Location Yes Ownership R NERC Location WECC NERC WECC Yes ISO CA Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1330/kWh Commercial: $0.0843/kWh Industrial: $0.0862/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Marin_Energy_Authority&oldid=411038" Categories:

163

Energy Department Announces $8 Million to Develop Advanced Components for Wave, Tidal, and Current Energy Systems  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $8 million in available funding to spur innovation in next-generation marine and hydrokinetic control and component technologies. In the United States, waves, tides, and ocean currents represent a largely untapped renewable energy resource that could provide clean, affordable energy to homes and businesses across the country's coastal regions.

164

MARINE KELP: ENERGY RESOURCE IN THE COASTAL ZONE  

E-Print Network [OSTI]

J. , 1979, Marine Biomass Energy Project, Marine Technologythe proponents of a biomass energy system should start earlyof Symposium on Energy from Biomass and Wastes, Washington,

Ritschard, Ronald L.

2014-01-01T23:59:59.000Z

165

Float Inc | Open Energy Information  

Open Energy Info (EERE)

and Hydrokinetic Year Founded: 1992 Phone Number: 858-866-0816 Website: http:www.floatinc.com This company is listed in the Marine and Hydrokinetic Technology Database. This...

166

Natural Currents Energy Services | Open Energy Information  

Open Energy Info (EERE)

Natural Currents Energy Services Natural Currents Energy Services Jump to: navigation, search Name Natural Currents Energy Services Address 24 Roxanne Blvd Place Highland Zip 12528 Sector Marine and Hydrokinetic Phone number 845-691-4008 Website http://www.naturalcurrents.com Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Angoon Tidal Energy Plant Avalon Tidal BW2 Tidal Cape Cod Tidal Energy Project Cape May Tidal Energy Cohansey River Tidal Energy Cuttyhunk Tidal Energy Plant Dorchester Maurice Tidal Fishers Island Tidal Energy Project Gastineau Channel Tidal Highlands Tidal Energy Project Housatonic Tidal Energy Plant

167

Vortex Hydro Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Hydro Energy LLC Hydro Energy LLC Jump to: navigation, search Name Vortex Hydro Energy LLC Address 4870 West Clark Rd Suite 108 Place Ypsilanti Zip 48197 Sector Marine and Hydrokinetic Phone number 734.971.4020 Website http://www.vortexhydroenergy.c Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Marine Hydrodynamics Laboratory at the University of Michigan This company is involved in the following MHK Technologies: Vortex Induced Vibrations Aquatic Clean Energy VIVACE This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Vortex_Hydro_Energy_LLC&oldid=678497

168

Wavemill Energy | Open Energy Information  

Open Energy Info (EERE)

Wavemill Energy Wavemill Energy Jump to: navigation, search Name Wavemill Energy Address 1 Research Dr Place Dartmouth Zip B2Y 4M9 Sector Marine and Hydrokinetic Phone number 613-847-5687 Website http://www.wavemill.com Region Canada LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Wavemill Energy Cape Breton Island NS CA This company is involved in the following MHK Technologies: Wavemill This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Wavemill_Energy&oldid=678514" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies

169

Human dimensions perspectives on the impacts of coastal zone marine renewable energy  

E-Print Network [OSTI]

marine renewable energy development and production varied.marine renewable energy (MRE) development and production.

Pomeroy, Caroline; Conway, Flaxen; Hall-Arber, Madeleine

2013-01-01T23:59:59.000Z

170

Marine and Hydrokinetic Market Acceleration and Deployment |...  

Energy Savers [EERE]

the Navy, U.S. Army Corps of Engineers, U.S. Environmental Protection Agency, and U.S. Fish and Wildlife Service. These agencies share information on a large range of issues,...

171

Sandia National Laboratories: Marine Hydrokinetics Technology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

assessments. Laboratory-scale testing will be done to investigate materials and coatings, hydrofoil performance, and small-scale array effects. Test and evaluation is initially...

172

Sandia National Laboratories: Marine Hydrokinetics Technology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others (WFO) User...

173

Sandia National Laboratories: marine hydrokinetic reference models  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

174

Carnegie Wave Energy Limited | Open Energy Information  

Open Energy Info (EERE)

Carnegie Wave Energy Limited Carnegie Wave Energy Limited Jump to: navigation, search Name Carnegie Wave Energy Limited Address 1 124 Stirling Highway Place North Fremantle Zip 6159 Sector Marine and Hydrokinetic Year founded 1993 Number of employees 25 Website http://www.carnegiewave.com Region Australia LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: CETO La Reunion CETO3 Garden Island Perth Wave Energy Project PWEP This company is involved in the following MHK Technologies: CETO Wave Energy Technology This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Carnegie_Wave_Energy_Limited&oldid=678263

175

2013 Federal Energy and Water Management Award Winner Marine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Marine Corps Recruit San Diego 2013 Federal Energy and Water Management Award Winner Marine Corps Recruit San Diego fewm13usmcmcdepotsandiegohighres.pdf fewm13usmcmcdepotsandi...

176

Energy Department Releases New Energy 101 Video on Ocean Power | Department  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Releases New Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power April 30, 2013 - 12:40pm Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy FIND OUT MORE Read about the Energy Department's assessments of wave and tidal energy resources. You've probably seen water at work generating electricity at dams and other hydropower facilities in your region. But an emerging clean energy technology called marine and hydrokinetic (MHK) energy -- or ocean power -- uses water to generate electricity in a different way, and has yet to get

177

First State Marine Wind | Open Energy Information  

Open Energy Info (EERE)

State Marine Wind State Marine Wind Jump to: navigation, search Name First State Marine Wind Facility First State Marine Wind Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Gamesa / Blue Hen Wind Inc Developer First State Marine Wind LLC Location Atlantic Ocean DE Coordinates 38.836°, -75.154° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.836,"lon":-75.154,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

178

Tribological design constraints of marine renewable energy systems  

Science Journals Connector (OSTI)

...looks at the tribology of three green marine energy systems, offshore wind, tidal...undermines the reputation of this green energy source to produce reliable energy...looks at the tribology of three green marine energy systems, offshore wind, tidal...

2010-01-01T23:59:59.000Z

179

Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound  

SciTech Connect (OSTI)

Hydrokinetic turbines will be a source of noise in the marine environment - both during operation and during installation/removal. High intensity sound can cause injury or behavioral changes in marine mammals and may also affect fish and invertebrates. These noise effects are, however, highly dependent on the individual marine animals; the intensity, frequency, and duration of the sound; and context in which the sound is received. In other words, production of sound is a necessary, but not sufficient, condition for an environmental impact. At a workshop on the environmental effects of tidal energy development, experts identified sound produced by turbines as an area of potentially significant impact, but also high uncertainty. The overall objectives of this project are to improve our understanding of the potential acoustic effects of tidal turbines by: (1) Characterizing sources of existing underwater noise; (2) Assessing the effectiveness of monitoring technologies to characterize underwater noise and marine mammal responsiveness to noise; (3) Evaluating the sound profile of an operating tidal turbine; and (4) Studying the effect of turbine sound on surrogate species in a laboratory environment. This study focuses on a specific case study for tidal energy development in Admiralty Inlet, Puget Sound, Washington (USA), but the methodologies and results are applicable to other turbine technologies and geographic locations. The project succeeded in achieving the above objectives and, in doing so, substantially contributed to the body of knowledge around the acoustic effects of tidal energy development in several ways: (1) Through collection of data from Admiralty Inlet, established the sources of sound generated by strong currents (mobilizations of sediment and gravel) and determined that low-frequency sound recorded during periods of strong currents is non-propagating pseudo-sound. This helped to advance the debate within the marine and hydrokinetics acoustic community as to whether strong currents produce propagating sound. (2) Analyzed data collected from a tidal turbine operating at the European Marine Energy Center to develop a profile of turbine sound and developed a framework to evaluate the acoustic effects of deploying similar devices in other locations. This framework has been applied to Public Utility District No. 1 of Snohomish Country's demonstration project in Admiralty Inlet to inform postinstallation acoustic and marine mammal monitoring plans. (3) Demonstrated passive acoustic techniques to characterize the ambient noise environment at tidal energy sites (fixed, long-term observations recommended) and characterize the sound from anthropogenic sources (drifting, short-term observations recommended). (4) Demonstrated the utility and limitations of instrumentation, including bottom mounted instrumentation packages, infrared cameras, and vessel monitoring systems. In doing so, also demonstrated how this type of comprehensive information is needed to interpret observations from each instrument (e.g., hydrophone data can be combined with vessel tracking data to evaluate the contribution of vessel sound to ambient noise). (5) Conducted a study that suggests harbor porpoise in Admiralty Inlet may be habituated to high levels of ambient noise due to omnipresent vessel traffic. The inability to detect behavioral changes associated with a high intensity source of opportunity (passenger ferry) has informed the approach for post-installation marine mammal monitoring. (6) Conducted laboratory exposure experiments of juvenile Chinook salmon and showed that exposure to a worse than worst case acoustic dose of turbine sound does not result in changes to hearing thresholds or biologically significant tissue damage. Collectively, this means that Chinook salmon may be at a relatively low risk of injury from sound produced by tidal turbines located in or near their migration path. In achieving these accomplishments, the project has significantly advanced the District's goals of developing a demonstration-scale tidal energy proj

Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

2012-03-30T23:59:59.000Z

180

HYDROCAP ENERGY SAS | Open Energy Information  

Open Energy Info (EERE)

HYDROCAP ENERGY SAS HYDROCAP ENERGY SAS Jump to: navigation, search Name HYDROCAP ENERGY SAS Address 65 Place Nicolas Copernic Technopole Brest Iroise Place Plozane Zip 29280 Sector Marine and Hydrokinetic Year founded 2004 Phone number +33 298451417 Website http://http://www.hydrocap.com Region France LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: SEACAP This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=HYDROCAP_ENERGY_SAS&oldid=678336" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

MHK Technologies/Blue Motion Energy marine turbine | Open Energy  

Open Energy Info (EERE)

Motion Energy marine turbine Motion Energy marine turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Blue Motion Energy marine turbine.jpg Technology Profile Primary Organization Blue Motion Energy Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Description The Blue Motion Energy marine turbine however uses a patented system of seawalls A placed radial around the vertically mounted rotor B this way it is possible to funnel the current and significantly increase the flow velocity independent of the direction of the current Technology Dimensions Device Testing Date Submitted 59:30.2 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Blue_Motion_Energy_marine_turbine&oldid=681547

182

AHERC | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Tanana River Test Site Address K Street Place Nenana, Alaska Zip 99760 Sector Marine and Hydrokinetic...

183

Bluewater | Open Energy Information  

Open Energy Info (EERE)

search Name: Bluewater Address: Marsstraat 33 Place: Hoofddorp Zip: 2132 Region: Netherlands Sector: Marine and Hydrokinetic Year Founded: 1978 Phone Number: +31 (0)23 568 2800...

184

Energy Department Releases New Energy 101 Video on Ocean Power | Department  

Broader source: Energy.gov (indexed) [DOE]

Energy 101 Video on Ocean Power Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power April 30, 2013 - 12:40pm Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy FIND OUT MORE Read about the Energy Department's assessments of wave and tidal energy resources. You've probably seen water at work generating electricity at dams and other hydropower facilities in your region. But an emerging clean energy technology called marine and hydrokinetic (MHK) energy -- or ocean power -- uses water to generate electricity in a different way, and has yet to get

185

Green Energy Corp | Open Energy Information  

Open Energy Info (EERE)

Green Energy Corp Green Energy Corp Sector Marine and Hydrokinetic Website http://www.gweconline.com Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Floating wave Generator Syphon Wave Generator This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Green_Energy_Corp&oldid=678318" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

186

The Estimation of the Marine Main Diesel Engine Energy Balance  

Science Journals Connector (OSTI)

The basis of impact of energy device (marine main diesel engine) on its environment in terms of energy ... . Types of energy and exergy characterizing the marine main diesel engine are presented. The description ...

Z. Matuszak; G. Nicewicz

2014-01-01T23:59:59.000Z

187

Tribological design constraints of marine renewable energy systems  

Science Journals Connector (OSTI)

...countries. Marine energy conversion systems are at the...Most marine renewable energy conversion systems require tribological...reduced lifetimes by a factor of-10. An example...three different ocean energy conversion devices has been reviewed...

2010-01-01T23:59:59.000Z

188

WEC up! Energy Department Announces Wave Energy Conversion Prize Administrator  

Office of Energy Efficiency and Renewable Energy (EERE)

The Water Power Program today awarded $6.5 million to a Prize Administration Team for the development and execution of the Energy Department’s Wave Energy Conversion (WEC) Prize Competition. The WEC Prize will continue to advance marine and hydrokinetic (MHK) technology as a viable source for America’s clean energy future, in part by providing an opportunity for developers to test their innovative wave energy conversion (WEC) devices in a wave generating basin.

189

Experts Offer Marines Energy-Efficiency Advice | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Experts Offer Marines Energy-Efficiency Advice Experts Offer Marines Energy-Efficiency Advice Experts Offer Marines Energy-Efficiency Advice December 11, 2009 - 2:05pm Addthis Dr. John Barnett consulted for the military on saving energy in theater. | Photo courtesy NREL Dr. John Barnett consulted for the military on saving energy in theater. | Photo courtesy NREL Joshua DeLung As an early adopter of cutting-edge technologies, the United States military is pioneering energy efficiency and renewable energy technologies in the field. Recently, the Commandant of the United States Marine Corps sent a team to visit bases and camps in Afghanistan to assess and make recommendations on the supply and use of energy and water. If implemented, the findings will reduce demand for resources at military camps in strategically important areas of the country, translating to fewer trucks

190

Experts Offer Marines Energy-Efficiency Advice | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Experts Offer Marines Energy-Efficiency Advice Experts Offer Marines Energy-Efficiency Advice Experts Offer Marines Energy-Efficiency Advice December 11, 2009 - 2:05pm Addthis Dr. John Barnett consulted for the military on saving energy in theater. | Photo courtesy NREL Dr. John Barnett consulted for the military on saving energy in theater. | Photo courtesy NREL Joshua DeLung As an early adopter of cutting-edge technologies, the United States military is pioneering energy efficiency and renewable energy technologies in the field. Recently, the Commandant of the United States Marine Corps sent a team to visit bases and camps in Afghanistan to assess and make recommendations on the supply and use of energy and water. If implemented, the findings will reduce demand for resources at military camps in strategically important areas of the country, translating to fewer trucks

191

Category:MHK Companies | Open Energy Information  

Open Energy Info (EERE)

MHK Companies MHK Companies Jump to: navigation, search Dictionary.png Looking for the Marine and Hydrokinetic Technology Database? The companies below are involved in the Marine and Hydrokinetic energy sector and are considered to be MHK Companies. Pages in category "MHK Companies" The following 200 pages are in this category, out of 291 total. (previous 200) (next 200) A Able Technologies ABS Alaskan Inc AER NY Kinetics LLC AeroVironment Alaska Power Telephone Company AlbaTERN Alternative Energy Engineering Associates LLP Applied Technologies Company Ltd Aqua Magnetics Inc AquaEnergy Aquamarine Power Aquantis Inc Aquaphile sarl Hydro Gen Aquascientific Arlas Invest Arnold Energy Systems Artificial Muscle Inc Atlantis Resources Corporation Atlantisstrom Atmocean Aviation Enterprises Ltd see Marine Current Turbines Ltd

192

New Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

New Energy Corp. New Energy Corp. Address Suite 473 3553 31 St NW Place South Bend, Indiana Zip 46613-1010 Sector Marine and Hydrokinetic Product 102mmgy (386.1m litres/y) ethanol producer. Year founded 2003 Phone number (403) 260-5248 Website http://www.newenergycorp.ca Region Canada References New Energy Corp.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Bonnybrook Wastewater Facility Project 1 Bonnybrook Wastewater Facility Project 2 Canoe Pass Galena ABS Alaskan Great River Journey Miette River Pointe du Bois Ruby ABS Alaskan Western Irrigation District This company is involved in the following MHK Technologies:

193

Neo Aerodynamic | Open Energy Information  

Open Energy Info (EERE)

Neo Aerodynamic Jump to: navigation, search Name: Neo Aerodynamic Region: United States Sector: Marine and Hydrokinetic Website: http:www.neo-aerodynamic.com This company is...

194

SRI International | Open Energy Information  

Open Energy Info (EERE)

SRI International Jump to: navigation, search Name: SRI International Region: United States Sector: Marine and Hydrokinetic Website: http:www.sri.com This company is listed in...

195

Neptune Systems | Open Energy Information  

Open Energy Info (EERE)

Address: PO Box 8719 Place: Breda Zip: 4820 BA Region: Netherlands Sector: Marine and Hydrokinetic Phone Number: +31 (0) 652000097 Website: http:ftp:ftp.cordis.europa This...

196

Gyrodynamics Corporation | Open Energy Information  

Open Energy Info (EERE)

Corporation Address: Imon Kobe Bldg 95 Edomachi Place: Chuo ku Zip: 650-0033 Region: Japan Sector: Marine and Hydrokinetic Year Founded: 2008 Phone Number: -4729 Website: http:...

197

Ryokuseisha Corporation | Open Energy Information  

Open Energy Info (EERE)

Corporation Jump to: navigation, search Name: Ryokuseisha Corporation Region: Japan Sector: Marine and Hydrokinetic Website: http:http:www.ryokusei.co. This company...

198

Hydra Tidal Energy Technology AS | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Technology AS Tidal Energy Technology AS Jump to: navigation, search Name Hydra Tidal Energy Technology AS Address PO Box 399 Place Harstad Zip 9484 Sector Marine and Hydrokinetic Year founded 2001 Phone number (+47) 77 06 08 08 Website http://http://www.hydratidal.i Region Norway LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: MORILD Demonstration Plant Morild 2 This company is involved in the following MHK Technologies: MORILD 2 Floating Tidal Power System Morild Power Plant This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Hydra_Tidal_Energy_Technology_AS&oldid=678333

199

Finavera Renewables Ocean Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Renewables Ocean Energy Ltd Renewables Ocean Energy Ltd Jump to: navigation, search Name Finavera Renewables Ocean Energy Ltd Address 595 Burrard Street Suite 3113 Three Bentall Centre PO Box 49071 Place Vancouver Zip V7X 1G4 Sector Marine and Hydrokinetic Phone number 604-288-9051 Website http://www.finavera.com Region Canada LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Coos County Offshore Wave Energy Power Plant Figueira da Foz Portugal Humboldt County Wave Project Makah Bay Offshore Wave Pilot Project South Africa Ucluelet BC Canada This company is involved in the following MHK Technologies: AquaBuoy This article is a stub. You can help OpenEI by expanding it.

200

Oceanlinx | Open Energy Information  

Open Energy Info (EERE)

Oceanlinx Oceanlinx Jump to: navigation, search Name Oceanlinx Address PO Box 116 Place Botany Zip 1455 Sector Marine and Hydrokinetic Phone number 61 (0) 2 9549 6300 Website http://www.oceanlinx.com Region Australia LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: GPP Namibia Greenwave Rhode Island Ocean Wave Energy Project Hawaii Oceanlinx Maui Port Kembla Portland This company is involved in the following MHK Technologies: Denniss Auld Turbine Oceanlinx Mark 3 Wave Energy Converter This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Oceanlinx&oldid=678407

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Dexawave | Open Energy Information  

Open Energy Info (EERE)

Dexawave Dexawave Jump to: navigation, search Name Dexawave Sector Marine and Hydrokinetic Phone number + 45 8651 8690 Website http://http://www.dexawave.com Region Denmark LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: The DEXAWAVE wave energy converter This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Dexawave&oldid=678285" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

202

Water Power Events | Department of Energy  

Energy Savers [EERE]

Water Power Events Water Power Events Below is an industry calendar with meetings, conferences, and webinars of interest to the conventional hydropower and marine and hydrokinetic...

203

Soil Machine Dynamics Ltd | Open Energy Information  

Open Energy Info (EERE)

Dynamics Ltd Jump to: navigation, search Name: Soil Machine Dynamics Ltd Region: United Kingdom Sector: Marine and Hydrokinetic Website: http:http:smd.co.ukproduc This company...

204

Kinetic Wave Power | Open Energy Information  

Open Energy Info (EERE)

Wave Power Address: 2861 N Tupelo St Place: Midland Zip: 48642 Region: United States Sector: Marine and Hydrokinetic Phone Number: 989-839-9757 Website: http:...

205

Power Projects Limited | Open Energy Information  

Open Energy Info (EERE)

Power Projects Limited Address: PO Box 25456 Panama Street Place: Wellington Zip: 6146 Region: New Zealand Sector: Marine and Hydrokinetic Year Founded: 2001 Website: http:...

206

Wind Waves and Sun | Open Energy Information  

Open Energy Info (EERE)

Waves and Sun Jump to: navigation, search Name: Wind Waves and Sun Region: United States Sector: Marine and Hydrokinetic Website: http:www.windwavesandsun.com This company is...

207

Langlee Wave Power AS | Open Energy Information  

Open Energy Info (EERE)

Power AS Address: Smedsvingen 4 Entrance B 1st floor Place: Hvalstad Zip: 1395 Region: Norway Sector: Marine and Hydrokinetic Phone Number: +47 90044104 Website: http:...

208

Ing Arvid Nesheim | Open Energy Information  

Open Energy Info (EERE)

search Name: Ing Arvid Nesheim Address: Hoymyrmarka 123A Place: Vollen Zip: 1391 Region: Norway Sector: Marine and Hydrokinetic Phone Number: 47 951 08 439 Website: http:...

209

Teamwork Technology See Tocardo | Open Energy Information  

Open Energy Info (EERE)

Tocardo Jump to: navigation, search Name: Teamwork Technology See Tocardo Region: Netherlands Sector: Marine and Hydrokinetic Website: http:http:www.tocardo.com This...

210

Ecofys Subsidiary of Econcern | Open Energy Information  

Open Energy Info (EERE)

Subsidiary of Econcern Address: PO Box 8408 Place: Utrecht Zip: 3503 RK Region: Netherlands Sector: Marine and Hydrokinetic Phone Number: 31302808447 Website: http:...

211

Muroran Institute of Technology | Open Energy Information  

Open Energy Info (EERE)

Institute of Technology Address: 27 1 Mizumoto cho Place: Muroran Zip: 050-8585 Region: Japan Sector: Marine and Hydrokinetic Phone Number: 81 143 46 5200 Website: http:...

212

Water Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Blog Blog Water Blog RSS December 10, 2013 The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. | Graphic courtesy of TopCoder Calling All Coders: Help Advance America's Ocean Power Industry The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. August 14, 2013 Tacoma Power's Cushman Hydroelectric Project installed a new two-generator powerhouse that increases electric generation capacity by 3.6 megawatts and captures energy from previously untapped water flows. | Photo courtesy of Tacoma Power.

213

CX-005128: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

28: Categorical Exclusion Determination 28: Categorical Exclusion Determination CX-005128: Categorical Exclusion Determination The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings For use in Marine Hydrokinetic (MHK) Energy Machines CX(s) Applied: A9, B3.6 Date: 01/25/2011 Location(s): Orem, Utah Office(s): Energy Efficiency and Renewable Energy, Golden Field Office United States Synthetic Corporation is proposing to use federal funding to design, fabricate and test polycrystalline diamond (PCD) thrust bearings for marine hydrokinetic (MHK) systems. A key design element in most MHK strategies would be robust bearings, which can operate for extended periods of time in the harsh marine environments. The goal of the proposed project is to demonstrate how PCD thrust bearings would reduce the cost of

214

CX-005184: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

84: Categorical Exclusion Determination 84: Categorical Exclusion Determination CX-005184: Categorical Exclusion Determination The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings For use in Marine Hydrokinetic Energy Machines CX(s) Applied: A9, B3.6 Date: 01/28/2011 Location(s): Orem, Utah Office(s): Energy Efficiency and Renewable Energy, Golden Field Office United States Synthetic Corporation is proposing to use federal funding to design, fabricate and test polycrystalline diamond (PCD) thrust bearings for marine hydrokinetic (MHK) systems. A key design element in most MHK strategies would be robust bearings, which can operate for extended periods of time in the harsh marine environments. The goal of the proposed project is to demonstrate how PCD thrust bearings would reduce the cost of

215

Seawood Designs Inc | Open Energy Information  

Open Energy Info (EERE)

Seawood Designs Inc Seawood Designs Inc Jump to: navigation, search Name Seawood Designs Inc Address 201 Marine Drive Cobble Hill Place Vancouver Island Zip V0R 1L1 Sector Marine and Hydrokinetic Phone number 250-743-7107 Website http://www.surfpower.ca Region Canada LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Lake Huron This company is involved in the following MHK Technologies: SurfPower This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Seawood_Designs_Inc&oldid=678455" Categories: Clean Energy Organizations Companies Organizations Stubs

216

CX-006520: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

20: Categorical Exclusion Determination 20: Categorical Exclusion Determination CX-006520: Categorical Exclusion Determination High Energy Density Distributed Hydrostatic Direct Drive for Large Wind Turbine and Marine Hydro-Kinetic Device Applications CX(s) Applied: A9 Date: 08/16/2011 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The Department of Energy is proposing to provide federal funding to Dehlsen Associates, LLC to develop and refine a high energy Hydrostatic Direct Drivetrain (HOD) for large wind turbine (1.5+ megawatt) and marine hydro-kinetic energy technology application. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-006520.pdf More Documents & Publications CX-005670: Categorical Exclusion Determination CX-001841: Categorical Exclusion Determination

217

AWS Ocean Energy formerly Oceanergia | Open Energy Information  

Open Energy Info (EERE)

formerly Oceanergia formerly Oceanergia Jump to: navigation, search Name AWS Ocean Energy formerly Oceanergia Address Redshank House Alness Point Business Park Place Alness Ross shire Zip IV17 0UP Sector Marine and Hydrokinetic Phone number 44 (0) 1349 88 44 22 Website http://www.awsocean.com Region United Kingdom LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: AWS II Portugal Pre Commercial Pilot Project This company is involved in the following MHK Technologies: Archimedes Wave Swing This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=AWS_Ocean_Energy_formerly_Oceanergia&oldid=678253

218

MHK Technologies | Open Energy Information  

Open Energy Info (EERE)

MHK Technologies MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Click one of the following Marine Hydrokinetic Technologies for more information: Loading... 14 MW OTECPOWER Aegir Dynamo AirWEC Anaconda bulge tube drives turbine AquaBuoy Aquanator Aquantis Archimedes Wave Swing Atlantis AN 150 Atlantis AR 1000 Atlantis AS 400 Atlantisstrom BOLT Lifesaver Benkatina Turbine Blue Motion Energy marine turbine Bluetec Brandl Generator C Plane C Wave C5 CETO Wave Energy Technology Centipod Closed Cycle OTEC CoRMaT Cross Flow Turbine Current Catcher Current Electric Generator Current Power CurrentStar DEXA Wave Converter Davidson Hill Venturi DHV Turbine Deep Gen Tidal Turbines Deep Green Deep Ocean Water Application Facility DOWAF Deep Water Pipelines Deep water capable hydrokinetic turbine

219

Verdant Power | Open Energy Information  

Open Energy Info (EERE)

Verdant Power Verdant Power Jump to: navigation, search Name Verdant Power Place New York, New York Zip 10044 Sector Marine and Hydrokinetic Product A systems integrator and a developer of free-flow turbine systems that generates utility and village scale electric power from natural underwater currents. References Verdant Power[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Cornwall Ontario River Energy CORE Roosevelt Island Tidal Energy RITE This company is involved in the following MHK Technologies: Kinetic Hydropower System KHPS This article is a stub. You can help OpenEI by expanding it. Verdant Power is a company located in New York, New York .

220

Swell Fuel | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Swell Fuel Place Houston, Texas Zip 77072 Sector Marine and Hydrokinetic Product Texas-based developer of small-scale wave energy devices. Website http://www.swellfuel.com References Swell Fuel LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Lever Operated Pivoting Float Swell Fuel This article is a stub. You can help OpenEI by expanding it. Swell Fuel is a company located in Houston, Texas . References Retrieved from "http://en.openei.org/w/index.php?title=Swell_Fuel&oldid=680057" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Market Acceleration | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Market Acceleration Market Acceleration Market Acceleration Photo of several men on a floating platform that is lowering monitoring tools into the ocean. The Water Power Program works to foster a commercial market for marine and hydrokinetic (MHK) energy devices in order to achieve its goal of the nation obtaining 15% of its electricity needs from all types of water power by 2030. Though marine and hydrokinetic energy is still in its infancy, the program is developing a robust portfolio of projects to accelerate wave, tidal and current project deployments and development of the MHK market in general. These projects include project siting activities, market assessments, environmental impact analyses, and research supporting technology commercialization. Learn more about the Water Power Program's work in the following areas of

222

Marin Clean Energy - Feed-In Tariff | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Marin Clean Energy - Feed-In Tariff Marin Clean Energy - Feed-In Tariff Marin Clean Energy - Feed-In Tariff < Back Eligibility Commercial Fed. Government Industrial Local Government Multi-Family Residential Nonprofit Residential State Government Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State California Program Type Performance-Based Incentive Rebate Amount Varies by technology and position in program capacity queue [http://www.leginfo.ca.gov/pub/01-02/bill/asm/ab_0101-0150/ab_117_bill_20... Assembly Bill 117], passed in 2002, allows communities in California to aggregate their load and to procure electricity from their own preferred sources. Under the authority of this law, California's first community

223

Uppsala University Division for Electricity | Open Energy Information  

Open Energy Info (EERE)

Electricity Jump to: navigation, search Name: Uppsala University Division for Electricity Region: Sweden Sector: Marine and Hydrokinetic Website: http:www.el.angstrom.uu.sef...

224

Smart Hydro Power GmbH | Open Energy Information  

Open Energy Info (EERE)

Str. 17 Place: Garatshausen Zip: 82340 Sector: Marine and Hydrokinetic Product: Micro Hydro Kinetic Turbine Website: http:www.smart-hydro.de Coordinates: 47.9257,...

225

CX-005561: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

5561: Categorical Exclusion Determination 5561: Categorical Exclusion Determination CX-005561: Categorical Exclusion Determination Underwater Active Acoustic Monitoring Support for Marine Hydrokinetic Energy Projects CX(s) Applied: A9, B3.6 Date: 04/06/2011 Location(s): New Hampshire Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Scientific Solutions, Incorporated (SSI) is proposing to use Department of Energy and cost-share funding to further advance its existing Swimmer Detection Sonar Network (SDSN) system in a joint effort with Ocean Renewable Power Company (ORPC) to fully develop, Integrate, test, and operate a full-scale active acoustic monitoring system for Marine Hydrokinetic (MHK) and other offshore renewable energy projects; specifically for monitoring the region surrounding a tidal turbine. The

226

CX-004836: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

836: Categorical Exclusion Determination 836: Categorical Exclusion Determination CX-004836: Categorical Exclusion Determination Marine and Hydrokinetic Technology Readiness Advancement Initiative CX(s) Applied: A9, B3.6 Date: 12/16/2010 Location(s): Lynnwood, Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Sound & Sea Technology, Incorporated (SST), in Lynnwood, Washington, is proposing to use Department of Energy funding to study wave energy device anchoring and mooring techniques applicable for the full range of marine and hydrokinetic (MHK) technologies. SST would develop a remotely controlled grouting procedure suitable for deepwater anchor installations to securely and cost-effectively anchor ocean energy devices to seabed's, while reducing the capital and installation costs of MHK systems.

227

Water News and Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water News and Blog Water News and Blog Water News and Blog Blog The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. | Graphic courtesy of TopCoder Calling All Coders: Help Advance America's Ocean Power Industry December 10, 2013 3:57 PM The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. Read The Full Story Tacoma Power's Cushman Hydroelectric Project installed a new two-generator powerhouse that increases electric generation capacity by 3.6 megawatts and captures energy from previously untapped water flows. | Photo courtesy of Tacoma Power.

228

Human dimensions perspectives on the impacts of coastal zone marine renewable energy  

E-Print Network [OSTI]

coastal zone marine renewable energy generation. REFERENCESOuter Continental Shelf Renewable Energy Space-Use ConflictsOF COASTAL ZONE MARINE RENEWABLE ENERGY Caroline Pomeroy,

Pomeroy, Caroline; Conway, Flaxen; Hall-Arber, Madeleine

2013-01-01T23:59:59.000Z

229

Marine Projects International Ltd MPI formerly Mayflower Energy Ltd | Open  

Open Energy Info (EERE)

MPI formerly Mayflower Energy Ltd MPI formerly Mayflower Energy Ltd Jump to: navigation, search Name Marine Projects International Ltd (MPI) (formerly Mayflower Energy Ltd) Place United Kingdom Zip TS3 8BS Sector Wind energy Product Specialist offshore wind installation equipment supplier. References Marine Projects International Ltd (MPI) (formerly Mayflower Energy Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Marine Projects International Ltd (MPI) (formerly Mayflower Energy Ltd) is a company located in United Kingdom . References ↑ "Marine Projects International Ltd (MPI) (formerly Mayflower Energy Ltd)" Retrieved from "http://en.openei.org/w/index.php?title=Marine_Projects_International_Ltd_MPI_formerly_Mayflower_Energy_Ltd&oldid=348642

230

Energy saving through trail following in a marine snail  

Science Journals Connector (OSTI)

...7 May 2007 research-article Energy saving through trail following in a marine...trail as originally laid. Maximum energy saving occurs when following recently...following have been proposed. Energy saving is the only role that applies...

2007-01-01T23:59:59.000Z

231

CX-005112: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

112: Categorical Exclusion Determination 112: Categorical Exclusion Determination CX-005112: Categorical Exclusion Determination Environmentally Benign and Permanent Surface Modifications to Prevent Biofueling on Marine and Hydrokinetic Devices CX(s) Applied: A9, B3.6 Date: 01/25/2011 Location(s): Cambridge, Massachusetts Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Semprus BioSciences, in Cambridge, Massachusetts, is proposing to use Department of Energy funding to develop an innovative, nontoxic surface coating that would prevent the growth of aquatic organisms on marine and hydrokinetic (MHK) energy devices. This research into underwater coatings that prevent biofueling would have the potential to positively impact all MHK systems and improve the conversion efficiency for MHK systems.

232

CX-004548: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

548: Categorical Exclusion Determination 548: Categorical Exclusion Determination CX-004548: Categorical Exclusion Determination Active Flow Control on Bidirectional Rotors for Tidal Marine Hydrokinetic Applications CX(s) Applied: A9 Date: 11/30/2010 Location(s): Davis, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The University of California, Davis (UCD) is proposing to use Department of Energy funding for computer modeling to improve the design of the bidirectional rotor tidal turbine (BRTT) for tidal marine hydrokinetic applications. The BRTT design, an already established and commercially applied technology, has disadvantages. Although the simpler design reduces energy costs, without pitch-adjustment and optimally cambered blades, the BRTT rotor is relatively inefficient. UCD is proposing to recapture some of

233

Arlas Invest | Open Energy Information  

Open Energy Info (EERE)

Arlas Invest Arlas Invest Jump to: navigation, search Name Arlas Invest Sector Marine and Hydrokinetic Website http://www.capricornioct.com Region Spain LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: TUVALU This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Arlas_Invest&oldid=678244" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

234

Seabased AB | Open Energy Information  

Open Energy Info (EERE)

Seabased AB Seabased AB Jump to: navigation, search Name Seabased AB Address Dag Hammarskjlds vg 52B Place Uppsala Zip S-75183 Sector Marine and Hydrokinetic Phone number 46,705,325,560 Website http://www.seabased.com Region Sweden LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Uppsala University Seabased AB Lysekil Sweden This company is involved in the following MHK Technologies: Seabased This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Seabased_AB&oldid=678449" Categories: Clean Energy Organizations Companies Organizations Stubs

235

RDZ Renewables | Open Energy Information  

Open Energy Info (EERE)

RDZ Renewables RDZ Renewables Jump to: navigation, search Name RDZ Renewables Sector Marine and Hydrokinetic Phone number (442) 210 45-85 Website http://www.rdz-r.com/new/engli LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: UFCAP This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=RDZ_Renewables&oldid=678432" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

236

Minesto AB | Open Energy Information  

Open Energy Info (EERE)

Minesto AB Minesto AB Jump to: navigation, search Name Minesto AB Sector Marine and Hydrokinetic Website http://http://www.minesto.com/ Region Sweden LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Deep Green This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Minesto_AB&oldid=678379" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

237

Mananook Associates | Open Energy Information  

Open Energy Info (EERE)

Mananook Associates Mananook Associates Jump to: navigation, search Name Mananook Associates Address PO Box 69 Place Perry Zip 4667 Sector Marine and Hydrokinetic Phone number 207-733-5513 Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Grand Manan Channel Project This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Mananook_Associates&oldid=678368" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

238

Maine Maritime Academy | Open Energy Information  

Open Energy Info (EERE)

Academy Academy Jump to: navigation, search Name Maine Maritime Academy Address Engineering Department Pleasant Street Place Castine Zip 4420 Sector Marine and Hydrokinetic Phone number 207-326-2365 Website http://http://www.mainemaritim Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Castine Harbor Badaduce Narrows Tidal Energy Device Evaluation Center TIDEC This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Maine_Maritime_Academy&oldid=678366" Categories: Clean Energy Organizations Companies Organizations Stubs

239

Tillamook Intergovernmental Development Entity | Open Energy Information  

Open Energy Info (EERE)

Intergovernmental Development Entity Intergovernmental Development Entity Jump to: navigation, search Name Tillamook Intergovernmental Development Entity Address Tillamook People s Utility District 1115 Pacific Avenue Place Tillamook Zip 97141 Sector Marine and Hydrokinetic Phone number 503-842-2535 Website http://www.tpud.org Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Oregon Coastal Wave Energy This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Tillamook_Intergovernmental_Development_Entity&oldid=678482" Categories: Clean Energy Organizations

240

Public Utility District No 1 of Snohomish County | Open Energy Information  

Open Energy Info (EERE)

District No 1 of Snohomish County District No 1 of Snohomish County Jump to: navigation, search Name Public Utility District No 1 of Snohomish County Address 2320 California Street PO Box 1107 Place Everett Zip 98206 Sector Marine and Hydrokinetic Phone number 425-783-1825 Website http://www.snopud.com Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Admirality Inlet Tidal Energy Project Deception Pass Tidal Energy Hydroelectric Project Guemes Channel Tidal Energy Project San Juan Channel Tidal Energy Project Spieden Channel Tidal Energy Project This article is a stub. You can help OpenEI by expanding it. Retrieved from

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

MHK Projects | Open Energy Information  

Open Energy Info (EERE)

MHK Projects MHK Projects Jump to: navigation, search << Return to the MHK database homepage Click one of the following Marine Hydrokinetic Projects for more information: Loading... 40MW Lewis project ADM 3 ADM 4 ADM 5 AW Energy EMEC AWS II Admirality Inlet Tidal Energy Project Agucadoura Alaska 1 Alaska 13 Alaska 17 Alaska 18 Alaska 24 Alaska 25 Alaska 28 Alaska 31 Alaska 33 Alaska 35 Alaska 36 Alaska 7 Algiers Cutoff Project Algiers Light Project Amity Point Anconia Point Project Angoon Tidal Energy Plant Aquantis Project Ashley Point Project Astoria Tidal Energy Atchafalaya River Hydrokinetic Project II Avalon Tidal Avondale Bend Project BW2 Tidal Bar Field Bend Barfield Point Bayou Latenache Belair Project Belleville BioSTREAM Pilot Plant Bluemill Sound Bondurant Chute Bonnybrook Wastewater Facility Project 1

242

Marine Mammal Protection Act | Open Energy Information  

Open Energy Info (EERE)

Mammal Protection Act Mammal Protection Act Jump to: navigation, search Statute Name Marine Mammal Protection Act Year 1972 Url [[File:|160px|link=]] Description References NOAA Overview[1] The Marine Mammal Protection Act (MMPA) was enacted on October 21, 1972. All marine mammals are protected under the MMPA. The MMPA prohibits, with certain exceptions, the "take" of marine mammals in U.S. waters and by U.S. citizens on the high seas, and the importation of marine mammals and marine mammal products into the U.S. Congress passed the Marine Mammal Protection Act of 1972 based on the following findings and policies: Some marine mammal species or stocks may be in danger of extinction or depletion as a result of human activities; These species or stocks must not be permitted to fall below their

243

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

11 - 22020 of 29,416 results. 11 - 22020 of 29,416 results. Download CX-004548: Categorical Exclusion Determination Active Flow Control on Bidirectional Rotors for Tidal Marine Hydrokinetic Applications CX(s) Applied: A9 Date: 11/30/2010 Location(s): Davis, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-004548-categorical-exclusion-determination Download CX-004529: Categorical Exclusion Determination Abrasion Testing of Critical Components of Hydrokinetic Devices CX(s) Applied: A9, B3.6 Date: 11/29/2010 Location(s): Anchorage, Alaska Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-004529-categorical-exclusion-determination Download CX-004532: Categorical Exclusion Determination

244

Steven Chalk | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Steven Chalk Steven Chalk About Us Steven Chalk - Deputy Assistant Secretary for Renewable Energy, Office of Energy Efficiency & Renewable Energy In his role as Deputy Assistant Secretary for Renewable Energy in the Office of Energy Efficiency and Renewable Energy (EERE), Steven Chalk oversees applied research, development, and demonstration for a diverse clean energy portfolio. This portfolio spans wind, solar, geothermal, conventional hydropower, marine and hydrokinetic, biomass, and hydrogen technologies. Prior to his current position, Steve served as EERE's Chief Operating Officer and led EERE's Recovery Act implementation, which included $17 billion of awards, part of the nation's largest-ever investment in clean energy. Steve also supported the Treasury Department

245

Elgen Wave | Open Energy Information  

Open Energy Info (EERE)

Elgen Wave Jump to: navigation, search Name: Elgen Wave Region: United States Sector: Marine and Hydrokinetic Website: http:www.elgenwave.com This company is listed in the Marine...

246

SeaPower Pacific subsidiary of Renewable Energy Holdings Plc Carnegie  

Open Energy Info (EERE)

SeaPower Pacific subsidiary of Renewable Energy Holdings Plc Carnegie SeaPower Pacific subsidiary of Renewable Energy Holdings Plc Carnegie Corporation Ltd Jump to: navigation, search Name SeaPower Pacific subsidiary of Renewable Energy Holdings Plc Carnegie Corporation Ltd Address 1 16 Ord Street PO Box 1902 Place West Perth Zip 6872 Sector Marine and Hydrokinetic Phone number 61 8 9486 4466 Website http://www.carnegiecorp.com.au Region Australia LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: CETO Precommercial Pilot Project This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=SeaPower_Pacific_subsidiary_of_Renewable_Energy_Holdings_Plc_Carnegie_Corporation_Ltd&oldid=67845

247

Marin County, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Marin County, California: Energy Resources Marin County, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.083403°, -122.7633036° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.083403,"lon":-122.7633036,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

248

WaveCatcher Inc | Open Energy Information  

Open Energy Info (EERE)

WaveCatcher Inc WaveCatcher Inc Jump to: navigation, search Name WaveCatcher Inc Address 2307 Robincrest Ln Sector Marine and Hydrokinetic Year founded 2006 Phone number 1-847-764-9106 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=WaveCatcher_Inc&oldid=678511" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863326429 Varnish cache server

249

Tidal Sails AS | Open Energy Information  

Open Energy Info (EERE)

Sails AS Sails AS Jump to: navigation, search Name Tidal Sails AS Address Standgaten 130 Place Haugesund Zip 5531 Sector Marine and Hydrokinetic Phone number +32 474 98 06 16 Website http://www.tidalsails.com Region Norway LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Tidal Sails This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Tidal_Sails_AS&oldid=678479" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties

250

Makai Ocean Engineering Inc | Open Energy Information  

Open Energy Info (EERE)

Makai Ocean Engineering Inc Makai Ocean Engineering Inc Jump to: navigation, search Name Makai Ocean Engineering Inc Address PO Box 1206 Place Kailua Zip 96734-1206 Sector Marine and Hydrokinetic Year founded 1973 Number of employees 28 Phone number 808.259.8871 Website http://www.makai.com Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters This company is involved in the following MHK Technologies: Deep Water Pipelines This article is a stub. You can help OpenEI by expanding it.

251

Framework for Identifying Key Environmental Concerns in Marine Renewable Energy Projects- Appendices  

SciTech Connect (OSTI)

Marine wave and tidal energy technology could interact with marine resources in ways that are not well understood. As wave and tidal energy conversion projects are planned, tested, and deployed, a wide range of stakeholders will be engaged; these include developers, state and federal regulatory agencies, environmental groups, tribal governments, recreational and commercial fishermen, and local communities. Identifying stakeholders’ environmental concerns in the early stages of the industry’s development will help developers address and minimize potential environmental effects. Identifying important concerns will also assist with streamlining siting and associated permitting processes, which are considered key hurdles by the industry in the U.S. today. In September 2008, RE Vision consulting, LLC was selected by the Department of Energy (DoE) to conduct a scenario-based evaluation of emerging hydrokinetic technologies. The purpose of this evaluation is to identify and characterize environmental impacts that are likely to occur, demonstrate a process for analyzing these impacts, identify the “key” environmental concerns for each scenario, identify areas of uncertainty, and describe studies that could address that uncertainty. This process is intended to provide an objective and transparent tool to assist in decision-making for siting and selection of technology for wave and tidal energy development. RE Vision worked with H. T. Harvey & Associates, to develop a framework for identifying key environmental concerns with marine renewable technology. This report describes the results of this study. This framework was applied to varying wave and tidal power conversion technologies, scales, and locations. The following wave and tidal energy scenarios were considered: ? 4 wave energy generation technologies ? 3 tidal energy generation technologies ? 3 sites: Humboldt coast, California (wave); Makapu’u Point, Oahu, Hawaii (wave); and the Tacoma Narrows, Washington (tidal) ? 3 project sizes: pilot, small commercial, and large commercial The possible combinations total 24 wave technology scenarios and 9 tidal technology scenarios. We evaluated 3 of the 33 scenarios in detail: 1. A small commercial OPT Power Buoy project off the Humboldt County, California coast 2. A small commercial Pelamis Wave Power P-2 project off Makapu’u Point, Oahu, Hawaii 3. A pilot MCT SeaGen tidal project, sited in the Tacoma Narrows, Washington This framework document used information available from permitting documents that were written to support actual wave or tidal energy projects, but the results obtained here should not be confused with those of the permitting documents1. The main difference between this framework document and permitting documents of currently proposed pilot projects is that this framework identifies key environmental concerns and describes the next steps in addressing those concerns; permitting documents must identify effects, find or declare thresholds of significance, evaluate the effects against the thresholds, and find mitigation measures that will minimize or avoid the effects so they can be considered less-than-significant. Two methodologies, 1) an environmental effects analysis and 2) Raptools, were developed and tested to identify potential environmental effects associated with wave or tidal energy conversion projects. For the environmental effects analysis, we developed a framework based on standard risk assessment techniques. The framework was applied to the three scenarios listed above. The environmental effects analysis addressed questions such as: ? What is the temporal and spatial exposure of a species at a site? ? What are the specific potential project effects on that species? ? What measures could minimize, mitigate, or eliminate negative effects? ? Are there potential effects of the project, or species’ response to the effect, that are highly uncertain and warrant additional study? The second methodology, Raptools, is a collaborative approach useful for evaluating multiple characteristi

Sharon Kramer; Mirko Previsic; Peter Nelson; Sheri Woo

2010-06-17T23:59:59.000Z

252

Marine Hydrogen and Fuel Cell Association MHFCA | Open Energy Information  

Open Energy Info (EERE)

Hydrogen and Fuel Cell Association MHFCA Hydrogen and Fuel Cell Association MHFCA Jump to: navigation, search Name Marine Hydrogen and Fuel Cell Association (MHFCA) Place Leipzig, Germany Zip D-04318 Sector Hydro, Hydrogen Product Non-profit organisation set up to actively support the integration of hydrogen as an energy carrier into marine systems. References Marine Hydrogen and Fuel Cell Association (MHFCA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Marine Hydrogen and Fuel Cell Association (MHFCA) is a company located in Leipzig, Germany . References ↑ "Marine Hydrogen and Fuel Cell Association (MHFCA)" Retrieved from "http://en.openei.org/w/index.php?title=Marine_Hydrogen_and_Fuel_Cell_Association_MHFCA&oldid=348641

253

Hawaii Marine Base Installs Solar Roofs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hawaii Marine Base Installs Solar Roofs Hawaii Marine Base Installs Solar Roofs Hawaii Marine Base Installs Solar Roofs April 2, 2010 - 2:42pm Addthis Lorelei Laird Writer, Energy Empowers What does this project do? Marine Corps Base Hawaii replaced roofs on two buildings with polyvinyl chloride membrane 'cool' roofs and solar panels. The new roofs saves $20,000 a year in energy costs. Built on the end of the Mokapu Peninsula on Oahu's northeast coast, the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay gets plenty of sunlight. But harnessing that sunlight to create renewable electricity was considered too expensive to be practical - until 2008. That's when MCBH took advantage of planned maintenance funding to help offset the high cost of installing photovoltaic panels on the base. As a military entity, MCBH can't directly take advantage of federal or state

254

Hawaii Marine Base Installs Solar Roofs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Marine Base Installs Solar Roofs Marine Base Installs Solar Roofs Hawaii Marine Base Installs Solar Roofs April 2, 2010 - 2:42pm Addthis Lorelei Laird Writer, Energy Empowers What does this project do? Marine Corps Base Hawaii replaced roofs on two buildings with polyvinyl chloride membrane 'cool' roofs and solar panels. The new roofs saves $20,000 a year in energy costs. Built on the end of the Mokapu Peninsula on Oahu's northeast coast, the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay gets plenty of sunlight. But harnessing that sunlight to create renewable electricity was considered too expensive to be practical - until 2008. That's when MCBH took advantage of planned maintenance funding to help offset the high cost of installing photovoltaic panels on the base. As a military entity, MCBH can't directly take advantage of federal or state

255

Design of a Computerized Energy Management System for Marine Applications  

E-Print Network [OSTI]

A computer-based energy management system for marine applications is presented. The problem of fuel-management for large diesel engines on board ship is discussed. The design of the computer hardware and software are presented including...

Russell, B. D.; Perry, L. W.; Gerloff, G. W.; Heller, R. P.; Pankonien, G.

1982-01-01T23:59:59.000Z

256

SEEWEC Consortium lead partner Ghent University | Open Energy Information  

Open Energy Info (EERE)

SEEWEC Consortium lead partner Ghent University SEEWEC Consortium lead partner Ghent University Jump to: navigation, search Name SEEWEC Consortium lead partner Ghent University Address Sint Pietersnieuwstraat 41 Place Gent Zip 9000 Sector Marine and Hydrokinetic Website http://www.seewec.org Region Belgium LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: SEEWEC Consortium Brevik NO This company is involved in the following MHK Technologies: FO This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=SEEWEC_Consortium_lead_partner_Ghent_University&oldid=678456" Categories: Clean Energy Organizations

257

SeaNergy Electric Ltd | Open Energy Information  

Open Energy Info (EERE)

SeaNergy Electric Ltd SeaNergy Electric Ltd Jump to: navigation, search Name SeaNergy Electric Ltd Sector Marine and Hydrokinetic Website http://http://www.greenprophet Region Israel LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Turbo Ocean Power Generator MadaTech 17 This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=SeaNergy_Electric_Ltd&oldid=678451" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

258

Scientific Applications Research Associates Inc SARA | Open Energy  

Open Energy Info (EERE)

Scientific Applications Research Associates Inc SARA Scientific Applications Research Associates Inc SARA Jump to: navigation, search Name Scientific Applications Research Associates Inc SARA Address 6300 Gateway Dr Place Cypress Zip 90630 Sector Marine and Hydrokinetic Phone number 714-224-4410 x 274 Website http://www.sara.com/rae/ocean_ Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Magnetohydrodynamic MHD Wave Energy Converter MWEC This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Scientific_Applications_Research_Associates_Inc_SARA&oldid=678443"

259

THOR Turner Hunt Ocean Renewable LLC | Open Energy Information  

Open Energy Info (EERE)

Turner Hunt Ocean Renewable LLC Turner Hunt Ocean Renewable LLC Jump to: navigation, search Name THOR Turner Hunt Ocean Renewable LLC Address 3814 West St Place Cincinnati Zip 45227 Sector Marine and Hydrokinetic Year founded 2007 Phone number 513-527-4924 Website http://http://www.thorocean.co Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: THOR Ocean Current Turbine This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=THOR_Turner_Hunt_Ocean_Renewable_LLC&oldid=678473" Categories: Clean Energy Organizations Companies Organizations

260

Videos | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy 101: Concentrating Solar Power Energy 101: Concentrating Solar Power Energy 101: Wind Turbines Energy 101: Home Energy Checkup Energy 101: Geothermal Heat Pumps Energy 101: Cool Roofs Energy 101: Solar PV Energy 101: Daylighting Energy 101: Energy Efficient Data Centers Secretary Moniz Speaks on New Energy Systems Integration Facility (ESIF) at NREL Energy 101: Electric Vehicles Energy 101: Lumens Energy 101: Biofuels Energy 101: Algae-to-Fuel Energy 101: Lighting Choices Energy 101: Hydroelectric Power Wide Bandgap Semiconductors Energy 101: Marine and Hydrokinetic Energy Energy 101: Feedstocks for Biofuels and More About the Southeastern Power Administration Secretary Moniz Speaks at the Center on Global Energy Policy Update: Solar Powered Classroom Secretary Moniz Speaks at Biomass 2013 Taking Battery Technology from the Lab to the Big City

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Northwest National Marine Renewable Energy Center | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Center Renewable Energy Center Jump to: navigation, search Name Northwest National Marine Renewable Energy Center Address 4000 15th Ave Place Seattle, Washington Zip 98105 Region Pacific Northwest Area Coordinates 47.6553525°, -122.3120605° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.6553525,"lon":-122.3120605,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

Marin County - Solar Access Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Marin County - Solar Access Code Marin County - Solar Access Code Marin County - Solar Access Code < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Program Info State California Program Type Solar/Wind Access Policy Provider Marin County Community Development Agency Marin County's Energy Conservation Code is designed to assure new subdivisions provide for future passive or natural heating or cooling opportunities in the subdivision to the extent feasible. Streets, lots, and building setbacks must be designed so that habitable buildings are oriented with their long axis running east to west (with a possible variation of thirty degrees to the southwest and thirty degrees to the southeast) for the purpose of solar access. The planning director or planning commission

263

Wave Energy Test Site (WETS) Marine Corps Base Hawaii (MCBH)  

E-Print Network [OSTI]

Wave Energy Test Site (WETS) Marine Corps Base Hawaii (MCBH) Alexandra DeVisser, NAVFAC-EXWC Brian June 10, 2013 #12;Wave Energy Test Site (WETS) Objective: Provide location for year-long in Cable, Sound & Sea Technology (SST) Luis A. Vega, HNEI-University of Hawaii Energy Ocean International

264

Property:Optimum Marine/Riverline Conditions | Open Energy Information  

Open Energy Info (EERE)

Marine/Riverline Conditions Marine/Riverline Conditions Jump to: navigation, search Property Name Optimum Marine/Riverline Conditions Property Type Text Pages using the property "Optimum Marine/Riverline Conditions" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + Proprietary MHK Technologies/AirWEC + 15kW per meter of wave front or greater MHK Technologies/Aquantis + The Aquantis Current Plane C Plane technology is a marine current turbine designed to extract the kinetic energy from the flow and is capable of achieving reliable competitively priced base load power generation The technology is suitable for both steady marine currents and tidal currents although there are system differences and specific arraying and deployment requirements for each Aquantis is designed to harness the energy from the Gulf Stream and other steady marine currents around the world Aquantis deployment is projected to be cost competitive with thermal power generation when CO2 emissions and other environmental costs are accounted for

265

Massachusetts: New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE has released a report assessing likelihood of fish injury and mortality from the operation of hydrokinetic turbines.

266

New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE has released a report assessing likelihood of fish injury and mortality from the operation of hydrokinetic turbines.

267

HydroGen Aquaphile sarl | Open Energy Information  

Open Energy Info (EERE)

sarl Jump to: navigation, search Name: HydroGen Aquaphile sarl Region: France Sector: Marine and Hydrokinetic Website: http:www.hydro-gen.fr This company is listed in the Marine...

268

Fiscal Year 2011 Water Power Program Peer Review | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Peer Review » Fiscal Peer Review » Fiscal Year 2011 Water Power Program Peer Review Fiscal Year 2011 Water Power Program Peer Review In November 2011, the Water Power Program held their Annual Peer Review Meeting in Alexandria, Virginia. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives. At the review, approximately 85 projects were presented, representing a DOE investment of over $100 million over the last few years. In addition to the formal review, this event was an excellent opportunity for the water power community to share ideas and solutions to address challenges facing the hydropower and marine and hydrokinetic energy industries.

269

MHK Technologies/NAREC | Open Energy Information  

Open Energy Info (EERE)

NAREC NAREC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage NAREC.jpg Technology Profile Primary Organization NaRec New and Renewable Energy Centre Technology Resource Click here Wave Technology Description The in house engineering and prototype testing capabilities of Narec are assisting wave and tidal stream marine developers move their innovative design concepts towards commercialisation Where the Evopod was tested Technology Dimensions Device Testing Date Submitted 04:07.5 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/NAREC&oldid=681614" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version

270

CX-004529: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

4529: Categorical Exclusion Determination 4529: Categorical Exclusion Determination CX-004529: Categorical Exclusion Determination Abrasion Testing of Critical Components of Hydrokinetic Devices CX(s) Applied: A9, B3.6 Date: 11/29/2010 Location(s): Anchorage, Alaska Office(s): Energy Efficiency and Renewable Energy, Golden Field Office ORPC Alaska is proposing to use Department of Energy funding to understand the impacts of sediment abrasion on marine hydrokinetic (MHK) device components. Testing would assess the vulnerability of technology components to sediment-induced abrasion; it would determine the impact and wear rate that sediment may have on bearings and seals; and it would identify which configurations best resist degradation from suspended sediment conditions. The proposed project would provide valuable information to the MHK

271

EERE Videos | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EERE Videos EERE Videos EERE Videos EERE Videos Success Story: Alcoa and ArcelorMittal Success Story: Capstone Turbine Corporation American Energy and Manufacturing Competitiveness Summit Introduction Energy 101: Concentrating Solar Power Energy 101: Wind Turbines Energy 101: Home Energy Checkup Energy 101: Geothermal Heat Pumps Energy 101: Cool Roofs Energy 101: Solar PV Energy 101: Daylighting Energy 101: Energy Efficient Data Centers Energy 101: Electric Vehicles Energy 101: Lumens Energy 101: Biofuels Energy 101: Algae-to-Fuel Energy 101: Lighting Choices Energy 101: Hydroelectric Power Energy 101: Marine and Hydrokinetic Energy Energy 101: Feedstocks for Biofuels and More B-Roll Footage The Office of Energy Efficiency and Renewable Energy (EERE) provides the following b-roll footage for use by producers. All of EERE's b-roll is free

272

Hydro Alternative Energy | Open Energy Information  

Open Energy Info (EERE)

Alternative Energy Alternative Energy Jump to: navigation, search Name Hydro Alternative Energy Place Boca Raton, Florida Zip 33486 Sector Ocean Product Marine project developer focusing on ocean current and tidal power development using underwater turbines. References Hydro Alternative Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Oceanus This article is a stub. You can help OpenEI by expanding it. Hydro Alternative Energy is a company located in Boca Raton, Florida . References ↑ "Hydro Alternative Energy" Retrieved from "http://en.openei.org/w/index.php?title=Hydro_Alternative_Energy&oldid=678899

273

U.S. Marine Corp Logistics Base | Open Energy Information  

Open Energy Info (EERE)

Marine Corp Logistics Base Marine Corp Logistics Base Jump to: navigation, search Name U.S. Marine Corp Logistics Base Facility U.S. Marine Corp Logistics Base Sector Wind energy Facility Type Community Wind Facility Status In Service Location Barstow CA Coordinates 34.85832705°, -116.9559002° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.85832705,"lon":-116.9559002,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Global Marine Renewable Energy Conference (GMREC) | OpenEI Community  

Open Energy Info (EERE)

Global Marine Renewable Energy Conference (GMREC) Global Marine Renewable Energy Conference (GMREC) Home > Groups > Water Power Forum Kch's picture Submitted by Kch(24) Member 3 April, 2013 - 14:26 The 6th annual Global Marine Renwable Energy Conference An exciting event for anyone who wants to : * Expand your network of international experts and government leaders * Explore and exchange knowledge on best management practices * Discuss financing instruments and regulatory drivers * Learn about U.S. and internationl policies supporting industry growth Date: Wednesday, 10 April, 2013 (All day) - Thursday, 11 April, 2013 (All day) Location: Washington, D.C. Groups: Water Power Forum Login to post comments Latest event comments No comments have been made yet Groups Menu You must login in order to post into this group.

275

National Marine Fisheries Service | Open Energy Information  

Open Energy Info (EERE)

Service Service Jump to: navigation, search Logo: National Marine Fisheries Service Name National Marine Fisheries Service Address 1315 East West Highway Place Silver Spring, Maryland Zip 20910 Phone number 301-427-8400 Website http://www.nmfs.noaa.gov/index Coordinates 38.9922542°, -77.0307277° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9922542,"lon":-77.0307277,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Performance Evaluation of HYCOM-GOM for Hydrokinetic Resource Assessment in the Florida Strait  

SciTech Connect (OSTI)

The U.S. Department of Energy (DoE) is assessing and mapping the potential off-shore ocean current hydrokinetic energy resources along the U.S. coastline, excluding tidal currents, to facilitate market penetration of water power technologies. This resource assessment includes information on the temporal and three-dimensional spatial distribution of the daily averaged power density, and the overall theoretical hydrokinetic energy production, based on modeled historical simulations spanning a 7-year period of record using HYCOM-GOM, an ocean current observation assimilation model that generates a spatially distributed three-dimensional representation of daily averaged horizontal current magnitude and direction time series from which power density time series and their statistics can be derived. This study ascertains the deviation of HYCOM-GOM outputs, including transport (flow) and power density, from outputs based on three independent observation sources to evaluate HYCOM-GOM performance. The three independent data sources include NOAA s submarine cable data of transport, ADCP data at a high power density location, and HF radar data in the high power density region of the Florida Strait. Comparisons with these three independent observation sets indicate discrepancies with HYCOM model outputs, but overall indicate that the HYCOM-GOM model can provide an adequate assessment of the ocean current hydrokinetic resource in high power density regions like the Florida Strait. Additional independent observational data, in particular stationary ADCP measurements, would be useful for expanding this model performance evaluation study. ADCP measurements are rare in ocean environments not influenced by tides, and limited to one location in the Florida Strait. HF radar data, although providing great spatial coverage, is limited to surface currents only.

Neary, Vincent S [ORNL; Gunawan, Budi [ORNL; Ryou, Albert S [ORNL

2012-06-01T23:59:59.000Z

277

Marine and Hydrokinetic (MHK) Technology Development Risk Management...  

Energy Savers [EERE]

1800-111-42436 POLAND 00-800-1213476 PORTUGAL 8008-14928 ROMANIA 40-31-630-01-38 RUSSIA 8-10-8002-5594011 SAUDI ARABIA 800-8-110062 SINGAPORE 65-6517-0502 800-120-5213 SLOVAK...

278

Marine and Hydrokinetic (MHK) Databases and Systems Fact Sheet  

Broader source: Energy.gov [DOE]

The following online information resources are designed to provide the public access to information pertaining to MHK technologies, projects, and research.

279

Funding Opportunity Announcement for a Marine and Hydrokinetic...  

Energy Savers [EERE]

necessary for enabling arrays: e.g. moorings and foundations, transmission, and other offshore grid components. * Array performance testing and evaluation. * In-water testing and...

280

Upcoming Funding Opportunity for Marine and Hydrokinetic Development...  

Office of Environmental Management (EM)

necessary for enabling arrays: e.g. moorings and foundations, transmission, and other offshore grid components. * Array performance testing and evaluation. * In-water testing and...

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Marine and Hydrokinetic (MHK) Technology Development Risk Management...  

Office of Environmental Management (EM)

UNITED KINGDOM MANCHESTER 44-161-601-0113 0808-238-9817 URUGUAY 000-413-598-3832 USA 1-203-607-0666 877-951-7311 VENEZUELA 0800-1-00-3644 VIETNAM 120-11747 Contact...

282

Oceana Energy Company | Open Energy Information  

Open Energy Info (EERE)

Oceana Energy Company Oceana Energy Company Jump to: navigation, search Name Oceana Energy Company Place Washington DC, Washington, DC Zip 20036 Sector Ocean, Renewable Energy Product String representation "Oceana Energy C ... ost and impact." is too long. References Oceana Energy Company[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Cape Islands Tidal Energy Project Central Cook Inlet Tidal Energy Project Icy Passage Tidal Energy Project Kachemak Bay Tidal Energy Project Kendall Head Tidal Energy Kennebec Penobscot Tidal Energy Project Portsmouth Area Tidal Energy Project Wrangell Narrows Tidal Energy Project

283

Design and implementation of a marine animal alert system to support Marine Renewable Energy  

SciTech Connect (OSTI)

Power extracted from fast moving tidal currents has been identified as a potential commercial-scale source of renewable energy. Device developers and utilities are pursuing deployment of prototype tidal turbines to assess technology viability, site feasibility, and environmental interactions. Deployment of prototype turbines requires permits from a range of regulatory authorities. Ensuring the safety of marine animals, particularly those under protection of the Endangered Species Act of 1973 (ESA) and the Marine Mammal Protection Act of 1972 has emerged as a key regulatory challenge for initial MHK deployments. The greatest perceived risk to marine animals is from strike by the rotating blades of tidal turbines. Development of the marine mammal alert system (MAAS) was undertaken to support monitoring and mitigation requirements for tidal turbine deployments. The prototype system development focused on Southern Resident killer whales (SRKW), an endangered population of killer whales that frequents Puget Sound and is intermittently present in the part of the sound where deployment of prototype tidal turbines is being considered. Passive acoustics were selected as the primary means because of the vocal nature of these animals. The MAAS passive acoustic system consists of two-stage process involving the use of an energy detector and a spectrogram-based classifier to distinguish between SKRW’s calls and noise. A prototype consisting of two 2D symmetrical star arrays separated by 20 m center to center was built and evaluated in the waters of Sequim Bay using whale call playback.

Deng, Zhiqun; Carlson, Thomas J.; Fu, Tao; Ren, Huiying; Martinez, Jayson J.; Myers, Joshua R.; Matzner, Shari; Choi, Eric Y.; Copping, Andrea E.

2013-08-08T23:59:59.000Z

284

Human dimensions perspectives on the impacts of coastal zone marine renewable energy  

E-Print Network [OSTI]

between offshore renewable energy and existing uses on thecoastal zone marine renewable energy generation. REFERENCESOuter Continental Shelf Renewable Energy Space-Use Conflicts

Pomeroy, Caroline; Conway, Flaxen; Hall-Arber, Madeleine

2013-01-01T23:59:59.000Z

285

Harvesting Energy from the Marine Sediment-Water Interface  

E-Print Network [OSTI]

Harvesting Energy from the Marine Sediment-Water Interface C L A R E E . R E I M E R S * College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331 L E O N A R D M . T E N m deep, and the proven viability of dissolved seawater oxygen as an oxidant for power generation

Rosen, I. Gary

286

Open Energy Data | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

About Energy.gov » Open Energy Data About Energy.gov » Open Energy Data Open Energy Data Launching Round Two of the American Energy Data Challenge Find energy data hackathons near you and learn how to enter round two of the American Energy Data Challenge. Read more Calling All Coders: Help Advance America's Ocean Power Industry The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. | Graphic courtesy of TopCoder Read more Help Solve Solar's Big Challenge The Energy Department's SunShot Initiative is working to lower soft costs -- such as permitting, customer acquisition, and operations -- in order to make solar energy fully cost-competitive with traditional energy sources

287

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

41 - 22550 of 28,905 results. 41 - 22550 of 28,905 results. Page Fossil Energy RSS Feeds RSS, sometimes known as Really Simple Syndication, is a popular means of sharing content (such as news headlines) without requiring readers to constantly visit a Web site to see what's new. RSS... http://energy.gov/fe/fossil-energy-rss-feeds Page EA-1965: Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic University's South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMREC's experimental current generation turbine and the deployment and operation of

288

DISCRETE ELEMENT MODELING OF BLADE–STRIKE FREQUENCY AND SURVIVAL OF FISH PASSING THROUGH HYDROKINETIC TURBINES  

SciTech Connect (OSTI)

Evaluating the consequences from blade-strike of fish on marine hydrokinetic (MHK) turbine blades is essential for incorporating environmental objectives into the integral optimization of machine performance. For instance, experience with conventional hydroelectric turbines has shown that innovative shaping of the blade and other machine components can lead to improved designs that generate more power without increased impacts to fish and other aquatic life. In this work, we used unsteady computational fluid dynamics (CFD) simulations of turbine flow and discrete element modeling (DEM) of particle motion to estimate the frequency and severity of collisions between a horizontal axis MHK tidal energy device and drifting aquatic organisms or debris. Two metrics are determined with the method: the strike frequency and survival rate estimate. To illustrate the procedure step-by-step, an exemplary case of a simple runner model was run and compared against a probabilistic model widely used for strike frequency evaluation. The results for the exemplary case showed a strong correlation between the two approaches. In the application case of the MHK turbine flow, turbulent flow was modeled using detached eddy simulation (DES) in conjunction with a full moving rotor at full scale. The CFD simulated power and thrust were satisfactorily comparable to experimental results conducted in a water tunnel on a reduced scaled (1:8.7) version of the turbine design. A cloud of DEM particles was injected into the domain to simulate fish or debris that were entrained into the turbine flow. The strike frequency was the ratio of the count of colliding particles to the crossing sample size. The fish length and approaching velocity were test conditions in the simulations of the MHK turbine. Comparisons showed that DEM-based frequencies tend to be greater than previous results from Lagrangian particles and probabilistic models, mostly because the DEM scheme accounts for both the geometric aspects of the passage event ---which the probabilistic method does--- as well as the fluid-particle interactions ---which the Lagrangian particle method does. The DEM-based survival rates were comparable to laboratory results for small fish but not for mid-size fish because of the considerably different turbine diameters. The modeling framework can be used for applications that aim at evaluating the biological performance of MHK turbine units during the design phase and to provide information to regulatory agencies needed for the environmental permitting process.

Romero Gomez, Pedro DJ; Richmond, Marshall C.

2014-04-17T23:59:59.000Z

289

Water Power for a Clean Energy Future (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

Not Available

2012-03-01T23:59:59.000Z

290

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

November 17, 2010 November 17, 2010 Department of Energy Announces Five Awards to Modernize the Nation's Electric Grid Total public-private investment of more than $30 million to increase reliability, efficiency and security October 8, 2010 Department of Energy Offers Conditional Commitment for a Loan Guarantee to Support World's Largest Wind Project Recovery Act-Supported Loan Will Create Jobs and Avoid Over 1.2 Million Tons of Carbon Pollution Annually September 15, 2010 Department of Energy Announces $20 Million to Boost Development of Innovative Geothermal Technologies Washington, DC - U.S. Energy Secretary Steven Chu today announced $20 million to research, develop and demonstrate cutting-edge geothermal technologies that could reduce U.S. September 9, 2010 Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy

291

Wave Star Energy | Open Energy Information  

Open Energy Info (EERE)

Star Energy Star Energy Jump to: navigation, search Name Wave Star Energy Place Denmark Zip DK-2920 Product Denmark-based private wave device developer. References Wave Star Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Wave Star Energy 1 10 Scale Model Test This company is involved in the following MHK Technologies: C5 WaveStar This article is a stub. You can help OpenEI by expanding it. Wave Star Energy is a company located in Denmark . References ↑ "Wave Star Energy" Retrieved from "http://en.openei.org/w/index.php?title=Wave_Star_Energy&oldid=678928" Categories: Clean Energy Organizations

292

Rene Wave Ltd | Open Energy Information  

Open Energy Info (EERE)

Rene Wave Ltd Jump to: navigation, search Name: Rene Wave Ltd Address: 85 Emmett Ave Suite 2508 Place: Toronto Zip: M6M 5A2 Region: Canada Sector: Marine and Hydrokinetic Phone...

293

Tidal Hydraulic Generators Ltd | Open Energy Information  

Open Energy Info (EERE)

Generators Ltd Address: 14 Thislesboon Drive Place: Mumbles Zip: SA3 4HY Region: United Kingdom Sector: Marine and Hydrokinetic Phone Number: 44 (0)1792 360400 Website: http:...

294

Pelagic Power AS | Open Energy Information  

Open Energy Info (EERE)

Pelagic Power AS Address: LIV bygget Place: Vanvikan Zip: N-7125 Region: Norway Sector: Marine and Hydrokinetic Website: http:www.pelagicpower.com This company is listed in the...

295

current energy | OpenEI Community  

Open Energy Info (EERE)

current energy current energy Home Kch's picture Submitted by Kch(24) Member 9 April, 2013 - 13:30 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine energy MHK ocean energy The generalized Cost Breakdown Structure (CBS) for marine and hydrokinetic (MHK) projects is a hierarchical structure designed to facilitate the collection and organization of lifecycle costs of any type of MHK project, including wave energy converters and current energy convertners. At a high level, the categories in the CBS will be applicable to all projects; at a detailed level, however, the CBS includes many cost categories that will pertain to one project but not others. It is expected that many of the detailed levels of the CBS will be populated with "NA" or left blank.Upload

296

ocean energy | OpenEI Community  

Open Energy Info (EERE)

ocean energy ocean energy Home Kch's picture Submitted by Kch(24) Member 9 April, 2013 - 13:30 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine energy MHK ocean energy The generalized Cost Breakdown Structure (CBS) for marine and hydrokinetic (MHK) projects is a hierarchical structure designed to facilitate the collection and organization of lifecycle costs of any type of MHK project, including wave energy converters and current energy convertners. At a high level, the categories in the CBS will be applicable to all projects; at a detailed level, however, the CBS includes many cost categories that will pertain to one project but not others. It is expected that many of the detailed levels of the CBS will be populated with "NA" or left blank.Upload

297

CX-005415: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

415: Categorical Exclusion Determination 415: Categorical Exclusion Determination CX-005415: Categorical Exclusion Determination Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage CX(s) Applied: A9, B3.6 Date: 03/01/2011 Location(s): Princeton, New Jersey Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Princeton Power Systems, Incorporated is proposing to use Department of Energy funding to further develop and test a marine high-voltage power conditioning and transmission system. The objective is to advance a power converter which will be efficient, compact and light weight for interfacing Marine Hydrokinetic energy source to high voltage direct current power delivery system. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-005415.pdf More Documents & Publications

298

Open Data | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Innovation » Open Data Innovation » Open Data Open Data January 16, 2014 Applications powered by open energy data were on display at the Energy Datapalooza in June 2012. | Photo by Sarah Gerrity, Energy Department. Energy Department Launches Second Contest of the American Energy Data Challenge Today the Energy Department is launching Round Two of the American Energy Data Challenge, asking the public to develop apps using open energy data. December 19, 2013 First Round of American Energy Data Challenge Winners Announced We are excited to announce the first round of cash prize winners in the American Energy Data Challenge. December 19, 2013 Announcing the Winners of the First Round of the American Energy Data Challenge December 10, 2013 The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. | Graphic courtesy of TopCoder

299

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power  

Broader source: Energy.gov [DOE]

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power

300

ARPA-E Technical Support Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CX rulemaking files More Documents & Publications Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Report to Congress on the...

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades  

SciTech Connect (OSTI)

A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strain measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit sensor data underwater from the rotating frame of the blade to a fixed relay station. Data are then broadcast via radio waves to a remote monitoring station. Results indicate that the assembled system can transmit simulated sensor data with an accuracy of ±5% at a maximum sampling rate of 500 samples/sec. A power investigation of the transmitter within the blade shows that continuous max-sampling operation is only possible for short durations (~days), and is limited due to the capacity of the battery power source. However, intermittent sampling, with long periods between samples, allows for the system to last for very long durations (~years). Finally, because the data transmission system can operate at a high sampling rate for short durations or at a lower sampling rate/higher duty cycle for long durations, it is well-suited for short-term prototype and environmental testing, as well as long-term commercially-deployed hydrokinetic machines.

J.L. Rovey

2012-09-21T23:59:59.000Z

302

Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5021 5021 August 2009 Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors D. Sale University of Tennessee J. Jonkman and W. Musial National Renewable Energy Laboratory Presented at the ASME 28 th International Conference on Ocean, Offshore, and Arctic Engineering Honolulu, Hawaii May 31-June 5, 2009 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

303

Severn Tidal Power Group STpg | Open Energy Information  

Open Energy Info (EERE)

Power Group STpg Jump to: navigation, search Name: Severn Tidal Power Group STpg Region: United Kingdom Sector: Marine and Hydrokinetic Website: http:http:www.reuk.co.uks This...

304

CX-009567: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

567: Categorical Exclusion Determination 567: Categorical Exclusion Determination CX-009567: Categorical Exclusion Determination Hawaii National Marine Renewable Energy Center CX(s) Applied: A9, A11, B3.6 Date: 12/06/2012 Location(s): Hawaii Offices(s): Golden Field Office The U.S. DOE is proposing to provide federal funding to the University of Hawaii to further facilitate the development and implementation of commercial wave energy systems via the Hawaii National Marine Renewable Energy Center housed at the University's Hawaii Natural Energy Institute. The primary objective of the proposed project is to support development and commercialization of marine and hydrokinetic technology by providing a testing infrastructure that allows developers to prove their devices and generate the necessary data to advance their designs toward commercial

305

Washington | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

December 17, 2010 December 17, 2010 CX-004835: Categorical Exclusion Determination Electric Vehicle Charging Stations City of Mill Creek CX(s) Applied: B5.1 Date: 12/17/2010 Location(s): Mill Creek, Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office December 16, 2010 CX-004691: Categorical Exclusion Determination Puget Sound Clean Cities Petroleum Reduction Project CX(s) Applied: B5.1 Date: 12/16/2010 Location(s): Kirkland, Washington Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 16, 2010 CX-004836: Categorical Exclusion Determination Marine and Hydrokinetic Technology Readiness Advancement Initiative CX(s) Applied: A9, B3.6 Date: 12/16/2010 Location(s): Lynnwood, Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

306

Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project  

SciTech Connect (OSTI)

The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

Yu, Y. H.; Lawson, M.; Li, Y.; Previsic, M.; Epler, J.; Lou, J.

2015-01-01T23:59:59.000Z

307

levelized cost of energy | OpenEI Community  

Open Energy Info (EERE)

levelized cost of energy levelized cost of energy Home Kch's picture Submitted by Kch(24) Member 9 April, 2013 - 13:30 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine energy MHK ocean energy The generalized Cost Breakdown Structure (CBS) for marine and hydrokinetic (MHK) projects is a hierarchical structure designed to facilitate the collection and organization of lifecycle costs of any type of MHK project, including wave energy converters and current energy convertners. At a high level, the categories in the CBS will be applicable to all projects; at a detailed level, however, the CBS includes many cost categories that will pertain to one project but not others. It is expected that many of the detailed levels of the CBS will be populated with "NA" or left blank.Upload

308

Marine current energy conversion: the dawn of a new era in electricity production  

Science Journals Connector (OSTI)

...production. Renew. Energy 28, 2205-2211. 10...development of UK's marine energy industry. See http://www.innovateuk.org/content/competition-announcements...29 DECC. 2012 Draft Energy Bill. See http://www.decc.gov.uk/en/content/cms/legislation...

2013-01-01T23:59:59.000Z

309

Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors  

SciTech Connect (OSTI)

This report describes the adaptation of a wind turbine performance code for use in the development of a general use design code and optimization method for stall-regulated horizontal-axis hydrokinetic turbine rotors. This rotor optimization code couples a modern genetic algorithm and blade-element momentum performance code in a user-friendly graphical user interface (GUI) that allows for rapid and intuitive design of optimal stall-regulated rotors. This optimization method calculates the optimal chord, twist, and hydrofoil distributions which maximize the hydrodynamic efficiency and ensure that the rotor produces an ideal power curve and avoids cavitation. Optimizing a rotor for maximum efficiency does not necessarily create a turbine with the lowest cost of energy, but maximizing the efficiency is an excellent criterion to use as a first pass in the design process. To test the capabilities of this optimization method, two conceptual rotors were designed which successfully met the design objectives.

Sale, D.; Jonkman, J.; Musial, W.

2009-08-01T23:59:59.000Z

310

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

41 - 12650 of 28,905 results. 41 - 12650 of 28,905 results. Download TEC Meeting Summaries- April 2005 TEC Meeting summary and related documents from meeting held in Phoenix, Arizona http://energy.gov/em/downloads/tec-meeting-summaries-april-2005 Download EA-1965: Final Environmental Assessment Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida http://energy.gov/nepa/downloads/ea-1965-final-environmental-assessment Download FY08DMReportingGuidance.pdf http://energy.gov/management/downloads/fy08dmreportingguidancepdf Download Waste Treatment and Immobilation Plant Pretreatment Facility Full Document and Summary Versions are available for download http://energy.gov/em/downloads/waste-treatment-and-immobilation-plant-pretreatment-facility

311

EA-1965: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

5: Final Environmental Assessment 5: Final Environmental Assessment EA-1965: Final Environmental Assessment Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida The U.S. Department of the Interior's (DOI), Bureau of Ocean Energy Management (BOEM) prepared this EA and DOE served as a cooperating agency. DOE's proposed action was to provide federal funding to Florida Atlantic University Southeast National Marine Renewable Energy Center to install a non-grid connected offshore test berth and test a variety of small-scale research and development ocean current turbine units on public lands managed by the DOI's BOEM off the cost of Broward County, Florida. The EA evaluates the potential environmental impacts associated with the

312

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

30, 2010 30, 2010 CX-004631: Categorical Exclusion Determination California- City- Turlock CX(s) Applied: B5.1 Date: 11/30/2010 Location(s): Turlock, California Office(s): Energy Efficiency and Renewable Energy November 30, 2010 CX-004630: Categorical Exclusion Determination California- City- Tulare CX(s) Applied: A1, A9, A11, B5.1 Date: 11/30/2010 Location(s): Tulare, California Office(s): Energy Efficiency and Renewable Energy November 30, 2010 CX-004548: Categorical Exclusion Determination Active Flow Control on Bidirectional Rotors for Tidal Marine Hydrokinetic Applications CX(s) Applied: A9 Date: 11/30/2010 Location(s): Davis, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 29, 2010 CX-004555: Categorical Exclusion Determination

313

Energy Department Announces $7.25 Million for Projects to Advance...  

Broader source: Energy.gov (indexed) [DOE]

and hydrokinetic (MHK) technologies convert the energy of waves, tides, rivers, and ocean currents into electricity that can be used by homes and businesses, especially in...

314

FFP/NREL Collaboration on Hydrokinetic River Turbine Testing: Cooperative Research and Development Final Report, CRADA Number CRD-12-00473  

SciTech Connect (OSTI)

This shared resources CRADA defines collaborations between the National Renewable Energy Laboratory (NREL) and Free Flow Power (FFP) set forth in the following Joint Work Statement. Under the terms and conditions described in this CRADA, NREL and FFP will collaborate on the testing of FFP's hydrokinetic river turbine project on the Mississippi River (baseline location near Baton Rouge, LA; alternate location near Greenville, MS). NREL and FFP will work together to develop testing plans, instrumentation, and data acquisition systems; and perform field measurements.

Driscoll, F.

2013-04-01T23:59:59.000Z

315

Scotrenewables Wind Power and Marine Power Ltd | Open Energy...  

Open Energy Info (EERE)

Wind Power and Marine Power Ltd Jump to: navigation, search Name: Scotrenewables Wind Power and Marine Power Ltd Place: Orkey, Scotland, United Kingdom Zip: KW16 3AW Sector:...

316

2015 Marine Energy Technology Symposium | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

annual conference. METS provides a venue where technical experts can publish and present wave and water current energy research that helps accelerate the pace of technology...

317

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

16, 2011 16, 2011 CX-006520: Categorical Exclusion Determination High Energy Density Distributed Hydrostatic Direct Drive for Large Wind Turbine and Marine Hydro-Kinetic Device Applications CX(s) Applied: A9 Date: 08/16/2011 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 16, 2011 CX-006513: Categorical Exclusion Determination Novel Low Cost, High Reliability Wind Turbine Drivetrain CX(s) Applied: A9 Date: 08/16/2011 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 15, 2011 CX-006536: Categorical Exclusion Determination Development and Demonstration of a New Generation High Efficiency 1-10 Kilowatt Stationary Fuel Cell System CX(s) Applied: A9, B3.6, B5.1 Date: 08/15/2011

318

Cost-Effective Choices of Marine Fuels in a Carbon-Constrained World: Results from a Global Energy Model  

Science Journals Connector (OSTI)

Cost-Effective Choices of Marine Fuels in a Carbon-Constrained World: Results from a Global Energy Model ... † Department

Maria Taljegard; Selma Brynolf; Maria Grahn; Karin Andersson; Hannes Johnson

2014-10-06T23:59:59.000Z

319

Princeton Power Systems (TRL 5 6 Component)- Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage  

Broader source: Energy.gov [DOE]

Princeton Power Systems (TRL 5 6 Component) - Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

320

Building America Best Practices Series Volume 11. Guide to 40% Whole-House Energy Savings in the Marine Climate  

Broader source: Energy.gov [DOE]

This Building America Best Practices guide outlines ways to achieve 40% energy savings in the U.S. marine climate.

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

71 - 14880 of 28,905 results. 71 - 14880 of 28,905 results. Download Update 4 to: A Dispersion Modeling Analysis of Downwash from Mirant's Potomac River Power Plant, Modeling Unit 4 Emissions at Maximum and Minimum Loads http://energy.gov/oe/downloads/update-4-dispersion-modeling-analysis-downwash-mirants-potomac-river-power-plant Download EA-1965: Finding of No Significant Impact Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida http://energy.gov/nepa/downloads/ea-1965-finding-no-significant-impact Download EIS-0287: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) This EIS analyzes the potential environmental consequences of alternatives

322

Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies  

Broader source: Energy.gov [DOE]

This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments.

323

MARINE KELP: ENERGY RESOURCE IN THE COASTAL ZONE  

E-Print Network [OSTI]

such as marine biomass conversion, related to the planningfabrication plants, biomass conversion plants, and pipelinesBiomass and Wastes, Orlando, Florida, January 1977. Leese, T. , 1976, "The Conversion

Ritschard, Ronald L.

2014-01-01T23:59:59.000Z

324

MARINE KELP: ENERGY RESOURCE IN THE COASTAL ZONE  

E-Print Network [OSTI]

Feed Supplements Algin Liquid Sludge Effluents Gas ScrubberIntermediate BTU Gas (Methane) Sludge Processing IC0 2 Sludge Fertilizer Feedstock Figure l. Complete Marine

Ritschard, Ronald L.

2014-01-01T23:59:59.000Z

325

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

31 - 27840 of 28,904 results. 31 - 27840 of 28,904 results. Download CX-005120: Categorical Exclusion Determination Wavebob Advanced Wave Energy Conversion Project CX(s) Applied: A9, B3.6 Date: 01/27/2011 Location(s): Annapolis, Maryland Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-005120-categorical-exclusion-determination Download CX-005128: Categorical Exclusion Determination The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings For use in Marine Hydrokinetic (MHK) Energy Machines CX(s) Applied: A9, B3.6 Date: 01/25/2011 Location(s): Orem, Utah Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-005128-categorical-exclusion-determination Download START Application- Final

326

CX-005670: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

0: Categorical Exclusion Determination 0: Categorical Exclusion Determination CX-005670: Categorical Exclusion Determination Marine and Hydrokinetic Energy System Development of the Aquantis 2.5 Megawatt Ocean-Current Electricity Generation Device CX(s) Applied: A9, B3.6 Date: 04/13/2011 Location(s): Carpinteria, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Dehlsen Associates, in Carpinteria, California, is proposing to use federal funding to develop the Aquantis Current Plane (C-Plane), a marine current turbine designed to convert the kinetic energy from the flow, to base-load electric power generation. The C-Plane is a 2.5 megawatt hydrofoil platform with twin, 40 meter, counter-rotating blades that would operate 50 meters under the ocean's surface. This technology is derived from wind power

327

NREL: Department of Defense Energy Programs - U.S. Marine Corps Air Station  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Marine Corps Air Station Miramar U.S. Marine Corps Air Station Miramar NREL performed an assessment at the U.S. Marine Corps Air Station Miramar in California, which established baseline energy use and identified the lowest-cost combination of renewable energy options to meet energy reduction goals. As a result, Miramar is on track to achieve a 43% reduction in building source energy use by 2012 and has been designated the first green Marine Corps base. New projects will enable the base to reduce building source energy use 90% by 2017. Based on the Miramar project, NREL created a standardized assessment and planning process template for other military installations. Widespread replication of this process is planned, with assessments under way at several DOD installations, including: the U.S. Air Force Academy in

328

Marine Habitats and Land Use (Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Marine Habitats and Land Use (Virginia) Marine Habitats and Land Use (Virginia) Marine Habitats and Land Use (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Siting and Permitting Provider Virginia Marine Resources Commission The Virginia Marine Resources Commission has jurisdiction over submerged lands off the state's coast and in inland rivers and streams, wetlands and tidal wetlands, coastal sand dunes and beaches, and other shores. A permit from the Commission is required to dredge, fill, or otherwise disturb these

329

Marine current energy conversion: the dawn of a new era in electricity production  

Science Journals Connector (OSTI)

...Theme Issue New research in tidal current energy compiled and edited by AbuBakr Bahaj Marine current energy conversion: the dawn of a new era in electricity...s.bahaj@soton.ac.uk Sustainable Energy Research Group, Energy and Climate Change...

2013-01-01T23:59:59.000Z

330

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

81 - 28390 of 28,904 results. 81 - 28390 of 28,904 results. Article USEA/Johnson Controls Energy Efficiency Forum Remarks as Prepared for Secretary Bodman http://energy.gov/articles/useajohnson-controls-energy-efficiency-forum Download Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure- EAC 2011 Recommendations from the Electricity Advisory Committee on actions to be taken by the Department of Energy given the interdependence of the Nation's electric infrastructure and natural gas... http://energy.gov/oe/downloads/interdependence-electricity-system-infrastructure-and-natural-gas-infrastructure-eac Download CX-005561: Categorical Exclusion Determination Underwater Active Acoustic Monitoring Support for Marine Hydrokinetic Energy Projects CX(s) Applied: A9, B3.6

331

The Marine Mammal Protection Act of 1972 | Open Energy Information  

Open Energy Info (EERE)

Act of 1972 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: The Marine Mammal Protection Act of 1972Legal Abstract This Act seeks...

332

Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations  

SciTech Connect (OSTI)

DOD's U.S. Pacific Command has partnered with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency in Hawaii installations. NREL selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations.

Burman, K.; Kandt, A.; Lisell, L.; Booth, S.; Walker, A.; Roberts, J.; Falcey, J.

2011-11-01T23:59:59.000Z

333

Golden Reading Room: Environmental Assessments | Department of...  

Office of Environmental Management (EM)

Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida August 8, 2013 EA-1925: Final...

334

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

401 - 15410 of 28,905 results. 401 - 15410 of 28,905 results. Download REQUEST FOR RECORDS DISPOSITION AUTHORITY http://energy.gov/cio/downloads/request-records-disposition-authority-23 Article T-581: Novell Access Manager Java Double Literal Denial of Service Vulnerability Novell Access Manager Java Double Literal Denial of Service Vulnerability. http://energy.gov/cio/articles/t-581-novell-access-manager-java-double-literal-denial-service-vulnerability Article V-160: Wireshark Multiple Bugs Let Remote Users Deny Service Multiple vulnerabilities have been reported in Wireshark http://energy.gov/cio/articles/v-160-wireshark-multiple-bugs-let-remote-users-deny-service Download Before the House Science and Technology Subcommittee on Energy and Environment Subject: Marine and Hydrokinetic Energy Technology: Finding the Path to

335

Categorical Exclusion Determinations: A9 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

28, 2011 28, 2011 CX-005184: Categorical Exclusion Determination The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings For use in Marine Hydrokinetic Energy Machines CX(s) Applied: A9, B3.6 Date: 01/28/2011 Location(s): Orem, Utah Office(s): Energy Efficiency and Renewable Energy, Golden Field Office January 28, 2011 CX-005183: Categorical Exclusion Determination Los Tomates Meteorological Tower; National Renewable Energy Laboratory Tracking Number 11?009 CX(s) Applied: A9, B3.1 Date: 01/28/2011 Location(s): Los Tomates, Texas Office(s): Energy Efficiency and Renewable Energy, Golden Field Office January 28, 2011 CX-005181: Categorical Exclusion Determination Los Indios Meteorological Tower; National Renewable Energy Laboratory Tracking Number 11-008

336

Categorical Exclusion Determinations: Office of Energy Efficiency and  

Broader source: Energy.gov (indexed) [DOE]

6, 2011 6, 2011 CX-005698: Categorical Exclusion Determination California-City-Alhambra CX(s) Applied: A9, B2.5, B5.1 Date: 04/06/2011 Location(s): Alhambra, California Office(s): Energy Efficiency and Renewable Energy April 6, 2011 CX-005561: Categorical Exclusion Determination Underwater Active Acoustic Monitoring Support for Marine Hydrokinetic Energy Projects CX(s) Applied: A9, B3.6 Date: 04/06/2011 Location(s): New Hampshire Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 5, 2011 CX-005709: Categorical Exclusion Determination Florida-City-Palm Bay CX(s) Applied: A1, A9, A11, B1.32, B2.5, B5.1 Date: 04/05/2011 Location(s): Palm Bay, Florida Office(s): Energy Efficiency and Renewable Energy April 5, 2011 CX-005567: Categorical Exclusion Determination

337

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

5, 2011 5, 2011 CX-005119: Categorical Exclusion Determination Somerset County, Maryland Energy Efficiency and Conservation Block Grant (Maryland Energy Administration Subgrantee) CX(s) Applied: B5.1 Date: 01/25/2011 Location(s): Somerset County, Maryland Office(s): Energy Efficiency and Renewable Energy, Golden Field Office January 25, 2011 CX-005118: Categorical Exclusion Determination Maryland Energy Efficiency and Conservation Block Grant Water/Wastewater Motor System Upgrades CX(s) Applied: B5.1 Date: 01/25/2011 Location(s): Maryland Office(s): Energy Efficiency and Renewable Energy, Golden Field Office January 25, 2011 CX-005112: Categorical Exclusion Determination Environmentally Benign and Permanent Surface Modifications to Prevent Biofueling on Marine and Hydrokinetic Devices

338

Attraction to and Avoidance of instream Hydrokinetic Turbines by Freshwater Aquatic Organisms  

SciTech Connect (OSTI)

The development of hydrokinetic (HK) energy projects is under consideration at over 150 sites in large rivers in the United States, including the Mississippi, Ohio, Tennessee, and Atchafalaya Rivers. These waterbodies support numerous fish species that might interact with the HK projects in a variety of ways, e.g., by attraction to or avoidance of project structures. Although many fish species inhabit these rivers (about 172 species in the Mississippi River alone), not all of them will encounter the HK projects. Some species prefer low-velocity, backwater habitats rather than the high-velocity, main channel areas that would be the best sites for HK. Other, riverbank-oriented species are weak swimmers or too small to inhabit the main channel for significant periods of time. Some larger, main channel fish species are not known to be attracted to structures. Based on a consideration of habitat preferences, size/swim speed, and behavior, fish species that are most likely to be attracted to HK structures in the main channel include carps, suckers, catfish, white bass, striped bass, smallmouth bass, spotted bass, and sauger. Proper siting of the project in order to avoid sensitive fish populations, backwater and fish nursery habitat areas, and fish migration corridors will likely minimize concerns about fish attraction to or avoidance of HK structures.

Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

2011-05-01T23:59:59.000Z

339

UTK FWF Seminar Sept 18, 2013 Dr. Mark Bevelhimer  

E-Print Network [OSTI]

· cabin cruiser with diesel engines · rain · ambient background Noise as a fxn of distance: · passing the Effects of Hydrokinetic Devices on Aquatic Organisms #12;Marine and Hydrokinetic Energy Devices Extract

Gray, Matthew

340

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

81 - 2990 of 26,777 results. 81 - 2990 of 26,777 results. Download Microsoft Word- FedComplianceCritChecklist.doc http://energy.gov/management/downloads/microsoft-word-fedcompliancecritchecklistdoc Download TEC Meeting Summaries- January- February 2007 Presentations http://energy.gov/em/downloads/tec-meeting-summaries-january-february-2007-presentations Download Microsoft Word- FY2005finaliparhandbook.doc http://energy.gov/management/downloads/microsoft-word-fy2005finaliparhandbookdoc Download Microsoft Word- GJPPGPracticesDraft.doc http://energy.gov/management/downloads/microsoft-word-gjppgpracticesdraftdoc Download CX-004836: Categorical Exclusion Determination Marine and Hydrokinetic Technology Readiness Advancement Initiative CX(s) Applied: A9, B3.6 Date: 12/16/2010 Location(s): Lynnwood, Washington

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Chu Presentation at Copenhagen Available on Facebook | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Chu Presentation at Copenhagen Available on Facebook Chu Presentation at Copenhagen Available on Facebook Chu Presentation at Copenhagen Available on Facebook December 14, 2009 - 12:00am Addthis WASHINGTON, DC - Today at the Copenhagen climate conference, on behalf of President Obama, Energy Secretary Steven Chu announced the launch of a new initiative to promote clean energy technologies in developing countries. Secretary Chu's Powerpoint is posted on his Facebook page. Learn more information about today's announcement from the Clean Energy Technology Announcements fact sheet. Media contact(s): (202) 586-4940 Addthis Related Articles Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development Energy Department Accelerates the Deployment of Advanced Vehicle Technologies with Private Industry Partnerships

342

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

30, 2010 30, 2010 CX-004630: Categorical Exclusion Determination California- City- Tulare CX(s) Applied: A1, A9, A11, B5.1 Date: 11/30/2010 Location(s): Tulare, California Office(s): Energy Efficiency and Renewable Energy November 30, 2010 CX-004634: Categorical Exclusion Determination Nevada- Tribe- Walker River Paiute Tribe CX(s) Applied: B3.6, B5.1 Date: 11/30/2010 Location(s): Nevada Office(s): Energy Efficiency and Renewable Energy November 30, 2010 CX-004548: Categorical Exclusion Determination Active Flow Control on Bidirectional Rotors for Tidal Marine Hydrokinetic Applications CX(s) Applied: A9 Date: 11/30/2010 Location(s): Davis, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 30, 2010 CX-004582: Categorical Exclusion Determination

343

Categorical Exclusion Determinations: A9 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

30, 2010 30, 2010 CX-004632: Categorical Exclusion Determination California- City- Visalia CX(s) Applied: A9, B1.32, B5.1 Date: 11/30/2010 Location(s): Visalia, California Office(s): Energy Efficiency and Renewable Energy November 30, 2010 CX-004630: Categorical Exclusion Determination California- City- Tulare CX(s) Applied: A1, A9, A11, B5.1 Date: 11/30/2010 Location(s): Tulare, California Office(s): Energy Efficiency and Renewable Energy November 30, 2010 CX-004548: Categorical Exclusion Determination Active Flow Control on Bidirectional Rotors for Tidal Marine Hydrokinetic Applications CX(s) Applied: A9 Date: 11/30/2010 Location(s): Davis, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 30, 2010 CX-004582: Categorical Exclusion Determination

344

Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations  

Broader source: Energy.gov (indexed) [DOE]

Targeting Net Zero Energy at Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations K. Burman, A. Kandt, L. Lisell, S. Booth, A. Walker, J. Roberts and J. Falcey Technical Report NREL/ TP-7A40-52897 November 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations K. Burman, A. Kandt, L. Lisell, S. Booth, A. Walker, J. Roberts and J. Falcey Prepared under Task No. IDHW.9180

345

Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and Recommendations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Targeting Net Zero Energy at Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and Recommendations Samuel Booth, John Barnett, Kari Burman, Joshua Hambrick, Mike Helwig, and Robert Westby Technical Report NREL/TP-7A40-47991 December 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and Recommendations Samuel Booth, John Barnett, Kari Burman, Joshua Hambrick, Mike Helwig, and

346

Key Activities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Key Activities Key Activities Key Activities The Water Power Program conducts work in four key areas at the forefront of water power research. The Program is structured to help the United States meet its growing energy demands sustainably and cost-effectively by developing innovative renewable water power technologies, breaking down market barriers to deployment, building the infrastructure to test new technologies, and assessing water power resources for integration into our nation's grid. Research and Development Introduce and advance new marine and hydrokinetic technologies to provide sustainable and cost-effective renewable energy from the nation's waves, tides, currents, and ocean thermal gradients. Research and develop innovative hydropower technologies to sustainably tap our country's diverse water resources including rivers,

347

Proceedings of the Hydrokinetic and Wave Energy Technologies...  

Energy Savers [EERE]

no one-stop shopping. You have to brainstorm to come up with multiple funding sources, patch the resources together. It is hard to get money, but if you can get a half a dozen...

348

A distributed micro sonar network for marine mammal monitoring.  

Science Journals Connector (OSTI)

The design of a distributed micro sonar network (DMSN) is presented. The DMSN is a miniaturized low?power and high?frequency version of the swimmer detection sonar network used to detect and track marine mammals at ranges out to 500 m. The intent is to use it for monitoring during potentially harmful military and commercial activities such as high?powered Navy sonar oil and gas exploration explosive removal of offshore structures seismic exploration for research and oil and gas pile driving to install maritime structures including offshore wind farms and marine hydrokinetic energy devices such as free turbines. The system will consist of multiple single?beam sonars each transmitting and receiving a unique signal in a narrow beam. The hardware and software will initially be ported to a Xilinx FPGA with future versions done within a custom made ASIC. Initial hardware and software research and development will be described as well as the work done to create computationally efficient signal processing algorithms. This work will potentially lead to the first ever prototype of a sonar?on?a?chip implementation. [Work supported by the NAVAIR SBIR Program and ONR.]?

Nicholas A. Rotker; Peter J. Stein; Patrick Edson; John Wood

2010-01-01T23:59:59.000Z

349

EA-1965: Finding of No Significant Impact | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

965: Finding of No Significant Impact 965: Finding of No Significant Impact EA-1965: Finding of No Significant Impact Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida Based on the environmental assessment (EA), DOE finds that the proposed action is not a major federal action that constitutes a significant effect on the human environment. This finding and decision is based on the consideration of DOE's NEPA implementing regulations (40 CFR Part 1021) and Council on Environmental Quality criteria for significance (40 CFR 1508.27), both with regard to the context and the intensity of impacts analyzed in the EA. Therefore, the proposed action does not require the preparation of an environmental impact statement.

350

Findings of No Significant Impact (FONSI) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Services » NEPA Documents » Findings of No Significant Impact Services » NEPA Documents » Findings of No Significant Impact (FONSI) Findings of No Significant Impact (FONSI) Findings of No Significant Impact are public documents issued by a Federal agency briefly presenting the reasons why an action for which the agency has prepared an environmental assessment will not have a significant effect on the human environment and, therefore, will not require preparation of an environmental impact statement. If you have any trouble finding a specific document, please contact AskNEPA@hq.doe.gov for assistance. DOCUMENTS AVAILABLE FOR DOWNLOAD November 13, 2013 EA-1965: Finding of No Significant Impact Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida

351

EA-1965: Finding of No Significant Impact | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Finding of No Significant Impact Finding of No Significant Impact EA-1965: Finding of No Significant Impact Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida Based on the environmental assessment (EA), DOE finds that the proposed action is not a major federal action that constitutes a significant effect on the human environment. This finding and decision is based on the consideration of DOE's NEPA implementing regulations (40 CFR Part 1021) and Council on Environmental Quality criteria for significance (40 CFR 1508.27), both with regard to the context and the intensity of impacts analyzed in the EA. Therefore, the proposed action does not require the preparation of an environmental impact statement.

352

CX-000624: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

24: Categorical Exclusion Determination 24: Categorical Exclusion Determination CX-000624: Categorical Exclusion Determination Siting Study for a Hydrokinetic Energy Project Located Offshore Southeast Florida CX(s) Applied: A9, B3.1 Date: 01/19/2010 Location(s): Florida Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Dehlsen Associates will be using Department of Energy funding to identify and approach for siting and designing marine renewable energy facilities (including transmission cables) along the Florida Coast, that will satisfy regulatory and resource management agency requirements that impacts to protected resources be avoided or minimized by a thorough analysis of alternative sites and installation methods. A parallel study will also be conducted that will help develop a complete mapping of benthic habitat

353

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

6, 2011 6, 2011 CX-006520: Categorical Exclusion Determination High Energy Density Distributed Hydrostatic Direct Drive for Large Wind Turbine and Marine Hydro-Kinetic Device Applications CX(s) Applied: A9 Date: 08/16/2011 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 16, 2011 CX-006513: Categorical Exclusion Determination Novel Low Cost, High Reliability Wind Turbine Drivetrain CX(s) Applied: A9 Date: 08/16/2011 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 16, 2011 CX-006875: Categorical Exclusion Determination Center for Integrated Nanotechnologies Integration Laboratories: PH3 Operations CX(s) Applied: B3.6 Date: 08/16/2011 Location(s): Albuquerque, New Mexico

354

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

3, 2011 3, 2011 CX-005699: Categorical Exclusion Determination California-City-Murrieta CX(s) Applied: A1, A9, A11, B1.32, B2.5, B5.1 Date: 04/13/2011 Location(s): Murrieta, California Office(s): Energy Efficiency and Renewable Energy April 13, 2011 CX-005670: Categorical Exclusion Determination Marine and Hydrokinetic Energy System Development of the Aquantis 2.5 Megawatt Ocean-Current Electricity Generation Device CX(s) Applied: A9, B3.6 Date: 04/13/2011 Location(s): Carpinteria, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 13, 2011 CX-005624: Categorical Exclusion Determination Evaluating and Commercializing a Solvent Based Enhanced Oil Recovery Technology CX(s) Applied: B5.12 Date: 04/13/2011 Location(s): Huntington Beach, California

355

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

11 - 13420 of 28,905 results. 11 - 13420 of 28,905 results. Download CRAD, Welding, Cutting and Brazing Assessment Plan This assessment is to verify hot work requirements associated with welding, cutting, burning, brazing, grinding and other spark- or flame-producing operations have been implemented. Verify that the requirements implemented are appropriate for preventing loss of life and property from fire, and personal injury from contact with or exposure to molten metals, vapors, radiant energy, injurious rays and sparks. http://energy.gov/hss/downloads/crad-welding-cutting-and-brazing-assessment-plan Download CX-005670: Categorical Exclusion Determination Marine and Hydrokinetic Energy System Development of the Aquantis 2.5 Megawatt Ocean-Current Electricity Generation Device CX(s) Applied: A9, B3.6

356

Effects of Tidal Turbine Noise on Fish Task 2.1.3.2: Effects on Aquatic Organisms: Acoustics/Noise - Fiscal Year 2011 - Progress Report - Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect (OSTI)

Naturally spawning stocks of Chinook salmon (Oncorhynchus tshawytscha) that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/ Chinook/CKPUG.cfm). Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study (Effects on Aquatic Organisms, Subtask 2.1.3.2: Acoustics) was performed during FY 2011 to determine if noise generated by a 6-m-diameter open-hydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Preliminary results indicate that low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

2011-09-30T23:59:59.000Z

357

Memorandum of Understanding between the Dept. of Interior and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY for the COORDINATED DEPLOYMENT OF OFFSHORE WIND AND MARINE AND HYDROKINETIC ENERGY TECHNOLOGIES ON THE UNITED STATES OUTER...

358

CX-004532: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

532: Categorical Exclusion Determination 532: Categorical Exclusion Determination CX-004532: Categorical Exclusion Determination Tidal Energy System for On-Shore Power Generation CX(s) Applied: A9, B3.6 Date: 11/24/2010 Location(s): Piscataway, New Jersey Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Sunlight Photonics is proposing to use Department of Energy funding to design, build and test a proof-of-concepts (Technology Readiness Level 4) model-scale marine hydrokinetic (MHK) on-shore power generation system with no high-ratio gears or submerged electronics. Funding would also be used to collect and report the data to be used toward full-scale implementation of the MHK system. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-004532.pdf More Documents & Publications CX-001727: Categorical Exclusion Determination

359

High energy density, thin-lm, rechargeable lithium batteries for marine eld operations  

E-Print Network [OSTI]

High energy density, thin-®lm, rechargeable lithium batteries for marine ®eld operations Biying February 2001 Abstract All solid state, thin-®lm batteries with the cell con®guration of VOx, no binder) cathode consisted of a dense ®lm of vanadium oxide (200 nm thick), deposited on aluminum foil

Sadoway, Donald Robert

360

Independent Natural Resources Inc | Open Energy Information  

Open Energy Info (EERE)

Natural Resources Inc Natural Resources Inc Jump to: navigation, search Name Independent Natural Resources Inc Place Eden Prairie, Minnesota Zip 55344 Product Designer of a wave converter system. Has patented the SEADOG Pump which uses buoyancy to convert ave energy to mechanical energy. References Independent Natural Resources Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. Independent Natural Resources Inc is a company located in Eden Prairie, Minnesota . References ↑ "Independent Natural Resources Inc" Retrieved from "http://en.openei.org/w/index.php?title=Independent_Natural_Resources_Inc&oldid=678906"

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Aqua Magnetics Inc | Open Energy Information  

Open Energy Info (EERE)

Magnetics Inc Magnetics Inc Jump to: navigation, search Name Aqua-Magnetics Inc Place Satellite Beach, Florida Zip 32937 Sector Ocean Product Manufactures patented system that converts ocean wave energy into electric power. References Aqua-Magnetics Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Electric Buoy Mobil Stabilized Energy Conversion Platform Platform generators This article is a stub. You can help OpenEI by expanding it. Aqua-Magnetics Inc is a company located in Satellite Beach, Florida . References ↑ "Aqua-Magnetics Inc" Retrieved from "http://en.openei.org/w/index.php?title=Aqua_Magnetics_Inc&oldid=678881"

362

Establishing an agenda for social studies research in marine renewable energy  

Science Journals Connector (OSTI)

Abstract To date, academic research relating to Marine Renewable Energy (MRE) has largely focused on resource assessment, technical viability and environmental impact. Experiences from onshore renewable energy tell us that social acceptability is equally critical to project success. However, the specific nature of the marine environment, patterns of resource distribution and governance means experiences from onshore may not be directly applicable to MRE and the marine environment. This paper sets out an agenda for social studies research linked to MRE, identifying key topics for future research: (i) economic impacts; (ii) wealth distribution and community benefits; (iii) communication and knowledge flow; (iv) consultation processes; (v) dealing with uncertainty; (vi) public attitudes; and (vii) planning processes. This agenda is based on the findings of the first workshop of ISSMER, an international research network of social scientists with interests in marine renewable energy. Importantly, this research agenda has been informed by the experiences of developers, regulators and community groups in Orkney. The Orkney archipelago, off the north coast of Scotland, is home to the most intense cluster of MRE research, development and deployment activity in the world today.

Sandy Kerr; Laura Watts; John Colton; Flaxen Conway; Angela Hull; Kate Johnson; Simon Jude; Andreas Kannen; Shelley MacDougall; Carly McLachlan; Tavis Potts; Jo Vergunst

2014-01-01T23:59:59.000Z

363

ENERGY RECOVERY COUNCIL WEEKLY UPDATE  

E-Print Network [OSTI]

to Chairman George Miller. Prior to that, from 2002 through 2007, Jordan worked at the US Chemical Safety, recycling, health & safety, etc. Senators Amy Klobuchar (D-MN) and Olympia Snowe (R-ME) last week introduced, trash combustion facilities, qualified hydropower facilities, and marine and hydrokinetic renewable

364

Accelerating Climate Technologies: Innovative Market Strategies...  

Open Energy Info (EERE)

proposes a similar approach to accelerate hydrokinetic marine energy technology in global energy markets. For each case study, we show the gaps to scaling up technology...

365

Sandia National Laboratories: Biofouling Studies on Sandia's...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on Sandia's Marine Hydrokinetic (MHK) Coatings Initiated at PNNL's Sequim Bay On June 18, 2014, in Energy, News, News & Events, Partnership, Renewable Energy, Water Power Sandia's...

366

Sandia National Laboratories: Biofouling Studies on Sandia's...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on Sandia's Marine Hydrokinetic Coatings Initiated at PNNL's Sequim Bay On June 26, 2014, in Energy, Materials Science, News, News & Events, Partnership, Renewable Energy,...

367

Sandia National Laboratories: DOE-Sponsored Reference Model Project...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is a partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

368

Scientific Solutions (TRL 5 6 Component) - Underwater Active...  

Broader source: Energy.gov (indexed) [DOE]

Energy Scientific Solutions (TRL 5 6 Component) - Underwater Active Acoustic Monitoring Network for Marine and Hydrokinetic Energy 40aamssistein.ppt More Documents &...

369

Sandia National Laboratories: Reference Model Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is a partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

370

Sandia National Laboratories: University of Washington  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is a partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

371

Sandia National Laboratories: Water Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is a partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

372

Sandia National Laboratories: NREL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is a partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

373

Top 10 Things You Didn't Know about Hydropower | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

about Hydropower about Hydropower Top 10 Things You Didn't Know about Hydropower April 19, 2013 - 3:49pm Addthis Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses. | Video by the Energy Department. Mike Reed Water Power Program Manager, Water Power Program LEARN MORE Stay up to date on hydropower, marine and hydrokinetic energy technologies by visiting energy.gov/water. This article is part of the Energy.gov series highlighting the "Top Things You Didn't Know About..." Be sure to check back for more entries soon. 10. Hydropower is one of the oldest power sources on the planet, generating power when flowing water spins a wheel or turbine. It was used by farmers as far back as ancient Greece for mechanical tasks like grinding grain.

374

Top 10 Things You Didn't Know about Hydropower | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Top 10 Things You Didn't Know about Hydropower Top 10 Things You Didn't Know about Hydropower Top 10 Things You Didn't Know about Hydropower April 19, 2013 - 3:49pm Addthis Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses. | Video by the Energy Department. Mike Reed Water Power Program Manager, Water Power Program LEARN MORE Stay up to date on hydropower, marine and hydrokinetic energy technologies by visiting energy.gov/water. This article is part of the Energy.gov series highlighting the "Top Things You Didn't Know About..." Be sure to check back for more entries soon. 10. Hydropower is one of the oldest power sources on the planet, generating power when flowing water spins a wheel or turbine. It was used by farmers as far back as ancient Greece for mechanical tasks like grinding grain.

375

DEP.~TMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER  

Broader source: Energy.gov (indexed) [DOE]

DEP.~TMENT OF ENERGY DEP.~TMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DFTJ!R1,fiNATION RECIPIENT:Sound & Sea Technology. Inc. PROJECT TITLE: Marine and Hydrokinetic Technology Readiness Advancemenlinitiative Page I of2 STATE: WA Funding Opportunity Announcement Number Procurement Instrument Number N[PA Control Number CID Number DE-FOA-OOOO293 OE-EEOOO3632 GFO-OOO3632-OO1 GOO Based on my review oflhe informatioD concerning the proposed action,.s NEPA Compliance Officer (authorized under DOE Order 4SI.IA),1 have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, bul 1"101 limited to, literature surveys, inventories, audits), data analysis (including computer modeling). document preparation (such as conceptual design or feasibility studies, analytical energy supply

376

U.S. Department of Energy Categorical Exclusion Determination Form  

Broader source: Energy.gov (indexed) [DOE]

Brown University - Brown University - Marine Hydro-Kinetic Energy Harvesting Using Cyber-Physical Systems Program or Field Office:Advanced Research Projects Agency- Energy (ARPA-E) Location(s) (City/County/State): Providence, Rl Proposed Action Description: Funding will support efforts to develop a cyber-physical hydrofoil, an oscillating, underwater wing coupled with adaptive control software to capture energy from flowing water in rivers and tidal basins. Project tasks will be conducted in dedicated university laboratory, testing, and office facilities at Brown University in accordance with university materials/waste management protocols and pursuant to applicable Federal, State, and local regulatory requirements. No outdoor field testing will occur in this project.

377

STATE: HI PROJECT Subtask 2.2 MCBH Site: National Marine Renewable Energy Center in Hawaii  

Broader source: Energy.gov (indexed) [DOE]

2 MCBH Site: National Marine Renewable Energy Center in Hawaii 2 MCBH Site: National Marine Renewable Energy Center in Hawaii TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number cm Number DE-PS36-08G098030 DE-FG36-08G018180 GFO-09-013-002 G018180 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized ullder DOE Order 451.1A), I have made the fODowing determinatioll: Cx, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, Iterature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasbHity studies, analytical energy supply and demand studies), and dissenination (including, but not limited to, docl.lllent mailings, pLt>lication, and distribution;

378

DOE Announces Webinars on Residential Energy Efficiency, Marine...  

Office of Environmental Management (EM)

Efficiency Deep Dive, Part One Webinar Sponsor: U.S. Department of Agriculture Rural Utilities Service The Energy Department and U.S. Department of Agriculture will present a live...

379

STATE: HI PROJECT Subtask 2.1 Maui Site: National Marine Renewable Energy Center in Hawaii  

Broader source: Energy.gov (indexed) [DOE]

1 Maui Site: National Marine Renewable Energy Center in Hawaii 1 Maui Site: National Marine Renewable Energy Center in Hawaii TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-PS36-08G098030 DE-FG36-08G018180 GFO-09-013-001 G018180 Based on my review of the information concerning the pro posed action, as NEPA CompHance Officer (authorized under DOE Order 451.1A), I have made the foHowing determination: Cx, EA, EIS APPENDIX AND NUMBER: Description: 83.1 Onsite and offsite site characterization and environmental monitoring, including siting, construction (or modification), operation, and dismantlement or closing (abandonment) of qharacterization and monitoring devices and siting, construction, and associated operation of a small-scale laboratory building or renovation of a room in an existing building

380

Property:ProjectTechnology | Open Energy Information  

Open Energy Info (EERE)

ProjectTechnology ProjectTechnology Jump to: navigation, search Property Name ProjectTechnology Property Type Page Has Default form Marine and Hydrokinetic Technology Pages using the property "ProjectTechnology" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + MHK Technologies/Oyster + MHK Projects/ADM 3 + MHK Technologies/Wavebob + MHK Projects/ADM 4 + MHK Technologies/Wavebob + MHK Projects/AW Energy EMEC + MHK Technologies/Wave Roller + MHK Projects/Alaska 35 + MHK Technologies/Ocean +, MHK Technologies/Kensington + MHK Projects/BW2 Tidal + MHK Technologies/RED HAWK + MHK Projects/BioSTREAM Pilot Plant + MHK Technologies/bioSTREAM + MHK Projects/Bluemill Sound + MHK Technologies/Exim + MHK Projects/Bondurant Chute + MHK Technologies/SmarTurbine +

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Artificial Muscle Inc | Open Energy Information  

Open Energy Info (EERE)

Artificial Muscle Inc Artificial Muscle Inc Jump to: navigation, search Name Artificial Muscle Inc Place California Zip CA 94085 Product Artificial Muscle develops electroactive polymer technology used for sensing, actuating and electric power generation applications. References Artificial Muscle Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. Artificial Muscle Inc is a company located in California . References ↑ "Artificial Muscle Inc" Retrieved from "http://en.openei.org/w/index.php?title=Artificial_Muscle_Inc&oldid=678882" Categories: Clean Energy Organizations Companies Organizations

382

Waveberg Development Ltd | Open Energy Information  

Open Energy Info (EERE)

Waveberg Development Ltd Waveberg Development Ltd Jump to: navigation, search Name Waveberg Development Ltd Place New York, New York Zip 10036 Product Wave energy developer. Has patented the Waveberg, an articulated set of connected floats that flex as the waves pass under them, using this bending motion to pump seawater. References Waveberg Development Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. Waveberg Development Ltd is a company located in New York, New York . References ↑ "Waveberg Development Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Waveberg_Development_Ltd&oldid=678929"

383

Bourne Energy | Open Energy Information  

Open Energy Info (EERE)

Bourne Energy Bourne Energy Jump to: navigation, search Logo: Bourne Energy Name Bourne Energy Address Box 2761 Place Malibu, California Zip 90265 Sector Marine and Hydrokinetic Product River, tidal, wave and ocean current power systems Year founded 2005 Number of employees 1-10 Phone number 310-456-8112 Website http://www.bourneenergy.com/ Coordinates 34.0050079°, -118.8100893° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0050079,"lon":-118.8100893,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

Doppler Lidar–Based Wind-Profile Measurement System for Offshore Wind-Energy and Other Marine Boundary Layer Applications  

Science Journals Connector (OSTI)

Accurate measurement of wind speed profiles aloft in the marine boundary layer is a difficult challenge. The development of offshore wind energy requires accurate information on wind speeds above the surface at least at the levels occupied by ...

Yelena L. Pichugina; Robert M. Banta; W. Alan Brewer; Scott P. Sandberg; R. Michael Hardesty

2012-02-01T23:59:59.000Z

385

Categorical Exclusion Determinations: Rhode Island | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rhode Island Rhode Island Categorical Exclusion Determinations: Rhode Island Location Categorical Exclusion Determinations issued for actions in Rhode Island. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2013 CX-010757: Categorical Exclusion Determination The New England Solar cost-Reduction Challenge Partnership CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): Vermont, New Hampshire, Rhode Island, Massachusetts, Connecticut Offices(s): Golden Field Office February 4, 2013 CX-010572: Categorical Exclusion Determination Brown University - Marine Hydro-Kinetic Energy Harvesting Using Cyber-Physical Systems CX(s) Applied: B3.6 Date: 02/04/2013 Location(s): Rhode Island Offices(s): Advanced Research Projects Agency-Energy October 18, 2012 CX-009518: Categorical Exclusion Determination

386

Calling All Coders: Help Advance America's Wave Power Industry...  

Office of Environmental Management (EM)

Resource Assessment and Characterization maps and tools Watch the Energy 101 video on Marine and Hydrokinetic technology With more than 50% of the nation's population...

387

Memorandum of Understanding between the Dept. of Interior and...  

Broader source: Energy.gov (indexed) [DOE]

by the U.S. Department of Energy and the U.S. Department of the Interior to support offshore wind and marine and hydrokinetic technologies. mouoffshorewindhydrokineticdeploym...

388

US Synthetic Corp (TRL 4 Component) - The Development of Open...  

Broader source: Energy.gov (indexed) [DOE]

Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines US Synthetic Corp (TRL 4 Component) - The Development of Open, Water Lubricated...

389

Hawai`i Institute of Marine Biology to house state-of-the-art solar energy project  

E-Print Network [OSTI]

Hawai`i Institute of Marine Biology to house state-of-the-art solar energy project Landmark purchasing agreement (PPA) with SolarCity to provide renewable solar energy to the Hawai`i Institute this one make solar both logical and affordable." Power purchase agreements for renewable energy

Wang, Yuqing

390

MHK Technologies/Underwater Electric Kite Turbines | Open Energy  

Open Energy Info (EERE)

Underwater Electric Kite Turbines Underwater Electric Kite Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Underwater Electric Kite Turbines.jpg Technology Profile Primary Organization UEK Corporation Project(s) where this technology is utilized *MHK Projects/Atchafalaya River Hydrokinetic Project II *MHK Projects/Chitokoloki Project *MHK Projects/Coal Creek Project *MHK Projects/Half Moon Cove Tidal Project *MHK Projects/Indian River Tidal Hydrokinetic Energy Project *MHK Projects/Luangwa Zambia Project *MHK Projects/Minas Basin Bay of Fundy Commercial Scale Demonstration *MHK Projects/Passamaquoddy Tribe Hydrokinetic Project *MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project *MHK Projects/UEK Yukon River Project Technology Resource

391

Assssment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) funded the Electric Power Research Institute and its collaborative partners, University of Alaska ? Anchorage, University of Alaska ? Fairbanks, and the National Renewable Energy Laboratory, to provide an assessment of the riverine hydrokinetic resource in the continental United States. The assessment benefited from input obtained during two workshops attended by individuals with relevant expertise and from a National Research Council panel commissioned by DOE to provide guidance to this and other concurrent, DOE-funded assessments of water based renewable energy. These sources of expertise provided valuable advice regarding data sources and assessment methodology. The assessment of the hydrokinetic resource in the 48 contiguous states is derived from spatially-explicit data contained in NHDPlus ?a GIS-based database containing river segment-specific information on discharge characteristics and channel slope. 71,398 river segments with mean annual flow greater than 1,000 cubic feet per second (cfs) mean discharge were included in the assessment. Segments with discharge less than 1,000 cfs were dropped from the assessment, as were river segments with hydroelectric dams. The results for the theoretical and technical resource in the 48 contiguous states were found to be relatively insensitive to the cutoff chosen. Raising the cutoff to 1,500 cfs had no effect on estimate of the technically recoverable resource, and the theoretical resource was reduced by 5.3%. The segment-specific theoretical resource was estimated from these data using the standard hydrological engineering equation that relates theoretical hydraulic power (Pth, Watts) to discharge (Q, m3 s-1) and hydraulic head or change in elevation (??, m) over the length of the segment, where ? is the specific weight of water (9800 N m-3): ??? = ? ? ?? For Alaska, which is not encompassed by NPDPlus, hydraulic head and discharge data were manually obtained from Idaho National Laboratory?s Virtual Hydropower Prospector, Google Earth, and U.S. Geological Survey gages. Data were manually obtained for the eleven largest rivers with average flow rates greater than 10,000 cfs and the resulting estimate of the theoretical resource was expanded to include rivers with discharge between 1,000 cfs and 10,000 cfs based upon the contribution of rivers in the latter flow class to the total estimate in the contiguous 48 states. Segment-specific theoretical resource was aggregated by major hydrologic region in the contiguous, lower 48 states and totaled 1,146 TWh/yr. The aggregate estimate of the Alaska theoretical resource is 235 TWh/yr, yielding a total theoretical resource estimate of 1,381 TWh/yr for the continental US. The technically recoverable resource in the contiguous 48 states was estimated by applying a recovery factor to the segment-specific theoretical resource estimates. The recovery factor scales the theoretical resource for a given segment to take into account assumptions such as minimum required water velocity and depth during low flow conditions, maximum device packing density, device efficiency, and flow statistics (e.g., the 5 percentile flow relative to the average flow rate). The recovery factor also takes account of ?back effects? ? feedback effects of turbine presence on hydraulic head and velocity. The recovery factor was determined over a range of flow rates and slopes using the hydraulic model, HEC-RAS. In the hydraulic modeling, presence of turbines was accounted for by adjusting the Manning coefficient. This analysis, which included 32 scenarios, led to an empirical function relating recovery factor to slope and discharge. Sixty-nine percent of NHDPlus segments included in the theoretical resource estimate for the contiguous 48 states had an estimated recovery factor of zero. For Alaska, data on river slope was not readily available; hence, the recovery factor was estimated based on the flow rate alone. Segment-specific estimates of the theoretical resource were multiplied by the corresponding recovery factor to estimate

Jacobson, Paul T. [Electric Power Research Institute; Ravens, Thomas M. [University of Alaska Anchorage; Cunningham, Keith W. [University of Alaska Fairbanks; Scott, George [National Renewable Energy Laboratory

2012-12-14T23:59:59.000Z

392

United States Bureau of Ocean Energy Management, Regulation and Enforcement: Filling Data Gaps to Better Understand the Effects of Anthropogenic Noise on Marine Life  

Science Journals Connector (OSTI)

The offshore energy industries (both oil/gas and renewables) introduce anthropogenic noise into the marine environment through exploration (seismic), development and production (pile driving and drilling), dec...

Jill Lewandowski; Elizabeth Burkhard…

2012-01-01T23:59:59.000Z

393

1st Advanced Marine Renewable Energy Instrumentation Experts Workshop: April 5-7, 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PROGRAM PROGRAM 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop April 5-7, 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,

394

u.s. DEPARThIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NFPA DETERMINATION  

Broader source: Energy.gov (indexed) [DOE]

NFPA DETERMINATION NFPA DETERMINATION RECIPIENT: US Synthetic Corporation Page 1 of2 STATE: UT PROJECT TITLE: The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings For use in Marine Hydrokinetic (MHK) Energy Machines funding Opportunity Announcement Number Procu~ment Instrument Number NEPA Control Number em Number DE-FOA-{)()()I)293 DE·EEOOO3633 GFO-OOO3633-OO1 EE3633 Based on my review oftbe information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4SI.IA),1 bave made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including . but not limited to. literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

395

MHK Projects/US Navy Wave Energy Technology WET Program at Marine Corps  

Open Energy Info (EERE)

US Navy Wave Energy Technology WET Program at Marine Corps US Navy Wave Energy Technology WET Program at Marine Corps Base Hawaii MCBH < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.4164,"lon":-157.784,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

396

u.s. DEPART1IENT OF ENERGY EE RE PROJECT MANAGEMDH CENTER NEPA DETIlRMINATION  

Broader source: Energy.gov (indexed) [DOE]

EE EE RE PROJECT MANAGEMDH CENTER NEPA DETIlRMINATION RECIPIENT:Scientific Solutions, Inc. Page 1 of3 STATE: NH PROJF:CT TITLf. : Underwater Active Acoustic Monitoring Support for Marine Hydrokinetic Energy Projects Funding Opportunity Announcement Number Procurement Instrument Number Nt:PA Control Number CID Number DE-FOA-Q00293 DE-EEOOO3639 GFO-OOO3639-OO1 EE3639 Based on my rc\'iew of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1 A), I have made the following determination: ex. EA, F.1S APPENDIX AND NUMBER: Descripfion: A9 Information gsthenng (including, but not limited to, literature surveys, inventones, audits), data analysis (including computer modeling). document preparatioo (such as cooceplual design or feasibility studies, analytical energy supply

397

Tidal Energy Research  

SciTech Connect (OSTI)

This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.

Stelzenmuller, Nickolas [Univ of Washington; Aliseda, Alberto [Univ of Washington; Palodichuk, Michael [Univ of Washington; Polagye, Brian [Univ of Washington; Thomson, James [Univ of Washington; Chime, Arshiya [Univ of Washington; Malte, Philip [Univ of washington

2014-03-31T23:59:59.000Z

398

u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NFPA DETl!RMINATION  

Broader source: Energy.gov (indexed) [DOE]

DETl!RMINATION DETl!RMINATION RECIPJENT: Semprus BioSciences Page 1 of2 STATE: MA PROJECT TITLE: Environmentally Benign and Permanent Surface Modifications to Prevent Biofouling on Marine and Hydrokinetic Devices Funding Opportunity AnnounCtrnl'DI Number Prenergy supply

399

Property:Project(s) where this technology is utilized | Open Energy  

Open Energy Info (EERE)

Project(s) where this technology is utilized Project(s) where this technology is utilized Jump to: navigation, search Property Name Project(s) where this technology is utilized Property Type Page Marine and Hydrokinetic Technology Project Pages using the property "Project(s) where this technology is utilized" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/AirWEC + MHK Projects/Ocean Trials Ver 2 + MHK Technologies/AquaBuoy + MHK Projects/Figueira da Foz Portugal +, MHK Projects/Humboldt County Wave Project +, MHK Projects/Makah Bay Offshore Wave Pilot Project +, ... MHK Technologies/Archimedes Wave Swing + MHK Projects/AWS II +, MHK Projects/Portugal Pre Commercial Pilot Project + MHK Technologies/Atlantis AN 150 + MHK Projects/Gujarat + MHK Technologies/Atlantis AR 1000 + MHK Projects/Castine Harbor Badaduce Narrows +, MHK Projects/Gujarat +, MHK Projects/Tidal Energy Device Evaluation Center TIDEC +

400

GCK Technology Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name GCK Technology Inc Place San Antonio, Texas Zip 78205 Sector Hydro, Marine and Hydrokinetic Product Designer and manufacturer of marine turbine technology. Has patented the Gorlov Helical Turbine (GHT), designed for hydroelectric applications in free flowing low head water courses. References GCK Technology Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: GCK Technology Amazon River Brazil GCK Technology Cape Cod Canal MA US GCK Technology Merrimack River Amesbury MA US GCK Technology Shelter Island NY US GCK Technology Uldolmok Strait South Korea GCK Technology Vinalhaven ME US

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

OWEMES -Offshore Wind And Other Marine Renewable Energies In Mediterranean And European Seas Civitavecchia (Italy), 20th  

E-Print Network [OSTI]

OWEMES - Offshore Wind And Other Marine Renewable Energies In Mediterranean And European Seas Civitavecchia (Italy), 20th -22th April 2006 How to avoid Biases in Offshore Wind Power Forecasting Lueder von, adaptive system, Neural Network, single site forecast, systematic error Abstract Large-scale offshore wind

Heinemann, Detlev

402

Aquamarine Power | Open Energy Information  

Open Energy Info (EERE)

Aquamarine Power Aquamarine Power Jump to: navigation, search Name Aquamarine Power Address Elder House 24 Elder Street Place Edinburgh, Scotland, United Kingdom Zip EH2 2AF Sector Marine and Hydrokinetic Product Edinburgh-based company that specialises in marine energy conversion and its commercial applications. Year founded 2005 Number of employees 60 Phone number +44 131 524 1440 Website http://www.aquamarinepower.com Coordinates 55.954155°, -3.202774° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.954155,"lon":-3.202774,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

Marine renewable energy and Scottish west coast fishers: Exploring impacts, opportunities and potential mitigation  

Science Journals Connector (OSTI)

There is currently a strong political drive for the development of the marine renewable energy industry in Europe, particularly in Scotland. However, little is known regarding the potential impacts upon and opportunities for the fishing industry. Furthermore, there has been little discussion of potential mitigation measures. In depth interviews were conducted with fishers based on the west coast of Scotland to address the gap in knowledge of the potential conflict between offshore renewable energy development and commercial fishers. The key aim of this study was to ascertain the underlying needs of fishers. Three key issues were identified: i) A potential loss of livelihood is of largest concern to fishers; ii) Skills shortages are a potential problem should a loss of livelihood occur; iii) Fishers have varied opinions regarding the potential benefits arising from offshore renewable energy induced changes to the ecosystem. The key needs of fishers were determined to be continued security of employment and income, and control of one's own life through decision-making based on fact. However, further research is required to answer the question: how can these basic needs be satisfied?

Karen A. Alexander; Tavis Potts; Thomas A. Wilding

2013-01-01T23:59:59.000Z

404

Name Address Place Zip Sector Product Stock Symbol Year founded Number  

Open Energy Info (EERE)

Address Place Zip Sector Product Stock Symbol Year founded Number Address Place Zip Sector Product Stock Symbol Year founded Number of employees Number of employees Telephone number Website Coordinates Region ABS Alaskan Inc Van Horn Rd Fairbanks Alaska Gateway Solar Wind energy Marine and Hydrokinetic Solar PV Solar thermal Wind Hydro Small scale wind turbine up to kW and solar systems distributor http www absak com United States AER NY Kinetics LLC PO Box Entrance Avenue Ogdensburg Marine and Hydrokinetic United States AW Energy Lars Sonckin kaari Espoo FI Marine and Hydrokinetic http www aw energy com Finland AWS Ocean Energy formerly Oceanergia Redshank House Alness Point Business Park Alness Ross shire IV17 UP Marine and Hydrokinetic http www awsocean com United Kingdom Able Technologies Audubon Road Englewood Marine and Hydrokinetic http

405

Aspects of Apache's Acquisition of Mariner Energy and Selected Devon Energy Assets  

Reports and Publications (EIA)

The Energy Information Administration reviews mergers, acquisitions, and alliances by companies that are respondents to Form EIA-28 (Financial Reporting System (FRS)), or that result in a company that meets the FRS reporting criteria.

2010-01-01T23:59:59.000Z

406

Marine Biology  

E-Print Network [OSTI]

this  door. ”   Marine  Biology   I  joined  the  military  RIVERSIDE   Marine  Biology   A Thesis submitted in partialBiology                                                                                                                        

Zaffino, Kyle

2013-01-01T23:59:59.000Z

407

GRR/Section 12-FD-c - Marine Mammal Protection Considerations | Open Energy  

Open Energy Info (EERE)

c - Marine Mammal Protection Considerations c - Marine Mammal Protection Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 12-FD-c - Marine Mammal Protection Considerations 12FDCMarineMammalProtectionConsiderations.pdf Click to View Fullscreen Contact Agencies Fish and Wildlife Service National Oceanic and Atmospheric Administration (NOAA) National Marine Fisheries Service Regulations & Policies Marine Mammal Protection Act Triggers None specified Click "Edit With Form" above to add content 12FDCMarineMammalProtectionConsiderations.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

408

The Marine Isolate Novosphingobium sp. PP1Y Shows Specific Adaptation to Use the Aromatic Fraction of Fuels as the Sole Carbon and Energy Source  

Science Journals Connector (OSTI)

In some ways, strain PP1Y has properties more similar to OHCBs rather than to other Sphingomonads. In fact, these marine bacteria use petroleum and fuels as carbon and energy sources and form...10, 31]. With the ...

Eugenio Notomista; Francesca Pennacchio; Valeria Cafaro…

2011-04-01T23:59:59.000Z

409

12-3-09_Beaudry-Losique_Final_testimony.pdf  

Broader source: Energy.gov (indexed) [DOE]

JACQUES BEAUDRY-LOSIQUE DEPUTY ASSISTANT SECRETARY FOR RENEWABLE ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY U.S. DEPARTMENT OF ENERGY BEFORE THE COMMITTEE ON SCIENCE AND TECHNOLOGY SUBCOMMITTEE ON ENERGY AND ENVIRONMENT U.S. HOUSE OF REPRESENTATIVES HEARING EXAMINING MARINE AND HYDROKINETIC ENERGY TECHNOLOGY: FINDING THE PATH TO COMMERCIALIZATION DECEMBER 3, 2009 Chairman Baird, Ranking Member Inglis, Members of the Committee, thank you for the opportunity to appear before you today to discuss the U.S. Department of Energy's Water Power Program and its activities related to marine and hydrokinetic energy generation technologies. The global marine and hydrokinetic industry consists of energy extraction technologies

410

NREL Furthers U.S. Marine Corps Air Station Miramars Move Toward Net Zero Energy (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Furthers U.S. Marine Corps Air Furthers U.S. Marine Corps Air Station Miramar's Move Toward Net Zero Energy The U.S. Marine Corps Air Station (MCAS) Miramar is striving toward its goal of becoming a "net zero energy installation" (NZEI), which entails producing as much energy as it uses over the course of a year. In conjunction with the U.S. Department of Energy's Federal Energy Management Program, the National Renewable Energy Laboratory (NREL) has partnered with MCAS Miramar to develop a plan for meeting this goal and to create an NZEI template for widespread replication across the military. A 2008 report from the Defense Science Board concluded that critical missions at military bases are facing unacceptable risks from extended power losses. To address this concern, the

411

Atlantis Resources Corporation | Open Energy Information  

Open Energy Info (EERE)

Resources Corporation Resources Corporation Jump to: navigation, search Name Atlantis Resources Corporation Address 1 Martime Square Zip 99253 Sector Marine and Hydrokinetic Year founded 2002 Website http://www.atlantisresourcesco Region Singapore LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Gujarat This company is involved in the following MHK Technologies: Aquanator Atlantis AN 150 Atlantis AR 1000 Atlantis AS 400 This article is a stub. You can help OpenEI by expanding it. This company is involved in the following MHK Projects: Gujarat and the following MHK Technologies: Aquanator Atlantis AN 150 Atlantis AR 1000 Atlantis AS 400

412

Whitestone Power Communications | Open Energy Information  

Open Energy Info (EERE)

Whitestone Power Communications Whitestone Power Communications Jump to: navigation, search Name Whitestone Power Communications Address 931 Westside Lp Place Delta Junction Zip 99737-1630 Sector Marine and Hydrokinetic Year founded 2003 Number of employees 10 Phone number 907-895-4770 Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Microturbine River In Stream This company is involved in the following MHK Technologies: Microturbine River In Stream This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Whitestone_Power_Communications&oldid=678517

413

Oceanflow Development Ltd | Open Energy Information  

Open Energy Info (EERE)

Oceanflow Development Ltd Oceanflow Development Ltd Address 12 Yeoman Street Place North Shields Zip NE29 6NL Sector Marine and Hydrokinetic Year founded 2010 Number of employees 1 Phone number +44 191 296 6339 Website http://www.oceanflowenergy.com Region United Kingdom LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Evopod E1 1 10 scale grid connected demonstrator Evopod E35 35kW grid connected demonstrator This company is involved in the following MHK Technologies: Evopod E35 This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Oceanflow_Development_Ltd&oldid=678405

414

Oregon State University OSU | Open Energy Information  

Open Energy Info (EERE)

OSU OSU Jump to: navigation, search Name Oregon State University OSU Address 1148 Kelley Engineering Center Place Corvallis Zip 97331 Sector Marine and Hydrokinetic Phone number 541-737-2995 Website http://www.eecs.orst.edu/msrf Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: OSU Direct Drive Power Generation Buoys This company is involved in the following MHK Technologies: Oregon State University Columbia Power Technologies Direct Drive Point Absorber This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Oregon_State_University_OSU&oldid=678417

415

MHK Technologies/Vortex Induced Vibrations Aquatic Clean Energy VIVACE |  

Open Energy Info (EERE)

Vortex Induced Vibrations Aquatic Clean Energy VIVACE Vortex Induced Vibrations Aquatic Clean Energy VIVACE < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Vortex Induced Vibrations Aquatic Clean Energy VIVACE.jpg Technology Profile Primary Organization Vortex Hydro Energy LLC Project(s) where this technology is utilized *MHK Projects/Marine Hydrodynamics Laboratory at the University of Michigan Technology Resource Click here Current/Tidal Technology Type Click here Reciprocating Device Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The VIVACE (Vortex Induced Vibrations Aquatic Clean Energy) device is based on the extensively studied phenomenon of Vortex Induced Vibrations (VIV), which was first observed five-hundred years ago by Leonardo DaVinci in the form of 'Aeolian Tones.' VIV results from vortices forming and shedding on the downstream side of a bluff body in a current. Vortex shedding alternates from one side to the other, thereby creating a vibration or oscillation. The VIV phenomenon is non-linear, which means it can produce useful energy at high efficiency over a wide range of current speeds and directions.This converter is unlike any existing technology, as it does not use turbines, propellers, or dams. VIVACE converts the horizontal hydrokinetic energy of currents into cylinder mechanical energy. The latter is then converted to electricity through electric power generators.

416

CX-002452: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

452: Categorical Exclusion Determination 452: Categorical Exclusion Determination CX-002452: Categorical Exclusion Determination Assessment of the Environmental Effects of Hydrokinetic Turbines on Fish CX(s) Applied: B3.3 Date: 06/02/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Electric Power Research Institute (EPRI) is proposing to use Department of Energy and cost-share funding to conduct research activities to determine injury and survival rates for fish passing through hydrokinetic turbines. Research would be accomplished by: (1) Conducting a review of existing information on injury mechanisms associated with fish passage through conventional hydro turbines and determine its relevance and applicability to fish passage through hydrokinetic turbines; (2) Developing theoretical

417

NREL Furthers U.S. Marine Corps Air Station Miramar's Move Toward Net Zero Energy (Fact Sheet)  

SciTech Connect (OSTI)

A 2008 report from the Defense Science Board concluded that critical missions at military bases are facing unacceptable risks from extended power losses. A first step in addressing this concern is to establish military bases that can produce as much energy as they use over the course of a year, a concept known as a "net zero energy installation" (NZEI). The National Renewable Energy Laboratory (NREL) has helped the U.S. Marine Corps Air Station (MCAS) Miramar, located north of San Diego, California, as it strives to achieve its NZE goal. In conjunction with the U.S. Department of Energy's Federal Energy Management Program (FEMP), NREL partnered with MCAS Miramar to standardize processes and create an NZEI template for widespread replication across the military.

Not Available

2011-02-01T23:59:59.000Z

418

Biosensors and Bioelectronics 21 (2006) 20582063 Harvesting energy from the marine sedimentwater interface II  

E-Print Network [OSTI]

­water interface II Kinetic activity of anode materials Daniel A. Lowya,, Leonard M. Tenderb,, J. Gregory Zeikusc anodes of a recently described microbial fuel cell consisting of an anode imbedded in marine sediment and a cathode in overlying seawater. Using plain graphite anodes, it was demonstrated that a significant portion

Lovley, Derek

419

Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project  

SciTech Connect (OSTI)

Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project Team—LGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Science—undertook the following U.S. Department of Energy (DOE) study to characterize beluga whales in Cook Inlet – Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPC’s proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the FERC pilot project process. The Project compared results obtained from this method to results obtained from other passive hydrophone technologies and to visual observation techniques performed simultaneously. This Final Report makes recommendations on the best practice for future data collection, for ORPC’s work in Cook Inlet specifically, and for tidal power projects in general. This Project developed a marine mammal study design and compared technologies for hydroacoustic and visual data collection with potential for broad application to future tidal and hydrokinetic projects in other geographic areas. The data collected for this Project will support the environmental assessment of future Cook Inlet tidal energy projects, including ORPC’s East Foreland Tidal Energy Project and any tidal energy developments at Fire Island. The Project’s rigorous assessment of technology and methodologies will be invaluable to the hydrokinetic industry for developing projects in an environmentally sound and sustainable way for areas with high marine mammal activity or endangered populations. By combining several different sampling methods this Project will also contribute to the future preparation of a comprehensive biological assessment of ORPC’s projects in Cook Inlet.

Worthington, Monty [Project Director - AK] [Project Director - AK

2014-02-05T23:59:59.000Z

420

Northland Power Mississippi River LLC | Open Energy Information  

Open Energy Info (EERE)

Northland Power Mississippi River LLC Northland Power Mississippi River LLC Jump to: navigation, search Name Northland Power Mississippi River LLC Address 30 St Clair Avenue West 17th Floor Place Toronto Sector Marine and Hydrokinetic Phone number (416) 820-9521 Website http://http://www.northlandpow Region Canada LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: NPI 01 NPI 013 NPI 014 NPI 015 NPI 016A NPI 016B NPI 017 NPI 018 NPI 019 NPI 020 NPI 021 NPI 022 NPI 023 NPI 024 NPI 025 NPI 027 NPI 055 This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Northland_Power_Mississippi_River_LLC&oldid=678391

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

BioPower Systems Pty Ltd | Open Energy Information  

Open Energy Info (EERE)

Systems Pty Ltd Systems Pty Ltd Jump to: navigation, search Name BioPower Systems Pty Ltd Address Suite 145 National Innovation Centre Australian Technology Park Place Eveleigh Zip 1430 Sector Marine and Hydrokinetic Phone number +61 2 9209 4237 Website http://www.biopowersystems.com Region Australia LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: BioSTREAM Pilot Plant bioWAVE Pilot Plant This company is involved in the following MHK Technologies: bioBase bioSTREAM bioWave This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=BioPower_Systems_Pty_Ltd&oldid=678254

422

Wavegen Ltd | Open Energy Information  

Open Energy Info (EERE)

Wavegen Ltd Wavegen Ltd Jump to: navigation, search Name Wavegen Ltd Address 13a Harbour Rd Place Inverness, Scotland, United Kingdom Zip IV1 1SY Sector Marine and Hydrokinetic Product Wavegen developed and operates Limpet, the worldâ€(tm)s first commercial-scale wave energy device that generates power for the grid. Phone number 4.41E+11 Website http://www.wavegen.com Coordinates 48.55324°, -110.689764° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.55324,"lon":-110.689764,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

423

NREL: Jobs and Economic Development Impacts (JEDI) Models - About...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Marine & Hydrokinetic Power Model The Jobs and Economic Development Impacts (JEDI) Marine and Hydrokinetic (MHK) model allows users to estimate economic development impacts from...

424

Sandia National Laboratories: Upgrades to SNL-EFDC: A Tool to...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biofouling Studies on Sandia's Marine Hydrokinetic Coatings Initiated at PNNL's Sequim Bay Investigations on Marine Hydrokinetic Turbine Foil Structural Health Monitoring...

425

U.S. Marine Corps Base Camp Pendleton: Using The Sun For Hot Water And Electricity, Federal Energy Management Program (FEMP) (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Marine Corps Base Camp Pendleton, U.S. Marine Corps Base Camp Pendleton, covering 125,000 acres including 17 miles of Southern-California coastline, is the largest expeditionary training facility on the West Coast. More than 41,500 marines and family members call the base home, which reaches a daytime population of approximately 100,000. In fiscal year 2007, Camp Pendleton saved energy and money and reduced greenhouse gas (GHG) emissions through solar hot water (SHW) and photovoltaic (PV) arrays. The base implemented two integrated solar thermal/PV systems at its 53 Area and 62 Area training pools. The projects demonstrate Camp Pendleton's continuing commitment to energy conservation while helping meet Federal requirements for on-site renewable energy and solar hot water generation.

426

U.S. Marine Corps Base Camp Pendleton: Using The Sun For Hot Water And Electricity, Federal Energy Management Program (FEMP) (Fact Sheet)  

Broader source: Energy.gov (indexed) [DOE]

U.S. Marine Corps Base Camp Pendleton, U.S. Marine Corps Base Camp Pendleton, covering 125,000 acres including 17 miles of Southern-California coastline, is the largest expeditionary training facility on the West Coast. More than 41,500 marines and family members call the base home, which reaches a daytime population of approximately 100,000. In fiscal year 2007, Camp Pendleton saved energy and money and reduced greenhouse gas (GHG) emissions through solar hot water (SHW) and photovoltaic (PV) arrays. The base implemented two integrated solar thermal/PV systems at its 53 Area and 62 Area training pools. The projects demonstrate Camp Pendleton's continuing commitment to energy conservation while helping meet Federal requirements for on-site renewable energy and solar hot water generation.

427

Marine Nuclear Propulsion  

Science Journals Connector (OSTI)

... June 30 about 95 qualified scientists and engineers were engaged on research and development on marine nuclear ... nuclear propulsion within his Department, including the Atomic Energy Authority and the Ship Research Association. This ...

1965-07-31T23:59:59.000Z

428

MHK Projects/Contra Rotating Marine Turbine CoRMaT | Open Energy  

Open Energy Info (EERE)

Contra Rotating Marine Turbine CoRMaT Contra Rotating Marine Turbine CoRMaT < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.6655,"lon":-4.93682,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

429

Modeling Tidal Stream Energy Extraction and its Effects on Transport Processes in a Tidal Channel and Bay System Using a Three-dimensional Coastal Ocean Model  

SciTech Connect (OSTI)

This paper presents a numerical modeling study for simulating in-stream tidal energy extraction and assessing its effects on the hydrodynamics and transport processes in a tidal channel and bay system connecting to coastal ocean. A marine and hydrokinetic (MHK) module was implemented in a three-dimensional (3-D) coastal ocean model using the momentum sink approach. The MHK model was validated with the analytical solutions for tidal channels under one-dimensional (1-D) conditions. Model simulations were further carried out to compare the momentum sink approach with the quadratic bottom friction approach. The effects of 3-D simulations on the vertical velocity profile, maximum extractable energy, and volume flux reduction across the channel were investigated through a series of numerical experiments. 3-D model results indicate that the volume flux reduction at the maximum extractable power predicted by the 1-D analytical model or two-dimensional (2-D) depth-averaged numerical model may be overestimated. Maximum extractable energy strongly depends on the turbine hub height in the water column, and which reaches a maximum when turbine hub height is located at mid-water depth. Far-field effects of tidal turbines on the flushing time of the tidal bay were also investigated. Model results demonstrate that tidal energy extraction has a greater effect on the flushing time than volume flux reduction, which could negatively affect the biogeochemical processes in estuarine and coastal waters that support primary productivity and higher forms of marine life.

Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.

2013-02-28T23:59:59.000Z

430

Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations  

Office of Energy Efficiency and Renewable Energy (EERE)

NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations.

431

Ecological Genomics of Marine Picocyanobacteria  

Science Journals Connector (OSTI)

...transfer of excitation energy from the phycobilisome...results in increased efficiency of energy transfer from phycobilisomes...nitrogenous compounds by swimming strains of marine Synechococcus...phycobilisome-related energy dissipation in cyanobacteria...

D. J. Scanlan; M. Ostrowski; S. Mazard; A. Dufresne; L. Garczarek; W. R. Hess; A. F. Post; M. Hagemann; I. Paulsen; F. Partensky

2009-06-01T23:59:59.000Z

432

NREL Developing a Numerical Simulation Tool to Study Hydrokinetic Energy Conversion Devices and Arrays (Fact Sheet)  

SciTech Connect (OSTI)

New code will help accelerate design improvements by providing a high-fidelity simulation tool to study power performance, structural loading, and the interactions between devices in arrays.

Not Available

2012-02-01T23:59:59.000Z

433

Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop  

Broader source: Energy.gov [DOE]

This workshop focused on information about the technologies and identified potential environmental issues associated with deploying them, and outlined a list of research needs and possible approaches to addressing those issues.

434

Temperature tolerance and energetics: a dynamic energy budget-based comparison of North Atlantic marine species  

Science Journals Connector (OSTI)

...kappa - fraction of used energy spent on maintenance...coefficient: C C g - energy investment ratio: C...scaling parameters z - zoom factor delta M - shape coefficient conversion parameters micro X J mol1 energy-mass coupler for assimilation...

2010-01-01T23:59:59.000Z

435

Marine pollution  

SciTech Connect (OSTI)

This book covers the following topics: Transport of marine pollutants; Transformation of pollutants in the marine environment; Biological effects of marine pollutants; Sources and transport of oil pollutants in the Persian Gulf; Trace metals and hydrocarbons in Syrian coastal waters; and Techniques for analysis of trace pollutants.

Albaiges, J. (Centro de Investigacion y Desarrollo, CSIC, Barcelona (ES))

1989-01-01T23:59:59.000Z

436

HydroVenturi Ltd previously RV Power Company Ltd | Open Energy Information  

Open Energy Info (EERE)

HydroVenturi Ltd previously RV Power Company Ltd HydroVenturi Ltd previously RV Power Company Ltd Jump to: navigation, search Name HydroVenturi Ltd (previously RV Power Company Ltd) Place London, Greater London, United Kingdom Zip SW7 1NA Sector Marine and Hydrokinetic Product String representation "Established tho ... ating stations." is too long. Website http://www.hydroventuri.com References HydroVenturi Ltd (previously RV Power Company Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. HydroVenturi Ltd (previously RV Power Company Ltd) is a company located in London, Greater London, United Kingdom . References ↑ "[ HydroVenturi Ltd (previously RV Power Company Ltd)]"

437

Hammerfest Strom UK co owned by StatoilHydro | Open Energy Information  

Open Energy Info (EERE)

Hammerfest Strom UK co owned by StatoilHydro Hammerfest Strom UK co owned by StatoilHydro Jump to: navigation, search Name Hammerfest Strom UK co owned by StatoilHydro Address The Innovation Centre 1 Ainslie Road Hillington Business Park Place Glasgow Zip G52 4RU Sector Marine and Hydrokinetic Phone number +44 141 585 6447 Website http://www.hammerfeststrom.com Region United Kingdom LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Hammerfest Strom UK Tidal Stream Kvalsundet This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Hammerfest_Strom_UK_co_owned_by_StatoilHydro&oldid=678328"

438

ABS Alaskan Inc | Open Energy Information  

Open Energy Info (EERE)

ABS Alaskan Inc ABS Alaskan Inc Jump to: navigation, search Logo: ABS Alaskan, Inc. Name ABS Alaskan, Inc. Address 2130 Van Horn Rd. Place Fairbanks, Alaska Zip 99701 Sector Marine and Hydrokinetic, Solar, Wind energy Product Solar PV, Solar thermal, Wind, Hydro, Small scale wind turbine (up to 1kW) and solar systems distributor. Year founded 1990 Phone number (800) 235-0689 Website http://www.absak.com/ Coordinates 64.813322°, -147.768685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.813322,"lon":-147.768685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

Free Flow Power Corporation | Open Energy Information  

Open Energy Info (EERE)

Flow Power Corporation Flow Power Corporation Jump to: navigation, search Name Free Flow Power Corporation Address 239 Causeway St Suite 300 Place Gloucester, Massachusetts Zip 1930 Sector Marine and Hydrokinetic, Ocean Product Massachusetts-based company that has developed a turbine generator designed to extract energy from tides, ocean currents, rivers, streams, canals and conduits. Free Flow has raised some initial funding and is prototype testing in rivers and tanks. Year founded 2007 Number of employees 28 Phone number 978-232-3536 Website http://www.free-flow-power.com Coordinates 37.413962°, -76.526305° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.413962,"lon":-76.526305,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

440

ABOUT THE JOURNAL Marine Resource Economics publishes creative and scholarly  

E-Print Network [OSTI]

biodiversity, marine and coastal recreation, marine pollution, offshore oil and gas, seabed mining, renewable pollution, coastal and marine recreation, ocean energy resources, coastal climate adaptation, ecosystem-based management, marine biodiversity, and marine transportation. 2014 ADVERTISING RATES Position Rate Specs Full

Mateo, Jill M.

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Heating with energy saving alternatives to prevent biodeterioration of marine fuel oil  

Science Journals Connector (OSTI)

This study examined how alternative handling practices, including heat shock, can facilitate the prevention of biodeterioration of fuel oil onboard ships. At temperatures exceeding 50 °C, no microbes were observed after incubation for 2 days. Under 30 °C incubation, the total number of viable aerobic bacteria, Escherichia coli and Pseudomonas maltophilia, decreased gradually during the incubation period. Conversely, most fungi were destroyed after incubation for 5 days. Fungi generally had a better tolerance in marine fuel than E. coli after heat shock treatment. After incubation starting at ?45 °C, followed by different heat shock patterns, the total number of viable fungi and E. coli increased steadily during the 10-h incubation period. In contrast to fungi, heat shock effectively controlled E. coli growth. Heat shock treatment can control the growth of certain types of microbes at temperatures of up to 10 °C lower than commonly used.

J. Hua

2012-01-01T23:59:59.000Z

442

U.S. Marine Corps Stand at Forefront of Energy and Water Savings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and water savings accomplishments. usmcenergysavings.pdf More Documents & Publications Constellation ESCO Qualification Sheet Ameresco ESCO Qualification Sheet Energy Savings...

443

Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report  

SciTech Connect (OSTI)

Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energy�s Wind and Hydropower Technologies Program�s goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and others. All required permit and license applications were completed and submitted under this award, including a Final License Application for a pilot hydrokinetic license from the Federal Energy Regulatory Commission. The tasks described above have brought the project through all necessary requirements to construct a tidal pilot project in Admiralty Inlet with the exception of final permit and license approvals, and the selection of a general contractor to perform project construction.

Craig W. Collar

2012-11-16T23:59:59.000Z

444

Temperature tolerance and energetics: a dynamic energy budget-based comparison of North Atlantic marine species  

Science Journals Connector (OSTI)

...Singapore, Singapore: World Scientific. Kooijman...L. M. 1993 Dynamic energy budgets in biological...L. M. 2010 Dynamic energy budget theory for metabolic...From food-dependent statistics to metabolic parameters...to the use of dynamic energy budget theory. Biol...

2010-01-01T23:59:59.000Z

445

Levelized Cost Calculations | Transparent Cost Database  

Open Energy Info (EERE)

Commercial PV: 0.83155 Marine Hydrokinetic: 0.83155 Solar Thermal: 0.83155 Compressed Air Energy Storage: 1 Near Field (or Enhanced Hydrothermal): 0.83155 Utility pv: 0.83155...

446

Plymouth University Marine Building  

E-Print Network [OSTI]

of the grand challenges of the day: from ocean acidification and climate change, to renewable energy centre for marine energy research, harnesses innovation and helps diversify and drive economic growth partnerships with educational institutions, industry and other maritime organisations. This legacy of world

Miranda, Eduardo Reck

447

MHK Technologies/Closed Cycle OTEC | Open Energy Information  

Open Energy Info (EERE)

Closed Cycle OTEC Closed Cycle OTEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Closed Cycle OTEC.jpg Technology Profile Primary Organization Marine Development Associates Inc Technology Resource Click here OTEC Technology Type Click here OTEC - Closed Cycle Technology Description Closed Cycle System Technology Dimensions Device Testing Date Submitted 02:50.8 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Closed_Cycle_OTEC&oldid=681555" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

448

Effect of Substratum Surface Chemistry and Surface Energy on Attachment of Marine Bacteria and Algal Spores  

Science Journals Connector (OSTI)

...the thiol solutions. Survey scans and high-resolution...peak at 284.7 eV. Survey spectra were acquired by using a constant pass energy of 160 eV, whereas high-resolution...acquired by using a pass energy of 80 eV. The spectral...After incubation in the dark at 20C for 60 min, the...

Linnea K. Ista; Maureen E. Callow; John A. Finlay; Sarah E. Coleman; Aleece C. Nolasco; Robin H. Simons; James A. Callow; Gabriel P. Lopez

2004-07-01T23:59:59.000Z

449

Pacific Northwest National Laboratory Assesses Risks for Marine Vessel Traffic and Wind Energy Development  

Broader source: Energy.gov [DOE]

The nationwide demand for energy is fueling development of sustainable offshore wind resources. To reach the strong and steady offshore wind resources, the Bureau of Ocean Energy Management (BOEM) will lease the seabed on the outer continental shelf for offshore wind farms.

450

Energy Content of Antarctic Mesopelagic Fishes: Implications for the Marine Food Web  

Science Journals Connector (OSTI)

For a better understanding of the role of mesopelagic fish in the Southern Ocean food web, the energy and water content of Bathylagus antarcticus, Electrona antarctica and Gymnoscopelus braueri...from the Lazarev...

Anton Van de Putte; Hauke Flores; Filip Volckaert…

2006-11-01T23:59:59.000Z

451

U.S. Marine Corps Stand at Forefront of Energy and Water Savings (Fact Sheet), Federal Energy Management Program (FEMP)  

Broader source: Energy.gov (indexed) [DOE]

efficient efficient chilled water systems; as well as low-flow water fixtures and energy use data tracking tools. The contract was a Trane Technology-Specific Geothermal Super ESPC that utilized the Department of Energy's umbrella ESPC. MCAS Beaufort was also able to claim renewable energy from its geothermal heat pump installations and installed a solar-powered hot water system at its Officer's Club. A cogeneration plant that supplies heating water along with 1 MW of electricity has also been installed. This plant is used to supply heating for the barracks and other facilities, along with reducing electrical load during peak energy demand periods. Energy and Water Efficiency To reduce energy and water use, MCAS Beaufort implemented additional best practices, such as efficient

452

Coastal and Marine Resources Centre  

E-Print Network [OSTI]

to develop an Eco-systems Approach to Fisheries Management in Ireland. The Griffith Geomatics for Geo of Ireland, Cork Institute of Technology, the Port of Cork, the Industrial Development Authority, the Marine resources, with a focus on sectors such as ocean energy, marine IT and maritime space observations. Section

Schellekens, Michel P.

453

Marine Lubricants  

Science Journals Connector (OSTI)

Marine diesel engines are classified by speed, either ... detergents/dispersants, antioxidants, corrosion inhibitors, anti-wear/load-carrying/ep, pour-point depressants and ... . There are no simple systems for c...

B. H. Carter; D. Green

2010-01-01T23:59:59.000Z

454

MHK Technologies/Hydroomel | Open Energy Information  

Open Energy Info (EERE)

Hydroomel Hydroomel < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Eco cinetic Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Hydroomel r composed of little modules that perfectly fits into natural and urban environments and on existing structures where it could be located Technology Dimensions Device Testing Date Submitted 59:09.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Hydroomel&oldid=680955" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link

455

Analysis of Marine Diesel Fuel with the Advanced Distillation Curve Method  

Science Journals Connector (OSTI)

Analysis of Marine Diesel Fuel with the Advanced Distillation Curve Method ... Energy Fuels, 2013, 27 (2), ...

Peter Y. Hsieh; Kathryn R. Abel; Thomas J. Bruno

2013-01-17T23:59:59.000Z

456

CX-006029: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

6029: Categorical Exclusion Determination 6029: Categorical Exclusion Determination CX-006029: Categorical Exclusion Determination Acoustic Effects of Hydrokinetic Tidal Turbines CX(s) Applied: B3.3, B3.6 Date: 05/25/2011 Location(s): Snohomish County, Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Snohomish County Public Utility District (PUD) is proposing to use Department of Energy and cost-share funding to study of the acoustic effects of hydrokinetic tidal turbines at the site of the District's Admiralty Inlet pilot project. Activities would include the purchase and configuration of instrumentation, the deployment and retrieval of the instrumentation packages on the seabed, the simulation and measurement of sound propagation by a tidal turbine, and experimentation (conducted at

457

CX-001841: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

41: Categorical Exclusion Determination 41: Categorical Exclusion Determination CX-001841: Categorical Exclusion Determination A First Assessment of U.S. In-stream Hydrokinetic Energy Resources Since the 1986 New York University Study CX(s) Applied: B3.1, A9, A11 Date: 04/23/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The Electric Power Research Institute will use federal funds to perform surveying and data collection to determine the hydro-kinetic potential for remote rivers and streams in Alaska. The surveying will consist of installing small monitors along the shores to measure height change/frequency, water flow, and Doppler radar measurements to determine depths of the riverbeds. This information will be collected as part of an assessment for hydro-power feasibility in remote locations. All information

458

CX-002145: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

145: Categorical Exclusion Determination 145: Categorical Exclusion Determination CX-002145: Categorical Exclusion Determination Acoustic Effects of Hydrokinetic Tidal Turbines CX(s) Applied: B3.1, B3.3, A9 Date: 04/29/2010 Location(s): Snohomish County, Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Snohomish County Public Utility District (PUD) is proposing to use Department of Energy and cost-share funding to study of the acoustic effects of hydrokinetic tidal turbines at the site of the District's Admiralty Inlet pilot project. Activities would include the purchase and configuration of instrumentation, the deployment and retrieval of the instrumentation packages on the seabed, the simulation and measurement of sound propagation by a tidal turbine, and experimentation (conducted at

459

Marine biodiversity — Thoughts on the subjects and their investigators  

Science Journals Connector (OSTI)

A comparison of terrestrial and marine ecosystems in terms of their basic ecosystems and biodiversity characteristics (e.g., energy flow, ... outline specific problems involved in the inference of marine biodiversity

Gerhard Haszprunar

2001-01-01T23:59:59.000Z

460

MHK Technologies/Tidal Barrage | Open Energy Information  

Open Energy Info (EERE)

Barrage Barrage < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Barrage.jpg Technology Profile Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description No information provided Technology Dimensions Device Testing Date Submitted 01:04.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Tidal_Barrage&oldid=681672" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

RECIPIENT:Princeton Power Systems STATE: NJ PROJECT Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

Princeton Power Systems Princeton Power Systems STATE: NJ PROJECT Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number cm Number DE-FOA-0000293 DE-EE0003640 GFO-000364~001 GOO Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the foUowing determination: CX, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, ~terature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

462

Wave and Hydrokinetics Interest Group 1st Meeting of 2009/2010 Year  

E-Print Network [OSTI]

reserved. The State of Wave Energy · Installed Offshore Wave Capacity (as of 6/30/09) - five years . · Economic Status: The first U.S. commercial wave plant project in Reedsport, OR, was made.S. wave power plant license issued by FERC for the 1-MW Makah Bay, WA project was surrendered by Finavera

463

High-resolution survey of tidal energy towards power generation and influence of sea-level-rise: A case study at coast of New Jersey, USA  

Science Journals Connector (OSTI)

Abstract The first and a crucial step in development of tidal power, which is now attracting more and more attention worldwide, is a reliable survey of temporal and spatial distribution of tidal energy along coastlines. This paper first reviews the advance in assessment of tidal energy, in particular marine hydrokinetic (MHK) energy, and discusses involved challenges and necessary approaches, and then it makes a thorough survey as an illustrative case study on distributions and top sites of MHK energy within the Might-Atlantic-Bight (MAB) with emphasis on the New Jersey (NJ) coastlines. In view of the needs in actual development of tidal power generation and sensitivity of tidal power to flow speed, the former being proportional to the third power of the latter, a high-resolution and detailed modeling is desired. Data with best available accuracy for coastlines, bathymetry, tributaries, etc. are used, meshes as fine as 20 m and less for the whole NJ coast are generated, and the unstructured grid finite volume coastal ocean model (FVCOM) and high performance computing (HPC) facilities are employed. Besides comparison with observation data, a series of numerical tests have been made to ensure reliability of the modeling results. A detailed tidal energy distribution and a list of top sites for tidal power are presented. It is shown that indeed sea-level-rise (SLR) affects the tidal energy distribution significantly. With SLR of 0.5 m and 1 m, tidal energy in NJ coastal waters increases by 21% and 43%, respectively, and the number of the top sties tends to decrease along the barrier islands facing the Atlantic Ocean and increase in the Delaware Bay and the Delaware River. On the basis of these results, further discussions are made on future development for accurate assessment of tidal energy.

H.S. Tang; S. Kraatz; K. Qu; G.Q. Chen; N. Aboobaker; C.B. Jiang

2014-01-01T23:59:59.000Z

464

Assessing the state of knowledge of utility-scale wind energy development and operation on non-volant terrestrial and marine wildlife  

Science Journals Connector (OSTI)

A great deal has been published in the scientific literature regarding the effects of wind energy development and operation on volant (flying) wildlife including birds and bats, although knowledge of how to mitigate negative impacts is still imperfect. We reviewed the peer-reviewed scientific literature for information on the known and potential effects of utility-scale wind energy development and operation (USWEDO) on terrestrial and marine non-volant wildlife and found that very little has been published on the topic. Following a similar review for solar energy we identified known and potential effects due to construction and eventual decommissioning of wind energy facilities. Many of the effects are similar and include direct mortality, environmental impacts of destruction and modification of habitat including impacts of roads, and offsite impacts related to construction material acquisition, processing and transportation. Known and potential effects due to operation and maintenance of facilities include habitat fragmentation and barriers to gene flow, as well as effects due to noise, vibration and shadow flicker, electromagnetic field generation, macro- and micro-climate change, predator attraction, and increased fire risk. The scarcity of before-after-control-impact studies hinders the ability to rigorously quantify the effects of USWEDO on non-volant wildlife. We conclude that more empirical data are currently needed to fully assess the impact of USWEDO on non-volant wildlife.

Jeffrey E. Lovich; Joshua R. Ennen

2013-01-01T23:59:59.000Z

465

The lessons learned from the development of the wind energy industry that might be applied to marine industry renewables  

Science Journals Connector (OSTI)

...capital grants for wind energy in late 1970s to early 1980s. still active in wind energy manufacture? still active in wind energy? USA Boeing no no GE yes...development. Figure 2. Early history of Bonus list price (adjusted for inflation...

2012-01-01T23:59:59.000Z

466

Metagenomic and Metaproteomic Analyses of Symbioses between Bacteria and Gutless Marine Worms (2014 DOE JGI Genomics of Energy & Environment Meeting)  

SciTech Connect (OSTI)

Nicole Dubilier of the Max Planck Institute speaks at the 9th Annual Genomics of Energy & Environment Meeting on March 20, 2014 in Walnut Creek, Calif.

Dubilier, Nicole [Max Planck Institute

2014-03-19T23:59:59.000Z

467

Tracing algal support of marine food webs with fatty acids FHL Tide Bites #3 Nov. 2013  

E-Print Network [OSTI]

and into marine animals. Why do we care? Understanding which energy sources "fuel" the food web will ultimatelyTracing algal support of marine food webs with fatty acids FHL Tide Bites #3 Nov. 2013 Marine food enable better management of marine ecosystems. Believe it or not, scientists know very little about what

Carrington, Emily

468

Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies  

E-Print Network [OSTI]

Renewable Energy Sources in Aviation, Imperial College London. Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation

McCollum, David L; Gould, Gregory; Greene, David L

2010-01-01T23:59:59.000Z

469

Building Technologies Office: Guides and Case Studies for Marine Climates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Marine Climates to someone by E-mail Marine Climates to someone by E-mail Share Building Technologies Office: Guides and Case Studies for Marine Climates on Facebook Tweet about Building Technologies Office: Guides and Case Studies for Marine Climates on Twitter Bookmark Building Technologies Office: Guides and Case Studies for Marine Climates on Google Bookmark Building Technologies Office: Guides and Case Studies for Marine Climates on Delicious Rank Building Technologies Office: Guides and Case Studies for Marine Climates on Digg Find More places to share Building Technologies Office: Guides and Case Studies for Marine Climates on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education

470

MarineSIM: Robot simulation for marine environments  

E-Print Network [OSTI]

Development of robust navigation algorithms for marine robotics is a challenge faced by many marine robotists. This paper presents MarineSIM, a marine robot simulation platform which provides an infrastructure to easily ...

Senarathne, P. G. C. Namal

471

Ocean Navitas | Open Energy Information  

Open Energy Info (EERE)

Navitas Navitas Jump to: navigation, search Name Ocean Navitas Address Nursery House Place United Kingdom Zip DN21 5BQ Sector Ocean Product Ocean Navitas was incorporated in May 2006 by experienced engineers, businessmen and sailing enthusiasts David Hunt, James McCague and Simon Condry. Website http://www.oceannavitas.com Region United Kingdom References Ocean NavitasUNIQ75db538f85b32404-ref-000014E2-QINU LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Ocean Navitas NaREC This company is involved in the following MHK Technologies: Aegir Dynamo This article is a stub. You can help OpenEI by expanding it.

472

Live Webinar on the Funding Opportunity for Environmental Stewardship for Renewable Energy Technologies: MHK Environmental and Resource Characterization Instrumentation  

Broader source: Energy.gov [DOE]

This FOA will support the development of instrumentation, associated signal processing algorithms or software, and integration of instrumentation packages for monitoring the environmental impacts of marine and hydrokinetic technologies. It will also support the development and testing of sensors, instrumentation, or processing techniques to collect physical data on ocean waves (e.g., height, period, directionality, steepness). Join us for an informational webinar on March 20, 2014. The purpose of this webinar will be to give applicants a chance to ask questions about the FOA process generally. Reserve your webinar seat now at: https://www1.gotomeeting.com/register/553062432

473

Etat des lieux en robotique marine et sous-marine  

E-Print Network [OSTI]

robots marins et applications ASV : Autonomous Surface Vehicle · Propulsion: moteur, vent, houle ROVEtat des lieux en robotique marine et sous-marine Cas particulier de la commande des mini-véhicules sous-marins Vincent Creuze (MCF), LIRMM, Montpellier Animateur axe robotique marine et sous-marine du

Paris-Sud XI, Université de

474

Marine Biodiversity & Biotechnology  

E-Print Network [OSTI]

Centre for Marine Biodiversity & Biotechnology No one knows how many species live in the sea this biodiversity needs expertise from classical marine biology to the latest molecular genetics techniques Biodiversity & Biotechnology. The CMBB was established in 1999 to tackle the challenges of understanding marine

Howie, Jim

475

Marine cloud brightening  

Science Journals Connector (OSTI)

...will not be as effective in marine stratocumulus clouds that are...Engineering steps to implement marine cloud brightening (a) Introduction...brightening by increasing the CCN of marine stratus clouds (by way of...vessel and the optimum means of propulsion. In fact, both these aspects...

2012-01-01T23:59:59.000Z

476

Calling All Coders: Help Advance America's Ocean Power Industry |  

Broader source: Energy.gov (indexed) [DOE]

Calling All Coders: Help Advance America's Ocean Power Industry Calling All Coders: Help Advance America's Ocean Power Industry Calling All Coders: Help Advance America's Ocean Power Industry December 10, 2013 - 3:57pm Addthis The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. | Graphic courtesy of TopCoder The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. | Graphic courtesy of TopCoder Alison LaBonte Marine and Hydrokinetic Technology Manager Brooke White Oceanographer, Water Power Program

477

Ecological Research Division, Marine Research Program  

SciTech Connect (OSTI)

This report presents program summaries of the various projects sponsored during 1979 by the Marine Research Program of the Ecological Research Division. Program areas include the effects of petroleum hydrocarbons on the marine environment; a study of the baseline ecology of a proposed OTEC site near Puerto Rico; the environmental impact of offshore geothermal energy development; the movement of radionuclides through the marine environment; the environmental aspects of power plant cooling systems; and studies of the physical and biological oceangraphy of the continental shelves bordering the United States.

Not Available

1980-05-01T23:59:59.000Z

478

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

41 - 25050 of 26,764 results. 41 - 25050 of 26,764 results. Rebate Clean Energy Portfolio Goal In May 2011, Indiana enacted SB 251, creating the Clean Energy Portfolio Standard (CPS). The program sets a voluntary goal of 10% clean energy by 2025, based on the amount of electricity supplied... http://energy.gov/savings/clean-energy-portfolio-goal Rebate Clean Energy Production Tax Credit (Corporate) Maryland offers a production tax credit for electricity generated by wind, geothermal energy, solar energy, hydropower, hydrokinetic, municipal solid waste and biomass resources. Eligible biomass... http://energy.gov/savings/clean-energy-production-tax-credit-corporate Rebate Clean Energy Production Tax Credit (Personal) Maryland offers a production tax credit for electricity generated by wind,

479

Environmental Guidance Program Reference Book: Marine Protection, Research, and Sanctuaries Act and Marine Mammal Protection Act. Revision 3  

SciTech Connect (OSTI)

Two laws governing activities in the marine environment are considered in this Reference Book. The Marine Protection, Research, and Sanctuaries Act (MPRSA, P.L. 92-532) regulates ocean dumping of waste, provides for a research program on ocean dumping, and provides for the designation and regulation of marine sanctuaries. The Marine Mammal Protection Act (MMPA, P.L. 92-522) establishes a federal program to protect and manage marine mammals. The Fishery Conservation and Management Act (FCMA, P.L. 94-265) establishes a program to regulate marine fisheries resources and commercial marine fishermen. Because the Department of Energy (DOE) is not engaged in any activities that could be classified as fishing under FCMA, this Act and its regulations have no implications for the DOE; therefore, no further consideration of this Act is given within this Reference Book. The requirements of the MPRSA and the MMPA are discussed in terms of their implications for the DOE.

Not Available

1988-01-31T23:59:59.000Z

480

Marine Mechanical Engineer Full Time Position Wanted: Marine Mechanical Engineer  

E-Print Network [OSTI]

the following; Marine Systems Design and Engineering (fuel, water, HVAC, compressed air, exhaust, lube oil, etcMarine Mechanical Engineer Full Time Position Wanted: Marine Mechanical Engineer Boksa Marine Design, Inc. is a growing naval architecture and marine engineering firm specializing in the design

Eustice, Ryan

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Ice Nuclei in Marine Air: Biogenic Particles or Dust?  

SciTech Connect (OSTI)

Ice nuclei impact clouds, but their sources and distribution in the atmosphere are still not well known. Particularly little attention has been paid to IN sources in marine environments, although evidence from field studies suggests that IN populations in remote marine regions may be dominated by primary biogenic particles associated with sea spray. In this exploratory model study, we aim to bring attention to this long-neglected topic and identify promising target regions for future field campaigns. We assess the likely global distribution of marine biogenic ice nuclei using a combination of historical observations, satellite data and model output. By comparing simulated marine biogenic immersion IN distributions and dust immersion IN distributions, we predict strong regional differences in the importance of marine biogenic IN relative to dust IN. Our analysis suggests that marine biogenic IN are most likely to play a dominant role in determining IN concentrations in near-surface-air over the Southern Ocean, so future field campaigns aimed at investigating marine biogenic IN should target that region. Climate related changes in the abundance and emission of biogenic marine IN could affect marine cloud properties, thereby introducing previously unconsidered feedbacks that influence the hydrological cycle and the Earth’s energy balance. Furthermore, marine biogenic IN may be an important aspect to consider in proposals for marine cloud brightening by artificial sea spray production.

Burrows, Susannah M.; Hoose, C.; Poschl, U.; Lawrence, M.

2013-01-11T23:59:59.000Z

482

SeWave | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » SeWave Jump to: navigation, search Name SeWave Place Denmark Zip FO-110 Product Denmark-based 50:50 JV between UK's Wavegen and Faroese electricity company SEV to to design and build a tunnelled demonstration wave power plant in the Faroes Islands. References SeWave[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. SeWave is a company located in Denmark . References ↑ "SeWave"

483

MHK Technologies/Osprey | Open Energy Information  

Open Energy Info (EERE)

Osprey Osprey < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Osprey.jpg Technology Profile Primary Organization Free Flow 69 Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Osprey is a vertical axis turbine mounted to the bottom of a 30 aluminium catamaran test rig float Technology Dimensions Device Testing Date Submitted 57:37.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Osprey&oldid=681630" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link

484

University of New Hampshire | Open Energy Information  

Open Energy Info (EERE)

University of New Hampshire University of New Hampshire Place Durham, New Hampshire Zip NH 03824 Sector Marine and Hydrokinetic Product A public university. Website http://http://www.unh.edu/core Coordinates 45.396265°, -122.755099° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.396265,"lon":-122.755099,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

485

DOE Announces Webinars on Instrumentation for Monitoring Marine Renewable  

Broader source: Energy.gov (indexed) [DOE]

DOE Announces Webinars on Instrumentation for Monitoring Marine DOE Announces Webinars on Instrumentation for Monitoring Marine Renewable Energy Devices, Energy Efficiency in Correctional Facilities, and More DOE Announces Webinars on Instrumentation for Monitoring Marine Renewable Energy Devices, Energy Efficiency in Correctional Facilities, and More January 17, 2014 - 10:24am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars January 23: Live Webinar on Instrumentation for Monitoring Marine Renewable

486

Marine Engine Oils  

Science Journals Connector (OSTI)

To some extent marine engine lubricants have similar properties as lubricants ... high oxidation stability, high thermal stability, anti-wear properties, proper detergency, and dispersancy. The ... further discus...

Prof. Tze-Chi Jao; Andre Verhelst

2013-01-01T23:59:59.000Z

487

Marine Diesel Engines  

Science Journals Connector (OSTI)

Marine diesel engines need reserve power to compensate for ... and decreased efficiency of the engine caused by wear and contamination. Minimum efficiency reserves must be...

Michael Palocz-Andresen

2013-01-01T23:59:59.000Z

488

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

51 - 7860 of 26,764 results. 51 - 7860 of 26,764 results. Download CX-004741: Categorical Exclusion Determination Ocean Thermal Energy Conversion Cold Water Pipe-Platform Subsystem Dynamic Interaction Validation CX(s) Applied: A9, B3.6 Date: 12/14/2010 Location(s): Manassas, Virginia Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-004741-categorical-exclusion-determination Download CX-001841: Categorical Exclusion Determination A First Assessment of U.S. In-stream Hydrokinetic Energy Resources Since the 1986 New York University Study CX(s) Applied: B3.1, A9, A11 Date: 04/23/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-001841-categorical-exclusion-determination

489

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

501 - 18510 of 26,764 results. 501 - 18510 of 26,764 results. Download CX-000620: Categorical Exclusion Determination gridSMART - Public Service Company of Oklahoma CX(s) Applied: B5.1 Date: 01/20/2010 Location(s): Oklahoma Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-000620-categorical-exclusion-determination Download CX-000624: Categorical Exclusion Determination Siting Study for a Hydrokinetic Energy Project Located Offshore Southeast Florida CX(s) Applied: A9, B3.1 Date: 01/19/2010 Location(s): Florida Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-000624-categorical-exclusion-determination Download CX-000623: Categorical Exclusion Determination Kentucky Energy Efficiency and Conservation Block Grants Small Cities and

490

Water Power Program FY 2015 Budget At-A-Glance  

Office of Energy Efficiency and Renewable Energy (EERE)

The Water Power Program, part of the Wind and Water Power Technologies Office, leads efforts in developing innovative water power technologies to help the United States meet its growing energy demand. The Office is pioneering research and development efforts in marine and hydrokinetic and hydropower technologies, which hold the promise of clean, affordable electricity, and will move our nation toward energy independence.

491

Clean Energy Production Tax Credit (Corporate) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Corporate) Corporate) Clean Energy Production Tax Credit (Corporate) < Back Eligibility Agricultural Commercial Industrial Residential Utility Savings Category Bioenergy Buying & Making Electricity Water Solar Wind Maximum Rebate $2.5 million (total credits allowed during five-year period) Program Info Start Date 01/01/2006 State Maryland Program Type Corporate Tax Credit Rebate Amount $0.0085/kWh ($0.005/kWh for co-fired electricity) Provider Maryland Energy Administration Maryland offers a production tax credit for electricity generated by wind, geothermal energy, solar energy, hydropower, hydrokinetic, municipal solid waste and biomass resources. Eligible biomass resources include anaerobic digestion, landfill gas, wastewater-treatment gas, and cellulosic material derived from forest-related resources (excluding old-growth timber and mill

492

Clean Energy Production Tax Credit (Personal) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Personal) Personal) Clean Energy Production Tax Credit (Personal) < Back Eligibility Agricultural Commercial Multi-Family Residential Residential Savings Category Bioenergy Buying & Making Electricity Water Solar Wind Maximum Rebate $2.5 million (total credits allowed during five-year period) Program Info Start Date 01/01/2006 State Maryland Program Type Personal Tax Credit Rebate Amount $0.0085/kWh ($0.005/kWh for co-fired electricity) Provider Maryland Energy Administration Maryland offers a production tax credit for electricity generated by wind, geothermal energy, solar energy, hydropower, hydrokinetic, municipal solid waste and biomass resources. Eligible biomass resources include anaerobic digestion, landfill gas, wastewater-treatment gas, and non-hazardous segregated waste material derived from forest-related resources (excluding

493

Marine Conservation Resource overexploitation  

E-Print Network [OSTI]

Conservation Marine vs, terrestrial? ), Ocean habitat spatially labile · Upwelling# downwelling · Currents % Bluefin tunas# Southern Ocean · )!& million hooks in peak year )1*& · Wandering albatrosses declined Marine conservation laws: fisheries Open ocean fisheries: · 4Tragedy of the Commons5 % Individuals

494

Greenhouse Gas Emissions from Aviation and Marine Transportation:  

Open Energy Info (EERE)

Greenhouse Gas Emissions from Aviation and Marine Transportation: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies Jump to: navigation, search Tool Summary Name: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies Agency/Company /Organization: Pew Center on Global Climate Change Sector: Climate, Energy Focus Area: Greenhouse Gas, Transportation Topics: GHG inventory Resource Type: Publications, Technical report Website: www.pewclimate.org/docUploads/aviation-and-marine-report-2009.pdf Cost: Free References: Greenhouse Gas emissions from aviation and marine transportation: mitigation potential and policies[1] "This paper provides an overview of greenhouse gas (GHG) emissions from aviation and marine transportation and the various mitigation options to

495

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

51 - 16860 of 26,764 results. 51 - 16860 of 26,764 results. Download CX-006240: Categorical Exclusion Determination Acoustic Effects of Hydrokinetic Tidal Turbines CX(s) Applied: B3.1, B3.3 Date: 07/15/2011 Location(s): Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-006240-categorical-exclusion-determination Download CX-003541: Categorical Exclusion Determination Next Generation Wind Turbine CX(s) Applied: A9, B3.6, B5.1 Date: 08/26/2010 Location(s): Rutland, Massachusetts Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-003541-categorical-exclusion-determination Download CX-003613: Categorical Exclusion Determination Geothermal Energy Exploration Study CX(s) Applied: A9, B3.1, B3.7

496

Marine Policy Challenges in developing China's marine protected area system  

E-Print Network [OSTI]

, the country hosts an exceptional marine biodiversity comprising about 20,300 recorded species, including 12Marine Policy Challenges in developing China's marine protected area system Wanfei Qiu a,* , Bin Department of Marine Environment Protection, State Oceanic Administration, No. 1 Fuxingmenwai Avenue, Beijing

Jones, Peter JS

497

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

21 - 21530 of 29,416 results. 21 - 21530 of 29,416 results. Download CX-000900: Categorical Exclusion Determination An Assessment of Projected Life-Cycle Cost for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power in the United States over Time CX(s) Applied: A9 Date: 02/25/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-000900-categorical-exclusion-determination Download CX-000904: Categorical Exclusion Determination Hydropower from Wastewater CX(s) Applied: A9, B3.6 Date: 02/25/2010 Location(s): New York Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-000904-categorical-exclusion-determination Download CX-000905: Categorical Exclusion Determination

498

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

21 - 18130 of 26,764 results. 21 - 18130 of 26,764 results. Download CX-004540: Categorical Exclusion Determination Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades CX(s) Applied: A9, B3.6 Date: 11/24/2010 Location(s): Missouri Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-004540-categorical-exclusion-determination Download CX-004543: Categorical Exclusion Determination Westmoreland County: Preliminary Engineering Study for Solar Farm - American Recovery and Reinvestment Act CX(s) Applied: A9, A11 Date: 11/24/2010 Location(s): Westmoreland County, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-004543-categorical-exclusion-determination

499

Wind-Wildlife Impacts Literature Database (WILD)(Fact Sheet)  

SciTech Connect (OSTI)

The Wind-Wildlife Impacts Literature Database (WILD), developed and maintained by the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL), is comprised of over 1,000 citations pertaining to the effects of land-based wind, offshore wind, marine and hydrokinetic, power lines, and communication and television towers on wildlife.

Not Available

2015-01-01T23:59:59.000Z

500

MEET THE PEER COUNSELORS Marine and Atmospheric Science Program  

E-Print Network [OSTI]

, renewable energy, petroleum geology, and ocean sedimentology. The University of Miami is a place where I can of the outstanding UGalapagos program! I am part of Pre-veterinary Society, Marine Mammal Stranding Team, Ocean Kids

Miami, University of