Powered by Deep Web Technologies
Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Marine and Hydrokinetic | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marine and Hydrokinetic Marine and Hydrokinetic Marine and Hydrokinetic The Water Power Program's marine and hydrokinetic research and development (R&D) efforts focus on advancing technologies that capture energy from the nation's oceans and rivers. Unlike hydropower, marine and hydrokinetics represent an emerging industry with hundreds of potentially viable technologies. The program is therefore leading efforts to prove functionality; evaluate technical and economic viability; and generate cost, performance, and reliability data for a variety of devices. Marine and hydrokinetic energy technologies convert the energy of waves, tides, and river and ocean currents into electricity. The Department of Energy's "Marine and Hydrokinetic 101" video explains how these technologies work and highlights some of the Water Power Program's efforts

2

Marine and Hydrokinetic Resources | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Resources Marine and Hydrokinetic Resources Jump to: navigation, search << Return to the MHK database homepage Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 Current/Tidal/Riverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more about Marine and Hydrokinetic Resource Assessment and Characterization click on this link. Current/Tidal/Riverine Tile Current.jpg To find out more about Tidal Energy click on this link and for Current Energy this link. Wave Wave 02.jpg To find out more about Wave Energy click on this link. Ocean Thermal Energy Conversion (OTEC) Ocean Thermo 04.jpg To find out more about OTEC Energy click on this link. << Return to the MHK database homepage

3

Marine and Hydrokinetic Resources | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Resources Marine and Hydrokinetic Resources (Redirected from Wave) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 Current/Tidal/Riverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more about Marine and Hydrokinetic Resource Assessment and Characterization click on this link. Current/Tidal/Riverine Tile Current.jpg To find out more about Tidal Energy click on this link and for Current Energy this link. Wave Wave 02.jpg To find out more about Wave Energy click on this link. Ocean Thermal Energy Conversion (OTEC) Ocean Thermo 04.jpg To find out more about OTEC Energy click on this link. << Return to the MHK database homepage

4

Energy 101: Marine & Hydrokinetic Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marine & Hydrokinetic Energy Marine & Hydrokinetic Energy Energy 101: Marine & Hydrokinetic Energy August 13, 2013 - 10:54am Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings, and cities. The oceans represent a largely untapped renewable energy resource with potential to provide clean electricity to coastal communities and cities across the United States. In this edition of Energy 101, learn how the Energy Department is supporting research on a range of innovative marine and hydrokinetic energy technologies to capture energy from waves and currents. For more information on marine and hydrokinetic energy from the Office of Energy Efficiency and Renewable Energy, visit the Water Power Program

5

Energy 101: Marine and Hydrokinetic Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marine and Hydrokinetic Energy Marine and Hydrokinetic Energy Energy 101: Marine and Hydrokinetic Energy Addthis Below is the text version for the Energy 101: Marine & Hydrokinetic Energy video. The words "Energy 101: Marine & Hydrokinetic Energy" appear onscreen. Montage of renewable energy technologies ending with shots of ocean waves. We all know energy can come from the wind and the sun, but there's a plentiful renewable resource covering more than 75% of the planet that you might not have thought about: our water! The movement of the ocean's waves, tides, and currents carries energy that can be harnessed and converted into electricity to power our homes, buildings and cities. The words "Kinetic Energy" appear onscreen with shots of ocean scientists at sea. The words "Marine & Hydrokinetic" appear onscreen.

6

Marine and Hydrokinetic Technology Database | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Database Marine and Hydrokinetic Technology Database Jump to: navigation, search Introduction The U.S. Department of Energy's Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Using the Database (1) Map illustrates marine & hydrokinetic demonstration projects around the

7

Category:Marine and Hydrokinetic Technology Projects | Open Energy  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Projects Marine and Hydrokinetic Technology Projects Jump to: navigation, search Dictionary.png Looking for the Marine and Hydrokinetic Technology Database? Click here for a user-friendly list of Marine and Hydrokinetic Technology Projects. This category has the default of form Form:Marine and Hydrokinetic Technology Project. Pages in category "Marine and Hydrokinetic Technology Projects" The following 200 pages are in this category, out of 379 total. (previous 200) (next 200) 4 MHK Projects/40MW Lewis project A MHK Projects/ADM 3 MHK Projects/ADM 4 MHK Projects/ADM 5 MHK Projects/Admirality Inlet Tidal Energy Project MHK Projects/Agucadoura MHK Projects/Alaska 1 MHK Projects/Alaska 13 MHK Projects/Alaska 17 MHK Projects/Alaska 18 MHK Projects/Alaska 24 MHK Projects/Alaska 25

8

Form:Marine and Hydrokinetic Technology | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Marine and Hydrokinetic Technology Jump to: navigation, search Add a Marine and Hydrokinetic Technology Input the name of your Marine and Hydrokinetic Technology below to add it to the registry. If your technology is already in the registry, the form will be populated with that technology's fields and you may edit. MHK_Technologies/ Submit The text entered into this field will be used as the name of the project being defined. All projects are automatically prefixed with MHK_Technologies/. The field is case sensitive so be sure to capitalize in the correct areas and type the full title properly. << Return to the Marine and Hydrokinetic Database Retrieved from "http://en.openei.org/w/index.php?title=Form:Marine_and_Hydrokinetic_Technology&oldid=680669"

9

Category:Marine and Hydrokinetic Technologies | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technologies Marine and Hydrokinetic Technologies Jump to: navigation, search Dictionary.png Looking for the Marine and Hydrokinetic Technology Database? Click here for a user-friendly list of Marine and Hydrokinetic Technologies. This category has the default of form Form:Marine and Hydrokinetic Technology. Pages in category "Marine and Hydrokinetic Technologies" The following 200 pages are in this category, out of 282 total. (previous 200) (next 200) 1 MHK Technologies/14 MW OTECPOWER A MHK Technologies/Aegir Dynamo MHK Technologies/AirWEC MHK Technologies/Anaconda bulge tube drives turbine MHK Technologies/AquaBuoy MHK Technologies/Aquanator MHK Technologies/Aquantis MHK Technologies/Archimedes Wave Swing MHK Technologies/Atlantis AN 150 MHK Technologies/Atlantis AR 1000

10

Marine & hydrokinetic technology development.  

DOE Green Energy (OSTI)

The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and hydrokinetic power plants while mitigating nearby and distant impacts. Activities may include laboratory and computational modeling of mooring design or research on device spacing. The geographies, resources, technologies, and even nomenclature of the U.S. marine and hydrokinetic technology industry have yet to be fully understood or defined. The program characterizes and assesses marine and hydrokinetic devices, and then organizes the collected information into a comprehensive and searchable Web-based database, the Marine and Hydrokinetic Technology Database. The database, which reflects intergovernmental and international collaboration, provides industry with one of the most comprehensive and up-to-date public resources on marine and hydrokinetic devices.

LiVecchi, Al (National Renewable Energy Laboratory); Jepsen, Richard Alan

2010-06-01T23:59:59.000Z

11

Form:Marine and Hydrokinetic Technology Test | Open Energy Information  

Open Energy Info (EERE)

this page on Facebook icon Twitter icon Form:Marine and Hydrokinetic Technology Test Jump to: navigation, search Retrieved from "http:en.openei.orgw...

12

Category:Marine and Hydrokinetic Technology Tests | Open Energy...  

Open Energy Info (EERE)

Technology Tests Jump to: navigation, search Marine and Hydrokinetic Technology Test This category currently contains no pages or media. Retrieved from "http:...

13

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Glossary Marine and Hydrokinetic Technology Glossary (Redirected from Hybrid) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

14

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Glossary Marine and Hydrokinetic Technology Glossary (Redirected from Attenuator) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

15

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Glossary Marine and Hydrokinetic Technology Glossary Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

16

Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Awards $37 Million for Marine and Hydrokinetic Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development September 9, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced selections for more than $37 million in funding to accelerate the technological and commercial readiness of emerging marine and hydrokinetic (MHK) technologies, which seek to generate renewable electricity from the nation's oceans and free-flowing rivers and streams. The 27 projects range from concept studies and component design research to prototype development and in-water device testing. This unprecedented level of funding will advance the ability of marine and hydrokinetic energy technologies to

17

Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$37 Million for Marine and Hydrokinetic $37 Million for Marine and Hydrokinetic Energy Technology Development Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development September 9, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced selections for more than $37 million in funding to accelerate the technological and commercial readiness of emerging marine and hydrokinetic (MHK) technologies, which seek to generate renewable electricity from the nation's oceans and free-flowing rivers and streams. The 27 projects range from concept studies and component design research to prototype development and in-water device testing. This unprecedented level of funding will advance the ability of marine and hydrokinetic energy technologies to

18

Form:Marine and Hydrokinetic Technology Project | Open Energy Information  

Open Energy Info (EERE)

Form Form Edit History Facebook icon Twitter icon » Form:Marine and Hydrokinetic Technology Project Jump to: navigation, search Add a Marine and Hydrokinetic Technology Project Input the name of your Marine and Hydrokinetic Technology Project below to add it to the registry. If your project is already in the registry, the form will be populated with that project's fields and you may edit. MHK_Projects/ Submit The text entered into this field will be used as the name of the project being defined. All projects are automatically prefixed with MHK_Projects/. The field is case sensitive so be sure to capitalize in the correct areas and type the full title properly. << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=Form:Marine_and_Hydrokinetic_Technology_Project&oldid=688143"

19

Marine and Hydrokinetic Energy Development Technical Support and General Environmental Studies Report on Outreach to Stakeholders for Fiscal Year 2009  

DOE Green Energy (OSTI)

Report on activities working with stakeholders in the emerging marine and hydrokinetic energy industry during FY09, for DOE EERE Office of Waterpower.

Copping, Andrea E.; Geerlofs, Simon H.

2010-01-22T23:59:59.000Z

20

Marine and Hydrokinetic Technology Readiness Level | Open Energy  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Readiness Level Marine and Hydrokinetic Technology Readiness Level Jump to: navigation, search << Return to the MHK database homepage This field indicates the stage of development/deployment that technologies, which are undergoing partial or full-scale device testing, are currently in. Contents 1 TRL 1-3: Discovery / Concept Definition / Early Stage Development, Design, and Engineering 2 TRL 4: Proof of Concept 3 TRL 5/6: System Integration and Technology Laboratory Demonstration 4 TRL 7/8: Open Water System Testing, Demonstration, and Operation 5 TRL 9: Commercial-Scale Production / Application TRL 1-3: Discovery / Concept Definition / Early Stage Development, Design, and Engineering The purpose of this stage is to evaluate, to the largest extent possible, the scientific or technical merit and feasibility of ideas that appear to

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Template:Marine and Hydrokinetic Technology | Open Energy Information  

Open Energy Info (EERE)

Technology Technology Jump to: navigation, search This is the Marine and Hydrokinetic Technology template. It is designed for use by MHK Technologies Pages. To define an MHK Technology, please use this form. Parameters Image - Associated image file. (optional) Primary Organization - Field def missing! Project(s) where this technology is utilized - Field def missing! Technology Resource - Field def missing! Technology Type - Field def missing! Technology Readiness Level - Field def missing! Technology Description - Field def missing! Designed to Operate with Shore Connection - Field def missing! Power Transfer Method - Field def missing! Water Column Location - Field def missing! Mooring Configuration - Field def missing! Optimum Marine/Riverline Conditions - Field def missing!

22

Marine and Hydrokinetic Renewable Energy Devices, Potential Navigational Hazards and Mitigation Measures  

DOE Green Energy (OSTI)

On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies. A technical report addressing our findings is available on this Science and Technology Information site under the Product Title, "Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures". This product is a brochure, primarily for project developers, that summarizes important issues in that more comprehensive report, identifies locations where that report can be downloaded, and identifies points of contact for more information.

Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

2009-12-01T23:59:59.000Z

23

Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures  

DOE Green Energy (OSTI)

On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies, as summarized herein. The contract also required cooperation with the U.S. Coast Guard (USCG) and two recipients of awards (Pacific Energy Ventures and reVision) in a sub-topic area to develop a protocol to identify streamlined, best-siting practices. Over the period of this contract, PCCI and our sub-consultants, David Basco, Ph.D., and Neil Rondorf of Science Applications International Corporation, met with USCG headquarters personnel, with U.S. Army Corps of Engineers headquarters and regional personnel, with U.S. Navy regional personnel and other ocean users in order to develop an understanding of existing practices for the identification of navigational impacts that might occur during construction, operation, maintenance, and decommissioning. At these same meetings, standard and potential mitigation measures were discussed so that guidance could be prepared for project developers. Concurrently, PCCI reviewed navigation guidance published by the USCG and international community. This report summarizes the results of this effort, provides guidance in the form of a checklist for assessing the navigational impacts of potential marine and hydrokinetic projects, and provides guidance for improving the existing navigational guidance promulgated by the USCG in Navigation Vessel Inspection Circular 02 07. At the request of the USCG, our checklist and mitigation guidance was written in a generic nature so that it could be equally applied to offshore wind projects. PCCI teleconferenced on a monthly basis with DOE, Pacific Energy Ventures and reVision in order to share information and review work products. Although the focus of our effort was on marine and hydrokinetic technologies, as defined above, this effort drew upon earlier work by the USCG on offshore wind renewable energy installations. The guidance provided herein can be applied equally to marine and hydrokinetic technologies and to offshore wind, which are collectively referred to by the USCG as Renewable Energy Installations.

Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

2009-12-10T23:59:59.000Z

24

Assessing the Effects of Marine and Hydrokinetic Energy Development on Marine and Estuarine Resources  

SciTech Connect

The worlds oceans and estuaries offer an enormous potential to meet the nations growing demand for energy. The use of marine and hydrokinetic (MHK) devices to harness the power of wave and tidal energy could contribute significantly toward meeting federal- and state-mandated renewable energy goals while supplying a substantial amount of clean energy to coastal communities. Locations along the eastern and western coasts of the United States between 40 and 70 north latitude are ideal for MHK deployment, and recent estimates of energy potential for the coasts of Washington, Oregon, and California suggest that up to 25 gigawatts could be generated from wave and tidal devices in these areas. Because energy derived from wave and tidal devices is highly predictable, their inclusion in our energy portfolio could help balance available sources of energy production, including hydroelectric, coal, nuclear, wind, solar, geothermal, and others.

Ward, Jeffrey A.; Schultz, Irvin R.; Woodruff, Dana L.; Roesijadi, Guritno; Copping, Andrea E.

2010-07-30T23:59:59.000Z

25

Energy 101: Marine and Hydrokinetic Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

--Construction --Commercial Weatherization --Commercial Heating & Cooling --Commercial Lighting --Solar Decathlon -Manufacturing Energy Sources -Renewables --Solar --Wind...

26

Marine & Hydrokinetic Technologies (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the U.S. Department of Energy's Water Power Program. The program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new technologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity.

Not Available

2010-04-01T23:59:59.000Z

27

NREL: Water Power Research - Marine and Hydrokinetic Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine and Hydrokinetic Technology Instrumentation, Measurement, and Computer Modeling Workshop The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and...

28

Submersible Generator for Marine Hydrokinetics  

SciTech Connect

A submersible generator was designed as a distinct and critical subassembly of marine hydrokinetics systems, specifically tidal and stream energy conversion. The generator is designed to work with both vertical and horizontal axis turbines. The final product is a high-pole-count, radial-flux, permanent magnet, rim mounted generator, initially rated at twenty kilowatts in a two-meter-per-second flow, and designed to leverage established and simple manufacturing processes. The generator was designed to work with a 3 meter by 7 meter Gorlov Helical Turbine or a marine hydrokinetic version of the FloDesign wind turbine. The team consisted of experienced motor/generator design engineers with cooperation from major US component suppliers (magnetics, coil winding and electrical steel laminations). Support for this effort was provided by Lucid Energy Technologies and FloDesign, Inc. The following tasks were completed: â?¢ Identified the conditions and requirements for MHK generators. â?¢ Defined a methodology for sizing and rating MHK systems. â?¢ Selected an MHK generator topology and form factor. â?¢ Completed electromechanical design of submersible generator capable of coupling to multiple turbine styles. â?¢ Investigated MHK generator manufacturing requirements. â?¢ Reviewed cost implications and financial viability. â?¢ Completed final reporting and deliverables

Robert S. Cinq-Mars; Timothy Burke; Dr. James Irish; Brian Gustafson; Dr. James Kirtley; Dr. Aiman Alawa

2011-09-01T23:59:59.000Z

29

International Standards Development for Marine and Hydrokinetic Renewable Energy - Final Report on Technical Status  

DOE Green Energy (OSTI)

This report summarizes the progress toward development of International Standards for Marine and Hydrokinetic Renewable Energy, as funded by the U.S. Department of Energy (DOE) under the International Electrotechnical Commission (IEC) Technical Committee 114. The project has three main objectives: 1. Provide funding to support participation of key U.S. industry technical experts in 6 (originally 4) international working groups and/or project teams (the primary standards-making committees) and to attend technical meetings to ensure greater U.S. involvement in the development of these standards. 2. Provide a report to DOE and industry stakeholders summarizing the IEC standards development process for marine and hydrokinetic renewable energy, new international standards and their justifications, and provide standards guidance to industry members. 3. Provide a semi-annual (web-based) newsletter to the marine renewable energy community. The newsletter will educate industry members and stakeholders about the processes, progress, and needs of the US efforts to support the international standards development effort. The newsletter is available at www.TC114.us

Rondorf, Neil E.; Busch, Jason; Kimball, Richard

2011-10-29T23:59:59.000Z

30

Department of Energy Awards $37 Million for Marine and Hydrokinetic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Technology Development September 9, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced selections for more than 37 million...

31

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Technology Glossary Technology Glossary (Redirected from Axial Flow Turbine) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

32

Marine and Hydrokinetic Technology Database  

DOE Data Explorer (OSTI)

Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database is currently (2009) being updated to include ocean thermal energy technologies, companies, and projects.[Taken from http://www2.eere.energy.gov/windandhydro/hydrokinetic/

33

Siting Study Framework and Survey Methodology for Marine and Hydrokinetic Energy Project in Offshore Southeast Florida  

SciTech Connect

Dehlsen Associates, LLC was awarded a grant by the United States Department of Energy (DOE) Golden Field Office for a project titled 'Siting Study Framework and Survey Methodology for Marine and Hydrokinetic Energy Project in Offshore Southeast Florida,' corresponding to DOE Grant Award Number DE-EE0002655 resulting from DOE funding Opportunity Announcement Number DE-FOA-0000069 for Topic Area 2, and it is referred to herein as 'the project.' The purpose of the project was to enhance the certainty of the survey requirements and regulatory review processes for the purpose of reducing the time, efforts, and costs associated with initial siting efforts of marine and hydrokinetic energy conversion facilities that may be proposed in the Atlantic Ocean offshore Southeast Florida. To secure early input from agencies, protocols were developed for collecting baseline geophysical information and benthic habitat data that can be used by project developers and regulators to make decisions early in the process of determining project location (i.e., the siting process) that avoid or minimize adverse impacts to sensitive marine benthic habitat. It is presumed that such an approach will help facilitate the licensing process for hydrokinetic and other ocean renewable energy projects within the study area and will assist in clarifying the baseline environmental data requirements described in the U.S. Department of the Interior Bureau of Ocean Energy Management, Regulation and Enforcement (formerly Minerals Management Service) final regulations on offshore renewable energy (30 Code of Federal Regulations 285, published April 29, 2009). Because projects generally seek to avoid or minimize impacts to sensitive marine habitats, it was not the intent of this project to investigate areas that did not appear suitable for the siting of ocean renewable energy projects. Rather, a two-tiered approach was designed with the first step consisting of gaining overall insight about seabed conditions offshore southeastern Florida by conducting a geophysical survey of pre-selected areas with subsequent post-processing and expert data interpretation by geophysicists and experienced marine biologists knowledgeable about the general project area. The second step sought to validate the benthic habitat types interpreted from the geophysical data by conducting benthic video and photographic field surveys of selected habitat types. The goal of this step was to determine the degree of correlation between the habitat types interpreted from the geophysical data and what actually exists on the seafloor based on the benthic video survey logs. This step included spot-checking selected habitat types rather than comprehensive evaluation of the entire area covered by the geophysical survey. It is important to note that non-invasive survey methods were used as part of this study and no devices of any kind were either temporarily or permanently attached to the seabed as part of the work conducted under this project.

Vinick, Charles; Riccobono, Antonino, MS; Messing, Charles G., Ph.D.; Walker, Brian K., Ph.D.; Reed, John K., Ph.D.

2012-02-28T23:59:59.000Z

34

US Department of Energy National Lab Activities in Marine Hydrokinetics: Machine Performance Testing  

Science Conference Proceedings (OSTI)

Marine and hydrokinetic (MHK) technology performance testing in the laboratory and field supports the US Department of Energy s MHK program goals to advance the technology readiness levels of MHK machines, to ensure environmentally responsible designs, to identify key cost drivers, and to reduce the cost of energy of MHK technologies. Laboratory testing results from scaled model machine testing at the University of Minnesota s St. Anthony Falls Laboratory (SAFL) main channel flume are presented, including simultaneous machine power and inflow measurements for a 1:10 scale three-bladed axial flow turbine used to assess machine performance in turbulent flows, and detailed measurements of inflow and wake flow velocity and turbulence, including the assessment of the effects of large energetic organized vortex shedding on machine performance and wake turbulence downstream. Scaled laboratory testing provides accurate data sets for near- and far-field hydrodynamic models, and useful information on technology and environmental readiness levels before full-scale testing and demonstration in open water. This study validated turbine performance for a technology in order to advance its technology readiness level. Synchronized ADV measurements to calculate spatio-temporal characteristics of turbulence supported model development of the inflow turbulence model, Hydro-TurbSim, developed by the National Renewable Energy Laboratory (NREL) to evaluate unsteady loading on MHK machines. Wake flow measurements supported model development of the far-field model, SNL-EFDC, developed by Sandia National Laboratory (SNL) to optimize spacing for MHK machine arrays.

Neary, Vincent S [ORNL; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Gunawan, Budi [Oak Ridge National Laboratory (ORNL); Sotiropoulos, Fotis [University of Minnesota

2012-01-01T23:59:59.000Z

35

Inflow Characterization for Marine and Hydrokinetic Energy Devices. FY-2011: Annual Progress Report  

SciTech Connect

The Pacific Northwest National Laboratory (PNNL), in collaboration with the Applied Physics Laboratory at the University of Washington (APL-UW), has carried out a detailed preliminary fluid flow field study at site selected for testing of marine and hydrokinetic turbines using Acoustic Doppler Velocimetry (ADV) measurements, Acoustic Doppler Current Profiler (ADCP) measurements, and Conductivity, Temperature and Depth (CTD) measurements. In FY-2011 these measurements were performed continuously for two weeks, in order to collect data during neap and spring tides, as well as during diurnal tidal variations.

Richmond, Marshall C.; Durgesh, Vibhav; Thomson, Jim; Polagye, Brian

2011-06-09T23:59:59.000Z

36

Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint  

SciTech Connect

Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a power-take-off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drivetrain, power generator, and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost, and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency and low maintenance and cost, with a low impact on the device cost-of-energy (CoE).

Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

2013-02-01T23:59:59.000Z

37

Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint  

DOE Green Energy (OSTI)

Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a Power-Take-Off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drive train, power generator and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency, low maintenance and cost with a low impact on the device Cost-of-Energy (CoE).

Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

2012-04-01T23:59:59.000Z

38

Identifying How Marine and Hydrokinetic Devices Affect Aquatic Environments  

Science Conference Proceedings (OSTI)

Significant research is under way to determine the potential environmental effects of marine and hydrokinetic energy systems. This research, being guided and funded by the U.S. Department of Energy, is intended to address knowledge gaps and facilitate installation and operation of these systems.

Cada, G. F.; Copping, Andrea E.; Roberts, Jesse

2011-04-24T23:59:59.000Z

39

Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental Shelf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Interior the Interior Bureau of Ocean Energy Management Office of Renewable Energy Programs OCS EIS/EA BOEM 2013-01140 Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental Shelf Offshore Florida Revised Environmental Assessment OCS EIS/EA BOEM 2013-01140 Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental Shelf Offshore Florida Revised Environmental Assessment Author Bureau of Ocean Energy Management Office of Renewable Energy Programs Published by U.S. Department of the Interior Bureau of Ocean Energy Management Office of Renewable Energy Programs August 2013 iii FINDING OF NO SIGNIIFCANT IMPACT Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental

40

MHK Technologies/In stream River Hydrokinetics | Open Energy Information  

Open Energy Info (EERE)

In stream River Hydrokinetics In stream River Hydrokinetics < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization ABS Alaskan Inc Technology Resource Click here Current Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description New Energy Corporation EnCurrent vertical axis turbine mounted on pontoon barge Technology Dimensions Device Testing Date Submitted 10:01.5 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/In_stream_River_Hydrokinetics&oldid=680959" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Marine and Hydrokinetic Devices  

Science Conference Proceedings (OSTI)

Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale, and for commercial arrays. This work is carried out under the U.S. Department of Energy reference model project, with the costs for engineering, deployment strategies, mooring and anchoring configurations, and maintenance operations, being developed by a consortium of Department of Energy national laboratories and universities. The goal of the reference model is to assist the MHK industry to become a cost-competitive contributor of renewable energy, by identifying those aspects of MHK projects that contribute significantly to the cost of energy, and directing research funding towards lowering those costs.

Copping, Andrea E.; Geerlofs, Simon H.

2011-05-09T23:59:59.000Z

42

Marine & Hydrokinetic Technologies (Fact Sheet)  

DOE Green Energy (OSTI)

This document described the U.S. Department of Energy's Water Power Program efforts to promote the development and deployment of advanced water power devices.

Not Available

2011-07-01T23:59:59.000Z

43

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Marine & Hydrokinet...  

NLE Websites -- All DOE Office Websites (Extended Search)

easier. A screen capture of the MapSearch Map view option Marine & Hydrokinetic Maps Hydropower already provides 6-7% of the nation's electricity, and the ocean represents a...

44

Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine and Hydrokinetic Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop W. Musial, M. Lawson, and S. Rooney National Renewable Energy Laboratory Technical Report NREL/TP-5000-57605 February 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop W. Musial, M. Lawson, and S. Rooney National Renewable Energy Laboratory Prepared under Task No. WA09.3406

45

Inflow Characterization for Marine and Hydrokinetic Energy Devices. FY-2010 Annual Progress Report  

DOE Green Energy (OSTI)

Marine and Hydro Kinetic devices (MHK) are being widely studied as a source of renewable energy. The Marrowstone Island site is a potential location for installing MHK devices because the tidal currents observed that are sufficient for power generation. In order to quantify the effects of turbulence on MHK devices and the surrounding environment at this site, a prelimi- nary fluid flow field study was conducted here by the Pacific Northwest National Lab (PNNL) in collaboration with the Applied Physics Lab at the University of Washington (APL-UW). This study entailed continuous The Acoustic Doppler Velocimetry (ADV), Acoustic Doppler Current Profiler (ADCP) and Conductivity, Temperature and Depth (CTD) measurements from May 4, 2010 to May 22, 2010, in order to obtain information about turbulence effects during different tidal conditions. The instruments used for collecting the above measurements were deployed at the Marrowstone site using a R/V Jack Robertson provided by the University of Washington (APL-UW). All the measurements were taken at the site with an average depth of 22 m below the sea surface. ADV acquired velocity data at 32 Hz sampling frequency at 4.6 m above the seabed, and ADCP acquired velocity profile data at a sampling frequency of 2 Hz, from a height of 2.6 m above the seabed to the surface with a bin resolution of 0.5 m. The ADV and ADCP measurements showed that the horizontal velocity had a turbulence intensity of 10%. Further- more, the spectral analysis from ADV measurements showed that the flow is fully turbulent with -5/3 slope in the inertial sub-range of the spectra. Moreover, the temporal-frequency analysis showed presence of eddies at high frequencies. These preliminary studies provided initial flow field and site characteristics, showed the limitations of the instruments used and highlighted changes that need to be made in the experimental setup for deployment in FY-2011 studies.

Richmond, Marshall C.; Durgesh, Vibhav; Thomson, Jim; Polagye, Brian

2011-01-31T23:59:59.000Z

46

Developing an Instrumentation Package for in-Water Testing of Marine Hydrokinetic Energy Devices: Preprint  

DOE Green Energy (OSTI)

The ocean-energy industry is still in its infancy and device developers have provided their own equipment and procedures for testing. Currently, no testing standards exist for ocean energy devices in the United States. Furthermore, as prototype devices move from the test tank to in-water testing, the logistical challenges and costs grow exponentially. Development of a common instrumentation package that can be moved from device to device is one means of reducing testing costs and providing normalized data to the industry as a whole. As a first step, the U.S. National Renewable Energy Laboratory (NREL) has initiated an effort to develop an instrumentation package to provide a tool to allow common measurements across various ocean energy devices. The effort is summarized in this paper. First, we present the current status of ocean energy devices. We then review the experiences of the wind industry in its development of the instrumentation package and discuss how they can be applied in the ocean environment. Next, the challenges that will be addressed in the development of the ocean instrumentation package are discussed. For example, the instrument package must be highly adaptable to fit a large array of devices but still conduct common measurements. Finally, some possible system configurations are outlined followed by input from the industry regarding its measurement needs, lessons learned from prior testing, and other ideas.

Nelson, E.

2010-08-01T23:59:59.000Z

47

Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.  

Science Conference Proceedings (OSTI)

This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

Bull, Diana L; Ochs, Margaret Ellen

2013-09-01T23:59:59.000Z

48

Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.  

SciTech Connect

This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

Bull, Diana L; Ochs, Margaret Ellen

2013-09-01T23:59:59.000Z

49

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Marine & Hydrokinetic  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine & Hydrokinetic Data Marine & Hydrokinetic Data This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables densities within a few kilometers of a linear array, even for fixed terminator devices. The total available energy resource along the U.S. continental shelf edge,

50

Effects of Electromagnetic Fields on Fish and Invertebrates Task 2.1.3: Effects on Aquatic Organisms Fiscal Year 2012 Progress Report Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect

Energy generated by the worlds oceans and rivers offers the potential to make substantial contributions to the domestic and global renewable energy supply. However, the marine and hydrokinetic (MHK) energy industry faces challenges related to siting, permitting, construction, and operation of pilotand commercial-scale facilities. One of the challenges is to understand the potential effects to marine organisms from electromagnetic fields, which are produced as a by-product of transmitting power from offshore to onshore locations through underwater transmission cables. This report documents the progress of the third year of research (fiscal year 2012) to investigate environmental issues associated with marine and hydrokinetic energy (MHK) generation. This work was conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energys (DOEs) Office of Energy Efficiency and Renewable Energy (EERE) Wind and Water Technologies Office. The report addresses the effects of electromagnetic fields (EMFs) on selected marine species where significant knowledge gaps exist. The species studied this fiscal year included one fish and two crustacean species: the Atlantic halibut (Hippoglossus hippoglossus), Dungeness crab (Metacarcinus magister), and American lobster (Homarus americanus).

Woodruff, Dana L.; Cullinan, Valerie I.; Copping, Andrea E.; Marshall, Kathryn E.

2013-05-20T23:59:59.000Z

51

Review of Recent Literature Relevant to the Environmental Effects of Marine and Hydrokinetic Energy Devices Task 2.1.3: Effects on Aquatic Organisms Fiscal Year 2011 Progress Report Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect

A literature search was conducted by using the Web of Science Databases component of the ISI Web of KnowledgeSM to identify recent articles that would be useful to help assess the potential environmental effects of renewable energy development in the ocean, with emphasis on marine mammals, seabirds, and fish. Several relatively recent general review articles that included possible effects of marine renewable energy devices on marine mammals and seabirds were examined to begin the search process (e.g., Boehlert et al. 2008; Thompson et al. 2008; Simas et al. 2009). From these articles, several general topics of potential environmental effects on marine mammals, seabirds, and fish were derived. These topics were used as the primary search factors. Searches were conducted with reference to the potential effects of offshore wind farms and MHK devices on marine mammals, seabirds, and fish. Additional sources were identified by cross-checking the Web of Science databases for articles that cited the review articles. It also became clear that often the potential effects were offered as hypotheses that often were not supported by the presentation of appropriate documentation. Therefore, the search was refined and focused on trying to obtain the necessary information to support or challenge a proposed potential effect to a specific concern. One of the expressed concerns regarding MHK devices is that placing wave parks in coastal waters could compromise the migration patterns of whales. Disruption of the annual migration of the gray whale (Eschrichtius robustus), which swims at least 30,000 km on its round trip from breeding grounds in Baja California to feeding areas in the Bering Sea, is of particular concern. Among the hypothesized effects on the migrating gray whales are increased predation risk by constricting migration corridor to between array and shore or by forcing the whales to swim into deeper waters, increased metabolic energy costs and delays in reaching the destinations, and interrupting feeding by blocking access to benthic areas under arrays. The literature search focused on identifying published studies that could provide information to evaluate these concerns. The results were developed into a case study that evaluated the potential effects of the placement of wave parks in coastal waters along the migration route of the gray whale. Wave parks and other MHK arrays may have additional effects on gray whales and other marine mammals, including entanglement in mooring lines and interference with communications among other effects, that were not included in this case study. The case study results were rewritten into a simpler form that would be suitable for placement on a web blog

Kropp, Roy K.

2011-09-30T23:59:59.000Z

52

JEDI Marine and Hydrokinetic Model: User Reference Guide  

SciTech Connect

The Jobs and Economic Development Impact Model (JEDI) for Marine and Hydrokinetics (MHK) is a user-friendly spreadsheet-based tool designed to demonstrate the economic impacts associated with developing and operating MHK power systems in the United States. The JEDI MHK User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the sources and parameters used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.

Goldberg, M.; Previsic, M.

2011-04-01T23:59:59.000Z

53

2011 Marine and Hydrokinetic Device Modeling Workshop: Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

PROGRAM PROGRAM � 2011 Marine Hydrokinetic Device Modeling Workshop: Final Report March 1, 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,

54

JEDI Marine and Hydrokinetic Model: User Reference Guide  

SciTech Connect

The Jobs and Economic Development Impact Model (JEDI) for Marine and Hydrokinetics (MHK) is a user-friendly spreadsheet-based tool designed to demonstrate the economic impacts associated with developing and operating MHK power systems in the United States. The JEDI MHK User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the sources and parameters used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.

Goldberg, M.; Previsic, M.

2011-04-01T23:59:59.000Z

55

Effects of Tidal Turbine Noise on Fish Hearing and Tissues - Draft Final Report - Environmental Effects of Marine and Hydrokinetic Energy  

Science Conference Proceedings (OSTI)

Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This project was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/Chinook/CKPUG.cfm); the fish used in this experiment were hatchery raised and their populations are not in danger of depletion. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Experimental results indicate that non-lethal, low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

2011-09-30T23:59:59.000Z

56

River Hydrokinetic Resource Atlas | Open Energy Information  

Open Energy Info (EERE)

River Hydrokinetic Resource Atlas River Hydrokinetic Resource Atlas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: River Hydrokinetic Resource Atlas Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Water Power Resource Type: Maps, Software/modeling tools User Interface: Website Website: maps.nrel.gov/river_atlas Country: United States Web Application Link: maps.nrel.gov/river_atlas Cost: Free UN Region: Northern America Coordinates: 39.7412019515°, -105.172290802° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7412019515,"lon":-105.172290802,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

57

Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water Power Program (WWPP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Power Program Water Power Program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new tech- nologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renew- able, emissions-free resource to generate environmentally sustainable and cost-effective electricity. The program's research and development efforts fall under two categories: Technology Development and Market Acceleration. Technology Development The Water Power Program works with industry partners, universities, and the Department of Energy's national

58

Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop  

DOE Green Energy (OSTI)

The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the National Renewable Energy Laboratory (NREL) in Broomfield, Colorado, July 9-10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community and collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry and technical sessions that covered specific topics of relevance. Each session consisted of presentations, followed by facilitated discussions. During the facilitated discussions, the session chairs posed several prepared questions to the presenters and audience to encourage communication and the exchange of ideas between technical experts. Following the workshop, attendees were asked to provide written feedback on their takeaways and their best ideas on how to accelerate the pace of marine energy technology development. The first four sections of this document give a general overview of the workshop format, provide presentation abstracts and discussion session notes, and list responses to the post-workshop questions. The final section presents key findings and conclusions from the workshop that suggest how the U.S. Department of Energy and national laboratory resources can be utilized to most effectively assist the marine energy industry.

Musial, W.; Lawson, M.; Rooney, S.

2013-02-01T23:59:59.000Z

59

The Development of Open Water-lubricated Polycrystalline Diamond (PCD) Thrust Bearings for Use in Marine Hydrokinetic (MHK) Energy Machines  

Science Conference Proceedings (OSTI)

Polycrstalline diamond (PCD) bearings were designed, fabricated and tested for marine-hydro-kinetic (MHK) application. Bearing efficiency and life were evaluated using the US Synthetic bearing test facility. Three iterations of design, build and test were conducted to arrive at the best bearing design. In addition life testing that simulated the starting and stopping and the loading of real MHK applications were performed. Results showed polycrystalline diamond bearings are well suited for MHK applications and that diamond bearing technology is TRL4 ready. Based on life tests results bearing life is estimated to be at least 11.5 years. A calculation method for evaluating the performance of diamond bearings of round geometry was also investigated and developed. Finally, as part of this effort test bearings were supplied free of charge to the University of Alaska for further evaluation. The University of Alaska test program will subject the diamond bearings to sediment laden lubricating fluid.

Cooley, Craig, H.; Khonsari, Michael,, M; Lingwall, Brent

2012-11-28T23:59:59.000Z

60

Tethys: The Marine and Hydrokinetic Technology Environmental Impacts Knowledge Management System -- Requirements Specification -- Version 1.0  

SciTech Connect

The marine and hydrokinetic (MHK) environmental impacts knowledge management system (KMS), dubbed Tethys after the mythical Greek goddess of the seas, is being developed for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy Wind and Hydropower Technologies Program (WHTP) by Pacific Northwest National Laboratory (PNNL). This requirements specification establishes the essential capabilities required of Tethys and clarifies for WHTP and the Tethys development team the results that must be achieved by the system.

Butner, R. Scott; Snowden-Swan, Lesley J.; Ellis, Peter C.

2010-11-09T23:59:59.000Z

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Piscataqua Tidal Hydrokinetic Energy Project Piscataqua Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1055,"lon":-70.7912,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

62

Resolute Marine Energy Inc | Open Energy Information  

Open Energy Info (EERE)

Resolute Marine Energy Inc Resolute Marine Energy Inc Jump to: navigation, search Name Resolute Marine Energy Inc Address 3 Post Office Square 3rd floor Place Massachusetts Zip 02109-3905 Country United States Sector Marine and Hydrokinetic Product Resolute is a wave-power technology developer operating in Massachusetts. Year founded 2007 Number of employees 12 Phone number 917-626-6790 Website http://www.resolutemarine.com References Resolute Marine Energy LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Ocean Trials Ver 2 SurgeWEC Ocean Testing 1 This company is involved in the following MHK Technologies: AirWEC SurgeWEC

63

MHK Technologies/Deep water capable hydrokinetic turbine | Open Energy  

Open Energy Info (EERE)

water capable hydrokinetic turbine water capable hydrokinetic turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage 275px Technology Profile Primary Organization Hills Inc Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description It is an axial flow shrouded turbine direct connected to a water pump that delivers water to an on shore genetator Being completely water proof and submersible the device can operate at any water depth Mooring Configuration An array of turbines are teathered to a cable that is anchored via a dead weight Optimum Marine/Riverline Conditions This system is designed for use in Florida s Gulf Stream however any constant ocean current is suitable

64

Preliminary Screening Analysis for the Environmental Risk Evaluation System: Task 2.1.1: Evaluating Effects of Stressors Fiscal Year 2010 Progress Report: Environmental Effects of Marine and Hydrokinetic Energy  

Science Conference Proceedings (OSTI)

Possible environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term effects. An understanding of risk associated with likely interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help reduce the level of uncertainty and focus regulatory actions and scientific studies on interactions of most concern. As a first step in developing the Pacific Northwest National Laboratory (PNNL) Environmental Risk Evaluation System (ERES), PNNL scientists conducted a preliminary risk screening analysis on three initial MHK cases - a tidal project in Puget Sound using Open Hydro turbines, a wave project off the coast of Oregon using Ocean Power Technologies point attenuator buoys, and a riverine current project in the Mississippi River using Free Flow turbines. Through an iterative process, the screening analysis revealed that top-tier stressors in all three cases were the effects of the dynamic physical presence of the device (e.g., strike), accidents, and effects of the static physical presence of the device (e.g., habitat alteration). Receptor interactions with these stressors at the four highest tiers of risk were dominated by marine mammals (cetaceans and pinnipeds) and birds (diving and non-diving); only the riverine case (Free Flow) included different receptors in the third tier (fish) and the fourth tier (benthic invertebrates). Although this screening analysis provides a preliminary analysis of vulnerability of environmental receptors to stressors associated with MHK installations, probability analysis, especially of risk associated with chemical toxicity and accidents such as oil spills or lost gear, will be necessary to further understand high-priority risks. Subject matter expert review of this process and results is required and is planned for the first quarter of FY11. Once expert review is finalized, the screening analysis phase of ERES will be complete.

Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.

2010-11-15T23:59:59.000Z

65

MHK Technologies/Hydrokinetic Power Barge | Open Energy Information  

Open Energy Info (EERE)

Power Barge Power Barge < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hydrokinetic Power Barge.jpg Technology Profile Primary Organization Onsite Recovered Energy LP Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Vurbine proprietary technology design and assembly mounted on a horizontal shaft on a twin hull pontoon or barge CAT or SWATH combines reaction and impulse technologies which can efficiently harvest hydrokinetic energy from flowing water in a low impact application Technology Dimensions Device Testing Date Submitted 36:51.7 << Return to the MHK database homepage

66

Screening Analysis for the Environmental Risk Evaluation System Task 2.1.1.2: Evaluating Effects of Stressors Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect

Potential environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. As a first step in developing the Pacific Northwest National Laboratory (PNNL) Environmental Risk Evaluation System (ERES), PNNL scientists conducted a preliminary risk screening analysis on three initial MHK cases. During FY 2011, two additional cases were added: a tidal project in the Gulf of Maine using Ocean Renewable Power Company TidGenTM turbines and a wave project planned for the coast of Oregon using Aquamarine Oyster surge devices. Through an iterative process, the screening analysis revealed that top-tier stressors in the two FY 2011 cases were the dynamic effects of the device (e.g., strike), accidents/disasters, and effects of the static physical presence of the device (e.g., habitat alteration). Receptor interactions with these stressors at the highest tiers of risk were dominated by threatened and endangered animals. Risk to the physical environment from changes in flow regime also ranked high. Peer review of this process and results will be conducted in early FY 2012. The ERES screening analysis provides an analysis of vulnerability of environmental receptors to stressors associated with MHK installations, probability analysis is needed to determine specific risk levels to receptors. Risk has two components: (1) The likelihood, or probability, of the occurrence of a given interaction or event, and (2) the potential consequence if that interaction or event were to occur. During FY 2011, the ERES screening analysis focused primarily on the second component of risk, consequence, with focused probability analysis for interactions where data was sufficient for probability modeling. Consequence analysis provides an assessment of vulnerability of environmental receptors to stressors associated with MHK installations. Probability analysis is needed to determine specific risk levels to receptors and requires significant data inputs to drive risk models. During FY 2011, two stressor-receptor interactions were examined for the probability of occurrence. The two interactions (spill probability due to an encounter between a surface vessel and an MHK device; and toxicity from anti-biofouling paints on MHK devices) were seen to present relatively low risks to marine and freshwater receptors of greatest concern in siting and permitting MHK devices. A third probability analysis was scoped and initial steps taken to understand the risk of encounter between marine animals and rotating turbine blades. This analysis will be completed in FY 2012.

Copping, Andrea E.; Blake, Kara M.; Anderson, Richard M.; Zdanski, Laura C.; Gill, Gary A.; Ward, Jeffrey A.

2011-09-01T23:59:59.000Z

67

Marine Hydroelectric Company | Open Energy Information  

Open Energy Info (EERE)

Marine Hydroelectric Company Jump to: navigation, search Name Marine Hydroelectric Company Address 24040 Camino Del Avion A 107 Place Monarch Beach Sector Marine and Hydrokinetic...

68

2011 Marine Hydrokinetic Device Modeling Workshop: Final Report; March 1, 2011  

SciTech Connect

This report summarizes the NREL Marine and Hydrokinetic Device Modeling Workshop. The objectives for the modeling workshop were to: (1) Review the designs of existing MHK device prototypes and discuss design and optimization procedures; (2) Assess the utility and limitations of modeling techniques and methods presently used for modeling MHK devices; (3) Assess the utility and limitations of modeling methods used in other areas, such as naval architecture and ocean engineering (e.g., oil & gas industry); and (4) Identify the necessary steps to link modeling with other important components that analyze MHK devices (e.g., tank testing, PTO design, mechanical design).

Li, Y.; Reed, M.; Smith, B.

2011-10-01T23:59:59.000Z

69

Water Power Program: Marine and Hydrokinetic Resource Assessment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Tidal Streams Resource Map. Tidal Streams Resource Assessment The Assessment of the Energy Production from Tidal Streams in the United States report, created by Georgia Tech,...

70

Environmentally Benign and Permanent Modifications to Prevent Biofouling on Marine and Hydrokinetic Devices  

DOE Green Energy (OSTI)

Semprus Biosciences is developing environmentally benign and permanent modifications to prevent biofouling on Marine and Hydrokinetic (MHK) devices. Biofouling, including growth on external surfaces by bacteria, algae, barnacles, mussels, and other marine organisms, accumulate quickly on MHK devices, causing mechanical wear and changes in performance. Biofouling on crucial components of hydrokinetic devices, such as rotors, generators, and turbines, imposes substantial mass and hydrodynamic loading with associated efficiency loss and maintenance costs. Most antifouling coatings leach toxic ingredients, such as copper and tributyltin, through an eroding process, but increasingly stringent regulation of biocides has led to interest in the development of non-biocidal technologies to control fouling. Semprus Biosciences research team is developing modifications to prevent fouling from a broad spectrum of organisms on devices of all shapes, sizes, and materials for the life of the product. The research team designed and developed betaine-based polymers as novel underwater coatings to resist the attachment of marine organisms. Different betaine-based monomers and polymers were synthesized and incorporated within various coating formulations. The formulations and application methods were developed on aluminum panels with required adhesion strength and mechanical properties. The coating polymers were chemically stable under UV, hydrolytic and oxidative environments. The sulfobetaine formulations are applicable as nonleaching and stable underwater coatings. For the first time, coating formulations modified with highly packed sulfobetaine polymers were prepared and demonstrated resistance to a broad spectrum of marine organisms. Assays for comparing nonfouling performance were developed to evaluate protein adsorption and bacteria attachment. Barnacle settlement and removal were evaluated and a 60-day field test was performed. Silicone substrates including a commercial fouling release coating were used for comparison. Compared with the unmodified silicone substrates, the sulfobetaine-modified formulations were able to exhibit a 98% reduction in fibrinogen adsorption, 97.0% (E. coli), 99.6% (S. aureus), and 99.5% (C. lytica) reduction in bacteria attachment, and 100% reduction in barnacles cyprid attachment. In addition to the significant improvement in fouling resistance of various organisms, the 60-day field test also showed an evident efficacy from visual assessment, foul rating, and fouling removal test. The research confirmed that the novel antifouling mechanism of betaine polymers provides a new avenue for marine coating development. The developed coatings out-performed currently used nontoxic underwater coatings in a broad spectrum of fouling resistance. By further developing formulations and processing methods for specific devices, the technology is ready for the next stage of development with demonstration in MHK systems.

Zheng Zhang

2012-04-19T23:59:59.000Z

71

Effects of Electromagnetic Fields on Fish and Invertebrates: Task 2.1.3: Effects on Aquatic Organisms - Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy  

Science Conference Proceedings (OSTI)

This fiscal year (FY) 2011 progress report (Task 2.1.3 Effects on Aquatic Organisms, Subtask 2.3.1.1 Electromagnetic Fields) describes studies conducted by PNNL as part of the DOE Wind and Water Power Program to examine the potential effects of electromagnetic fields (EMF) from marine and hydrokinetic devices on aquatic organisms, including freshwater and marine fish and marine invertebrates. In this report, we provide a description of the methods and results of experiments conducted in FY 2010-FY 2011 to evaluate potential responses of selected aquatic organisms. Preliminary EMF laboratory experiments during FY 2010 and 2011 entailed exposures with representative fish and invertebrate species including juvenile coho salmon (Oncorhynchus kisutch), Atlantic halibut (Hippoglossus hippoglossus), California halibut (Paralicthys californicus), rainbow trout (Oncorhynchus mykiss), and Dungeness crab (Metacarcinus magister). These species were selected for their ecological, commercial, and/or recreational importance, as well as their potential to encounter an MHK device or transmission cable during part or all of their life cycle. Based on previous studies, acute effects such as mortality were not expected to occur from EMF exposures. Therefore, our measurement endpoints focused on behavioral responses (e.g., detection of EMF, interference with feeding behavior, avoidance or attraction to EMF), developmental changes (i.e., growth and survival from egg or larval stage to juvenile), and exposure markers indicative of physiological responses to stress. EMF intensities during the various tests ranged from 0.1 to 3 millitesla, representing a range of upper bounding conditions reported in the literature. Experiments to date have shown there is little evidence to indicate distinct or extreme behavioral responses in the presence of elevated EMF for the species tested. Several developmental and physiological responses were observed in the fish exposures, although most were not statistically significant. Additional species are currently planned for laboratory testing in the next fiscal year (e.g. an elasmobranch, American lobster) to provide a broader assessment of species important to stakeholders. The collective responses of all species will be assessed in terms of life stage, exposure scenarios, and biological relevance, to address current uncertainties related to effects of EMF on aquatic organisms.

Woodruff, Dana L.; Schultz, Irvin R.; Marshall, Kathryn E.; Ward, Jeffrey A.; Cullinan, Valerie I.

2012-05-01T23:59:59.000Z

72

MHK Projects/Indian River Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Tidal Hydrokinetic Energy Project Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6853,"lon":-75.0694,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

73

Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigating the Influence of Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code D.C. Maniaci Pennsylvania State University Y. Li National Renewable Energy Laboratory Presented at the Oceans 11 Conference Kona, Hawaii September 19-21, 2011 Conference Paper NREL/CP-5000-52306 October 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

74

Aviation Enterprises Ltd see Marine Current Turbines Ltd | Open Energy  

Open Energy Info (EERE)

Enterprises Ltd see Marine Current Turbines Ltd Enterprises Ltd see Marine Current Turbines Ltd Jump to: navigation, search Name Aviation Enterprises Ltd see Marine Current Turbines Ltd Sector Marine and Hydrokinetic Website http://http://www.escoot.co.uk Region United Kingdom LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Aviation_Enterprises_Ltd_see_Marine_Current_Turbines_Ltd&oldid=678251" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties About us

75

MHK Projects/Passamaquoddy Tribe Hydrokinetic Project | Open Energy  

Open Energy Info (EERE)

Passamaquoddy Tribe Hydrokinetic Project Passamaquoddy Tribe Hydrokinetic Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0234,"lon":-67.0672,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

76

MHK Projects/Atchafalaya River Hydrokinetic Project II | Open Energy  

Open Energy Info (EERE)

Atchafalaya River Hydrokinetic Project II Atchafalaya River Hydrokinetic Project II < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.9828,"lon":-91.7994,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

77

MHK Projects/Sakonnet River Hydrokinetic Project | Open Energy Information  

Open Energy Info (EERE)

Sakonnet River Hydrokinetic Project Sakonnet River Hydrokinetic Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6224,"lon":-71.2153,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

78

MHK Projects/Yukon River Hydrokinetic Turbine Project | Open Energy  

Open Energy Info (EERE)

Yukon River Hydrokinetic Turbine Project Yukon River Hydrokinetic Turbine Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.7883,"lon":-141.198,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

79

marine energy | OpenEI Community  

Open Energy Info (EERE)

marine energy marine energy Home Kch's picture Submitted by Kch(24) Member 9 April, 2013 - 13:30 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine energy MHK ocean energy The generalized Cost Breakdown Structure (CBS) for marine and hydrokinetic (MHK) projects is a hierarchical structure designed to facilitate the collection and organization of lifecycle costs of any type of MHK project, including wave energy converters and current energy convertners. At a high level, the categories in the CBS will be applicable to all projects; at a detailed level, however, the CBS includes many cost categories that will pertain to one project but not others. It is expected that many of the detailed levels of the CBS will be populated with "NA" or left blank.Upload

80

Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code  

DOE Green Energy (OSTI)

This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. This paper summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30{sup o} of yaw.

Maniaci, D. C.; Li, Y.

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code: Preprint  

DOE Green Energy (OSTI)

This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. It summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30 degrees of yaw.

Maniaci, D. C.; Li, Y.

2012-04-01T23:59:59.000Z

82

CFC Photo Gallery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Energy 101: Concentrating Solar Power Science Lecture: Talking the Higgs Boson with Dr. Joseph Incandela Energy 101: Marine and Hydrokinetic Energy Energy 101:...

83

Green Energy Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Energy Industries Inc Jump to: navigation, search Name Green Energy Industries Inc Sector Marine and Hydrokinetic Website http:http:www.gecorpusa.co Region United States...

84

Green Ocean Wave Energy | Open Energy Information  

Open Energy Info (EERE)

Ocean Wave Energy Jump to: navigation, search Name Green Ocean Wave Energy Sector Marine and Hydrokinetic Website http:http:www.greenoceanwa Region United States LinkedIn...

85

Renewable Portfolio Standard (Massachusetts) | Open Energy Information  

Open Energy Info (EERE)

or waste from agricultural crops, food or vegetative material, energy crops, algae, biogas, liquid biofuels;** marine or hydrokinetic energy; and geothermal energy....

86

Green Wave Energy Corp GWEC | Open Energy Information  

Open Energy Info (EERE)

Green Wave Energy Corp GWEC Jump to: navigation, search Name Green Wave Energy Corp GWEC Sector Marine and Hydrokinetic Website http:http:greenwaveenergyc Region United States...

87

Category:Sectors | Open Energy Information  

Open Energy Info (EERE)

Biofuels Biomass Buildings C Carbon E Efficiency G Geothermal energy H Hydro Hydrogen M Marine and Hydrokinetic O Ocean R Renewable Energy S Services Solar V Vehicles W...

88

User:GregZiebold/Sector test | Open Energy Information  

Open Energy Info (EERE)

types for Companies: Bioenergy Biofuels Biomass Buildings Carbon Efficiency Geothermal energy Hydro Hydrogen Marine and Hydrokinetic Ocean Renewable Energy Services Vehicles...

89

Alison Labonte | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alison Labonte About Us Alison Labonte - Marine and Hydrokinetic Technology Manager Most Recent Ocean Energy Projects Developing On and Off America's Shores January 22...

90

Before the House Science and Technology Subcommittee on Energy and Environment  

Energy.gov (U.S. Department of Energy (DOE))

Subject: Marine and Hydrokinetic Energy Technology: Finding the Path to Commercialization By: Jacques Beaudry-Losique, Deputy Assistant Secretary for Renewable Energy

91

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-010572: Categorical Exclusion Determination Brown University - Marine Hydro-Kinetic Energy Harvesting Using Cyber-Physical Systems CX(s) Applied: B3.6 Date: 02042013...

92

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ical-exclusion-determination Download CX-005561: Categorical Exclusion Determination Underwater Active Acoustic Monitoring Support for Marine Hydrokinetic Energy Projects CX(s)...

93

Dynamic Modeling and Environmental Analysis of Hydrokinetic Energy Extraction.  

E-Print Network (OSTI)

??The world is facing an imminent energy supply crisis. Our well-being is linked to the energy supply, and energy is in high demand in both (more)

Miller, Veronica Bree

2010-01-01T23:59:59.000Z

94

Laboratory Experiments on the Effects of Blade Strike from Hydrokinetic Energy Technologies on Larval and Juvenile Freshwater Fishes  

DOE Green Energy (OSTI)

There is considerable interest in the development of marine and hydrokinetic energy projects in rivers, estuaries, and coastal ocean waters of the United States. Hydrokinetic (HK) technologies convert the energy of moving water in river or tidal currents into electricity, without the impacts of dams and impoundments associated with conventional hydropower or the extraction and combustion of fossil fuels. The Federal Energy Regulatory Commission (FERC) maintains a database that displays the geographical distribution of proposed HK projects in inland and tidal waters (FERC 2012). As of March 2012, 77 preliminary permits had been issued to private developers to study HK projects in inland waters, the development of which would total over 8,000 MW. Most of these projects are proposed for the lower Mississippi River. In addition, the issuance of another 27 preliminary permits for HK projects in inland waters, and 3 preliminary permits for HK tidal projects (totaling over 3,100 MW) were under consideration by FERC. Although numerous HK designs are under development (see DOE 2009 for a description of the technologies and their potential environmental effects), the most commonly proposed current-based projects entail arrays of rotating devices, much like submerged wind turbines, that are positioned in the high-velocity (high energy) river channels. The many diverse HK designs imply a diversity of environmental impacts, but a potential impact common to most is the risk for blade strike to aquatic organisms. In conventional hydropower generation, research on fish passage through reaction turbines at low-head dams suggested that strike and mortality for small fish could be low. As a consequence of the large surface area to mass ratio of small fish, the drag forces in the boundary layer flow at the surface of a rotor blade may pull small fish around the leading edge of a rotor blade without making physical contact (Turnpenny 1998, Turnpenny et al. 2000). Although there is concern that small, fragile fish early life stages may be unable to avoid being struck by the blades of hydrokinetic turbines, we found no empirical data in the published literature that document survival of earliest life-stage fish in passage by rotor blades. In addition to blade strike, research on passage of fish through conventional hydropower turbines suggested that fish mortalities from passage through the rotor swept area could also occur due to shear stresses and pressure chances in the water column (Cada et al. 1997, Turnpenny 1998). However, for most of the proposed HK turbine designs the rotors are projected to operate a lower RPM (revolutions per minute) than observed from conventional reaction turbines; the associated shear stress and pressure changes are expected to be lower and pose a smaller threat to fish survival (DOE 2009). Only a limited number of studies have been conducted to examine the risk of blade strike from hydrokinetic technologies to fish (Turnpenny et al. 1992, Normandeau et al. 2009, Seitz et al. 2011, EPRI 2011); the survival of drifting or weakly swimming fish (especially early life stages) that encounter rotor blades from hydrokinetic (HK) devices is currently unknown. Our study addressed this knowledge gap by testing how fish larvae and juveniles encountered different blade profiles of hydrokinetic devices and how such encounters influenced survivorship. We carried out a laboratory study designed to improve our understanding of how fish larvae and juvenile fish may be affected by encounters with rotor blades from HK turbines in the water column of river and ocean currents. (For convenience, these early life stages will be referred to as young of the year, YOY). The experiments developed information needed to quantify the risk (both probability and consequences) of rotor-blade strike to YOY fish. In particular, this study attempted to determine whether YOY drifting in a high-velocity flow directly in the path of the blade leading edge will make contact with the rotor blade or will bypass the blade while entrained in the boundary l

Schweizer, Peter E [ORNL; Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

2012-03-01T23:59:59.000Z

95

Review of Recent Literature Relevant to the Environmental Effects of Marine and Hydrokinetic Energy Devices; Task 2.1.3: Effects on Aquatic Organisms - Fiscal Year 2012 Progress Report  

SciTech Connect

A literature search was conducted by using the Web of Science databases component of the ISI Web of KnowledgeSM to identify recent articles that would be useful to help assess the potential environmental effects of renewable energy development in the ocean, with emphasis on seabirds and fish. Several relatively recent general review articles that included possible effects on seabirds and fish were examined to begin the search process. From these articles, several general topics of potential environmental effects on seabirds and fish were derived. These topics were used as the primary search factors. Additional sources were identified by cross-checking the Web of Science databases for articles that cited the review articles. It also became clear that the potential effects frequently w

Kropp, Roy K.

2013-01-01T23:59:59.000Z

96

SITING PROTOCOLS FOR MARINE AND HYDROKINETIC ENERGY PROJECTS  

Science Conference Proceedings (OSTI)

Project Objective: The purpose of this project is to identify and address regulatory issues that affect the cost, time and the management of potential effects as it relates to siting and permitting advanced water power technologies. Background: The overall goal of this effort is to reduce the cost, time and effort of managing potential effects from the development advanced water power projects as it relates to the regulatory process in siting and permitting. To achieve this goal, a multi-disciplinary team will collect and synthesize existing information regarding regulatory processes into a user-friendly online format. In addition, the team will develop a framework for project planning and assessment that can incorporate existing and new information. The team will actively collaborate and coordinate with other efforts that support or influence regulatory process. Throughout the process, the team will engage in an iterative, collaborative process for gathering input and testing ideas that involves the relevant stakeholders across all sectors at the national, regional, and all state levels.

Kopf, Steven; Klure, Justin; Hofford, Anna; McMurray, Greg; Hampton, Therese

2012-07-15T23:59:59.000Z

97

Concerns in Marine Renewable Energy Projects  

SciTech Connect

To accelerate the adoption of these emerging marine hydrokinetic technologies, navigational and environmental issues and concerns must be identified and addressed. As hydrokinetic projects move forward, various stakeholders will need to be engaged; one of the key issues that project proponents face as they engage stakeholders is that many conflicting uses and environmental issues are not well-understood. Much of this lack of understanding comes from a limited understanding of the technologies themselves. To address this issue, in September 2008, RE Vision consulting, LLC, was selected by the Department of Energy, under their market acceleration program, to apply a scenario-based assessment approach to the emerging hydrokinetic technology sector. The goal was to improve understanding of potential environmental and navigation impacts of these technologies and focus stakeholders on the critical issues. To meet this goal, the study established baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios captured variations in technical approaches and deployment scales and thus grounded the analysis in realistic constraints. The work conducted under this award provides an important foundation to other market acceleration activities carried out by the DoE and other stakeholders in this sector. The scenarios were then evaluated using a framework developed by H.T. Harvey & Associates to identify and characterize key environmental concerns and uncertainties. In collaboration with PCCI and the U.S. Coast Guard, navigation issues were assessed and guidelines developed to assure the safe operation of these systems. Finally, the work highlights next steps to take to continue development and adoption of marine hydrokinetic energy. Throughout the project, close collaboration with device developers, project developers and regulatory stakeholders was pursued to ensure that assumptions and constraints are realistic. Results concur with most of the permitting hurdles experienced by on-going projects in the U.S., and specific recommendations are provided for identifying and addressing them. While many areas of further research were identified, the study did not identify any major show-stopper, largely because these technologies have a relatively low environmental risk-profile if compared to other activities routinely permitted in the marine environment. The frameworks and representative scenarios developed provide an objective and transparent tool for stakeholders, regulators and developers to assist in the decision-making process for siting wave and tidal energy plants, and meet our goal of improving understanding between all stakeholders. The final product consists of three reports: Report 1 - Wave Energy Scenarios This report includes: - A technology characterization of four different wave energy technologies, including major technical specifications, device performance, and technical siting considerations - A site characterization of two potential deployment sites located in Hawaii and California - Outlines of device installation, O&M and decommissioning activities - Navigational demarcation requirements - Deployment Scenarios, identifying all the major life-cycle-related impacts Report 2 - Tidal Energy Scenarios This report includes: - A technology characterization of three tidal energy technologies, including major technical specifications, device performance, and technical siting considerations. - A site characterization of one potential deployment location in the Puget Sound, Washington - Outlines of device installation, O&M and decommissioning activities - Navigational demarcation requirements - Deployment Scenarios, identifying all the major life-cycle-related impacts Report 3 - Framework for Identifying Key Environmental Concerns This report describes frameworks for identifying key environmental effects and applies them to the wave and tidal energy deployment scenarios described in the first two reports. It highlights critical issues and recommendations for future research

Sharon Kramer, Mirko Previsic, Peter Nelson, Sheri Woo

2010-06-17T23:59:59.000Z

98

Multnomah County Hydrokinetic Feasibility Study: Final Feasibility Study Report  

Science Conference Proceedings (OSTI)

HDR has completed a study of the technical, regulatory, and economic feasibility of installing hydrokinetic turbines under the Morrison, Broadway, and Sellwood bridges. The primary objective of installing hydrokinetic turbines is a demonstration of in-stream hydrokinetic technologies for public education and outreach. Due to the low gradient of the Lower Willamette and the effects of the tide, velocities in the area in consideration are simply not high enough to economically support a commercial installation. While the velocities in the river may at times provide enough energy for a commercial turbine to reach capacity, the frequency and duration of high flow events which provide suitable velocities is not sufficient to support a commercial hydrokinetic installation. We have observed that over an 11 year period, daily average velocities in the Lower Willamette exceeded a nominal cut-in speed of 0.75 m/s only 20% of the time, leaving net zero power production for the remaining 80% of days. The Sellwood Bridge site was estimated to have the best hydrokinetic resource, with an estimated average annual production of about 9,000 kWh. The estimated production could range from 2,500 kWh to 15,000 kWh. Based on these energy estimates, the amount of revenue generated through either a power purchase agreement (PPA) or recovered through net metering is not sufficient to repay the project costs within the life of the turbine. The hydrokinetic resource at the Morrison and Broadway Bridges is slightly smaller than at the Sellwood Bridge. While the Broadway and Morrison Bridges have existing infrastructure that could be utilized, the project is not expected to generate enough revenue to repay the investment. Despite low velocities and energy production, the sites themselves are favorable for installation of a demonstration or experimental project. With high public interest in renewable energy, the possibility exists to develop a hydrokinetic test site which could provide developers and scientists a location to temporarily deploy and test hydrokinetic devices, and also function as an educational tool for the general public. Bridge piers provide an excellent pre-existing anchor point for hydrokinetic devices, and existing infrastructure at the Morrison and Broadway Bridges may reduce installation costs. Opportunity exists to partner with local universities with engineering and environmental interest in renewable energy. A partnership with Portland State University?¢????s engineering school could provide students with an opportunity to learn about hydrokinetics through senior design projects. Oregon State University and University of Washington, which are partnered through the Northwest National Marine Renewable Energy Center (NNMREC) to study and test hydrokinetic technology, are also relatively local to the site. In addition to providing an opportunity for both public and private entities to learn technically about in-stream kinetics, this approach will encourage grant funding for outreach, education, and product development, while also serving as a positive community relations opportunity for the County and its partners.

Stephen Spain

2012-03-15T23:59:59.000Z

99

Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual  

SciTech Connect

In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

Neary, Vincent S [ORNL; Gunawan, Budi [Oak Ridge National Laboratory (ORNL)

2011-09-01T23:59:59.000Z

100

Open Ocean Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Energy Ltd Jump to: navigation, search Name Open Ocean Energy Ltd Sector Marine and Hydrokinetic Website http:http:www.open-ocean-e LinkedIn Connections CrunchBase Profile No...

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Wave Energy Centre | Open Energy Information  

Open Energy Info (EERE)

search Name Wave Energy Centre Address Wave Energy Centre Av Manuela da Maia 36 R C Dto Place Lisboa Zip 1000-201 Sector Marine and Hydrokinetic Phone number (+351) 21...

102

Deployment Effects of Marin Renewable Energy Technologies  

Science Conference Proceedings (OSTI)

Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The projects scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industrys development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for Identifying Key Environmental Concerns This is the second report in the sequence and describes the results of conceptual feasibility studies of tidal power plants deployed in Tacoma Narrows, Washington. The Narrows contain many of the same competing stakeholder interactions identified at other tidal power sites and serves as a representative case study. Tidal power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize impacts, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informs the process of selecting representative tidal power devices. The selection criteria is that such devices are at an advanced stage of development to reduce technical uncertainties and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. A number of other developers are also at an advanced stage of development including Verdant Power, which has demonstrated an array of turbines in the East River of New York, Clean Current, which has demonstrated a device off Race Rocks, BC, and OpenHydro, which has demonstrated a device at the European Marine Energy Test Center and is on the verge of deploying a larger device in the Bay of Fundy. MCT demonstrated their device both at Devon (UK) and Strangford Narrows (Northern Ireland). Furthermore OpenHydro, CleanCurrent, and MCT are the three devices being installed at the Minas Passage (Canada). Environmental effects will largely scale with the size of tidal power development. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nom

Brian Polagye; Mirko Previsic

2010-06-17T23:59:59.000Z

103

Ocean Wave Wind Energy Ltd OWWE | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Ltd OWWE Jump to: navigation, search Name Ocean Wave Wind Energy Ltd OWWE Sector Marine and Hydrokinetic Website http:www.owwe.net Region Norway LinkedIn Connections...

104

Ocean Engineering and Energy Systems | Open Energy Information  

Open Energy Info (EERE)

and Energy Systems Jump to: navigation, search Name Ocean Engineering and Energy Systems Sector Marine and Hydrokinetic Website http:www.ocees.com Region United States LinkedIn...

105

Ocean Energy Company LLC | Open Energy Information  

Open Energy Info (EERE)

Ocean Energy Company LLC Address 505 Fifth Ave 800 Place Des Moines Zip 50309-2426 Sector Marine and Hydrokinetic Year founded 2011 Phone number (515) 246-1500 Region United States...

106

Ocean Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Ocean Energy Ltd Address 3 Casement Square Place Cobh Sector Marine and Hydrokinetic Phone number 00353-21-4816779 Website http:www.oceanenergy.ie Region Ireland LinkedIn...

107

Renewable Energy Research | Open Energy Information  

Open Energy Info (EERE)

Research Jump to: navigation, search Name Renewable Energy Research Address 2113 C Boulevard St Regis Place Dollard des Ormeaux Zip H9B 2M9 Sector Marine and Hydrokinetic Year...

108

Wave Energy Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Jump to: navigation, search Name Wave Energy Technologies Inc Address 270 Sandy Cove Rd Place Ketch Harbour Zip B3V 1K9 Sector Marine and Hydrokinetic Website http:...

109

Evaluation of Fish Injury and Mortality Associated with Hydrokinetic Turbines  

Science Conference Proceedings (OSTI)

Considerable efforts have been underway to develop hydrokinetic energy resources in tidal and riverine environments throughout North America. Potential for fish to be injured or killed if they encounter hydrokinetic turbines is an issue of significant interest to resource and regulatory agencies. To address this issue, flume studies were conducted that exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral reactions and avoidance. Also, a theoreti...

2011-11-29T23:59:59.000Z

110

1st Advanced Marine Renewable Energy Instrumentation Experts Workshop: April 5-7, 2011  

DOE Green Energy (OSTI)

The U.S. marine energy industry is actively pursuing development of offshore wind and marine hydrokinetic (MHK) energy systems. Experience in the wind energy sector demonstrates that new technology development requires thorough measurement and characterization of the environmental conditions prevalent at installation sites and of technology operating in the field. Presently, there are no turn-key instrumentation system solutions that meet the measurement needs of the marine energy industry. The 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop brought together technical experts from government laboratories, academia, and industry representatives from marine energy, wind, offshore oil and gas, and instrumentation developers to present and discuss the instrumentation needs of the marine energy industry. The goals of the meeting were to: (1) Share the latest relevant knowledge among technical experts; (2) Review relevant state-of-the-art field measurement technologies and methods; (3) Review lessons learned from recent field deployments; (4) Identify synergies across different industries; (5) Identify gaps between existing and needed instrumentation capabilities; (6) Understand who are the leading experts; (7) Provide a forum where stakeholders from the marine energy industry could provide substantive input in the development of new marine energy field deployable instrumentation packages.

Not Available

2011-10-01T23:59:59.000Z

111

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination Marine and Hydrokinetic Energy System Development of the Aquantis 2.5 Megawatt Ocean-Current Electricity Generation Device CX(s) Applied: A9, B3.6...

112

HYDROKAL: A module for in-stream hydrokinetic resource assessment  

Science Conference Proceedings (OSTI)

A new tool for hydrokinetic energy potential assessment in rivers-HYDROKAL, which stands for a ''hydrokinetic calculator''-is presented. This tool was developed in the Fortran 90 programming language as an external module for the CCHE2D application, ... Keywords: Instantaneous power density, Numerical modeling, Resource assessment, Stream

Paul Duvoy; Horacio Toniolo

2012-02-01T23:59:59.000Z

113

Assessment of Tidal Energy Removal Impacts on Physical Systems: Development of MHK Module and Analysis of Effects on Hydrodynamics  

SciTech Connect

In this report we describe (1) the development, test, and validation of the marine hydrokinetic energy scheme in a three-dimensional coastal ocean model (FVCOM); and (2) the sensitivity analysis of effects of marine hydrokinetic energy configurations on power extraction and volume flux in a coastal bay. Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics and Subtask 2.1.2.3, Screening Analysis, for fiscal year 2011 of the Environmental Effects of Marine and Hydrokinetic Energy project.

Yang, Zhaoqing; Wang, Taiping

2011-09-01T23:59:59.000Z

114

Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios  

SciTech Connect

Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The projects scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industrys development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industrys development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

Mirko Previsic

2010-06-17T23:59:59.000Z

115

Simulating Collisions for Hydrokinetic Turbines  

SciTech Connect

Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

2013-10-01T23:59:59.000Z

116

Simulating Collisions for Hydrokinetic Turbines. FY2010 Annual Progress Report.  

DOE Green Energy (OSTI)

Computational fluid dynamics (CFD) simulations of turbulent flow and particle motion are being conducted to evaluate the frequency and severity of collisions between marine and hydrokinetic (MHK) energy devices and debris or aquatic organisms. The work is part of a collaborative research project between Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratories , funded by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind and Water Power Program. During FY2010 a reference design for an axial flow MHK turbine was used to develop a computational geometry for inclusion into a CFD model. Unsteady simulations of turbulent flow and the moving MHK turbine blades are being performed and the results used for simulation of particle trajectories. Preliminary results and plans for future work are presented.

Richmond, Marshall C.; Rakowski, Cynthia L.; Perkins, William A.; Serkowski, John A.

2010-11-30T23:59:59.000Z

117

Marine Current Turbines Ltd | Open Energy Information  

Open Energy Info (EERE)

Turbines Ltd Turbines Ltd Jump to: navigation, search Name Marine Current Turbines Ltd (MCT) Place Bristol, United Kingdom Zip BS34 8PD Sector Marine and Hydrokinetic Product Developer of tidal stream turbine technology for exploiting flowing water in general and tidal streams in particular. Coordinates 51.454513°, -2.58791° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.454513,"lon":-2.58791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

EA-1965: Florida Atlantic University Southeast National Marine Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Florida Atlantic University Southeast National Marine 5: Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida EA-1965: Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida SUMMARY The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic University's South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMREC's experimental current generation turbine and the deployment and operation of their Small-Scale Ocean Current Turbine Test Berth, sited on the outer continental shelf (OCS) in waters off the coast of Ft Lauderdale, Florida.

119

THORs Power Method for Hydrokinetic Devices - Final Report  

DOE Green Energy (OSTI)

Ocean current energy represents a vast untapped source of renewable energy that exists on the outer continental shelf areas of the 5 major continents. Ocean currents are unidirectional in nature and are perpetuated by thermal and salinity sea gradients, as well as coriolis forces imparted from the earth's rotation. This report details THORs Power Method, a breakthrough power control method that can provide dramatic increases to the capacity factor over and above existing marine hydrokinetic (MHK) devices employed in the extraction of energy from ocean currents. THORs Power Method represents a constant speed, variable depth operational method that continually locates the ocean current turbine at a depth at which the rated power of the generator is routinely achieved. Variable depth operation is achieved by using various vertical force effectors, including ballast tanks for variable weight, a hydrodynamic wing for variable lift or down force and drag flaps for variable vehicle drag forces.

J. Turner Hunt; Joel Rumker

2012-08-08T23:59:59.000Z

120

UEK Corporation | Open Energy Information  

Open Energy Info (EERE)

UEK Corporation UEK Corporation Jump to: navigation, search Name UEK Corporation Place Annapolis, Maryland Zip 21403 Sector Hydro, Ocean Product Annapolis-based developer & manufacturer of hydro-kinetic turbines to harness river, tidal and ocean currents. References UEK Corporation[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Atchafalaya River Hydrokinetic Project II Chitokoloki Project Coal Creek Project Half Moon Cove Tidal Project Indian River Tidal Hydrokinetic Energy Project Luangwa Zambia Project Minas Basin Bay of Fundy Commercial Scale Demonstration Old River Outflow Channel Project Passamaquoddy Tribe Hydrokinetic Project

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Estimation of the Risks of Collision or Strike to Freshwater Aquatic Organisms Resulting from Operation of Instream Hydrokinetic Turbines  

DOE Green Energy (OSTI)

Hydrokinetic energy technologies have been proposed as renewable, environmentally preferable alternatives to fossil fuels for generation of electricity. Hydrokinetic technologies harness the energy of water in motion, either from waves, tides or from river currents. For energy capture from free-flowing rivers, arrays of rotating devices are most commonly proposed. The placement of hydrokinetic devices in large rivers is expected to increase the underwater structural complexity of river landscapes. Moore and Gregory (1988) found that structural complexity increased local fish populations because fish and other aquatic biota are attracted to structural complexity that provides microhabitats with steep flow velocity gradients (Liao 2007). However, hydrokinetic devices have mechanical parts, blades, wings or bars that move through the water column, posing a potential strike or collision risk to fish and other aquatic biota. Furthermore, in a setting with arrays of hydrokinetic turbines the cumulative effects of multiple encounters may increase the risk of strike. Submerged structures associated with a hydrokinetic (HK) project present a collision risk to aquatic organisms and diving birds (Cada et al. 2007). Collision is physical contact between a device or its pressure field and an organism that may result in an injury to that organism (Wilson et al. 2007). Collisions can occur between animals and fixed submerged structures, mooring equipment, horizontal or vertical axis turbine rotors, and structures that, by their individual design or in combination, may form traps. This report defines strike as a special case of collision where a moving part, such as a rotor blade of a HK turbine intercepts the path of an organism of interest, resulting in physical contact with the organism. The severity of a strike incidence may range from minor physical contact with no adverse effects to the organism to severe strike resulting in injury or death of the organism. Harmful effects to animal populations could occur directly (e.g., from strike mortality of individuals) or indirectly (e.g., if the loss of prey species to strike reduces food for predators). Although actively swimming or passively drifting animals may collide with any of the physical structures associated with hydrokinetic devices, turbine rotors are the most likely sources for risk of strike or significant collision (DOE 2009). It is also possible that during a close encounter with a HK device no physical contact will be made between the device and the organism, either because the animal avoids the device by successfully changing its direction of movement, or by successfully evading any moving parts of the device. Oak Ridge National Laboratory (ORNL) has been funded by the US Department of Energy (DOE) Waterpower Program to evaluate strike potential and consequences for Marine and Hydrokinetic (MHK) technologies in rivers and estuaries of the United States. We will use both predictive models and laboratory/field experiments to evaluate the likelihood and consequences of strike at HK projects in rivers. Efforts undertaken at ORNL address three objectives: (1) Assess strike risk for marine and freshwater organisms; (2) Develop experimental procedures to assess the risk and consequences of strike; and (3) Conduct strike studies in experimental flumes and field installations of hydrokinetic devices. During the first year of the study ORNL collected information from the Federal Energy Regulatory Commission (FERC) MHK database about geographical distribution of proposed hydrokinetic projects (what rivers or other types of systems), HK turbine design (horizontal axis, vertical axis, other), description of proposed axial turbine (number of blades, size of blades, rotation rate, mitigation measures), and number of units per project. Where site specific information was available, we compared the location of proposed projects rotors within the channel (e.g., along cutting edge bank, middle of thalweg, near bottom or in midwater) to the general locations of fish in the river (shoreline,

Schweizer, Peter E [ORNL; Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

2010-05-01T23:59:59.000Z

122

Estimation of the Risks of Collision or Strike to Freshwater Aquatic Organisms Resulting from Operation of Instream Hydrokinetic Turbines  

Science Conference Proceedings (OSTI)

Hydrokinetic energy technologies have been proposed as renewable, environmentally preferable alternatives to fossil fuels for generation of electricity. Hydrokinetic technologies harness the energy of water in motion, either from waves, tides or from river currents. For energy capture from free-flowing rivers, arrays of rotating devices are most commonly proposed. The placement of hydrokinetic devices in large rivers is expected to increase the underwater structural complexity of river landscapes. Moore and Gregory (1988) found that structural complexity increased local fish populations because fish and other aquatic biota are attracted to structural complexity that provides microhabitats with steep flow velocity gradients (Liao 2007). However, hydrokinetic devices have mechanical parts, blades, wings or bars that move through the water column, posing a potential strike or collision risk to fish and other aquatic biota. Furthermore, in a setting with arrays of hydrokinetic turbines the cumulative effects of multiple encounters may increase the risk of strike. Submerged structures associated with a hydrokinetic (HK) project present a collision risk to aquatic organisms and diving birds (Cada et al. 2007). Collision is physical contact between a device or its pressure field and an organism that may result in an injury to that organism (Wilson et al. 2007). Collisions can occur between animals and fixed submerged structures, mooring equipment, horizontal or vertical axis turbine rotors, and structures that, by their individual design or in combination, may form traps. This report defines strike as a special case of collision where a moving part, such as a rotor blade of a HK turbine intercepts the path of an organism of interest, resulting in physical contact with the organism. The severity of a strike incidence may range from minor physical contact with no adverse effects to the organism to severe strike resulting in injury or death of the organism. Harmful effects to animal populations could occur directly (e.g., from strike mortality of individuals) or indirectly (e.g., if the loss of prey species to strike reduces food for predators). Although actively swimming or passively drifting animals may collide with any of the physical structures associated with hydrokinetic devices, turbine rotors are the most likely sources for risk of strike or significant collision (DOE 2009). It is also possible that during a close encounter with a HK device no physical contact will be made between the device and the organism, either because the animal avoids the device by successfully changing its direction of movement, or by successfully evading any moving parts of the device. Oak Ridge National Laboratory (ORNL) has been funded by the US Department of Energy (DOE) Waterpower Program to evaluate strike potential and consequences for Marine and Hydrokinetic (MHK) technologies in rivers and estuaries of the United States. We will use both predictive models and laboratory/field experiments to evaluate the likelihood and consequences of strike at HK projects in rivers. Efforts undertaken at ORNL address three objectives: (1) Assess strike risk for marine and freshwater organisms; (2) Develop experimental procedures to assess the risk and consequences of strike; and (3) Conduct strike studies in experimental flumes and field installations of hydrokinetic devices. During the first year of the study ORNL collected information from the Federal Energy Regulatory Commission (FERC) MHK database about geographical distribution of proposed hydrokinetic projects (what rivers or other types of systems), HK turbine design (horizontal axis, vertical axis, other), description of proposed axial turbine (number of blades, size of blades, rotation rate, mitigation measures), and number of units per project. Where site specific information was available, we compared the location of proposed projects rotors within the channel (e.g., along cutting edge bank, middle of thalweg, near bottom or in midwater) to the general locations of fish in the river (shoreline,

Schweizer, Peter E [ORNL; Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

2010-05-01T23:59:59.000Z

123

Effects of Large Energetic Vortices on Axial-Flow Hydrokinetic Turbines  

DOE Green Energy (OSTI)

Large scale coherent motions around marine and hydrokinetic (MHK) machines can significantly increase the structural loading and affect the overall performance of the machines. Characterization of the approach turbulence and their impact on the instantaneous response of MHK devices is essential for improving their design and performance. This preliminary study investigates the effect of turbulence and dominant energetic coherent structures induced by a vertical cylinder on the structural load and energy production in a model MHK turbine. Results show that the power generated by the turbine is significantly reduced by the presence of the cylinder. This reduction depends on the distance from the cylinder and the level of turbulence around the rotor area.

Gunawan, Budi [ORNL; Neary, Vincent S [ORNL; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414

2012-01-01T23:59:59.000Z

124

Hydrokinetic Oscillators for Energy Harvesting via Coupling Polyvinylidene Fluoride (PVDF) and Electromagnetics.  

E-Print Network (OSTI)

??Sustainable energy generation has received a great deal of interest recently because the presence of greenhouse gases in our atmosphere is at an unprecedented high. (more)

Hudzik II, Alan Michael

2009-01-01T23:59:59.000Z

125

Seawind Marine | Open Energy Information  

Open Energy Info (EERE)

Seawind Marine Seawind Marine Jump to: navigation, search Name Seawind Marine Place Plymouth, England, United Kingdom Zip PL1 5NE Sector Services, Wind energy Product Focused on project management, engineering, construction and operations services for the wind energy industry. Coordinates 43.75681°, -87.984809° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.75681,"lon":-87.984809,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Marin Solar | Open Energy Information  

Open Energy Info (EERE)

Marin Solar Jump to: navigation, search Name Marin Solar Place San Rafael, California Zip 94901 Sector Solar Product Marin Solar is a residential installer of photovoltaic systems....

127

Shafir Civil Marine Engineering | Open Energy Information  

Open Energy Info (EERE)

Shafir Civil Marine Engineering Shafir Civil Marine Engineering Jump to: navigation, search Name Shafir Civil & Marine Engineering Place Israel Sector Services Product Services include infrastructure works, contracting, bridge construction and sewer line construction. References Shafir Civil & Marine Engineering[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Shafir Civil & Marine Engineering is a company located in Israel . References ↑ "Shafir Civil & Marine Engineering" Retrieved from "http://en.openei.org/w/index.php?title=Shafir_Civil_Marine_Engineering&oldid=350808" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

128

Northwest National Marine Renewable Energy Center (NNMREC)  

E-Print Network (OSTI)

Northwest National Marine Renewable Energy Center (NNMREC) Overview: ·OSU and UW are partners on the Northwest National Marine Renewable Energy Center (NNMREC). ·NNMREC's mission is to lead research in wave in Natural Energy (FINE) National Renewable Energy Laboratory (NREL) FUNDING PROVIDED BY: US Department

Tullos, Desiree

129

OES-IA Annex IV: Environmental Effects of Marine and Hydrokinetic Devices - Report from the Experts Workshop September 27th 28th 2010 Clontarf Castle, Dublin Ireland  

SciTech Connect

An experts' workshop was convened in Dublin Ireland September 27th 28th 2010 in support of IEA Ocean Energy Systems Implementing Agreement Annex IV. PNNL was responsible for organizing the content of the workshop, overseeing the contractors (Irish Marine Institute) hosting the event, presenting material on Annex IV and materials applicable to the workshop intent. PNNL is also overseeing a contractor (Wave Energy Center/University of Plymouth WEC/UP) in the collection and analysis of the Annex IV data. Fifty-eight experts from 8 countries attended the workshop by invitation, spending two days discussing the needs of Annex IV. Presentations by DOE (background on Annex IV), PNNL (process for developing Annex IV; presentation of the draft database for PNNL project, plans for incorporating Annex IV data), WEC/UP on the environmental effect matrix, and four MHK developers (two from the UK, one from Ireland and one from Sweden; each discussing their own projects and lessons learned for measuring and mitigating environmental effects, as well as interactions with consenting [permitting] processes) helped provide background. The workshop participants worked part of the time in the large group and most of the time in four smaller breakout groups. Participants engaged in the process and provided a wealth of examples of MHK environmental work, particularly in the European nations. They provided practical and actionable advice on the following: Developing the Annex IV database, with specific uses and audiences Strong consensus that we should collect detailed metadata on available data sets, rather than attempting to draw in copious datasets. The participants felt there would then be an opportunity to then ask for specific set of data as needed, with specific uses and ownership of the data specified. This is particularly important as many data collected, particularly in Europe but also in Canada, are proprietary; developers were not comfortable with the idea of handing over all their environmental effects data, but all said they would entertain the request if they specifics were clear. The recommendation was to collect metadata via an online interactive form, taking no more than one hour to complete. Although the idea of cases representing the best practices was recognized as useful, the participants pointed out that there are currently so few MHK projects in the water, that any and all projects were appropriate to highlight as cases. There was also discomfort at the implication that best practices implied lesser practices; this being unhelpful to a new and emerging industry. Workshop participants were asked if they were willing to continue to engage in the Annex IV process; all expressed willingness. The workshop was successful in adequately addressing its objectives and through participation and interaction in the breakout sessions around the various topics. As a result of the workshop, many delegates are now better informed and have a greater understanding of the potential environmental effects of MHK devices on the marine environment. There is now a greater sense of understanding of the issues involved and consensus by those regulators, developers and scientists who attended the workshop. A strong network has also been built over the two days between European and US/Canadian technical experts in wave and tidal energy.

Copping, Andrea E.; O'Toole, Michael J.

2010-12-02T23:59:59.000Z

130

Marin Energy Authority | Open Energy Information  

Open Energy Info (EERE)

Energy Authority Energy Authority Jump to: navigation, search Name Marin Energy Authority Place California Utility Id 56692 Utility Location Yes Ownership R NERC Location WECC NERC WECC Yes ISO CA Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1330/kWh Commercial: $0.0843/kWh Industrial: $0.0862/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Marin_Energy_Authority&oldid=411038" Categories:

131

Assessment and Mapping of the Riverine Hydrokinetic Resource in the  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Abstract This report describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. The assessment provides estimates of the gross, naturally available resource, termed the

132

2013 Federal Energy and Water Management Award Winner Marine...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Winner Marine Corps Recruit San Diego 2013 Federal Energy and Water Management Award Winner Marine Corps Recruit San Diego fewm13usmcmcdepotsandiegohighres.pdf...

133

Natural Currents Energy Services | Open Energy Information  

Open Energy Info (EERE)

Natural Currents Energy Services Natural Currents Energy Services Jump to: navigation, search Name Natural Currents Energy Services Address 24 Roxanne Blvd Place Highland Zip 12528 Sector Marine and Hydrokinetic Phone number 845-691-4008 Website http://www.naturalcurrents.com Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Angoon Tidal Energy Plant Avalon Tidal BW2 Tidal Cape Cod Tidal Energy Project Cape May Tidal Energy Cohansey River Tidal Energy Cuttyhunk Tidal Energy Plant Dorchester Maurice Tidal Fishers Island Tidal Energy Project Gastineau Channel Tidal Highlands Tidal Energy Project Housatonic Tidal Energy Plant

134

First State Marine Wind | Open Energy Information  

Open Energy Info (EERE)

State Marine Wind State Marine Wind Jump to: navigation, search Name First State Marine Wind Facility First State Marine Wind Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Gamesa / Blue Hen Wind Inc Developer First State Marine Wind LLC Location Atlantic Ocean DE Coordinates 38.836°, -75.154° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.836,"lon":-75.154,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies  

Science Conference Proceedings (OSTI)

The potential for fish populations to be negatively impacted by hydrokinetic turbines is a major issue associated with the development and licensing of this type of renewable energy source. Such impacts may include habitat alteration, disruptions in migrations and movements, and injury and mortality to fish that encounter turbines. In particular, there is considerable concern for fish and other aquatic organisms to interact with hydrokinetic turbines in a manner that could lead to alterations in normal b...

2011-10-31T23:59:59.000Z

136

Vortex Hydro Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Hydro Energy LLC Hydro Energy LLC Jump to: navigation, search Name Vortex Hydro Energy LLC Address 4870 West Clark Rd Suite 108 Place Ypsilanti Zip 48197 Sector Marine and Hydrokinetic Phone number 734.971.4020 Website http://www.vortexhydroenergy.c Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Marine Hydrodynamics Laboratory at the University of Michigan This company is involved in the following MHK Technologies: Vortex Induced Vibrations Aquatic Clean Energy VIVACE This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Vortex_Hydro_Energy_LLC&oldid=678497

137

Technological cost%3CU%2B2010%3Ereduction pathways for axial%3CU%2B2010%3Eflow turbines in the marine hydrokinetic environment.  

SciTech Connect

This report considers and prioritizes potential technical costreduction pathways for axialflow turbines designed for tidal, river, and ocean current resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were utilized to understand current cost drivers and develop a list of potential costreduction pathways: a literature review of technical work related to axialflow turbines, the U.S. Department of Energy Reference Model effort, and informal webinars and other targeted interactions with industry developers. Data from these various information sources were aggregated and prioritized with respect to potential impact on the lifetime levelized cost of energy. The four most promising costreduction pathways include structural design optimization; improved deployment, maintenance, and recovery; system simplicity and reliability; and array optimization.

Laird, Daniel L.; Johnson, Erick L.; Ochs, Margaret Ellen; Boren, Blake [Oregon State University, Corvallis, OR

2013-05-01T23:59:59.000Z

138

Technological cost%3CU%2B2010%3Ereduction pathways for axial%3CU%2B2010%3Eflow turbines in the marine hydrokinetic environment.  

Science Conference Proceedings (OSTI)

This report considers and prioritizes potential technical costreduction pathways for axialflow turbines designed for tidal, river, and ocean current resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were utilized to understand current cost drivers and develop a list of potential costreduction pathways: a literature review of technical work related to axialflow turbines, the U.S. Department of Energy Reference Model effort, and informal webinars and other targeted interactions with industry developers. Data from these various information sources were aggregated and prioritized with respect to potential impact on the lifetime levelized cost of energy. The four most promising costreduction pathways include structural design optimization; improved deployment, maintenance, and recovery; system simplicity and reliability; and array optimization.

Laird, Daniel L.; Johnson, Erick L.; Ochs, Margaret Ellen; Boren, Blake [Oregon State University, Corvallis, OR

2013-05-01T23:59:59.000Z

139

Wavemill Energy | Open Energy Information  

Open Energy Info (EERE)

Wavemill Energy Wavemill Energy Jump to: navigation, search Name Wavemill Energy Address 1 Research Dr Place Dartmouth Zip B2Y 4M9 Sector Marine and Hydrokinetic Phone number 613-847-5687 Website http://www.wavemill.com Region Canada LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Wavemill Energy Cape Breton Island NS CA This company is involved in the following MHK Technologies: Wavemill This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Wavemill_Energy&oldid=678514" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies

140

MHK Technologies/Blue Motion Energy marine turbine | Open Energy  

Open Energy Info (EERE)

Motion Energy marine turbine Motion Energy marine turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Blue Motion Energy marine turbine.jpg Technology Profile Primary Organization Blue Motion Energy Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Description The Blue Motion Energy marine turbine however uses a patented system of seawalls A placed radial around the vertically mounted rotor B this way it is possible to funnel the current and significantly increase the flow velocity independent of the direction of the current Technology Dimensions Device Testing Date Submitted 59:30.2 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Blue_Motion_Energy_marine_turbine&oldid=681547

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Experts Offer Marines Energy-Efficiency Advice | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Experts Offer Marines Energy-Efficiency Advice Experts Offer Marines Energy-Efficiency Advice Experts Offer Marines Energy-Efficiency Advice December 11, 2009 - 2:05pm Addthis Dr. John Barnett consulted for the military on saving energy in theater. | Photo courtesy NREL Dr. John Barnett consulted for the military on saving energy in theater. | Photo courtesy NREL Joshua DeLung As an early adopter of cutting-edge technologies, the United States military is pioneering energy efficiency and renewable energy technologies in the field. Recently, the Commandant of the United States Marine Corps sent a team to visit bases and camps in Afghanistan to assess and make recommendations on the supply and use of energy and water. If implemented, the findings will reduce demand for resources at military camps in strategically important areas of the country, translating to fewer trucks

142

Experts Offer Marines Energy-Efficiency Advice | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Experts Offer Marines Energy-Efficiency Advice Experts Offer Marines Energy-Efficiency Advice Experts Offer Marines Energy-Efficiency Advice December 11, 2009 - 2:05pm Addthis Dr. John Barnett consulted for the military on saving energy in theater. | Photo courtesy NREL Dr. John Barnett consulted for the military on saving energy in theater. | Photo courtesy NREL Joshua DeLung As an early adopter of cutting-edge technologies, the United States military is pioneering energy efficiency and renewable energy technologies in the field. Recently, the Commandant of the United States Marine Corps sent a team to visit bases and camps in Afghanistan to assess and make recommendations on the supply and use of energy and water. If implemented, the findings will reduce demand for resources at military camps in strategically important areas of the country, translating to fewer trucks

143

Dynamic energy budgets and bioaccumulation : a model for marine mammals and marine mammal populations  

E-Print Network (OSTI)

Energy intake of individuals affects growth of organisms and, therefore, populations. Persistent lipophilic toxicants acquired with the energy can bioaccumulate and harm individuals. Marine mammals are particularly vulnerable ...

Klanj?ek, Tin

2006-01-01T23:59:59.000Z

144

Carnegie Wave Energy Limited | Open Energy Information  

Open Energy Info (EERE)

Carnegie Wave Energy Limited Carnegie Wave Energy Limited Jump to: navigation, search Name Carnegie Wave Energy Limited Address 1 124 Stirling Highway Place North Fremantle Zip 6159 Sector Marine and Hydrokinetic Year founded 1993 Number of employees 25 Website http://www.carnegiewave.com Region Australia LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: CETO La Reunion CETO3 Garden Island Perth Wave Energy Project PWEP This company is involved in the following MHK Technologies: CETO Wave Energy Technology This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Carnegie_Wave_Energy_Limited&oldid=678263

145

Energy Department Releases New Energy 101 Video on Ocean Power | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Releases New Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power April 30, 2013 - 12:40pm Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy FIND OUT MORE Read about the Energy Department's assessments of wave and tidal energy resources. You've probably seen water at work generating electricity at dams and other hydropower facilities in your region. But an emerging clean energy technology called marine and hydrokinetic (MHK) energy -- or ocean power -- uses water to generate electricity in a different way, and has yet to get

146

HYDROCAP ENERGY SAS | Open Energy Information  

Open Energy Info (EERE)

HYDROCAP ENERGY SAS HYDROCAP ENERGY SAS Jump to: navigation, search Name HYDROCAP ENERGY SAS Address 65 Place Nicolas Copernic Technopole Brest Iroise Place Plozane Zip 29280 Sector Marine and Hydrokinetic Year founded 2004 Phone number +33 298451417 Website http://http://www.hydrocap.com Region France LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: SEACAP This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=HYDROCAP_ENERGY_SAS&oldid=678336" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes

147

Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound  

SciTech Connect

Hydrokinetic turbines will be a source of noise in the marine environment - both during operation and during installation/removal. High intensity sound can cause injury or behavioral changes in marine mammals and may also affect fish and invertebrates. These noise effects are, however, highly dependent on the individual marine animals; the intensity, frequency, and duration of the sound; and context in which the sound is received. In other words, production of sound is a necessary, but not sufficient, condition for an environmental impact. At a workshop on the environmental effects of tidal energy development, experts identified sound produced by turbines as an area of potentially significant impact, but also high uncertainty. The overall objectives of this project are to improve our understanding of the potential acoustic effects of tidal turbines by: (1) Characterizing sources of existing underwater noise; (2) Assessing the effectiveness of monitoring technologies to characterize underwater noise and marine mammal responsiveness to noise; (3) Evaluating the sound profile of an operating tidal turbine; and (4) Studying the effect of turbine sound on surrogate species in a laboratory environment. This study focuses on a specific case study for tidal energy development in Admiralty Inlet, Puget Sound, Washington (USA), but the methodologies and results are applicable to other turbine technologies and geographic locations. The project succeeded in achieving the above objectives and, in doing so, substantially contributed to the body of knowledge around the acoustic effects of tidal energy development in several ways: (1) Through collection of data from Admiralty Inlet, established the sources of sound generated by strong currents (mobilizations of sediment and gravel) and determined that low-frequency sound recorded during periods of strong currents is non-propagating pseudo-sound. This helped to advance the debate within the marine and hydrokinetics acoustic community as to whether strong currents produce propagating sound. (2) Analyzed data collected from a tidal turbine operating at the European Marine Energy Center to develop a profile of turbine sound and developed a framework to evaluate the acoustic effects of deploying similar devices in other locations. This framework has been applied to Public Utility District No. 1 of Snohomish Country's demonstration project in Admiralty Inlet to inform postinstallation acoustic and marine mammal monitoring plans. (3) Demonstrated passive acoustic techniques to characterize the ambient noise environment at tidal energy sites (fixed, long-term observations recommended) and characterize the sound from anthropogenic sources (drifting, short-term observations recommended). (4) Demonstrated the utility and limitations of instrumentation, including bottom mounted instrumentation packages, infrared cameras, and vessel monitoring systems. In doing so, also demonstrated how this type of comprehensive information is needed to interpret observations from each instrument (e.g., hydrophone data can be combined with vessel tracking data to evaluate the contribution of vessel sound to ambient noise). (5) Conducted a study that suggests harbor porpoise in Admiralty Inlet may be habituated to high levels of ambient noise due to omnipresent vessel traffic. The inability to detect behavioral changes associated with a high intensity source of opportunity (passenger ferry) has informed the approach for post-installation marine mammal monitoring. (6) Conducted laboratory exposure experiments of juvenile Chinook salmon and showed that exposure to a worse than worst case acoustic dose of turbine sound does not result in changes to hearing thresholds or biologically significant tissue damage. Collectively, this means that Chinook salmon may be at a relatively low risk of injury from sound produced by tidal turbines located in or near their migration path. In achieving these accomplishments, the project has significantly advanced the District's goals of developing a demonstration-scale tidal energy proj

Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

2012-03-30T23:59:59.000Z

148

Atlantisstrom | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Atlantisstrom Sector Marine and Hydrokinetic Website http:http:www.atlantisstro Region Germany LinkedIn Connections CrunchBase Profile No...

149

Wavebob | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Wavebob Address H3 Maynooth Business Campus Place Maynooth Sector Marine and Hydrokinetic Phone number +353 (0)1 651 0177 Website http:...

150

Energy Department Releases New Energy 101 Video on Ocean Power | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101 Video on Ocean Power Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power April 30, 2013 - 12:40pm Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy FIND OUT MORE Read about the Energy Department's assessments of wave and tidal energy resources. You've probably seen water at work generating electricity at dams and other hydropower facilities in your region. But an emerging clean energy technology called marine and hydrokinetic (MHK) energy -- or ocean power -- uses water to generate electricity in a different way, and has yet to get

151

Green Energy Corp | Open Energy Information  

Open Energy Info (EERE)

Green Energy Corp Green Energy Corp Sector Marine and Hydrokinetic Website http://www.gweconline.com Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Floating wave Generator Syphon Wave Generator This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Green_Energy_Corp&oldid=678318" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

152

Category:MHK Companies | Open Energy Information  

Open Energy Info (EERE)

MHK Companies MHK Companies Jump to: navigation, search Dictionary.png Looking for the Marine and Hydrokinetic Technology Database? The companies below are involved in the Marine and Hydrokinetic energy sector and are considered to be MHK Companies. Pages in category "MHK Companies" The following 200 pages are in this category, out of 291 total. (previous 200) (next 200) A Able Technologies ABS Alaskan Inc AER NY Kinetics LLC AeroVironment Alaska Power Telephone Company AlbaTERN Alternative Energy Engineering Associates LLP Applied Technologies Company Ltd Aqua Magnetics Inc AquaEnergy Aquamarine Power Aquantis Inc Aquaphile sarl Hydro Gen Aquascientific Arlas Invest Arnold Energy Systems Artificial Muscle Inc Atlantis Resources Corporation Atlantisstrom Atmocean Aviation Enterprises Ltd see Marine Current Turbines Ltd

153

New Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

New Energy Corp. New Energy Corp. Address Suite 473 3553 31 St NW Place South Bend, Indiana Zip 46613-1010 Sector Marine and Hydrokinetic Product 102mmgy (386.1m litres/y) ethanol producer. Year founded 2003 Phone number (403) 260-5248 Website http://www.newenergycorp.ca Region Canada References New Energy Corp.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Bonnybrook Wastewater Facility Project 1 Bonnybrook Wastewater Facility Project 2 Canoe Pass Galena ABS Alaskan Great River Journey Miette River Pointe du Bois Ruby ABS Alaskan Western Irrigation District This company is involved in the following MHK Technologies:

154

Congeneration Technologies | Open Energy Information  

Open Energy Info (EERE)

Name Congeneration Technologies Sector Marine and Hydrokinetic Website http:www.cogeneration.net Region United States LinkedIn Connections CrunchBase Profile No CrunchBase...

155

Marin Clean Energy - Feed-In Tariff | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marin Clean Energy - Feed-In Tariff Marin Clean Energy - Feed-In Tariff Marin Clean Energy - Feed-In Tariff < Back Eligibility Commercial Fed. Government Industrial Local Government Multi-Family Residential Nonprofit Residential State Government Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State California Program Type Performance-Based Incentive Rebate Amount Varies by technology and position in program capacity queue [http://www.leginfo.ca.gov/pub/01-02/bill/asm/ab_0101-0150/ab_117_bill_20... Assembly Bill 117], passed in 2002, allows communities in California to aggregate their load and to procure electricity from their own preferred sources. Under the authority of this law, California's first community

156

Hydra Tidal Energy Technology AS | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Technology AS Tidal Energy Technology AS Jump to: navigation, search Name Hydra Tidal Energy Technology AS Address PO Box 399 Place Harstad Zip 9484 Sector Marine and Hydrokinetic Year founded 2001 Phone number (+47) 77 06 08 08 Website http://http://www.hydratidal.i Region Norway LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: MORILD Demonstration Plant Morild 2 This company is involved in the following MHK Technologies: MORILD 2 Floating Tidal Power System Morild Power Plant This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Hydra_Tidal_Energy_Technology_AS&oldid=678333

157

Finavera Renewables Ocean Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Renewables Ocean Energy Ltd Renewables Ocean Energy Ltd Jump to: navigation, search Name Finavera Renewables Ocean Energy Ltd Address 595 Burrard Street Suite 3113 Three Bentall Centre PO Box 49071 Place Vancouver Zip V7X 1G4 Sector Marine and Hydrokinetic Phone number 604-288-9051 Website http://www.finavera.com Region Canada LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Coos County Offshore Wave Energy Power Plant Figueira da Foz Portugal Humboldt County Wave Project Makah Bay Offshore Wave Pilot Project South Africa Ucluelet BC Canada This company is involved in the following MHK Technologies: AquaBuoy This article is a stub. You can help OpenEI by expanding it.

158

Dexawave | Open Energy Information  

Open Energy Info (EERE)

Dexawave Dexawave Jump to: navigation, search Name Dexawave Sector Marine and Hydrokinetic Phone number + 45 8651 8690 Website http://http://www.dexawave.com Region Denmark LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: The DEXAWAVE wave energy converter This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Dexawave&oldid=678285" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

159

Oceanlinx | Open Energy Information  

Open Energy Info (EERE)

Oceanlinx Oceanlinx Jump to: navigation, search Name Oceanlinx Address PO Box 116 Place Botany Zip 1455 Sector Marine and Hydrokinetic Phone number 61 (0) 2 9549 6300 Website http://www.oceanlinx.com Region Australia LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: GPP Namibia Greenwave Rhode Island Ocean Wave Energy Project Hawaii Oceanlinx Maui Port Kembla Portland This company is involved in the following MHK Technologies: Denniss Auld Turbine Oceanlinx Mark 3 Wave Energy Converter This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Oceanlinx&oldid=678407

160

Marine Projects International Ltd MPI formerly Mayflower Energy Ltd | Open  

Open Energy Info (EERE)

MPI formerly Mayflower Energy Ltd MPI formerly Mayflower Energy Ltd Jump to: navigation, search Name Marine Projects International Ltd (MPI) (formerly Mayflower Energy Ltd) Place United Kingdom Zip TS3 8BS Sector Wind energy Product Specialist offshore wind installation equipment supplier. References Marine Projects International Ltd (MPI) (formerly Mayflower Energy Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Marine Projects International Ltd (MPI) (formerly Mayflower Energy Ltd) is a company located in United Kingdom . References ↑ "Marine Projects International Ltd (MPI) (formerly Mayflower Energy Ltd)" Retrieved from "http://en.openei.org/w/index.php?title=Marine_Projects_International_Ltd_MPI_formerly_Mayflower_Energy_Ltd&oldid=348642

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Interproject Service AB | Open Energy Information  

Open Energy Info (EERE)

Interproject Service AB Jump to: navigation, search Name Interproject Service AB Sector Marine and Hydrokinetic Website http:www.ips-ab.com Region Sweden LinkedIn Connections...

162

Offshore Islands Ltd | Open Energy Information  

Open Energy Info (EERE)

Islands Ltd Jump to: navigation, search Name Offshore Islands Ltd Sector Marine and Hydrokinetic Website http:http:www.offshoreisla Region United States LinkedIn Connections...

163

Offshore Infrastructure Associates Inc | Open Energy Information  

Open Energy Info (EERE)

Infrastructure Associates Inc Jump to: navigation, search Name Offshore Infrastructure Associates Inc Sector Marine and Hydrokinetic Website http:http:www.offinf.com Region...

164

Green Cat Renewables | Open Energy Information  

Open Energy Info (EERE)

Green Cat Renewables Jump to: navigation, search Name Green Cat Renewables Sector Marine and Hydrokinetic Website http:http:www.greencatrene Region Scotland LinkedIn...

165

Green Heat Solutions Limited | Open Energy Information  

Open Energy Info (EERE)

Heat Solutions Limited Jump to: navigation, search Name Green Heat Solutions Limited Sector Marine and Hydrokinetic Website http:http:www.greenheating Region Scotland LinkedIn...

166

Tidal Hydraulic Generators Ltd | Open Energy Information  

Open Energy Info (EERE)

Hydraulic Generators Ltd Jump to: navigation, search Name Tidal Hydraulic Generators Ltd Address 14 Thislesboon Drive Place Mumbles Zip SA3 4HY Sector Marine and Hydrokinetic Phone...

167

Pelagic Power AS | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Pelagic Power AS Address LIV bygget Place Vanvikan Zip N-7125 Sector Marine and Hydrokinetic Website http:www.pelagicpower.com Region Norway...

168

Teamwork Technology See Tocardo | Open Energy Information  

Open Energy Info (EERE)

Teamwork Technology See Tocardo Jump to: navigation, search Name Teamwork Technology See Tocardo Sector Marine and Hydrokinetic Website http:http:www.tocardo.com Region...

169

Chevron Technology Ventures LLC | Open Energy Information  

Open Energy Info (EERE)

Chevron Technology Ventures LLC Jump to: navigation, search Name Chevron Technology Ventures LLC Address 3901 Briarpark Drive Place Houston Zip 77042 Sector Marine and Hydrokinetic...

170

Aquaphile sarl Hydro Gen | Open Energy Information  

Open Energy Info (EERE)

Aquaphile sarl Hydro Gen Jump to: navigation, search Name Aquaphile sarl Hydro Gen Address 210 Le Vrennic Place Landda Zip 29870 Sector Marine and Hydrokinetic Phone number...

171

Voith Hydro Wavegen Limited | Open Energy Information  

Open Energy Info (EERE)

Voith Hydro Wavegen Limited Jump to: navigation, search Name Voith Hydro Wavegen Limited Sector Marine and Hydrokinetic Website http:www.wavegen.co.uk Region United Kingdom...

172

CX-005128: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

28: Categorical Exclusion Determination 28: Categorical Exclusion Determination CX-005128: Categorical Exclusion Determination The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings For use in Marine Hydrokinetic (MHK) Energy Machines CX(s) Applied: A9, B3.6 Date: 01/25/2011 Location(s): Orem, Utah Office(s): Energy Efficiency and Renewable Energy, Golden Field Office United States Synthetic Corporation is proposing to use federal funding to design, fabricate and test polycrystalline diamond (PCD) thrust bearings for marine hydrokinetic (MHK) systems. A key design element in most MHK strategies would be robust bearings, which can operate for extended periods of time in the harsh marine environments. The goal of the proposed project is to demonstrate how PCD thrust bearings would reduce the cost of

173

CX-005184: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

84: Categorical Exclusion Determination 84: Categorical Exclusion Determination CX-005184: Categorical Exclusion Determination The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings For use in Marine Hydrokinetic Energy Machines CX(s) Applied: A9, B3.6 Date: 01/28/2011 Location(s): Orem, Utah Office(s): Energy Efficiency and Renewable Energy, Golden Field Office United States Synthetic Corporation is proposing to use federal funding to design, fabricate and test polycrystalline diamond (PCD) thrust bearings for marine hydrokinetic (MHK) systems. A key design element in most MHK strategies would be robust bearings, which can operate for extended periods of time in the harsh marine environments. The goal of the proposed project is to demonstrate how PCD thrust bearings would reduce the cost of

174

Water Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Blog Water Blog RSS December 10, 2013 The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. | Graphic courtesy of TopCoder Calling All Coders: Help Advance America's Ocean Power Industry The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. August 14, 2013 Tacoma Power's Cushman Hydroelectric Project installed a new two-generator powerhouse that increases electric generation capacity by 3.6 megawatts and captures energy from previously untapped water flows. | Photo courtesy of Tacoma Power.

175

Marine Mammal Protection Act | Open Energy Information  

Open Energy Info (EERE)

Mammal Protection Act Mammal Protection Act Jump to: navigation, search Statute Name Marine Mammal Protection Act Year 1972 Url [[File:|160px|link=]] Description References NOAA Overview[1] The Marine Mammal Protection Act (MMPA) was enacted on October 21, 1972. All marine mammals are protected under the MMPA. The MMPA prohibits, with certain exceptions, the "take" of marine mammals in U.S. waters and by U.S. citizens on the high seas, and the importation of marine mammals and marine mammal products into the U.S. Congress passed the Marine Mammal Protection Act of 1972 based on the following findings and policies: Some marine mammal species or stocks may be in danger of extinction or depletion as a result of human activities; These species or stocks must not be permitted to fall below their

176

Seawood Designs Inc | Open Energy Information  

Open Energy Info (EERE)

Seawood Designs Inc Seawood Designs Inc Jump to: navigation, search Name Seawood Designs Inc Address 201 Marine Drive Cobble Hill Place Vancouver Island Zip V0R 1L1 Sector Marine and Hydrokinetic Phone number 250-743-7107 Website http://www.surfpower.ca Region Canada LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Lake Huron This company is involved in the following MHK Technologies: SurfPower This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Seawood_Designs_Inc&oldid=678455" Categories: Clean Energy Organizations Companies Organizations Stubs

177

CX-006520: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20: Categorical Exclusion Determination 20: Categorical Exclusion Determination CX-006520: Categorical Exclusion Determination High Energy Density Distributed Hydrostatic Direct Drive for Large Wind Turbine and Marine Hydro-Kinetic Device Applications CX(s) Applied: A9 Date: 08/16/2011 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The Department of Energy is proposing to provide federal funding to Dehlsen Associates, LLC to develop and refine a high energy Hydrostatic Direct Drivetrain (HOD) for large wind turbine (1.5+ megawatt) and marine hydro-kinetic energy technology application. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-006520.pdf More Documents & Publications CX-005670: Categorical Exclusion Determination CX-001841: Categorical Exclusion Determination

178

AWS Ocean Energy formerly Oceanergia | Open Energy Information  

Open Energy Info (EERE)

formerly Oceanergia formerly Oceanergia Jump to: navigation, search Name AWS Ocean Energy formerly Oceanergia Address Redshank House Alness Point Business Park Place Alness Ross shire Zip IV17 0UP Sector Marine and Hydrokinetic Phone number 44 (0) 1349 88 44 22 Website http://www.awsocean.com Region United Kingdom LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: AWS II Portugal Pre Commercial Pilot Project This company is involved in the following MHK Technologies: Archimedes Wave Swing This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=AWS_Ocean_Energy_formerly_Oceanergia&oldid=678253

179

Swell Fuel | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Swell Fuel Place Houston, Texas Zip 77072 Sector Marine and Hydrokinetic Product Texas-based developer of small-scale wave energy devices. Website http://www.swellfuel.com References Swell Fuel LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Lever Operated Pivoting Float Swell Fuel This article is a stub. You can help OpenEI by expanding it. Swell Fuel is a company located in Houston, Texas . References Retrieved from "http://en.openei.org/w/index.php?title=Swell_Fuel&oldid=680057" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies

180

MHK Technologies | Open Energy Information  

Open Energy Info (EERE)

MHK Technologies MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Click one of the following Marine Hydrokinetic Technologies for more information: Loading... 14 MW OTECPOWER Aegir Dynamo AirWEC Anaconda bulge tube drives turbine AquaBuoy Aquanator Aquantis Archimedes Wave Swing Atlantis AN 150 Atlantis AR 1000 Atlantis AS 400 Atlantisstrom BOLT Lifesaver Benkatina Turbine Blue Motion Energy marine turbine Bluetec Brandl Generator C Plane C Wave C5 CETO Wave Energy Technology Centipod Closed Cycle OTEC CoRMaT Cross Flow Turbine Current Catcher Current Electric Generator Current Power CurrentStar DEXA Wave Converter Davidson Hill Venturi DHV Turbine Deep Gen Tidal Turbines Deep Green Deep Ocean Water Application Facility DOWAF Deep Water Pipelines Deep water capable hydrokinetic turbine

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Verdant Power | Open Energy Information  

Open Energy Info (EERE)

Verdant Power Verdant Power Jump to: navigation, search Name Verdant Power Place New York, New York Zip 10044 Sector Marine and Hydrokinetic Product A systems integrator and a developer of free-flow turbine systems that generates utility and village scale electric power from natural underwater currents. References Verdant Power[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Cornwall Ontario River Energy CORE Roosevelt Island Tidal Energy RITE This company is involved in the following MHK Technologies: Kinetic Hydropower System KHPS This article is a stub. You can help OpenEI by expanding it. Verdant Power is a company located in New York, New York .

182

Market Acceleration | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Market Acceleration Market Acceleration Market Acceleration Photo of several men on a floating platform that is lowering monitoring tools into the ocean. The Water Power Program works to foster a commercial market for marine and hydrokinetic (MHK) energy devices in order to achieve its goal of the nation obtaining 15% of its electricity needs from all types of water power by 2030. Though marine and hydrokinetic energy is still in its infancy, the program is developing a robust portfolio of projects to accelerate wave, tidal and current project deployments and development of the MHK market in general. These projects include project siting activities, market assessments, environmental impact analyses, and research supporting technology commercialization. Learn more about the Water Power Program's work in the following areas of

183

Uppsala University Division for Electricity | Open Energy Information  

Open Energy Info (EERE)

Division for Electricity Jump to: navigation, search Name Uppsala University Division for Electricity Sector Marine and Hydrokinetic Website http:www.el.angstrom.uu.sef Region...

184

Modeling options for Current Energy Convertor Systems and Associated...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Associated Challenges Marine and Hydrokinetic Instrumentation, Measurement & Computer Modeling Workshop Allie Cribbs Ocean Engineer Ecomerit Technologies, LLC July 10 th ,...

185

CX-005561: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5561: Categorical Exclusion Determination 5561: Categorical Exclusion Determination CX-005561: Categorical Exclusion Determination Underwater Active Acoustic Monitoring Support for Marine Hydrokinetic Energy Projects CX(s) Applied: A9, B3.6 Date: 04/06/2011 Location(s): New Hampshire Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Scientific Solutions, Incorporated (SSI) is proposing to use Department of Energy and cost-share funding to further advance its existing Swimmer Detection Sonar Network (SDSN) system in a joint effort with Ocean Renewable Power Company (ORPC) to fully develop, Integrate, test, and operate a full-scale active acoustic monitoring system for Marine Hydrokinetic (MHK) and other offshore renewable energy projects; specifically for monitoring the region surrounding a tidal turbine. The

186

CX-004836: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

836: Categorical Exclusion Determination 836: Categorical Exclusion Determination CX-004836: Categorical Exclusion Determination Marine and Hydrokinetic Technology Readiness Advancement Initiative CX(s) Applied: A9, B3.6 Date: 12/16/2010 Location(s): Lynnwood, Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Sound & Sea Technology, Incorporated (SST), in Lynnwood, Washington, is proposing to use Department of Energy funding to study wave energy device anchoring and mooring techniques applicable for the full range of marine and hydrokinetic (MHK) technologies. SST would develop a remotely controlled grouting procedure suitable for deepwater anchor installations to securely and cost-effectively anchor ocean energy devices to seabed's, while reducing the capital and installation costs of MHK systems.

187

Water News and Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water News and Blog Water News and Blog Water News and Blog Blog The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. | Graphic courtesy of TopCoder Calling All Coders: Help Advance America's Ocean Power Industry December 10, 2013 3:57 PM The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. Read The Full Story Tacoma Power's Cushman Hydroelectric Project installed a new two-generator powerhouse that increases electric generation capacity by 3.6 megawatts and captures energy from previously untapped water flows. | Photo courtesy of Tacoma Power.

188

Marin County, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Marin County, California: Energy Resources Marin County, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.083403°, -122.7633036° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.083403,"lon":-122.7633036,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

189

Hydro-kinetic approach to relativistic heavy ion collisions  

E-Print Network (OSTI)

We develop a combined hydro-kinetic approach which incorporates a hydrodynamical expansion of the systems formed in \\textit{A}+\\textit{A} collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generalized relaxation time ($\\tau_{\\text{rel}}$) approximation for the Boltzmann equation applied to inhomogeneous expanding systems; at small $\\tau_{\\text{rel}}$ it also allows one to catch the viscous effects in hadronic component - hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to a sharp freeze-out limit, are momentum dependent. The pion $m_{T}$ spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support an earlier decoupling of higher $p_{T}$ particles. By performing numerical simulations for various initial conditions and equations of state we identify several characteristic features of the bulk QCD matter evolution preferred in view of the current analysis of heavy ion collisions at RHIC energies.

S. V. Akkelin; Y. Hama; Iu. A. Karpenko; Yu. M. Sinyukov

2008-04-25T23:59:59.000Z

190

Marine Hydrogen and Fuel Cell Association MHFCA | Open Energy Information  

Open Energy Info (EERE)

Hydrogen and Fuel Cell Association MHFCA Hydrogen and Fuel Cell Association MHFCA Jump to: navigation, search Name Marine Hydrogen and Fuel Cell Association (MHFCA) Place Leipzig, Germany Zip D-04318 Sector Hydro, Hydrogen Product Non-profit organisation set up to actively support the integration of hydrogen as an energy carrier into marine systems. References Marine Hydrogen and Fuel Cell Association (MHFCA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Marine Hydrogen and Fuel Cell Association (MHFCA) is a company located in Leipzig, Germany . References ↑ "Marine Hydrogen and Fuel Cell Association (MHFCA)" Retrieved from "http://en.openei.org/w/index.php?title=Marine_Hydrogen_and_Fuel_Cell_Association_MHFCA&oldid=348641

191

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

and Tidal Stream Energy Conversion Devices * Ocean Energy - HydroKinetic Energy - Marine Energy Terminology 4 Terminology: HydroKinetic * Hydro Greek word for water (hydor) *...

192

CX-005112: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

112: Categorical Exclusion Determination 112: Categorical Exclusion Determination CX-005112: Categorical Exclusion Determination Environmentally Benign and Permanent Surface Modifications to Prevent Biofueling on Marine and Hydrokinetic Devices CX(s) Applied: A9, B3.6 Date: 01/25/2011 Location(s): Cambridge, Massachusetts Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Semprus BioSciences, in Cambridge, Massachusetts, is proposing to use Department of Energy funding to develop an innovative, nontoxic surface coating that would prevent the growth of aquatic organisms on marine and hydrokinetic (MHK) energy devices. This research into underwater coatings that prevent biofueling would have the potential to positively impact all MHK systems and improve the conversion efficiency for MHK systems.

193

CX-004548: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

548: Categorical Exclusion Determination 548: Categorical Exclusion Determination CX-004548: Categorical Exclusion Determination Active Flow Control on Bidirectional Rotors for Tidal Marine Hydrokinetic Applications CX(s) Applied: A9 Date: 11/30/2010 Location(s): Davis, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The University of California, Davis (UCD) is proposing to use Department of Energy funding for computer modeling to improve the design of the bidirectional rotor tidal turbine (BRTT) for tidal marine hydrokinetic applications. The BRTT design, an already established and commercially applied technology, has disadvantages. Although the simpler design reduces energy costs, without pitch-adjustment and optimally cambered blades, the BRTT rotor is relatively inefficient. UCD is proposing to recapture some of

194

Arlas Invest | Open Energy Information  

Open Energy Info (EERE)

Arlas Invest Arlas Invest Jump to: navigation, search Name Arlas Invest Sector Marine and Hydrokinetic Website http://www.capricornioct.com Region Spain LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: TUVALU This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Arlas_Invest&oldid=678244" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

195

Seabased AB | Open Energy Information  

Open Energy Info (EERE)

Seabased AB Seabased AB Jump to: navigation, search Name Seabased AB Address Dag Hammarskjlds vg 52B Place Uppsala Zip S-75183 Sector Marine and Hydrokinetic Phone number 46,705,325,560 Website http://www.seabased.com Region Sweden LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Uppsala University Seabased AB Lysekil Sweden This company is involved in the following MHK Technologies: Seabased This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Seabased_AB&oldid=678449" Categories: Clean Energy Organizations Companies Organizations Stubs

196

RDZ Renewables | Open Energy Information  

Open Energy Info (EERE)

RDZ Renewables RDZ Renewables Jump to: navigation, search Name RDZ Renewables Sector Marine and Hydrokinetic Phone number (442) 210 45-85 Website http://www.rdz-r.com/new/engli LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: UFCAP This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=RDZ_Renewables&oldid=678432" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

197

Minesto AB | Open Energy Information  

Open Energy Info (EERE)

Minesto AB Minesto AB Jump to: navigation, search Name Minesto AB Sector Marine and Hydrokinetic Website http://http://www.minesto.com/ Region Sweden LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Deep Green This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Minesto_AB&oldid=678379" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

198

Mananook Associates | Open Energy Information  

Open Energy Info (EERE)

Mananook Associates Mananook Associates Jump to: navigation, search Name Mananook Associates Address PO Box 69 Place Perry Zip 4667 Sector Marine and Hydrokinetic Phone number 207-733-5513 Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Grand Manan Channel Project This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Mananook_Associates&oldid=678368" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

199

Framework for Identifying Key Environmental Concerns in Marine Renewable Energy Projects- Appendices  

SciTech Connect

Marine wave and tidal energy technology could interact with marine resources in ways that are not well understood. As wave and tidal energy conversion projects are planned, tested, and deployed, a wide range of stakeholders will be engaged; these include developers, state and federal regulatory agencies, environmental groups, tribal governments, recreational and commercial fishermen, and local communities. Identifying stakeholders environmental concerns in the early stages of the industrys development will help developers address and minimize potential environmental effects. Identifying important concerns will also assist with streamlining siting and associated permitting processes, which are considered key hurdles by the industry in the U.S. today. In September 2008, RE Vision consulting, LLC was selected by the Department of Energy (DoE) to conduct a scenario-based evaluation of emerging hydrokinetic technologies. The purpose of this evaluation is to identify and characterize environmental impacts that are likely to occur, demonstrate a process for analyzing these impacts, identify the key environmental concerns for each scenario, identify areas of uncertainty, and describe studies that could address that uncertainty. This process is intended to provide an objective and transparent tool to assist in decision-making for siting and selection of technology for wave and tidal energy development. RE Vision worked with H. T. Harvey & Associates, to develop a framework for identifying key environmental concerns with marine renewable technology. This report describes the results of this study. This framework was applied to varying wave and tidal power conversion technologies, scales, and locations. The following wave and tidal energy scenarios were considered: ? 4 wave energy generation technologies ? 3 tidal energy generation technologies ? 3 sites: Humboldt coast, California (wave); Makapuu Point, Oahu, Hawaii (wave); and the Tacoma Narrows, Washington (tidal) ? 3 project sizes: pilot, small commercial, and large commercial The possible combinations total 24 wave technology scenarios and 9 tidal technology scenarios. We evaluated 3 of the 33 scenarios in detail: 1. A small commercial OPT Power Buoy project off the Humboldt County, California coast 2. A small commercial Pelamis Wave Power P-2 project off Makapuu Point, Oahu, Hawaii 3. A pilot MCT SeaGen tidal project, sited in the Tacoma Narrows, Washington This framework document used information available from permitting documents that were written to support actual wave or tidal energy projects, but the results obtained here should not be confused with those of the permitting documents1. The main difference between this framework document and permitting documents of currently proposed pilot projects is that this framework identifies key environmental concerns and describes the next steps in addressing those concerns; permitting documents must identify effects, find or declare thresholds of significance, evaluate the effects against the thresholds, and find mitigation measures that will minimize or avoid the effects so they can be considered less-than-significant. Two methodologies, 1) an environmental effects analysis and 2) Raptools, were developed and tested to identify potential environmental effects associated with wave or tidal energy conversion projects. For the environmental effects analysis, we developed a framework based on standard risk assessment techniques. The framework was applied to the three scenarios listed above. The environmental effects analysis addressed questions such as: ? What is the temporal and spatial exposure of a species at a site? ? What are the specific potential project effects on that species? ? What measures could minimize, mitigate, or eliminate negative effects? ? Are there potential effects of the project, or species response to the effect, that are highly uncertain and warrant additional study? The second methodology, Raptools, is a collaborative approach useful for evaluating multiple characteristi

Sharon Kramer; Mirko Previsic; Peter Nelson; Sheri Woo

2010-06-17T23:59:59.000Z

200

Hawaii Marine Base Installs Solar Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marine Base Installs Solar Roofs Marine Base Installs Solar Roofs Hawaii Marine Base Installs Solar Roofs April 2, 2010 - 2:42pm Addthis Lorelei Laird Writer, Energy Empowers What does this project do? Marine Corps Base Hawaii replaced roofs on two buildings with polyvinyl chloride membrane 'cool' roofs and solar panels. The new roofs saves $20,000 a year in energy costs. Built on the end of the Mokapu Peninsula on Oahu's northeast coast, the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay gets plenty of sunlight. But harnessing that sunlight to create renewable electricity was considered too expensive to be practical - until 2008. That's when MCBH took advantage of planned maintenance funding to help offset the high cost of installing photovoltaic panels on the base. As a military entity, MCBH can't directly take advantage of federal or state

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hawaii Marine Base Installs Solar Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii Marine Base Installs Solar Roofs Hawaii Marine Base Installs Solar Roofs Hawaii Marine Base Installs Solar Roofs April 2, 2010 - 2:42pm Addthis Lorelei Laird Writer, Energy Empowers What does this project do? Marine Corps Base Hawaii replaced roofs on two buildings with polyvinyl chloride membrane 'cool' roofs and solar panels. The new roofs saves $20,000 a year in energy costs. Built on the end of the Mokapu Peninsula on Oahu's northeast coast, the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay gets plenty of sunlight. But harnessing that sunlight to create renewable electricity was considered too expensive to be practical - until 2008. That's when MCBH took advantage of planned maintenance funding to help offset the high cost of installing photovoltaic panels on the base. As a military entity, MCBH can't directly take advantage of federal or state

202

Maine Maritime Academy | Open Energy Information  

Open Energy Info (EERE)

Academy Academy Jump to: navigation, search Name Maine Maritime Academy Address Engineering Department Pleasant Street Place Castine Zip 4420 Sector Marine and Hydrokinetic Phone number 207-326-2365 Website http://http://www.mainemaritim Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Castine Harbor Badaduce Narrows Tidal Energy Device Evaluation Center TIDEC This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Maine_Maritime_Academy&oldid=678366" Categories: Clean Energy Organizations Companies Organizations Stubs

203

Tillamook Intergovernmental Development Entity | Open Energy Information  

Open Energy Info (EERE)

Intergovernmental Development Entity Intergovernmental Development Entity Jump to: navigation, search Name Tillamook Intergovernmental Development Entity Address Tillamook People s Utility District 1115 Pacific Avenue Place Tillamook Zip 97141 Sector Marine and Hydrokinetic Phone number 503-842-2535 Website http://www.tpud.org Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Oregon Coastal Wave Energy This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Tillamook_Intergovernmental_Development_Entity&oldid=678482" Categories: Clean Energy Organizations

204

Public Utility District No 1 of Snohomish County | Open Energy Information  

Open Energy Info (EERE)

District No 1 of Snohomish County District No 1 of Snohomish County Jump to: navigation, search Name Public Utility District No 1 of Snohomish County Address 2320 California Street PO Box 1107 Place Everett Zip 98206 Sector Marine and Hydrokinetic Phone number 425-783-1825 Website http://www.snopud.com Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Admirality Inlet Tidal Energy Project Deception Pass Tidal Energy Hydroelectric Project Guemes Channel Tidal Energy Project San Juan Channel Tidal Energy Project Spieden Channel Tidal Energy Project This article is a stub. You can help OpenEI by expanding it. Retrieved from

205

MHK Projects | Open Energy Information  

Open Energy Info (EERE)

MHK Projects MHK Projects Jump to: navigation, search << Return to the MHK database homepage Click one of the following Marine Hydrokinetic Projects for more information: Loading... 40MW Lewis project ADM 3 ADM 4 ADM 5 AW Energy EMEC AWS II Admirality Inlet Tidal Energy Project Agucadoura Alaska 1 Alaska 13 Alaska 17 Alaska 18 Alaska 24 Alaska 25 Alaska 28 Alaska 31 Alaska 33 Alaska 35 Alaska 36 Alaska 7 Algiers Cutoff Project Algiers Light Project Amity Point Anconia Point Project Angoon Tidal Energy Plant Aquantis Project Ashley Point Project Astoria Tidal Energy Atchafalaya River Hydrokinetic Project II Avalon Tidal Avondale Bend Project BW2 Tidal Bar Field Bend Barfield Point Bayou Latenache Belair Project Belleville BioSTREAM Pilot Plant Bluemill Sound Bondurant Chute Bonnybrook Wastewater Facility Project 1

206

Steven Chalk | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steven Chalk Steven Chalk About Us Steven Chalk - Deputy Assistant Secretary for Renewable Energy, Office of Energy Efficiency & Renewable Energy In his role as Deputy Assistant Secretary for Renewable Energy in the Office of Energy Efficiency and Renewable Energy (EERE), Steven Chalk oversees applied research, development, and demonstration for a diverse clean energy portfolio. This portfolio spans wind, solar, geothermal, conventional hydropower, marine and hydrokinetic, biomass, and hydrogen technologies. Prior to his current position, Steve served as EERE's Chief Operating Officer and led EERE's Recovery Act implementation, which included $17 billion of awards, part of the nation's largest-ever investment in clean energy. Steve also supported the Treasury Department

207

Marin County - Solar Access Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marin County - Solar Access Code Marin County - Solar Access Code Marin County - Solar Access Code < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Program Info State California Program Type Solar/Wind Access Policy Provider Marin County Community Development Agency Marin County's Energy Conservation Code is designed to assure new subdivisions provide for future passive or natural heating or cooling opportunities in the subdivision to the extent feasible. Streets, lots, and building setbacks must be designed so that habitable buildings are oriented with their long axis running east to west (with a possible variation of thirty degrees to the southwest and thirty degrees to the southeast) for the purpose of solar access. The planning director or planning commission

208

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 - 22020 of 29,416 results. 11 - 22020 of 29,416 results. Download CX-004548: Categorical Exclusion Determination Active Flow Control on Bidirectional Rotors for Tidal Marine Hydrokinetic Applications CX(s) Applied: A9 Date: 11/30/2010 Location(s): Davis, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-004548-categorical-exclusion-determination Download CX-004529: Categorical Exclusion Determination Abrasion Testing of Critical Components of Hydrokinetic Devices CX(s) Applied: A9, B3.6 Date: 11/29/2010 Location(s): Anchorage, Alaska Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-004529-categorical-exclusion-determination Download CX-004532: Categorical Exclusion Determination

209

SeaPower Pacific subsidiary of Renewable Energy Holdings Plc Carnegie  

Open Energy Info (EERE)

SeaPower Pacific subsidiary of Renewable Energy Holdings Plc Carnegie SeaPower Pacific subsidiary of Renewable Energy Holdings Plc Carnegie Corporation Ltd Jump to: navigation, search Name SeaPower Pacific subsidiary of Renewable Energy Holdings Plc Carnegie Corporation Ltd Address 1 16 Ord Street PO Box 1902 Place West Perth Zip 6872 Sector Marine and Hydrokinetic Phone number 61 8 9486 4466 Website http://www.carnegiecorp.com.au Region Australia LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: CETO Precommercial Pilot Project This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=SeaPower_Pacific_subsidiary_of_Renewable_Energy_Holdings_Plc_Carnegie_Corporation_Ltd&oldid=67845

210

Deployment Effects of Marin Renewable Energy Technologies  

DOE Green Energy (OSTI)

This is the second report in the sequence and describes the results of conceptual feasibility studies of tidal power plants deployed in Tacoma Narrows, Washington. The Narrows contain many of the same competing stakeholder interactions identified at other tidal power sites and serves as a representative case study. Tidal power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize impacts, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informs the process of selecting representative tidal power devices. The selection criteria is that such devices are at an advanced stage of development to reduce technical uncertainties and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. A number of other developers are also at an advanced stage of development including Verdant Power, which has demonstrated an array of turbines in the East River of New York, Clean Current, which has demonstrated a device off Race Rocks, BC, and OpenHydro, which has demonstrated a device at the European Marine Energy Test Center and is on the verge of deploying a larger device in the Bay of Fundy. MCT demonstrated their device both at Devon (UK) and Strangford Narrows (Northern Ireland). Furthermore OpenHydro, CleanCurrent, and MCT are the three devices being installed at the Minas Passage (Canada). Environmental effects will largely scale with the size of tidal power development. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nom

Brian Polagye; Mirko Previsic

2010-06-17T23:59:59.000Z

211

Maryland | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Production Tax Credit (Corporate) Maryland offers a production tax credit for electricity generated by wind, geothermal energy, solar energy, hydropower, hydrokinetic,...

212

Northwest National Marine Renewable Energy Center | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Center Renewable Energy Center Jump to: navigation, search Name Northwest National Marine Renewable Energy Center Address 4000 15th Ave Place Seattle, Washington Zip 98105 Region Pacific Northwest Area Coordinates 47.6553525°, -122.3120605° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.6553525,"lon":-122.3120605,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

213

WaveCatcher Inc | Open Energy Information  

Open Energy Info (EERE)

WaveCatcher Inc WaveCatcher Inc Jump to: navigation, search Name WaveCatcher Inc Address 2307 Robincrest Ln Sector Marine and Hydrokinetic Year founded 2006 Phone number 1-847-764-9106 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=WaveCatcher_Inc&oldid=678511" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863326429 Varnish cache server

214

Tidal Sails AS | Open Energy Information  

Open Energy Info (EERE)

Sails AS Sails AS Jump to: navigation, search Name Tidal Sails AS Address Standgaten 130 Place Haugesund Zip 5531 Sector Marine and Hydrokinetic Phone number +32 474 98 06 16 Website http://www.tidalsails.com Region Norway LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Tidal Sails This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Tidal_Sails_AS&oldid=678479" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties

215

Makai Ocean Engineering Inc | Open Energy Information  

Open Energy Info (EERE)

Makai Ocean Engineering Inc Makai Ocean Engineering Inc Jump to: navigation, search Name Makai Ocean Engineering Inc Address PO Box 1206 Place Kailua Zip 96734-1206 Sector Marine and Hydrokinetic Year founded 1973 Number of employees 28 Phone number 808.259.8871 Website http://www.makai.com Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters This company is involved in the following MHK Technologies: Deep Water Pipelines This article is a stub. You can help OpenEI by expanding it.

216

1. Department, Course Number, Title ORE 677, Marine Renewable Energy  

E-Print Network (OSTI)

1. Department, Course Number, Title ORE 677, Marine Renewable Energy 2. Designation as a Required. Renewable Energy from the Ocean ­ a Guide to OTEC, W.H. Avery and C. Wu, Oxford University Press, 1994. 2 and tidal resources. 3. An understanding of the role of ocean renewable energy within the current worldwide

Frandsen, Jannette B.

217

Property:Optimum Marine/Riverline Conditions | Open Energy Information  

Open Energy Info (EERE)

Marine/Riverline Conditions Marine/Riverline Conditions Jump to: navigation, search Property Name Optimum Marine/Riverline Conditions Property Type Text Pages using the property "Optimum Marine/Riverline Conditions" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + Proprietary MHK Technologies/AirWEC + 15kW per meter of wave front or greater MHK Technologies/Aquantis + The Aquantis Current Plane C Plane technology is a marine current turbine designed to extract the kinetic energy from the flow and is capable of achieving reliable competitively priced base load power generation The technology is suitable for both steady marine currents and tidal currents although there are system differences and specific arraying and deployment requirements for each Aquantis is designed to harness the energy from the Gulf Stream and other steady marine currents around the world Aquantis deployment is projected to be cost competitive with thermal power generation when CO2 emissions and other environmental costs are accounted for

218

Poseidon Energy | Open Energy Information  

Open Energy Info (EERE)

Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now This company is listed in the Marine and Hydrokinetic Technology...

219

Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States  

Science Conference Proceedings (OSTI)

This report describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. The assessment provides estimates of the gross, naturally available resource, termed the theoretical resource, as well as estimates, termed the technically recoverable resource, that account for selected technological factors affecting capture and conversion of the theoretical resource. The ...

2012-12-12T23:59:59.000Z

220

Marine renewable energy: potential benefits to biodiversity? An urgent call for research  

E-Print Network (OSTI)

Marine renewable energy: potential benefits to biodiversity? An urgent call for research Richard 1 Centre for Ecology and Conservation and Peninsula Research Institute for Marine Renewable Energy driver. In response, many governments have initiated programmes of energy production from renewable

Exeter, University of

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

U.S. Marine Corp Logistics Base | Open Energy Information  

Open Energy Info (EERE)

Marine Corp Logistics Base Marine Corp Logistics Base Jump to: navigation, search Name U.S. Marine Corp Logistics Base Facility U.S. Marine Corp Logistics Base Sector Wind energy Facility Type Community Wind Facility Status In Service Location Barstow CA Coordinates 34.85832705°, -116.9559002° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.85832705,"lon":-116.9559002,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

222

National Marine Fisheries Service | Open Energy Information  

Open Energy Info (EERE)

Service Service Jump to: navigation, search Logo: National Marine Fisheries Service Name National Marine Fisheries Service Address 1315 East West Highway Place Silver Spring, Maryland Zip 20910 Phone number 301-427-8400 Website http://www.nmfs.noaa.gov/index Coordinates 38.9922542°, -77.0307277° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9922542,"lon":-77.0307277,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

223

Global Marine Renewable Energy Conference (GMREC) | OpenEI Community  

Open Energy Info (EERE)

Global Marine Renewable Energy Conference (GMREC) Global Marine Renewable Energy Conference (GMREC) Home > Groups > Water Power Forum Kch's picture Submitted by Kch(24) Member 3 April, 2013 - 14:26 The 6th annual Global Marine Renwable Energy Conference An exciting event for anyone who wants to : * Expand your network of international experts and government leaders * Explore and exchange knowledge on best management practices * Discuss financing instruments and regulatory drivers * Learn about U.S. and internationl policies supporting industry growth Date: Wednesday, 10 April, 2013 (All day) - Thursday, 11 April, 2013 (All day) Location: Washington, D.C. Groups: Water Power Forum Login to post comments Latest event comments No comments have been made yet Groups Menu You must login in order to post into this group.

224

SEEWEC Consortium lead partner Ghent University | Open Energy Information  

Open Energy Info (EERE)

SEEWEC Consortium lead partner Ghent University SEEWEC Consortium lead partner Ghent University Jump to: navigation, search Name SEEWEC Consortium lead partner Ghent University Address Sint Pietersnieuwstraat 41 Place Gent Zip 9000 Sector Marine and Hydrokinetic Website http://www.seewec.org Region Belgium LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: SEEWEC Consortium Brevik NO This company is involved in the following MHK Technologies: FO This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=SEEWEC_Consortium_lead_partner_Ghent_University&oldid=678456" Categories: Clean Energy Organizations

225

SeaNergy Electric Ltd | Open Energy Information  

Open Energy Info (EERE)

SeaNergy Electric Ltd SeaNergy Electric Ltd Jump to: navigation, search Name SeaNergy Electric Ltd Sector Marine and Hydrokinetic Website http://http://www.greenprophet Region Israel LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Turbo Ocean Power Generator MadaTech 17 This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=SeaNergy_Electric_Ltd&oldid=678451" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

226

Scientific Applications Research Associates Inc SARA | Open Energy  

Open Energy Info (EERE)

Scientific Applications Research Associates Inc SARA Scientific Applications Research Associates Inc SARA Jump to: navigation, search Name Scientific Applications Research Associates Inc SARA Address 6300 Gateway Dr Place Cypress Zip 90630 Sector Marine and Hydrokinetic Phone number 714-224-4410 x 274 Website http://www.sara.com/rae/ocean_ Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Magnetohydrodynamic MHD Wave Energy Converter MWEC This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Scientific_Applications_Research_Associates_Inc_SARA&oldid=678443"

227

THOR Turner Hunt Ocean Renewable LLC | Open Energy Information  

Open Energy Info (EERE)

Turner Hunt Ocean Renewable LLC Turner Hunt Ocean Renewable LLC Jump to: navigation, search Name THOR Turner Hunt Ocean Renewable LLC Address 3814 West St Place Cincinnati Zip 45227 Sector Marine and Hydrokinetic Year founded 2007 Phone number 513-527-4924 Website http://http://www.thorocean.co Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: THOR Ocean Current Turbine This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=THOR_Turner_Hunt_Ocean_Renewable_LLC&oldid=678473" Categories: Clean Energy Organizations Companies Organizations

228

Maryland | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credit (Personal) Maryland offers a production tax credit for electricity generated by wind, geothermal energy, solar energy, hydropower, hydrokinetic, municipal solid...

229

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

offers a production tax credit for electricity generated by wind, geothermal energy, solar energy, hydropower, hydrokinetic, municipal solid waste and biomass resources....

230

Energy Information Administration  

U.S. Energy Information Administration (EIA)

New hydrokinetic energy technologies that generate electricity by harnessing the energy from ocean waves, tides, and river currents are advancing toward commercial ...

231

Videos | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Concentrating Solar Power Energy 101: Concentrating Solar Power Energy 101: Wind Turbines Energy 101: Home Energy Checkup Energy 101: Geothermal Heat Pumps Energy 101: Cool Roofs Energy 101: Solar PV Energy 101: Daylighting Energy 101: Energy Efficient Data Centers Secretary Moniz Speaks on New Energy Systems Integration Facility (ESIF) at NREL Energy 101: Electric Vehicles Energy 101: Lumens Energy 101: Biofuels Energy 101: Algae-to-Fuel Energy 101: Lighting Choices Energy 101: Hydroelectric Power Wide Bandgap Semiconductors Energy 101: Marine and Hydrokinetic Energy Energy 101: Feedstocks for Biofuels and More About the Southeastern Power Administration Secretary Moniz Speaks at the Center on Global Energy Policy Update: Solar Powered Classroom Secretary Moniz Speaks at Biomass 2013 Taking Battery Technology from the Lab to the Big City

232

MHK Technologies/NAREC | Open Energy Information  

Open Energy Info (EERE)

NAREC NAREC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage NAREC.jpg Technology Profile Primary Organization NaRec New and Renewable Energy Centre Technology Resource Click here Wave Technology Description The in house engineering and prototype testing capabilities of Narec are assisting wave and tidal stream marine developers move their innovative design concepts towards commercialisation Where the Evopod was tested Technology Dimensions Device Testing Date Submitted 04:07.5 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/NAREC&oldid=681614" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version

233

Fiscal Year 2011 Water Power Program Peer Review | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peer Review » Fiscal Peer Review » Fiscal Year 2011 Water Power Program Peer Review Fiscal Year 2011 Water Power Program Peer Review In November 2011, the Water Power Program held their Annual Peer Review Meeting in Alexandria, Virginia. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives. At the review, approximately 85 projects were presented, representing a DOE investment of over $100 million over the last few years. In addition to the formal review, this event was an excellent opportunity for the water power community to share ideas and solutions to address challenges facing the hydropower and marine and hydrokinetic energy industries.

234

CX-004529: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4529: Categorical Exclusion Determination 4529: Categorical Exclusion Determination CX-004529: Categorical Exclusion Determination Abrasion Testing of Critical Components of Hydrokinetic Devices CX(s) Applied: A9, B3.6 Date: 11/29/2010 Location(s): Anchorage, Alaska Office(s): Energy Efficiency and Renewable Energy, Golden Field Office ORPC Alaska is proposing to use Department of Energy funding to understand the impacts of sediment abrasion on marine hydrokinetic (MHK) device components. Testing would assess the vulnerability of technology components to sediment-induced abrasion; it would determine the impact and wear rate that sediment may have on bearings and seals; and it would identify which configurations best resist degradation from suspended sediment conditions. The proposed project would provide valuable information to the MHK

235

Marin County - Green Building Requirements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marin County - Green Building Requirements Marin County - Green Building Requirements Eligibility Commercial Construction Residential Savings For Heating & Cooling Home...

236

EERE Videos | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EERE Videos EERE Videos EERE Videos EERE Videos Success Story: Alcoa and ArcelorMittal Success Story: Capstone Turbine Corporation American Energy and Manufacturing Competitiveness Summit Introduction Energy 101: Concentrating Solar Power Energy 101: Wind Turbines Energy 101: Home Energy Checkup Energy 101: Geothermal Heat Pumps Energy 101: Cool Roofs Energy 101: Solar PV Energy 101: Daylighting Energy 101: Energy Efficient Data Centers Energy 101: Electric Vehicles Energy 101: Lumens Energy 101: Biofuels Energy 101: Algae-to-Fuel Energy 101: Lighting Choices Energy 101: Hydroelectric Power Energy 101: Marine and Hydrokinetic Energy Energy 101: Feedstocks for Biofuels and More B-Roll Footage The Office of Energy Efficiency and Renewable Energy (EERE) provides the following b-roll footage for use by producers. All of EERE's b-roll is free

237

Hydro Alternative Energy | Open Energy Information  

Open Energy Info (EERE)

Alternative Energy Alternative Energy Jump to: navigation, search Name Hydro Alternative Energy Place Boca Raton, Florida Zip 33486 Sector Ocean Product Marine project developer focusing on ocean current and tidal power development using underwater turbines. References Hydro Alternative Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Oceanus This article is a stub. You can help OpenEI by expanding it. Hydro Alternative Energy is a company located in Boca Raton, Florida . References ↑ "Hydro Alternative Energy" Retrieved from "http://en.openei.org/w/index.php?title=Hydro_Alternative_Energy&oldid=678899

238

JEDI Marine and Hydrokinetic Model: User Reference Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

reductions in the short term. For the purpose of this assessment, it was assumed that no learning curve effects are present. Only effects of manufacturing multiple units for the...

239

Measurement of velocity deficit at the downstream of a 1:10 axial hydrokinetic turbine model  

DOE Green Energy (OSTI)

Wake recovery constrains the downstream spacing and density of turbines that can be deployed in turbine farms and limits the amount of energy that can be produced at a hydrokinetic energy site. This study investigates the wake recovery at the downstream of a 1:10 axial flow turbine model using a pulse-to-pulse coherent Acoustic Doppler Profiler (ADP). In addition, turbine inflow and outflow velocities were measured for calculating the thrust on the turbine. The result shows that the depth-averaged longitudinal velocity recovers to 97% of the inflow velocity at 35 turbine diameter (D) downstream of the turbine.

Gunawan, Budi [ORNL; Neary, Vincent S [ORNL; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414

2012-01-01T23:59:59.000Z

240

Oceana Energy Company | Open Energy Information  

Open Energy Info (EERE)

Oceana Energy Company Oceana Energy Company Jump to: navigation, search Name Oceana Energy Company Place Washington DC, Washington, DC Zip 20036 Sector Ocean, Renewable Energy Product String representation "Oceana Energy C ... ost and impact." is too long. References Oceana Energy Company[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Cape Islands Tidal Energy Project Central Cook Inlet Tidal Energy Project Icy Passage Tidal Energy Project Kachemak Bay Tidal Energy Project Kendall Head Tidal Energy Kennebec Penobscot Tidal Energy Project Portsmouth Area Tidal Energy Project Wrangell Narrows Tidal Energy Project

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Concerns in Marine Renewable Energy Projects  

DOE Green Energy (OSTI)

-\tDeployment Scenarios, identifying all the major life-cycle-related impacts Report 3 - Framework for Identifying Key Environmental Concerns This report describes frameworks for identifying key environmental effects and applies them to the wave and tidal energy deployment scenarios described in the first two reports. It highlights critical issues and recommendations for future research

Sharon Kramer, Mirko Previsic, Peter Nelson, Sheri Woo

2010-06-17T23:59:59.000Z

242

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credit (Corporate) Maryland offers a production tax credit for electricity generated by wind, geothermal energy, solar energy, hydropower, hydrokinetic, municipal solid...

243

Clean Energy Production Tax Credit (Corporate)  

Energy.gov (U.S. Department of Energy (DOE))

Maryland offers a production tax credit for electricity generated by wind, geothermal energy, solar energy, hydropower, hydrokinetic, municipal solid waste and biomass resources. Eligible biomass...

244

Clean Energy Production Tax Credit (Personal)  

Energy.gov (U.S. Department of Energy (DOE))

Maryland offers a production tax credit for electricity generated by wind, geothermal energy, solar energy, hydropower, hydrokinetic, municipal solid waste and biomass resources. Eligible biomass...

245

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

offers a production tax credit for electricity generated by wind, geothermal energy, solar energy, hydropower, hydrokinetic, municipal solid waste and biomass resources....

246

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 - 22550 of 28,905 results. 41 - 22550 of 28,905 results. Page Fossil Energy RSS Feeds RSS, sometimes known as Really Simple Syndication, is a popular means of sharing content (such as news headlines) without requiring readers to constantly visit a Web site to see what's new. RSS... http://energy.gov/fe/fossil-energy-rss-feeds Page EA-1965: Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic University's South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMREC's experimental current generation turbine and the deployment and operation of

247

Performance Evaluation of HYCOM-GOM for Hydrokinetic Resource Assessment in the Florida Strait  

SciTech Connect

The U.S. Department of Energy (DoE) is assessing and mapping the potential off-shore ocean current hydrokinetic energy resources along the U.S. coastline, excluding tidal currents, to facilitate market penetration of water power technologies. This resource assessment includes information on the temporal and three-dimensional spatial distribution of the daily averaged power density, and the overall theoretical hydrokinetic energy production, based on modeled historical simulations spanning a 7-year period of record using HYCOM-GOM, an ocean current observation assimilation model that generates a spatially distributed three-dimensional representation of daily averaged horizontal current magnitude and direction time series from which power density time series and their statistics can be derived. This study ascertains the deviation of HYCOM-GOM outputs, including transport (flow) and power density, from outputs based on three independent observation sources to evaluate HYCOM-GOM performance. The three independent data sources include NOAA s submarine cable data of transport, ADCP data at a high power density location, and HF radar data in the high power density region of the Florida Strait. Comparisons with these three independent observation sets indicate discrepancies with HYCOM model outputs, but overall indicate that the HYCOM-GOM model can provide an adequate assessment of the ocean current hydrokinetic resource in high power density regions like the Florida Strait. Additional independent observational data, in particular stationary ADCP measurements, would be useful for expanding this model performance evaluation study. ADCP measurements are rare in ocean environments not influenced by tides, and limited to one location in the Florida Strait. HF radar data, although providing great spatial coverage, is limited to surface currents only.

Neary, Vincent S [ORNL; Gunawan, Budi [ORNL; Ryou, Albert S [ORNL

2012-06-01T23:59:59.000Z

248

Brandl Motor | Open Energy Information  

Open Energy Info (EERE)

Motor Jump to: navigation, search Name Brandl Motor Address Calvinstr 24 Place Berlin Zip 10557 Sector Marine and Hydrokinetic Phone number +49 30 39 48 06 38 Website http:http:...

249

Aquantis Inc | Open Energy Information  

Open Energy Info (EERE)

Aquantis Inc Jump to: navigation, search Name Aquantis Inc Address 6340 Via Real Suite 8 Place Carpinteria Zip 93013 Sector Marine and Hydrokinetic Phone number 805.679.3072...

250

Open Energy Data | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About Energy.gov » Open Energy Data About Energy.gov » Open Energy Data Open Energy Data Launching Round Two of the American Energy Data Challenge Find energy data hackathons near you and learn how to enter round two of the American Energy Data Challenge. Read more Calling All Coders: Help Advance America's Ocean Power Industry The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. | Graphic courtesy of TopCoder Read more Help Solve Solar's Big Challenge The Energy Department's SunShot Initiative is working to lower soft costs -- such as permitting, customer acquisition, and operations -- in order to make solar energy fully cost-competitive with traditional energy sources

251

Abrasion Testing of Critical Components of Hydrokinetic Devices  

SciTech Connect

The objective of the Abrasion Testing of Critical Components of Hydrokinetic Devices (Project) was to test critical components of hydrokinetic devices in waters with high levels of suspended sediment information that is widely applicable to the hydrokinetic industry. Tidal and river sites in Alaska typically have high suspended sediment concentrations. High suspended sediment also occurs in major rivers and estuaries throughout the world and throughout high latitude locations where glacial inputs introduce silt into water bodies. In assessing the vulnerability of technology components to sediment induced abrasion, one of the greatest concerns is the impact that the sediment may have on device components such as bearings and seals, failures of which could lead to both efficiency loss and catastrophic system failures.

Worthington, Monty [ORPC Alaska] [ORPC Alaska; Ali, Muhammad [Ohio University] [Ohio University; Ravens, Tom [University of Alaska Anchorage] [University of Alaska Anchorage

2013-12-06T23:59:59.000Z

252

Water Power for a Clean Energy Future (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

Not Available

2012-03-01T23:59:59.000Z

253

U.S. Marine Corps Stand at Forefront of Energy and Water Savings (Fact Sheet)  

SciTech Connect

This fact sheet is an overview of the U.S. Marine Corps Beaufort Air Station's energy and water savings accomplishments.

Not Available

2012-12-01T23:59:59.000Z

254

U.S. Marine Corps Stand at Forefront of Energy and Water Savings (Fact Sheet)  

SciTech Connect

This fact sheet is an overview of the U.S. Marine Corps Beaufort Air Station's energy and water savings accomplishments.

2012-12-01T23:59:59.000Z

255

Energy Sources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 17, 2010 November 17, 2010 Department of Energy Announces Five Awards to Modernize the Nation's Electric Grid Total public-private investment of more than $30 million to increase reliability, efficiency and security October 8, 2010 Department of Energy Offers Conditional Commitment for a Loan Guarantee to Support World's Largest Wind Project Recovery Act-Supported Loan Will Create Jobs and Avoid Over 1.2 Million Tons of Carbon Pollution Annually September 15, 2010 Department of Energy Announces $20 Million to Boost Development of Innovative Geothermal Technologies Washington, DC - U.S. Energy Secretary Steven Chu today announced $20 million to research, develop and demonstrate cutting-edge geothermal technologies that could reduce U.S. September 9, 2010 Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy

256

Motor Wave Group | Open Energy Information  

Open Energy Info (EERE)

Wave Group Jump to: navigation, search Name Motor Wave Group Place Hong Kong Sector Marine and Hydrokinetic Website http:www.motorwavegroup.com Region China LinkedIn Connections...

257

Sea for Life | Open Energy Information  

Open Energy Info (EERE)

Life Jump to: navigation, search Name Sea for Life Address Travessa da Paraventa Place n 1 Gaeiras Zip 2510 Sector Marine and Hydrokinetic Year founded 2007 Phone number (+ 351)...

258

Carmelo Vell n | Open Energy Information  

Open Energy Info (EERE)

Carmelo Vell n Jump to: navigation, search Name Carmelo Vell n Sector Marine and Hydrokinetic Region Spain LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one...

259

Kinetic Wave Power | Open Energy Information  

Open Energy Info (EERE)

Kinetic Wave Power Jump to: navigation, search Name Kinetic Wave Power Address 2861 N Tupelo St Place Midland Zip 48642 Sector Marine and Hydrokinetic Phone number 989-839-9757...

260

Water Wall Turbine | Open Energy Information  

Open Energy Info (EERE)

Wall Turbine Jump to: navigation, search Name Water Wall Turbine Sector Marine and Hydrokinetic Website http:www.wwturbine.com Region Canada LinkedIn Connections CrunchBase...

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Free Flow 69 | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Free Flow 69 Address Unit 9 Windmill Ind Est Windmill Place Fowey Zip PL23 1HB Sector Marine and Hydrokinetic Phone number 01726 833337 Website...

262

Wind Waves and Sun | Open Energy Information  

Open Energy Info (EERE)

Waves and Sun Jump to: navigation, search Name Wind Waves and Sun Sector Marine and Hydrokinetic Website http:www.windwavesandsun.com Region United States LinkedIn Connections...

263

Wave Star Energy | Open Energy Information  

Open Energy Info (EERE)

Star Energy Star Energy Jump to: navigation, search Name Wave Star Energy Place Denmark Zip DK-2920 Product Denmark-based private wave device developer. References Wave Star Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Wave Star Energy 1 10 Scale Model Test This company is involved in the following MHK Technologies: C5 WaveStar This article is a stub. You can help OpenEI by expanding it. Wave Star Energy is a company located in Denmark . References ↑ "Wave Star Energy" Retrieved from "http://en.openei.org/w/index.php?title=Wave_Star_Energy&oldid=678928" Categories: Clean Energy Organizations

264

FEMP Renewable Energy Project Assistance Application  

NLE Websites -- All DOE Office Websites (Extended Search)

considered (select all that apply) Solar PV Solar (other) Wind Biomass Incremental Hydro Hydrokinetic Ocean Geothermal Waste-to-energy Other: ...

265

ocean energy | OpenEI Community  

Open Energy Info (EERE)

ocean energy ocean energy Home Kch's picture Submitted by Kch(24) Member 9 April, 2013 - 13:30 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine energy MHK ocean energy The generalized Cost Breakdown Structure (CBS) for marine and hydrokinetic (MHK) projects is a hierarchical structure designed to facilitate the collection and organization of lifecycle costs of any type of MHK project, including wave energy converters and current energy convertners. At a high level, the categories in the CBS will be applicable to all projects; at a detailed level, however, the CBS includes many cost categories that will pertain to one project but not others. It is expected that many of the detailed levels of the CBS will be populated with "NA" or left blank.Upload

266

current energy | OpenEI Community  

Open Energy Info (EERE)

current energy current energy Home Kch's picture Submitted by Kch(24) Member 9 April, 2013 - 13:30 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine energy MHK ocean energy The generalized Cost Breakdown Structure (CBS) for marine and hydrokinetic (MHK) projects is a hierarchical structure designed to facilitate the collection and organization of lifecycle costs of any type of MHK project, including wave energy converters and current energy convertners. At a high level, the categories in the CBS will be applicable to all projects; at a detailed level, however, the CBS includes many cost categories that will pertain to one project but not others. It is expected that many of the detailed levels of the CBS will be populated with "NA" or left blank.Upload

267

Marin Clean Energy - Feed-In Tariff (California) | Open Energy...  

Open Energy Info (EERE)

Landfill Gas, Municipal Solid Waste, Ocean Thermal, Photovoltaics, Small Hydroelectric, Solar Thermal Electric, Tidal Energy, Wave Energy, Wind Active Incentive Yes Implementing...

268

CX-005415: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

415: Categorical Exclusion Determination 415: Categorical Exclusion Determination CX-005415: Categorical Exclusion Determination Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage CX(s) Applied: A9, B3.6 Date: 03/01/2011 Location(s): Princeton, New Jersey Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Princeton Power Systems, Incorporated is proposing to use Department of Energy funding to further develop and test a marine high-voltage power conditioning and transmission system. The objective is to advance a power converter which will be efficient, compact and light weight for interfacing Marine Hydrokinetic energy source to high voltage direct current power delivery system. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-005415.pdf More Documents & Publications

269

Open Data | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovation » Open Data Innovation » Open Data Open Data January 16, 2014 Applications powered by open energy data were on display at the Energy Datapalooza in June 2012. | Photo by Sarah Gerrity, Energy Department. Energy Department Launches Second Contest of the American Energy Data Challenge Today the Energy Department is launching Round Two of the American Energy Data Challenge, asking the public to develop apps using open energy data. December 19, 2013 First Round of American Energy Data Challenge Winners Announced We are excited to announce the first round of cash prize winners in the American Energy Data Challenge. December 19, 2013 Announcing the Winners of the First Round of the American Energy Data Challenge December 10, 2013 The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. | Graphic courtesy of TopCoder

270

CX-009567: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

567: Categorical Exclusion Determination 567: Categorical Exclusion Determination CX-009567: Categorical Exclusion Determination Hawaii National Marine Renewable Energy Center CX(s) Applied: A9, A11, B3.6 Date: 12/06/2012 Location(s): Hawaii Offices(s): Golden Field Office The U.S. DOE is proposing to provide federal funding to the University of Hawaii to further facilitate the development and implementation of commercial wave energy systems via the Hawaii National Marine Renewable Energy Center housed at the University's Hawaii Natural Energy Institute. The primary objective of the proposed project is to support development and commercialization of marine and hydrokinetic technology by providing a testing infrastructure that allows developers to prove their devices and generate the necessary data to advance their designs toward commercial

271

E3Tec service LLC | Open Energy Information  

Open Energy Info (EERE)

E3Tec service LLC Jump to: navigation, search Name E3Tec service LLC Sector Marine and Hydrokinetic Website http:http:www.crrc.unh.edu Region United States LinkedIn Connections...

272

FRI EL Sea Power S r l | Open Energy Information  

Open Energy Info (EERE)

EL Sea Power S r l Jump to: navigation, search Name FRI EL Sea Power S r l Address Piazza del Grano 3 Place Bolzano Zip 39100 Sector Marine and Hydrokinetic Phone number +39 0471...

273

Energy use in the marine transportation industry: Task I, Industry Summary. Final report  

SciTech Connect

Task I, Industry Summary, defines the current marine transportation industry in terms of population, activities, and energy use. It identifies the various operating or service sectors of the marine transportation industry and determines the numbers and types of vessels, their operating characteristics, and energy consumption. The analysis includes all powered water-borne craft, with the exception of those owned or operated by a government organization and fixed offshore production platforms. The energy consumption analysis of the marine transportation industry concludes with 4 major findings: the marine transportation industry consumes 2.934 quads annually; energy consumption in the marine transportation sector represents 15% of the energy consumed for transportation services; the foreign trade sector consumes 80% of the estimated marine transportation energy requirements; and a minimum of 28% of the energy required by the marine transportation industry is purchased in the US. In each additional chapter (foreign trade, Great Lakes, coastal shipping, offshore, inland waterways, fishing sectors, and recreational boats) the subjects are described in terms of population, operating profiles, energy consumption, typical or generic vessels, costs, and cargo movements.

1977-09-01T23:59:59.000Z

274

levelized cost of energy | OpenEI Community  

Open Energy Info (EERE)

levelized cost of energy levelized cost of energy Home Kch's picture Submitted by Kch(24) Member 9 April, 2013 - 13:30 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine energy MHK ocean energy The generalized Cost Breakdown Structure (CBS) for marine and hydrokinetic (MHK) projects is a hierarchical structure designed to facilitate the collection and organization of lifecycle costs of any type of MHK project, including wave energy converters and current energy convertners. At a high level, the categories in the CBS will be applicable to all projects; at a detailed level, however, the CBS includes many cost categories that will pertain to one project but not others. It is expected that many of the detailed levels of the CBS will be populated with "NA" or left blank.Upload

275

Hydro-kinetic approach to relativistic heavy ion collisions  

E-Print Network (OSTI)

We develop a combined hydro-kinetic approach which incorporates hydrodynamical expansion of the systems formed in \\textit{A}+\\textit{A} collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generalized relaxation time ($\\tau_{\\text{rel}}$) approximation for Boltzmann equation applied to inhomogeneous expanding systems; at small $\\tau_{\\text{rel}}$ it also allows one to catch the viscous effects in hadronic component - hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to sharp freeze-out limit, are momentum dependent. The pion $m_{T}$ spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support ...

Akkelin, S V; Karpenko, Iu A; Sinyukov, Yu M

2008-01-01T23:59:59.000Z

276

Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades  

Science Conference Proceedings (OSTI)

A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strain measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit sensor data underwater from the rotating frame of the blade to a fixed relay station. Data are then broadcast via radio waves to a remote monitoring station. Results indicate that the assembled system can transmit simulated sensor data with an accuracy of ±5% at a maximum sampling rate of 500 samples/sec. A power investigation of the transmitter within the blade shows that continuous max-sampling operation is only possible for short durations (~days), and is limited due to the capacity of the battery power source. However, intermittent sampling, with long periods between samples, allows for the system to last for very long durations (~years). Finally, because the data transmission system can operate at a high sampling rate for short durations or at a lower sampling rate/higher duty cycle for long durations, it is well-suited for short-term prototype and environmental testing, as well as long-term commercially-deployed hydrokinetic machines.

J.L. Rovey K. Chandrashekhara

2012-09-21T23:59:59.000Z

277

Washington | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 17, 2010 December 17, 2010 CX-004835: Categorical Exclusion Determination Electric Vehicle Charging Stations City of Mill Creek CX(s) Applied: B5.1 Date: 12/17/2010 Location(s): Mill Creek, Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office December 16, 2010 CX-004691: Categorical Exclusion Determination Puget Sound Clean Cities Petroleum Reduction Project CX(s) Applied: B5.1 Date: 12/16/2010 Location(s): Kirkland, Washington Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 16, 2010 CX-004836: Categorical Exclusion Determination Marine and Hydrokinetic Technology Readiness Advancement Initiative CX(s) Applied: A9, B3.6 Date: 12/16/2010 Location(s): Lynnwood, Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

278

EA-1965: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Final Environmental Assessment 5: Final Environmental Assessment EA-1965: Final Environmental Assessment Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida The U.S. Department of the Interior's (DOI), Bureau of Ocean Energy Management (BOEM) prepared this EA and DOE served as a cooperating agency. DOE's proposed action was to provide federal funding to Florida Atlantic University Southeast National Marine Renewable Energy Center to install a non-grid connected offshore test berth and test a variety of small-scale research and development ocean current turbine units on public lands managed by the DOI's BOEM off the cost of Broward County, Florida. The EA evaluates the potential environmental impacts associated with the

279

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 - 12650 of 28,905 results. 41 - 12650 of 28,905 results. Download TEC Meeting Summaries- April 2005 TEC Meeting summary and related documents from meeting held in Phoenix, Arizona http://energy.gov/em/downloads/tec-meeting-summaries-april-2005 Download EA-1965: Final Environmental Assessment Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida http://energy.gov/nepa/downloads/ea-1965-final-environmental-assessment Download FY08DMReportingGuidance.pdf http://energy.gov/management/downloads/fy08dmreportingguidancepdf Download Waste Treatment and Immobilation Plant Pretreatment Facility Full Document and Summary Versions are available for download http://energy.gov/em/downloads/waste-treatment-and-immobilation-plant-pretreatment-facility

280

Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors  

NLE Websites -- All DOE Office Websites (Extended Search)

5021 5021 August 2009 Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors D. Sale University of Tennessee J. Jonkman and W. Musial National Renewable Energy Laboratory Presented at the ASME 28 th International Conference on Ocean, Offshore, and Arctic Engineering Honolulu, Hawaii May 31-June 5, 2009 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NREL: Department of Defense Energy Programs - U.S. Marine Corps Air Station  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Marine Corps Air Station Miramar U.S. Marine Corps Air Station Miramar NREL performed an assessment at the U.S. Marine Corps Air Station Miramar in California, which established baseline energy use and identified the lowest-cost combination of renewable energy options to meet energy reduction goals. As a result, Miramar is on track to achieve a 43% reduction in building source energy use by 2012 and has been designated the first green Marine Corps base. New projects will enable the base to reduce building source energy use 90% by 2017. Based on the Miramar project, NREL created a standardized assessment and planning process template for other military installations. Widespread replication of this process is planned, with assessments under way at several DOD installations, including: the U.S. Air Force Academy in

282

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2010 30, 2010 CX-004631: Categorical Exclusion Determination California- City- Turlock CX(s) Applied: B5.1 Date: 11/30/2010 Location(s): Turlock, California Office(s): Energy Efficiency and Renewable Energy November 30, 2010 CX-004630: Categorical Exclusion Determination California- City- Tulare CX(s) Applied: A1, A9, A11, B5.1 Date: 11/30/2010 Location(s): Tulare, California Office(s): Energy Efficiency and Renewable Energy November 30, 2010 CX-004548: Categorical Exclusion Determination Active Flow Control on Bidirectional Rotors for Tidal Marine Hydrokinetic Applications CX(s) Applied: A9 Date: 11/30/2010 Location(s): Davis, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 29, 2010 CX-004555: Categorical Exclusion Determination

283

Marine Habitats and Land Use (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marine Habitats and Land Use (Virginia) Marine Habitats and Land Use (Virginia) Marine Habitats and Land Use (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Siting and Permitting Provider Virginia Marine Resources Commission The Virginia Marine Resources Commission has jurisdiction over submerged lands off the state's coast and in inland rivers and streams, wetlands and tidal wetlands, coastal sand dunes and beaches, and other shores. A permit from the Commission is required to dredge, fill, or otherwise disturb these

284

Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors  

DOE Green Energy (OSTI)

This report describes the adaptation of a wind turbine performance code for use in the development of a general use design code and optimization method for stall-regulated horizontal-axis hydrokinetic turbine rotors. This rotor optimization code couples a modern genetic algorithm and blade-element momentum performance code in a user-friendly graphical user interface (GUI) that allows for rapid and intuitive design of optimal stall-regulated rotors. This optimization method calculates the optimal chord, twist, and hydrofoil distributions which maximize the hydrodynamic efficiency and ensure that the rotor produces an ideal power curve and avoids cavitation. Optimizing a rotor for maximum efficiency does not necessarily create a turbine with the lowest cost of energy, but maximizing the efficiency is an excellent criterion to use as a first pass in the design process. To test the capabilities of this optimization method, two conceptual rotors were designed which successfully met the design objectives.

Sale, D.; Jonkman, J.; Musial, W.

2009-08-01T23:59:59.000Z

285

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2011 16, 2011 CX-006520: Categorical Exclusion Determination High Energy Density Distributed Hydrostatic Direct Drive for Large Wind Turbine and Marine Hydro-Kinetic Device Applications CX(s) Applied: A9 Date: 08/16/2011 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 16, 2011 CX-006513: Categorical Exclusion Determination Novel Low Cost, High Reliability Wind Turbine Drivetrain CX(s) Applied: A9 Date: 08/16/2011 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 15, 2011 CX-006536: Categorical Exclusion Determination Development and Demonstration of a New Generation High Efficiency 1-10 Kilowatt Stationary Fuel Cell System CX(s) Applied: A9, B3.6, B5.1 Date: 08/15/2011

286

NREL: Energy Sciences - Marine Corps Taps NREL to Help Replace...  

NLE Websites -- All DOE Office Websites (Extended Search)

Science News Events Printable Version Marine Corps Taps NREL to Help Replace Aging Steam Plant with Efficient Biomass Cogeneration January 30, 2013

The 1940s central steam...

287

FFP/NREL Collaboration on Hydrokinetic River Turbine Testing: Cooperative Research and Development Final Report, CRADA Number CRD-12-00473  

DOE Green Energy (OSTI)

This shared resources CRADA defines collaborations between the National Renewable Energy Laboratory (NREL) and Free Flow Power (FFP) set forth in the following Joint Work Statement. Under the terms and conditions described in this CRADA, NREL and FFP will collaborate on the testing of FFP's hydrokinetic river turbine project on the Mississippi River (baseline location near Baton Rouge, LA; alternate location near Greenville, MS). NREL and FFP will work together to develop testing plans, instrumentation, and data acquisition systems; and perform field measurements.

Driscoll, F.

2013-04-01T23:59:59.000Z

288

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

71 - 14880 of 28,905 results. 71 - 14880 of 28,905 results. Download Update 4 to: A Dispersion Modeling Analysis of Downwash from Mirant's Potomac River Power Plant, Modeling Unit 4 Emissions at Maximum and Minimum Loads http://energy.gov/oe/downloads/update-4-dispersion-modeling-analysis-downwash-mirants-potomac-river-power-plant Download EA-1965: Finding of No Significant Impact Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida http://energy.gov/nepa/downloads/ea-1965-finding-no-significant-impact Download EIS-0287: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) This EIS analyzes the potential environmental consequences of alternatives

289

Multimedia from the Northwest National Marine Renewable Energy Center (NNMREC) on YouTube  

DOE Data Explorer (OSTI)

The Northwest National Marine Renewable Energy Center (NNMREC) is a DOE-funded partnership between Oregon State University and the University of Washington. Oregon State focuses on wave energy research and development, while the University of Washington focuses on tidal energy. The NNMREC YouTube channel makes more than sixty short video clips available.

290

Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations  

DOE Green Energy (OSTI)

DOD's U.S. Pacific Command has partnered with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency in Hawaii installations. NREL selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations.

Burman, K.; Kandt, A.; Lisell, L.; Booth, S.; Walker, A.; Roberts, J.; Falcey, J.

2011-11-01T23:59:59.000Z

291

CX-005670: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Categorical Exclusion Determination 0: Categorical Exclusion Determination CX-005670: Categorical Exclusion Determination Marine and Hydrokinetic Energy System Development of the Aquantis 2.5 Megawatt Ocean-Current Electricity Generation Device CX(s) Applied: A9, B3.6 Date: 04/13/2011 Location(s): Carpinteria, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Dehlsen Associates, in Carpinteria, California, is proposing to use federal funding to develop the Aquantis Current Plane (C-Plane), a marine current turbine designed to convert the kinetic energy from the flow, to base-load electric power generation. The C-Plane is a 2.5 megawatt hydrofoil platform with twin, 40 meter, counter-rotating blades that would operate 50 meters under the ocean's surface. This technology is derived from wind power

292

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 - 27840 of 28,904 results. 31 - 27840 of 28,904 results. Download CX-005120: Categorical Exclusion Determination Wavebob Advanced Wave Energy Conversion Project CX(s) Applied: A9, B3.6 Date: 01/27/2011 Location(s): Annapolis, Maryland Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-005120-categorical-exclusion-determination Download CX-005128: Categorical Exclusion Determination The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings For use in Marine Hydrokinetic (MHK) Energy Machines CX(s) Applied: A9, B3.6 Date: 01/25/2011 Location(s): Orem, Utah Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-005128-categorical-exclusion-determination Download START Application- Final

293

Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Targeting Net Zero Energy at Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations K. Burman, A. Kandt, L. Lisell, S. Booth, A. Walker, J. Roberts and J. Falcey Technical Report NREL/ TP-7A40-52897 November 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations K. Burman, A. Kandt, L. Lisell, S. Booth, A. Walker, J. Roberts and J. Falcey Prepared under Task No. IDHW.9180

294

Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and Recommendations  

NLE Websites -- All DOE Office Websites (Extended Search)

Targeting Net Zero Energy at Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and Recommendations Samuel Booth, John Barnett, Kari Burman, Joshua Hambrick, Mike Helwig, and Robert Westby Technical Report NREL/TP-7A40-47991 December 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and Recommendations Samuel Booth, John Barnett, Kari Burman, Joshua Hambrick, Mike Helwig, and

295

Environmental effects of marine energy development around the world. Annex IV Final Report  

DOE Green Energy (OSTI)

Annex IV is an international collaborative project to examine the environmental effects of marine energy devices among countries through the International Energy Agencys Ocean Energy Systems Initiative (OES). The U.S. Department of Energy (DOE) serves as the Operating Agent for the Annex, in partnership with the Bureau of Ocean Energy Management (BOEM; formerly the Minerals Management Service), the Federal Energy Regulatory Commission (FERC), and National Oceanographic and Atmospheric Administration (NOAA). Numerous ocean energy technologies and devices are being developed around the world, and the few data that exist about the environmental effects of these technologies are dispersed among countries and developers. The purpose of Annex IV is to facilitate efficient government oversight of the development of ocean energy systems by compiling and disseminating information about the potential environmental effects of marine energy technologies and to identify methods of monitoring for these effects. Beginning in 2010, this three-year effort produced a publicly available searchable online database of environmental effects information (Tethys). It houses scientific literature pertaining to the environmental effects of marine energy systems, as well as metadata on international ocean energy projects and research studies. Two experts workshops were held in Dublin, Ireland (September 2010 and October 2012) to engage with international researchers, developers, and regulators on the scope and outcomes of the Annex IV project. Metadata and information stored in the Tethys database and feedback obtained from the two experts workshops were used as resources in the development of this report. This Annex IV final report contains three case studies of specific interactions of marine energy devices with the marine environment that survey, compile, and analyze the best available information in one coherent location. These case studies address 1) the physical interactions between animals and tidal turbines; 2) the acoustic impact of marine energy devices on marine animals; and 3) the effects of energy removal on physical systems. Each case study contains a description of environmental monitoring efforts and research studies, lessons learned, and analysis of remaining information gaps. The information collected through the Annex IV effort and referenced in this report, can be accessed on the Tethys database at http://mhk.pnnl.gov/wiki/index.php/Tethys_ Home.

Copping, Andrea; Hanna, Luke; Whiting, Johnathan; Geerlofs, Simon; Grear, Molly; Blake, Kara (Pacific Northwest National Laboratory, Richland, WA (United States)); Coffey, Anna; Massaua, Meghan; Brown-Saracino, Jocelyn; Battey, Hoyt (US Dept. of Energy, Washington, DC (United States))

2013-01-15T23:59:59.000Z

296

Assessment of Energy Removal Impacts on Physical Systems: Hydrodynamic Model Domain Expansion and Refinement, and Online Dissemination of Model Results  

Science Conference Proceedings (OSTI)

In this report we describe the 1) the expansion of the PNNL hydrodynamic model domain to include the continental shelf along the coasts of Washington, Oregon, and Vancouver Island; and 2) the approach and progress in developing the online/Internet disseminations of model results and outreach efforts in support of the Puget Sound Operational Forecast System (PS-OPF). Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics, for fiscal year 2010 of the Environmental Effects of Marine and Hydrokinetic Energy project.

Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping

2010-08-01T23:59:59.000Z

297

Marine kelp: energy resource in the coastal zone  

DOE Green Energy (OSTI)

An ocean farm system is described. The analysis of the ocean farm system includes a description of the types of impacts that might occur if large scale operations become available, such as the production of environmental residuals, conflicts with the fishing and shipping industries, and other legal/institutional impacts. A discussion is given of the relationship of the marine biomass concept and coastal zone management plans.

Ritschard, R.L.; Haven, K.F.

1980-11-01T23:59:59.000Z

298

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81 - 28390 of 28,904 results. 81 - 28390 of 28,904 results. Article USEA/Johnson Controls Energy Efficiency Forum Remarks as Prepared for Secretary Bodman http://energy.gov/articles/useajohnson-controls-energy-efficiency-forum Download Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure- EAC 2011 Recommendations from the Electricity Advisory Committee on actions to be taken by the Department of Energy given the interdependence of the Nation's electric infrastructure and natural gas... http://energy.gov/oe/downloads/interdependence-electricity-system-infrastructure-and-natural-gas-infrastructure-eac Download CX-005561: Categorical Exclusion Determination Underwater Active Acoustic Monitoring Support for Marine Hydrokinetic Energy Projects CX(s) Applied: A9, B3.6

299

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

401 - 15410 of 28,905 results. 401 - 15410 of 28,905 results. Download REQUEST FOR RECORDS DISPOSITION AUTHORITY http://energy.gov/cio/downloads/request-records-disposition-authority-23 Article T-581: Novell Access Manager Java Double Literal Denial of Service Vulnerability Novell Access Manager Java Double Literal Denial of Service Vulnerability. http://energy.gov/cio/articles/t-581-novell-access-manager-java-double-literal-denial-service-vulnerability Article V-160: Wireshark Multiple Bugs Let Remote Users Deny Service Multiple vulnerabilities have been reported in Wireshark http://energy.gov/cio/articles/v-160-wireshark-multiple-bugs-let-remote-users-deny-service Download Before the House Science and Technology Subcommittee on Energy and Environment Subject: Marine and Hydrokinetic Energy Technology: Finding the Path to

300

Scotrenewables Wind Power and Marine Power Ltd | Open Energy...  

Open Energy Info (EERE)

Zip KW16 3AW Sector Renewable Energy, Wind energy Product Scotrenewables is involved in R&D activities in the wind, wave and tidal energy sectors. Coordinates 34.7519,...

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2011 5, 2011 CX-005119: Categorical Exclusion Determination Somerset County, Maryland Energy Efficiency and Conservation Block Grant (Maryland Energy Administration Subgrantee) CX(s) Applied: B5.1 Date: 01/25/2011 Location(s): Somerset County, Maryland Office(s): Energy Efficiency and Renewable Energy, Golden Field Office January 25, 2011 CX-005118: Categorical Exclusion Determination Maryland Energy Efficiency and Conservation Block Grant Water/Wastewater Motor System Upgrades CX(s) Applied: B5.1 Date: 01/25/2011 Location(s): Maryland Office(s): Energy Efficiency and Renewable Energy, Golden Field Office January 25, 2011 CX-005112: Categorical Exclusion Determination Environmentally Benign and Permanent Surface Modifications to Prevent Biofueling on Marine and Hydrokinetic Devices

302

Categorical Exclusion Determinations: A9 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

28, 2011 28, 2011 CX-005184: Categorical Exclusion Determination The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings For use in Marine Hydrokinetic Energy Machines CX(s) Applied: A9, B3.6 Date: 01/28/2011 Location(s): Orem, Utah Office(s): Energy Efficiency and Renewable Energy, Golden Field Office January 28, 2011 CX-005183: Categorical Exclusion Determination Los Tomates Meteorological Tower; National Renewable Energy Laboratory Tracking Number 11?009 CX(s) Applied: A9, B3.1 Date: 01/28/2011 Location(s): Los Tomates, Texas Office(s): Energy Efficiency and Renewable Energy, Golden Field Office January 28, 2011 CX-005181: Categorical Exclusion Determination Los Indios Meteorological Tower; National Renewable Energy Laboratory Tracking Number 11-008

303

Categorical Exclusion Determinations: Office of Energy Efficiency and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2011 6, 2011 CX-005698: Categorical Exclusion Determination California-City-Alhambra CX(s) Applied: A9, B2.5, B5.1 Date: 04/06/2011 Location(s): Alhambra, California Office(s): Energy Efficiency and Renewable Energy April 6, 2011 CX-005561: Categorical Exclusion Determination Underwater Active Acoustic Monitoring Support for Marine Hydrokinetic Energy Projects CX(s) Applied: A9, B3.6 Date: 04/06/2011 Location(s): New Hampshire Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 5, 2011 CX-005709: Categorical Exclusion Determination Florida-City-Palm Bay CX(s) Applied: A1, A9, A11, B1.32, B2.5, B5.1 Date: 04/05/2011 Location(s): Palm Bay, Florida Office(s): Energy Efficiency and Renewable Energy April 5, 2011 CX-005567: Categorical Exclusion Determination

304

Energy study of the marine transportation industry. Volume I. Executive summary  

SciTech Connect

This report covers the conclusions and recommendations resulting from an examination of energy use in the marine transportation industry. It will assist DOE in formulating research and development programs that will promote energy conservation. The results of the analysis determined that the maritime transportation industry consumed approximately 2.9 quads in 1974. This consumption is expected to rise to 6.7 quads by the year 2000. In response to the need to reduce energy consumption below the projected level for the year 2000, conservation-oriented R and D programs were investigated. Two program areas recommended for funding by DOE are diesel bottoming cycles and adiabatic diesels. The methodology used is discussed in the Executive Summary. Volumes II and III cover Tasks I and II, Industry Summary and Regulations and Tariffs, respectively. Volume IV combines Tasks III and IV, Efficiency Improvements and Industry Future. A fifth volume, which is available from DOE, contains documentation of the Marine Transportation Energy Model (MTEM).

1978-06-01T23:59:59.000Z

305

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81 - 2990 of 26,777 results. 81 - 2990 of 26,777 results. Download Microsoft Word- FedComplianceCritChecklist.doc http://energy.gov/management/downloads/microsoft-word-fedcompliancecritchecklistdoc Download TEC Meeting Summaries- January- February 2007 Presentations http://energy.gov/em/downloads/tec-meeting-summaries-january-february-2007-presentations Download Microsoft Word- FY2005finaliparhandbook.doc http://energy.gov/management/downloads/microsoft-word-fy2005finaliparhandbookdoc Download Microsoft Word- GJPPGPracticesDraft.doc http://energy.gov/management/downloads/microsoft-word-gjppgpracticesdraftdoc Download CX-004836: Categorical Exclusion Determination Marine and Hydrokinetic Technology Readiness Advancement Initiative CX(s) Applied: A9, B3.6 Date: 12/16/2010 Location(s): Lynnwood, Washington

306

Categorical Exclusion Determinations: A9 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2010 30, 2010 CX-004632: Categorical Exclusion Determination California- City- Visalia CX(s) Applied: A9, B1.32, B5.1 Date: 11/30/2010 Location(s): Visalia, California Office(s): Energy Efficiency and Renewable Energy November 30, 2010 CX-004630: Categorical Exclusion Determination California- City- Tulare CX(s) Applied: A1, A9, A11, B5.1 Date: 11/30/2010 Location(s): Tulare, California Office(s): Energy Efficiency and Renewable Energy November 30, 2010 CX-004548: Categorical Exclusion Determination Active Flow Control on Bidirectional Rotors for Tidal Marine Hydrokinetic Applications CX(s) Applied: A9 Date: 11/30/2010 Location(s): Davis, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 30, 2010 CX-004582: Categorical Exclusion Determination

307

Chu Presentation at Copenhagen Available on Facebook | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu Presentation at Copenhagen Available on Facebook Chu Presentation at Copenhagen Available on Facebook Chu Presentation at Copenhagen Available on Facebook December 14, 2009 - 12:00am Addthis WASHINGTON, DC - Today at the Copenhagen climate conference, on behalf of President Obama, Energy Secretary Steven Chu announced the launch of a new initiative to promote clean energy technologies in developing countries. Secretary Chu's Powerpoint is posted on his Facebook page. Learn more information about today's announcement from the Clean Energy Technology Announcements fact sheet. Media contact(s): (202) 586-4940 Addthis Related Articles Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development Energy Department Accelerates the Deployment of Advanced Vehicle Technologies with Private Industry Partnerships

308

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2010 30, 2010 CX-004630: Categorical Exclusion Determination California- City- Tulare CX(s) Applied: A1, A9, A11, B5.1 Date: 11/30/2010 Location(s): Tulare, California Office(s): Energy Efficiency and Renewable Energy November 30, 2010 CX-004634: Categorical Exclusion Determination Nevada- Tribe- Walker River Paiute Tribe CX(s) Applied: B3.6, B5.1 Date: 11/30/2010 Location(s): Nevada Office(s): Energy Efficiency and Renewable Energy November 30, 2010 CX-004548: Categorical Exclusion Determination Active Flow Control on Bidirectional Rotors for Tidal Marine Hydrokinetic Applications CX(s) Applied: A9 Date: 11/30/2010 Location(s): Davis, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 30, 2010 CX-004582: Categorical Exclusion Determination

309

Targeting Net Zero Energy at Marine Corps Base Hawaii, Kaneohe Bay: Preprint  

DOE Green Energy (OSTI)

This paper summarizes the results of an NREL assessment of Marine Corps Base Hawaii (MCBH), Kaneohe Bay to appraise the potential of achieving net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. In 2008, the U.S. Department of Defense's U.S. Pacific Command partnered with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency at Hawaii military installations. DOE selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay, to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. This paper summarizes the results of the assessment and provides energy recommendations. The analysis shows that MCBH Kaneohe Bay has the potential to make significant progress toward becoming a net zero installation. Wind, solar photovoltaics, solar hot water, and hydrogen production were assessed, as well as energy efficiency technologies. Deploying wind turbines is the most cost-effective energy production measure. If the identified energy projects and savings measures are implemented, the base will achieve a 96% site Btu reduction and a 99% source Btu reduction. Using excess wind and solar energy to produce hydrogen for a fleet and fuel cells could significantly reduce energy use and potentially bring MCBH Kaneohe Bay to net zero. Further analysis with an environmental impact and interconnection study will need to be completed. By achieving net zero status, the base will set an example for other military installations, provide environmental benefits, reduce costs, increase energy security, and exceed its energy goals and mandates.

Burman, K.; Kandt, A.; Lisell, L.; Booth, S.

2012-05-01T23:59:59.000Z

310

Key Activities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Key Activities Key Activities Key Activities The Water Power Program conducts work in four key areas at the forefront of water power research. The Program is structured to help the United States meet its growing energy demands sustainably and cost-effectively by developing innovative renewable water power technologies, breaking down market barriers to deployment, building the infrastructure to test new technologies, and assessing water power resources for integration into our nation's grid. Research and Development Introduce and advance new marine and hydrokinetic technologies to provide sustainable and cost-effective renewable energy from the nation's waves, tides, currents, and ocean thermal gradients. Research and develop innovative hydropower technologies to sustainably tap our country's diverse water resources including rivers,

311

STATE: HI PROJECT Subtask 2.2 MCBH Site: National Marine Renewable Energy Center in Hawaii  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 MCBH Site: National Marine Renewable Energy Center in Hawaii 2 MCBH Site: National Marine Renewable Energy Center in Hawaii TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number cm Number DE-PS36-08G098030 DE-FG36-08G018180 GFO-09-013-002 G018180 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized ullder DOE Order 451.1A), I have made the fODowing determinatioll: Cx, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, Iterature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasbHity studies, analytical energy supply and demand studies), and dissenination (including, but not limited to, docl.lllent mailings, pLt>lication, and distribution;

312

EA-1965: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

965: Finding of No Significant Impact 965: Finding of No Significant Impact EA-1965: Finding of No Significant Impact Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida Based on the environmental assessment (EA), DOE finds that the proposed action is not a major federal action that constitutes a significant effect on the human environment. This finding and decision is based on the consideration of DOE's NEPA implementing regulations (40 CFR Part 1021) and Council on Environmental Quality criteria for significance (40 CFR 1508.27), both with regard to the context and the intensity of impacts analyzed in the EA. Therefore, the proposed action does not require the preparation of an environmental impact statement.

313

Findings of No Significant Impact (FONSI) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » NEPA Documents » Findings of No Significant Impact Services » NEPA Documents » Findings of No Significant Impact (FONSI) Findings of No Significant Impact (FONSI) Findings of No Significant Impact are public documents issued by a Federal agency briefly presenting the reasons why an action for which the agency has prepared an environmental assessment will not have a significant effect on the human environment and, therefore, will not require preparation of an environmental impact statement. If you have any trouble finding a specific document, please contact AskNEPA@hq.doe.gov for assistance. DOCUMENTS AVAILABLE FOR DOWNLOAD November 13, 2013 EA-1965: Finding of No Significant Impact Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida

314

EA-1965: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact Finding of No Significant Impact EA-1965: Finding of No Significant Impact Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida Based on the environmental assessment (EA), DOE finds that the proposed action is not a major federal action that constitutes a significant effect on the human environment. This finding and decision is based on the consideration of DOE's NEPA implementing regulations (40 CFR Part 1021) and Council on Environmental Quality criteria for significance (40 CFR 1508.27), both with regard to the context and the intensity of impacts analyzed in the EA. Therefore, the proposed action does not require the preparation of an environmental impact statement.

315

Attraction to and Avoidance of instream Hydrokinetic Turbines by Freshwater Aquatic Organisms  

Science Conference Proceedings (OSTI)

The development of hydrokinetic (HK) energy projects is under consideration at over 150 sites in large rivers in the United States, including the Mississippi, Ohio, Tennessee, and Atchafalaya Rivers. These waterbodies support numerous fish species that might interact with the HK projects in a variety of ways, e.g., by attraction to or avoidance of project structures. Although many fish species inhabit these rivers (about 172 species in the Mississippi River alone), not all of them will encounter the HK projects. Some species prefer low-velocity, backwater habitats rather than the high-velocity, main channel areas that would be the best sites for HK. Other, riverbank-oriented species are weak swimmers or too small to inhabit the main channel for significant periods of time. Some larger, main channel fish species are not known to be attracted to structures. Based on a consideration of habitat preferences, size/swim speed, and behavior, fish species that are most likely to be attracted to HK structures in the main channel include carps, suckers, catfish, white bass, striped bass, smallmouth bass, spotted bass, and sauger. Proper siting of the project in order to avoid sensitive fish populations, backwater and fish nursery habitat areas, and fish migration corridors will likely minimize concerns about fish attraction to or avoidance of HK structures.

Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

2011-05-01T23:59:59.000Z

316

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2011 6, 2011 CX-006520: Categorical Exclusion Determination High Energy Density Distributed Hydrostatic Direct Drive for Large Wind Turbine and Marine Hydro-Kinetic Device Applications CX(s) Applied: A9 Date: 08/16/2011 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 16, 2011 CX-006513: Categorical Exclusion Determination Novel Low Cost, High Reliability Wind Turbine Drivetrain CX(s) Applied: A9 Date: 08/16/2011 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 16, 2011 CX-006875: Categorical Exclusion Determination Center for Integrated Nanotechnologies Integration Laboratories: PH3 Operations CX(s) Applied: B3.6 Date: 08/16/2011 Location(s): Albuquerque, New Mexico

317

CX-000624: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24: Categorical Exclusion Determination 24: Categorical Exclusion Determination CX-000624: Categorical Exclusion Determination Siting Study for a Hydrokinetic Energy Project Located Offshore Southeast Florida CX(s) Applied: A9, B3.1 Date: 01/19/2010 Location(s): Florida Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Dehlsen Associates will be using Department of Energy funding to identify and approach for siting and designing marine renewable energy facilities (including transmission cables) along the Florida Coast, that will satisfy regulatory and resource management agency requirements that impacts to protected resources be avoided or minimized by a thorough analysis of alternative sites and installation methods. A parallel study will also be conducted that will help develop a complete mapping of benthic habitat

318

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2011 3, 2011 CX-005699: Categorical Exclusion Determination California-City-Murrieta CX(s) Applied: A1, A9, A11, B1.32, B2.5, B5.1 Date: 04/13/2011 Location(s): Murrieta, California Office(s): Energy Efficiency and Renewable Energy April 13, 2011 CX-005670: Categorical Exclusion Determination Marine and Hydrokinetic Energy System Development of the Aquantis 2.5 Megawatt Ocean-Current Electricity Generation Device CX(s) Applied: A9, B3.6 Date: 04/13/2011 Location(s): Carpinteria, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 13, 2011 CX-005624: Categorical Exclusion Determination Evaluating and Commercializing a Solvent Based Enhanced Oil Recovery Technology CX(s) Applied: B5.12 Date: 04/13/2011 Location(s): Huntington Beach, California

319

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 - 13420 of 28,905 results. 11 - 13420 of 28,905 results. Download CRAD, Welding, Cutting and Brazing Assessment Plan This assessment is to verify hot work requirements associated with welding, cutting, burning, brazing, grinding and other spark- or flame-producing operations have been implemented. Verify that the requirements implemented are appropriate for preventing loss of life and property from fire, and personal injury from contact with or exposure to molten metals, vapors, radiant energy, injurious rays and sparks. http://energy.gov/hss/downloads/crad-welding-cutting-and-brazing-assessment-plan Download CX-005670: Categorical Exclusion Determination Marine and Hydrokinetic Energy System Development of the Aquantis 2.5 Megawatt Ocean-Current Electricity Generation Device CX(s) Applied: A9, B3.6

320

Marin County - Solar Rebate Program (California) | Open Energy...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Effects of Tidal Turbine Noise on Fish Task 2.1.3.2: Effects on Aquatic Organisms: Acoustics/Noise - Fiscal Year 2011 - Progress Report - Environmental Effects of Marine and Hydrokinetic Energy  

Science Conference Proceedings (OSTI)

Naturally spawning stocks of Chinook salmon (Oncorhynchus tshawytscha) that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/ Chinook/CKPUG.cfm). Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study (Effects on Aquatic Organisms, Subtask 2.1.3.2: Acoustics) was performed during FY 2011 to determine if noise generated by a 6-m-diameter open-hydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Preliminary results indicate that low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

2011-09-30T23:59:59.000Z

322

STATE: HI PROJECT Subtask 2.1 Maui Site: National Marine Renewable Energy Center in Hawaii  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Maui Site: National Marine Renewable Energy Center in Hawaii 1 Maui Site: National Marine Renewable Energy Center in Hawaii TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-PS36-08G098030 DE-FG36-08G018180 GFO-09-013-001 G018180 Based on my review of the information concerning the pro posed action, as NEPA CompHance Officer (authorized under DOE Order 451.1A), I have made the foHowing determination: Cx, EA, EIS APPENDIX AND NUMBER: Description: 83.1 Onsite and offsite site characterization and environmental monitoring, including siting, construction (or modification), operation, and dismantlement or closing (abandonment) of qharacterization and monitoring devices and siting, construction, and associated operation of a small-scale laboratory building or renovation of a room in an existing building

323

Executive summary of an energy study of the marine transportation industry. Volume I. Draft final report  

SciTech Connect

The conclusions and recommendations resulting from an examination of energy use in the marine transportation industry are presented. The methodology used is discussed. Specific information is discussed concerning energy consumption and productivity in these sectors: foreign trade; Great Lakes; inland waterways; coastal; offshore; pleasure craft; and fishing and miscellaneous. Based on the energy savings potentials calculated, the programs relating to slow speed diesels, diesel bottoming cycles, and hull maintenance and smoothing are recommended for funding in FY1978. Three high risk program areas that should be evaluated in the future are identified as: adiabatic diesels, Naval Academy heat balance engine, and closed cycle gas turbines. (MCW)

1977-08-17T23:59:59.000Z

324

Doppler LidarBased Wind-Profile Measurement System for Offshore Wind-Energy and Other Marine Boundary Layer Applications  

Science Conference Proceedings (OSTI)

Accurate measurement of wind speed profiles aloft in the marine boundary layer is a difficult challenge. The development of offshore wind energy requires accurate information on wind speeds above the surface at least at the levels occupied by ...

Yelena L. Pichugina; Robert M. Banta; W. Alan Brewer; Scott P. Sandberg; R. Michael Hardesty

2012-02-01T23:59:59.000Z

325

Implementation of control system for hydrokinetic energy converter  

Science Conference Proceedings (OSTI)

At Uppsala University, a research group is investigating a system for converting the power in freely flowing water using a verticalaxis turbine directly connected to a permanent magnet generator. An experimental setup comprising a turbine, a generator, ...

Katarina Yuen, Senad Apelfrjd, Mats Leijon

2013-01-01T23:59:59.000Z

326

First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project...  

Office of Science (SC) Website

Image courtesy of Ocean Renewable Power Company ORPC's TidGen(tm) turbine generator unit. R&D Opportunity Advanced water power technologies include devices capable of extracting...

327

CX-004532: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

532: Categorical Exclusion Determination 532: Categorical Exclusion Determination CX-004532: Categorical Exclusion Determination Tidal Energy System for On-Shore Power Generation CX(s) Applied: A9, B3.6 Date: 11/24/2010 Location(s): Piscataway, New Jersey Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Sunlight Photonics is proposing to use Department of Energy funding to design, build and test a proof-of-concepts (Technology Readiness Level 4) model-scale marine hydrokinetic (MHK) on-shore power generation system with no high-ratio gears or submerged electronics. Funding would also be used to collect and report the data to be used toward full-scale implementation of the MHK system. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-004532.pdf More Documents & Publications CX-001727: Categorical Exclusion Determination

328

Energy use in the marine transportation industry: Task II. Regulations and Tariffs. Final report, Volume III  

SciTech Connect

The evaluation of the energy impacts of regulations and tariffs is structured around three sequential steps: identification of agencies and organizations that impact the commercial marine transportation industry; identification of existing or proposed regulations that were perceived to have a significant energy impact; and quantification of the energy impacts. Following the introductory chapter, Chapter II describes the regulatory structure of the commercial marine transportation industry and includes a description of the role of each organization and the legislative basis for their jurisdiction and an identification of major areas of regulation and those areas that have an energy impact. Chapters III through IX each address one of the 7 existing or proposed regulatory or legislative actions that have an energy impact. Energy impacts of the state of Washington's tanker regulations, of tanker segregated ballast requirements, of inland waterway user charges, of cargo pooling and service rationalization, of the availability of intermodal container transportation services, of capacity limitations at lock and dam 26 on the Mississippi River and the energy implications of the transportation alternatives available for the West Coast crude oil supplies are discussed. (MCW)

1977-12-01T23:59:59.000Z

329

Independent Natural Resources Inc | Open Energy Information  

Open Energy Info (EERE)

Natural Resources Inc Natural Resources Inc Jump to: navigation, search Name Independent Natural Resources Inc Place Eden Prairie, Minnesota Zip 55344 Product Designer of a wave converter system. Has patented the SEADOG Pump which uses buoyancy to convert ave energy to mechanical energy. References Independent Natural Resources Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. Independent Natural Resources Inc is a company located in Eden Prairie, Minnesota . References ↑ "Independent Natural Resources Inc" Retrieved from "http://en.openei.org/w/index.php?title=Independent_Natural_Resources_Inc&oldid=678906"

330

Aqua Magnetics Inc | Open Energy Information  

Open Energy Info (EERE)

Magnetics Inc Magnetics Inc Jump to: navigation, search Name Aqua-Magnetics Inc Place Satellite Beach, Florida Zip 32937 Sector Ocean Product Manufactures patented system that converts ocean wave energy into electric power. References Aqua-Magnetics Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Electric Buoy Mobil Stabilized Energy Conversion Platform Platform generators This article is a stub. You can help OpenEI by expanding it. Aqua-Magnetics Inc is a company located in Satellite Beach, Florida . References ↑ "Aqua-Magnetics Inc" Retrieved from "http://en.openei.org/w/index.php?title=Aqua_Magnetics_Inc&oldid=678881"

331

Marine Animal Alert System -- Task 2.1.5.3: Development of Monitoring Technologies -- FY 2011 Progress Report  

SciTech Connect

The Marine Animal Alert System (MAAS) in development by the Pacific Northwest National Laboratory is focused on providing elements of compliance monitoring to support deployment of marine hydrokinetic energy devices. An initial focus is prototype tidal turbines to be deployed in Puget Sound in Washington State. The MAAS will help manage the risk of injury or mortality to marine animals from blade strike or contact with tidal turbines. In particular, development has focused on detection, classification, and localization of listed Southern Resident killer whales within 200 m of prototype turbines using both active and passive acoustic approaches. At the close of FY 2011, a passive acoustic system consisting of a pair of four-element star arrays and parallel processing of eight channels of acoustic receptions has been designed and built. Field tests of the prototype system are scheduled for the fourth quarter of calendar year 2011. Field deployment and testing of the passive acoustic prototype is scheduled for the first quarter of FY 2012. The design of an active acoustic system that could be built using commercially available off-the-shelf components from active acoustic system vendors is also in the final stages of design and specification.

Carlson, Thomas J.; Deng, Zhiqun; Myers, Joshua R.; Matzner, Shari; Copping, Andrea E.

2011-09-30T23:59:59.000Z

332

Top 10 Things You Didn't Know about Hydropower | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top 10 Things You Didn't Know about Hydropower Top 10 Things You Didn't Know about Hydropower Top 10 Things You Didn't Know about Hydropower April 19, 2013 - 3:49pm Addthis Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses. | Video by the Energy Department. Mike Reed Water Power Program Manager, Water Power Program LEARN MORE Stay up to date on hydropower, marine and hydrokinetic energy technologies by visiting energy.gov/water. This article is part of the Energy.gov series highlighting the "Top Things You Didn't Know About..." Be sure to check back for more entries soon. 10. Hydropower is one of the oldest power sources on the planet, generating power when flowing water spins a wheel or turbine. It was used by farmers as far back as ancient Greece for mechanical tasks like grinding grain.

333

Top 10 Things You Didn't Know about Hydropower | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

about Hydropower about Hydropower Top 10 Things You Didn't Know about Hydropower April 19, 2013 - 3:49pm Addthis Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses. | Video by the Energy Department. Mike Reed Water Power Program Manager, Water Power Program LEARN MORE Stay up to date on hydropower, marine and hydrokinetic energy technologies by visiting energy.gov/water. This article is part of the Energy.gov series highlighting the "Top Things You Didn't Know About..." Be sure to check back for more entries soon. 10. Hydropower is one of the oldest power sources on the planet, generating power when flowing water spins a wheel or turbine. It was used by farmers as far back as ancient Greece for mechanical tasks like grinding grain.

334

Hawai`i Institute of Marine Biology to house state-of-the-art solar energy project  

E-Print Network (OSTI)

Hawai`i Institute of Marine Biology to house state-of-the-art solar energy project Landmark purchasing agreement (PPA) with SolarCity to provide renewable solar energy to the Hawai`i Institute this one make solar both logical and affordable." Power purchase agreements for renewable energy

Wang, Yuqing

335

DEP.~TMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEP.~TMENT OF ENERGY DEP.~TMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DFTJ!R1,fiNATION RECIPIENT:Sound & Sea Technology. Inc. PROJECT TITLE: Marine and Hydrokinetic Technology Readiness Advancemenlinitiative Page I of2 STATE: WA Funding Opportunity Announcement Number Procurement Instrument Number N[PA Control Number CID Number DE-FOA-OOOO293 OE-EEOOO3632 GFO-OOO3632-OO1 GOO Based on my review oflhe informatioD concerning the proposed action,.s NEPA Compliance Officer (authorized under DOE Order 4SI.IA),1 have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, bul 1"101 limited to, literature surveys, inventories, audits), data analysis (including computer modeling). document preparation (such as conceptual design or feasibility studies, analytical energy supply

336

U.S. Department of Energy Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brown University - Brown University - Marine Hydro-Kinetic Energy Harvesting Using Cyber-Physical Systems Program or Field Office:Advanced Research Projects Agency- Energy (ARPA-E) Location(s) (City/County/State): Providence, Rl Proposed Action Description: Funding will support efforts to develop a cyber-physical hydrofoil, an oscillating, underwater wing coupled with adaptive control software to capture energy from flowing water in rivers and tidal basins. Project tasks will be conducted in dedicated university laboratory, testing, and office facilities at Brown University in accordance with university materials/waste management protocols and pursuant to applicable Federal, State, and local regulatory requirements. No outdoor field testing will occur in this project.

337

Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and Recommendations  

Science Conference Proceedings (OSTI)

The U.S. Department of Defense (DoD) is the largest energy consumer in the U.S. government. Present energy use impacts DoD global operations by constraining freedom of action and self-sufficiency, demanding enormous economic resources, and putting many lives at risk in logistics support for deployed environments. There are many opportunities for DoD to more effectively meet energy requirements through a combination of human actions, energy efficiency technologies, and renewable energy resources. In 2008, a joint initiative was formed between DoD and the U.S. Department of Energy (DOE) to address military energy use. This initiative created a task force comprised of representatives from each branch of the military, the Office of the Secretary of Defense (OSD), the Federal Energy Management Program (FEMP), and the National Renewable Energy Laboratory (NREL) to examine the potential for ultra high efficiency military installations. This report presents an assessment of Marine Corps Air Station (MCAS) Miramar, selected by the task force as the initial prototype installation based on its strong history of energy advocacy and extensive track record of successful energy projects.

Booth, S.; Barnett, J.; Burman, K.; Hambrick, J.; Helwig, M.; Westby, R.

2010-12-01T23:59:59.000Z

338

1st Advanced Marine Renewable Energy Instrumentation Experts Workshop: April 5-7, 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

PROGRAM PROGRAM 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop April 5-7, 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,

339

Artificial Muscle Inc | Open Energy Information  

Open Energy Info (EERE)

Artificial Muscle Inc Artificial Muscle Inc Jump to: navigation, search Name Artificial Muscle Inc Place California Zip CA 94085 Product Artificial Muscle develops electroactive polymer technology used for sensing, actuating and electric power generation applications. References Artificial Muscle Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. Artificial Muscle Inc is a company located in California . References ↑ "Artificial Muscle Inc" Retrieved from "http://en.openei.org/w/index.php?title=Artificial_Muscle_Inc&oldid=678882" Categories: Clean Energy Organizations Companies Organizations

340

Property:ProjectTechnology | Open Energy Information  

Open Energy Info (EERE)

ProjectTechnology ProjectTechnology Jump to: navigation, search Property Name ProjectTechnology Property Type Page Has Default form Marine and Hydrokinetic Technology Pages using the property "ProjectTechnology" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + MHK Technologies/Oyster + MHK Projects/ADM 3 + MHK Technologies/Wavebob + MHK Projects/ADM 4 + MHK Technologies/Wavebob + MHK Projects/AW Energy EMEC + MHK Technologies/Wave Roller + MHK Projects/Alaska 35 + MHK Technologies/Ocean +, MHK Technologies/Kensington + MHK Projects/BW2 Tidal + MHK Technologies/RED HAWK + MHK Projects/BioSTREAM Pilot Plant + MHK Technologies/bioSTREAM + MHK Projects/Bluemill Sound + MHK Technologies/Exim + MHK Projects/Bondurant Chute + MHK Technologies/SmarTurbine +

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Waveberg Development Ltd | Open Energy Information  

Open Energy Info (EERE)

Waveberg Development Ltd Waveberg Development Ltd Jump to: navigation, search Name Waveberg Development Ltd Place New York, New York Zip 10036 Product Wave energy developer. Has patented the Waveberg, an articulated set of connected floats that flex as the waves pass under them, using this bending motion to pump seawater. References Waveberg Development Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. Waveberg Development Ltd is a company located in New York, New York . References ↑ "Waveberg Development Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Waveberg_Development_Ltd&oldid=678929"

342

EA-1965: Southeast National Marine Renewable Energy Center (SNMREC) Offshore Testing Facility  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic Universitys South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMRECs experimental current generation turbine and the deployment and operation of their Small-Scale Ocean Current Turbine Test Berth, sited on the outer continental shelf (OCS) in waters off the coast of Ft Lauderdale, Florida. SNMREC is proposing to demonstrate the test berth site readiness by testing their pilot-scale experimental ocean current turbine unit at that location. The Bureau of Ocean Energy Management (BOEM) is conducting an Environmental Assessment to analyze the impacts associated with leasing OCS lands to FAU SNMREC, per their jurisdictional responsibilities under the Outer Continental Shelf Lands Act. DOE is a cooperating agency in this process.

343

Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies  

SciTech Connect

This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments. Behavioral responses to turbine exposure also are investigated to support assessment of the potential for disruptions to upstream and downstream movements of fish. The studies: (1) conducted an assessment of potential injury mechanisms using available data from studies with conventional hydro turbines; (2) developed theoretical models for predicting blade strike probabilities and mortality rates; and (3) performed flume testing with three turbine designs and several fish species and size groups in two laboratory flumes to estimate survival rates and document fish behavior. The project yielded three reports which this document comprises. The three constituent documents are addressed individually below Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies Fish passing through the blade sweep of a hydrokinetic turbine experience a much less harsh physical environment than do fish entrained through conventional hydro turbines. The design and operation of conventional turbines results in high flow velocities, abrupt changes in flow direction, relatively high runner rotational and blade speeds, rapid and significant changes in pressure, and the need for various structures throughout the turbine passageway that can be impacted by fish. These conditions generally do not occur or are not significant factors for hydrokinetic turbines. Furthermore, compared to conventional hydro turbines, hydrokinetic turbines typically produce relatively minor changes in shear, turbulence, and pressure levels from ambient conditions in the surrounding environment. Injuries and mortality from mechanical injuries will be less as well, mainly due to low rotational speeds and strike velocities, and an absence of structures that can lead to grinding or abrasion injuries. Additional information is needed to rigorously assess the nature and magnitude of effects on individuals and populations, and to refine criteria for design of more fish-friendly hydrokinetic turbines. Evaluation of Fish Injury and Mortality Associated with Hydrokinetic Turbines Flume studies exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral responses. Also, a theoretical model developed for predicting strike probability and mortality of fish passing through conventional hydro turbines was adapted for use with hydrokinetic turbines and applied to the two designs evaluated during flume studies. The flume tests were conducted with the Lucid spherical turbine (LST), a Darrieus-type (cross flow) turbine, and the Welka UPG, an axial flow propeller turbine. Survival rates for rainbow trout tested with the LST were greater than 98% for both size groups and approach velocities evaluated. Turbine passage survival rates for rainbow trout and largemouth bass tested with the Welka UPG were greater than 99% for both size groups and velocities evaluated. Injury rates of turbine-exposed fish were low with both turbines and generally comparable to control fish. Video observations of the LST demonstrated active avoidance of turbine passage by a large proportion fish despite being released about 25 cm upstream of the turbine blade sweep. Video observations from behavior trials indicated few if any fish pass through the turbines when released farther upstream. The theoretical predictions for the LST indicated that strike mortality would begin to occur at an ambient current velocity of about 1.7 m/s for fish with lengths greater than the thickness of the leading edge of the blades. As current velocities increase above 1.7 m/s, survival was predicted to decrease for fish passing through the LST, but generally remained high (greater than 90%) for fish less than 200 mm in length. Strike mortality was not predicted to occur duri

Jacobson, Paul T. [Electric Power Research Institute; Amaral, Stephen V. [Alden Research Laboratory; Castro-Santos, Theodore [U.S. Geological Survey; Giza, Dan [Alden Research Laboratory; Haro, Alexander J. [U.S. Geological Survey; Hecker, George [Alden Research Laboratory; McMahon, Brian [Alden Research Laboratory; Perkins, Norman [Alden Research Laboratory; Pioppi, Nick [Alden Research Laboratory

2012-12-31T23:59:59.000Z

344

Categorical Exclusion Determinations: Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Rhode Island Categorical Exclusion Determinations: Rhode Island Location Categorical Exclusion Determinations issued for actions in Rhode Island. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2013 CX-010757: Categorical Exclusion Determination The New England Solar cost-Reduction Challenge Partnership CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): Vermont, New Hampshire, Rhode Island, Massachusetts, Connecticut Offices(s): Golden Field Office February 4, 2013 CX-010572: Categorical Exclusion Determination Brown University - Marine Hydro-Kinetic Energy Harvesting Using Cyber-Physical Systems CX(s) Applied: B3.6 Date: 02/04/2013 Location(s): Rhode Island Offices(s): Advanced Research Projects Agency-Energy October 18, 2012 CX-009518: Categorical Exclusion Determination

345

Bourne Energy | Open Energy Information  

Open Energy Info (EERE)

Bourne Energy Bourne Energy Jump to: navigation, search Logo: Bourne Energy Name Bourne Energy Address Box 2761 Place Malibu, California Zip 90265 Sector Marine and Hydrokinetic Product River, tidal, wave and ocean current power systems Year founded 2005 Number of employees 1-10 Phone number 310-456-8112 Website http://www.bourneenergy.com/ Coordinates 34.0050079°, -118.8100893° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0050079,"lon":-118.8100893,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

RECIPIENT:Dehlsen Associates STATE: CA PROJECT TITLE:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STATE: CA PROJECT TITLE: Marine & Hydrokinetic Energy System Development of the Aquantis 2.5MW Ocean-Current Electricity Generation Device Funding Opportunity Announcement...

347

Name Address Place Zip Sector Product Stock Symbol Year founded...  

Open Energy Info (EERE)

Coordinates Region ABS Alaskan Inc Van Horn Rd Fairbanks Alaska Gateway Solar Wind energy Marine and Hydrokinetic Solar PV Solar thermal Wind Hydro Small scale wind turbine...

348

A Review of Energy Storage Technologies for Marine Current Energy Systems A Review of Energy Storage Technologies for Marine Current Energy Systems  

E-Print Network (OSTI)

to the tide phenomenon while supercapacitor and flywheel are more suitable for eliminating short-period power current energy; Power fluctuation; Battery; Flywheel; Supercapacitor hal-00757890,version1-27Nov2012

Paris-Sud XI, Université de

349

MHK Projects/US Navy Wave Energy Technology WET Program at Marine Corps  

Open Energy Info (EERE)

US Navy Wave Energy Technology WET Program at Marine Corps US Navy Wave Energy Technology WET Program at Marine Corps Base Hawaii MCBH < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.4164,"lon":-157.784,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

350

Congrs SHF : Energies Marines Renouvelables 2013, Brest, 09-10 octobre 2013 Zhibin Zhou LISSAGE SUPERCAPACITIF DE LA PUISSANCE PRODUITE  

E-Print Network (OSTI)

Control of a Grid-Connected Marine Current Turbine System Using Supercapacitors Zhibin Zhou1,2 , Franck, the power limitation control will be applied. In the second step, Supercapacitor (SC) Energy Storage System, supercapacitor. I. INTRODUCTION During short-time period, swell waves are the main cause for variations

Recanati, Catherine

351

MHK Technologies/Underwater Electric Kite Turbines | Open Energy  

Open Energy Info (EERE)

Underwater Electric Kite Turbines Underwater Electric Kite Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Underwater Electric Kite Turbines.jpg Technology Profile Primary Organization UEK Corporation Project(s) where this technology is utilized *MHK Projects/Atchafalaya River Hydrokinetic Project II *MHK Projects/Chitokoloki Project *MHK Projects/Coal Creek Project *MHK Projects/Half Moon Cove Tidal Project *MHK Projects/Indian River Tidal Hydrokinetic Energy Project *MHK Projects/Luangwa Zambia Project *MHK Projects/Minas Basin Bay of Fundy Commercial Scale Demonstration *MHK Projects/Passamaquoddy Tribe Hydrokinetic Project *MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project *MHK Projects/UEK Yukon River Project Technology Resource

352

u.s. DEPARThIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NFPA DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NFPA DETERMINATION NFPA DETERMINATION RECIPIENT: US Synthetic Corporation Page 1 of2 STATE: UT PROJECT TITLE: The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings For use in Marine Hydrokinetic (MHK) Energy Machines funding Opportunity Announcement Number Procu~ment Instrument Number NEPA Control Number em Number DE-FOA-{)()()I)293 DE·EEOOO3633 GFO-OOO3633-OO1 EE3633 Based on my review oftbe information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4SI.IA),1 bave made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including . but not limited to. literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

353

Assssment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States  

SciTech Connect

The U.S. Department of Energy (DOE) funded the Electric Power Research Institute and its collaborative partners, University of Alaska ? Anchorage, University of Alaska ? Fairbanks, and the National Renewable Energy Laboratory, to provide an assessment of the riverine hydrokinetic resource in the continental United States. The assessment benefited from input obtained during two workshops attended by individuals with relevant expertise and from a National Research Council panel commissioned by DOE to provide guidance to this and other concurrent, DOE-funded assessments of water based renewable energy. These sources of expertise provided valuable advice regarding data sources and assessment methodology. The assessment of the hydrokinetic resource in the 48 contiguous states is derived from spatially-explicit data contained in NHDPlus ?a GIS-based database containing river segment-specific information on discharge characteristics and channel slope. 71,398 river segments with mean annual flow greater than 1,000 cubic feet per second (cfs) mean discharge were included in the assessment. Segments with discharge less than 1,000 cfs were dropped from the assessment, as were river segments with hydroelectric dams. The results for the theoretical and technical resource in the 48 contiguous states were found to be relatively insensitive to the cutoff chosen. Raising the cutoff to 1,500 cfs had no effect on estimate of the technically recoverable resource, and the theoretical resource was reduced by 5.3%. The segment-specific theoretical resource was estimated from these data using the standard hydrological engineering equation that relates theoretical hydraulic power (Pth, Watts) to discharge (Q, m3 s-1) and hydraulic head or change in elevation (??, m) over the length of the segment, where ? is the specific weight of water (9800 N m-3): ??? = ? ? ?? For Alaska, which is not encompassed by NPDPlus, hydraulic head and discharge data were manually obtained from Idaho National Laboratory?s Virtual Hydropower Prospector, Google Earth, and U.S. Geological Survey gages. Data were manually obtained for the eleven largest rivers with average flow rates greater than 10,000 cfs and the resulting estimate of the theoretical resource was expanded to include rivers with discharge between 1,000 cfs and 10,000 cfs based upon the contribution of rivers in the latter flow class to the total estimate in the contiguous 48 states. Segment-specific theoretical resource was aggregated by major hydrologic region in the contiguous, lower 48 states and totaled 1,146 TWh/yr. The aggregate estimate of the Alaska theoretical resource is 235 TWh/yr, yielding a total theoretical resource estimate of 1,381 TWh/yr for the continental US. The technically recoverable resource in the contiguous 48 states was estimated by applying a recovery factor to the segment-specific theoretical resource estimates. The recovery factor scales the theoretical resource for a given segment to take into account assumptions such as minimum required water velocity and depth during low flow conditions, maximum device packing density, device efficiency, and flow statistics (e.g., the 5 percentile flow relative to the average flow rate). The recovery factor also takes account of ?back effects? ? feedback effects of turbine presence on hydraulic head and velocity. The recovery factor was determined over a range of flow rates and slopes using the hydraulic model, HEC-RAS. In the hydraulic modeling, presence of turbines was accounted for by adjusting the Manning coefficient. This analysis, which included 32 scenarios, led to an empirical function relating recovery factor to slope and discharge. Sixty-nine percent of NHDPlus segments included in the theoretical resource estimate for the contiguous 48 states had an estimated recovery factor of zero. For Alaska, data on river slope was not readily available; hence, the recovery factor was estimated based on the flow rate alone. Segment-specific estimates of the theoretical resource were multiplied by the corresponding recovery factor to estimate

Jacobson, Paul T. [Electric Power Research Institute; Ravens, Thomas M. [University of Alaska Anchorage; Cunningham, Keith W. [University of Alaska Fairbanks; Scott, George [National Renewable Energy Laboratory

2012-12-14T23:59:59.000Z

354

u.s. DEPART1IENT OF ENERGY EE RE PROJECT MANAGEMDH CENTER NEPA DETIlRMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EE EE RE PROJECT MANAGEMDH CENTER NEPA DETIlRMINATION RECIPIENT:Scientific Solutions, Inc. Page 1 of3 STATE: NH PROJF:CT TITLf. : Underwater Active Acoustic Monitoring Support for Marine Hydrokinetic Energy Projects Funding Opportunity Announcement Number Procurement Instrument Number Nt:PA Control Number CID Number DE-FOA-Q00293 DE-EEOOO3639 GFO-OOO3639-OO1 EE3639 Based on my rc\'iew of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1 A), I have made the following determination: ex. EA, F.1S APPENDIX AND NUMBER: Descripfion: A9 Information gsthenng (including, but not limited to, literature surveys, inventones, audits), data analysis (including computer modeling). document preparatioo (such as cooceplual design or feasibility studies, analytical energy supply

355

GRR/Section 12-FD-c - Marine Mammal Protection Considerations | Open Energy  

Open Energy Info (EERE)

c - Marine Mammal Protection Considerations c - Marine Mammal Protection Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 12-FD-c - Marine Mammal Protection Considerations 12FDCMarineMammalProtectionConsiderations.pdf Click to View Fullscreen Contact Agencies Fish and Wildlife Service National Oceanic and Atmospheric Administration (NOAA) National Marine Fisheries Service Regulations & Policies Marine Mammal Protection Act Triggers None specified Click "Edit With Form" above to add content 12FDCMarineMammalProtectionConsiderations.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

356

u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NFPA DETl!RMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DETl!RMINATION DETl!RMINATION RECIPJENT: Semprus BioSciences Page 1 of2 STATE: MA PROJECT TITLE: Environmentally Benign and Permanent Surface Modifications to Prevent Biofouling on Marine and Hydrokinetic Devices Funding Opportunity AnnounCtrnl'DI Number Prenergy supply

357

Property:Project(s) where this technology is utilized | Open Energy  

Open Energy Info (EERE)

Project(s) where this technology is utilized Project(s) where this technology is utilized Jump to: navigation, search Property Name Project(s) where this technology is utilized Property Type Page Marine and Hydrokinetic Technology Project Pages using the property "Project(s) where this technology is utilized" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/AirWEC + MHK Projects/Ocean Trials Ver 2 + MHK Technologies/AquaBuoy + MHK Projects/Figueira da Foz Portugal +, MHK Projects/Humboldt County Wave Project +, MHK Projects/Makah Bay Offshore Wave Pilot Project +, ... MHK Technologies/Archimedes Wave Swing + MHK Projects/AWS II +, MHK Projects/Portugal Pre Commercial Pilot Project + MHK Technologies/Atlantis AN 150 + MHK Projects/Gujarat + MHK Technologies/Atlantis AR 1000 + MHK Projects/Castine Harbor Badaduce Narrows +, MHK Projects/Gujarat +, MHK Projects/Tidal Energy Device Evaluation Center TIDEC +

358

PTC, ITC, or Cash Grant? An Analysis of the Choice Facing Renewable Power Projects in the United States  

E-Print Network (OSTI)

hydroelectric, and marine and hydrokinetic power, are notmarine and hydrokinetic facilities. For wind, closed-loop biomass, and geothermal power,

Bolinger, Mark

2009-01-01T23:59:59.000Z

359

Aspects of Apache's Acquisition of Mariner Energy and Selected Devon Energy Assets  

Reports and Publications (EIA)

The Energy Information Administration reviews mergers, acquisitions, and alliances by companies that are respondents to Form EIA-28 (Financial Reporting System (FRS)), or that result in a company that meets the FRS reporting criteria.

Neal Davis

2010-04-15T23:59:59.000Z

360

GCK Technology Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name GCK Technology Inc Place San Antonio, Texas Zip 78205 Sector Hydro, Marine and Hydrokinetic Product Designer and manufacturer of marine turbine technology. Has patented the Gorlov Helical Turbine (GHT), designed for hydroelectric applications in free flowing low head water courses. References GCK Technology Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: GCK Technology Amazon River Brazil GCK Technology Cape Cod Canal MA US GCK Technology Merrimack River Amesbury MA US GCK Technology Shelter Island NY US GCK Technology Uldolmok Strait South Korea GCK Technology Vinalhaven ME US

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Microsoft PowerPoint - MVD Hydrokinetics, SW Regional Hydropower...  

NLE Websites -- All DOE Office Websites (Extended Search)

* Free Flow Power Corporation (generators mounted on poles placed in the river bottom) * Hydro Green Energy (barge mounted generators) * MarMC Enterprises (generators submerged in...

362

Aquamarine Power | Open Energy Information  

Open Energy Info (EERE)

Aquamarine Power Aquamarine Power Jump to: navigation, search Name Aquamarine Power Address Elder House 24 Elder Street Place Edinburgh, Scotland, United Kingdom Zip EH2 2AF Sector Marine and Hydrokinetic Product Edinburgh-based company that specialises in marine energy conversion and its commercial applications. Year founded 2005 Number of employees 60 Phone number +44 131 524 1440 Website http://www.aquamarinepower.com Coordinates 55.954155°, -3.202774° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.954155,"lon":-3.202774,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

363

NREL Furthers U.S. Marine Corps Air Station Miramars Move Toward Net Zero Energy (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Furthers U.S. Marine Corps Air Furthers U.S. Marine Corps Air Station Miramar's Move Toward Net Zero Energy The U.S. Marine Corps Air Station (MCAS) Miramar is striving toward its goal of becoming a "net zero energy installation" (NZEI), which entails producing as much energy as it uses over the course of a year. In conjunction with the U.S. Department of Energy's Federal Energy Management Program, the National Renewable Energy Laboratory (NREL) has partnered with MCAS Miramar to develop a plan for meeting this goal and to create an NZEI template for widespread replication across the military. A 2008 report from the Defense Science Board concluded that critical missions at military bases are facing unacceptable risks from extended power losses. To address this concern, the

364

Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Marine Climates; January 2006 - December 2006  

SciTech Connect

The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Marine Climate Region on a cost neutral basis.

Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

2006-12-01T23:59:59.000Z

365

Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Marine Climates; January 2006 - December 2006  

SciTech Connect

The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Marine Climate Region on a cost neutral basis.

Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

2006-12-01T23:59:59.000Z

366

NREL Furthers U.S. Marine Corps Air Station Miramar's Move Toward Net Zero Energy (Fact Sheet)  

DOE Green Energy (OSTI)

A 2008 report from the Defense Science Board concluded that critical missions at military bases are facing unacceptable risks from extended power losses. A first step in addressing this concern is to establish military bases that can produce as much energy as they use over the course of a year, a concept known as a "net zero energy installation" (NZEI). The National Renewable Energy Laboratory (NREL) has helped the U.S. Marine Corps Air Station (MCAS) Miramar, located north of San Diego, California, as it strives to achieve its NZE goal. In conjunction with the U.S. Department of Energy's Federal Energy Management Program (FEMP), NREL partnered with MCAS Miramar to standardize processes and create an NZEI template for widespread replication across the military.

Not Available

2011-02-01T23:59:59.000Z

367

NREL Furthers U.S. Marine Corps Air Station Miramar's Move Toward Net Zero Energy (Fact Sheet)  

SciTech Connect

A 2008 report from the Defense Science Board concluded that critical missions at military bases are facing unacceptable risks from extended power losses. A first step in addressing this concern is to establish military bases that can produce as much energy as they use over the course of a year, a concept known as a "net zero energy installation" (NZEI). The National Renewable Energy Laboratory (NREL) has helped the U.S. Marine Corps Air Station (MCAS) Miramar, located north of San Diego, California, as it strives to achieve its NZE goal. In conjunction with the U.S. Department of Energy's Federal Energy Management Program (FEMP), NREL partnered with MCAS Miramar to standardize processes and create an NZEI template for widespread replication across the military.

2011-02-01T23:59:59.000Z

368

Name Address Place Zip Sector Product Stock Symbol Year founded Number  

Open Energy Info (EERE)

Address Place Zip Sector Product Stock Symbol Year founded Number Address Place Zip Sector Product Stock Symbol Year founded Number of employees Number of employees Telephone number Website Coordinates Region ABS Alaskan Inc Van Horn Rd Fairbanks Alaska Gateway Solar Wind energy Marine and Hydrokinetic Solar PV Solar thermal Wind Hydro Small scale wind turbine up to kW and solar systems distributor http www absak com United States AER NY Kinetics LLC PO Box Entrance Avenue Ogdensburg Marine and Hydrokinetic United States AW Energy Lars Sonckin kaari Espoo FI Marine and Hydrokinetic http www aw energy com Finland AWS Ocean Energy formerly Oceanergia Redshank House Alness Point Business Park Alness Ross shire IV17 UP Marine and Hydrokinetic http www awsocean com United Kingdom Able Technologies Audubon Road Englewood Marine and Hydrokinetic http

369

12-3-09_Beaudry-Losique_Final_testimony.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

JACQUES BEAUDRY-LOSIQUE DEPUTY ASSISTANT SECRETARY FOR RENEWABLE ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY U.S. DEPARTMENT OF ENERGY BEFORE THE COMMITTEE ON SCIENCE AND TECHNOLOGY SUBCOMMITTEE ON ENERGY AND ENVIRONMENT U.S. HOUSE OF REPRESENTATIVES HEARING EXAMINING MARINE AND HYDROKINETIC ENERGY TECHNOLOGY: FINDING THE PATH TO COMMERCIALIZATION DECEMBER 3, 2009 Chairman Baird, Ranking Member Inglis, Members of the Committee, thank you for the opportunity to appear before you today to discuss the U.S. Department of Energy's Water Power Program and its activities related to marine and hydrokinetic energy generation technologies. The global marine and hydrokinetic industry consists of energy extraction technologies

370

Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies  

DOE Green Energy (OSTI)

Flume studies exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral responses. Also, a theoretical model developed for predicting strike probability and mortality of fish passing through conventional hydro turbines was adapted for use with hydrokinetic turbines and applied to the two designs evaluated during flume studies. The flume tests were conducted with the Lucid spherical turbine (LST), a Darrieus-type (cross flow) turbine, and the Welka UPG, an axial flow propeller turbine. Survival rates for rainbow trout tested with the LST were greater than 98% for both size groups and approach velocities evaluated. Turbine passage survival rates for rainbow trout and largemouth bass tested with the Welka UPG were greater than 99% for both size groups and velocities evaluated. Injury rates of turbine-exposed fish were low with both turbines and generally comparable to control fish. Video observations of the LST demonstrated active avoidance of turbine passage by a large proportion fish despite being released about 25 cm upstream of the turbine blade sweep. Video observations from behavior trials indicated few if any fish pass through the turbines when released farther upstream. The theoretical predictions for the LST indicated that strike mortality would begin to occur at an ambient current velocity of about 1.7 m/s for fish with lengths greater than the thickness of the leading edge of the blades. As current velocities increase above 1.7 m/s, survival was predicted to decrease for fish passing through the LST, but generally remained high (greater than 90%) for fish less than 200 mm in length. Strike mortality was not predicted to occur duri

Jacobson, Paul T. [Electric Power Research Institute; Amaral, Stephen V. [Alden Research Laboratory; Castro-Santos, Theodore [U.S. Geological Survey; Giza, Dan [Alden Research Laboratory; Haro, Alexander J. [U.S. Geological Survey; Hecker, George [Alden Research Laboratory; McMahon, Brian [Alden Research Laboratory; Perkins, Norman [Alden Research Laboratory; Pioppi, Nick [Alden Research Laboratory

2012-12-31T23:59:59.000Z

371

Oregon State University OSU | Open Energy Information  

Open Energy Info (EERE)

OSU OSU Jump to: navigation, search Name Oregon State University OSU Address 1148 Kelley Engineering Center Place Corvallis Zip 97331 Sector Marine and Hydrokinetic Phone number 541-737-2995 Website http://www.eecs.orst.edu/msrf Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: OSU Direct Drive Power Generation Buoys This company is involved in the following MHK Technologies: Oregon State University Columbia Power Technologies Direct Drive Point Absorber This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Oregon_State_University_OSU&oldid=678417

372

Atlantis Resources Corporation | Open Energy Information  

Open Energy Info (EERE)

Resources Corporation Resources Corporation Jump to: navigation, search Name Atlantis Resources Corporation Address 1 Martime Square Zip 99253 Sector Marine and Hydrokinetic Year founded 2002 Website http://www.atlantisresourcesco Region Singapore LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Gujarat This company is involved in the following MHK Technologies: Aquanator Atlantis AN 150 Atlantis AR 1000 Atlantis AS 400 This article is a stub. You can help OpenEI by expanding it. This company is involved in the following MHK Projects: Gujarat and the following MHK Technologies: Aquanator Atlantis AN 150 Atlantis AR 1000 Atlantis AS 400

373

Whitestone Power Communications | Open Energy Information  

Open Energy Info (EERE)

Whitestone Power Communications Whitestone Power Communications Jump to: navigation, search Name Whitestone Power Communications Address 931 Westside Lp Place Delta Junction Zip 99737-1630 Sector Marine and Hydrokinetic Year founded 2003 Number of employees 10 Phone number 907-895-4770 Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Microturbine River In Stream This company is involved in the following MHK Technologies: Microturbine River In Stream This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Whitestone_Power_Communications&oldid=678517

374

Oceanflow Development Ltd | Open Energy Information  

Open Energy Info (EERE)

Oceanflow Development Ltd Oceanflow Development Ltd Address 12 Yeoman Street Place North Shields Zip NE29 6NL Sector Marine and Hydrokinetic Year founded 2010 Number of employees 1 Phone number +44 191 296 6339 Website http://www.oceanflowenergy.com Region United Kingdom LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Evopod E1 1 10 scale grid connected demonstrator Evopod E35 35kW grid connected demonstrator This company is involved in the following MHK Technologies: Evopod E35 This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Oceanflow_Development_Ltd&oldid=678405

375

MHK Technologies/Vortex Induced Vibrations Aquatic Clean Energy VIVACE |  

Open Energy Info (EERE)

Vortex Induced Vibrations Aquatic Clean Energy VIVACE Vortex Induced Vibrations Aquatic Clean Energy VIVACE < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Vortex Induced Vibrations Aquatic Clean Energy VIVACE.jpg Technology Profile Primary Organization Vortex Hydro Energy LLC Project(s) where this technology is utilized *MHK Projects/Marine Hydrodynamics Laboratory at the University of Michigan Technology Resource Click here Current/Tidal Technology Type Click here Reciprocating Device Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The VIVACE (Vortex Induced Vibrations Aquatic Clean Energy) device is based on the extensively studied phenomenon of Vortex Induced Vibrations (VIV), which was first observed five-hundred years ago by Leonardo DaVinci in the form of 'Aeolian Tones.' VIV results from vortices forming and shedding on the downstream side of a bluff body in a current. Vortex shedding alternates from one side to the other, thereby creating a vibration or oscillation. The VIV phenomenon is non-linear, which means it can produce useful energy at high efficiency over a wide range of current speeds and directions.This converter is unlike any existing technology, as it does not use turbines, propellers, or dams. VIVACE converts the horizontal hydrokinetic energy of currents into cylinder mechanical energy. The latter is then converted to electricity through electric power generators.

376

MHK Projects/Contra Rotating Marine Turbine CoRMaT | Open Energy  

Open Energy Info (EERE)

Contra Rotating Marine Turbine CoRMaT Contra Rotating Marine Turbine CoRMaT < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.6655,"lon":-4.93682,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

377

U.S. Marine Corps Base Camp Pendleton: Using The Sun For Hot Water And Electricity, Federal Energy Management Program (FEMP) (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Marine Corps Base Camp Pendleton, U.S. Marine Corps Base Camp Pendleton, covering 125,000 acres including 17 miles of Southern-California coastline, is the largest expeditionary training facility on the West Coast. More than 41,500 marines and family members call the base home, which reaches a daytime population of approximately 100,000. In fiscal year 2007, Camp Pendleton saved energy and money and reduced greenhouse gas (GHG) emissions through solar hot water (SHW) and photovoltaic (PV) arrays. The base implemented two integrated solar thermal/PV systems at its 53 Area and 62 Area training pools. The projects demonstrate Camp Pendleton's continuing commitment to energy conservation while helping meet Federal requirements for on-site renewable energy and solar hot water generation.

378

U.S. Marine Corps Base Camp Pendleton: Using The Sun For Hot Water And Electricity, Federal Energy Management Program (FEMP) (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Marine Corps Base Camp Pendleton, U.S. Marine Corps Base Camp Pendleton, covering 125,000 acres including 17 miles of Southern-California coastline, is the largest expeditionary training facility on the West Coast. More than 41,500 marines and family members call the base home, which reaches a daytime population of approximately 100,000. In fiscal year 2007, Camp Pendleton saved energy and money and reduced greenhouse gas (GHG) emissions through solar hot water (SHW) and photovoltaic (PV) arrays. The base implemented two integrated solar thermal/PV systems at its 53 Area and 62 Area training pools. The projects demonstrate Camp Pendleton's continuing commitment to energy conservation while helping meet Federal requirements for on-site renewable energy and solar hot water generation.

379

Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations  

Energy.gov (U.S. Department of Energy (DOE))

NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations.

380

CX-002452: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

452: Categorical Exclusion Determination 452: Categorical Exclusion Determination CX-002452: Categorical Exclusion Determination Assessment of the Environmental Effects of Hydrokinetic Turbines on Fish CX(s) Applied: B3.3 Date: 06/02/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Electric Power Research Institute (EPRI) is proposing to use Department of Energy and cost-share funding to conduct research activities to determine injury and survival rates for fish passing through hydrokinetic turbines. Research would be accomplished by: (1) Conducting a review of existing information on injury mechanisms associated with fish passage through conventional hydro turbines and determine its relevance and applicability to fish passage through hydrokinetic turbines; (2) Developing theoretical

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Notwithstanding our concerns for reliability, the Energy Commission supports efforts to reduce the impacts of once-through cooling on marine and estuarine  

E-Print Network (OSTI)

cooling towers and half of the projects under licensing review at the Energy Commission are using recycled to reduce the impacts of once-through cooling on marine and estuarine environments in California. In our the federal Clean Water Act section 316(b) Phase II rule regulating cooling water intakes for existing, large

382

NREL: Jobs and Economic Development Impacts (JEDI) Models - About...  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine & Hydrokinetic Power Model The Jobs and Economic Development Impacts (JEDI) Marine and Hydrokinetic (MHK) model allows users to estimate economic development impacts from...

383

Northland Power Mississippi River LLC | Open Energy Information  

Open Energy Info (EERE)

Northland Power Mississippi River LLC Northland Power Mississippi River LLC Jump to: navigation, search Name Northland Power Mississippi River LLC Address 30 St Clair Avenue West 17th Floor Place Toronto Sector Marine and Hydrokinetic Phone number (416) 820-9521 Website http://http://www.northlandpow Region Canada LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: NPI 01 NPI 013 NPI 014 NPI 015 NPI 016A NPI 016B NPI 017 NPI 018 NPI 019 NPI 020 NPI 021 NPI 022 NPI 023 NPI 024 NPI 025 NPI 027 NPI 055 This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Northland_Power_Mississippi_River_LLC&oldid=678391

384

BioPower Systems Pty Ltd | Open Energy Information  

Open Energy Info (EERE)

Systems Pty Ltd Systems Pty Ltd Jump to: navigation, search Name BioPower Systems Pty Ltd Address Suite 145 National Innovation Centre Australian Technology Park Place Eveleigh Zip 1430 Sector Marine and Hydrokinetic Phone number +61 2 9209 4237 Website http://www.biopowersystems.com Region Australia LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: BioSTREAM Pilot Plant bioWAVE Pilot Plant This company is involved in the following MHK Technologies: bioBase bioSTREAM bioWave This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=BioPower_Systems_Pty_Ltd&oldid=678254

385

Climate Sensitivity of Marine Energy Dr Gareth P. Harrison* and Dr A. Robin Wallace  

E-Print Network (OSTI)

of wind turbines capture energy only from specific wind speed ranges, changes in wind speed have that a 10% change in wind speeds could alter energy yields by 13 to 25%, dependent on the site and season], there are potentially significant consequences for wave energy (Figure 1). Like wind turbines, wave energy converters

Harrison, Gareth

386

Wavegen Ltd | Open Energy Information  

Open Energy Info (EERE)

Wavegen Ltd Wavegen Ltd Jump to: navigation, search Name Wavegen Ltd Address 13a Harbour Rd Place Inverness, Scotland, United Kingdom Zip IV1 1SY Sector Marine and Hydrokinetic Product Wavegen developed and operates Limpet, the worldâ€(tm)s first commercial-scale wave energy device that generates power for the grid. Phone number 4.41E+11 Website http://www.wavegen.com Coordinates 48.55324°, -110.689764° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.55324,"lon":-110.689764,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

Application for Locally Adopted Energy Standards by the Marin County in Accordance With  

E-Print Network (OSTI)

, including California Code of Regulations, Title 24, Parts 1 and 6. 2. "Solar Photovoltaic Energy System." A photovoltaic solar collector or other photovoltaic solar energy device that has a primary purpose of providing. The installation of any solar photovoltaic energy system must meet all installation criteria of the current edition

388

Analysis of a Retrofitted Thermal Energy Storage Air-conditioning System of a Marine Museum.  

E-Print Network (OSTI)

??Thermal energy storage(TES) air-conditioning system is a electrical load management technology with great potential to shift load from peak to off-peak utility periods. TES is (more)

Yu, Po-wen

2005-01-01T23:59:59.000Z

389

U.S. Marine Corps Stand at Forefront of Energy and Water Savings...  

NLE Websites -- All DOE Office Websites (Extended Search)

and water-saving achievements is the completion of a three-phased project that used an energy savings performance contract (ESPC) to install high-efficiency geothermal heat pump...

390

HydroVenturi Ltd previously RV Power Company Ltd | Open Energy Information  

Open Energy Info (EERE)

HydroVenturi Ltd previously RV Power Company Ltd HydroVenturi Ltd previously RV Power Company Ltd Jump to: navigation, search Name HydroVenturi Ltd (previously RV Power Company Ltd) Place London, Greater London, United Kingdom Zip SW7 1NA Sector Marine and Hydrokinetic Product String representation "Established tho ... ating stations." is too long. Website http://www.hydroventuri.com References HydroVenturi Ltd (previously RV Power Company Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. HydroVenturi Ltd (previously RV Power Company Ltd) is a company located in London, Greater London, United Kingdom . References ↑ "[ HydroVenturi Ltd (previously RV Power Company Ltd)]"

391

Hammerfest Strom UK co owned by StatoilHydro | Open Energy Information  

Open Energy Info (EERE)

Hammerfest Strom UK co owned by StatoilHydro Hammerfest Strom UK co owned by StatoilHydro Jump to: navigation, search Name Hammerfest Strom UK co owned by StatoilHydro Address The Innovation Centre 1 Ainslie Road Hillington Business Park Place Glasgow Zip G52 4RU Sector Marine and Hydrokinetic Phone number +44 141 585 6447 Website http://www.hammerfeststrom.com Region United Kingdom LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Hammerfest Strom UK Tidal Stream Kvalsundet This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Hammerfest_Strom_UK_co_owned_by_StatoilHydro&oldid=678328"

392

ABS Alaskan Inc | Open Energy Information  

Open Energy Info (EERE)

ABS Alaskan Inc ABS Alaskan Inc Jump to: navigation, search Logo: ABS Alaskan, Inc. Name ABS Alaskan, Inc. Address 2130 Van Horn Rd. Place Fairbanks, Alaska Zip 99701 Sector Marine and Hydrokinetic, Solar, Wind energy Product Solar PV, Solar thermal, Wind, Hydro, Small scale wind turbine (up to 1kW) and solar systems distributor. Year founded 1990 Phone number (800) 235-0689 Website http://www.absak.com/ Coordinates 64.813322°, -147.768685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.813322,"lon":-147.768685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

393

Free Flow Power Corporation | Open Energy Information  

Open Energy Info (EERE)

Flow Power Corporation Flow Power Corporation Jump to: navigation, search Name Free Flow Power Corporation Address 239 Causeway St Suite 300 Place Gloucester, Massachusetts Zip 1930 Sector Marine and Hydrokinetic, Ocean Product Massachusetts-based company that has developed a turbine generator designed to extract energy from tides, ocean currents, rivers, streams, canals and conduits. Free Flow has raised some initial funding and is prototype testing in rivers and tanks. Year founded 2007 Number of employees 28 Phone number 978-232-3536 Website http://www.free-flow-power.com Coordinates 37.413962°, -76.526305° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.413962,"lon":-76.526305,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

394

U.S. Marine Corps Stand at Forefront of Energy and Water Savings (Fact Sheet), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

efficient efficient chilled water systems; as well as low-flow water fixtures and energy use data tracking tools. The contract was a Trane Technology-Specific Geothermal Super ESPC that utilized the Department of Energy's umbrella ESPC. MCAS Beaufort was also able to claim renewable energy from its geothermal heat pump installations and installed a solar-powered hot water system at its Officer's Club. A cogeneration plant that supplies heating water along with 1 MW of electricity has also been installed. This plant is used to supply heating for the barracks and other facilities, along with reducing electrical load during peak energy demand periods. Energy and Water Efficiency To reduce energy and water use, MCAS Beaufort implemented additional best practices, such as efficient

395

Building America Best Practices Series Volume 11. Builders Challenge Guide to 40% Whole-House Energy Savings in the Marine Climate  

SciTech Connect

This best practices guide is the eleventh in a series of guides for builders produced by the U.S. Department of Energys Building America Program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the marine climate (portions of Washington, Oregon, and California) can achieve homes that have whole house energy savings of 40% over the Building America benchmark (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code) with no added overall costs for consumers. These best practices are based on the results of research and demonstration projects conducted by Building Americas research teams. The guide includes information for managers, designers, marketers, site supervisors, and subcontractors, as well as case studies of builders who are successfully building homes that cut energy use by 40% in the marine climate. This document is available on the web at www.buildingamerica.gov. This report was originally cleared 06-29-2010. This version is Rev 1 cleared in Nov 2010. The only change is the reference to the Energy Star Windows critieria shown on pg 8.25 was updated to match the criteria - Version 5.0, 04/07/2009, effective 01/04/2010.

Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Williamson, Jennifer L.; Love, Pat M.

2010-09-01T23:59:59.000Z

396

CX-009160: Categorical Exclusion Determination  

Energy.gov (U.S. Department of Energy (DOE))

Underwater Active Acoustic Monitoring Network for Marine and Hydrokinetic Energy Projects CX(s) Applied: B3.3 Date: 09/24/2012 Location(s): Maine Offices(s): Golden Field Office

397

CX-010572: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-010572: Categorical Exclusion Determination Brown University - Marine Hydro-Kinetic Energy Harvesting Using Cyber-Physical Systems CX(s) Applied: B3.6 Date: 02...

398

Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report  

Science Conference Proceedings (OSTI)

Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energyâ??s Wind and Hydropower Technologies Programâ??s goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and others. All required permit and license applications were completed and submitted under this award, including a Final License Application for a pilot hydrokinetic license from the Federal Energy Regulatory Commission. The tasks described above have brought the project through all necessary requirements to construct a tidal pilot project in Admiralty Inlet with the exception of final permit and license approvals, and the selection of a general contractor to perform project construction.

Craig W. Collar

2012-11-16T23:59:59.000Z

399

NREL Developing a Numerical Simulation Tool to Study Hydrokinetic Energy Conversion Devices and Arrays (Fact Sheet)  

Science Conference Proceedings (OSTI)

New code will help accelerate design improvements by providing a high-fidelity simulation tool to study power performance, structural loading, and the interactions between devices in arrays.

Not Available

2012-02-01T23:59:59.000Z

400

MHK Technologies/Closed Cycle OTEC | Open Energy Information  

Open Energy Info (EERE)

Closed Cycle OTEC Closed Cycle OTEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Closed Cycle OTEC.jpg Technology Profile Primary Organization Marine Development Associates Inc Technology Resource Click here OTEC Technology Type Click here OTEC - Closed Cycle Technology Description Closed Cycle System Technology Dimensions Device Testing Date Submitted 02:50.8 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Closed_Cycle_OTEC&oldid=681555" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Title: ENERGY MANAGEMENT OF MARINE ELECTRICAL POWER SYSTEMS CONTROL OF INTEGRATED, AUTONOMOUS POWER SYSTEMS  

E-Print Network (OSTI)

Norpropeller. Electric propulsion will provide better vessel manouverability, system redundancy and higher flexibility with engine room arrangement, dnanes (2003). On vessels where there is a large variation in load demand reduced fuel consumption and optimal power/energy management may be regarded as advantages that are still not fully utilized. In that respect, the new equipment and modern control systems can provide new possibilities for improving present control strategies, performance, and utilization of the installation. It is also expected that an improved control system should provide overall higher level of safety and reliability. The present state of the art type of tools and methods for analyzing combined power systems does only to a limited extent utilize the possibilities for increased knowledge available in the more advanced models and methods developed and used within each of the machinery and electrical engineering disciplines. To be able to analyze increasingly more complex systems of interest, the ability to easily combine models and methods to develop more fundamental insight into the total systems behavior, its characteristics and limitations will be an advantage in design of new systems. According to that it is first necessary to design the power system simulation model which should include mathematical models of electrical and mechanical machinery components to the required level

unknown authors

2004-01-01T23:59:59.000Z

402

Localization of Southern Resident Killer Whales Using Two Star Arrays to Support Marine Renewable Energy  

Science Conference Proceedings (OSTI)

Tidal power has been identified as one of the most potential commercial-scale renewable energy sources. Puget Sound, Washington, is a potential site to deploy tidal power generating devices. The risk of injury for killer whales needs to be managed before the deployment of these types of devices can be approved by regulating authorities. A passive acoustic system consisting of two star arrays, each with four hydrophones, was designed and implemented for the detection and localization of Southern Resident killer whales. Deployment of the passive acoustic system was conducted at Sequim Bay, Washington. A total of nine test locations were chosen, within a radius of 250 m around the star arrays, to test our localization approach. For the localization algorithm, a least square solver was applied to obtain a bearing location from each star array. The final source location was determined by the intersection of the bearings given by each of the two star arrays. Bearing and distance errors were obtained to conduct comparison between the calculated and true (from Global Positioning System) locations. The results indicated that bearing errors were within 1.04 for eight of the test locations; one location had bearing errors slightly larger than expected due to the strong background noise at that position. For the distance errors, six of the test locations were within the range of 1.91 to 32.36 m. The other two test locations were near the intersection line between the centers of the two star arrays, which were expected to have large errors from the theoretical sensitivity analysis performed.

Ren, Huiying; Deng, Zhiqun; Carlson, Thomas J.; Sun, Yannan; Fu, Tao; Martinez, Jayson J.; Matzner, Shari; Myers, Joshua R.

2012-10-19T23:59:59.000Z

403

Marine Insects  

E-Print Network (OSTI)

Zeylanica 16, 353354. Herring, J.L. (1949) A new species ofEntomol. 32, 160165. Herring, J.L. (1955) A new AmericanFlorida Entomol. 38, 2125. Herring, J.L. (1958a) The marine

Cheng, Lanna

1976-01-01T23:59:59.000Z

404

Environmental Effects of Sediment Transport Alteration and Impacts on Protected Species: Edgartown Tidal Energy Project  

DOE Green Energy (OSTI)

The Islands of Martha?¢????s Vineyard and Nantucket are separated from the Massachusetts mainland by Vineyard and Nantucket Sounds; water between the two islands flows through Muskeget Channel. The towns of Edgartown (on Martha?¢????s Vineyard) and Nantucket recognize that they are vulnerable to power supply interruptions due to their position at the end of the power grid, and due to sea level rise and other consequences of climate change. The tidal energy flowing through Muskeget Channel has been identified by the Electric Power Research Institute as the strongest tidal resource in Massachusetts waters. The Town of Edgartown proposes to develop an initial 5 MW (nameplate) tidal energy project in Muskeget Channel. The project will consist of 14 tidal turbines with 13 providing electricity to Edgartown and one operated by the University of Massachusetts at Dartmouth for research and development. Each turbine will be 90 feet long and 50 feet high. The electricity will be brought to shore by a submarine cable buried 8 feet below the seabed surface which will landfall in Edgartown either on Chappaquiddack or at Katama. Muskeget Channel is located between Martha?¢????s Vineyard and Nantucket. Its depth ranges between 40 and 160 feet in the deepest portion. It has strong currents where water is transferred between Nantucket Sound and the Atlantic Ocean continental shelf to the south. This makes it a treacherous passage for navigation. Current users of the channel are commercial and recreational fishing, and cruising boats. The US Coast Guard has indicated that the largest vessel passing through the channel is a commercial scallop dragger with a draft of about 10 feet. The tidal resource in the channel has been measured by the University of Massachusetts-Dartmouth and the peak velocity flow is approximately 5 knots. The technology proposed is the helical Gorlov-type turbine positioned with a horizontal axis that is positively buoyant in the water column and held down by anchors. This is the same technology proposed by Ocean Renewable Power Company in the Western Passage and Cobscook Bay near Eastport Maine. The blades rotate in two directions capturing the tides energy both during flood and ebb tides. The turbines will be anchored to the bottom and suspended in the water column. Initial depth of the turbines is expected to be about 25 feet below the surface to avoid impacting navigation while also capturing the strongest currents. The Town of Edgartown was initially granted a Preliminary Permit by the Federal Energy Regulatory Commission (FERC) on March 1, 2008, and has recently received a second permit valid through August 2014. The Preliminary Permit gives Edgartown the exclusive right to apply for a power generation license for power generated from the hydrokinetic energy in the water flowing in this area. Edgartown filed a Draft Pilot License Application with FERC on February 1, 2010 and an Expanded Environmental Notification Form with the Massachusetts Environmental Policy Act (MEPA) Office at the same time. It expects to file a Final License Application in late 2013. Harris Miller Miller & Hanson (HMMH) of Burlington Massachusetts is acting as the Project Manager for the Town of Edgartown and collaborating with other partners of the project including the University of Massachusetts - Dartmouth's Marine Renewable Energy Center and the Massachusetts Clean Energy Center. HMMH was awarded a grant under the Department of Energy's Advanced Water Program to conduct marine science and hydrokinetic site-specific environmental studies for projects actively seeking a FERC License. HMMH, on behalf of the Town, is managing this comprehensive study of the marine environment in Muskeget Channel and potential impacts of the tidal project on indicator species and habitats. The University of Massachusetts School of Marine Science and Technology (SMAST) conducted oceanographic studies of tidal currents, tide level, benthic habit

Barrett, Stephen B.; Schlezinger, David, Ph.D; Cowles, Geoff, Ph.D; Hughes, Patricia; Samimy; Roland, I.; and Terray, E, Ph.D.

2012-12-29T23:59:59.000Z

405

MHK Technologies/Hydroomel | Open Energy Information  

Open Energy Info (EERE)

Hydroomel Hydroomel < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Eco cinetic Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Hydroomel r composed of little modules that perfectly fits into natural and urban environments and on existing structures where it could be located Technology Dimensions Device Testing Date Submitted 59:09.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Hydroomel&oldid=680955" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link

406

RECIPIENT:Princeton Power Systems STATE: NJ PROJECT Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Princeton Power Systems Princeton Power Systems STATE: NJ PROJECT Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number cm Number DE-FOA-0000293 DE-EE0003640 GFO-000364~001 GOO Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the foUowing determination: CX, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, ~terature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

407

Marine Products and Marine Oil Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Marine Products and Marine Oil samples to test Anisidine Value, Free Fatty Acid, Iodine Value, Insoluble Impurities, Moisture, Peroxide Value. Marine Products and Marine Oil Laboratory Proficiency Testing Program Labo

408

The White Stuff: Marine Lab Team Seeks to Understand Coral ...  

Science Conference Proceedings (OSTI)

... Institute of Standards and Technology (NIST)--working ... Islands Fisheries Science Center, National Marine Fisheries ... up to 90 percent of its energy. ...

2012-10-02T23:59:59.000Z

409

MHK Technologies/Tidal Barrage | Open Energy Information  

Open Energy Info (EERE)

Barrage Barrage < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Barrage.jpg Technology Profile Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description No information provided Technology Dimensions Device Testing Date Submitted 01:04.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Tidal_Barrage&oldid=681672" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

410

Building Technologies Office: Guides and Case Studies for Marine Climates  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine Climates to someone by E-mail Marine Climates to someone by E-mail Share Building Technologies Office: Guides and Case Studies for Marine Climates on Facebook Tweet about Building Technologies Office: Guides and Case Studies for Marine Climates on Twitter Bookmark Building Technologies Office: Guides and Case Studies for Marine Climates on Google Bookmark Building Technologies Office: Guides and Case Studies for Marine Climates on Delicious Rank Building Technologies Office: Guides and Case Studies for Marine Climates on Digg Find More places to share Building Technologies Office: Guides and Case Studies for Marine Climates on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education

411

CX-001841: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41: Categorical Exclusion Determination 41: Categorical Exclusion Determination CX-001841: Categorical Exclusion Determination A First Assessment of U.S. In-stream Hydrokinetic Energy Resources Since the 1986 New York University Study CX(s) Applied: B3.1, A9, A11 Date: 04/23/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The Electric Power Research Institute will use federal funds to perform surveying and data collection to determine the hydro-kinetic potential for remote rivers and streams in Alaska. The surveying will consist of installing small monitors along the shores to measure height change/frequency, water flow, and Doppler radar measurements to determine depths of the riverbeds. This information will be collected as part of an assessment for hydro-power feasibility in remote locations. All information

412

CX-002145: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

145: Categorical Exclusion Determination 145: Categorical Exclusion Determination CX-002145: Categorical Exclusion Determination Acoustic Effects of Hydrokinetic Tidal Turbines CX(s) Applied: B3.1, B3.3, A9 Date: 04/29/2010 Location(s): Snohomish County, Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Snohomish County Public Utility District (PUD) is proposing to use Department of Energy and cost-share funding to study of the acoustic effects of hydrokinetic tidal turbines at the site of the District's Admiralty Inlet pilot project. Activities would include the purchase and configuration of instrumentation, the deployment and retrieval of the instrumentation packages on the seabed, the simulation and measurement of sound propagation by a tidal turbine, and experimentation (conducted at

413

CX-006029: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6029: Categorical Exclusion Determination 6029: Categorical Exclusion Determination CX-006029: Categorical Exclusion Determination Acoustic Effects of Hydrokinetic Tidal Turbines CX(s) Applied: B3.3, B3.6 Date: 05/25/2011 Location(s): Snohomish County, Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Snohomish County Public Utility District (PUD) is proposing to use Department of Energy and cost-share funding to study of the acoustic effects of hydrokinetic tidal turbines at the site of the District's Admiralty Inlet pilot project. Activities would include the purchase and configuration of instrumentation, the deployment and retrieval of the instrumentation packages on the seabed, the simulation and measurement of sound propagation by a tidal turbine, and experimentation (conducted at

414

Variability of Gas Composition and Flux Intensity in Natural Marine Hydrocarbon Seeps  

E-Print Network (OSTI)

Energy Development and Technology 008 "Variability of gas composition and flux intensity in natural marine hydrocarbon seeps" Jordan

Clark, J F; Schwager, Katherine; Washburn, Libe

2005-01-01T23:59:59.000Z

415

U.S. Marine Corps Base Camp Pendleton: Using The Sun For Hot Water And Electricity, Federal Energy Management Program (FEMP) (Fact Sheet)  

DOE Green Energy (OSTI)

Case study overview of integrated solar hot water/photovoltaic systems at the U.S. Marine Corps Camp Pendleton training pools.

Not Available

2009-09-01T23:59:59.000Z

416

Permitting and interconnection of solar PV generators for the Marin Energy Authority Feed-in Tariff Program.  

E-Print Network (OSTI)

?? Lack of access to information on the cost and timeframe for the permitting and interconnection of distributed renewable energy generation facilities may hinder renewable (more)

Rogers, Stephen Daniel

2012-01-01T23:59:59.000Z

417

Ecological Research Division, Marine Research Program  

DOE Green Energy (OSTI)

This report presents program summaries of the various projects sponsored during 1979 by the Marine Research Program of the Ecological Research Division. Program areas include the effects of petroleum hydrocarbons on the marine environment; a study of the baseline ecology of a proposed OTEC site near Puerto Rico; the environmental impact of offshore geothermal energy development; the movement of radionuclides through the marine environment; the environmental aspects of power plant cooling systems; and studies of the physical and biological oceangraphy of the continental shelves bordering the United States.

Not Available

1980-05-01T23:59:59.000Z

418

Environmental Guidance Program Reference Book: Marine Protection, Research, and Sanctuaries Act and Marine Mammal Protection Act. Revision 3  

Science Conference Proceedings (OSTI)

Two laws governing activities in the marine environment are considered in this Reference Book. The Marine Protection, Research, and Sanctuaries Act (MPRSA, P.L. 92-532) regulates ocean dumping of waste, provides for a research program on ocean dumping, and provides for the designation and regulation of marine sanctuaries. The Marine Mammal Protection Act (MMPA, P.L. 92-522) establishes a federal program to protect and manage marine mammals. The Fishery Conservation and Management Act (FCMA, P.L. 94-265) establishes a program to regulate marine fisheries resources and commercial marine fishermen. Because the Department of Energy (DOE) is not engaged in any activities that could be classified as fishing under FCMA, this Act and its regulations have no implications for the DOE; therefore, no further consideration of this Act is given within this Reference Book. The requirements of the MPRSA and the MMPA are discussed in terms of their implications for the DOE.

Not Available

1988-01-31T23:59:59.000Z

419

Ice Nuclei in Marine Air: Biogenic Particles or Dust?  

Science Conference Proceedings (OSTI)

Ice nuclei impact clouds, but their sources and distribution in the atmosphere are still not well known. Particularly little attention has been paid to IN sources in marine environments, although evidence from field studies suggests that IN populations in remote marine regions may be dominated by primary biogenic particles associated with sea spray. In this exploratory model study, we aim to bring attention to this long-neglected topic and identify promising target regions for future field campaigns. We assess the likely global distribution of marine biogenic ice nuclei using a combination of historical observations, satellite data and model output. By comparing simulated marine biogenic immersion IN distributions and dust immersion IN distributions, we predict strong regional differences in the importance of marine biogenic IN relative to dust IN. Our analysis suggests that marine biogenic IN are most likely to play a dominant role in determining IN concentrations in near-surface-air over the Southern Ocean, so future field campaigns aimed at investigating marine biogenic IN should target that region. Climate related changes in the abundance and emission of biogenic marine IN could affect marine cloud properties, thereby introducing previously unconsidered feedbacks that influence the hydrological cycle and the Earths energy balance. Furthermore, marine biogenic IN may be an important aspect to consider in proposals for marine cloud brightening by artificial sea spray production.

Burrows, Susannah M.; Hoose, C.; Poschl, U.; Lawrence, M.

2013-01-11T23:59:59.000Z

420

Hollings Marine Laboratory Homepage  

Science Conference Proceedings (OSTI)

... The Hollings Marine Laboratory (HML) is a ... the Nation's coastal environmental- and health-related problems ... s National Ocean Service, the National ...

2013-08-19T23:59:59.000Z

Note: This page contains sample records for the topic "marine hydrokinetic energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Florida Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

... mostly from Kentucky, Illinois, ... Florida Atlantic University - Southeast National Marine Renewable Energy Center; Benefits.Gov Energy ...

422

DOE Announces Webinars on Instrumentation for Monitoring Marine Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces Webinars on Instrumentation for Monitoring Marine DOE Announces Webinars on Instrumentation for Monitoring Marine Renewable Energy Devices, Energy Efficiency in Correctional Facilities, and More DOE Announces Webinars on Instrumentation for Monitoring Marine Renewable Energy Devices, Energy Efficiency in Correctional Facilities, and More January 17, 2014 - 10:24am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars January 23: Live Webinar on Instrumentation for Monitoring Marine Renewable

423

Molecular Approaches in Marine Pharmacology  

E-Print Network (OSTI)

natural products in marine algae (particularly Rhodophyta,haloperoxidases in marine algae producing chiral halogenatedto several species of algae (Laurencia, Delisea, Corallina,

Butler, Alison

2005-01-01T23:59:59.000Z

424

Ocean Navitas | Open Energy Information  

Open Energy Info (EERE)

Navitas Navitas Jump to: navigation, search Name Ocean Navitas Address Nursery House Place United Kingdom Zip DN21 5BQ Sector Ocean Product Ocean Navitas was incorporated in May 2006 by experienced engineers, businessmen and sailing enthusiasts David Hunt, James McCague and Simon Condry. Website http://www.oceannavitas.com Region United Kingdom References Ocean NavitasUNIQ75db538f85b32404-ref-000014E2-QINU LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Ocean Navitas NaREC This company is involved in the following MHK Technologies: Aegir Dynamo This article is a stub. You can help OpenEI by expanding it.

425

INL - Hydrokinetic & Wave Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Open-Center Turbine (790KB PDF) Hydromatrix - Innovative Solution For Low Impact Hydropower at Existing Engineered Structures (2.2MB PDF) Hydraulic Cross-Flow Turbines (3.5MB...

426

Greenhouse Gas Emissions from Aviation and Marine Transportation:  

Open Energy Info (EERE)

Greenhouse Gas Emissions from Aviation and Marine Transportation: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies Jump to: navigation, search Tool Summary Name: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies Agency/Company /Organization: Pew Center on Global Climate Change Sector: Climate, Energy Focus Area: Greenhouse Gas, Transportation Topics: GHG inventory Resource Type: Publications, Technical report Website: www.pewclimate.org/docUploads/aviation-and-marine-report-2009.pdf Cost: Free References: Greenhouse Gas emissions from aviation and marine transportation: mitigation potential and policies[1] "This paper provides an overview of greenhouse gas (GHG) emissions from aviation and marine transportation and the various mitigation options to

427

Calling All Coders: Help Advance America's Ocean Power Industry |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calling All Coders: Help Advance America's Ocean Power Industry Calling All Coders: Help Advance America's Ocean Power Industry Calling All Coders: Help Advance America's Ocean Power Industry December 10, 2013 - 3:57pm Addthis The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. | Graphic courtesy of TopCoder The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. | Graphic courtesy of TopCoder Alison LaBonte Marine and Hydrokinetic Technology Manager Brooke White Oceanographer, Water Power Program

428

Marine surveys aid gas line  

Science Conference Proceedings (OSTI)

Detailed marine surveys helped B.C. Hydro, a Canadian gas distribution utility, select the submarine route portion of the proposed Vancouver Island gas pipeline system. In 1984, after a series of government hearings, B.C. Hydro's route selection was adopted by the British Columbia Provincial Government. Vancouver Island is the last major population center in Western Canada not supplied with natural gas. In fact, studies of a gas pipeline to the island have been carried out periodically over the past 30 years. But until recently, all schemes have appeared unattractive because of a combination of technical, economic, and political factors. The proposed Vancouver Island project which is awaiting funding, consists of a dual 52.7-km marine transmission pipeline link from the mainland to the island. Diameter of this portion of line will be either 12 of 16-in. Also, part of the proposed system will be an 18.5-km line on the mainland, a 280-km transmission pipeline on the island, compression facilities, and distribution systems in the major population centers. Diameters for the land portions will vary between 6 and 24 in. For several months in late 1983 and early 1984, the project was the subject of public hearings held by the British Columbia Utilities Commission. This process was complicated when two companies applied to construct and operate the marine pipeline link to the island using completely different routes and techniques. In July 1984, the commission recommended to the Provincial Government that B.C. Hydro's proposal for the marine pipeline be accepted. It further recommended that an Energy Project Certificate for construction of the pipeline link to the island be awarded to B.C. Hydro. The recommendation was accepted by the Provincial Government and the project now awaits a funding agreement between the Federal and Provincial Governments.

Park, C.A.; Baines, F.A. Koenig, H.L.

1986-05-05T23:59:59.000Z

429

Natural Gas Storage - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Update: EIA NARUC Winter Meeting February 23, 2003 Barbara Mariner-Volpe, Barbara.MarinerVolpe@eia.doe.gov Energy Information Administration

430

National Renewable Energy Laboratory  

National Renewable Energy Laboratory Technology Transfer Marine Corps Taps NREL to Help Replace Aging Steam Plant with Efficient Biomass Cogeneration

431

Marine biologist salaries?  

NLE Websites -- All DOE Office Websites (Extended Search)

much does a marine biologist get paid in a year? Replies: Nobody goes into it for the money. It depends very much on exactly what kind of job you have. For example, with a Ph.D.,...

432

Screening Analysis for the Environmental Risk Evaluation System Fiscal Year 2011 Report Environmental Effects of Offshore Wind Energy  

SciTech Connect

Potential environmental effects of offshore wind (OSW) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between OSW installations and avian and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. During FY 2011, Pacific Northwest National Laboratory (PNNL) scientists adapted and applied the Environmental Risk Evaluation System (ERES), first developed to examine the effects of marine and hydrokinetic energy devices on aquatic environments, to offshore wind development. PNNL scientists conducted a risk screening analysis on two initial OSW cases: a wind project in Lake Erie and a wind project off the Atlantic coast of the United States near Atlantic City, New Jersey. The screening analysis revealed that top-tier stressors in the two OSW cases were the dynamic effects of the device (e.g., strike), accidents/disasters, and effects of the static physical presence of the device, such as alterations in bottom habitats. Receptor interactions with these stressors at the highest tiers of risk were dominated by threatened and endangered animals. Risk to the physical environment from changes in flow regime also ranked high. Peer review of this process and results will be conducted during FY 2012. The ERES screening analysis provides an assessment of the vulnerability of environmental receptors to stressors associated with OSW installations; a probability analysis is needed to determine specific risk levels to receptors. As more data become available that document effects of offshore wind farms on specific receptors in U.S. coastal and Great Lakes waters, probability analyses will be performed.

Copping, Andrea E.; Hanna, Luke A.

2011-11-01T23:59:59.000Z

433

Analytical Framework to Evaluate Emission Control Systems for Marine Engines  

E-Print Network (OSTI)

720 rpm) marine diesel engines with a maximum power ratingpower are under consideration to reduce energy requirements of marinemarine diesel engines, are operated near/at the port to provide power

Jayaram, Varalakshmi

2010-01-01T23:59:59.000Z

434

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 - 25050 of 26,764 results. 41 - 25050 of 26,764 results. Rebate Clean Energy Portfolio Goal In May 2011, Indiana enacted SB 251, creating the Clean Energy Portfolio Standard (CPS). The program sets a voluntary goal of 10% clean energy by 2025, based on the amount of electricity supplied... http://energy.gov/savings/clean-energy-portfolio-goal Rebate Clean Energy Production Tax Credit (Corporate) Maryland offers a production tax credit for electricity generated by wind, geothermal energy, solar energy, hydropower, hydrokinetic, municipal solid waste and biomass resources. Eligible biomass... http://energy.gov/savings/clean-energy-production-tax-credit-corporate Rebate Clean Energy Production Tax Credit (Personal) Maryland offers a production tax credit for electricity generated by wind,

435

Comparative Studies on the Carbohydrate Composition of Marine Macroalgae: An Annotated Bibliography  

DOE Green Energy (OSTI)

An annotated bibliography of journal articles related to comparative studies on the carbohydrate composition of marine macroalgae produced for the Solar Energy Research Institute (SERI).

Mack, R. W.

1984-02-01T23:59:59.000Z

436

SeWave | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » SeWave Jump to: navigation, search Name SeWave Place Denmark Zip FO-110 Product Denmark-based 50:50 JV between UK's Wavegen and Faroese electricity company SEV to to design and build a tunnelled demonstration wave power plant in the Faroes Islands. References SeWave[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. SeWave is a company located in Denmark . References ↑ "SeWave"

437

MHK Technologies/Osprey | Open Energy Information  

Open Energy Info (EERE)

Osprey Osprey < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Osprey.jpg Technology Profile Primary Organization Free Flow 69 Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Osprey is a vertical axis turbine mounted to the bottom of a 30 aluminium catamaran test rig float Technology Dimensions Device Testing Date Submitted 57:37.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Osprey&oldid=681630" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link

438

University of New Hampshire | Open Energy Information  

Open Energy Info (EERE)

University of New Hampshire University of New Hampshire Place Durham, New Hampshire Zip NH 03824 Sector Marine and Hydrokinetic Product A public university. Website http://http://www.unh.edu/core Coordinates 45.396265°, -122.755099° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.396265,"lon":-122.755099,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

Hollings Marine Laboratory Staff Directory  

Science Conference Proceedings (OSTI)

Hollings Marine Laboratory Staff Directory. ... The Search box will accept a name, phone number, organization name, email address, etc. Contact. ...

2013-08-15T23:59:59.000Z

440

Archipelagos Institute of Marine Conservation  

E-Print Network (OSTI)

Page 1 Archipelagos Institute of Marine Conservation www.archipelago.gr VOLUNTEER RESEARCHER GUIDE of Marine Conservation. As an Archipelagos volunteer researcher, you are expected to abide by these policies. Introduction Archipelagos, Institute of Marine Conservation is a Greek, non-profit, non- governmental

First Page Previous Page 1 2 3 4 5 6 7 8