National Library of Energy BETA

Sample records for marine hydrokinetic energy

  1. Marine and Hydrokinetic Energy Research & Development | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Marine and Hydrokinetic Energy Research & Development Marine and Hydrokinetic Energy Research & Development Marine and Hydrokinetic Energy Research &...

  2. Marine and Hydrokinetic Resources | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 CurrentTidalRiverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic...

  3. Energy 101: Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    2013-04-29

    See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

  4. Energy 101: Marine and Hydrokinetic Energy

    ScienceCinema (OSTI)

    None

    2014-06-26

    See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

  5. Energy 101: Marine and Hydrokinetic Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine and Hydrokinetic Energy Energy 101: Marine and Hydrokinetic Energy Addthis Description See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Topic Water Text Version Below is the text version for the Energy 101: Marine & Hydrokinetic Energy video. The words "Energy 101: Marine & Hydrokinetic Energy" appear onscreen. Montage of renewable energy

  6. Marine and Hydrokinetic Resources | Open Energy Information

    Open Energy Info (EERE)

    and Characterization 2 CurrentTidalRiverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more...

  7. Marine & Hydrokinetic Technologies | Department of Energy

    Office of Environmental Management (EM)

    & Hydrokinetic Technologies Marine & Hydrokinetic Technologies This fact sheet describes the U.S. Department of Energy's Wind and Water Power Program efforts to develop advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. PDF icon mhk_factsheet.pdf More Documents & Publications Marine and Hydrokinetic Technologies Fact Sheet Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program

  8. Marine and Hydrokinetic Technology Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine and Hydrokinetic Technology Resources Marine and Hydrokinetic Technology Resources Marine and hydrokinetic (MHK) energy technologies convert the energy of waves, tides, and river and ocean currents into electricity. The Department of Energy's "Marine and Hydrokinetic 101" video explains how these technologies work and highlights some of the Water Power Program's efforts in R&D in this area. Learn where marine and hydrokinetic technology research and testing is being done

  9. Marine and Hydrokinetic Energy Research & Development | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Hydrokinetic Energy Research & Development Marine and Hydrokinetic Energy Research & Development Marine and Hydrokinetic Energy Research & Development The Water Power Program's marine and hydrokinetic research and development (R&D) efforts focus on advancing technologies that capture energy from the nation's oceans and rivers. Unlike hydropower, marine and hydrokinetics represent an emerging industry with hundreds of potentially viable technologies. The program is

  10. Energy 101: Marine & Hydrokinetic Energy | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine and hydrokinetic energy technologies to capture energy from waves and currents. ... Energy Department Releases New Energy 101 Video on Ocean Power Riding the Clean Energy ...

  11. Marine and Hydrokinetic Energy Projects, Fiscal Years 2008-2014

    SciTech Connect (OSTI)

    2014-03-24

    This report covers the Wind and Water Power Technologies Office's Marine and Hydrokinetic Energy Projects from 2008 to 2014.

  12. Marine and Hydrokinetic Technology Glossary | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marine & Hydrokinetic » Marine and Hydrokinetic Technology Glossary Marine and Hydrokinetic Technology Glossary Learn about the basic technologies and key terms used to describe marine and hydrokinetic technologies. Wave Image of the motion of a bottom-mounted point absorber responding to a passing wave to generate energy from the waves. Point Absorber Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave

  13. Marine and Hydrokinetic Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Projects Marine and Hydrokinetic Energy Projects This report covers the Wind and Water Power Technologies Office's marine and hydrokinetic projects from fiscal years 2008 to 2014. PDF icon 2008-2014 Marine and Hydrokinetic Power Projects More Documents & Publications NREL - FY09 Lab Call: Supporting Research and Testing for MHK Presentation from the 2011 Water Program Peer Review Water Power Program: 2011 Peer Review Report Before the House Science and Technology Subcommittee on

  14. Form:Marine and Hydrokinetic Technology | Open Energy Information

    Open Energy Info (EERE)

    Form Edit History Form:Marine and Hydrokinetic Technology Jump to: navigation, search Add a Marine and Hydrokinetic Technology Input the name of your Marine and Hydrokinetic...

  15. Marine and Hydrokinetic Technologies Fact Sheet | Department of Energy

    Office of Environmental Management (EM)

    Technologies Fact Sheet Marine and Hydrokinetic Technologies Fact Sheet This fact sheet describes the Wind and Water Power Program's current approach to supporting the development and deployment of marine and hydrokinetic technologies. PDF icon Marine and Hydrokinetic Technologies Fact Sheet More Documents & Publications 47688.pdf Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Leading the Nation in Clean Energy Deployment

  16. Sandia Energy - Biofouling Studies on Sandia's Marine Hydrokinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marine Hydrokinetic Coatings Initiated at PNNL's Sequim Bay Sandia's Materials & Manufacturing Reliability Program has begun testing their novel marine hydrokinetic (MHK)...

  17. Marine and Hydrokinetic | Open Energy Information

    Open Energy Info (EERE)

    Hydrokinetic Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleMarineandHydrokinetic&oldid619739" Feedback Contact needs updating Image...

  18. Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy

    Energy Savers [EERE]

    Technology Development | Department of Energy 7 Million for Marine and Hydrokinetic Energy Technology Development Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development September 9, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced selections for more than $37 million in funding to accelerate the technological and commercial readiness of emerging marine and hydrokinetic (MHK) technologies, which seek to

  19. Marine Hydrokinetic Energy Regulators Workshop: Lessons from Wind

    SciTech Connect (OSTI)

    Baring-Gould, E. Ian

    2015-09-03

    Ian Baring-Gould presented these lessons learned from wind energy to an audience of marine hydrokinetic regulators. Lessons learned spanned the areas of technology advances, using collaborative approaches to involve key stakeholders; using baseline studies to measure and prioritize wildlife impacts, and look at avoidance and mitigation options early in the process.

  20. Sandia Energy - Marine Hydrokinetics Technology: Market Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on aquatic organisms, with early emphasis on the effects of electromagnetic fields (EMF), acoustic noise from currenttidal, wave and riverine hydrokinetic generators, toxicity...

  1. Sandia Energy - Investigations on Marine Hydrokinetic Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Foil Structural Health Monitoring Presented at GMREC METS Home Renewable Energy Energy Water Power News News & Events Systems Analysis Investigations on Marine...

  2. Marine & hydrokinetic technology development.

    SciTech Connect (OSTI)

    LiVecchi, Al; Jepsen, Richard Alan

    2010-06-01

    The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and hydrokinetic power plants while mitigating nearby and distant impacts. Activities may include laboratory and computational modeling of mooring design or research on device spacing. The geographies, resources, technologies, and even nomenclature of the U.S. marine and hydrokinetic technology industry have yet to be fully understood or defined. The program characterizes and assesses marine and hydrokinetic devices, and then organizes the collected information into a comprehensive and searchable Web-based database, the Marine and Hydrokinetic Technology Database. The database, which reflects intergovernmental and international collaboration, provides industry with one of the most comprehensive and up-to-date public resources on marine and hydrokinetic devices.

  3. Marine & Hydrokinetic Technologies

    SciTech Connect (OSTI)

    2011-07-01

    This fact sheet describes the Wind and Water Power Program's current approach to supporting the development and deployment of marine and hydrokinetic technologies.

  4. Marine and Hydrokinetic Technology Instrumentation, Measurement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry. PDF icon Marine and Hydrokinetic Technology Instrumentation, Measurement, and ...

  5. Marine and Hydrokinetic Resource Assessment and Characterization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy & Hydrokinetic » Marine and Hydrokinetic Resource Assessment and Characterization Marine and Hydrokinetic Resource Assessment and Characterization With more than 50% of the population living within 50 miles of coastlines, there is vast potential to provide clean, renewable electricity to communities and cities across the United States using marine and hydrokinetic (MHK) technologies. In order to understand the full potential for future electricity production that

  6. Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY...

    Office of Scientific and Technical Information (OSTI)

    ... the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment ...

  7. Sandia Energy - Marine Hydrokinetics Technology: Reference Model...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Capabilities FAQ Request for Testing Safety Technical Staff Energy Storage Nuclear Power & Engineering Grid Modernization Resilient Electric Infrastructures Military...

  8. Marine and Hydrokinetic Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOEs Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database was updated in 2009 to include ocean thermal energy technologies, companies, and projects.

  9. Marine and Hydrokinetic Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE’s Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database was updated in 2009 to include ocean thermal energy technologies, companies, and projects.

  10. Marine and Hydrokinetic Energy Development Technical Support and General Environmental Studies Report on Outreach to Stakeholders for Fiscal Year 2009

    SciTech Connect (OSTI)

    Copping, Andrea E.; Geerlofs, Simon H.

    2010-01-22

    Report on activities working with stakeholders in the emerging marine and hydrokinetic energy industry during FY09, for DOE EERE Office of Waterpower.

  11. Marine and Hydrokinetic Renewable Energy Devices, Potential Navigational Hazards and Mitigation Measures

    SciTech Connect (OSTI)

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

    2009-12-01

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies. A technical report addressing our findings is available on this Science and Technology Information site under the Product Title, "Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures". This product is a brochure, primarily for project developers, that summarizes important issues in that more comprehensive report, identifies locations where that report can be downloaded, and identifies points of contact for more information.

  12. Hydrokinetic Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Hydrokinetic Laboratory Jump to: navigation, search Name: Hydrokinetic Laboratory Region: United States Sector: Marine and Hydrokinetic Website: www.hklabllc.com This company is...

  13. Evaluating Effects of Stressors from Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Copping, Andrea E.; Blake, Kara M.; Hanna, Luke A.; Brandt, Charles A.; Ward, Jeffrey A.; Brandenberger, Jill M.; Gill, Gary A.; Carlson, Thomas J.; Elster, Jennifer L.; Jones, Mark E.; Watson, Bruce E.; Jepsen, Richard A.; Metzinger, Kurt

    2012-09-30

    Potential environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. During FY 2012, Pacific Northwest National Laboratory (PNNL) continued to follow project developments on the two marine and hydrokinetic projects reviewed for Environmental Risk Evaluation System (ERES) screening analysis in FY 2011: a tidal project in the Gulf of Maine using Ocean Renewable Power Company TidGenTM turbines and a wave project planned for the coast of Oregon using Aquamarine Oyster surge devices. The ERES project in FY 2012 also examined two stressorreceptor interactions previously identified through the screening process as being of high importance: 1) the toxicity effects of antifouling coatings on MHK devices on aquatic resources and 2) the risk of a physical strike encounter between an adult killer whale and an OpenHydro turbine blade. The screening-level assessment of antifouling paints and coatings was conducted for two case studies: the Snohomish County Public Utility District No. 1 (SnoPUD) tidal turbine energy project in Admiralty Inlet, Puget Sound, Washington, and the Ocean Power Technologies (OPT) wave buoy project in Reedsport, Oregon. Results suggest minimal risk to aquatic biota from antifouling coatings used on MHK devices deployed in large estuaries or open ocean environments. For the strike assessment of a Southern Resident Killer Whale (SRKW) encountering an OpenHydro tidal turbine blade, PNNL teamed with colleagues from Sandia National Laboratories (SNL) to carry out an analysis of the mechanics and biological consequences of different blade strike scenarios. Results of these analyses found the following: 1) a SRKW is not likely to experience significant tissue injury from impact by an OpenHydro turbine blade; and 2) if whale skin behaves similarly to the materials considered as surrogates for the upper dermal layers of whale skin, it would not be torn by an OpenHydro blade strike. The PNNL/SNL analyses could not provide insight into the potential for more subtle changes to SRKWs from an encounter with a turbine, such as changes in behavior, or inform turbine interactions for other whales or other turbines. These analyses were limited by the available time frame in which results were needed and focused on the mechanical response of whale tissues and bone to blade strike. PNNL proposes that analyses of additional turbine designs and interactions with other marine mammals that differ in size, body conformation, and mass be performed.

  14. Marine & Hydrokinetic Technologies (Fact Sheet) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine & Hydrokinetic Technologies (Fact Sheet) Marine & Hydrokinetic Technologies (Fact Sheet) This fact sheet describes the Wind and Water Power Program's current approach to...

  15. Upgrades to SNL-EFDC: A Tool to Balance Marine Hydrokinetic Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Efficiency with Environmental Response Upgrades to SNL-EFDC: A Tool to Balance Marine Hydrokinetic Energy Generation Efficiency with Environmental Response - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy

  16. Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures

    SciTech Connect (OSTI)

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

    2009-12-10

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies, as summarized herein. The contract also required cooperation with the U.S. Coast Guard (USCG) and two recipients of awards (Pacific Energy Ventures and reVision) in a sub-topic area to develop a protocol to identify streamlined, best-siting practices. Over the period of this contract, PCCI and our sub-consultants, David Basco, Ph.D., and Neil Rondorf of Science Applications International Corporation, met with USCG headquarters personnel, with U.S. Army Corps of Engineers headquarters and regional personnel, with U.S. Navy regional personnel and other ocean users in order to develop an understanding of existing practices for the identification of navigational impacts that might occur during construction, operation, maintenance, and decommissioning. At these same meetings, “standard” and potential mitigation measures were discussed so that guidance could be prepared for project developers. Concurrently, PCCI reviewed navigation guidance published by the USCG and international community. This report summarizes the results of this effort, provides guidance in the form of a checklist for assessing the navigational impacts of potential marine and hydrokinetic projects, and provides guidance for improving the existing navigational guidance promulgated by the USCG in Navigation Vessel Inspection Circular 02 07. At the request of the USCG, our checklist and mitigation guidance was written in a generic nature so that it could be equally applied to offshore wind projects. PCCI teleconferenced on a monthly basis with DOE, Pacific Energy Ventures and reVision in order to share information and review work products. Although the focus of our effort was on marine and hydrokinetic technologies, as defined above, this effort drew upon earlier work by the USCG on offshore wind renewable energy installations. The guidance provided herein can be applied equally to marine and hydrokinetic technologies and to offshore wind, which are collectively referred to by the USCG as Renewable Energy Installations.

  17. Siting Study Framework and Survey Methodology for Marine and Hydrokinetic Energy Projects in Offshore Southeast Florida

    SciTech Connect (OSTI)

    Vinick, Charles

    2011-09-26

    Presentation from the 2011 Water Peer Review in which principal investigator discusses project progess to Investigate areas offshore southeast Florida that appeared most suitable for siting of marine and hydrokinetic energy conversion facilities that may be proposed in the Atlantic Ocean offshore of southeast Florida.

  18. Sandia Energy - Biofouling Studies on Sandia's Marine Hydrokinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrokinetic (MHK) Coatings Initiated at PNNL's Sequim Bay Sandia's Materials & Manufacturing Reliability Program has begun testing their novel MHK coatings at Pacific...

  19. Assessing the Effects of Marine and Hydrokinetic Energy Development on Marine and Estuarine Resources

    SciTech Connect (OSTI)

    Ward, Jeffrey A.; Schultz, Irvin R.; Woodruff, Dana L.; Roesijadi, Guritno; Copping, Andrea E.

    2010-07-30

    The worlds oceans and estuaries offer an enormous potential to meet the nations growing demand for energy. The use of marine and hydrokinetic (MHK) devices to harness the power of wave and tidal energy could contribute significantly toward meeting federal- and state-mandated renewable energy goals while supplying a substantial amount of clean energy to coastal communities. Locations along the eastern and western coasts of the United States between 40 and 70 north latitude are ideal for MHK deployment, and recent estimates of energy potential for the coasts of Washington, Oregon, and California suggest that up to 25 gigawatts could be generated from wave and tidal devices in these areas. Because energy derived from wave and tidal devices is highly predictable, their inclusion in our energy portfolio could help balance available sources of energy production, including hydroelectric, coal, nuclear, wind, solar, geothermal, and others.

  20. General Engineer (Marine & Hydrokinetic Engineer) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineer) General Engineer (Marine & Hydrokinetic Engineer) Submitted by admin on Sat, 2016-01-16 00:16 Job Summary Organization Name Department Of Energy Agency SubElement...

  1. Live Webinar on the Marine and Hydrokinetic Demonstrations at The Navy's Wave Energy Test Site Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    On Wednesday, May 7, 2014 from 3:00 PM - 4:30 PM EDT the Water Power Program will hold an informational webinar on the Marine and Hydrokinetic (MHK) Demonstrations at The Navy's Wave Energy Test...

  2. Marine & Hydrokinetic Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    This fact sheet describes the U.S. Department of Energy's Water Power Program. The program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new technologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity.

  3. Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models Preprint D. S. Jenne and Y.-H. Yu National Renewable Energy Laboratory V. Neary Sandia National Laboratories To be presented at the 3 rd Marine Energy Technology Symposium (METS 2015) Washington, D.C. April 27-29, 2015 Conference Paper NREL/CP-5000-64013 April 2015 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government

  4. US Synthetic Corp (TRL 4 Component)- The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

    Broader source: Energy.gov [DOE]

    US Synthetic Corp (TRL 4 Component) - The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

  5. Funding Opportunity Announcement for a Marine and Hydrokinetic Development

    Energy Savers [EERE]

    University Consortium | Department of Energy a Marine and Hydrokinetic Development University Consortium Funding Opportunity Announcement for a Marine and Hydrokinetic Development University Consortium April 10, 2014 - 10:27am Addthis On April 10, 2014, the U.S. Department of Energy (DOE) announced a $4 million funding opportunity titled "Marine and Hydrokinetic Development University Consortium." This funding opportunity is supporting the advancement of wave and tidal energy

  6. Marine and Hydrokinetic Technology Instrumentation, Measurement, and

    Office of Environmental Management (EM)

    Computer Modeling Workshop | Department of Energy Technology Instrumentation, Measurement, and Computer Modeling Workshop Marine and Hydrokinetic Technology Instrumentation, Measurement, and Computer Modeling Workshop The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community, and to collect information to help identify ways in which the development of a commercially viable marine energy industry can be

  7. Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic...

    Broader source: Energy.gov (indexed) [DOE]

    Marine and Hydrokinetic (MHK) Demonstrations at the Navy's Wave Energy Test Site (WETS)." ... development, prepared to build and test technology at close to full-scale in the ...

  8. Request for Information Regarding the Testing of Marine and Hydrokinet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 14, 2015 - 10:30am Addthis The Energy Department's Water Power Program is seeking information from the marine and hydrokinetic (MHK) industry, academia, research ...

  9. Request for Information for Marine and Hydrokinetic Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 22, 2015 - 12:13pm Addthis The Energy Department's Water Power Program is seeking feedback from the marine and hydrokinetic (MHK) industry, academia, research laboratories, ...

  10. Upcoming Funding Opportunity for Marine and Hydrokinetic Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University Consortium | Department of Energy Marine and Hydrokinetic Development University Consortium Upcoming Funding Opportunity for Marine and Hydrokinetic Development University Consortium March 21, 2014 - 4:05am Addthis On March 21, 2014, the U.S. Department of Energy (DOE) announced a Notice of Intent to issue a funding opportunity titled "Marine and Hydrokinetic (MHK) Research and Development University Consortium." The goal of this funding opportunity is to leverage

  11. Request for Information for Marine and Hydrokinetic Environmental

    Energy Savers [EERE]

    Monitoring Technologies and Field Testing Opportunities | Department of Energy Request for Information for Marine and Hydrokinetic Environmental Monitoring Technologies and Field Testing Opportunities Request for Information for Marine and Hydrokinetic Environmental Monitoring Technologies and Field Testing Opportunities June 22, 2015 - 12:13pm Addthis The Energy Department's Water Power Program is seeking feedback from the marine and hydrokinetic (MHK) industry, academia, research

  12. Executive Summit on Marine and Hydrokinetic Research and Development Agenda

    Office of Environmental Management (EM)

    | Department of Energy Executive Summit on Marine and Hydrokinetic Research and Development Agenda Executive Summit on Marine and Hydrokinetic Research and Development Agenda MHK-Summit-Agenda.jpg PDF icon Executive Summit on Marine and Hydrokinetic Research and Development 2016 Agenda More Documents & Publications Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Agenda CX-005184: Categorical Exclusion Determination CX-011388: Categorical

  13. DOE Announces Marine and Hydrokinetic Open Data Effort | Department of

    Office of Environmental Management (EM)

    Energy DOE Announces Marine and Hydrokinetic Open Data Effort DOE Announces Marine and Hydrokinetic Open Data Effort April 10, 2014 - 3:39pm Addthis In an effort to improve future data management and access, DOE's Water Power Program is standing up a Marine and Hydrokinetics (MHK) Data Repository to manage the receipt, protection, and dissemination of scientific and technical data generated by DOE funded awards. Capabilities of the proposed MHK Data Repository include: Secure and intuitive

  14. Submersible Generator for Marine Hydrokinetics

    SciTech Connect (OSTI)

    Robert S. Cinq-Mars; Timothy Burke; Dr. James Irish; Brian Gustafson; Dr. James Kirtley; Dr. Aiman Alawa

    2011-09-01

    A submersible generator was designed as a distinct and critical subassembly of marine hydrokinetics systems, specifically tidal and stream energy conversion. The generator is designed to work with both vertical and horizontal axis turbines. The final product is a high-pole-count, radial-flux, permanent magnet, rim mounted generator, initially rated at twenty kilowatts in a two-meter-per-second flow, and designed to leverage established and simple manufacturing processes. The generator was designed to work with a 3 meter by 7 meter Gorlov Helical Turbine or a marine hydrokinetic version of the FloDesign wind turbine. The team consisted of experienced motor/generator design engineers with cooperation from major US component suppliers (magnetics, coil winding and electrical steel laminations). Support for this effort was provided by Lucid Energy Technologies and FloDesign, Inc. The following tasks were completed: â?¢ Identified the conditions and requirements for MHK generators. â?¢ Defined a methodology for sizing and rating MHK systems. â?¢ Selected an MHK generator topology and form factor. â?¢ Completed electromechanical design of submersible generator capable of coupling to multiple turbine styles. â?¢ Investigated MHK generator manufacturing requirements. â?¢ Reviewed cost implications and financial viability. â?¢ Completed final reporting and deliverables

  15. International Standards Development for Marine and Hydrokinetic Renewable Energy - Final Report on Technical Status

    SciTech Connect (OSTI)

    Rondorf, Neil E.; Busch, Jason; Kimball, Richard

    2011-10-29

    This report summarizes the progress toward development of International Standards for Marine and Hydrokinetic Renewable Energy, as funded by the U.S. Department of Energy (DOE) under the International Electrotechnical Commission (IEC) Technical Committee 114. The project has three main objectives: 1. Provide funding to support participation of key U.S. industry technical experts in 6 (originally 4) international working groups and/or project teams (the primary standards-making committees) and to attend technical meetings to ensure greater U.S. involvement in the development of these standards. 2. Provide a report to DOE and industry stakeholders summarizing the IEC standards development process for marine and hydrokinetic renewable energy, new international standards and their justifications, and provide standards guidance to industry members. 3. Provide a semi-annual (web-based) newsletter to the marine renewable energy community. The newsletter will educate industry members and stakeholders about the processes, progress, and needs of the US efforts to support the international standards development effort. The newsletter is available at www.TC114.us

  16. biofouling studies on Sandia's marine hydrokinetic coatings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biofouling studies on Sandia's marine hydrokinetic coatings - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense

  17. Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic (MHK)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrations at the Navy's Wave Energy Test Site (WETS) | Department of Energy Competitive Marine and Hydrokinetic (MHK) Demonstrations at the Navy's Wave Energy Test Site (WETS) Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic (MHK) Demonstrations at the Navy's Wave Energy Test Site (WETS) March 24, 2014 - 12:27pm Addthis On March 24, 2014, the U.S. Department of Energy (DOE) announced a Notice of Intent to issue a funding opportunity titled "Competitive Marine

  18. Marine and Hydrokinetic Technology Glossary | Open Energy Information

    Open Energy Info (EERE)

    and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from...

  19. Department of Energy Awards $37 Million for Marine and Hydrokinetic...

    Broader source: Energy.gov (indexed) [DOE]

    The nation's ocean waves, tides, currents, thermal gradients, and free-flowing rivers represent a promising energy source located close to centers of electricity demand. The ...

  20. Marine and Hydrokinetic Technology Glossary | Open Energy Information

    Open Energy Info (EERE)

    a pressure differential is induced within the device as the wave passes driving a fluid pump to create mechanical energy Oscillating Water Column OscillatingWaterColumn.jpg...

  1. Marine and Hydrokinetic Technology Glossary | Open Energy Information

    Open Energy Info (EERE)

    Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and...

  2. Category:Marine and Hydrokinetic Technologies | Open Energy Informatio...

    Open Energy Info (EERE)

    Centipod MHK TechnologiesCETO Wave Energy Technology MHK TechnologiesClosed Cycle OTEC MHK TechnologiesCoRMaT MHK TechnologiesCross Flow Turbine MHK TechnologiesCurrent...

  3. Marine and Hydrokinetic Technology Development and Testing | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technology Development and Testing Marine and Hydrokinetic Technology Development and Testing The Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. In order to meet its generation goals, the program supports the design, development, testing, and demonstration of technologies that can capture

  4. Marine Hydrokinetic Advanced Materials program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrokinetic Advanced Materials program - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  5. Siting Study Framework and Survey Methodology for Marine and Hydrokinetic Energy Project in Offshore Southeast Florida

    SciTech Connect (OSTI)

    Vinick, Charles; Riccobono, Antonino, MS; Messing, Charles G., Ph.D.; Walker, Brian K., Ph.D.; Reed, John K., Ph.D.

    2012-02-28

    Dehlsen Associates, LLC was awarded a grant by the United States Department of Energy (DOE) Golden Field Office for a project titled 'Siting Study Framework and Survey Methodology for Marine and Hydrokinetic Energy Project in Offshore Southeast Florida,' corresponding to DOE Grant Award Number DE-EE0002655 resulting from DOE funding Opportunity Announcement Number DE-FOA-0000069 for Topic Area 2, and it is referred to herein as 'the project.' The purpose of the project was to enhance the certainty of the survey requirements and regulatory review processes for the purpose of reducing the time, efforts, and costs associated with initial siting efforts of marine and hydrokinetic energy conversion facilities that may be proposed in the Atlantic Ocean offshore Southeast Florida. To secure early input from agencies, protocols were developed for collecting baseline geophysical information and benthic habitat data that can be used by project developers and regulators to make decisions early in the process of determining project location (i.e., the siting process) that avoid or minimize adverse impacts to sensitive marine benthic habitat. It is presumed that such an approach will help facilitate the licensing process for hydrokinetic and other ocean renewable energy projects within the study area and will assist in clarifying the baseline environmental data requirements described in the U.S. Department of the Interior Bureau of Ocean Energy Management, Regulation and Enforcement (formerly Minerals Management Service) final regulations on offshore renewable energy (30 Code of Federal Regulations 285, published April 29, 2009). Because projects generally seek to avoid or minimize impacts to sensitive marine habitats, it was not the intent of this project to investigate areas that did not appear suitable for the siting of ocean renewable energy projects. Rather, a two-tiered approach was designed with the first step consisting of gaining overall insight about seabed conditions offshore southeastern Florida by conducting a geophysical survey of pre-selected areas with subsequent post-processing and expert data interpretation by geophysicists and experienced marine biologists knowledgeable about the general project area. The second step sought to validate the benthic habitat types interpreted from the geophysical data by conducting benthic video and photographic field surveys of selected habitat types. The goal of this step was to determine the degree of correlation between the habitat types interpreted from the geophysical data and what actually exists on the seafloor based on the benthic video survey logs. This step included spot-checking selected habitat types rather than comprehensive evaluation of the entire area covered by the geophysical survey. It is important to note that non-invasive survey methods were used as part of this study and no devices of any kind were either temporarily or permanently attached to the seabed as part of the work conducted under this project.

  6. Request for Information for Marine and Hydrokinetic Field Measurements

    Broader source: Energy.gov [DOE]

    The Energy Department’s Water Power Program is seeking feedback from the marine and hydrokinetic (MHK) industry regarding the verification and validation of advanced open source MHK design tools and models.

  7. Marine and Hydrokinetic (MHK) Databases and Systems Fact Sheet | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy (MHK) Databases and Systems Fact Sheet Marine and Hydrokinetic (MHK) Databases and Systems Fact Sheet The following online information resources are designed to provide the public access to information pertaining to MHK technologies, projects, and research. PDF icon Marine and Hydrokinetic (MHK) Databases and Systems Fact Sheet More Documents & Publications Before the Subcommittee on Water and Power - Senate Committee on Energy and Natural Resourses Categorizing and Evaluating

  8. Marine and Hydrokinetic Market Acceleration and Deployment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Market Acceleration and Deployment Marine and Hydrokinetic Market Acceleration and Deployment Photo of several men on a floating platform that is lowering monitoring tools into the ocean. Though marine and hydrokinetic (MHK) energy is still in its infancy, the program is developing a robust portfolio of projects to accelerate wave, tidal and current project deployments and development of the MHK market in general. These projects include project siting activities, market assessments,

  9. Report to Congress on the Potential Environmental Effects of Marine and Hydrokinetic Energy Technologies

    SciTech Connect (OSTI)

    Cada, Glenn

    2009-12-01

    This report focuses on potential impacts of marine and hydrokinetic technologies to aquatic environments (i.e. rivers, estuaries, and oceans), fish and fish habitats, ecological relationships, and other marine and freshwater aquatic resources. The report does not address impacts to terrestrial ecosystems and organisms that are common to other electricity-generating technologies (e.g., construction and maintenance of transmission lines) or possible effects on the human environment, including: human use conflicts, aesthetics, viewsheds, noise in the terrestrial environment, light, recreation, transportation, navigation, cultural resources, socioeconomic impacts.

  10. Identification and Prioritization of Analysis Cases for Marine and Hydrokinetic Energy Risk Screening

    SciTech Connect (OSTI)

    Anderson, Richard M.; Unwin, Stephen D.; Van Cleve, Frances B.

    2010-06-16

    In this report we describe the development of the Environmental Risk Evaluation System (ERES), a risk-informed analytical process for estimating the environmental risks associated with the construction and operation of marine and hydrokinetic energy generation projects. The development process consists of two main phases of analysis. In the first phase, preliminary risk analyses will take the form of screening studies in which key environmental impacts and the uncertainties that create risk are identified, leading to a better-focused characterization of the relevant environmental effects. Existence of critical data gaps will suggest areas in which specific modeling and/or data collection activities should take place. In the second phase, more detailed quantitative risk analyses will be conducted, with residual uncertainties providing the basis for recommending risk mitigation and monitoring activities. We also describe the process used for selecting three cases for fiscal year 2010 risk screening analysis using the ERES. A case is defined as a specific technology deployed in a particular location involving certain environmental receptors specific to that location. The three cases selected satisfy a number of desirable criteria: 1) they correspond to real projects whose deployment is likely to take place in the foreseeable future; 2) the technology developers are willing to share technology and project-related data; 3) the projects represent a diversity of technology-site-receptor characteristics; 4) the projects are of national interest, and 5) environmental effects data may be available for the projects.

  11. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2012-04-01

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a Power-Take-Off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drive train, power generator and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency, low maintenance and cost with a low impact on the device Cost-of-Energy (CoE).

  12. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2013-02-01

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a power-take-off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drivetrain, power generator, and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost, and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency and low maintenance and cost, with a low impact on the device cost-of-energy (CoE).

  13. Regulatory Assistance, Stakeholder Outreach, and Coastal and Marine Spatial Planning Activities in Support of Marine and Hydrokinetic Energy Deployment

    SciTech Connect (OSTI)

    Geerlofs, Simon H.; Copping, Andrea E.; Van Cleve, Frances B.; Blake, Kara M.; Hanna, Luke A.

    2011-09-30

    This fiscal year 2011 progress report summarizes activities carried out under DOE Water Power Task 2.1.7, Permitting and Planning. Activities under Task 2.1.7 address the concerns of a wide range of stakeholders with an interest in the development of the marine and hydrokinetic (MHK) energy industry, including regulatory and resource management agencies, tribes, nongovernmental organizations, and industry. Objectives for Task 2.1.7 are the following: to work with stakeholders to streamline the MHK regulatory permitting process to work with stakeholders to gather information on needs and priorities for environmental assessment of MHK development to communicate research findings and directions to the MHK industry and stakeholders to engage in spatial planning processes in order to further the development of the MHK industry. These objectives are met through three subtasks, each of which is described in this report: 2.1.7.1Regulatory Assistance 2.1.7.2Stakeholder Outreach 2.1.7.3Coastal and Marine Spatial Planning. As MHK industry partners work with the regulatory community and stakeholders to plan, site, permit, and license MHK technologies, they have an interest in a predictable, efficient, and transparent process. Stakeholders and regulators have an interest in processes that result in sustainable use of ocean space with minimal effects to existing ocean users. Both stakeholders and regulators have an interest in avoiding legal challenges by meeting the intent of federal, state, and local laws that govern siting and operation of MHK technologies. The intention of work under Task 2.1.7 is to understand and work to address these varied interests, reduce conflict, identify efficiencies, and ultimately reduce the regulatory costs, time, and potential environmental impacts associated with developing, siting, permitting, and deploying MHK systems.

  14. Identifying How Marine and Hydrokinetic Devices Affect Aquatic Environments

    SciTech Connect (OSTI)

    Cada, G. F.; Copping, Andrea E.; Roberts, Jesse

    2011-04-24

    Significant research is under way to determine the potential environmental effects of marine and hydrokinetic energy systems. This research, being guided and funded by the U.S. Department of Energy, is intended to address knowledge gaps and facilitate installation and operation of these systems.

  15. Investigations on Marine Hydrokinetic Turbine Foil Structural Health

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Presented at GMREC METS Marine Hydrokinetic Turbine Foil Structural Health Monitoring Presented at GMREC METS - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power &

  16. Marine and Hydrokinetic Technology Development Risk Management Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marine and Hydrokinetic Technology Development Risk Management Framework David Snowberg and Jochem Weber Link to Risk Register Template Technical Report NREL/TP-5000-63258 September 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No.

  17. JEDI Marine and Hydrokinetic Model: User Reference Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JEDI Marine and Hydrokinetic Model: User Reference Guide Marshall Goldberg MRG & Associates Nevada City, California Mirko Previsic RE Vision Consulting Sacramento, California Subcontract Report NREL/SR-6A20-50402 April 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 *

  18. Marine and Hydrokinetic (MHK) Executive Summit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Hydrokinetic (MHK) Executive Summit - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  19. Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models: Preprint

    SciTech Connect (OSTI)

    Jenne, D. S.; Yu, Y. H.; Neary, V.

    2015-04-24

    In 2010 the U.S. Department of Energy initiated the development of six marine energy converter reference models. The reference models are point designs of well-known marine energy converters. Each device was designed to operate in a specific marine resource, instead of a generic device that can be deployed at any location. This method allows each device to be used as a benchmark for future reference model to benchmark future devices. The six designs consist of three current energy converters and three wave energy converters. The reference model project has generated both technical and economic data sets that are available in the public domain. The methodology to calculate the levelized cost of energy for the reference model project and an overall comparison of the cost of energy from these six reference-model designs are presented in this paper.

  20. Notice of Intent to Fund Marine and Hydrokinetic Instrumentation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1:15am Addthis The Water Power Program recently issued a Notice of Intent for a funding opportunity expected to be posted early in 2014, pending congressional appropriations. The Notice of Intent, titled "Environmental Stewardship for Renewable Energy Technologies: Marine and Hydrokinetic (MHK) Environmental and Resource Characterization Instrumentation," intends to support the development of instrumentation, associated processing tools, and integration of

  1. Notice of Intent to Fund Marine and Hydrokinetic Instrumentation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2:00am Addthis The Water Power Program recently issued a Notice of Intent for a funding opportunity expected to be posted early in 2014, pending congressional appropriations. The Notice of Intent, titled "Environmental Stewardship for Renewable Energy Technologies: Marine and Hydrokinetic (MHK) Environmental and Resource Characterization Instrumentation," intends to support the development of instrumentation, associated processing tools, and integration of

  2. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Computer Modeling Workshop The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy...

  3. Marine & Hydrokinetic Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This document described the U.S. Department of Energy's Water Power Program efforts to promote the development and deployment of advanced water power devices.

  4. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy Preprint M. Beam, B. Kline, B. Elbing, W. Straka, and A. Fontaine Pennsylvania State University M. Lawson, Y. Li, and R. Thresher National Renewable Energy Laboratory M. Previsic Re Vision Consulting, LLC To be presented at the 32 nd International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2013) Nantes, France June 9-14, 2013 Conference Paper NREL/CP-5000-58092 February 2013 NOTICE

  5. FINAL TECHNICAL REPORT: Underwater Active Acoustic Monitoring Network For Marine And Hydrokinetic Energy Projects

    SciTech Connect (OSTI)

    Stein, Peter J.; Edson, Patrick L.

    2013-12-20

    This project saw the completion of the design and development of a second generation, high frequency (90-120 kHz) Subsurface-Threat Detection Sonar Network (SDSN). The system was deployed, operated, and tested in Cobscook Bay, Maine near the site the Ocean Renewable Power Company TidGen power unit. This effort resulted in a very successful demonstration of the SDSN detection, tracking, localization, and classification capabilities in a high current, MHK environment as measured by results from the detection and tracking trials in Cobscook Bay. The new high frequency node, designed to operate outside the hearing range of a subset of marine mammals, was shown to detect and track objects of marine mammal-like target strength to ranges of approximately 500 meters. This performance range results in the SDSN system tracking objects for a significant duration - on the order of minutes - even in a tidal flow of 5-7 knots, potentially allowing time for MHK system or operator decision-making if marine mammals are present. Having demonstrated detection and tracking of synthetic targets with target strengths similar to some marine mammals, the primary hurdle to eventual automated monitoring is a dataset of actual marine mammal kinematic behavior and modifying the tracking algorithms and parameters which are currently tuned to human diver kinematics and classification.

  6. EA-1965: Florida Atlantic University Southeast National Marine Renewable Energy Center’s Offshore Marine Hydrokinetic Technology Testing Project, Florida

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic University’s South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMREC’s experimental current generation turbine and the deployment and operation of their Small-Scale Ocean Current Turbine Test Berth, sited on the outer continental shelf (OCS) in waters off the coast of Ft Lauderdale, Florida. SNMREC would demonstrate the test berth site readiness by testing their pilot-scale experimental ocean current turbine unit at that location. The Bureau of Ocean Energy Management (BOEM) conducted an Environmental Assessment to analyze the impacts associated with leasing OCS lands to FAU SNMREC, per their jurisdictional responsibilities under the Outer Continental Shelf Lands Act. DOE was a cooperating agency in this process and based on the EA, DOE issued a Finding of No Significant Impact.

  7. Upgrades to SNL-EFDC: A Tool to Balance Marine Hydrokinetic Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications National Solar Thermal Test Facility ... Hydrogen Production Market Transformation Fuel Cells Predictive Simulation of Engines Transportation Energy Consortiums ...

  8. New Request for Information on Strategy to Advance the Marine and Hydrokinetic Energy Industry

    Broader source: Energy.gov [DOE]

    The Energy Department’s Water Power Program is seeking feedback from the MHK industry, academia, research laboratories, government agencies, and other stakeholders regarding the Program’s activities and priorities in MHK.

  9. Developing an Instrumentation Package for in-Water Testing of Marine Hydrokinetic Energy Devices: Preprint

    SciTech Connect (OSTI)

    Nelson, E.

    2010-08-01

    The ocean-energy industry is still in its infancy and device developers have provided their own equipment and procedures for testing. Currently, no testing standards exist for ocean energy devices in the United States. Furthermore, as prototype devices move from the test tank to in-water testing, the logistical challenges and costs grow exponentially. Development of a common instrumentation package that can be moved from device to device is one means of reducing testing costs and providing normalized data to the industry as a whole. As a first step, the U.S. National Renewable Energy Laboratory (NREL) has initiated an effort to develop an instrumentation package to provide a tool to allow common measurements across various ocean energy devices. The effort is summarized in this paper. First, we present the current status of ocean energy devices. We then review the experiences of the wind industry in its development of the instrumentation package and discuss how they can be applied in the ocean environment. Next, the challenges that will be addressed in the development of the ocean instrumentation package are discussed. For example, the instrument package must be highly adaptable to fit a large array of devices but still conduct common measurements. Finally, some possible system configurations are outlined followed by input from the industry regarding its measurement needs, lessons learned from prior testing, and other ideas.

  10. Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.

    SciTech Connect (OSTI)

    Bull, Diana L; Ochs, Margaret Ellen

    2013-09-01

    This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

  11. Sustainable Marine Energy | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: PO32 6RF Sector: Marine and Hydrokinetic, Renewable Energy Product: PLAT-O Year Founded: 2012 Phone Number: 019833297145 Website: www.sustainablemarine.com...

  12. Sandia Labs participates in DOE Executive Summit on Marine and Hydrokinetic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Development participates in DOE Executive Summit on Marine and Hydrokinetic Research and Development - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering

  13. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop W. Musial, M. Lawson, and S. Rooney National Renewable Energy Laboratory Technical Report NREL/TP-5000-57605 February 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 *

  14. Hawaii National Marine Renewable Energy Center (HINMREC)

    SciTech Connect (OSTI)

    Rocheleau, Richard

    2011-09-27

    Presentation from the 2011 Water Peer Review in which the principal investigator discusses project progress to develop in-water testing facility for marine and hydrokinetics energy devices.

  15. Review of Recent Literature Relevant to the Environmental Effects of Marine and Hydrokinetic Energy Devices Task 2.1.3: Effects on Aquatic Organisms – Fiscal Year 2011 Progress Report Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Kropp, Roy K.

    2011-09-30

    A literature search was conducted by using the Web of Science® Databases component of the ISI Web of KnowledgeSM to identify recent articles that would be useful to help assess the potential environmental effects of renewable energy development in the ocean, with emphasis on marine mammals, seabirds, and fish. Several relatively recent general review articles that included possible effects of marine renewable energy devices on marine mammals and seabirds were examined to begin the search process (e.g., Boehlert et al. 2008; Thompson et al. 2008; Simas et al. 2009). From these articles, several general topics of potential environmental effects on marine mammals, seabirds, and fish were derived. These topics were used as the primary search factors. Searches were conducted with reference to the potential effects of offshore wind farms and MHK devices on marine mammals, seabirds, and fish. Additional sources were identified by cross-checking the Web of Science databases for articles that cited the review articles. It also became clear that often the potential effects were offered as hypotheses that often were not supported by the presentation of appropriate documentation. Therefore, the search was refined and focused on trying to obtain the necessary information to support or challenge a proposed potential effect to a specific concern. One of the expressed concerns regarding MHK devices is that placing wave parks in coastal waters could compromise the migration patterns of whales. Disruption of the annual migration of the gray whale (Eschrichtius robustus), which swims at least 30,000 km on its round trip from breeding grounds in Baja California to feeding areas in the Bering Sea, is of particular concern. Among the hypothesized effects on the migrating gray whales are increased predation risk by constricting migration corridor to between array and shore or by forcing the whales to swim into deeper waters, increased metabolic energy costs and delays in reaching the destinations, and interrupting feeding by blocking access to benthic areas under arrays. The literature search focused on identifying published studies that could provide information to evaluate these concerns. The results were developed into a case study that evaluated the potential effects of the placement of wave parks in coastal waters along the migration route of the gray whale. Wave parks and other MHK arrays may have additional effects on gray whales and other marine mammals, including entanglement in mooring lines and interference with communications among other effects, that were not included in this case study. The case study results were rewritten into a simpler form that would be suitable for placement on a web blog

  16. Effects of Electromagnetic Fields on Fish and Invertebrates Task 2.1.3: Effects on Aquatic Organisms Fiscal Year 2012 Progress Report Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Woodruff, Dana L.; Cullinan, Valerie I.; Copping, Andrea E.; Marshall, Kathryn E.

    2013-05-20

    Energy generated by the worlds oceans and rivers offers the potential to make substantial contributions to the domestic and global renewable energy supply. However, the marine and hydrokinetic (MHK) energy industry faces challenges related to siting, permitting, construction, and operation of pilotand commercial-scale facilities. One of the challenges is to understand the potential effects to marine organisms from electromagnetic fields, which are produced as a by-product of transmitting power from offshore to onshore locations through underwater transmission cables. This report documents the progress of the third year of research (fiscal year 2012) to investigate environmental issues associated with marine and hydrokinetic energy (MHK) generation. This work was conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energys (DOEs) Office of Energy Efficiency and Renewable Energy (EERE) Wind and Water Technologies Office. The report addresses the effects of electromagnetic fields (EMFs) on selected marine species where significant knowledge gaps exist. The species studied this fiscal year included one fish and two crustacean species: the Atlantic halibut (Hippoglossus hippoglossus), Dungeness crab (Metacarcinus magister), and American lobster (Homarus americanus).

  17. Siting Methodologies for Hydrokinetics | Department of Energy

    Office of Environmental Management (EM)

    of the federal and state regulatory framework for hydrokinetic projects. PDF icon sitinghandbook2009.pdf More Documents & Publications Siting Methodologies for Hydrokinetics...

  18. Sandia Energy - Numerical Simulations of Hydrokinetics in the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Numerical Simulations of Hydrokinetics in the Roza Canal, Yakima Washington Home Renewable Energy Energy Water Power Computational Modeling & Simulation Numerical Simulations of...

  19. Sandia Energy - Sandia Releases Open-Source Hydrokinetic Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases Open-Source Hydrokinetic Turbine Design Model, CACTUS Home Renewable Energy Energy Water Power News News & Events Computational Modeling & Simulation Sandia Releases...

  20. Proceedings of the Hydrokinetic and Wave Energy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Before the House Science and Technology Subcommittee on Energy and Environment Water Power Program: ...

  1. Chapter 4: Advancing Clean Electric Power Technologies | Marine and Hydrokinetic Power Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Value-Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power

  2. Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water Power Program (WWPP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to promote the development and deployment of these new tech- nologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renew- able, emissions-free resource to generate environmentally sustainable and cost-effective electricity. The program's research and development efforts fall under two categories: Technology Development and Market Acceleration. Technology Development The

  3. Marine & Hydrokinetic Technologies, Wind and Water Power Program (WWPP) (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to promote the development and deployment of these new technologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renewable, emissions-free resource to generate environ- mentally sustainable and cost-effective electricity. The program's research and development efforts fall under two categories: Technology Development and Market Acceleration. Technology Development The

  4. 2014 Water Power Program Peer Review: Marine and Hydrokinetic Technologies, Compiled Presentations (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Marine and Hydrokinetic Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  5. Siting Methodologies for Hydrokinetics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siting Methodologies for Hydrokinetics Siting Methodologies for Hydrokinetics Report that provides an overview of the federal and state regulatory framework for hydrokinetic projects. PDF icon siting_handbook_2009.pdf More Documents & Publications Siting Methodologies for Hydrokinetics EIS-0488: Final Environmental Impact Statement EIS-0493: Draft

  6. Potential Impacts of Hydrokinetic and Wave Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments The article reviews the results of that workshop, focusing on potential effects on ...

  7. MHK Projects/Indian River Tidal Hydrokinetic Energy Project ...

    Open Energy Info (EERE)

    Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","...

  8. MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open...

    Open Energy Info (EERE)

    Piscataqua Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"goo...

  9. Effects of Tidal Turbine Noise on Fish Hearing and Tissues - Draft Final Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This project was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/Chinook/CKPUG.cfm); the fish used in this experiment were hatchery raised and their populations are not in danger of depletion. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Experimental results indicate that non-lethal, low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

  10. Leviathan Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Leviathan Energy Region: Israel Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  11. Poseidon Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Poseidon Energy Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  12. JEDI Marine and Hydrokinetic Model: User Reference Guide

    SciTech Connect (OSTI)

    Goldberg, M.; Previsic, M.

    2011-04-01

    The Jobs and Economic Development Impact Model (JEDI) for Marine and Hydrokinetics (MHK) is a user-friendly spreadsheet-based tool designed to demonstrate the economic impacts associated with developing and operating MHK power systems in the United States. The JEDI MHK User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the sources and parameters used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.

  13. Marine and Hydrokinetic Technology Development Risk Management Framework

    SciTech Connect (OSTI)

    Snowberg, David; Weber, Jochem

    2015-09-01

    Over the past decade, the global marine and hydrokinetic (MHK) industry has suffered a number of serious technological and commercial setbacks. To help reduce the risks of industry failures and advance the development of new technologies, the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) developed an MHK Risk Management Framework. By addressing uncertainties, the MHK Risk Management Framework increases the likelihood of successful development of an MHK technology. It covers projects of any technical readiness level (TRL) or technical performance level (TPL) and all risk types (e.g. technological risk, regulatory risk, commercial risk) over the development cycle. This framework is intended for the development and deployment of a single MHK technology—not for multiple device deployments within a plant. This risk framework is intended to meet DOE’s risk management expectations for the MHK technology research and development efforts of the Water Power Program (see Appendix A). It also provides an overview of other relevant risk management tools and documentation.1 This framework emphasizes design and risk reviews as formal gates to ensure risks are managed throughout the technology development cycle. Section 1 presents the recommended technology development cycle, Sections 2 and 3 present tools to assess the TRL and TPL of the project, respectively. Section 4 presents a risk management process with design and risk reviews for actively managing risk within the project, and Section 5 presents a detailed description of a risk registry to collect the risk management information into one living document. Section 6 presents recommendations for collecting and using lessons learned throughout the development process.

  14. General Engineer (MARINE & HYDROKINETIC ENGINEER) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CR Job Summary The Office of Energy Efficiency and Renewable Energy's (EERE), mission is to create and sustain American leadership in the global transition to a clean energy...

  15. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    http:energy.goveerevideosenergy-101-hydroelectric-power Video Energy 101: Marine and Hydrokinetic Energy See how marine and hydrokinetic technologies harness the...

  16. 2014 Water Power Program Peer Review Compiled Presentations: Marine and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrokinetic Technologies | Department of Energy Marine and Hydrokinetic Technologies 2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies The U.S. Department of Energy Water Power Program conducted the 2014 peer review meeting on marine and hydrokinetic technologies February 24-27. The compiled 2014 Marine and Hydrokinetic Technologies Peer Review Presentations listed below are available for download. Introduction Marine and Hydrokinetics

  17. Marine and Hydrokinetic (MHK) Databases and Systems

    SciTech Connect (OSTI)

    2015-01-01

    The online information resources included in this fact sheet were developed with support from the U.S. Department of Energy, and are designed to provide the public access to information pertaining to MHK technologies, projects, and research.

  18. Marine and Hydrokinetic Technology Instrumentation, Measurement, and Computer Modeling Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community, and to collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry.

  19. Live Webinar on the Funding Opportunity for Marine and Hydrokinetic Research and Development University Consortium

    Broader source: Energy.gov [DOE]

    On April 24, 2014 from 1:00 - 2:30 PM EDT, the Water Power Program will hold a live webinar to provide information to potential applicants for the Marine and Hydrokinetic (MHK) Research and...

  20. Loria Emerging Energy Consulting | Open Energy Information

    Open Energy Info (EERE)

    search Name: Loria Emerging Energy Consulting Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  1. Arnold Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Arnold Energy Systems Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  2. Fieldstone Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Fieldstone Energy Inc Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  3. Yu Energy Corp | Open Energy Information

    Open Energy Info (EERE)

    Corp Jump to: navigation, search Name: Yu Energy Corp Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  4. The Development of Open Water-lubricated Polycrystalline Diamond (PCD) Thrust Bearings for Use in Marine Hydrokinetic (MHK) Energy Machines

    SciTech Connect (OSTI)

    Cooley, Craig, H.; Khonsari, Michael,, M; Lingwall, Brent

    2012-11-28

    Polycrstalline diamond (PCD) bearings were designed, fabricated and tested for marine-hydro-kinetic (MHK) application. Bearing efficiency and life were evaluated using the US Synthetic bearing test facility. Three iterations of design, build and test were conducted to arrive at the best bearing design. In addition life testing that simulated the starting and stopping and the loading of real MHK applications were performed. Results showed polycrystalline diamond bearings are well suited for MHK applications and that diamond bearing technology is TRL4 ready. Based on life tests results bearing life is estimated to be at least 11.5 years. A calculation method for evaluating the performance of diamond bearings of round geometry was also investigated and developed. Finally, as part of this effort test bearings were supplied free of charge to the University of Alaska for further evaluation. The University of Alaska test program will subject the diamond bearings to sediment laden lubricating fluid.

  5. DOE Announces Webinars on Residential Energy Efficiency, Marine and

    Office of Environmental Management (EM)

    Hydrokinetic Technology Development Risk Management, and More | Department of Energy Residential Energy Efficiency, Marine and Hydrokinetic Technology Development Risk Management, and More DOE Announces Webinars on Residential Energy Efficiency, Marine and Hydrokinetic Technology Development Risk Management, and More December 10, 2014 - 8:29am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to

  6. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop

    SciTech Connect (OSTI)

    Musial, W.; Lawson, M.; Rooney, S.

    2013-02-01

    The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the National Renewable Energy Laboratory (NREL) in Broomfield, Colorado, July 9–10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community, and to collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry and technical sessions that covered specific topics of relevance. Each session consisted of presentations, followed by facilitated discussions. During the facilitated discussions, the session chairs posed several prepared questions to the presenters and audience to encourage communication and the exchange of ideas between technical experts. Following the workshop, attendees were asked to provide written feedback on their takeaways from the workshop and their best ideas on how to accelerate the pace of marine energy technology development. The first four sections of this document give a general overview of the workshop format, provide presentation abstracts, supply discussion session notes, and list responses to the post-workshop questions. The final section presents key findings and conclusions from the workshop that suggest what the most pressing MHK technology needs are and how the U.S. Department of Energy (DOE) and national laboratory resources can be utilized to assist the marine energy industry in the most effective manner.

  7. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop

    SciTech Connect (OSTI)

    Musial, W.; Lawson, M.; Rooney, S.

    2013-02-01

    The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the National Renewable Energy Laboratory (NREL) in Broomfield, Colorado, July 9-10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community and collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry and technical sessions that covered specific topics of relevance. Each session consisted of presentations, followed by facilitated discussions. During the facilitated discussions, the session chairs posed several prepared questions to the presenters and audience to encourage communication and the exchange of ideas between technical experts. Following the workshop, attendees were asked to provide written feedback on their takeaways and their best ideas on how to accelerate the pace of marine energy technology development. The first four sections of this document give a general overview of the workshop format, provide presentation abstracts and discussion session notes, and list responses to the post-workshop questions. The final section presents key findings and conclusions from the workshop that suggest how the U.S. Department of Energy and national laboratory resources can be utilized to most effectively assist the marine energy industry.

  8. River Hydrokinetic Resource Atlas | Open Energy Information

    Open Energy Info (EERE)

    dress":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Language: English River Hydrokinetic Resource Atlas Screenshot References: EPRI1 River Atlas2 The...

  9. Template:Marine and Hydrokinetic Technology Project Milestone...

    Open Energy Info (EERE)

    :MarineandHydrokineticTechnologyProjectMilestone&oldid675523" Feedback Contact needs updating Image needs updating Reference needed Missing content Broken link Other...

  10. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Marine & Hydrokinet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The program plans to release additional program-funded assessments of ocean current and ocean thermal resources in addition to conventional and hydrokinetic terrestrial hydropower ...

  11. Siting Methodologies for Hydrokinetics

    Energy Savers [EERE]

    09 Siting Methodologies for Hydrokinetics Siting Methodologies for Hydrokinetics Navigating the Regulatory Framework Prepared by Pacific Energy Ventures, LLC on behalf of the U.S. Department of Energy December 2009 Siting Methodologies for Hydrokinetics: Navigating the Regulatory Framework 2009 December 2009 Siting Methodologies for Hydrokinetics Intentionally Left Blank Siting Methodologies for Hydrokinetics: Navigating the Regulatory Framework 2009 December 2009 Siting Methodologies for

  12. Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop October 26-28, 2005 Washington, D.C. Sponsored by: U.S. Department of Energy OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY Wind and Hydropower Technologies Program March 24, 2006 To access this document and presentations made at the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop visit: http://hydropower.inl.gov/hydrokinetic_wave/ The production of

  13. Preliminary Screening Analysis for the Environmental Risk Evaluation System: Task 2.1.1: Evaluating Effects of Stressors Fiscal Year 2010 Progress Report: Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.

    2010-11-15

    Possible environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term effects. An understanding of risk associated with likely interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help reduce the level of uncertainty and focus regulatory actions and scientific studies on interactions of most concern. As a first step in developing the Pacific Northwest National Laboratory (PNNL) Environmental Risk Evaluation System (ERES), PNNL scientists conducted a preliminary risk screening analysis on three initial MHK cases - a tidal project in Puget Sound using Open Hydro turbines, a wave project off the coast of Oregon using Ocean Power Technologies point attenuator buoys, and a riverine current project in the Mississippi River using Free Flow turbines. Through an iterative process, the screening analysis revealed that top-tier stressors in all three cases were the effects of the dynamic physical presence of the device (e.g., strike), accidents, and effects of the static physical presence of the device (e.g., habitat alteration). Receptor interactions with these stressors at the four highest tiers of risk were dominated by marine mammals (cetaceans and pinnipeds) and birds (diving and non-diving); only the riverine case (Free Flow) included different receptors in the third tier (fish) and the fourth tier (benthic invertebrates). Although this screening analysis provides a preliminary analysis of vulnerability of environmental receptors to stressors associated with MHK installations, probability analysis, especially of risk associated with chemical toxicity and accidents such as oil spills or lost gear, will be necessary to further understand high-priority risks. Subject matter expert review of this process and results is required and is planned for the first quarter of FY11. Once expert review is finalized, the screening analysis phase of ERES will be complete.

  14. Enviro effects of hydrokinetic turbines on fish | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    effects of hydrokinetic turbines on fish Enviro effects of hydrokinetic turbines on fish Enviro effects of hydrokinetic turbines on fish Office presentation icon 47_fish-hk_turbine_interactions_epri_jacobson.ppt More Documents & Publications CX-002452: Categorical Exclusion Determination Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

  15. Quadrennial Technology Review 2015: Technology Assessments--Marine and Hydrokinetic Power

    SciTech Connect (OSTI)

    Sam Baldwin, Gilbert Bindewald, Austin Brown, Charles Chen, Kerry Cheung, Corrie Clark, Joe Cresko,

    2015-10-07

    Marine and hydrokinetic (MHK) technologies convert the energy of waves, tides, and river and ocean currents into electricity. With more than 50% of the U.S. population living within 50 miles of the nation’s coasts, MHK technologies hold significant potential to supply renewable electricity to consumers in coastal load centers, particularly in the near term in areas with high costs of electricity and longer term in high resource areas in close proximity to major coastal load centers. MHK resource assessments identify a total U.S. technical resource potential of approximately 1250–1850 terawatt-hours (TWh) of generation per year from ocean wave, ocean current, ocean tidal, and river current energy. Of this, the U.S. continental technical resource potential is approximately 500–750 TWh/year. For context, roughly 90,000 homes can be powered by 1 TWh of electricity generation each year. A cost-effective MHK industry could provide a substantial amount of electricity for the nation owing in large part to its unique advantages as a source of energy, including its vast resource potential, its close proximity to major coastal load centers, and its long-term predictability and near-term forecastability.

  16. Screening Analysis for the Environmental Risk Evaluation System Task 2.1.1.2: Evaluating Effects of Stressors Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Copping, Andrea E.; Blake, Kara M.; Anderson, Richard M.; Zdanski, Laura C.; Gill, Gary A.; Ward, Jeffrey A.

    2011-09-01

    Potential environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. As a first step in developing the Pacific Northwest National Laboratory (PNNL) Environmental Risk Evaluation System (ERES), PNNL scientists conducted a preliminary risk screening analysis on three initial MHK cases. During FY 2011, two additional cases were added: a tidal project in the Gulf of Maine using Ocean Renewable Power Company TidGenTM turbines and a wave project planned for the coast of Oregon using Aquamarine Oyster surge devices. Through an iterative process, the screening analysis revealed that top-tier stressors in the two FY 2011 cases were the dynamic effects of the device (e.g., strike), accidents/disasters, and effects of the static physical presence of the device (e.g., habitat alteration). Receptor interactions with these stressors at the highest tiers of risk were dominated by threatened and endangered animals. Risk to the physical environment from changes in flow regime also ranked high. Peer review of this process and results will be conducted in early FY 2012. The ERES screening analysis provides an analysis of vulnerability of environmental receptors to stressors associated with MHK installations, probability analysis is needed to determine specific risk levels to receptors. Risk has two components: (1) The likelihood, or probability, of the occurrence of a given interaction or event, and (2) the potential consequence if that interaction or event were to occur. During FY 2011, the ERES screening analysis focused primarily on the second component of risk, consequence, with focused probability analysis for interactions where data was sufficient for probability modeling. Consequence analysis provides an assessment of vulnerability of environmental receptors to stressors associated with MHK installations. Probability analysis is needed to determine specific risk levels to receptors and requires significant data inputs to drive risk models. During FY 2011, two stressor-receptor interactions were examined for the probability of occurrence. The two interactions (spill probability due to an encounter between a surface vessel and an MHK device; and toxicity from anti-biofouling paints on MHK devices) were seen to present relatively low risks to marine and freshwater receptors of greatest concern in siting and permitting MHK devices. A third probability analysis was scoped and initial steps taken to understand the risk of encounter between marine animals and rotating turbine blades. This analysis will be completed in FY 2012.

  17. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop W. Musial, M. Lawson, and S. Rooney National Renewable Energy Laboratory Technical Report NREL/TP-5000-57605 February 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 *

  18. Leviathan Marine Development | Open Energy Information

    Open Energy Info (EERE)

    Marine Development Jump to: navigation, search Name: Leviathan Marine Development Sector: Marine and Hydrokinetic Website: www.leviathanenergy.com This company is listed in the...

  19. 2011 Marine Hydrokinetic Device Modeling Workshop: Final Report; March 1, 2011

    SciTech Connect (OSTI)

    Li, Y.; Reed, M.; Smith, B.

    2011-10-01

    This report summarizes the NREL Marine and Hydrokinetic Device Modeling Workshop. The objectives for the modeling workshop were to: (1) Review the designs of existing MHK device prototypes and discuss design and optimization procedures; (2) Assess the utility and limitations of modeling techniques and methods presently used for modeling MHK devices; (3) Assess the utility and limitations of modeling methods used in other areas, such as naval architecture and ocean engineering (e.g., oil & gas industry); and (4) Identify the necessary steps to link modeling with other important components that analyze MHK devices (e.g., tank testing, PTO design, mechanical design).

  20. Report to Congress on the Potential Environmental Effects of Marine and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrokinetic Energy Technologies | Department of Energy Report to Congress on the Potential Environmental Effects of Marine and Hydrokinetic Energy Technologies Report to Congress on the Potential Environmental Effects of Marine and Hydrokinetic Energy Technologies This report focuses on potential impacts of marine and hydrokinetic technologies to aquatic environments (i.e. rivers, estuaries, and oceans), fish and fish habitats, ecological relationships, and other marine and freshwater

  1. Marine Hydroelectric Company | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Marine Hydroelectric Company Address: 24040 Camino Del Avion A 107 Place: Monarch Beach Sector: Marine and Hydrokinetic Year Founded: 1983 Phone...

  2. In-stream hydrokinetic resource assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Effects on the Physical Environment ...

  3. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Marine & Hydrokinet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transfer of wave energy along wave crests, which enables densities within a few kilometers of a linear array, even for fixed terminator devices. The total available energy...

  4. Funding Opportunity Announcement for a Marine and Hydrokinetic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This funding opportunity is supporting the advancement of wave and tidal energy technologies while developing a globally competitive MHK workforce. This funding will support one ...

  5. Executive Summit on Marine and Hydrokinetic Research and Development...

    Energy Savers [EERE]

    More Documents & Publications Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Agenda CX-005184: Categorical Exclusion Determination ...

  6. Sandia Energy - Marine Hydrokinetics Technology: Technology Developmen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and currenttidal power devices. Areas of focus will be on coatings, composites, and molding processes. System Reliability and Survivability Similar to other early stage...

  7. Wind and Water Power Technologies Office Position Available: Marine and

    Office of Environmental Management (EM)

    Hydrokinetic General Engineer | Department of Energy Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer January 11, 2016 - 5:07pm Addthis The Wind and Water Power Technologies Office is seeking applicants for a new position available within the office. See below for more information. Job title: General Engineer-Marine and Hydrokinetic (MHK)

  8. Energy System and Scenario Analysis Toolkit | Open Energy Information

    Open Energy Info (EERE)

    other technologies. Biomass Biomass Energy Data Book Buildings Buildings Energy Data Book Hydrogen Hydrogen Energy Data Book Marine and Hydrokinetic Technology Marine and...

  9. Blue Motion Energy | Open Energy Information

    Open Energy Info (EERE)

    Motion Energy Jump to: navigation, search Name: Blue Motion Energy Region: Netherlands Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and...

  10. Euro Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Jump to: navigation, search Name: Euro Wave Energy Region: Norway Sector: Marine and Hydrokinetic Website: www.eurowaveenergy.com This company is listed in the Marine...

  11. Environmentally Benign and Permanent Modifications to Prevent Biofouling on Marine and Hydrokinetic Devices

    SciTech Connect (OSTI)

    Zheng Zhang

    2012-04-19

    Semprus Biosciences is developing environmentally benign and permanent modifications to prevent biofouling on Marine and Hydrokinetic (MHK) devices. Biofouling, including growth on external surfaces by bacteria, algae, barnacles, mussels, and other marine organisms, accumulate quickly on MHK devices, causing mechanical wear and changes in performance. Biofouling on crucial components of hydrokinetic devices, such as rotors, generators, and turbines, imposes substantial mass and hydrodynamic loading with associated efficiency loss and maintenance costs. Most antifouling coatings leach toxic ingredients, such as copper and tributyltin, through an eroding process, but increasingly stringent regulation of biocides has led to interest in the development of non-biocidal technologies to control fouling. Semprus Biosciences research team is developing modifications to prevent fouling from a broad spectrum of organisms on devices of all shapes, sizes, and materials for the life of the product. The research team designed and developed betaine-based polymers as novel underwater coatings to resist the attachment of marine organisms. Different betaine-based monomers and polymers were synthesized and incorporated within various coating formulations. The formulations and application methods were developed on aluminum panels with required adhesion strength and mechanical properties. The coating polymers were chemically stable under UV, hydrolytic and oxidative environments. The sulfobetaine formulations are applicable as nonleaching and stable underwater coatings. For the first time, coating formulations modified with highly packed sulfobetaine polymers were prepared and demonstrated resistance to a broad spectrum of marine organisms. Assays for comparing nonfouling performance were developed to evaluate protein adsorption and bacteria attachment. Barnacle settlement and removal were evaluated and a 60-day field test was performed. Silicone substrates including a commercial fouling release coating were used for comparison. Compared with the unmodified silicone substrates, the sulfobetaine-modified formulations were able to exhibit a 98% reduction in fibrinogen adsorption, 97.0% (E. coli), 99.6% (S. aureus), and 99.5% (C. lytica) reduction in bacteria attachment, and 100% reduction in barnacles cyprid attachment. In addition to the significant improvement in fouling resistance of various organisms, the 60-day field test also showed an evident efficacy from visual assessment, foul rating, and fouling removal test. The research confirmed that the novel antifouling mechanism of betaine polymers provides a new avenue for marine coating development. The developed coatings out-performed currently used nontoxic underwater coatings in a broad spectrum of fouling resistance. By further developing formulations and processing methods for specific devices, the technology is ready for the next stage of development with demonstration in MHK systems.

  12. Effects of Electromagnetic Fields on Fish and Invertebrates: Task 2.1.3: Effects on Aquatic Organisms - Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Woodruff, Dana L.; Schultz, Irvin R.; Marshall, Kathryn E.; Ward, Jeffrey A.; Cullinan, Valerie I.

    2012-05-01

    This fiscal year (FY) 2011 progress report (Task 2.1.3 Effects on Aquatic Organisms, Subtask 2.3.1.1 Electromagnetic Fields) describes studies conducted by PNNL as part of the DOE Wind and Water Power Program to examine the potential effects of electromagnetic fields (EMF) from marine and hydrokinetic devices on aquatic organisms, including freshwater and marine fish and marine invertebrates. In this report, we provide a description of the methods and results of experiments conducted in FY 2010-FY 2011 to evaluate potential responses of selected aquatic organisms. Preliminary EMF laboratory experiments during FY 2010 and 2011 entailed exposures with representative fish and invertebrate species including juvenile coho salmon (Oncorhynchus kisutch), Atlantic halibut (Hippoglossus hippoglossus), California halibut (Paralicthys californicus), rainbow trout (Oncorhynchus mykiss), and Dungeness crab (Metacarcinus magister). These species were selected for their ecological, commercial, and/or recreational importance, as well as their potential to encounter an MHK device or transmission cable during part or all of their life cycle. Based on previous studies, acute effects such as mortality were not expected to occur from EMF exposures. Therefore, our measurement endpoints focused on behavioral responses (e.g., detection of EMF, interference with feeding behavior, avoidance or attraction to EMF), developmental changes (i.e., growth and survival from egg or larval stage to juvenile), and exposure markers indicative of physiological responses to stress. EMF intensities during the various tests ranged from 0.1 to 3 millitesla, representing a range of upper bounding conditions reported in the literature. Experiments to date have shown there is little evidence to indicate distinct or extreme behavioral responses in the presence of elevated EMF for the species tested. Several developmental and physiological responses were observed in the fish exposures, although most were not statistically significant. Additional species are currently planned for laboratory testing in the next fiscal year (e.g. an elasmobranch, American lobster) to provide a broader assessment of species important to stakeholders. The collective responses of all species will be assessed in terms of life stage, exposure scenarios, and biological relevance, to address current uncertainties related to effects of EMF on aquatic organisms.

  13. Simulating Blade-Strike on Fish passing through Marine Hydrokinetic Turbines

    SciTech Connect (OSTI)

    Romero Gomez, Pedro DJ; Richmond, Marshall C.

    2014-06-16

    The study reported here evaluated the occurrence, frequency, and intensity of blade strike of fish on an axial-flow marine hydrokinetic turbine by using two modeling approaches: a conventional kinematic formulation and a proposed Lagrangian particle- based scheme. The kinematic model included simplifying assumptions of fish trajectories such as distribution and velocity. The proposed method overcame the need for such simplifications by integrating the following components into a computational fluid dynamics (CFD) model: (i) advanced eddy-resolving flow simulation, (ii) generation of ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The test conditions to evaluate the blade-strike probability and fish survival rate were: (i) the turbulent environment, (ii) the fish size, and (iii) the approaching flow velocity. The proposed method offered the ability to produce potential fish trajectories and their interaction with the rotating turbine. Depending upon the scenario, the percentile of particles that registered a collision event ranged from 6% to 19% of the released sample size. Next, by using a set of experimental correlations of the exposure-response of living fish colliding with moving blades, the simulated collision data were used as input variables to estimate the survival rate of fish passing through the operating turbine. The resulting survival rates were greater than 96% in all scenarios, which is comparable to or better than known survival rates for conventional hydropower turbines. The figures of strike probability and mortality rate were amplified by the kinematic model. The proposed method offered the advantage of expanding the evaluation of other mechanisms of stress and injury on fish derived from hydrokinetic turbines and related devices.

  14. Water Power Information Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power Information Resources Water Power Information Resources How Hydropower Works How Hydropower Works See a detailed view of the inside of a hydropower energy generation system. Read more Marine and Hydrokinetic Technology Database on OpenEI Marine and Hydrokinetic Technology Database on OpenEI The DOE Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy. Read more The following resources about water power technologies

  15. Marine Current Turbines Ltd | Open Energy Information

    Open Energy Info (EERE)

    United Kingdom Zip: BS34 8PD Sector: Marine and Hydrokinetic Product: Developer of tidal stream turbine technology for exploiting flowing water in general and tidal streams in...

  16. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments

    SciTech Connect (OSTI)

    Čada, Glenn F.

    2007-04-01

    A new generation of hydropower technologies, the kinetic hydro and wave energy conversion devices, offers the possibility of generating electricity from the movements of water, without the need for dams and diversions. The Energy Policy Act of 2005 encouraged the development of these sources of renewable energy in the United States, and there is growing interest in deploying them globally. The technologies that would extract electricity from free-flowing streams, estuaries, and oceans have not been widely tested. Consequently, the U.S. Department of Energy convened a workshop to (1) identify the varieties of hydrokinetic energy and wave energy conversion devices and their stages of development, (2) identify where these technologies can best operate, (3) identify the potential environmental issues associated with these technologies and possible mitigation measures, and (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments.

  17. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ

    2015-09-01

    The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in such scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.

  18. Tenax Energy | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Logo: Tenax Energy Name: Tenax Energy Place: Darwin, NT Country: Australia Zip: 0801 Sector: Marine and Hydrokinetic, Ocean, Renewable Energy Year Founded:...

  19. Sandia National Laboratories environmental fluid dynamics code. Marine Hydrokinetic Module User's Manual

    SciTech Connect (OSTI)

    James, Scott Carlton; Roberts, Jesse D.

    2014-03-01

    This document describes the marine hydrokinetic (MHK) input file and subroutines for the Sandia National Laboratories Environmental Fluid Dynamics Code (SNL-EFDC), which is a combined hydrodynamic, sediment transport, and water quality model based on the Environmental Fluid Dynamics Code (EFDC) developed by John Hamrick [1], formerly sponsored by the U.S. Environmental Protection Agency, and now maintained by Tetra Tech, Inc. SNL-EFDC has been previously enhanced with the incorporation of the SEDZLJ sediment dynamics model developed by Ziegler, Lick, and Jones [2-4]. SNL-EFDC has also been upgraded to more accurately simulate algae growth with specific application to optimizing biomass in an open-channel raceway for biofuels production [5]. A detailed description of the input file containing data describing the MHK device/array is provided, along with a description of the MHK FORTRAN routine. Both a theoretical description of the MHK dynamics as incorporated into SNL-EFDC and an explanation of the source code are provided. This user manual is meant to be used in conjunction with the original EFDC [6] and sediment dynamics SNL-EFDC manuals [7]. Through this document, the authors provide information for users who wish to model the effects of an MHK device (or array of devices) on a flow system with EFDC and who also seek a clear understanding of the source code, which is available from staff in the Water Power Technologies Department at Sandia National Laboratories, Albuquerque, New Mexico.

  20. Energy Department Awards $10.5 Million for Next-Generation Marine Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Energy Department Awards $10.5 Million for Next-Generation Marine Energy Systems Energy Department Awards $10.5 Million for Next-Generation Marine Energy Systems December 28, 2015 - 2:21pm Addthis The Energy Department today announced six organizations selected to receive up to $10.5 million to support the design and operation of innovative marine and hydrokinetic (MHK) systems through survivability and reliability-related improvements. As part of its MHK

  1. Aquamarine Power | Open Energy Information

    Open Energy Info (EERE)

    House 24 Elder Street Place: Edinburgh, Scotland, United Kingdom Zip: EH2 2AF Sector: Marine and Hydrokinetic Product: Edinburgh-based company that specialises in marine energy...

  2. Energy Department Announces $10.5 Million for Next-Generation Marine Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy $10.5 Million for Next-Generation Marine Energy Systems Energy Department Announces $10.5 Million for Next-Generation Marine Energy Systems April 28, 2015 - 10:00am Addthis The Energy Department today announced $10.5 million in available funding to support the design and operation of innovative marine and hydrokinetic (MHK) systems through survivability and reliability-related testing of these systems. Such advances will help these devices harness even more

  3. Regulatory Assistance, Stakeholder Outreach, and Coastal and Marine Spatial Planning Activities In Support Marine and Hydrokinetic Energy Deployment: Task 2.1.7 Permitting and Planning Fiscal Year 2012 Year-End Report

    SciTech Connect (OSTI)

    Geerlofs, Simon H.; Hanna, Luke A.; Judd, Chaeli R.; Blake, Kara M.

    2012-09-01

    This fiscal year 2012 year-end report summarizes activities carried out under DOE Water Power task 2.1.7, Permitting and Planning. Activities under Task 2.1.7 address the concerns of a wide range of stakeholders with an interest in the development of the MHK industry, including regulatory and resource management agencies, tribes, NGOs, and industry. Objectives for 2.1.7 are the following: To work with stakeholders to streamline the MHK regulatory permitting process. To work with stakeholders to gather information on needs and priorities for environmental assessment of MHK development. To communicate research findings and directions to the MHK industry and stakeholders. To engage in spatial planning processes in order to further the development of the MHK industry. These objectives are met through three subtasks, each of which are described in this report: 2.1.7.1Regulatory Assistance 2.1.7.2Stakeholder Outreach 2.1.7.3Coastal and Marine Spatial Planning As the MHK industry works with the regulatory community and stakeholders to plan, site, permit and license MHK technologies they have an interest in a predictable, efficient, and transparent process. Stakeholders and regulators have an interest in processes that result in sustainable use of ocean space with minimal effects to existing ocean users. Both stakeholders and regulators have an interest in avoiding legal challenges by meeting the intent of federal, state, and local laws that govern siting and operation of MHK technologies. The intention of work under 2.1.7 is to understand these varied interests, explore mechanisms to reduce conflict, identify efficiencies, and ultimately identify pathways to reduce the regulatory costs, time, and potential environmental impacts associated with developing, siting, permitting, and deploying MHK systems.

  4. Sabella Energy | Open Energy Information

    Open Energy Info (EERE)

    Sabella Energy Jump to: navigation, search Name: Sabella Energy Address: 140 Bd de Creach Qwen 29000 Region: France Sector: Marine and Hydrokinetic Phone Number:...

  5. New Request for Information on Strategy to Advance the Marine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 12, 2015 - 2:00pm Addthis The Energy Department's Water Power Program is seeking feedback from the marine and hydrokinetic (MHK) industry, academia, research laboratories, ...

  6. Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code

    SciTech Connect (OSTI)

    Maniaci, D. C.; Li, Y.

    2011-10-01

    This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. This paper summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30{sup o} of yaw.

  7. Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code: Preprint

    SciTech Connect (OSTI)

    Maniaci, D. C.; Li, Y.

    2012-04-01

    This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. It summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30 degrees of yaw.

  8. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nergy-101-marine-and-hydrokinetic-energy Current search Search found 2 items Water Remove Water filter Energy Sources Remove Energy Sources filter Video Remove Video filter Filter...

  9. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nergy-101-marine-and-hydrokinetic-energy Current search Search found 2 items Water Remove Water filter Energy Sources Remove Energy Sources filter Consumers Remove Consumers filter...

  10. Green Ocean Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    Ocean Wave Energy Jump to: navigation, search Name: Green Ocean Wave Energy Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  11. Windcap Energy SAS Hydrocap | Open Energy Information

    Open Energy Info (EERE)

    Windcap Energy SAS Hydrocap Jump to: navigation, search Name: Windcap Energy SAS Hydrocap Region: France Sector: Marine and Hydrokinetic Website: http: This company is listed in...

  12. Leancon Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    Leancon Wave Energy Jump to: navigation, search Name: Leancon Wave Energy Address: Alpedalsvej 37 Place: Kolding Zip: 6000 Region: Denmark Sector: Marine and Hydrokinetic Phone...

  13. Ocean Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ocean Energy Ltd Jump to: navigation, search Name: Ocean Energy Ltd Address: 3 Casement Square Place: Cobh Region: Ireland Sector: Marine and Hydrokinetic Phone Number:...

  14. Hydrohelix Energies | Open Energy Information

    Open Energy Info (EERE)

    Hydrohelix Energies Address: 140 Bd Crach Gwenn Place: Quimper Zip: 29000 Region: France Sector: Marine and Hydrokinetic Phone Number: 02.98.10.12.35 Website: http: This...

  15. AW Energy | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: AW Energy Address: Lars Sonckin kaari 16 Place: Espoo Zip: FI-02600 Region: Finland Sector: Marine and Hydrokinetic Phone Number: +358 9 7262404...

  16. Harvest Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Address: 220 Park Crest Place: Newport Coast Region: United States Sector: Marine and Hydrokinetic Year Founded: 2008 Phone Number: 949-940-8825 This company is listed...

  17. Green Wave Energy Corp GWEC | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Corp GWEC Jump to: navigation, search Name: Green Wave Energy Corp GWEC Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in...

  18. Energy Department Announces Funding for Demonstration and Testing...

    Office of Environmental Management (EM)

    The Energy Department today announced 10 million to strengthen the U.S. marine and hydrokinetic (MHK) energy industry, including wave and tidal energy sources. Through the two ...

  19. Green Energy Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Industries Inc Jump to: navigation, search Name: Green Energy Industries Inc Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  20. NaRec New and Renewable Energy Centre | Open Energy Information

    Open Energy Info (EERE)

    New and Renewable Energy Centre Jump to: navigation, search Name: NaRec New and Renewable Energy Centre Region: United Kingdom Sector: Marine and Hydrokinetic Website: http: This...

  1. Map of Clean Energy Companies | Open Energy Information

    Open Energy Info (EERE)

    Maps: Solar Browse Companies by Sector: Bioenergy, Biofuels, Biomass, Buildings, Carbon, Efficiency, Geothermal energy, Hydro, Hydrogen, Marine and Hydrokinetic, Ocean, Renewable...

  2. Rhode Island Energy Group LLC | Open Energy Information

    Open Energy Info (EERE)

    Group LLC Jump to: navigation, search Name: Rhode Island Energy Group LLC Address: PO Box 340 Place: Portsmouth Zip: 2871 Region: United States Sector: Marine and Hydrokinetic...

  3. Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop

    SciTech Connect (OSTI)

    2006-03-01

    Renewable energy technologies offer the promise of non-polluting alternatives to fossil and nuclear-fueled power plants to meet growing demand for electrical energy. Two emerging categories of renewable energy technologies, hydrokinetic and wave energy conversion devices, offer ways to tap the energy of moving water without impoundment (dams) or diversion required by many conventional hydroelectric facilities. These technologies include devices designed for deployment in natural streams, tidal estuaries, ocean currents, and constructed waterways, as well as devices designed to capture the energy of ocean waves. On October 26-28, 2005, 54 representatives from government, non-governmental organizations, and private business met to (1) identify the varieties of hydrokinetic energy and wave technology devices, their stages of development, and the projected cost to bring each to market; (2) identify where these technologies can best operate; (3) identify the potential environmental issues associated with these technologies and possible mitigation measures; (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. These workshop proceedings include detailed summaries of the 24 presentations made and the discussions that followed.

  4. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nergy-101-marine-and-hydrokinetic-energy Current search Search found 2 items Water Remove Water filter Renewables Remove Renewables filter Video Remove Video filter Filter by...

  5. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nergy-101-marine-and-hydrokinetic-energy Current search Search found 2 items Water Remove Water filter Renewables Remove Renewables filter Consumers Remove Consumers filter Filter...

  6. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nergy-101-marine-and-hydrokinetic-energy Current search Search found 2 items Water Remove Water filter Video Remove Video filter Consumers Remove Consumers filter Filter by...

  7. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nergy-101-marine-and-hydrokinetic-energy Current search Search found 2 items Water Remove Water filter Consumers Remove Consumers filter Filter by Resource Type All Results (2)...

  8. Swell Fuel | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Swell Fuel Place: Houston, Texas Zip: 77072 Sector: Marine and Hydrokinetic Product: Texas-based developer of small-scale wave energy devices....

  9. User:GregZiebold/Sector test | Open Energy Information

    Open Energy Info (EERE)

    search Query all sector types for Companies: Bioenergy Biofuels Biomass Buildings Carbon Efficiency Geothermal energy Hydro Hydrogen Marine and Hydrokinetic Ocean Renewable Energy...

  10. Sandia Energy - DOE-Sponsored Reference Model Project Results...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

  11. Category:Companies | Open Energy Information

    Open Energy Info (EERE)

    9001-12954) Browse Companies by Sector: Bioenergy, Biofuels, Biomass, Buildings, Carbon, Efficiency, Geothermal energy, Hydro, Hydrogen, Marine and Hydrokinetic, Ocean, Renewable...

  12. Makai Ocean Engineering Inc | Open Energy Information

    Open Energy Info (EERE)

    Southern CA Area Sector: Marine and Hydrokinetic, Ocean, Renewable Energy Product: OTEC Number of Employees: 28 Year Founded: 1973 Phone Number: 808.259.8871 Website:...

  13. ABS Alaskan Inc | Open Energy Information

    Open Energy Info (EERE)

    Alaska Zip: 99701 Region: United States Sector: Marine and Hydrokinetic, Solar, Wind energy Product: Solar PV, Solar thermal, Wind, Hydro, Small scale wind turbine (up to...

  14. Alison LaBonte | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    LaBonte - Marine and Hydrokinetic Technology Manager Most Recent Ocean Energy Projects Developing On and Off America's Shores January 22...

  15. Before the House Science and Technology Subcommittee on Energy and Environment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Subject: Marine and Hydrokinetic Energy Technology: Finding the Path to Commercialization By: Jacques Beaudry-Losique, Deputy Assistant Secretary for Renewable Energy

  16. CrestEnergy | Open Energy Information

    Open Energy Info (EERE)

    CrestEnergy Jump to: navigation, search Name: CrestEnergy Region: New Zealand Sector: Marine and Hydrokinetic Website: www.crest-energy.com This company is listed in the Marine and...

  17. Laboratory Experiments on the Effects of Blade Strike from Hydrokinetic Energy Technologies on Larval and Juvenile Freshwater Fishes

    SciTech Connect (OSTI)

    Schweizer, Peter E; Cada, Glenn F; Bevelhimer, Mark S

    2012-03-01

    There is considerable interest in the development of marine and hydrokinetic energy projects in rivers, estuaries, and coastal ocean waters of the United States. Hydrokinetic (HK) technologies convert the energy of moving water in river or tidal currents into electricity, without the impacts of dams and impoundments associated with conventional hydropower or the extraction and combustion of fossil fuels. The Federal Energy Regulatory Commission (FERC) maintains a database that displays the geographical distribution of proposed HK projects in inland and tidal waters (FERC 2012). As of March 2012, 77 preliminary permits had been issued to private developers to study HK projects in inland waters, the development of which would total over 8,000 MW. Most of these projects are proposed for the lower Mississippi River. In addition, the issuance of another 27 preliminary permits for HK projects in inland waters, and 3 preliminary permits for HK tidal projects (totaling over 3,100 MW) were under consideration by FERC. Although numerous HK designs are under development (see DOE 2009 for a description of the technologies and their potential environmental effects), the most commonly proposed current-based projects entail arrays of rotating devices, much like submerged wind turbines, that are positioned in the high-velocity (high energy) river channels. The many diverse HK designs imply a diversity of environmental impacts, but a potential impact common to most is the risk for blade strike to aquatic organisms. In conventional hydropower generation, research on fish passage through reaction turbines at low-head dams suggested that strike and mortality for small fish could be low. As a consequence of the large surface area to mass ratio of small fish, the drag forces in the boundary layer flow at the surface of a rotor blade may pull small fish around the leading edge of a rotor blade without making physical contact (Turnpenny 1998, Turnpenny et al. 2000). Although there is concern that small, fragile fish early life stages may be unable to avoid being struck by the blades of hydrokinetic turbines, we found no empirical data in the published literature that document survival of earliest life-stage fish in passage by rotor blades. In addition to blade strike, research on passage of fish through conventional hydropower turbines suggested that fish mortalities from passage through the rotor swept area could also occur due to shear stresses and pressure chances in the water column (Cada et al. 1997, Turnpenny 1998). However, for most of the proposed HK turbine designs the rotors are projected to operate a lower RPM (revolutions per minute) than observed from conventional reaction turbines; the associated shear stress and pressure changes are expected to be lower and pose a smaller threat to fish survival (DOE 2009). Only a limited number of studies have been conducted to examine the risk of blade strike from hydrokinetic technologies to fish (Turnpenny et al. 1992, Normandeau et al. 2009, Seitz et al. 2011, EPRI 2011); the survival of drifting or weakly swimming fish (especially early life stages) that encounter rotor blades from hydrokinetic (HK) devices is currently unknown. Our study addressed this knowledge gap by testing how fish larvae and juveniles encountered different blade profiles of hydrokinetic devices and how such encounters influenced survivorship. We carried out a laboratory study designed to improve our understanding of how fish larvae and juvenile fish may be affected by encounters with rotor blades from HK turbines in the water column of river and ocean currents. (For convenience, these early life stages will be referred to as young of the year, YOY). The experiments developed information needed to quantify the risk (both probability and consequences) of rotor-blade strike to YOY fish. In particular, this study attempted to determine whether YOY drifting in a high-velocity flow directly in the path of the blade leading edge will make contact with the rotor blade or will bypass the blade while entrained in the boundary layer of water flowing over the blade surface. The study quantified both immediate and delayed mortalities (observed immediately, 3 hours, and 24 hours after encountering the blade) among freshwater YOY fish resulting from contact with the blade or turbulent flows in the wake of the blade.

  18. Energy Department Announces $7.25 Million for Projects to Advance

    Office of Environmental Management (EM)

    America's Emerging Marine & Hydrokinetic Industry | Department of Energy 7.25 Million for Projects to Advance America's Emerging Marine & Hydrokinetic Industry Energy Department Announces $7.25 Million for Projects to Advance America's Emerging Marine & Hydrokinetic Industry September 4, 2014 - 1:30pm Addthis The Energy Department announced today $7.25 million for six organizations that will continue to advance water power as a viable resource for America's clean energy

  19. MHK Projects/Sakonnet River Hydrokinetic Project | Open Energy...

    Open Energy Info (EERE)

    Rhode Island Energy Group LLC Project Licensing FERC License Docket Number P-13092 Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  20. BOEM Issues First Renewable Energy Lease for MHK Technology Testing...

    Broader source: Energy.gov (indexed) [DOE]

    (BOEM) issued the first ever lease to test marine and hydrokinetic (MHK) energy ... FAU plans to install multiple anchored floating test berths that will allow for the ...

  1. Wave Dragon ApS | Open Energy Information

    Open Energy Info (EERE)

    Denmark Country: Denmark Zip: DK-2200 Sector: Marine and Hydrokinetic Product: Wave energy converter development company. Has patented the Wave Dragon, an offshore floating...

  2. Review of Recent Literature Relevant to the Environmental Effects of Marine and Hydrokinetic Energy Devices; Task 2.1.3: Effects on Aquatic Organisms - Fiscal Year 2012 Progress Report

    SciTech Connect (OSTI)

    Kropp, Roy K.

    2013-01-01

    A literature search was conducted by using the Web of Science® databases component of the ISI Web of KnowledgeSM to identify recent articles that would be useful to help assess the potential environmental effects of renewable energy development in the ocean, with emphasis on seabirds and fish. Several relatively recent general review articles that included possible effects on seabirds and fish were examined to begin the search process. From these articles, several general topics of potential environmental effects on seabirds and fish were derived. These topics were used as the primary search factors. Additional sources were identified by cross-checking the Web of Science databases for articles that cited the review articles. It also became clear that the potential effects frequently w

  3. AquaEnergy | Open Energy Information

    Open Energy Info (EERE)

    AquaEnergy Jump to: navigation, search Name: AquaEnergy Region: United States Sector: Marine and Hydrokinetic Website: www.finavera.com This company is listed in the Marine and...

  4. Energy Department Announces $7.25 Million for Projects to Advance...

    Office of Environmental Management (EM)

    Marine and hydrokinetic (MHK) technologies convert the energy of waves, tides, rivers, and ocean currents into electricity that can be used by homes and businesses, especially in ...

  5. Template:Marine and Hydrokinetic Technology Project | Open Energy...

    Open Energy Info (EERE)

    - No field def provided Project Resource - No field def provided Project Nearest Body of Water - No field def provided Coordinates - No field def provided Project Footprint - No...

  6. Marine and Hydrokinetic Technology Glossary | Open Energy Information

    Open Energy Info (EERE)

    1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example...

  7. Template:Marine and Hydrokinetic Technology | Open Energy Information

    Open Energy Info (EERE)

    Patents - Field def missing Was This Project DOE Funded? - Field def missing Collaborators - Field def missing Usage It should be invoked using the corresponding form....

  8. Category:Marine and Hydrokinetic Technology Projects | Open Energy...

    Open Energy Info (EERE)

    MHK ProjectsMicroturbine River In Stream MHK ProjectsMiette River MHK ProjectsMiller Bend Project MHK ProjectsMilliken Bend Project MHK ProjectsMinas Basin Bay of Fundy...

  9. Marine and Hydrokinetic Technology Database | Open Energy Information

    Open Energy Info (EERE)

    prod-http-80-800498448.us-east-1.elb.amazonaws.comwimagesdd2Red-marker.png","group":"","inlineLabel":"","visitedicon":"","text":"

  10. Marine and Hydrokinetic Technology Readiness Level | Open Energy...

    Open Energy Info (EERE)

    to evaluate, to the largest extent possible, the scientific or technical merit and feasibility of ideas that appear to have commercial potential. * TRL 12: Scientific research...

  11. Form:Marine and Hydrokinetic Technology Project | Open Energy...

    Open Energy Info (EERE)

    source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Form Edit History...

  12. SITING PROTOCOLS FOR MARINE AND HYDROKINETIC ENERGY PROJECTS

    SciTech Connect (OSTI)

    Kopf, Steven; Klure, Justin; Hofford, Anna; McMurray, Greg; Hampton, Therese

    2012-07-15

    Project Objective: The purpose of this project is to identify and address regulatory issues that affect the cost, time and the management of potential effects as it relates to siting and permitting advanced water power technologies. Background: The overall goal of this effort is to reduce the cost, time and effort of managing potential effects from the development advanced water power projects as it relates to the regulatory process in siting and permitting. To achieve this goal, a multi-disciplinary team will collect and synthesize existing information regarding regulatory processes into a user-friendly online format. In addition, the team will develop a framework for project planning and assessment that can incorporate existing and new information. The team will actively collaborate and coordinate with other efforts that support or influence regulatory process. Throughout the process, the team will engage in an iterative, collaborative process for gathering input and testing ideas that involves the relevant stakeholders across all sectors at the national, regional, and all state levels.

  13. Experimental Design of Hydrokinetic Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    419 Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual September 2011 Prepared by Vincent S. Neary, Ph.D., P.E. 1 Budi Gunawan, Ph.D. 1 Marshall C. Richmond, Ph.D. P.E. 2 Vibhav Durgesh, Ph.D. 2 Brian Polagye, Ph.D. 3 Jim Thomson, Ph.D. 3 Marian Muste, Ph.D. 4 Arnie Fontaine, Ph.D. 5 1 Oak Ridge National Laboratory 2 Pacific Northwest National Laboratory 3 Northwest National Marine Renewable Energy Center, University of Washington 4

  14. Green Energy Corp | Open Energy Information

    Open Energy Info (EERE)

    Corp Jump to: navigation, search Name: Green Energy Corp Region: United States Sector: Marine and Hydrokinetic Website: www.gweconline.com This company is listed in the Marine and...

  15. Assessment and Mapping of the Riverine Hydrokinetic Resource in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continental United States | Department of Energy Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Report that describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. PDF icon Assessment and Mapping of the Riverine Hydrokinetic

  16. Concerns in Marine Renewable Energy Projects

    SciTech Connect (OSTI)

    Kramer, Sharon; Previsic, Mirko; Nelson, Peter; Woo, Sheri

    2010-06-17

    To accelerate the adoption of these emerging marine hydrokinetic technologies, navigational and environmental issues and concerns must be identified and addressed. As hydrokinetic projects move forward, various stakeholders will need to be engaged; one of the key issues that project proponents face as they engage stakeholders is that many conflicting uses and environmental issues are not well-understood. Much of this lack of understanding comes from a limited understanding of the technologies themselves. To address this issue, in September 2008, RE Vision consulting, LLC, was selected by the Department of Energy, under their market acceleration program, to apply a scenario-based assessment approach to the emerging hydrokinetic technology sector. The goal was to improve understanding of potential environmental and navigation impacts of these technologies and focus stakeholders on the critical issues. To meet this goal, the study established baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios captured variations in technical approaches and deployment scales and thus grounded the analysis in realistic constraints. The work conducted under this award provides an important foundation to other market acceleration activities carried out by the DOE and other stakeholders in this sector. The scenarios were then evaluated using a framework developed by H.T. Harvey & Associates to identify and characterize key environmental concerns and uncertainties. In collaboration with PCCI and the U.S. Coast Guard, navigation issues were assessed and guidelines developed to assure the safe operation of these systems. Finally, the work highlights “next steps” to take to continue development and adoption of marine hydrokinetic energy. Throughout the project, close collaboration with device developers, project developers and regulatory stakeholders was pursued to ensure that assumptions and constraints are realistic. Results concur with most of the permitting hurdles experienced by on-going projects in the U.S., and specific recommendations are provided for identifying and addressing them. While many areas of further research were identified, the study did not identify any major show-stoppers, largely because these technologies have a relatively low environmental risk-profile if compared to other activities routinely permitted in the marine environment. The frameworks and representative scenarios developed provide an objective and transparent tool for stakeholders, regulators and developers to assist in the decision-making process for siting wave and tidal energy plants, and meet our goal of improving understanding between all stakeholders. The final product consists of three reports: Report 1 - Wave Energy Scenarios. This report includes: A technology characterization of four different wave energy technologies, including major technical specifications, device performance, and technical siting considerations; A site characterization of two potential deployment sites located in Hawaii and California; Outlines of device installation, O&M and decommissioning activities; Navigational demarcation requirements; and, Deployment Scenarios, identifying all the major life-cycle-related impacts. Report 2 - Tidal Energy Scenarios. This report includes: A technology characterization of three tidal energy technologies, including major technical specifications, device performance, and technical siting considerations; A site characterization of one potential deployment location in the Puget Sound, Washington; Outlines of device installation, O&M and decommissioning activities; Navigational demarcation requirements; and, Deployment Scenarios, identifying all the major life-cycle-related impacts.Report 3 - Framework for Identifying Key Environmental Concerns. This report describes frameworks for identifying key environmental effects and applies them to the wave and tidal energy deployment scenarios described in the first two reports. It highlights critical issues and recommendations for future research.

  17. 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop

    SciTech Connect (OSTI)

    none,

    2011-10-01

    The U.S. marine energy industry is actively pursuing development of offshore wind and marine hydrokinetic (MHK) energy systems. Experience in the wind energy sector demonstrates that new technology development requires thorough measurement and characterization of the environmental conditions prevalent at installation sites and of technology operating in the field. Presently, there are no turn-key instrumentation system solutions that meet the measurement needs of the marine energy industry. The 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop brought together technical experts from government laboratories, academia, and industry representatives from marine energy, wind, offshore oil and gas, and instrumentation developers to present and discuss the instrumentation needs of the marine energy industry. The goals of the meeting were to: 1. Share the latest relevant knowledge among technical experts; 2. Review relevant state-of-the-art field measurement technologies and methods; 3. Review lessons learned from recent field deployments; 4. Identify synergies across different industries; 5. Identify gaps between existing and needed instrumentation capabilities; 6. Understand who are the leading experts; 7. Provide a forum where stakeholders from the marine energy industry could provide substantive input in the development of new marine energy field deployable instrumentation packages.

  18. Marine Services | Open Energy Information

    Open Energy Info (EERE)

    Marine Services Place: Florida Sector: Services Product: Marine Services is planning tidal energy projects off the coasts of California and Florida. References: Marine...

  19. Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual

    SciTech Connect (OSTI)

    Neary, Vincent S; Gunawan, Budi

    2011-09-01

    In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

  20. Request for Information Regarding the Testing of Marine and Hydrokinetic Systems

    Broader source: Energy.gov [DOE]

    The Energy Department’s Water Power Program is seeking information from the MHK industry, academia, research laboratories, government agencies, and other stakeholders on the development details of MHK systems that have the greatest potential for commercial viability.

  1. Multnomah County Hydrokinetic Feasibility Study: Final Feasibility Study Report

    SciTech Connect (OSTI)

    Stephen Spain

    2012-03-15

    HDR has completed a study of the technical, regulatory, and economic feasibility of installing hydrokinetic turbines under the Morrison, Broadway, and Sellwood bridges. The primary objective of installing hydrokinetic turbines is a demonstration of in-stream hydrokinetic technologies for public education and outreach. Due to the low gradient of the Lower Willamette and the effects of the tide, velocities in the area in consideration are simply not high enough to economically support a commercial installation. While the velocities in the river may at times provide enough energy for a commercial turbine to reach capacity, the frequency and duration of high flow events which provide suitable velocities is not sufficient to support a commercial hydrokinetic installation. We have observed that over an 11 year period, daily average velocities in the Lower Willamette exceeded a nominal cut-in speed of 0.75 m/s only 20% of the time, leaving net zero power production for the remaining 80% of days. The Sellwood Bridge site was estimated to have the best hydrokinetic resource, with an estimated average annual production of about 9,000 kWh. The estimated production could range from 2,500 kWh to 15,000 kWh. Based on these energy estimates, the amount of revenue generated through either a power purchase agreement (PPA) or recovered through net metering is not sufficient to repay the project costs within the life of the turbine. The hydrokinetic resource at the Morrison and Broadway Bridges is slightly smaller than at the Sellwood Bridge. While the Broadway and Morrison Bridges have existing infrastructure that could be utilized, the project is not expected to generate enough revenue to repay the investment. Despite low velocities and energy production, the sites themselves are favorable for installation of a demonstration or experimental project. With high public interest in renewable energy, the possibility exists to develop a hydrokinetic test site which could provide developers and scientists a location to temporarily deploy and test hydrokinetic devices, and also function as an educational tool for the general public. Bridge piers provide an excellent pre-existing anchor point for hydrokinetic devices, and existing infrastructure at the Morrison and Broadway Bridges may reduce installation costs. Opportunity exists to partner with local universities with engineering and environmental interest in renewable energy. A partnership with Portland State University’s engineering school could provide students with an opportunity to learn about hydrokinetics through senior design projects. Oregon State University and University of Washington, which are partnered through the Northwest National Marine Renewable Energy Center (NNMREC) to study and test hydrokinetic technology, are also relatively local to the site. In addition to providing an opportunity for both public and private entities to learn technically about in-stream kinetics, this approach will encourage grant funding for outreach, education, and product development, while also serving as a positive community relations opportunity for the County and its partners.

  2. River Turbine Provides Clean Energy to Remote Alaskan Village | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy River Turbine Provides Clean Energy to Remote Alaskan Village River Turbine Provides Clean Energy to Remote Alaskan Village August 18, 2015 - 10:36am Addthis River Turbine Provides Clean Energy to Remote Alaskan Village Alison LaBonte Marine and Hydrokinetic Technology Manager To date, Ocean Renewable Power Company (ORPC) is the only company to have built, operated and delivered power to a utility grid from a hydrokinetic tidal project, and to a local microgrid from a hydrokinetic

  3. Marine & Hydrokinetic Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROGRAM C L E A N C I T I E S WIND AND WATER POWER PROGRAM * April 2011 * Page 2 C L E A N C I T I E S DOEGO-102011-3299 * April 2011

  4. Inerjy | Open Energy Information

    Open Energy Info (EERE)

    Inerjy Jump to: navigation, search Name: Inerjy Region: United States Sector: Marine and Hydrokinetic Website: www.inerjy.com This company is listed in the Marine and Hydrokinetic...

  5. Atlantisstrom | Open Energy Information

    Open Energy Info (EERE)

    Atlantisstrom Jump to: navigation, search Name: Atlantisstrom Region: Germany Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  6. Open Ocean Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Edit with form History Open Ocean Energy Ltd Jump to: navigation, search Name: Open Ocean Energy Ltd Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  7. E CO Energi | Open Energy Information

    Open Energy Info (EERE)

    Energi Jump to: navigation, search Name: E CO Energi Address: PO Box 255 Sentrum Zip: 103 Region: Norway Sector: Marine and Hydrokinetic Phone Number: + 47 24 11 69 00 Website:...

  8. Blue Energy | Open Energy Information

    Open Energy Info (EERE)

    Blue Energy Address: Box 29068 1950 West Broadway Place: Vancouver Zip: V6J 1Z0 Region: Canada Sector: Marine and Hydrokinetic Phone Number: 604-682-2583 Website: www.bluenergy.com...

  9. RDZ Renewables | Open Energy Information

    Open Energy Info (EERE)

    Marine and Hydrokinetic Phone Number: (442) 210 45-85 Website: www.rdz-r.comnewenglish This company is listed in the Marine and Hydrokinetic Technology Database. This...

  10. Eco cinetic | Open Energy Information

    Open Energy Info (EERE)

    Name: Eco cinetic Address: Office 24 A street of Staysail 17000 La Rochelle Region: France Sector: Marine and Hydrokinetic This company is listed in the Marine and Hydrokinetic...

  11. Wallenius Wilhelmsen | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Wallenius Wilhelmsen Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  12. Hills Inc | Open Energy Information

    Open Energy Info (EERE)

    Hills Inc Jump to: navigation, search Name: Hills Inc Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  13. Paradyme Systems | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Paradyme Systems Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  14. Gulfstream Technologies | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Gulfstream Technologies Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  15. Current Electric | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Current Electric Region: United States Sector: Marine and Hydrokinetic This company is listed in the Marine and Hydrokinetic Technology...

  16. Navatek Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: Navatek Ltd Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  17. Minesto AB | Open Energy Information

    Open Energy Info (EERE)

    Minesto AB Jump to: navigation, search Name: Minesto AB Region: Sweden Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  18. Seawind Marine | Open Energy Information

    Open Energy Info (EERE)

    Seawind Marine Jump to: navigation, search Name: Seawind Marine Place: Plymouth, England, United Kingdom Zip: PL1 5NE Sector: Services, Wind energy Product: Focused on project...

  19. Resolute Marine Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Resolute Marine Energy Inc Jump to: navigation, search Name: Resolute Marine Energy Inc Address: 3 Post Office Square 3rd floor Place: Massachusetts Country: United States Zip:...

  20. Ocean Wave Wind Energy Ltd OWWE | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Ltd OWWE Jump to: navigation, search Name: Ocean Wave Wind Energy Ltd OWWE Region: Norway Sector: Marine and Hydrokinetic Website: www.owwe.net This company is listed...

  1. Assessment and Mapping of the Riverine Hydrokinetic Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report that describes the methodology and results of the most rigorous assessment to date ... In-stream hydrokinetic resource assessment NSD Methodology Report An Assessment of Energy ...

  2. Assessment and Mapping of the Riverine Hydrokinetic Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. ...

  3. Free Flow Power Partners to Improve Hydrokinetic Turbine Performance...

    Energy Savers [EERE]

    to evaluate and optimize the technical and environmental performance and cost factors of its hydrokinetic SmarTurbines(tm)-turbines that generate energy from free-flowing rivers. ...

  4. Onsite Recovered Energy LP | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Onsite Recovered Energy LP Address: Centurion Region: South Africa Sector: Marine and Hydrokinetic Year Founded: 2009 Phone Number: +27 (0)83 526-3767...

  5. Wave Energy AS | Open Energy Information

    Open Energy Info (EERE)

    AS Jump to: navigation, search Name: Wave Energy AS Address: Opstadveien 11C Place: Aalgaard Zip: 4330 Region: Norway Sector: Marine and Hydrokinetic Phone Number: (+47) 51 6109 30...

  6. Carmelo Vell n | Open Energy Information

    Open Energy Info (EERE)

    Carmelo Vell n Jump to: navigation, search Name: Carmelo Vell n Region: Spain Sector: Marine and Hydrokinetic This company is listed in the Marine and Hydrokinetic Technology...

  7. Muroran Institute of Technology | Open Energy Information

    Open Energy Info (EERE)

    Marine and Hydrokinetic Phone Number: 81 143 46 5200 Website: www.muroran-it.ac.jpenglish This company is listed in the Marine and Hydrokinetic Technology Database. This...

  8. Water Wall Turbine | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Water Wall Turbine Region: Canada Sector: Marine and Hydrokinetic Website: www.wwturbine.com This company is listed in the Marine and Hydrokinetic...

  9. Ivec Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ivec Pty Ltd Jump to: navigation, search Name: Ivec Pty Ltd Region: Australia Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  10. Warrior Girl Corporation | Open Energy Information

    Open Energy Info (EERE)

    Girl Corporation Region: United States Sector: Marine and Hydrokinetic Phone Number: 305-607-9518 Website: http: This company is listed in the Marine and Hydrokinetic Technology...

  11. Green Heat Solutions Limited | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Green Heat Solutions Limited Region: Scotland Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  12. Oregon Iron Works Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Oregon Iron Works Inc Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  13. Offshore Infrastructure Associates Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Offshore Infrastructure Associates Inc Region: Puerto Rico Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  14. Offshore Islands Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Offshore Islands Ltd Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  15. Assessment and Mapping of the Riverine Hydrokinetic Resource in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continental United States | Department of Energy and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Report that describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. More Documents & Publications Assessment and Mapping of the

  16. Free Flow Power Partners to Improve Hydrokinetic Turbine Performance and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost | Department of Energy Free Flow Power Partners to Improve Hydrokinetic Turbine Performance and Cost Free Flow Power Partners to Improve Hydrokinetic Turbine Performance and Cost April 9, 2013 - 12:00am Addthis During 2011, EERE worked with Free Flow Power to evaluate and optimize the technical and environmental performance and cost factors of its hydrokinetic SmarTurbines(tm)-turbines that generate energy from free-flowing rivers. Free Flow Power deployed one of its turbines in the

  17. Water Power for a Clean Energy Future

    SciTech Connect (OSTI)

    2013-04-12

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower technologies and marine and hydrokinetic technologies.

  18. 2015 Marine Energy Technology Symposium

    Broader source: Energy.gov [DOE]

    The 3rd Annual Marine Energy Technology Symposium (METS) will be held as part of the inaugural International Marine Energy Conference. This conference takes place April 27-29, 2015, at the Capital...

  19. New Report States That Hydrokinetic Turbines Have Minimal Environmental

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts on Fish | Department of Energy Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish August 22, 2013 - 12:00am Addthis EERE has released a report assessing likelihood of fish injury and mortality from the operation of hydrokinetic turbines. This report-completed by the Electric Power Research Institute in conjunction with researchers at Alden Laboratories and the U.S.

  20. Ecomerit Technologies LLC see Dehlsen Associates LLC | Open Energy...

    Open Energy Info (EERE)

    LLC Region: United States Sector: Marine and Hydrokinetic Phone Number: 805.684.2495 X 450 Website: http: This company is listed in the Marine and Hydrokinetic Technology...

  1. Dehlsen Associates see Ecomerit Technologies LLC | Open Energy...

    Open Energy Info (EERE)

    LLC Region: United States Sector: Marine and Hydrokinetic Phone Number: 805.684.2495 X 450 Website: http: This company is listed in the Marine and Hydrokinetic Technology...

  2. SyncWave Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: SyncWave Energy Inc Address: 1422 Collins Rd PO Box 459 Place: Pemberton Zip: V0N 2L0 Region: Canada Sector: Marine and Hydrokinetic Phone...

  3. Finavera Renewables Ocean Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ocean Energy Ltd Address: 595 Burrard Street Suite 3113 Three Bentall Centre PO Box 49071 Place: Vancouver Zip: V7X 1G4 Region: Canada Sector: Marine and Hydrokinetic...

  4. Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Related Links Related Links These resources provide more information about hydropower and marine hydrokinetic technologies, as well as current research and programs in this field. Information about marine and hydrokinetic resources, government activities and research, water power associations and organizations, learning activities, and homeowner resources are available here. Marine and Hydrokinetic Resources Federal agencies that are involved in marine and hydrokinetic

  5. 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop: April 5-7, 2011

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    The U.S. marine energy industry is actively pursuing development of offshore wind and marine hydrokinetic (MHK) energy systems. Experience in the wind energy sector demonstrates that new technology development requires thorough measurement and characterization of the environmental conditions prevalent at installation sites and of technology operating in the field. Presently, there are no turn-key instrumentation system solutions that meet the measurement needs of the marine energy industry. The 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop brought together technical experts from government laboratories, academia, and industry representatives from marine energy, wind, offshore oil and gas, and instrumentation developers to present and discuss the instrumentation needs of the marine energy industry. The goals of the meeting were to: (1) Share the latest relevant knowledge among technical experts; (2) Review relevant state-of-the-art field measurement technologies and methods; (3) Review lessons learned from recent field deployments; (4) Identify synergies across different industries; (5) Identify gaps between existing and needed instrumentation capabilities; (6) Understand who are the leading experts; (7) Provide a forum where stakeholders from the marine energy industry could provide substantive input in the development of new marine energy field deployable instrumentation packages.

  6. Category:Sectors | Open Energy Information

    Open Energy Info (EERE)

    are in this category, out of 18 total. B Bioenergy Biofuels Biomass Buildings C Carbon E Efficiency G Geothermal energy H Hydro Hydrogen Hydropower M Marine and Hydrokinetic O...

  7. Ryan Sun Chee Fore | Department of Energy

    Energy Savers [EERE]

    Ryan Sun Chee Fore About Us Ryan Sun Chee Fore - Marine and Hydrokinetic Technology Manager Most Recent Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices April 1

  8. First State Marine Wind | Open Energy Information

    Open Energy Info (EERE)

    State Marine Wind Jump to: navigation, search Name First State Marine Wind Facility First State Marine Wind Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  9. BOEM Issues First Renewable Energy Lease for MHK Technology Testing in Federal Waters

    Broader source: Energy.gov [DOE]

    On June 3rd, 2014 the Bureau of Ocean Energy Management (BOEM) issued the first ever lease to test marine and hydrokinetic (MHK) energy devices in federal waters to Florida Atlantic University (FAU...

  10. Energy Department Announces $4 Million for University Consortium to Advance America’s Water Power Industry

    Broader source: Energy.gov [DOE]

    The Energy Department today announced $4 million to engage America’s research universities in the effort to accelerate the development of the emerging marine and hydrokinetic (MHK) energy industry in the United States.

  11. Assessment of Tidal Energy Removal Impacts on Physical Systems: Development of MHK Module and Analysis of Effects on Hydrodynamics

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping

    2011-09-01

    In this report we describe (1) the development, test, and validation of the marine hydrokinetic energy scheme in a three-dimensional coastal ocean model (FVCOM); and (2) the sensitivity analysis of effects of marine hydrokinetic energy configurations on power extraction and volume flux in a coastal bay. Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics and Subtask 2.1.2.3, Screening Analysis, for fiscal year 2011 of the Environmental Effects of Marine and Hydrokinetic Energy project.

  12. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments

    Broader source: Energy.gov [DOE]

    The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments.

  13. International Marine Renewable Energy Conference

    Broader source: Energy.gov [DOE]

    The International Marine Renewable Energy Conference (IMREC) offers researchers, technology developers, policy makers, NGOs, and industry representatives the opportunity to discuss financing...

  14. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

  15. Deployment Effects of Marin Renewable Energy Technologies

    SciTech Connect (OSTI)

    Brian Polagye; Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for Identifying Key Environmental Concerns This is the second report in the sequence and describes the results of conceptual feasibility studies of tidal power plants deployed in Tacoma Narrows, Washington. The Narrows contain many of the same competing stakeholder interactions identified at other tidal power sites and serves as a representative case study. Tidal power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize impacts, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informs the process of selecting representative tidal power devices. The selection criteria is that such devices are at an advanced stage of development to reduce technical uncertainties and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. A number of other developers are also at an advanced stage of development including Verdant Power, which has demonstrated an array of turbines in the East River of New York, Clean Current, which has demonstrated a device off Race Rocks, BC, and OpenHydro, which has demonstrated a device at the European Marine Energy Test Center and is on the verge of deploying a larger device in the Bay of Fundy. MCT demonstrated their device both at Devon (UK) and Strangford Narrows (Northern Ireland). Furthermore OpenHydro, CleanCurrent, and MCT are the three devices being installed at the Minas Passage (Canada). Environmental effects will largely scale with the size of tidal power development. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) an early, small commercial deployment, and (3) a large commercial scale plant. For the three technologies and scales at the selected site, this results in a total of nine deployment scenarios outlined in the report.

  16. Marine Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Energy Corporation Jump to: navigation, search Name: Marine Energy Corporation Abbreviation: MEC Address: 1308 Waugh Drive PMB 465 Place: Houston, Texas Country: United States...

  17. Simulating Collisions for Hydrokinetic Turbines

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

    2013-10-01

    Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

  18. Economic Impact of Large-Scale Deployment of Offshore Marine and Hydrokinetic Technology in Oregon Coastal Counties

    SciTech Connect (OSTI)

    Jimenez, T.; Tegen, S.; Beiter, P.

    2015-03-01

    To begin understanding the potential economic impacts of large-scale WEC technology, the Bureau of Ocean Energy Management (BOEM) commissioned the National Renewable Energy Laboratory (NREL) to conduct an economic impact analysis of largescale WEC deployment for Oregon coastal counties. This report follows a previously published report by BOEM and NREL on the jobs and economic impacts of WEC technology for the entire state (Jimenez and Tegen 2015). As in Jimenez and Tegen (2015), this analysis examined two deployment scenarios in the 2026-2045 timeframe: the first scenario assumed 13,000 megawatts (MW) of WEC technology deployed during the analysis period, and the second assumed 18,000 MW of WEC technology deployed by 2045. Both scenarios require major technology and cost improvements in the WEC devices. The study is on very large-scale deployment so readers can examine and discuss the potential of a successful and very large WEC industry. The 13,000-MW is used as the basis for the county analysis as it is the smaller of the two scenarios. Sensitivity studies examined the effects of a robust in-state WEC supply chain. The region of analysis is comprised of the seven coastal counties in Oregon—Clatsop, Coos, Curry, Douglas, Lane, Lincoln, and Tillamook—so estimates of jobs and other economic impacts are specific to this coastal county area.

  19. THORs Power Method for Hydrokinetic Devices - Final Report

    SciTech Connect (OSTI)

    J. Turner Hunt; Joel Rumker

    2012-08-08

    Ocean current energy represents a vast untapped source of renewable energy that exists on the outer continental shelf areas of the 5 major continents. Ocean currents are unidirectional in nature and are perpetuated by thermal and salinity sea gradients, as well as coriolis forces imparted from the earth's rotation. This report details THORs Power Method, a breakthrough power control method that can provide dramatic increases to the capacity factor over and above existing marine hydrokinetic (MHK) devices employed in the extraction of energy from ocean currents. THORs Power Method represents a constant speed, variable depth operational method that continually locates the ocean current turbine at a depth at which the rated power of the generator is routinely achieved. Variable depth operation is achieved by using various vertical force effectors, including ballast tanks for variable weight, a hydrodynamic wing for variable lift or down force and drag flaps for variable vehicle drag forces.

  20. Modeling options for Current Energy Convertor Systems and Associated Challenges

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fleming 3/13/2012 Ecomerit Technologies, LLC Modeling Options for Current Energy Converter Systems and Associated Challenges Marine and Hydrokinetic Instrumentation, Measurement & Computer Modeling Workshop Allie Cribbs Ocean Engineer Ecomerit Technologies, LLC July 10 th , 2012 Marine and Hydrokinetic Instrumentation, Measurement & Computer Modeling Workshop - July 9-11th Objectives  Current converter modeling process  Challenges with existing techniques  Opportunities for

  1. UK Centre for Marine Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Centre for Marine Renewable Energy Jump to: navigation, search Name: UK Centre for Marine Renewable Energy Place: United Kingdom Sector: Renewable Energy Product: UK Centre for...

  2. marine energy | OpenEI Community

    Open Energy Info (EERE)

    marine energy Home Kch's picture Submitted by Kch(24) Member 15 July, 2014 - 07:07 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine...

  3. Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios

    SciTech Connect (OSTI)

    Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial scale plant. It is important to understand that the purpose of this study was to establish baseline scenarios based on basic device data that was provided to use by the manufacturer for illustrative purposes only.

  4. Northwest National Marine Renewable Energy Center | Open Energy...

    Open Energy Info (EERE)

    Marine Renewable Energy Center Jump to: navigation, search Name: Northwest National Marine Renewable Energy Center Address: 4000 15th Ave Place: Seattle, Washington Zip: 98105...

  5. MHK Technologies/Blue Motion Energy marine turbine | Open Energy...

    Open Energy Info (EERE)

    Blue Motion Energy marine turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Blue Motion Energy marine turbine.jpg Technology Profile...

  6. Riding the Clean Energy Wave: New Projects Aim to Improve Water Power

    Broader source: Energy.gov (indexed) [DOE]

    Devices | Department of Energy Watch the Energy 101 video above to find out how hydrokinetic technologies can harness the energy of the ocean's waves, tides, and currents and convert it into electricity. Ryan Sun Chee Fore Marine and Hydrokinetic Technology Manager With up to 1,400 terawatt hours of potential power generation per year, our nation's waves and tides represent vast, untapped resources that could provide clean, renewable electricity to millions of homes and businesses throughout

  7. Sandia Energy - Daniel Laird

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories' Water Power Technologies department which includes Marine Hydrokinetic, Conventional Hydro, and Offshore Wind technologies. Daniel joined...

  8. Energy Department Announces $22 Million for Marine Energy Demonstration and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Monitoring Technology Projects | Department of Energy 2 Million for Marine Energy Demonstration and Environmental Monitoring Technology Projects Energy Department Announces $22 Million for Marine Energy Demonstration and Environmental Monitoring Technology Projects March 2, 2016 - 8:40am Addthis Image courtesy the Pacific Northwest National Laboratory's (PNNL) Marine Sciences Laboratory. Image courtesy the Pacific Northwest National Laboratory's (PNNL) Marine Sciences

  9. Marine Renewable Energy Center

    SciTech Connect (OSTI)

    Vigeant, Paul; Miller, John; Howes, Brian; McGowan, Jon G.; Baldwin, Kenneth; Grilli, Annette; Terray, Eugene

    2013-10-08

    Project Goals: The funding provided by this contract supported the following activities: A) Test Site Development; B) Seed Grant Funded Technology Development; C) Stakeholder Activities The first year of funding was dedicated to the formation of the NE MREC University Consortium which was comprised of University of Massachusetts Dartmouth (UMD) and Amherst (UMA), Massachusetts Institute of Technology (MIT), Woods Hole Oceanographic Institution (WHOI), University of New Hampshire (UNH), and the University of Rhode Island (URI). The consortium worked together to encourage research and promote benefits of obtaining energy from ocean wind, waves, tides and currents. In addition, NE MREC’s goal was to fund projects aimed at potential test sites with the first year funding going to studies of the potential for tidal device testing in Muskeget Channel, at the General Sullivan Bridge in New Hampshire, and for wave device testing at the proposed National Offshore Renewable Energy Innovation Zone (NOREIZ) located off the Massachusetts coast. The project spanned 4.5 years and addressed three specific tasks that are interrelated but also served as independent investigations.

  10. 2014 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Beiter, Philipp

    2015-11-01

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  11. 2014 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Beiter, Philipp

    2015-11-15

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  12. 2014 Renewable Energy Data Book

    Broader source: Energy.gov [DOE]

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  13. Marine Scotland | Open Energy Information

    Open Energy Info (EERE)

    Scotland Place: Edinburgh, Scotland, United Kingdom Zip: EH14 1TY Product: Marine science, planning, policy and management body. References: Marine Scotland1 This article is...

  14. National Marine Renewable Energy Center (UH) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Marine Renewable Energy Center (UH) National Marine Renewable Energy Center (UH) National Marine Renewable Energy Center (UH) Office presentation icon 21_hinmrec_university_of_hawaii_rocheleau.ppt More Documents & Publications Vehicle Technologies Office Merit Review 2014: EV Project: Solar-Assisted Charging Demo Ocean Thermal Extractable Energy Visualization: Final Technical Report Emerging Lighting Technology

  15. OES-IA Annex IV: Environmental Effects of Marine and Hydrokinetic Devices - Report from the Experts Workshop September 27th 28th 2010 Clontarf Castle, Dublin Ireland

    SciTech Connect (OSTI)

    Copping, Andrea E.; O'Toole, Michael J.

    2010-12-02

    An experts' workshop was convened in Dublin Ireland September 27th 28th 2010 in support of IEA Ocean Energy Systems Implementing Agreement Annex IV. PNNL was responsible for organizing the content of the workshop, overseeing the contractors (Irish Marine Institute) hosting the event, presenting material on Annex IV and materials applicable to the workshop intent. PNNL is also overseeing a contractor (Wave Energy Center/University of Plymouth WEC/UP) in the collection and analysis of the Annex IV data. Fifty-eight experts from 8 countries attended the workshop by invitation, spending two days discussing the needs of Annex IV. Presentations by DOE (background on Annex IV), PNNL (process for developing Annex IV; presentation of the draft database for PNNL project, plans for incorporating Annex IV data), WEC/UP on the environmental effect matrix, and four MHK developers (two from the UK, one from Ireland and one from Sweden; each discussing their own projects and lessons learned for measuring and mitigating environmental effects, as well as interactions with consenting [permitting] processes) helped provide background. The workshop participants worked part of the time in the large group and most of the time in four smaller breakout groups. Participants engaged in the process and provided a wealth of examples of MHK environmental work, particularly in the European nations. They provided practical and actionable advice on the following: Developing the Annex IV database, with specific uses and audiences Strong consensus that we should collect detailed metadata on available data sets, rather than attempting to draw in copious datasets. The participants felt there would then be an opportunity to then ask for specific set of data as needed, with specific uses and ownership of the data specified. This is particularly important as many data collected, particularly in Europe but also in Canada, are proprietary; developers were not comfortable with the idea of handing over all their environmental effects data, but all said they would entertain the request if they specifics were clear. The recommendation was to collect metadata via an online interactive form, taking no more than one hour to complete. Although the idea of cases representing the best practices was recognized as useful, the participants pointed out that there are currently so few MHK projects in the water, that any and all projects were appropriate to highlight as cases. There was also discomfort at the implication that best practices implied lesser practices; this being unhelpful to a new and emerging industry. Workshop participants were asked if they were willing to continue to engage in the Annex IV process; all expressed willingness. The workshop was successful in adequately addressing its objectives and through participation and interaction in the breakout sessions around the various topics. As a result of the workshop, many delegates are now better informed and have a greater understanding of the potential environmental effects of MHK devices on the marine environment. There is now a greater sense of understanding of the issues involved and consensus by those regulators, developers and scientists who attended the workshop. A strong network has also been built over the two days between European and US/Canadian technical experts in wave and tidal energy.

  16. European Marine Energy Centre Ltd EMEC | Open Energy Information

    Open Energy Info (EERE)

    Marine Energy Centre Ltd EMEC Jump to: navigation, search Name: European Marine Energy Centre Ltd (EMEC) Place: Stromness, United Kingdom Zip: KW16 3AW Product: EMEC aims to...

  17. University of Illinois uses Sandia Labs' reference hydrokinetic turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to study potential bed erosion effects Illinois uses Sandia Labs' reference hydrokinetic turbine to study potential bed erosion effects - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power

  18. Marin Solar | Open Energy Information

    Open Energy Info (EERE)

    Zip: 94901 Sector: Solar Product: Marin Solar is a residential installer of photovoltaic systems. References: Marin Solar1 This article is a stub. You can help OpenEI by...

  19. PerpetuWave Power Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: PerpetuWave Power Pty Ltd Region: Canada Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  20. DEXA | Open Energy Information

    Open Energy Info (EERE)

    DEXA Jump to: navigation, search Name: DEXA Region: United States Sector: Marine and Hydrokinetic Website: www.dexawaveenergy.co.uk This company is listed in the Marine and...

  1. Kaon and pion femtoscopy at the highest energies available at the BNL Relativistic Heavy Ion Collider (RHIC) in a hydrokinetic model

    SciTech Connect (OSTI)

    Karpenko, Iu. A.; Sinyukov, Yu. M.

    2010-05-15

    The hydrokinetic approach that incorporates hydrodynamic expansion of the systems formed in A+A collisions and their dynamical decoupling is applied to restore the initial conditions and space-time picture of the matter evolution in central Au+Au collisions at the top Relativistic Heavy Ion Collider energy. The analysis is based on the detailed reproduction of the pion and kaon momentum spectra and femtoscopic data in whole interval of the transverse momenta studied by both the STAR and the PHENIX collaborations. The fitting procedure utilizes the two parameters: the maximal energy density at supposed thermalization time 1 fm/c and the strength of the prethermal flows developed to this time. The quark-gluon plasma and hadronic gas is supposed to be in complete local equilibrium above the chemical freeze-out temperature T{sub ch}=165 MeV with the equation of states (EoS) at high temperatures as in the lattice QCD. Below T{sub ch} the EoS in the expanding and gradually decoupling fluid depends on the composition of the hadron-resonance gas at each space-time point and accounts for decays of resonances into the nonequilibrated medium. A good description of the pion and kaon transverse momentum spectra and interferometry radii is reached at both used initial energy density profiles motivated by the Glauber and color glass condensate models, however, at different initial energy densities. The discussion as for the approximate pion and kaon m{sub T} scaling for the interferometry radii is based on a comparison of the emission functions for these particles.

  2. Energy Department Announces $10 Million for Full-Scale Wave Energy Device

    Broader source: Energy.gov (indexed) [DOE]

    Testing | Department of Energy Energy Department, in coordination with the Navy, today announced funding for two companies that will continue to advance marine and hydrokinetic (MHK) technology as a viable source for America's clean energy future. Ocean Energy USA and Northwest Energy Innovations will test their innovative wave energy conversion (WEC) devices for one year in new deep water test berths at the Navy's Wave Energy Test Site (WETS) off the waters of Marine Corps Base Hawaii. MHK

  3. 47688.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    47688.pdf 47688.pdf 47688.pdf PDF icon 47688.pdf More Documents & Publications Marine and Hydrokinetic Technologies Fact Sheet Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Before the House Science and Technology Subcommittee on Energy and Environment

  4. Water Power News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    News Water Power News Below are news stories about conventional hydropower and marine and hydrokinetic technologies from the U.S. Department of Energy, the Office of Energy Efficiency and Renewable Energy, the Water Power Program, and other federal agencies. Recent News December 28, 2015 Energy Department Awards $10.5 Million for Next-Generation Marine Energy Systems The Energy Department today announced six organizations selected to receive up to $10.5 million to support the design and

  5. Annex IV Environmental Webinar: Marine Renewable Energy Test...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annex IV Environmental Webinar: Marine Renewable Energy Test Centers and Environmental Effects Research Annex IV Environmental Webinar: Marine Renewable Energy Test Centers and...

  6. EA-1965: Final Environmental Assessment | Department of Energy

    Office of Environmental Management (EM)

    5: Final Environmental Assessment EA-1965: Final Environmental Assessment Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida The U.S. Department of the Interior's (DOI), Bureau of Ocean Energy Management (BOEM) prepared this EA and DOE served as a cooperating agency. DOE's proposed action was to provide federal funding to Florida Atlantic University Southeast National Marine Renewable Energy Center to

  7. Arlas Invest | Open Energy Information

    Open Energy Info (EERE)

    Arlas Invest Jump to: navigation, search Name: Arlas Invest Region: Spain Sector: Marine and Hydrokinetic Website: www.capricornioct.com This company is listed in the Marine and...

  8. Kneider Innovations | Open Energy Information

    Open Energy Info (EERE)

    Kneider Innovations Jump to: navigation, search Name: Kneider Innovations Region: France Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and...

  9. Dresser Rand | Open Energy Information

    Open Energy Info (EERE)

    Dresser Rand Jump to: navigation, search Name: Dresser Rand Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and...

  10. Ryokuseisha Corporation | Open Energy Information

    Open Energy Info (EERE)

    Corporation Jump to: navigation, search Name: Ryokuseisha Corporation Region: Japan Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine...

  11. Xenesy Inc | Open Energy Information

    Open Energy Info (EERE)

    Xenesy Inc Jump to: navigation, search Name: Xenesy Inc Region: Japan Sector: Marine and Hydrokinetic Website: www.xenesys.comenglishindex. This company is listed in the Marine...

  12. Neo Aerodynamic | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Neo Aerodynamic Region: United States Sector: Marine and Hydrokinetic Website: www.neo-aerodynamic.com This company is listed in the Marine...

  13. Marinus Power | Open Energy Information

    Open Energy Info (EERE)

    Power Jump to: navigation, search Name: Marinus Power Region: United States Sector: Marine and Hydrokinetic Website: www.marinuspower.com This company is listed in the Marine...

  14. Water Power News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power News Water Power News RSS December 28, 2015 Energy Department Awards $10.5 Million for Next-Generation Marine Energy Systems The Energy Department today announced six organizations selected to receive up to $10.5 million to support the design and operation of innovative marine and hydrokinetic (MHK) systems through survivability and reliability-related improvements. December 22, 2015 Year in Review: Celebrating Wind Energy and Water Power Renewable energy from wind and water had a

  15. Water Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Energy Water Energy Below are resources for Tribes on water energy technologies. Guide on How to Develop a Small Hydropower Plant This guide aims to give potential developers of small hydropower plants comprehensive information and advice on all necessary procedures for developing a site and includes the key steps to be followed to run a plant. Source: The European Small Hydropower Association. The Law of Marine and Hydrokinetic Energy: A Guide to Business and Legal Issues Contains

  16. Estimation of the Risks of Collision or Strike to Freshwater Aquatic Organisms Resulting from Operation of Instream Hydrokinetic Turbines

    SciTech Connect (OSTI)

    Schweizer, Peter E; Cada, Glenn F; Bevelhimer, Mark S

    2010-05-01

    Hydrokinetic energy technologies have been proposed as renewable, environmentally preferable alternatives to fossil fuels for generation of electricity. Hydrokinetic technologies harness the energy of water in motion, either from waves, tides or from river currents. For energy capture from free-flowing rivers, arrays of rotating devices are most commonly proposed. The placement of hydrokinetic devices in large rivers is expected to increase the underwater structural complexity of river landscapes. Moore and Gregory (1988) found that structural complexity increased local fish populations because fish and other aquatic biota are attracted to structural complexity that provides microhabitats with steep flow velocity gradients (Liao 2007). However, hydrokinetic devices have mechanical parts, blades, wings or bars that move through the water column, posing a potential strike or collision risk to fish and other aquatic biota. Furthermore, in a setting with arrays of hydrokinetic turbines the cumulative effects of multiple encounters may increase the risk of strike. Submerged structures associated with a hydrokinetic (HK) project present a collision risk to aquatic organisms and diving birds (Cada et al. 2007). Collision is physical contact between a device or its pressure field and an organism that may result in an injury to that organism (Wilson et al. 2007). Collisions can occur between animals and fixed submerged structures, mooring equipment, horizontal or vertical axis turbine rotors, and structures that, by their individual design or in combination, may form traps. This report defines strike as a special case of collision where a moving part, such as a rotor blade of a HK turbine intercepts the path of an organism of interest, resulting in physical contact with the organism. The severity of a strike incidence may range from minor physical contact with no adverse effects to the organism to severe strike resulting in injury or death of the organism. Harmful effects to animal populations could occur directly (e.g., from strike mortality of individuals) or indirectly (e.g., if the loss of prey species to strike reduces food for predators). Although actively swimming or passively drifting animals may collide with any of the physical structures associated with hydrokinetic devices, turbine rotors are the most likely sources for risk of strike or significant collision (DOE 2009). It is also possible that during a close encounter with a HK device no physical contact will be made between the device and the organism, either because the animal avoids the device by successfully changing its direction of movement, or by successfully evading any moving parts of the device. Oak Ridge National Laboratory (ORNL) has been funded by the US Department of Energy (DOE) Waterpower Program to evaluate strike potential and consequences for Marine and Hydrokinetic (MHK) technologies in rivers and estuaries of the United States. We will use both predictive models and laboratory/field experiments to evaluate the likelihood and consequences of strike at HK projects in rivers. Efforts undertaken at ORNL address three objectives: (1) Assess strike risk for marine and freshwater organisms; (2) Develop experimental procedures to assess the risk and consequences of strike; and (3) Conduct strike studies in experimental flumes and field installations of hydrokinetic devices. During the first year of the study ORNL collected information from the Federal Energy Regulatory Commission (FERC) MHK database about geographical distribution of proposed hydrokinetic projects (what rivers or other types of systems), HK turbine design (horizontal axis, vertical axis, other), description of proposed axial turbine (number of blades, size of blades, rotation rate, mitigation measures), and number of units per project. Where site specific information was available, we compared the location of proposed projects rotors within the channel (e.g., along cutting edge bank, middle of thalweg, near bottom or in midwater) to the general locations of fish in the river (shoreline, bottom/midwater/surface of channel) to ascertain potential interactions. In addition, we are collaborating and communicating with scientists at other national laboratories and industry who are also developing information useful to this task. For example, other studies being funded by DOE include evaluations of different in-current (hydrokinetic) turbine designs for their effects on rates and severity of blade strike and likelihood of cavitation. This report summarizes activities completed during the first year of a three-year study.

  17. Preface to Special Topic: Marine Renewable Energy

    SciTech Connect (OSTI)

    Pinto, F. T.; Iglesias, G.; Santos, P. R.; Deng, Zhiqun

    2015-12-30

    Marine renewable energy (MRE) is generates from waves, currents, tides, and thermal resources in the ocean. MRE has been identified as a potential commercial-scale source of renewable energy. This special topic presents a compilation of works selected from the 3rd IAHR Europe Congress, held in Porto, Portugal, in 2014. It covers different subjects relevant to MRE, including resource assessment, marine energy sector policies, energy source comparisons based on levelized cost, proof-of-concept and new-technology development for wave and tidal energy exploitation, and assessment of possible inference between wave energy converters (WEC).

  18. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume ...

  19. New Report States That Hydrokinetic Turbines Have Minimal Environmenta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish August ...

  20. EERE Success Story-New Report States That Hydrokinetic Turbines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish EERE Success Story-New Report States That Hydrokinetic Turbines Have Minimal Environmental ...

  1. Hydropower Appropriations | Department of Energy

    Office of Environmental Management (EM)

    Hydropower Appropriations Hydropower Appropriations List of projects selected focusing on updating technologies and methods to improve the performance of conventional hydropower plants. PDF icon Hydropower Appropriations More Documents & Publications Site Characterization Awards Water Power Program: 2011 Peer Review Report Marine and Hydrokinetic Energy Projects

  2. Hydropower Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Hydropower Projects This report covers the Wind and Water Power Technologies Office's hydropower projects from fiscal years 2008 to 2014. PDF icon Hydropower Projects 2008-2014 More Documents & Publications Marine and Hydrokinetic Energy Projects Offshore Wind Projects Real World Demonstration of a New American Low-Head Hydropower Unit

  3. Vortex Hydro Energy Develops Transformational Technology to Harness Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Water Currents | Department of Energy Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents April 10, 2013 - 12:00am Addthis EERE is funding Vortex Hydro Energy to commercialize the Vortex Induced Vibration Aquatic Clean Energy (VIVACE) converter, which is a University of Michigan-patented marine and hydrokinetic energy device designed to harness the

  4. Experts Offer Marines Energy-Efficiency Advice

    Broader source: Energy.gov [DOE]

    As an early adopter of cutting-edge technologies, the United States military is pioneering energy efficiency and renewable energy technologies in the field. Recently, the Commandant of the United States Marine Corps sent a team to visit bases and camps in Afghanistan to assess and make recommendations on the supply and use of energy and water.

  5. 2013 Federal Energy and Water Management Award Winner Marine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine Corps Recruit San Diego 2013 Federal Energy and Water Management Award Winner Marine Corps Recruit San Diego PDF icon fewm13usmcmcdepotsandiegohighres.pdf PDF icon ...

  6. Green Cat Renewables | Open Energy Information

    Open Energy Info (EERE)

    Cat Renewables Jump to: navigation, search Name: Green Cat Renewables Region: Scotland Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and...

  7. Protean Power Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    Power Pty Ltd Jump to: navigation, search Name: Protean Power Pty Ltd Region: Australia Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and...

  8. Seadov Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    Seadov Pty Ltd Jump to: navigation, search Name: Seadov Pty Ltd Region: Australia Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and...

  9. U.S. Marine Corp Logistics Base | Open Energy Information

    Open Energy Info (EERE)

    Marine Corp Logistics Base Jump to: navigation, search Name U.S. Marine Corp Logistics Base Facility U.S. Marine Corp Logistics Base Sector Wind energy Facility Type Community Wind...

  10. Technological cost%3CU%2B2010%3Ereduction pathways for axial%3CU%2B2010%3Eflow turbines in the marine hydrokinetic environment.

    SciTech Connect (OSTI)

    Laird, Daniel L.; Johnson, Erick L.; Ochs, Margaret Ellen; Boren, Blake

    2013-05-01

    This report considers and prioritizes potential technical costreduction pathways for axialflow turbines designed for tidal, river, and ocean current resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were utilized to understand current cost drivers and develop a list of potential costreduction pathways: a literature review of technical work related to axialflow turbines, the U.S. Department of Energy Reference Model effort, and informal webinars and other targeted interactions with industry developers. Data from these various information sources were aggregated and prioritized with respect to potential impact on the lifetime levelized cost of energy. The four most promising costreduction pathways include structural design optimization; improved deployment, maintenance, and recovery; system simplicity and reliability; and array optimization.

  11. Energy Department Releases New Energy 101 Video on Ocean Power | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy New Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power April 30, 2013 - 12:40pm Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy FIND OUT MORE Read about the Energy Department's assessments of wave and

  12. Water Power for a Clean Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power for a Clean Energy Future Water Power for a Clean Energy Future This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower and marine and hydrokinetic technologies. PDF icon Accomplishments Report: Water Power for a Clean Energy Future More Documents & Publications Water Power for a Clean Energy Future (Fact Sheet), Wind and Water

  13. Guides and Case Studies for Marine Climates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine Climates Guides and Case Studies for Marine Climates Map of the Marine Climate Zone of the United States. This zone contains the far western Pacific coast stretching from the Canadian border to mid-California. The Department of Energy (DOE) has developed a series of best practices and case studies to help builders improve whole-house energy performance in buildings found in marine climates. Best Practice Guides 40% Whole-House Energy Savings in Marine Climate - Volume 11 Optimized Climate

  14. Advanced Integration of Power Take-off in Vortex Induced Vibrations Aquatic Clean Energy

    SciTech Connect (OSTI)

    Simiao, Gus

    2011-11-01

    Presentation from the 2011 Water Peer Review of a river and ocean device converting hydrokinetic energy.

  15. Water Power Program: Marine and Hydrokinetic Technologies

    Broader source: Energy.gov [DOE]

    Pamphlet that describes the Office of EERE's Water Power Program in fiscal year 2009, including the fiscal year 2009 funding opportunities, the Small Business Innovation Research and Small Business Technology Transfer Programs, the U.S. hydrodynamic testing facilities, and the fiscal year 2008 Advanced Water Projects awards.

  16. General Engineer (MARINE & HYDROKINETIC ENGINEER) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ICTAP eligibles Veterans with VOW or VEOA eligibility Those eligible under an OPM interchange agreement or special appointing authority. This position is also being advertised...

  17. Carnegie Wave Energy Limited | Open Energy Information

    Open Energy Info (EERE)

    Limited Address: 1 124 Stirling Highway Place: North Fremantle Zip: 6159 Region: Australia Sector: Marine and Hydrokinetic Year Founded: 1993 Website: www.carnegiewave.com...

  18. Targeting Net Zero Energy at Marine Corps Air Station Miramar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and ... laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable ...

  19. Steven Chalk | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steven Chalk About Us Steven Chalk - Deputy Assistant Secretary for Renewable Energy Photo of Steven Chalk. In his role as Deputy Assistant Secretary for Renewable Energy in the Office of Energy Efficiency and Renewable Energy (EERE), Steven Chalk oversees applied research, development, and demonstration for a diverse clean energy portfolio. This portfolio spans wind, solar, geothermal, conventional hydropower, marine and hydrokinetic, biomass, and hydrogen technologies. Prior to his current

  20. Adaptive Management in the Marine Renewable Energy Industry Webinar...

    Office of Environmental Management (EM)

    Adaptive Management in the Marine Renewable Energy Industry Webinar Adaptive Management in the Marine Renewable Energy Industry Webinar December 10, 2015 8:30AM to 10:00AM PST As...

  1. Plymouth Marine Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Marine Laboratory Jump to: navigation, search Name: Plymouth Marine Laboratory Place: United Kingdom Product: Carries out strategic and applied marine research. References:...

  2. Orkney Marine Energy Test Centre | Open Energy Information

    Open Energy Info (EERE)

    Test Centre Jump to: navigation, search Name: Orkney Marine Energy Test Centre Place: Orkney, United Kingdom Zip: KW16 3AW Product: Its aim is to stimulate and accelerate the...

  3. Energy Department Announces Funding for Demonstration and Testing of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Wave and Tidal Energy Technologies | Department of Energy Funding for Demonstration and Testing of Advanced Wave and Tidal Energy Technologies Energy Department Announces Funding for Demonstration and Testing of Advanced Wave and Tidal Energy Technologies March 11, 2014 - 9:11am Addthis The Energy Department today announced $10 million to strengthen the U.S. marine and hydrokinetic (MHK) energy industry, including wave and tidal energy sources. Through the two funding opportunities

  4. Nautricity | Open Energy Information

    Open Energy Info (EERE)

    search Name: Nautricity Address: Capella Building floor 10 60 York Street Place: Glasgow Zip: G2 8JX Region: Scotland Sector: Marine and Hydrokinetic Phone Number: 0141 275...

  5. AHERC | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Tanana River Test Site Address K Street Place Nenana, Alaska Zip 99760 Sector Marine and Hydrokinetic...

  6. Wavebob | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Wavebob Address: H3 Maynooth Business Campus Place: Maynooth Region: Ireland Sector: Marine and Hydrokinetic Phone Number: +353 (0)1 651 0177...

  7. Atmocean | Open Energy Information

    Open Energy Info (EERE)

    use an ocean upwelling system to enhance natural biological processes that help CO2 absorption. References: Atmocean1 This company is listed in the Marine and Hydrokinetic...

  8. Bluewater | Open Energy Information

    Open Energy Info (EERE)

    Address: Marsstraat 33 Place: Hoofddorp Zip: 2132 Region: Netherlands Sector: Marine and Hydrokinetic Year Founded: 1978 Phone Number: +31 (0)23 568 2800 Website:...

  9. Delbuoy | Open Energy Information

    Open Energy Info (EERE)

    Delbuoy Jump to: navigation, search Name: Delbuoy Region: United States Sector: Marine and Hydrokinetic Website: www.solutions-site.orgartman This company is listed in the...

  10. ECOsponsible | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: ECOsponsible Address: 120 Mitchell Road Suite 100 Place: East Aurora Zip: 14052-9710 Sector: Marine and Hydrokinetic This company is...

  11. WEC up! Energy Department Announces Wave Energy Conversion Prize Administrator

    Broader source: Energy.gov [DOE]

    The Water Power Program today awarded $6.5 million to a Prize Administration Team for the development and execution of the Energy Department’s Wave Energy Conversion (WEC) Prize Competition. The WEC Prize will continue to advance marine and hydrokinetic (MHK) technology as a viable source for America’s clean energy future, in part by providing an opportunity for developers to test their innovative wave energy conversion (WEC) devices in a wave generating basin.

  12. Acoustic Effects of Hydrokinetic Tidal Turbines

    SciTech Connect (OSTI)

    Polagye, Brian

    2011-11-01

    This presentation from the Water Peer Review highlights one of the program's marine and hyrokinetics environmental projects to determine the likely acoustic effects from a tidal energy device.

  13. Marine Projects International Ltd MPI formerly Mayflower Energy...

    Open Energy Info (EERE)

    Projects International Ltd MPI formerly Mayflower Energy Ltd Jump to: navigation, search Name: Marine Projects International Ltd (MPI) (formerly Mayflower Energy Ltd) Place: United...

  14. Global Marine Renewable Energy Conference (GMREC) | OpenEI Community

    Open Energy Info (EERE)

    Global Marine Renewable Energy Conference (GMREC) Home > Groups > Water Power Forum Kch's picture Submitted by Kch(24) Member 3 April, 2013 - 14:26 The 6th annual Global Marine...

  15. Oscilla Power | Open Energy Information

    Open Energy Info (EERE)

    dress":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map References: CEO1 This company is listed in the Marine and Hydrokinetic Technology Database. This...

  16. Wavegen Ltd | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Wavegen Ltd Address: 13a Harbour Rd Place: Inverness, Scotland, United Kingdom Zip: IV1 1SY Region: United Kingdom Sector: Marine and Hydrokinetic...

  17. Aquantis Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Aquantis Inc Address: 6340 Via Real Suite 8 Place: Carpinteria Zip: 93013 Region: United States Sector: Marine and Hydrokinetic Phone Number:...

  18. Martifer Energia | Open Energy Information

    Open Energy Info (EERE)

    Martifer Energia Address: Zona Industrial Apartado 17 Place: Oliveira de Frades Zip: 3684-001 Region: Portugal Sector: Marine and Hydrokinetic Website: http: This company is listed...

  19. Brandl Motor | Open Energy Information

    Open Energy Info (EERE)

    Brandl Motor Jump to: navigation, search Name: Brandl Motor Address: Calvinstr 24 Place: Berlin Zip: 10557 Region: Germany Sector: Marine and Hydrokinetic Phone Number: +49 30 39...

  20. Verdant Power | Open Energy Information

    Open Energy Info (EERE)

    10044 Sector: Marine and Hydrokinetic Product: A systems integrator and a developer of free-flow turbine systems that generates utility and village scale electric power from...

  1. Able Technologies | Open Energy Information

    Open Energy Info (EERE)

    Address: 330 Audubon Road Place: Englewood Zip: 7631 Region: United States Sector: Marine and Hydrokinetic Phone Number: 201-569-2842 Website: www.abletechnologiesllc.com This...

  2. Neptune Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Jump to: navigation, search Name: Neptune Systems Address: PO Box 8719 Place: Breda Zip: 4820 BA Region: Netherlands Sector: Marine and Hydrokinetic Phone Number: +31 (0)...

  3. Mananook Associates | Open Energy Information

    Open Energy Info (EERE)

    Mananook Associates Jump to: navigation, search Name: Mananook Associates Address: PO Box 69 Place: Perry Zip: 4667 Region: United States Sector: Marine and Hydrokinetic Phone...

  4. Douglas County | Open Energy Information

    Open Energy Info (EERE)

    County Jump to: navigation, search Name: Douglas County Address: 430 S E Main Street PO Box 2456 Place: Roseburg Zip: 97470 Region: United States Sector: Marine and Hydrokinetic...

  5. Uppsala University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: Uppsala University Address: Box 534 Place: Uppsala Zip: 75121 Region: Sweden Sector: Marine and Hydrokinetic Phone Number:...

  6. Energy Department Announces $8 Million to Develop Advanced Components for

    Office of Environmental Management (EM)

    Wave, Tidal, and Current Energy Systems | Department of Energy 8 Million to Develop Advanced Components for Wave, Tidal, and Current Energy Systems Energy Department Announces $8 Million to Develop Advanced Components for Wave, Tidal, and Current Energy Systems January 12, 2015 - 11:00am Addthis The Energy Department today announced $8 million in available funding to spur innovation in next-generation marine and hydrokinetic (MHK) control and component technologies. In the United States,

  7. Douglas Hollett | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Douglas Hollett About Us Douglas Hollett - Deputy Assistant Secretary for Renewable Power Photo of Douglas Hollett Doug Hollett is Deputy Assistant Secretary for Renewable Power in the Office of Energy Efficiency and Renewable Energy. In this role he oversees research, development, and demonstration for a diverse clean energy portfolio. This portfolio spans wind, solar, geothermal, conventional hydropower, marine and hydrokinetic, as well as grid integration of these renewable technologies. He

  8. Northwest National Marine Renewable Energy Center (OSUUW) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Northwest National Marine Renewable Energy Center (OSUUW) Northwest National Marine Renewable Energy Center (OSUUW) Northwest National Marine Renewable Energy Center (OSUUW) Office presentation icon 22_nnmrec_batten_final.ppt More Documents & Publications NREL - FY09 Lab Call: Supporting Research and Testing for MHK Presentation from the 2011 Water Program Peer Review FY 09 Lab Call: Research & Assessment for MHK Development 2014 Water Power Program Peer Review Compiled

  9. Seoul Marine Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Seoul Marine Co Ltd Jump to: navigation, search Name: Seoul Marine Co Ltd Place: Gwangju, Korea (Republic) Sector: Solar Product: Korea-based solar project developer. References:...

  10. Revamped Simulation Tool to Power Up Wave Energy Development | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Revamped Simulation Tool to Power Up Wave Energy Development Revamped Simulation Tool to Power Up Wave Energy Development May 21, 2015 - 2:40pm Addthis Revamped Simulation Tool to Power Up Wave Energy Development Alison LaBonte Marine and Hydrokinetic Technology Manager When engineers want to model new technologies, there's often nothing better than simulation tools. Designing technologies to harness energy from ocean waves is especially complex because engineers have to build them

  11. Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TECHNICAL REPORT Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States EPRI Project Manager P. Jacobson 3420 Hillview Avenue Palo Alto, CA 94304-1338 USA PO Box 10412 Palo Alto, CA 94303-0813 USA 800.313.3774 650.855.2121 askepri@epri.com www.epri.com Assessment and Mapping of the Riverine Hydrokinetic Energy Resource in the Continental United States 1026880 Final Report, December 2012 DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT

  12. Hawaii Marine Base Installs Solar Roofs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lorelei Laird Writer, Energy Empowers What does this project do? Marine Corps Base Hawaii replaced roofs on two buildings with polyvinyl chloride membrane 'cool' roofs and solar...

  13. Adaptive Management in the Marine Renewable Energy Industry Webinar

    Broader source: Energy.gov [DOE]

    As the marine renewable energy industry progresses, it is imperative for regulators and project developers to identify ways to address and cope with environmental uncertainties while still enabling...

  14. Hawaii Oceanic Technology Inc | Open Energy Information

    Open Energy Info (EERE)

    Oceanic Technology Inc Jump to: navigation, search Name: Hawaii Oceanic Technology Inc Region: United States Sector: Marine and Hydrokinetic Website: www.hioceanictech.com This...

  15. Aquaphile sarl Hydro Gen | Open Energy Information

    Open Energy Info (EERE)

    Aquaphile sarl Hydro Gen Jump to: navigation, search Name: Aquaphile sarl Hydro Gen Address: 210 Le Vrennic Place: Landda Zip: 29870 Region: France Sector: Marine and Hydrokinetic...

  16. University of Manchester | Open Energy Information

    Open Energy Info (EERE)

    Name: University of Manchester Address: Core Technology Facility 46 Grafton St Place: Manchester Zip: M13 9NT Region: United Kingdom Sector: Marine and Hydrokinetic Phone Number:...

  17. OTEC POWER INC | Open Energy Information

    Open Energy Info (EERE)

    OTEC POWER INC Jump to: navigation, search Name: OTEC POWER INC Address: 3323 Double Lake Drive Sector: Marine and Hydrokinetic Year Founded: 2011 Phone Number: 7132610374 This...

  18. Wave Power Plant Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Wave Power Plant Inc Address: 2563 Granite Park Dr Place: Lincoln Zip: 95648 Region: United States Sector: Marine and Hydrokinetic Phone...

  19. Electricite de France | Open Energy Information

    Open Energy Info (EERE)

    Electricite de France Jump to: navigation, search Name: Electricite de France Region: France Sector: Marine and Hydrokinetic Year Founded: 1946 Website: http: This company is...

  20. Chevron Technology Ventures LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: Chevron Technology Ventures LLC Address: 3901 Briarpark Drive Place: Houston Zip: 77042 Region: United States Sector: Marine and Hydrokinetic...

  1. Alaska Power Telephone Company | Open Energy Information

    Open Energy Info (EERE)

    search Name: Alaska Power Telephone Company Address: 193 Otto Street PO Box 3222 Place: Port Townsend Zip: 98368 Region: United States Sector: Marine and Hydrokinetic Phone Number:...

  2. G Edward Cook | Open Energy Information

    Open Energy Info (EERE)

    Edward Cook Jump to: navigation, search Name: G Edward Cook Address: PO Box 814 Place: Simpson Zip: 18407 Region: United States Sector: Marine and Hydrokinetic Website:...

  3. Teamwork Technology See Tocardo | Open Energy Information

    Open Energy Info (EERE)

    Teamwork Technology See Tocardo Jump to: navigation, search Name: Teamwork Technology See Tocardo Region: Netherlands Sector: Marine and Hydrokinetic Website: http: This company is...

  4. Wind Waves and Sun | Open Energy Information

    Open Energy Info (EERE)

    Wind Waves and Sun Jump to: navigation, search Name: Wind Waves and Sun Region: United States Sector: Marine and Hydrokinetic Website: www.windwavesandsun.com This company is...

  5. Woodshed Technologies Ltd | Open Energy Information

    Open Energy Info (EERE)

    Technologies Ltd Address: Level 50 101 Collins St Place: Melbourne Zip: 3000 Region: Australia Sector: Marine and Hydrokinetic Phone Number: +613 96539264 Website:...

  6. Water Power Events | Department of Energy

    Office of Environmental Management (EM)

    Water Power Events Water Power Events Below is an industry calendar with meetings, conferences, and webinars of interest to the conventional hydropower and marine and hydrokinetic...

  7. Soil Machine Dynamics Ltd | Open Energy Information

    Open Energy Info (EERE)

    Machine Dynamics Ltd Jump to: navigation, search Name: Soil Machine Dynamics Ltd Region: United Kingdom Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  8. Functional Design Engineering Inc | Open Energy Information

    Open Energy Info (EERE)

    Functional Design Engineering Inc Jump to: navigation, search Name: Functional Design Engineering Inc Region: United States Sector: Marine and Hydrokinetic Website:...

  9. Pelagic Power AS | Open Energy Information

    Open Energy Info (EERE)

    search Name: Pelagic Power AS Address: LIV bygget Place: Vanvikan Zip: N-7125 Region: Norway Sector: Marine and Hydrokinetic Website: www.pelagicpower.com This company is listed...

  10. The Engineering Business Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: The Engineering Business Ltd Address: Broomhaugh House Place: Riding Mill Zip: NE44 6EG Region: United Kingdom Sector: Marine and Hydrokinetic...

  11. Current to Current | Open Energy Information

    Open Energy Info (EERE)

    Current Jump to: navigation, search Name: Current to Current Address: 35 Corporate Dr Place: Burlington Zip: 1803 Region: United States Sector: Marine and Hydrokinetic Phone...

  12. Point the Gap | Open Energy Information

    Open Energy Info (EERE)

    company is listed in the Marine and Hydrokinetic Technology Database. Market research and competitive intelligence in power conversion made by electronics and semiconductor...

  13. Kinetic Wave Power | Open Energy Information

    Open Energy Info (EERE)

    Wave Power Jump to: navigation, search Name: Kinetic Wave Power Address: 2861 N Tupelo St Place: Midland Zip: 48642 Region: United States Sector: Marine and Hydrokinetic Phone...

  14. Triton Sea Wave Technologies | Open Energy Information

    Open Energy Info (EERE)

    Triton Sea Wave Technologies Jump to: navigation, search Name: Triton Sea Wave Technologies Address: 22 A Thrakis Zip: 15669 Region: Greece Sector: Marine and Hydrokinetic Year...

  15. Tidal Sails AS | Open Energy Information

    Open Energy Info (EERE)

    Sails AS Jump to: navigation, search Name: Tidal Sails AS Address: Standgaten 130 Place: Haugesund Zip: 5531 Region: Norway Sector: Marine and Hydrokinetic Phone Number: +32 474 98...

  16. Golden Turbines LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: Golden Turbines LLC Address: 280 Meadow Ash Dr Lewis Center Zip: 43035 Region: United States Sector: Marine and Hydrokinetic Year Founded:...

  17. Motor Wave Group | Open Energy Information

    Open Energy Info (EERE)

    Wave Group Jump to: navigation, search Name: Motor Wave Group Place: Hong Kong Region: China Sector: Marine and Hydrokinetic Website: www.motorwavegroup.com This company is listed...

  18. Glen Edward Cook | Open Energy Information

    Open Energy Info (EERE)

    Edward Cook Jump to: navigation, search Name: Glen Edward Cook Region: United States Sector: Marine and Hydrokinetic Website: www.gedwardcook.com This company is listed in the...

  19. Sandia Energy - Bernadette Hernandez-Sanchez

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. Hernandez-Sanchez is the project lead for the Advanced Materials Program and DOE's Marine and Hydrokinetic Technology Database (MHTDB). The Advanced Materials Program focuses...

  20. Atlantis Resources Corporation | Open Energy Information

    Open Energy Info (EERE)

    Resources Corporation Address: 1 Martime Square Zip: 99253 Region: Singapore Sector: Marine and Hydrokinetic Year Founded: 2002 Website: www.atlantisresourcescorporati This...

  1. Water Power Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power Events Water Power Events Below is an industry calendar with meetings, conferences, and webinars of interest to the conventional hydropower and marine and hydrokinetic technology communities.

  2. Town of Edgartown | Open Energy Information

    Open Energy Info (EERE)

    Edgartown Jump to: navigation, search Name: Town of Edgartown Address: 70 Main St PO Box 5158 Place: Edgartown Zip: 2539 Region: United States Sector: Marine and Hydrokinetic Phone...

  3. Power Projects Limited | Open Energy Information

    Open Energy Info (EERE)

    Limited Jump to: navigation, search Name: Power Projects Limited Address: PO Box 25456 Panama Street Place: Wellington Zip: 6146 Region: New Zealand Sector: Marine and Hydrokinetic...

  4. Ecofys Subsidiary of Econcern | Open Energy Information

    Open Energy Info (EERE)

    of Econcern Jump to: navigation, search Name: Ecofys Subsidiary of Econcern Address: PO Box 8408 Place: Utrecht Zip: 3503 RK Region: Netherlands Sector: Marine and Hydrokinetic...

  5. Voith Hydro Wavegen Limited | Open Energy Information

    Open Energy Info (EERE)

    Voith Hydro Wavegen Limited Jump to: navigation, search Name: Voith Hydro Wavegen Limited Region: United Kingdom Sector: Marine and Hydrokinetic Website: www.wavegen.co.uk This...

  6. Memorandum of Understanding between the Dept. of Interior and Dept. of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MEMORANDUM OF UNDERSTANDING between the UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT and the UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY for the COORDINATED DEPLOYMENT OF OFFSHORE WIND AND MARINE AND HYDROKINETIC ENERGY TECHNOLOGIES ON THE UNITED STATES OUTER CONTINENTAL SHELF I. Purpose The United States Department of the Interior (DOI) Bureau of Ocean Energy, Management, Regulation, and

  7. Peninsula Research Institute for Marine Renewable Energy PRIMaRE...

    Open Energy Info (EERE)

    Energy PRIMaRE Jump to: navigation, search Name: Peninsula Research Institute for Marine Renewable Energy (PRIMaRE) Place: United Kingdom Sector: Renewable Energy Product: UK-based...

  8. Wave Energy Simulation Team Carries Home International Award | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Wave Energy Simulation Team Carries Home International Award Wave Energy Simulation Team Carries Home International Award July 15, 2015 - 1:52pm Addthis Wave Energy Simulation Team Carries Home International Award Alison LaBonte Marine and Hydrokinetic Technology Manager In order to harness the power of waves to generate electricity, engineers must be able to predict how large floating devices will perform in a dynamic environment-that is, in the water among waves. A team sponsored

  9. Pure Marine Gen | Open Energy Information

    Open Energy Info (EERE)

    Gen Jump to: navigation, search Name: Pure Marine Gen Place: Belfast, United Kingdom Zip: BT3 9DTN Product: Northern Ireland-based wave project developer. References: Pure Marine...

  10. Marine Mammal Protection Act | Open Energy Information

    Open Energy Info (EERE)

    Marine Mammal Protection Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Marine Mammal Protection ActLegal Abstract The...

  11. Hawaii Marine Base Installs Solar Roofs | Department of Energy

    Office of Environmental Management (EM)

    Hawaii Marine Base Installs Solar Roofs Hawaii Marine Base Installs Solar Roofs April 2, 2010 - 2:42pm Addthis Lorelei Laird Writer, Energy Empowers What does this project do? Marine Corps Base Hawaii replaced roofs on two buildings with polyvinyl chloride membrane 'cool' roofs and solar panels. The new roofs saves $20,000 a year in energy costs. Built on the end of the Mokapu Peninsula on Oahu's northeast coast, the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay gets plenty of sunlight. But

  12. OCEANTEC Energias Marinas S L | Open Energy Information

    Open Energy Info (EERE)

    Energias Marinas S L Jump to: navigation, search Name: OCEANTEC Energias Marinas S L Region: Spain Sector: Marine and Hydrokinetic Website: www.energiasmarinas.escas This company...

  13. Uppsala University Division for Electricity | Open Energy Information

    Open Energy Info (EERE)

    University Division for Electricity Jump to: navigation, search Name: Uppsala University Division for Electricity Region: Sweden Sector: Marine and Hydrokinetic Website:...

  14. MHK Atlas/User Guide | Open Energy Information

    Open Energy Info (EERE)

    Share Button The Share feature contains options for sharing the application via several social media networks. Resource Technologies Marine and hydrokinetic (MHK) technologies...

  15. Marc M Siah Associates Inc | Open Energy Information

    Open Energy Info (EERE)

    Marc M Siah Associates Inc Jump to: navigation, search Name: Marc M Siah Associates Inc Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed...

  16. Severn Tidal Power Group STpg | Open Energy Information

    Open Energy Info (EERE)

    Severn Tidal Power Group STpg Jump to: navigation, search Name: Severn Tidal Power Group STpg Region: United Kingdom Sector: Marine and Hydrokinetic Website: http: This company is...

  17. Smart Hydro Power GmbH | Open Energy Information

    Open Energy Info (EERE)

    Smart Hydro Power GmbH Address: Alte Traubinger Str. 17 Place: Garatshausen Country: Germany Zip: 82340 Sector: Marine and Hydrokinetic Product: Micro Hydro Kinetic Turbine...

  18. Energy Department Kicks Off MHK Technologies Coding Challenge | Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Energy Department Kicks Off MHK Technologies Coding Challenge Energy Department Kicks Off MHK Technologies Coding Challenge December 11, 2013 - 12:00am Addthis With more than 50% of the nation's population living within 50 miles of coastlines, we have vast potential to provide clean, renewable electricity to communities and cities across the United States using marine and hydrokinetic (MHK) technologies. To help this emerging industry develop new models and tools that improve the

  19. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment...

  20. 2014 Water Power Program Peer Review Compiled Presentations:...

    Energy Savers [EERE]

    Marine and Hydrokinetic Technologies 2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies The U.S. Department of Energy Water Power ...

  1. Before the Subcommittee on Water and Power - Senate Committee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Marine and Hydrokinetic Energy Projects Marine and Hydrokinetic (MHK) Databases and Systems Fact Sheet Before the House Science and Technology Subcommittee on...

  2. Shafir Civil Marine Engineering | Open Energy Information

    Open Energy Info (EERE)

    Engineering Jump to: navigation, search Name: Shafir Civil & Marine Engineering Place: Israel Sector: Services Product: Services include infrastructure works, contracting, bridge...

  3. Marine Renewable Technologies | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Marine Renewable Technologies Address: 319 Business Lane Suite 1000 Ashland VA 23005 Place: Ashland Zip: 23005 Region: United States...

  4. Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP)

    Broader source: Energy.gov (indexed) [DOE]

    Water Power for a Clean Energy Future Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most

  5. Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program (WWPP) | Department of Energy Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) This fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities. PDF icon 51315.pdf More Documents & Publications Marine and Hydrokinetic Technologies Fact Sheet 47688.pdf Before the House Science and Technology

  6. Top 10 Things You Didn't Know about Hydropower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower Top 10 Things You Didn't Know about Hydropower April 27, 2015 - 12:09pm Addthis Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses. | Video by the Energy Department. Liz Hartman Communications Team Lead, Wind and Water Power Technologies Office LEARN MORE Explore the 2014 Hydropower Market Report at energy.gov/hydropowerreport. Stay up to date on hydropower and marine and hydrokinetic energy technologies by

  7. The development of CACTUS : a wind and marine turbine performance simulation code.

    SciTech Connect (OSTI)

    Barone, Matthew Franklin; Murray, Jonathan

    2010-12-01

    CACTUS (Code for Axial and Cross-flow TUrbine Simulation) is a turbine performance simulation code, based on a free wake vortex method, under development at Sandia National Laboratories (SNL) as part of a Department of Energy program to study marine hydrokinetic (MHK) devices. The current effort builds upon work previously done at SNL in the area of vertical axis wind turbine simulation, and aims to add models to handle generic device geometry and physical models specific to the marine environment. An overview of the current state of the project and validation effort is provided.

  8. Marine Corps Base Camp Pendleton | Department of Energy

    Office of Environmental Management (EM)

    Camp Pendleton Marine Corps Base Camp Pendleton Fact sheet describes the Energy savings Performance Contract (ESPC) Success Story on how a comprehensive effort cuts energy use by 44% at Marine Corps Base Camp Pendleton in Camp Pendleton, California. PDF icon espc_ss_pendleton.pdf More Documents & Publications 2013 Federal Energy and Water Management Award Winner Jeff Allen 2001 FEMP Customer Survey Report (Appendices) Camp Pendleton Saves 91% in Parking Lot Lighting

  9. Evaluating the Potential for Marine and Hydrokinetic Devices to Act as Artificial Reefs or Fish Aggregating Devices. Based on Analysis of Surrogates in Tropical, Subtropical, and Temperate U.S. West Coast and Hawaiian Coastal Waters

    SciTech Connect (OSTI)

    Kramer, Sharon H.; Hamilton, Christine D.; Spencer, Gregory C.; Ogston, Heather O.

    2015-05-12

    Wave energy converters (WECs) and tidal energy converters (TECs) are only beginning to be deployed along the U.S. West Coast and in Hawai‘i, and a better understanding of their ecological effects on fish, particularly on special-status fish (e.g., threatened and endangered) is needed to facilitate project design and environmental permitting. The structures of WECs and TECs placed on to the seabed, such as anchors and foundations, may function as artificial reefs that attract reef-associated fishes, while the midwater and surface structures, such as mooring lines, buoys, and wave or tidal power devices, may function as fish aggregating devices (FADs), forming the nuclei for groups of fishes. Little is known about the potential for WECs and TECs to function as artificial reefs and FADs in coastal waters of the U.S. West Coast and Hawai‘i. We evaluated these potential ecological interactions by reviewing relevant information about fish associations with surrogate structures, such as artificial reefs, natural reefs, kelps, floating debris, oil and gas platforms, marine debris, anchored FADs deployed to enhance fishing opportunities, net-cages used for mariculture, and piers and docks. Based on our review, we postulate that the structures of WECs and TECs placed on or near the seabed in coastal waters of the U.S. West Coast and Hawai‘i likely will function as small-scale artificial reefs and attract potentially high densities of reef-associated fishes (including special-status rockfish species [Sebastes spp.] along the mainland), and that the midwater and surface structures of WECs placed in the tropical waters of Hawai‘i likely will function as de facto FADs with species assemblages varying by distance from shore and deployment depth. Along the U.S. West Coast, frequent associations with midwater and surface structures may be less likely: juvenile, semipelagic, kelp-associated rockfishes may occur at midwater and surface structures of WECs in coastal waters of southern California to Washington, and occasional, seasonal, or transitory associations of coastal pelagic fishes such as jack mackerel (Trachurus symmetricus) may also occur at WECs in these waters. Importantly, our review indicated that negative effects of WEC structures on special-status fish species, such as increased predation of juvenile salmonids or rockfishes, are not likely. In addition, WECs installed in coastal California, especially in southern California waters, have the potential to attract high densities of reef-associated fishes and may even contribute to rockfish productivity, if fish respond to the WECs similarly to oil and gas platforms, which have some of the highest secondary production per unit area of seafloor of any marine habitat studied globally (Claisse et al. 2014). We encountered some information gaps, owing to the paucity or lack, in key locations, of comparable surrogate structures in which fish assemblages and ecological interactions were studied. TECs are most likely to be used in the Puget Sound area, but suitable surrogates are lacking there. However, in similarly cold-temperate waters of Europe and Maine, benthopelagic fish occurred around tidal turbines during lower tidal velocities, and this type of interaction may be expected by similar species at TECs in Puget Sound. To address information gaps in the near term, such as whether WECs would function as FADs in temperate waters, studies of navigation buoys using hydroacoustics are recommended.

  10. MHK Projects/Yukon River Hydrokinetic Turbine Project | Open...

    Open Energy Info (EERE)

    Yukon River Hydrokinetic Turbine Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlem...

  11. MHK Technologies/Deep water capable hydrokinetic turbine | Open...

    Open Energy Info (EERE)

    water capable hydrokinetic turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Hills Inc...

  12. Assessment and Mapping of the Riverine Hydrokinetic Resource...

    Open Energy Info (EERE)

    Resource in the Continental United States Abstract This report describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic...

  13. OREGON STATE UNIVERSITY AND NORTHWEST NATIONAL MARINE RENEWABLE ENERGY CENTER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OREGON STATE UNIVERSITY AND NORTHWEST NATIONAL MARINE RENEWABLE ENERGY CENTER WAVE ENERGY TEST PROJECT DRAFT ENVIRONMENTAL ASSESSMENT June 2012 DOE/EA-1917 U.S. Department of Energy Golden Field Office 1617 Cole Boulevard Golden, CO 80401 NNMREC and OSU Wave Energy Test Project Draft Environmental Assessment i June 2012 Contents List of Tables .......................................................................................................................................... iv List of

  14. Related Financial Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Financial Opportunities Related Financial Opportunities Funding for water power projects may be available through other offices in the U.S. Department of Energy or other federal agencies. Financial opportunities not related to the Water Power Program are listed below. Grants and Tax Incentives The federal government currently offers two primary tax incentives for qualified water power facilities: marine and hydrokinetic (MHK) power installations, hydroelectric power installations, and

  15. Water Power Program Budget | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Budget Water Power Program Budget The U.S. Department of Energy (DOE) has allocated $60 million in fiscal year (FY) 2015 funds for the Water Power Program to research and develop marine and hydrokinetic (MHK) and hydropower technologies. Current activities supported by this budget include: HydroNEXT: Activities will focus on technologies and tools to improve performance and sustainably increase generation at existing water resources infrastructure, in addition to the development and

  16. IBIS LLC | Open Energy Information

    Open Energy Info (EERE)

    IBIS LLC Jump to: navigation, search Name: IBIS LLC Region: United States Sector: Marine and Hydrokinetic Website: www.ibisltd.com This company is listed in the Marine and...

  17. Elgen Wave | Open Energy Information

    Open Energy Info (EERE)

    Elgen Wave Jump to: navigation, search Name: Elgen Wave Region: United States Sector: Marine and Hydrokinetic Website: www.elgenwave.com This company is listed in the Marine and...

  18. U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 … FY 2010

    Energy Savers [EERE]

    MARINE AND HYDROKINETIC ENERGY PROJECTS Fiscal Years 2008 - 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 2 WIND AND WATER POWER TECHNOLOGIES OFFICE 1 Introduction Wind and Water Power Technologies Office The Wind and Water Power Technologies Office (WWPTO), within the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE), supports the development, deployment, and commercialization of wind and water power

  19. Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States

    SciTech Connect (OSTI)

    Jacobson, P.

    2012-12-12

    This report describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. The assessment provides estimates of the gross, naturally available resource, termed the theoretical resource, as well as estimates, termed the technically recoverable resource, that account for selected technological factors affecting capture and conversion of the theoretical resource. The technically recoverable resource does not account for all technical constraints on energy capture and conversion.

  20. Prototype Testing Could Help Prove a Promising Energy Source | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Prototype Testing Could Help Prove a Promising Energy Source Prototype Testing Could Help Prove a Promising Energy Source June 8, 2015 - 1:36pm Addthis Prototype Testing Could Help Prove a Promising Energy Source Alison LaBonte Marine and Hydrokinetic Technology Manager The first third-party-validated, grid-tied wave energy device in North American waters started feeding renewable electricity to Marine Corps Base Hawaii last week. In coordination with the U.S. Navy, Northwest

  1. Environmental Effects of Marine Energy Development Around the World. Annex IV Final Report

    SciTech Connect (OSTI)

    Copping, Andrea; Hanna, L.; Whiting, J.; Geerlofs, S.; Grear, M.; Blake, K.; Coffey, A.; Massaua, M.; Brown-Saracino, J.; Battey, H.

    2013-01-01

    This Annex IV report contains three case studies of specific interactions of marine energy devices with the marine environment addressing the physical interactions between animals and tidal turbines, the acoustic impact of marine energy devices on marine animals, and the effects of energy removal on physical systems.

  2. Marine High Voltage Power Conditioning and Transmission System with Integrated Storage DE-EE0003640 Final Report

    SciTech Connect (OSTI)

    Frank Hoffmann, PhD; Aspinall, Rik

    2012-12-10

    Design, Development, and test of the three-port power converter for marine hydrokinetic power transmission. Converter provides ports for AC/DC conversion of hydrokinetic power, battery storage, and a low voltage to high voltage DC port for HVDC transmission to shore. The report covers the design, development, implementation, and testing of a prototype built by PPS.

  3. Wind-Wildlife Impacts Literature Database (WILD)(Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind-Wildlife Impacts Literature Database (WILD) What is WILD? The Wind-Wildlife Impacts Literature Database (WILD), developed and main- tained by the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL), is comprised of over 1,000 citations pertaining to the effects of land-based wind, offshore wind, marine and hydrokinetic power systems, power lines, and communication and television towers on wildlife. For the wind energy sector, WILD serves as an

  4. Water Power Program FY 2015 Budget At-A-Glance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Budget At-A-Glance Water Power Program FY 2015 Budget At-A-Glance The Water Power Program, part of the Wind and Water Power Technologies Office, leads efforts in developing innovative water power technologies to help the United States meet its growing energy demand. The Office is pioneering research and development efforts in marine and hydrokinetic and hydropower technologies, which hold the promise of clean, affordable electricity, and will move our nation toward energy independence. PDF

  5. Category:MHK Companies | Open Energy Information

    Open Energy Info (EERE)

    AS Hydro Alternative Energy Hydro Green Energy HYDROCAP ENERGY SAS HydroCoil Power Inc HydroGen Aquaphile sarl Hydrohelix Energies Hydrokinetic Laboratory HydroVenturi Ltd...

  6. Water Power: 2009 Peer Review Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    represents the 2009 Water Power Peer Review Panel's observations and findings, response from the Water Program to these findings, and supporting meeting materials including an agenda and participants list. PDF icon 2009_water_power_peer_review_report.pdf More Documents & Publications Marine and Hydrokinetic Energy Projects NREL - FY09 Lab Call: Supporting Research and Testing for MHK Presentation from the 2011 Water Program Peer Review Water Power Program: 2011

  7. Seawood Designs Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Seawood Designs Inc Address: 201 Marine Drive Cobble Hill Place: Vancouver Island Zip: V0R 1L1 Region: Canada Sector: Marine and Hydrokinetic...

  8. Interproject Service AB | Open Energy Information

    Open Energy Info (EERE)

    AB Jump to: navigation, search Name: Interproject Service AB Region: Sweden Sector: Marine and Hydrokinetic Website: www.ips-ab.com This company is listed in the Marine and...

  9. JD Products LLC | Open Energy Information

    Open Energy Info (EERE)

    JD Products LLC Jump to: navigation, search Name: JD Products LLC Sector: Marine and Hydrokinetic Phone Number: 714-767-7553 Website: http: This company is listed in the Marine and...

  10. Design and implementation of a marine animal alert system to support Marine Renewable Energy

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Fu, Tao; Ren, Huiying; Martinez, Jayson J.; Myers, Joshua R.; Matzner, Shari; Choi, Eric Y.; Copping, Andrea E.

    2013-08-08

    Power extracted from fast moving tidal currents has been identified as a potential commercial-scale source of renewable energy. Device developers and utilities are pursuing deployment of prototype tidal turbines to assess technology viability, site feasibility, and environmental interactions. Deployment of prototype turbines requires permits from a range of regulatory authorities. Ensuring the safety of marine animals, particularly those under protection of the Endangered Species Act of 1973 (ESA) and the Marine Mammal Protection Act of 1972 has emerged as a key regulatory challenge for initial MHK deployments. The greatest perceived risk to marine animals is from strike by the rotating blades of tidal turbines. Development of the marine mammal alert system (MAAS) was undertaken to support monitoring and mitigation requirements for tidal turbine deployments. The prototype system development focused on Southern Resident killer whales (SRKW), an endangered population of killer whales that frequents Puget Sound and is intermittently present in the part of the sound where deployment of prototype tidal turbines is being considered. Passive acoustics were selected as the primary means because of the vocal nature of these animals. The MAAS passive acoustic system consists of two-stage process involving the use of an energy detector and a spectrogram-based classifier to distinguish between SKRWs calls and noise. A prototype consisting of two 2D symmetrical star arrays separated by 20 m center to center was built and evaluated in the waters of Sequim Bay using whale call playback.

  11. New Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    46613-1010 Region: Canada Sector: Marine and Hydrokinetic Product: 102mmgy (386.1m litresy) ethanol producer. Year Founded: 2003 Phone Number: (403) 260-5248 Website:...

  12. NREL: Wind Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... and Hydrokinetic Technologies Marine and hydrokinetic technologies convert the kinetic energy from ocean waves, tides, currents, and ocean thermal resources into electricity. ...

  13. Scientific Applications Research Associates Inc SARA | Open Energy...

    Open Energy Info (EERE)

    90630 Region: United States Sector: Marine and Hydrokinetic Phone Number: 714-224-4410 x 274 Website: www.sara.comraeoceanwave.ht This company is listed in the Marine and...

  14. SeaNergy Electric Ltd | Open Energy Information

    Open Energy Info (EERE)

    SeaNergy Electric Ltd Jump to: navigation, search Name: SeaNergy Electric Ltd Region: Israel Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and...

  15. Marine Energy Technology Symposium METS2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FURTHER DEVELOPMENT OF SNL-SWAN, A VALIDATED WAVE ENERGY CONVERTER ARRAY MODELING TOOL Aaron Porter Coast and Harbor Engineering Edmonds, WA, U.S.A Kelley Ruehl Sandia National Laboratories Albuquerque , New Mexico, U.S.A Chris Chartrand Sandia National Laboratories Albuquerque , New Mexico, U.S.A ABSTRACT Commercialization of wave energy will lead to the necessary deployment of Wave Energy Converters (WECs) in arrays, or wave farms. In order for projects in the United States to be approved,

  16. Instrumentation for Monitoring around Marine Renewable Energy Converters: Workshop Final Report

    SciTech Connect (OSTI)

    Copping, Andrea E.; Polagye, Brian

    2014-01-31

    Report on workshop held in Seattle for DOE WWPTO on instrument needs for monitoring marine energy devices

  17. Marine Energy Technology Symposium METS2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research was made possible by support from the Department of Energy's EERE Office's Wind and Water Power Technologies Office. The work was supported by Sandia National...

  18. SDE | Open Energy Information

    Open Energy Info (EERE)

    search Name: SDE Address: 15A Lubetkin Street Place: Tel Aviv Zip: 67532 Region: Israel Sector: Marine and Hydrokinetic Phone Number: 972-37397107 Website: www.sde.co.il This...

  19. EA-1965: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Florida Atlantic University Southeast National Marine Renewable Energy Center’s Offshore Marine Hydrokinetic Technology Testing Project, Florida

  20. Wave Energy Prize Narrowed from 92 Teams to Top 20 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wave Energy Prize Narrowed from 92 Teams to Top 20 Wave Energy Prize Narrowed from 92 Teams to Top 20 August 14, 2015 - 2:16pm Addthis Wave Energy Prize Narrowed from 92 Teams to Top 20 Alison LaBonte Marine and Hydrokinetic Technology Manager After an unprecedented 92 teams registered to compete in the Energy Department-funded Wave Energy Prize, today we announced the top 20 teams. These teams all passed through Technology Gate 1: providing a thorough technical submission detailing their device

  1. EERE Success Story—New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish

    Broader source: Energy.gov [DOE]

    EERE has released a report assessing likelihood of fish injury and mortality from the operation of hydrokinetic turbines.

  2. Framework for Identifying Key Environmental Concerns in Marine Renewable Energy Projects- Appendices

    SciTech Connect (OSTI)

    Sharon Kramer; Mirko Previsic; Peter Nelson; Sheri Woo

    2010-06-17

    Marine wave and tidal energy technology could interact with marine resources in ways that are not well understood. As wave and tidal energy conversion projects are planned, tested, and deployed, a wide range of stakeholders will be engaged; these include developers, state and federal regulatory agencies, environmental groups, tribal governments, recreational and commercial fishermen, and local communities. Identifying stakeholders’ environmental concerns in the early stages of the industry’s development will help developers address and minimize potential environmental effects. Identifying important concerns will also assist with streamlining siting and associated permitting processes, which are considered key hurdles by the industry in the U.S. today. In September 2008, RE Vision consulting, LLC was selected by the Department of Energy (DoE) to conduct a scenario-based evaluation of emerging hydrokinetic technologies. The purpose of this evaluation is to identify and characterize environmental impacts that are likely to occur, demonstrate a process for analyzing these impacts, identify the “key” environmental concerns for each scenario, identify areas of uncertainty, and describe studies that could address that uncertainty. This process is intended to provide an objective and transparent tool to assist in decision-making for siting and selection of technology for wave and tidal energy development. RE Vision worked with H. T. Harvey & Associates, to develop a framework for identifying key environmental concerns with marine renewable technology. This report describes the results of this study. This framework was applied to varying wave and tidal power conversion technologies, scales, and locations. The following wave and tidal energy scenarios were considered:  4 wave energy generation technologies  3 tidal energy generation technologies  3 sites: Humboldt coast, California (wave); Makapu’u Point, Oahu, Hawaii (wave); and the Tacoma Narrows, Washington (tidal)  3 project sizes: pilot, small commercial, and large commercial The possible combinations total 24 wave technology scenarios and 9 tidal technology scenarios. We evaluated 3 of the 33 scenarios in detail: 1. A small commercial OPT Power Buoy project off the Humboldt County, California coast 2. A small commercial Pelamis Wave Power P-2 project off Makapu’u Point, Oahu, Hawaii 3. A pilot MCT SeaGen tidal project, sited in the Tacoma Narrows, Washington This framework document used information available from permitting documents that were written to support actual wave or tidal energy projects, but the results obtained here should not be confused with those of the permitting documents1. The main difference between this framework document and permitting documents of currently proposed pilot projects is that this framework identifies key environmental concerns and describes the next steps in addressing those concerns; permitting documents must identify effects, find or declare thresholds of significance, evaluate the effects against the thresholds, and find mitigation measures that will minimize or avoid the effects so they can be considered less-than-significant. Two methodologies, 1) an environmental effects analysis and 2) Raptools, were developed and tested to identify potential environmental effects associated with wave or tidal energy conversion projects. For the environmental effects analysis, we developed a framework based on standard risk assessment techniques. The framework was applied to the three scenarios listed above. The environmental effects analysis addressed questions such as:  What is the temporal and spatial exposure of a species at a site?  What are the specific potential project effects on that species?  What measures could minimize, mitigate, or eliminate negative effects?  Are there potential effects of the project, or species’ response to the effect, that are highly uncertain and warrant additional study? The second methodology, Raptools, is a collaborative approach useful for evaluating multiple characteristics of numerous siting or technology alternatives, and it allows us to graphically compare alternatives. We used Raptools to answer these questions:  How do the scenarios compare, in terms of exposure, risks, and effects to the ecological and human environments?  Are there sites that seem to present the fewest effects regardless of technology and scale?  Which attributes account for many or much of the effects associated with wave or tidal energy development?

  3. Measurement of velocity deficit at the downstream of a 1:10 axial hydrokinetic turbine model

    SciTech Connect (OSTI)

    Gunawan, Budi; Neary, Vincent S; Hill, Craig; Chamorro, Leonardo

    2012-01-01

    Wake recovery constrains the downstream spacing and density of turbines that can be deployed in turbine farms and limits the amount of energy that can be produced at a hydrokinetic energy site. This study investigates the wake recovery at the downstream of a 1:10 axial flow turbine model using a pulse-to-pulse coherent Acoustic Doppler Profiler (ADP). In addition, turbine inflow and outflow velocities were measured for calculating the thrust on the turbine. The result shows that the depth-averaged longitudinal velocity recovers to 97% of the inflow velocity at 35 turbine diameter (D) downstream of the turbine.

  4. Upcoming Funding Opportunity for Marine and Hydrokinetic Development...

    Broader source: Energy.gov (indexed) [DOE]

    in R&D to fill strategic opportunities within the Program's portfolio including: * Logistics development for operations and maintenance (O&M) of devices and arrays in energetic...

  5. Marine and Hydrokinetic (MHK) Technology Development Risk Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    64-9-970-4606 0800-456-270 NORWAY 47-21-590-025 800-18093 PANAMA 011-001-800-5072372 PERU 0800-53731 PHILIPPINES 63-2-858-3760 1800-111-42436 POLAND 00-800-1213476 PORTUGAL...

  6. Marine and Hydrokinetic (MHK) Technology Development Risk Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0-800-81350 SOUTH AFRICA 080-09-82158 SOUTH KOREA 82-2-6744-1091 00798-14800-7797 SPAIN 34-91-414-21-70 800-300-907 SWEDEN 46-8-503-34-825 0200-899-946 SWITZERLAND...

  7. Lease Issuance for Marine Hydrokinetic Technology Testing on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and employment (Section 3.1.3.4); environmental justice (Section 3.1.3.5); and other uses of ... during Migration and Foraging at Sea. Journal of Mammalogy 90, 1318-1323. Amaral, ...

  8. Form:Marine and Hydrokinetic Technology Project Milestone | Open...

    Open Energy Info (EERE)

    source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Form Edit History...

  9. NREL: Water Power Research - Marine and Hydrokinetic Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource and Inflow Monitoring At ORPC: Monty Worthington, Ocean Renewable Power Company ... Instrumentation for Current Turbine Testing: Martin Wosnik, University of New Hampshire ...

  10. DOE Zero Energy Ready Home Case Study: Clifton View Homes, Marine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine Drive and Port Hadlcok, Coupeville and Port Hadlock WA DOE Zero Energy Ready Home Case Study: Clifton View Homes, Marine Drive and Port Hadlcok, Coupeville and Port Hadlock ...

  11. Annex IV Environmental Webinar: Marine Renewable Energy Test Centers and Environmental Effects Research

    Broader source: Energy.gov [DOE]

    Marine renewable energy test centers around the world have been successful in testing new technologies to ensure devices perform up to standards and are able to survive in the marine environment....

  12. U.S. Marine Corps Stand at Forefront of Energy and Water Savings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy U.S. Marine Corps Stand at Forefront of Energy and Water Savings U.S. Marine Corps Stand at Forefront of Energy and Water Savings This fact sheet is an overview of the U.S. Marine Corps Beaufort Air Station's energy and water savings accomplishments. PDF icon usmc_energysavings.pdf More Documents & Publications Ameresco ESCO Qualification Sheet Energy Savings Performance Contract Success Stories Food and Drug Administration White Oak Campus Environmental Stewardship

  13. Tidal Stream | Open Energy Information

    Open Energy Info (EERE)

    Stream Jump to: navigation, search Name: Tidal Stream Address: 76 Dukes Ave Place: London Zip: W4 2 AK Region: United Kingdom Sector: Marine and Hydrokinetic Phone Number: 01926...

  14. Cyclocean LLC | Open Energy Information

    Open Energy Info (EERE)

    search Name: Cyclocean LLC Address: 3000 Par Drive Region: United States Sector: Marine and Hydrokinetic Phone Number: 561-317-1446 Website: www.cyclocean.com This company is...

  15. Performance Evaluation of HYCOM-GOM for Hydrokinetic Resource Assessment in the Florida Strait

    SciTech Connect (OSTI)

    Neary, Vincent S; Gunawan, Budi; Ryou, Albert S

    2012-06-01

    The U.S. Department of Energy (DoE) is assessing and mapping the potential off-shore ocean current hydrokinetic energy resources along the U.S. coastline, excluding tidal currents, to facilitate market penetration of water power technologies. This resource assessment includes information on the temporal and three-dimensional spatial distribution of the daily averaged power density, and the overall theoretical hydrokinetic energy production, based on modeled historical simulations spanning a 7-year period of record using HYCOM-GOM, an ocean current observation assimilation model that generates a spatially distributed three-dimensional representation of daily averaged horizontal current magnitude and direction time series from which power density time series and their statistics can be derived. This study ascertains the deviation of HYCOM-GOM outputs, including transport (flow) and power density, from outputs based on three independent observation sources to evaluate HYCOM-GOM performance. The three independent data sources include NOAA s submarine cable data of transport, ADCP data at a high power density location, and HF radar data in the high power density region of the Florida Strait. Comparisons with these three independent observation sets indicate discrepancies with HYCOM model outputs, but overall indicate that the HYCOM-GOM model can provide an adequate assessment of the ocean current hydrokinetic resource in high power density regions like the Florida Strait. Additional independent observational data, in particular stationary ADCP measurements, would be useful for expanding this model performance evaluation study. ADCP measurements are rare in ocean environments not influenced by tides, and limited to one location in the Florida Strait. HF radar data, although providing great spatial coverage, is limited to surface currents only.

  16. Effects of Large Energetic Vortices on Axial-Flow Hydrokinetic Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of Large Energetic Vortices on Axial-Flow Hydrokinetic Turbines B. Gunawan 1 , V.S. Neary 1 C. Hill 2 and L.P. Chamorro 2 1 Energy-Water-Ecosystems Engineering, Wind and Water Power Technologies, Environmental Sciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6036, Oak Ridge, TN 37831; PH (865) 241-5622; FAX (865) 576-3989; email: gunawanb@ornl.gov 2 St. Anthony Falls Laboratory, College of Science & Engineering, University of Minnesota,

  17. MHK Technologies/Vortex Induced Vibrations Aquatic Clean Energy...

    Open Energy Info (EERE)

    or dams. VIVACE converts the horizontal hydrokinetic energy of currents into cylinder mechanical energy. The latter is then converted to electricity through electric power...

  18. Abrasion Testing of Critical Components of Hydrokinetic Devices

    SciTech Connect (OSTI)

    Worthington, Monty; Ali, Muhammad; Ravens, Tom

    2013-12-06

    The objective of the Abrasion Testing of Critical Components of Hydrokinetic Devices (Project) was to test critical components of hydrokinetic devices in waters with high levels of suspended sediment – information that is widely applicable to the hydrokinetic industry. Tidal and river sites in Alaska typically have high suspended sediment concentrations. High suspended sediment also occurs in major rivers and estuaries throughout the world and throughout high latitude locations where glacial inputs introduce silt into water bodies. In assessing the vulnerability of technology components to sediment induced abrasion, one of the greatest concerns is the impact that the sediment may have on device components such as bearings and seals, failures of which could lead to both efficiency loss and catastrophic system failures.

  19. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

  20. MHK technologies include current energy conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    e.g., hydrokinetic turbines that extract power from water currents (riverine, tidal, and ocean) and wave energy conversion (WEC) devices that extract power from wave motion. ...

  1. Executive Order 13158-Marine Protected Areas | Department of Energy

    Energy Savers [EERE]

    58-Marine Protected Areas Executive Order 13158-Marine Protected Areas This Executive Order will help protect the significant natural and cultural resources within the marine environment for the benefit of present and future generations by strengthening and expanding the Nation's system of marine protected areas (MPAs). PDF icon Executive Order 13158-Marine Protected Areas More Documents & Publications EO 13089 -- Coral Reef Protection ARPA-E Technical Support Memo Appendices Microsoft Word

  2. U.S. Marine Corps Stand at Forefront of Energy and Water Savings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    This fact sheet is an overview of the U.S. Marine Corps Beaufort Air Station's energy and water savings accomplishments.

  3. MHK Projects/US Navy Wave Energy Technology WET Program at Marine...

    Open Energy Info (EERE)

    US Navy Wave Energy Technology WET Program at Marine Corps Base Hawaii MCBH < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map......

  4. U.S. Marine Corps Stand at Forefront of Energy and Water Savings

    Broader source: Energy.gov [DOE]

    This fact sheet is an overview of the U.S. Marine Corps Beaufort Air Station's energy and water savings accomplishments.

  5. DISCRETE ELEMENT MODELING OF BLADE–STRIKE FREQUENCY AND SURVIVAL OF FISH PASSING THROUGH HYDROKINETIC TURBINES

    SciTech Connect (OSTI)

    Romero Gomez, Pedro DJ; Richmond, Marshall C.

    2014-04-17

    Evaluating the consequences from blade-strike of fish on marine hydrokinetic (MHK) turbine blades is essential for incorporating environmental objectives into the integral optimization of machine performance. For instance, experience with conventional hydroelectric turbines has shown that innovative shaping of the blade and other machine components can lead to improved designs that generate more power without increased impacts to fish and other aquatic life. In this work, we used unsteady computational fluid dynamics (CFD) simulations of turbine flow and discrete element modeling (DEM) of particle motion to estimate the frequency and severity of collisions between a horizontal axis MHK tidal energy device and drifting aquatic organisms or debris. Two metrics are determined with the method: the strike frequency and survival rate estimate. To illustrate the procedure step-by-step, an exemplary case of a simple runner model was run and compared against a probabilistic model widely used for strike frequency evaluation. The results for the exemplary case showed a strong correlation between the two approaches. In the application case of the MHK turbine flow, turbulent flow was modeled using detached eddy simulation (DES) in conjunction with a full moving rotor at full scale. The CFD simulated power and thrust were satisfactorily comparable to experimental results conducted in a water tunnel on a reduced scaled (1:8.7) version of the turbine design. A cloud of DEM particles was injected into the domain to simulate fish or debris that were entrained into the turbine flow. The strike frequency was the ratio of the count of colliding particles to the crossing sample size. The fish length and approaching velocity were test conditions in the simulations of the MHK turbine. Comparisons showed that DEM-based frequencies tend to be greater than previous results from Lagrangian particles and probabilistic models, mostly because the DEM scheme accounts for both the geometric aspects of the passage event ---which the probabilistic method does--- as well as the fluid-particle interactions ---which the Lagrangian particle method does. The DEM-based survival rates were comparable to laboratory results for small fish but not for mid-size fish because of the considerably different turbine diameters. The modeling framework can be used for applications that aim at evaluating the biological performance of MHK turbine units during the design phase and to provide information to regulatory agencies needed for the environmental permitting process.

  6. Instrumentation for Monitoring around Marine Renewable Energy Converters: Workshop Final Report

    SciTech Connect (OSTI)

    Polagye, B. L.; Copping, A. E.; Brown-Saracino, J.; Suryan, R.; Kramer, S.; Smith, C.

    2014-01-14

    To better understand the state of instrumentation and capabilities for monitoring around marine energy converters, the U.S. Department of Energy directed Pacific Northwest National Laboratory and the Northwest National Marine Renewable Energy Center at the University of Washington to convene an invitation-only workshop of experts from around the world to address instrumentation needs.

  7. AlbaTERN | Open Energy Information

    Open Energy Info (EERE)

    AlbaTERN Jump to: navigation, search Name: AlbaTERN Address: Midlothian Innovation Centre Place: Pentlandfield Roslin Midlothian Zip: EH25 9RE Sector: Marine and Hydrokinetic Phone...

  8. Vert Labs LLP | Open Energy Information

    Open Energy Info (EERE)

    Labs LLP Jump to: navigation, search Name: Vert Labs LLP Address: Glasgow G2 4JR Region: United Kingdom Sector: Marine and Hydrokinetic Year Founded: 2011 Phone Number: 79261700117...

  9. Langlee Wave Power AS | Open Energy Information

    Open Energy Info (EERE)

    Power AS Address: Smedsvingen 4 Entrance B 1st floor Place: Hvalstad Zip: 1395 Region: Norway Sector: Marine and Hydrokinetic Phone Number: +47 90044104 Website: www.langlee.no...

  10. Ing Arvid Nesheim | Open Energy Information

    Open Energy Info (EERE)

    Name: Ing Arvid Nesheim Address: Hoymyrmarka 123A Place: Vollen Zip: 1391 Region: Norway Sector: Marine and Hydrokinetic Phone Number: 47 951 08 439 Website: www.anwsite.com...

  11. Ecole Centrale de Nantes | Open Energy Information

    Open Energy Info (EERE)

    Centrale de Nantes Address: 1 rue de la No Place: Nantes Zip: 92101-44321 Region: France Sector: Marine and Hydrokinetic Phone Number: +33 240 37 25 26 Website:...

  12. Rene Wave Ltd | Open Energy Information

    Open Energy Info (EERE)

    Rene Wave Ltd Jump to: navigation, search Name: Rene Wave Ltd Address: 85 Emmett Ave Suite 2508 Place: Toronto Zip: M6M 5A2 Region: Canada Sector: Marine and Hydrokinetic Phone...

  13. Free Flow 69 | Open Energy Information

    Open Energy Info (EERE)

    Flow 69 Jump to: navigation, search Name: Free Flow 69 Address: Unit 9 Windmill Ind Est Windmill Place: Fowey Zip: PL23 1HB Region: United Kingdom Sector: Marine and Hydrokinetic...

  14. Energy Department Announces $22 Million for Marine Energy Demonstratio...

    Office of Environmental Management (EM)

    electricity from waves, tides, and currents and to improve environmental monitoring ... thus increasing sustainable electricity generation from ocean and river energy resources. ...

  15. 50 CFR 18 - Marine Mammals | Open Energy Information

    Open Energy Info (EERE)

    50 CFR 18 - Marine Mammals Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 50 CFR 18 - Marine MammalsLegal Abstract These...

  16. Scotrenewables Wind Power and Marine Power Ltd | Open Energy...

    Open Energy Info (EERE)

    Wind Power and Marine Power Ltd Jump to: navigation, search Name: Scotrenewables Wind Power and Marine Power Ltd Place: Orkey, Scotland, United Kingdom Zip: KW16 3AW Sector:...

  17. The Marine Mammal Protection Act of 1972 | Open Energy Information

    Open Energy Info (EERE)

    The Marine Mammal Protection Act of 1972 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: The Marine Mammal Protection Act of...

  18. 2013 Federal Energy and Water Management Award Winner Marine Corps Recruit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    San Diego | Department of Energy Marine Corps Recruit San Diego 2013 Federal Energy and Water Management Award Winner Marine Corps Recruit San Diego PDF icon fewm13_usmc_mcdepotsandiego_highres.pdf PDF icon fewm13_usmc_mcdepotsandiego.pdf More Documents & Publications Save Energy Now Assessment Helps Expand Energy Management Program at Shaw Industries 2013 Federal Energy and Water Management Award Winners Chris Manis, Randy Monohan, Laura Nelson, Mark Rodriguez, and Mick Wasco CX-003226:

  19. MHK Technologies/Underwater Electric Kite Turbines | Open Energy...

    Open Energy Info (EERE)

    Chitokoloki Project *MHK ProjectsCoal Creek Project *MHK ProjectsHalf Moon Cove Tidal Project *MHK ProjectsIndian River Tidal Hydrokinetic Energy Project *MHK Projects...

  20. SyncWaveSystems Inc | Open Energy Information

    Open Energy Info (EERE)

    SyncWaveSystems Inc Jump to: navigation, search Name: SyncWaveSystems Inc Region: Canada Sector: Marine and Hydrokinetic Website: www.syncwavesystems.com This company is listed in...