National Library of Energy BETA

Sample records for marine boundary layer

  1. Marine Boundary Layer Cloud Observations in the Azores (Journal...

    Office of Scientific and Technical Information (OSTI)

    Marine Boundary Layer Cloud Observations in the Azores Citation Details ... Publication Date: 2012-11-01 OSTI Identifier: 1059795 Report Number(s): BNL--98829-2012-JA Journal ID: ISSN ...

  2. Local Correlations and Multi-Fractal Behaviour in Marine Boundary Layer Cloud Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Local Correlations and Multi-Fractal Behaviour in Marine Boundary Layer Cloud Dynamics N. Kitova and M. A. Mikhalev Institute of Electronics Bulgarian Academy of Sciences Sofia 1784, Bulgaria K. Ivanova Department of Meteorology Pennsylvania State University University Park, Pennsylvania M. Ausloos Institute of Physics University of Liège Liège, Belgium T. P. Ackerman Pacific Northwest National Laboratory Richland, Washington Introduction The marine boundary layer (MBL) cloud dynamics is

  3. Marine boundary layer structure as observed by A-train satellites

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, Tao; Wang, Zhien; Zhang, Damao; Chen, Bing

    2016-05-13

    Here, the marine boundary layer (MBL) structure is important to the marine low cloud processes, and the exchange of heat, momentum, and moisture between oceans and the low atmosphere. This study examines the MBL structure over the eastern Pacific region and further explores the controlling factors of MBL structure over the global oceans with a new 4-year satellite-based data set. The MBL top (boundary layer height, BLH) and the mixing layer height (MLH) were identified using the MBL aerosol lidar backscattering from the CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations). Results showed that the MBL is generally decoupled withmore » MLH/BLH ratio ranging from ~0.5 to ~0.8 over the eastern Pacific Ocean region. The MBL decoupling magnitude is mainly controlled by estimated inversion strength (EIS), which in turn controls the cloud top entrainment process. The systematic differences between drizzling and non-drizzling stratocumulus tops also show dependence on EIS. This may be related to the meso-scale circulations or gravity wave in the MBL. Further analysis indicates that the MBL shows a similar decoupled structure for clear-sky and cumulus-cloud-topped conditions, but is better mixed under stratiform cloud breakup and overcast conditions.« less

  4. Marine boundary layer structure as observed by A-train satellites

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, Tao; Wang, Zhien; Zhang, Damao; Chen, Bing

    2016-05-13

    The marine boundary layer (MBL) structure is important to the marine low cloud processes, and the exchange of heat, momentum, and moisture between oceans and the low atmosphere. This study examines the MBL structure over the eastern Pacific region and further explores the controlling factors of MBL structure over the global oceans with a new 4-year satellite-based data set. The MBL top (boundary layer height, BLH) and the mixing layer height (MLH) were identified using the MBL aerosol lidar backscattering from the CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations). Results showed that the MBL is generally decoupled with MLH ∕ BLHmore » ratio ranging from  ∼  0.5 to  ∼  0.8 over the eastern Pacific Ocean region. The MBL decoupling magnitude is mainly controlled by estimated inversion strength (EIS), which in turn controls the cloud top entrainment process. The systematic differences between drizzling and non-drizzling stratocumulus tops also show dependence on EIS. This may be related to the meso-scale circulations or gravity wave in the MBL. Further analysis indicates that the MBL shows a similar decoupled structure for clear-sky and cumulus-cloud-topped conditions, but is better mixed under stratiform cloud breakup and overcast conditions.« less

  5. Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment

    SciTech Connect (OSTI)

    Wood, Robert; Luke, Ed; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; deSzoeke, S.; Yuter, Sandra; Miller, Matthew; Mechem, David; Tselioudis, George; Chiu, Christine; Mann, Julia; O Connor, Ewan; Hogan, Robin; Dong, Xiquan; Miller, Mark; Ghate, Virendra; Jefferson, Anne; Min, Qilong; Minnis, Patrick; Palinkonda, Rabindra; Albrecht, Bruce; Hannay, Cecile; Lin, Yanluan

    2014-04-27

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.

  6. Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wood, Robert; Luke, Ed; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; deSzoeke, S.; Yuter, Sandra; et al

    2014-04-27

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulusmore » and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.« less

  7. Clouds, Aerosols, and Precipitation in the Marine Boundary Layer: An Arm Mobile Facility Deployment

    SciTech Connect (OSTI)

    Wood, Robert; Wyant, Matthew; Bretherton, Christopher S.; Rémillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; de Szoeke, Simone; Yuter, Sandra; Miller, Matthew; Mechem, David; Tselioudis, George; Chiu, J. Christine; Mann, Julian A. L.; O’Connor, Ewan J.; Hogan, Robin J.; Dong, Xiquan; Miller, Mark; Ghate, Virendra; Jefferson, Anne; Min, Qilong; Minnis, Patrick; Palikonda, Rabindra; Albrecht, Bruce; Luke, Ed; Hannay, Cecile; Lin, Yanluan

    2015-03-01

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) 38 deployment at Graciosa Island in the Azores generated a 21 month (April 2009-December 2010) 39 comprehensive dataset documenting clouds, aerosols and precipitation using the Atmospheric 40 Radiation Measurement (ARM) Mobile Facility (AMF). The scientific aim of the deployment is 41 to gain improved understanding of the interactions of clouds, aerosols and precipitation in the 42 marine boundary layer. 43 Graciosa Island straddles the boundary between the subtropics and midlatitudes in the 44 Northeast Atlantic Ocean, and consequently experiences a great diversity of meteorological and 45 cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus 46 occurring regularly. Approximately half of all clouds contained precipitation detectable as radar 47 echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-48 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide 49 range of aerosol conditions was sampled during the deployment consistent with the diversity of 50 sources as indicated by back trajectory analysis. Preliminary findings suggest important two-way 51 interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation 52 and cloud radiative properties while being controlled in part by precipitation scavenging. 53 The data from at Graciosa are being compared with short-range forecasts made a variety 54 of models. A pilot analysis with two climate and two weather forecast models shows that they 55 reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well, 56 but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to 57 be a long-term ARM site that became operational in October 2013.

  8. Marine boundary layer structure as observed by space-based Lidar

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, T.; Wang, Z.; Zhang, D.

    2015-12-03

    The marine boundary layer (MBL) structure is important to the exchange of heat, momentum, and moisture between oceans and the low atmosphere and to the marine low cloud processes. This paper explores MBL structure over the eastern Pacific region with a new 4 year satellite-based dataset. The MBL aerosol lidar backscattering from the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) was used to identify the MBL top (BLH) and the mixing layer height (MLH). Results showed that MBL is generally decoupled with MLH / BLH ratio ranging from ? 0.5 to ? 0.8 and the MBL decoupling magnitude ismoremainly controlled by estimated inversion strength (EIS) that affects the cloud top entrainment process. The systematic differences between drizzling and non-drizzling stratocumulus tops, which may relate to the meso-scale circulations or gravity wave in MBL, also show dependence on EIS. Further analysis indicated that the MBL shows similar decoupled structure for clear sky and cumulus cloud-topped conditions, but is better mixed under stratiform cloud breakup and overcast conditions.less

  9. Clouds, Precipitation, and Marine Boundary Layer Structure during the MAGIC Field Campaign

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xiaoli; Kollias, Pavlos; Lewis, Ernie R.

    2015-03-01

    The recent ship-based MAGIC (Marine ARM GCSS Pacific Cross-Section Intercomparison (GPCI) Investigation of Clouds) field campaign with the marine-capable Second ARM Mobile Facility (AMF2) deployed on the Horizon Lines cargo container M/V Spirit provided nearly 200 days of intraseasonal high-resolution observations of clouds, precipitation, and marine boundary layer (MBL) structure on multiple legs between Los Angeles, California, and Honolulu, Hawaii. During the deployment, MBL clouds exhibited a much higher frequency of occurrence than other cloud types and occurred more often in the warm season than in the cold season. MBL clouds demonstrated a propensity to produce precipitation, which often evaporatedmore » before reaching the ocean surface. The formation of stratocumulus is strongly correlated to a shallow MBL with a strong inversion and a weak transition, while cumulus formation is associated with a much weaker inversion and stronger transition. The estimated inversion strength is shown to depend seasonally on the potential temperature at 700 hPa. The location of the commencement of systematic MBL decoupling always occurred eastward of the locations of cloud breakup, and the systematic decoupling showed a strong moisture stratification. The entrainment of the dry warm air above the inversion appears to be the dominant factor triggering the systematic decoupling, while surface latent heat flux, precipitation, and diurnal circulation did not play major roles. MBL clouds broke up over a short spatial region due to the changes in the synoptic conditions, implying that in real atmospheric conditions the MBL clouds do not have enough time to evolve as in the idealized models. (auth)« less

  10. Clouds, Precipitation, and Marine Boundary Layer Structure during the MAGIC Field Campaign

    SciTech Connect (OSTI)

    Zhou, Xiaoli; Kollias, Pavlos; Lewis, Ernie R.

    2015-03-01

    The recent ship-based MAGIC (Marine ARM GCSS Pacific Cross-Section Intercomparison (GPCI) Investigation of Clouds) field campaign with the marine-capable Second ARM Mobile Facility (AMF2) deployed on the Horizon Lines cargo container M/V Spirit provided nearly 200 days of intraseasonal high-resolution observations of clouds, precipitation, and marine boundary layer (MBL) structure on multiple legs between Los Angeles, California, and Honolulu, Hawaii. During the deployment, MBL clouds exhibited a much higher frequency of occurrence than other cloud types and occurred more often in the warm season than in the cold season. MBL clouds demonstrated a propensity to produce precipitation, which often evaporated before reaching the ocean surface. The formation of stratocumulus is strongly correlated to a shallow MBL with a strong inversion and a weak transition, while cumulus formation is associated with a much weaker inversion and stronger transition. The estimated inversion strength is shown to depend seasonally on the potential temperature at 700 hPa. The location of the commencement of systematic MBL decoupling always occurred eastward of the locations of cloud breakup, and the systematic decoupling showed a strong moisture stratification. The entrainment of the dry warm air above the inversion appears to be the dominant factor triggering the systematic decoupling, while surface latent heat flux, precipitation, and diurnal circulation did not play major roles. MBL clouds broke up over a short spatial region due to the changes in the synoptic conditions, implying that in real atmospheric conditions the MBL clouds do not have enough time to evolve as in the idealized models. (auth)

  11. On the Interaction between Marine Boundary Layer Cellular Cloudiness and Surface Heat Fluxes

    SciTech Connect (OSTI)

    Kazil, J.; Feingold, G.; Wang, Hailong; Yamaguchi, T.

    2014-01-02

    The interaction between marine boundary layer cellular cloudiness and surface uxes of sensible and latent heat is investigated. The investigation focuses on the non-precipitating closed-cell state and the precipitating open-cell state at low geostrophic wind speed. The Advanced Research WRF model is used to conduct cloud-system-resolving simulations with interactive surface fluxes of sensible heat, latent heat, and of sea salt aerosol, and with a detailed representation of the interaction between aerosol particles and clouds. The mechanisms responsible for the temporal evolution and spatial distribution of the surface heat fluxes in the closed- and open-cell state are investigated and explained. It is found that the horizontal spatial structure of the closed-cell state determines, by entrainment of dry free tropospheric air, the spatial distribution of surface air temperature and water vapor, and, to a lesser degree, of the surface sensible and latent heat flux. The synchronized dynamics of the the open-cell state drives oscillations in surface air temperature, water vapor, and in the surface fluxes of sensible and latent heat, and of sea salt aerosol. Open-cell cloud formation, cloud optical depth and liquid water path, and cloud and rain water path are identified as good predictors of the spatial distribution of surface air temperature and sensible heat flux, but not of surface water vapor and latent heat flux. It is shown that by enhancing the surface sensible heat flux, the open-cell state creates conditions by which it is maintained. While the open-cell state under consideration is not depleted in aerosol, and is insensitive to variations in sea-salt fluxes, it also enhances the sea-salt flux relative to the closed-cell state. In aerosol-depleted conditions, this enhancement may replenish the aerosol needed for cloud formation, and hence contribute to the perpetuation of the open-cell state as well. Spatial homogenization of the surface fluxes is found to have

  12. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-02-16

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer cloud using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulusmore » under stratocumulus, where cloud water path is retrieved with an error of 31 g m−2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the northeast Pacific. Here, retrieved cloud water path agrees well with independent 3-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m−2.« less

  13. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-07-02

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievalsmore » using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m-2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m-2.« less

  14. Near-surface Density Currents Observed in the Southeast Pacific Stratocumulus-topped Marine Boundary Layer

    SciTech Connect (OSTI)

    Wilbanks, Matt C.; Yuter, S. E.; de Szoeke, S.; Brewer, W. A.; Miller, Matthew A.; Hall, Andrew M.; Burleyson, Casey D.

    2015-09-01

    Density currents (i.e. cold pools or outflows) beneath marine stratocumulus clouds are characterized using a 30-d data set of ship-based observations obtained during the 2008 Variability of American Monsoon Systems (VAMOS) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific. An objective method identifies 71 density current fronts using an air density criterion and isolates each density current’s core (peak density) and tail (dissipating) zone. Compared to front and core zones, most density current tails exhibited weaker density gradients and wind anomalies elongated about the axis of the mean wind. The mean cloud-level advection relative to the surface layer wind (1.9 m s-1) nearly matches the mean density current propagation speed (1.8 m s-1). The similarity in speeds allows drizzle cells to deposit tails in their wakes. Based on high-resolution scanning Doppler lidar data, prefrontal updrafts had a mean intensity of 0.91 m s-1, reached an average altitude of 800 m, and were often surmounted by low-lying shelf clouds not connected to the overlying stratocumulus cloud. Nearly 90% of density currents were identified when C-band radar estimated 30-km diameter areal average rain rates exceeded 1 mm d-1. Rather than peaking when rain rates are highest overnight, density current occurrence peaks between 0600 and 0800 local solar time when enhanced local drizzle co-occurs with shallow subcloud dry and stable layers. The dry layers may contribute to density current formation by enhancing subcloud evaporation of drizzle. Density currents preferentially occur in regions of open cells but also occur in regions of closed cells.

  15. Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: the VOCA intercomparison

    SciTech Connect (OSTI)

    Wyant, M. C.; Bretherton, Christopher S.; Wood, Robert; Carmichael, Gregory; Clarke, A. D.; Fast, Jerome D.; George, R.; Gustafson, William I.; Hannay, Cecile; Lauer, Axel; Lin, Yanluan; Morcrette, J. -J.; Mulcahay, Jane; Saide, Pablo; Spak, S. N.; Yang, Qing

    2015-01-09

    A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October–November 2008 VOCALS REx (VAMOS Ocean Cloud Atmosphere Land Study Regional Experiment) field campaign. Regional models simulate the period continuously in boundary-forced free-running mode, while global forecast models and GCMs (general circulation models) are run in forecast mode. The models are compared to extensive observations along a line at 20° S extending westward from the South American coast. Most of the models simulate cloud and aerosol characteristics and gradients across the region that are recognizably similar to observations, despite the complex interaction of processes involved in the problem, many of which are parameterized or poorly resolved. Some models simulate the regional low cloud cover well, though many models underestimate MBL (marine boundary layer) depth near the coast. Most models qualitatively simulate the observed offshore gradients of SO2, sulfate aerosol, CCN (cloud condensation nuclei) concentration in the MBL as well as differences in concentration between the MBL and the free troposphere. Most models also qualitatively capture the decrease in cloud droplet number away from the coast. However, there are large quantitative intermodel differences in both means and gradients of these quantities. Many models are able to represent episodic offshore increases in cloud droplet number and aerosol concentrations associated with periods of offshore flow. Most models underestimate CCN (at 0.1% supersaturation) in the MBL and free troposphere. The GCMs also have difficulty simulating coastal gradients in CCN and cloud droplet number concentration near the coast. The overall performance of the models demonstrates their potential utility in simulating aerosol–cloud interactions in the MBL, though quantitative estimation of aerosol–cloud interactions and aerosol indirect effects of MBL

  16. Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: the VOCA intercomparison

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wyant, M. C.; Bretherton, Christopher S.; Wood, Robert; Carmichael, Gregory; Clarke, A. D.; Fast, Jerome D.; George, R.; Gustafson, William I.; Hannay, Cecile; Lauer, Axel; et al

    2015-01-09

    A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October–November 2008 VOCALS REx (VAMOS Ocean Cloud Atmosphere Land Study Regional Experiment) field campaign. Regional models simulate the period continuously in boundary-forced free-running mode, while global forecast models and GCMs (general circulation models) are run in forecast mode. The models are compared to extensive observations along a line at 20° S extending westward from the South American coast. Most of the models simulate cloud and aerosol characteristics and gradients across the region that are recognizably similar tomore » observations, despite the complex interaction of processes involved in the problem, many of which are parameterized or poorly resolved. Some models simulate the regional low cloud cover well, though many models underestimate MBL (marine boundary layer) depth near the coast. Most models qualitatively simulate the observed offshore gradients of SO2, sulfate aerosol, CCN (cloud condensation nuclei) concentration in the MBL as well as differences in concentration between the MBL and the free troposphere. Most models also qualitatively capture the decrease in cloud droplet number away from the coast. However, there are large quantitative intermodel differences in both means and gradients of these quantities. Many models are able to represent episodic offshore increases in cloud droplet number and aerosol concentrations associated with periods of offshore flow. Most models underestimate CCN (at 0.1% supersaturation) in the MBL and free troposphere. The GCMs also have difficulty simulating coastal gradients in CCN and cloud droplet number concentration near the coast. The overall performance of the models demonstrates their potential utility in simulating aerosol–cloud interactions in the MBL, though quantitative estimation of aerosol–cloud interactions and aerosol indirect effects of MBL clouds

  17. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) Final Campaign Report

    SciTech Connect (OSTI)

    Wood, R.

    2016-01-01

    The extensive coverage of low clouds over the subtropical eastern oceans greatly impacts the current climate. In addition, the response of low clouds to changes in atmospheric greenhouse gases and aerosols is a major source of uncertainty, which thwarts accurate prediction of future climate change. Low clouds are poorly simulated in climate models, partly due to inadequate long-term simultaneous observations of their macrophysical and microphysical structure, radiative effects, and associated aerosol distribution in regions where their impact is greatest. The thickness and extent of subtropical low clouds is dependent on tight couplings between surface fluxes of heat and moisture, radiative cooling, boundary layer turbulence, and precipitation (much of which evaporates before reaching the ocean surface and is closely connected to the abundance of cloud condensation nuclei). These couplings have been documented as a result of past field programs and model studies. However, extensive research is still required to achieve a quantitative understanding sufficient for developing parameterizations, which adequately predict aerosol indirect effects and low cloud response to climate perturbations. This is especially true of the interactions between clouds, aerosol, and precipitation. These processes take place in an ever-changing synoptic environment that can confound interpretation of short time period observations.

  18. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer: Analysis of Results from the ARM Mobile Facility Deployment to the Azores (2009/2010)

    SciTech Connect (OSTI)

    Wood, Robert

    2013-05-31

    The project focuses upon dataset analysis and synthesis of datasets from the AMF deployment entitled “Clouds, Aerosols, and Precipitation in the Marine Boundary Layer (CAP‐MBL)” at Graciosa Island in the Azores. Wood is serving a PI for this AMF deployment.

  19. Boundary Layer Structure:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boundary Layer Structure: a comparison between methods and sites Thiago Biscaro Suzane de Sá Jae-In Song Shaoyue "Emily" Qiu Mentors: Virendra Ghate and Ewan O'Connor July 24 2015 1 st ever ARM Summer Training Outline * IntroducQon * Methodology * Results - SGP - MAO - Comparison between the 2 sites * Conclusions INTRODUCTION Focus: esQmates of PBL height Boundary Layer: "The boUom layer of the troposphere that is in contact with the surface of the earth." (AMS, Glossary of

  20. Clouds, Aerosols and Precipitation in the Marine Boundary Layer (CAP-MBL) AMF Deployment Graciosa Island, Azores, NE Atlantic Ocean May 2009-December 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Marine Boundary Layer (CAP-MBL) Graciosa Island, Azores, NE Atlantic Ocean May 2009-December 2010 Rob Wood, University of Washington CAP-MBL Proposal Team AMF Deployment Team Thanks to Mark Miller: AMF Site Scientist Kim Nitschke: AMF Site Manager Importance of Low-Clouds for Climate Imperative that we understand the processes controlling the formation, maintenance and dissipation of low clouds in order to improve their representation in climate models. Which clouds matter for climate

  1. Boundary Layer Cloud Turbulence Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boundary Layer Cloud Turbulence Characteristics Virendra Ghate Bruce Albrecht Parameter Observational Readiness (/10) Modeling Need (/10) Cloud Boundaries 9 9 Cloud Fraction Variance Skewness Up/Downdraft coverage Dominant Freq. signal Dissipation rate ??? Observation-Modeling Interface

  2. ARM - Measurement - Planetary boundary layer height

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsPlanetary boundary layer height ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Planetary boundary layer height Top of the planetary boundary layer; also known as depth or height of the mixing layer. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  3. Boundary Layer The U.S. Department of Energy's Atmospheric Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol, and Precipitation in the Marine Boundary Layer The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is sponsoring a 20-month field study on Graciosa Island in the Azores. Scientists involved in the Clouds, Aerosol, and Precipitation in the Marine Boundary Layer field campaign are using the ARM Mobile Facility-a portable climate observatory-to study low-level clouds and aerosol in a marine environment. Collaborators from the Regional

  4. Cyclone separator having boundary layer turbulence control

    DOE Patents [OSTI]

    Krishna, Coimbatore R.; Milau, Julius S.

    1985-01-01

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.

  5. Modeling the summertime Arctic cloudy boundary layer

    SciTech Connect (OSTI)

    Curry, J.A.; Pinto, J.O.; McInnes, K.L.

    1996-04-01

    Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.

  6. ARM - Field Campaign - Lower Atmospheric Boundary Layer Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Campaigns 2013 Lower Atmospheric Boundary Layer Experiment 2013.05.28, Turner, SGP ... Lead Scientist : David Turner For data sets, see below. Abstract Boundary layer turbulence ...

  7. A dual mass flux framework for boundary layer convection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A dual mass flux framework for boundary layer convection Neggers, Roel European Centre for Medium-range Weather Forecasts (ECMWF) Category: Modeling A new convective boundary layer...

  8. Boundary Layer Cloudiness Parameterizations Using ARM Observations

    SciTech Connect (OSTI)

    Bruce Albrecht

    2004-09-15

    This study used DOE ARM data and facilities to: (1) study macroscopic properties of continental stratus clouds at SGP and the factors controlling these properties, (2) develop a scientific basis for understanding the processes responsible for the formation of boundary layer clouds using ARM observations in conjunction with simple parametric models and LES, and (3) evaluate cumulus cloud characteristics retrieved from the MMCR operating at TWP-Nauru. In addition we have used high resolution 94 GHz observations of boundary layer clouds and precipitation to: (1) develop techniques for using high temporal resolution Doppler velocities to study large-eddy circulations and turbulence in boundary layer clouds and estimate the limitations of using current and past MMCR data for boundary layer cloud studies, (2) evaluate the capability and limitations of the current MMCR data for estimating reflectivity, vertical velocities, and spectral under low- signal-to-noise conditions associated with weak no n-precipitating clouds, (3) develop possible sampling modes for the new MMCR processors to allow for adequate sampling of boundary layer clouds, and (4) retrieve updraft and downdraft structures under precipitating conditions.

  9. ARM - Field Campaign - Boundary Layer Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsBoundary Layer Cloud IOP Campaign Links Campaign Images ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Boundary Layer Cloud IOP 2005.07.11 - 2005.08.07 Lead Scientist : William Shaw For data sets, see below. Abstract Investigators from Pacific Northwest National Laboratory, in collaboration with scientists from a number of other institutions, carried out a month of intensive measurements at

  10. Planetary Boundary Layer from AERI and MPL

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sawyer, Virginia

    2014-02-13

    The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of the surface strongly affect the PBL top height, it follows diurnal and seasonal cycles and may vary by hundreds of meters over a 24-hour period. The cap the PBL imposes on low-level aerosol transport makes aerosol concentration an effective proxy for PBL height: the top of the PBL is marked by a rapid transition from polluted, well-mixed boundary-layer air to the cleaner, more stratified free troposphere. Micropulse lidar (MPL) can provide much higher temporal resolution than radiosonde and better vertical resolution than infrared spectrometer (AERI), but PBL heights from all three instruments at the ARM SGP site are compared to one another for validation. If there is agreement among them, the higher-resolution remote sensing-derived PBL heights can accurately fill in the gaps left by the low frequency of radiosonde launches, and thus improve model parameterizations and our understanding of boundary-layer processes.

  11. Thick diffusion limit boundary layer test problems

    SciTech Connect (OSTI)

    Bailey, T. S.; Warsa, J. S.; Chang, J. H.; Adams, M. L.

    2013-07-01

    We develop two simple test problems that quantify the behavior of computational transport solutions in the presence of boundary layers that are not resolved by the spatial grid. In particular we study the quantitative effects of 'contamination' terms that, according to previous asymptotic analyses, may have a detrimental effect on the solutions obtained by both discontinuous finite element (DFEM) and characteristic-method (CM) spatial discretizations, at least for boundary layers caused by azimuthally asymmetric incident intensities. Few numerical results have illustrated the effects of this contamination, and none have quantified it to our knowledge. Our test problems use leading-order analytic solutions that should be equal to zero in the problem interior, which means the observed interior solution is the error introduced by the contamination terms. Results from DFEM solutions demonstrate that the contamination terms can cause error propagation into the problem interior for both orthogonal and non-orthogonal grids, and that this error is much worse for non-orthogonal grids. This behavior is consistent with the predictions of previous analyses. We conclude that these boundary layer test problems and their variants are useful tools for the study of errors that are introduced by unresolved boundary layers in diffusive transport problems. (authors)

  12. Bursting frequency prediction in turbulent boundary layers

    SciTech Connect (OSTI)

    LIOU,WILLIAM W.; FANG,YICHUNG

    2000-02-01

    The frequencies of the bursting events associated with the streamwise coherent structures of spatially developing incompressible turbulent boundary layers were predicted using global numerical solution of the Orr-Sommerfeld and the vertical vorticity equations of hydrodynamic stability problems. The structures were modeled as wavelike disturbances associated with the turbulent mean flow. The global method developed here involves the use of second and fourth order accurate finite difference formula for the differential equations as well as the boundary conditions. An automated prediction tool, BURFIT, was developed. The predicted resonance frequencies were found to agree very well with previous results using a local shooting technique and measured data.

  13. SUPERSONIC SHEAR INSTABILITIES IN ASTROPHYSICAL BOUNDARY LAYERS

    SciTech Connect (OSTI)

    Belyaev, Mikhail A.; Rafikov, Roman R., E-mail: rrr@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08540 (United States)

    2012-06-20

    Disk accretion onto weakly magnetized astrophysical objects often proceeds via a boundary layer (BL) that forms near the object's surface, in which the rotation speed of the accreted gas changes rapidly. Here, we study the initial stages of formation for such a BL around a white dwarf or a young star by examining the hydrodynamical shear instabilities that may initiate mixing and momentum transport between the two fluids of different densities moving supersonically with respect to each other. We find that an initially laminar BL is unstable to two different kinds of instabilities. One is an instability of a supersonic vortex sheet (implying a discontinuous initial profile of the angular speed of the gas) in the presence of gravity, which we find to have a growth rate of order (but less than) the orbital frequency. The other is a sonic instability of a finite width, supersonic shear layer, which is similar to the Papaloizou-Pringle instability. It has a growth rate proportional to the shear inside the transition layer, which is of order the orbital frequency times the ratio of stellar radius to the BL thickness. For a BL that is thin compared to the radius of the star, the shear rate is much larger than the orbital frequency. Thus, we conclude that sonic instabilities play a dominant role in the initial stages of nonmagnetic BL formation and give rise to very fast mixing between disk gas and stellar fluid in the supersonic regime.

  14. "Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: "Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites" Citation Details In-Document Search Title: "Lidar Investigations ...

  15. ARM - Field Campaign - 2013 Lower Atmospheric Boundary Layer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lower Atmospheric Boundary Layer Experiment 2012.09.17, Turner, SGP Comments? We would ... Lead Scientist : David Turner For data sets, see below. Abstract Instruments were deployed ...

  16. ARM - PI Product - Planetary Boundary Layer from AERI and MPL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsPlanetary Boundary Layer from AERI and MPL ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Planetary Boundary Layer from AERI and MPL The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of

  17. Planetary Boundary Layer from AERI and MPL (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Because radiative heating and cooling of the surface strongly affect the PBL top height, ... thus improve model parameterizations and our understanding of boundary-layer processes. ...

  18. RACORO continental boundary layer cloud investigations. Part...

    Office of Scientific and Technical Information (OSTI)

    large-scale forcings Observation-based modeling case studies of continental boundary ... The cases developed are available to the general modeling community for studying ...

  19. Simulation of High Reynolds Number Turbulent Boundary Layers | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility A visualization of the velocity in a boundary layer at Reynolds numbers up to 2100 shows the growth of the turbulence structures out into the free stream as it evolves downstream (to the right) and the intermittent uneven boundary of the turbulent region. Juan Sillero, Universidad Politécnica de Madrid. Simulation of High Reynolds Number Turbulent Boundary Layers PI Name: Robert Moser PI Email: rmoser@ices.utexas.edu Institution: University of Texas at Austin

  20. Size distributions of boundary-layer clouds

    SciTech Connect (OSTI)

    Stull, R.; Berg, L.; Modzelewski, H.

    1996-04-01

    Scattered fair-weather clouds are triggered by thermals rising from the surface layer. Not all surface layer air is buoyant enough to rise. Also, each thermal has different humidities and temperatures, resulting in interthermal variability of their lifting condensation levels (LCL). For each air parcel in the surface layer, it`s virtual potential temperature and it`s LCL height can be computed.

  1. ARM - Field Campaign - Stable Boundary Layer Education (StaBLE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsStable Boundary Layer Education (StaBLE) Campaign Links Final Campaign Summary ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Stable Boundary Layer Education (StaBLE) 2011.10.01 - 2014.05.31 Lead Scientist : David Turner For data sets, see below. Abstract The properties and processing in the nocturnal stable boundary layer are not well understood, which makes it difficult to represent

  2. Microsoft Word - Group 1 Boundary Layer(RS).docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Planetary Boundary Layer Height: A Comparison of Estimation Methods and Sites Report Participants: Thiago Biscaro, Instituto Nacional de Pesquisas Espaciais, Brazil Suzane S. de Sá, Harvard University Jae-In Song, Yonsei University, Korea Instructors: Virendra Ghate, Argonne National Laboratory Ewan O'Connor, Finnish Meteorological Institute, University of Reading July 2015 Group 1, July 2015, ARM Summer Training and Science Applications 1 1.0 Planetary Boundary Layer Height: A Comparison of

  3. ARM - Field Campaign - Boundary Layer CO2 Using CW Lidar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsBoundary Layer CO2 Using CW Lidar Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Boundary Layer CO2 Using CW Lidar 2005.05.21 - 2005.05.24 Lead Scientist : Michael Dobbs Abstract Overflights Underway at ACRF Southern Great Plains Site (M.Dobbs/J.Liljegren) Science collaborators at ITT Industries and the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) conducted flights over the Central

  4. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    SciTech Connect (OSTI)

    Klein, P; Bonin, TA; Newman, JF; Turner, DD; Chilson, P; Blumberg, WG; Mishra, S; Wainwright, CE; Carney, M; Jacobsen, EP; Wharton, S

    2015-11-01

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.

  5. Edge Plasma Boundary Layer Generated By Kink Modes in Tokamaks

    SciTech Connect (OSTI)

    L.E. Zakharov

    2010-11-22

    This paper describes the structure of the electric current generated by external kink modes at the plasma edge using the ideally conducting plasma model. It is found that the edge current layer is created by both wall touching and free boundary kink modes. Near marginal stability, the total edge current has a universal expression as a result of partial compensation of the ?-functional surface current by the bulk current at the edge. The resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.

  6. Vertical Velocities in Continental Boundary Layer Stratocumulus Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Velocities in Continental Boundary Layer Stratocumulus Clouds Virendra Ghate Bruce Albrecht and Pavlos Kollias Why BL Stratocumulus?? * Extensive Coverage - Cover ~24% of earth's surface - Persist of long time-scales * Impact on radiation budget - High SW albedo compared to land or ocean Klein and Hartmann 1993 But Why Continental Clouds? * They do exist - Monthly cloud fraction can vary from 10% to 23% * Impact on pollution & Diurnal Cycle - Affect pollutant venting out of BL & Aerosol

  7. Improving Subtropical Boundary Layer Cloudiness in the 2011 NCEP GFS

    SciTech Connect (OSTI)

    Fletcher, J. K.; Bretherton, Christopher S.; Xiao, Heng; Sun, Ruiyu N.; Han, J.

    2014-09-23

    The current operational version of National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) shows significant low cloud bias. These biases also appear in the Coupled Forecast System (CFS), which is developed from the GFS. These low cloud biases degrade seasonal and longer climate forecasts, particularly of short-wave cloud radiative forcing, and affect predicted sea surface temperature. Reducing this bias in the GFS will aid the development of future CFS versions and contributes to NCEP's goal of unified weather and climate modelling. Changes are made to the shallow convection and planetary boundary layer parameterisations to make them more consistent with current knowledge of these processes and to reduce the low cloud bias. These changes are tested in a single-column version of GFS and in global simulations with GFS coupled to a dynamical ocean model. In the single-column model, we focus on changing parameters that set the following: the strength of shallow cumulus lateral entrainment, the conversion of updraught liquid water to precipitation and grid-scale condensate, shallow cumulus cloud top, and the effect of shallow convection in stratocumulus environments. Results show that these changes improve the single-column simulations when compared to large eddy simulations, in particular through decreasing the precipitation efficiency of boundary layer clouds. These changes, combined with a few other model improvements, also reduce boundary layer cloud and albedo biases in global coupled simulations.

  8. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Boundary Layer RHI...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: X-Band Scanning ARM Cloud Radar (XSACR) Boundary Layer RHI Scan X-Band Scanning ARM Cloud Radar (XSACR) Boundary Layer RHI Scan Authors: Dan Nelson ; Joseph Hardin ; ...

  9. Characterization of structural response to hypersonic boundary-layer transition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Riley, Zachary B.; Deshmukh, Rohit; Miller, Brent A.; McNamara, Jack J.; Casper, Katya M.

    2016-05-24

    The inherent relationship between boundary-layer stability, aerodynamic heating, and surface conditions makes the potential for interaction between the structural response and boundary-layer transition an important and challenging area of study in high-speed flows. This paper phenomenologically explores this interaction using a fundamental two-dimensional aerothermoelastic model under the assumption of an aluminum panel with simple supports. Specifically, an existing model is extended to examine the impact of transition onset location, transition length, and transitional overshoot in heat flux and fluctuating pressure on the structural response of surface panels. Transitional flow conditions are found to yield significantly increased thermal gradients, and theymore » can result in higher maximum panel temperatures compared to turbulent flow. Results indicate that overshoot in heat flux and fluctuating pressure reduces the flutter onset time and increases the strain energy accumulated in the panel. Furthermore, overshoot occurring near the midchord can yield average temperatures and peak displacements exceeding those experienced by the panel subject to turbulent flow. Lastly, these results suggest that fully turbulent flow does not always conservatively predict the thermo-structural response of surface panels.« less

  10. Clear-sky and Cloudy Boundary Layers Virendra P. Ghate Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clear-sky and Cloudy Boundary Layers Virendra P. Ghate Argonne National Laboratory Define Boundary Layer Stull (1988) defined the atmospheric boundary layer as "the part of the troposphere that is directly influenced by the presence of the earth's surface, and responds to surface forcings with a time scale of about an hour or less." Typical Boundary Layer Depths and time-scales Scenario Time/Length scale Clear-air Convective 30 mins/1 km Cumulus Topped Boundary Layer 30 mins/1 km

  11. Clouds, Aerosols, and Precipitation in the Marine Boundary Layer...

    Office of Scientific and Technical Information (OSTI)

    ; Stemmler, Jayson ; de Szoeke, Simone ; Yuter, Sandra ; Miller, Matthew ; Mechem, David ; Tselioudis, George ; Chiu, J. Christine ; Mann, Julian A. L. ; O'Connor, Ewan J. ; ...

  12. Clouds, aerosol, and precipitation in the Marine Boundary Layer...

    Office of Scientific and Technical Information (OSTI)

    Jayson 1 ; deSzoeke, S. 5 ; Yuter, Sandra 6 ; Miller, Matthew 6 ; Mechem, David 7 ; Tselioudis, George 3 ; Chiu, Christine 8 ; Mann, Julia 8 ; O Connor, ...

  13. Clouds, Precipitation, and Marine Boundary Layer Structure during...

    Office of Scientific and Technical Information (OSTI)

    Authors: Zhou, Xiaoli 1 ; Kollias, Pavlos 1 ; Lewis, Ernie R. 2 + Show Author Affiliations McGill Univ., Montreal, Quebec (Canada); Dept. of Atmospheric and Oceanic Sciences ...

  14. On the Interaction between Marine Boundary Layer Cellular Cloudiness...

    Office of Scientific and Technical Information (OSTI)

    The investigation focuses on the non-precipitating closed-cell state and the precipitating open-cell state at low geostrophic wind speed. The Advanced Research WRF model is used to ...

  15. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer...

    Office of Scientific and Technical Information (OSTI)

    These couplings have been documented as a result of past field programs and model studies. However, extensive research is still required to achieve a quantitative understanding ...

  16. Joint retrievals of cloud and drizzle in marine boundary layer...

    Office of Scientific and Technical Information (OSTI)

    Specifically, the vertical structure of droplet size and water content of both cloud and ... cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g ...

  17. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  18. Structure of the nocturnal boundary layer over a complex terrain

    SciTech Connect (OSTI)

    Parker, M.J. ); Raman, S. . Dept. of Marine, Earth and Atmospheric Sciences)

    1992-01-01

    The complex nature of the nocturnal boundary layer (NBL) has been shown extensively in the literature Project STABLE was conducted in 1988 to study NBL turbulence and diffusion over the complex terrain of the Savannah River Site (SRS) near Augusta, Georgia. The third night of the study was particularly interesting because of the unusual phenomena observed in the structure of the NBL. Further analyses of microscale and mesoscale data from this night are presented using data from SRS network of eight 61 m towers over 900 km{sup 2}, from six launches of an instrumented tethersonde, from permanent SRL meteorological instrumentation at seven levels of the 304 m (1,000 ft) WJBF-TV tower near SRS, and additional data collected at 36 m (CC) by North Carolina State University (NCSU) including a one dimensional sonic anemometer, fine wire thermocouple, and a three dimensional propeller anemometer. Also, data from the nearby Plant Vogtle nuclear power plant observation tower and the National Weather Service at Augusta's Bush Field (AGS) are presented. The passage of a mesoscale phenomenon, defined as a microfront (with an explanation of the nomenclature used), and a vertical composite schematic of the NBL which shows dual low level wind maxima, dual inversions, and a persistent, elevated turbulent layer over a complex terrain are described.

  19. Structure of the nocturnal boundary layer over a complex terrain

    SciTech Connect (OSTI)

    Parker, M.J.; Raman, S.

    1992-08-01

    The complex nature of the nocturnal boundary layer (NBL) has been shown extensively in the literature Project STABLE was conducted in 1988 to study NBL turbulence and diffusion over the complex terrain of the Savannah River Site (SRS) near Augusta, Georgia. The third night of the study was particularly interesting because of the unusual phenomena observed in the structure of the NBL. Further analyses of microscale and mesoscale data from this night are presented using data from SRS network of eight 61 m towers over 900 km{sup 2}, from six launches of an instrumented tethersonde, from permanent SRL meteorological instrumentation at seven levels of the 304 m (1,000 ft) WJBF-TV tower near SRS, and additional data collected at 36 m (CC) by North Carolina State University (NCSU) including a one dimensional sonic anemometer, fine wire thermocouple, and a three dimensional propeller anemometer. Also, data from the nearby Plant Vogtle nuclear power plant observation tower and the National Weather Service at Augusta`s Bush Field (AGS) are presented. The passage of a mesoscale phenomenon, defined as a microfront (with an explanation of the nomenclature used), and a vertical composite schematic of the NBL which shows dual low level wind maxima, dual inversions, and a persistent, elevated turbulent layer over a complex terrain are described.

  20. Studies of planetary boundary layer by infrared thermal imagery

    SciTech Connect (OSTI)

    Albina, Bogdan; Dimitriu, Dan Gheorghe Gurlui, Silviu Octavian; Cazacu, Marius Mihai; Timofte, Adrian

    2014-11-24

    The IR camera is a relatively novel device for remote sensing of atmospheric thermal processes from the Planetary Boundary Layer (PBL) based on measurements of the infrared radiation. Infrared radiation is energy radiated by the motion of atoms and molecules on the surface of aerosols, when their temperature is more than absolute zero. The IR camera measures directly the intensity of radiation emitted by aerosols which is converted by an imaging sensor into an electric signal, resulting a thermal image. Every image pixel that corresponds to a specific radiance is pre-processed to identify the brightness temperature. The thermal infrared imaging radiometer used in this study, NicAir, is a precision radiometer developed by Prata et al. The device was calibrated for the temperature range of 270–320 K and using a calibration table along with image processing software, important information about variations in temperature can be extracted from acquired IR images. The PBL is the lowest layer of the troposphere where the atmosphere interacts with the ground surfaces. The importance of PBL lies in the fact that it provides a finite but varying volume in which pollutants can disperse. The aim of this paper is to analyze the PBL altitude and thickness variations over Iasi region using the IR imaging camera as well as its behavior from day to night and thermal processes occurring in PBL.

  1. Sensitivity of Boundary-layer and Deep Convective Cloud Simulations to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vertical Resolution Sensitivity of Boundary-layer and Deep Convective Cloud Simulations to Vertical Resolution Cheng, Anning Langley Research Center Xu, Kuan-Man NASA Langley Research Center Category: Modeling This study investigates the effects of vertical resolution on the simulation of boundary-layer and deep convective clouds using a cloud resolving model (CRM). A CRM usually uses a vertical grid spacing less than 100 m to simulate boundary layer clouds such as shallow cumuli and

  2. Simulation of Post-Frontal Boundary Layers Observed During the ARM 2000 Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation of Post-Frontal Boundary Layers Observed During the ARM 2000 Cloud IOP D. B. Mechem and Y. L. Kogan Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma M. Poellot University of North Dakota Grand Forks, North Dakota Introduction Large-eddy simulation (LES) models have been widely employed in the study of radiatively forced cloud topped boundary layers (CTBL). These boundary layers are typically well mixed and characterized by a sharp jump

  3. Further development and testing of a second-order bulk boundary layer model. Master's thesis

    SciTech Connect (OSTI)

    Krasner, R.D.

    1993-05-03

    A one-layer bulk boundary layer model is developed. The model predicts the mixed layer values of the potential temperature, mixing ratio, and u- and v-momentum. The model also predicts the depth of the boundary layer and the vertically integrated turbulence kinetic energy (TKE). The TKE is determined using a second-order closure that relates the rate of dissipation to the TKE. The fractional area covered by rising motion sigma and the entrainment rate (E) are diagnostically determined. The model is used to study the clear convective boundary layer (CBL) using data from the Wangara, Australia boundary layer experiment. The Wangara data is also used as an observation base to validate model results. A further study is accomplished by simulating the planetary boundary layer (PBL) over an ocean surface. This study is designed to find the steady-state solutions of the prognostic variable.

  4. A boundary-layer cloud study using Southern Great Plains Cloud and radiation testbed (CART) data

    SciTech Connect (OSTI)

    Albrecht, B.; Mace, G.; Dong, X.; Syrett, W.

    1996-04-01

    Boundary layer clouds-stratus and fairweather cumulus - are closely coupled involves the radiative impact of the clouds on the surface energy budget and the strong dependence of cloud formation and maintenance on the turbulent fluxes of heat and moisture in the boundary layer. The continuous data collection at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site provides a unique opportunity to study components of the coupling processes associated with boundary layer clouds and to provide descriptions of cloud and boundary layer structure that can be used to test parameterizations used in climate models. But before the CART data can be used for process studies and parameterization testing, it is necessary to evaluate and validate data and to develop techniques for effectively combining the data to provide meaningful descriptions of cloud and boundary layer characteristics. In this study we use measurements made during an intensive observing period we consider a case where low-level stratus were observed at the site for about 18 hours. This case is being used to examine the temporal evolution of cloud base, cloud top, cloud liquid water content, surface radiative fluxes, and boundary layer structure. A method for inferring cloud microphysics from these parameters is currently being evaluated.

  5. Marine Ice Nuclei Collections - MAGIC (MAGIC-IN) Final Campaign...

    Office of Scientific and Technical Information (OSTI)

    for offline processing to measure ice nucleating particle (INP) number concentrations. ... time of this report, will include single particle analyses of marine boundary layer ...

  6. Combustion-turbulence interaction in the turbulent boundary layer over a hot surface

    SciTech Connect (OSTI)

    Ng, T.T.; Cheng, R.K.; Robben, F.; Talbot, L.

    1982-01-01

    The turbulence-combustion interaction in a reacting turbulent boundary layer over a heated flat plate was studied. Ethylene/air mixture with equivalence ratio of 0.35 was used. The free stream velocity was 10.5 m/s and the wall temperature was 1250/sup 0/K. Combustion structures visualization was provided by high-speed schlieren photographs. Fluid density statistics were deduced from Rayleigh scattering intensity measurements. A single-component laser Doppler velocimetry system was used to obtain mean and root-mean-square velocity distributions, the Reynolds stress, the streamwise and the cross-stream turbulent kinetic energy diffusion, and the production of turbulent kinetic energy by Reynolds stress. The combustion process was dominated by large-scale turbulent structures of the boundary layer. Combustion causes expansion of the boundary layer. No overall self-similarity is observed in either the velocity or the density profiles. Velocity fluctuations were increased in part of the boundary layer and the Reynolds stress was reduced. The turbulent kinetic energy diffusion pattern was changed significantly and a modification of the boundary layer assumption will be needed when dealing with this problem analytically. 11 figures, 1 table.

  7. Characterization of particle cloud droplet activity and composition in the free troposphere and the boundary layer during INTEX-B

    SciTech Connect (OSTI)

    Roberts, G. C.; Day, D. A.; Russell, Lynn M.; Dunlea, E. J.; Jimenez, J. L.; Tomlinson, Jason M.; Collins, Donald R.; Shinozuka, Y.; Clarke, A. D.

    2010-07-20

    Measurements of cloud condensation nuclei (CCN), aerosol size distributions, and submicron aerosol composition were made as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign during spring 2006. Measurements were conducted from an aircraft platform over the northeastern Pacific and western North America with a focus on how the transport and evolution of Asian pollution across the Pacific Ocean affected CCN properties. A broad range of air masses were sampled and here we focus on three distinct air mass types defined geographically: the Pacific free troposphere (FT), the marine boundary layer (MBL), and the polluted continental boundary layer in the California Central Valley (CCV). These observations add to the few observations of CCN in the FT. CCN concentrations showed a large range of concentrations between air masses, however CCN activity was similar for the MBL and CCV ({kappa} {approx} 0.2-0.25). FT air masses showed evidence of long-range transport from Asia and CCN activity was consistently higher than for the boundary layer air masses. Bulk chemical measurements predicted CCN activity reasonably well for the CCV and FT air masses. Decreasing trends in {kappa} with organic mass fraction were observed for the combination of the FT and CCV air masses and can be explained by the measured soluble inorganic chemical components. Changes in hygroscopicity associated with differences in the non-refractory organic composition were too small to be distinguished from the simultaneous changes in inorganic ion composition in the FT and MBL, although measurements for the large organic fractions (0.6-0.8) found in the CCV showed values of the organic fraction hygroscopicity consistent with other polluted regions ({kappa}{sub org} {approx} 0.1-0.2). A comparison of CCN-derived {kappa} (for particles at the critical diameter) to H-TDMA-derived {kappa} (for particles at 100 nm diameter) showed similar trends, however the CCN-derived {kappa

  8. Temporal variability of the trade wind inversion: Measured with a boundary layer vertical profiler. Master's thesis

    SciTech Connect (OSTI)

    Grindinger, C.M.

    1992-05-01

    This study uses Hawaiian Rainband Project (HaRP) data, from the summer of 1991, to show a boundary layer wind profiler can be used to measure the trade wind inversion. An algorithm has been developed for the profiler that objectively measures the depth of the moist oceanic boundary layer. The Hilo inversion, measured by radiosonde, is highly correlated with the moist oceanic boundary layer measured by the profiler at Paradise Park. The inversion height on windward Hawaii is typically 2253 + or - 514 m. The inversion height varies not only on a daily basis, but on less than an hourly basis. It has a diurnal, as well as a three to four day cycle. There appears to be no consistent relationship between inversion height and precipitation. Currently, this profiler is capable of making high frequency (12 minute) measurements of the inversion base variation, as well as other features.

  9. Direct Simulation of a Zero-pressure-gradient Turbulent Boundary Layer up

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Reθ = 6650 | Argonne Leadership Computing Facility a Zero-pressure-gradient Turbulent Boundary Layer up to Reθ = 6650 Authors: Sillero, J., Jiménez, J., Moser, R.D., Malaya, N.P A direct simulation of an incompressible zero-pressure-gradient turbulent boundary layer over a flat plate is performed in Reθ = 1100-6650 (Reτ ≈ 2025), matching the range of the available numerical channels. The logarithmic region and the separation of scales are clearly observed. Proper turbulent inflow

  10. Hybrid OpenMP-MPI Turbulent Boundary Layer Code Over 32k Cores | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility OpenMP-MPI Turbulent Boundary Layer Code Over 32k Cores Authors: Sillero, J., Borrell, G., Jimenez, J., Moser, RD A hybrid OpenMP-MPI code has been developed and optimized for Blue Gene/P in order to perform a direct numerical simulation of a zero-pressure-gradient turbulent boundary layer at high Reynolds numbers. OpenMP is becoming the standard application programming interface for shared memory platforms, offering simplicity and portability. For architectures

  11. “Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites”

    SciTech Connect (OSTI)

    Ferrare, Richard; Turner, David

    2015-01-13

    Project goals; Characterize the aerosol and ice vertical distributions over the ARM NSA site, and in particular to discriminate between elevated aerosol layers and ice clouds in optically thin scattering layers; Characterize the water vapor and aerosol vertical distributions over the ARM Darwin site, how these distributions vary seasonally, and quantify the amount of water vapor and aerosol that is above the boundary layer; Use the high temporal resolution Raman lidar data to examine how aerosol properties vary near clouds; Use the high temporal resolution Raman lidar and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds; and Use the high temporal Raman lidar data to continue to characterize the turbulence within the convective boundary layer and how the turbulence statistics (e.g., variance, skewness) is correlated with larger scale variables predicted by models.

  12. Large Eddy Simulation of Stable Boundary Layer Turbulent Processes in Complex Terrain

    SciTech Connect (OSTI)

    Eric D. Skyllingstad

    2005-01-26

    Research was performed using a turbulence boundary layer model to study the behavior of cold, dense flows in regions of complex terrain. Results show that flows develop a balance between turbulent entrainment of warm ambient air and dense, cold air created by surface cooling. Flow depth and strength is a function of downslope distance, slope angle and angle changes, and the ambient air temperature.

  13. Lidar Investigation of Tropical Nocturnal Boundary Layer Aerosols and Cloud Macrophysics

    SciTech Connect (OSTI)

    Manoj, M. G.; Devara, PC S.; Taraphdar, Sourav

    2013-10-01

    Observational evidence of two-way association between nocturnal boundary layer aerosols and cloud macrophysical properties under different meteorological conditions is reported in this paper. The study has been conducted during 2008-09 employing a high space-time resolution polarimetric micro-pulse lidar over a tropical urban station in India. Firstly, the study highlights the crucial role of boundary layer aerosols and background meteorology on the formation and structure of low-level stratiform clouds in the backdrop of different atmospheric stability conditions. Turbulent mixing induced by the wind shear at the station, which is associated with a complex terrain, is found to play a pivotal role in the formation and structural evolution of nocturnal boundary layer clouds. Secondly, it is shown that the trapping of energy in the form of outgoing terrestrial radiation by the overlying low-level clouds can enhance the aerosol mixing height associated with the nocturnal boundary layer. To substantiate this, the long-wave heating associated with cloud capping has been quantitatively estimated in an indirect way by employing an Advanced Research Weather Research and Forecasting (WRF-ARW) model version 2.2 developed by National Center for Atmospheric Research (NCAR), Colorado, USA, and supplementary data sets; and differentiated against other heating mechanisms. The present investigation as well establishes the potential of lidar remote-sensing technique in exploring some of the intriguing aspects of the cloud-environment relationship.

  14. Interactions between a tropical mixed boundary layer and cumulus convection in a radiative-convective model

    SciTech Connect (OSTI)

    Dean, C.L.

    1993-05-01

    This report details a radiative-convective model, combining previously developed cumulus, stable cloud and radiation parameterizations with a boundary layer scheme, which was developed in the current study. The cloud model was modified to incorporate the effects of both small and large clouds. The boundary layer model was adapted from a mixed layer model was only slightly modified to couple it with the more sophisticated cloud model. The model was tested for a variety of imposed divergence profiles, which simulate the regions of the tropical ocean from approximately the intertropical Convergence Zone (ITCZ) to the subtropical high region. The sounding used to initialize the model for most of the runs is from the trade wind region of ATEX. For each experiment, the model was run with a timestep of 300 seconds for a period of 7 days.

  15. RACORO long-term, systematic aircraft observations of boundary layer clouds

    SciTech Connect (OSTI)

    Vogelmann, A.M.; McFarquhar, G.; Ogren, J.; Turner, D. D.; Comstock, J. M.; Feingold, G.; Long, C. N.; Jonsson, H. H.; Bucholtz, A.; Collins, D. R.; Diskin, G.; Gerber, H.; Lawson, R. P.; Woods, R. K.; Hubbe, J.; Tomlinson, J.; Schmid, B.

    2010-06-27

    Our knowledge of boundary layer cloud processes is insufficient to resolve pressing scientific problems. Boundary layer clouds often have liquid-water paths (LWPs) less than 100 gm{sup 2}, which are defined here as being 'thin' Clouds with Low Optical Water Depths (CLOWD). This type of cloud is common globally, and the Earth's radiative energy balance is particularly sensitive to small changes in their optical properties. However, it is difficult to retrieve accurately their cloud properties via remote sensing because they are tenuous and often occur in partly cloudy skies. This interferes with our ability to obtain the routine, long-term statistics needed to improve their representation in climate models. To address this problem, in-situ data are needed to investigate cloud processes and to evaluate and refine existing retrieval algorithms. Coordinated by the ARM Aerial Facility (AAF), the Routine AAF CLOWD Optical Radiative Observations (RACORO) field campaign conducted long-term, systematic flights in boundary layer, liquid-water clouds over the ARM Southern Great Plains (SGP) site between 22 January and 30 June 2009. This was the first time that a long-term aircraft campaign was undertaken for systematic in-situ sampling of cloud properties. Using the CIRPAS Twin Otter aircraft equipped with a comprehensive set of instruments to measure solar and thermal radiation, cloud microphysics, aerosol properties and atmospheric state, the RACORO team logged an unprecedented 59 flights and 259 research hours above the SGP site. Data gathered during the RACORO campaign will provide researchers with a statistically relevant data set of boundary-layer cloud and aerosol properties for future study. These data can be used to validate retrieval algorithms and support process studies and model simulations of boundary layer clouds and, in particular, CLOWD-type clouds. In addition to cloud observations, complementary clear-sky flight patterns were conducted to map the surface

  16. Adaptive step-size algorithm for Fourier beam-propagation method with absorbing boundary layer of auto-determined width

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Learn, R.; Feigenbaum, E.

    2016-05-27

    Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. Furthermore, the second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.

  17. Highly mobile type II twin boundary in Ni-Mn-Ga five-layered martensite

    SciTech Connect (OSTI)

    Sozinov, A.; Lanska, N.; Soroka, A.; Straka, L.

    2011-09-19

    Twin relationships and stress-induced reorientation were studied in Ni{sub 2}Mn{sub 1.14}Ga{sub 0.86} single crystal with five-layered modulated martensite crystal structure. Very low twinning stress of about 0.1 MPa was found for twin boundaries which deviated a few degrees from the (011) crystallographic plane. However, twin boundaries oriented exactly parallel to the (011) plane exhibited considerably higher level of twinning stress, above 1 MPa. X-ray diffraction experiments and calculations based on approximation of the martensite crystal lattice as a tetragonal lattice with a slight monoclinic distortion identified the two different kinds of twin interfaces as type II and type I twin boundaries.

  18. Experimental investigation of sound generation by a protuberance in a laminar boundary layer

    SciTech Connect (OSTI)

    Kobayashi, M.; Asai, M.; Inasawa, A. [Department of Aerospace Engineering, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino, Tokyo 191-0065 (Japan)

    2014-08-15

    Sound radiation from a two-dimensional protuberance glued on the wall in a laminar boundary layer was investigated experimentally at low Mach numbers. When the protuberance was as high as the boundary-layer thickness, a feedback-loop mechanism set in between protuberance-generated sound and Tollmien-Schlichting (T-S) waves generated by the leading-edge receptivity to the upstream-propagating sound. Although occurrence of a separation bubble immediately upstream of the protuberance played important roles in the evolution of instability waves into vortices interacting with the protuberance, the frequency of tonal vortex sound was determined by the selective amplification of T-S waves in the linear instability stage upstream of the separation bubble and was not affected by the instability of the separation bubble.

  19. Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites

    SciTech Connect (OSTI)

    Turner, David D.; Ferrare, Richard

    2015-01-13

    The systematic and routine measurements of aerosol, water vapor, and clouds in the vertical column above the Atmospheric Radiation Measurement (ARM) sites from surface-based remote sensing systems provides a unique and comprehensive data source that can be used to characterize the boundary layer (i.e., the lowest 3 km of the atmosphere) and its evolution. New algorithms have been developed to provide critical datasets from ARM instruments, and these datasets have been used in long-term analyses to better understand the climatology of water vapor and aerosol over Darwin, the turbulent structure of the boundary layer and its statistical properties over Oklahoma, and to better determine the distribution of ice and aerosol particles over northern Alaska.

  20. Problems of laminar-turbulent transition control in a boundary layer

    SciTech Connect (OSTI)

    Fedorov, A.V.; Levchenko, V. I.; Tumin, A.M. Moscow Physical-Technical Institute, )

    1991-03-01

    The overview of laminar-turbulent transition control compares different methods of transition control for swept-wing streams. The types of unstable disturbances in boundary layer are listed, and flow stabilization is described in terms of small disturbances. The control of the transition zone is based on the description of background disturbances, their transition into instability waves, and their linear and nonlinear amplifications. Specific references cite the applications to Tollmien-Schlichting waves, crossflow instability near an aircraft's leading edge, and unstable disturbances in a boundary layer over a curved surface. Methods of active control or wave cancellation to deal with the problem are listed including localized periodic heating, the introduction of vibrations, or the use of suction-blowing. The results of the comparative overview are of interest to aircraft and other aerospace applications to reduce drag and improve fuel efficiency. 111 refs.

  1. LABLE: A multi-institutional, student-led, atmospheric boundary layer experiment

    SciTech Connect (OSTI)

    Klein, P.; Bonin, T. A.; Newman, J. F.; Turner, D. D.; Chilson, P. B.; Wainwright, C. E.; Blumberg, W. G.; Mishra, S.; Carney, M.; Jacobsen, E. P.; Wharton, Sonia; Newsom, Rob K.

    2015-10-23

    This paper presents an overview of the Lower Atmospheric Boundary Layer Experiment (LABLE), which included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was conducted as a collaborative effort between the University of Oklahoma (OU), the National Severe Storms Laboratory, Lawrence Livermore National Laboratory (LLNL), and the ARM program. LABLE can be considered unique in that it was designed as a multi-phase, low-cost, multi-agency collaboration. Graduate students served as principal investigators and took the lead in designing and conducting experiments aimed at examining boundary-layer processes. The main objective of LABLE was to study turbulent phenomena in the lowest 2 km of the atmosphere over heterogeneous terrain using a variety of novel atmospheric profiling techniques. Several instruments from OU and LLNL were deployed to augment the suite of in-situ and remote sensing instruments at the ARM site. The complementary nature of the deployed instruments with respect to resolution and height coverage provides a near-complete picture of the dynamic and thermodynamic structure of the atmospheric boundary layer. This paper provides an overview of the experiment including i) instruments deployed, ii) sampling strategies, iii) parameters observed, and iv) student involvement. To illustrate these components, the presented results focus on one particular aspect of LABLE, namely the study of the nocturnal boundary layer and the formation and structure of nocturnal low-level jets. During LABLE, low-level jets were frequently observed and they often interacted with mesoscale atmospheric disturbances such as frontal passages.

  2. Regional Scale Surface CO2 Exchange Estimates Using a Boundary Layer Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Method over the Southern Great Plains Regional Scale Surface CO2 Exchange Estimates Using a Boundary Layer Budget Method over the Southern Great Plains Williams, Ian University of Chicago Riley, William Lawrence Berkeley National Laboratory Berry, Joseph Carnegie Inst.of Washington Torn, Margaret Lawrence Berkeley National Laboratory Fischer, Marc Lawrence Berkeley National Laboratory Category: Atmospheric State and Surface Concentration gradients of CO2 and H2O at the transition between the

  3. Characterization of Radar Boundary Layer Data Collected During the 2001 Multi-Frequency Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Radar Boundary Layer Data Collected During the 2001 Multi-Frequency Radar IOP A. Khandwalla, N. Majurec, and S. M. Sekelsky University of Massachusetts Amherst, Massachusetts C. R. Williams and K. S. Gage National Oceanic and Atmospheric Administration Aeronomy Laboratory Boulder, Colorado Introduction Ground-based radar measurements of insect clutter at Ka-band (35 GHz) and W-band (95 GHz) were collected over an extended period during the 2001 multi-frequency radar (MFR)

  4. Long-term Observations of the Convective Boundary Layer Using Insect Radar Returns at the SGP ARM Climate Research Facility

    SciTech Connect (OSTI)

    Chandra, A S; Kollias, P; Giangrande, S E; Klein, S A

    2009-08-20

    A long-term study of the turbulent structure of the convective boundary layer (CBL) at the U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Climate Research Facility is presented. Doppler velocity measurements from insects occupying the lowest 2 km of the boundary layer during summer months are used to map the vertical velocity component in the CBL. The observations cover four summer periods (2004-08) and are classified into cloudy and clear boundary layer conditions. Profiles of vertical velocity variance, skewness, and mass flux are estimated to study the daytime evolution of the convective boundary layer during these conditions. A conditional sampling method is applied to the original Doppler velocity dataset to extract coherent vertical velocity structures and to examine plume dimension and contribution to the turbulent transport. Overall, the derived turbulent statistics are consistent with previous aircraft and lidar observations. The observations provide unique insight into the daytime evolution of the convective boundary layer and the role of increased cloudiness in the turbulent budget of the subcloud layer. Coherent structures (plumes-thermals) are found to be responsible for more than 80% of the total turbulent transport resolved by the cloud radar system. The extended dataset is suitable for evaluating boundary layer parameterizations and testing large-eddy simulations (LESs) for a variety of surface and cloud conditions.

  5. An enriched finite element model with q-refinement for radiative boundary layers in glass cooling

    SciTech Connect (OSTI)

    Mohamed, M. Shadi; Seaid, Mohammed; Trevelyan, Jon; Laghrouche, Omar

    2014-02-01

    Radiative cooling in glass manufacturing is simulated using the partition of unity finite element method. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary simplified P{sub 1} approximation for the radiation in non-grey semitransparent media. To integrate the coupled equations in time we consider a linearly implicit scheme in the finite element framework. A class of hyperbolic enrichment functions is proposed to resolve boundary layers near the enclosure walls. Using an industrial electromagnetic spectrum, the proposed method shows an immense reduction in the number of degrees of freedom required to achieve a certain accuracy compared to the conventional h-version finite element method. Furthermore the method shows a stable behaviour in treating the boundary layers which is shown by studying the solution close to the domain boundaries. The time integration choice is essential to implement a q-refinement procedure introduced in the current study. The enrichment is refined with respect to the steepness of the solution gradient near the domain boundary in the first few time steps and is shown to lead to a further significant reduction on top of what is already achieved with the enrichment. The performance of the proposed method is analysed for glass annealing in two enclosures where the simplified P{sub 1} approximation solution with the partition of unity method, the conventional finite element method and the finite difference method are compared to each other and to the full radiative heat transfer as well as the canonical Rosseland model.

  6. Boundary layer modeling of reactive flow over a porous surface with angled injection

    SciTech Connect (OSTI)

    Liu, Shiling; Fotache, Catalin G.; Hautman, Donald J.; Ochs, Stuart S. [United Technologies Research Center, MS 129-29, 411 Silver Lane, East Hartford, CT 06108 (United States); Chao, Beei-Huan [Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2008-08-15

    An analytical model was developed to investigate the dynamics of nonpremixed flames in a shear layer established between a mainstream flow of fuel-rich combustion products and a porous surface with an angled injection of air. In the model, a one-step overall chemical reaction was employed, together with boundary layer conservation equations solved using similarity solutions. Parametric studies were performed to understand the effects of equivalence ratio, temperature, and mass flow rate of the fuel and air streams on the flame standoff distance, surface temperature, and heat flux at the surface. The analytical model predictions were compared with computational fluid dynamics results obtained using the FLUENT commercial code for both the laminar and the turbulent flow models. Qualitative agreement in surface temperature was observed. Finally, the flame stability limits predicted by the model were compared with available experimental data and found to agree qualitatively, as well. (author)

  7. Pressure fluctuations beneath instability wavepackets and turbulent spots in a hypersonic boundary layer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Casper, Katya M.; Beresh, Steven J.; Schneider, Steven P.

    2014-09-09

    To investigate the pressure-fluctuation field beneath turbulent spots in a hypersonic boundary layer, a study was conducted on the nozzle wall of the Boeing/AFOSR Mach-6 Quiet Tunnel. Controlled disturbances were created by pulsed-glow perturbations based on the electrical breakdown of air. Under quiet-flow conditions, the nozzle-wall boundary layer remains laminar and grows very thick over the long nozzle length. This allows the development of large disturbances that can be well-resolved with high-frequency pressure transducers. A disturbance first grows into a second-mode instability wavepacket that is concentrated near its own centreline. Weaker disturbances are seen spreading from the centre. The wavesmore » grow and become nonlinear before breaking down to turbulence. The breakdown begins in the core of the packets where the wave amplitudes are largest. Second-mode waves are still evident in front of and behind the breakdown point and can be seen propagating in the spanwise direction. The turbulent core grows downstream, resulting in a spot with a classical arrowhead shape. Behind the spot, a low-pressure calmed region develops. However, the spot is not merely a localized patch of turbulence; instability waves remain an integral part. Limited measurements of naturally occurring disturbances show many similar characteristics. From the controlled disturbance measurements, the convection velocity, spanwise spreading angle, and typical pressure-fluctuation field were obtained.« less

  8. THE SIMULATION OF FINE SCALE NOCTURNAL BOUNDARY LAYER MOTIONS WITH A MESO-SCALE ATMOSPHERIC MODEL

    SciTech Connect (OSTI)

    Werth, D.; Kurzeja, R.; Parker, M.

    2009-04-02

    A field project over the Atmospheric Radiation Measurement-Clouds and Radiation Testbed (ARM-CART) site during a period of several nights in September, 2007 was conducted to explore the evolution of the low-level jet (LLJ). Data was collected from a tower and a sodar and analyzed for turbulent behavior. To study the full range of nocturnal boundary layer (NBL) behavior, the Regional Atmospheric Modeling System (RAMS) was used to simulate the ARM-CART NBL field experiment and validated against the data collected from the site. This model was run at high resolution, and is ideal for calculating the interactions among the various motions within the boundary layer and their influence on the surface. The model reproduces adequately the synoptic situation and the formation and dissolution cycles of the low-level jet, although it suffers from insufficient cloud production and excessive nocturnal cooling. The authors suggest that observed heat flux data may further improve the realism of the simulations both in the cloud formation and in the jet characteristics. In a higher resolution simulation, the NBL experiences motion on a range of timescales as revealed by a wavelet analysis, and these are affected by the presence of the LLJ. The model can therefore be used to provide information on activity throughout the depth of the NBL.

  9. Pressure fluctuations beneath instability wavepackets and turbulent spots in a hypersonic boundary layer

    SciTech Connect (OSTI)

    Casper, Katya M.; Beresh, Steven J.; Schneider, Steven P.

    2014-09-09

    To investigate the pressure-fluctuation field beneath turbulent spots in a hypersonic boundary layer, a study was conducted on the nozzle wall of the Boeing/AFOSR Mach-6 Quiet Tunnel. Controlled disturbances were created by pulsed-glow perturbations based on the electrical breakdown of air. Under quiet-flow conditions, the nozzle-wall boundary layer remains laminar and grows very thick over the long nozzle length. This allows the development of large disturbances that can be well-resolved with high-frequency pressure transducers. A disturbance first grows into a second-mode instability wavepacket that is concentrated near its own centreline. Weaker disturbances are seen spreading from the centre. The waves grow and become nonlinear before breaking down to turbulence. The breakdown begins in the core of the packets where the wave amplitudes are largest. Second-mode waves are still evident in front of and behind the breakdown point and can be seen propagating in the spanwise direction. The turbulent core grows downstream, resulting in a spot with a classical arrowhead shape. Behind the spot, a low-pressure calmed region develops. However, the spot is not merely a localized patch of turbulence; instability waves remain an integral part. Limited measurements of naturally occurring disturbances show many similar characteristics. From the controlled disturbance measurements, the convection velocity, spanwise spreading angle, and typical pressure-fluctuation field were obtained.

  10. Retrieving 4-dimensional atmospheric boundary layer structure from surface observations and profiles over a single station

    SciTech Connect (OSTI)

    Pu, Zhaoxia

    2015-10-06

    Most routine measurements from climate study facilities, such as the Department of Energy’s ARM SGP site, come from individual sites over a long period of time. While single-station data are very useful for many studies, it is challenging to obtain 3-dimensional spatial structures of atmospheric boundary layers that include prominent signatures of deep convection from these data. The principal objective of this project is to create realistic estimates of high-resolution (~ 1km × 1km horizontal grids) atmospheric boundary layer structure and the characteristics of precipitating convection. These characteristics include updraft and downdraft cumulus mass fluxes and cold pool properties over a region the size of a GCM grid column from analyses that assimilate surface mesonet observations of wind, temperature, and water vapor mixing ratio and available profiling data from single or multiple surface stations. The ultimate goal of the project is to enhance our understanding of the properties of mesoscale convective systems and also to improve their representation in analysis and numerical simulations. During the proposed period (09/15/2011–09/14/2014) and the no-cost extension period (09/15/2014–09/14/2015), significant accomplishments have been achieved relating to the stated goals. Efforts have been extended to various research and applications. Results have been published in professional journals and presented in related science team meetings and conferences. These are summarized in the report.

  11. A simple stochastic quadrant model for the transport and deposition of particles in turbulent boundary layers

    SciTech Connect (OSTI)

    Jin, C.; Potts, I.; Reeks, M. W.

    2015-05-15

    We present a simple stochastic quadrant model for calculating the transport and deposition of heavy particles in a fully developed turbulent boundary layer based on the statistics of wall-normal fluid velocity fluctuations obtained from a fully developed channel flow. Individual particles are tracked through the boundary layer via their interactions with a succession of random eddies found in each of the quadrants of the fluid Reynolds shear stress domain in a homogeneous Markov chain process. In this way, we are able to account directly for the influence of ejection and sweeping events as others have done but without resorting to the use of adjustable parameters. Deposition rate predictions for a wide range of heavy particles predicted by the model compare well with benchmark experimental measurements. In addition, deposition rates are compared with those obtained from continuous random walk models and Langevin equation based ejection and sweep models which noticeably give significantly lower deposition rates. Various statistics related to the particle near wall behavior are also presented. Finally, we consider the model limitations in using the model to calculate deposition in more complex flows where the near wall turbulence may be significantly different.

  12. Pulsed Plasma with Synchronous Boundary Voltage for Rapid Atomic Layer Etching

    SciTech Connect (OSTI)

    Economou, Demetre J.; Donnelly, Vincent M.

    2014-05-13

    Atomic Layer ETching (ALET) of a solid with monolayer precision is a critical requirement for advancing nanoscience and nanotechnology. Current plasma etching techniques do not have the level of control or damage-free nature that is needed for patterning delicate sub-20 nm structures. In addition, conventional ALET, based on pulsed gases with long reactant adsorption and purging steps, is very slow. In this work, novel pulsed plasma methods with synchronous substrate and/or “boundary electrode” bias were developed for highly selective, rapid ALET. Pulsed plasma and tailored bias voltage waveforms provided controlled ion energy and narrow energy spread, which are critical for highly selective and damage-free etching. The broad goal of the project was to investigate the plasma science and engineering that will lead to rapid ALET with monolayer precision. A combined experimental-simulation study was employed to achieve this goal.

  13. Model of the boundary layer of a vacuum-arc magnetic filter

    SciTech Connect (OSTI)

    Minotti, F.; Giuliani, L.; Grondona, D.; Della Torre, H.; Kelly, H.

    2013-03-21

    A model is developed to describe the electrostatic boundary layer in a positively biased magnetic filter in filtered arcs with low collisionality. The set of equations used includes the electron momentum equation, with an anomalous collision term due to micro-instabilities leading to Bohm diffusion, electron mass conservation, and Poisson equation. Analytical solutions are obtained, valid for the regimes of interest, leading to an explicit expression to determine the electron density current to the filter wall as a function of the potential of the filter and the ratio of electron density at the plasma to that at the filter wall. Using a set of planar and cylindrical probes it is verified experimentally that the mentioned ratio of electron densities remains reasonably constant for different magnetic field values and probe bias, which allows to obtain a closed expression for the current. Comparisons are made with the experimentally determined current collected at different sections of a positively biased straight filter.

  14. RACORO Extended-Term Aircraft Observations of Boundary-Layer Clouds

    SciTech Connect (OSTI)

    Vogelmann, A. M.; McFarquhar, Greg; Ogren, John A.; Turner, David D.; Comstock, Jennifer M.; Feingold, G.; Long, Charles N.; Jonsson, Haf; Bucholtz, Anthony; Collins, Donald R.; Diskin, G. S.; Gerber, H.; Lawson, Paul; Woods, Roy; Andrews, Elizabeth; Yang, Hee-Jung; Chiu, Christine J.; Hartsock, Daniel; Hubbe, John M.; Lo, Chaomei; Marshak, A.; Monroe, Justin; McFarlane, Sally A.; Schmid, Beat; Tomlinson, Jason M.; Toto, Tami

    2012-06-30

    A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in-situ statistical characterization of boundary-layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign operated over the ARM Southern Great Plains (SGP) site from 22 January to 30 June 2009, collecting 260 h of data during 59 research flights. A comprehensive payload aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft measured cloud microphysics, solar and thermal radiation, aerosol properties, and atmospheric state parameters. Proximity to the SGP's extensive complement of surface measurements provides ancillary data that supports modeling studies and enables evaluating a variety of surface retrieval algorithms. The five-month duration enabled sampling a range of conditions associated with the seasonal transition from winter to summer. Although about two-thirds of the cloud flights occurred in May and June, boundary-layer cloud fields were sampled under a variety of environmental and aerosol conditions, with about 75% of the flights occurring in cumulus and stratocumulus. Preliminary analyses show how these data are being used to analyze cloud-aerosol relationships, determine the aerosol sizes that are responsible for nucleating cloud drops, characterize the horizontal variability of the cloud radiative impacts, and evaluate air-borne and surface-based cloud property retrievals. We discuss how conducting an extended-term campaign requires a simplified operating paradigm that is different from that used for typical, short-term, intensive aircraft field programs.

  15. Applications of large-eddy simulation: Synthesis of neutral boundary layer models

    SciTech Connect (OSTI)

    Ohmstede, W.D.

    1987-12-01

    The object of this report is to describe progress made towards the application of large-eddy simulation (LES), in particular, to the study of the neutral boundary layer (NBL). The broad purpose of the study is to provide support to the LES project currently underway at LLNL. The specific purpose of this study is to lay the groundwork for the simulation of the SBL through the establishment and implementation of model criteria for the simulation of the NBL. The idealistic NBL is never observed in the atmosphere and therefore has little practical significance. However, it is of considerable theoretical interest for several reasons. The report discusses the concept of Rossby-number similarity theory as it applies to the NBL. A particular implementation of the concept is described. Then, the results from prior simulations of the NBL are summarized. Model design criteria for two versions of the Brost LES (BLES) model are discussed. The general guidelines for the development of Version 1 of the Brost model (BV1) were to implement the model with a minimum of modifications which would alter the design criteria as established by Brost. Two major modifications of BLES incorporated into BV1 pertain to the initialization/parameterization of the model and the generalization of the boundary conditions at the air/earth interface. 18 refs., 4 figs.

  16. Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data

    SciTech Connect (OSTI)

    Tzvi Galchen; Mei Xu ); Eberhard, W.L. )

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. Here the authors present results on doppler LIDAR measurements used to measure a range of turbulence parameters in the region of the unstable planetary boundary layer (PBL). The parameters include, averaged velocities, cartesian velocities, variances in velocities, parts of the covariance associated with vertical fluxes of horizontal momentum, and third moments of the vertical velocity. They explain their analysis technique, especially as it relates to error reduction of the averaged turbulence parameters from individual measurements with relatively large errors. The scales studied range from 150m to 12km. With this new diagnostic they address questions about the behavior of the convectively unstable PBL, as well as the stable layer which overlies it.

  17. Nocturnal Low-Level-Jet-Dominated Atmospheric Boundary Layer Observed by a Doppler Lidar Over Oklahoma City during JU2003

    SciTech Connect (OSTI)

    Wang, Yansen; Klipp, Cheryl L.; Garvey, Dennis M.; Ligon, David; Williamson, Chatt C.; Chang, Sam S.; Newsom, Rob K.; Calhoun, Ron

    2007-12-01

    Boundary layer wind data observed by a Doppler lidar and sonic anemometers during the mornings of three intensive observational periods (IOP2, IOP3, and IOP7) of the Joint Urban 2003 (JU2003) field experiment are analyzed to extract the mean and turbulent characteristics of airflow over Oklahoma City, Oklahoma. A strong nocturnal low-level jet (LLJ) dominated the flow in the boundary layer over the measurement domain from midnight to the morning hours. Lidar scans through the LLJ taken after sunrise indicate that the LLJ elevation shows a gradual increase of 25-100 m over the urban area relative to that over the upstream suburban area. The mean wind speed beneath the jet over the urban area is about 10%-15% slower than that over the suburban area. Sonic anemometer observations combined with Doppler lidar observations in the urban and suburban areas are also analyzed to investigate the boundary layer turbulence production in the LLJ-dominated atmospheric boundary layer. The turbulence kinetic energy was higher over the urban domain mainly because of the shear production of building surfaces and building wakes. Direct transport of turbulent momentum flux from the LLJ to the urban street level was very small because of the relatively high elevation of the jet. However, since the LLJ dominated the mean wind in the boundary layer, the turbulence kinetic energy in the urban domain is correlated directly with the LLJ maximum speed and inversely with its height. The results indicate that the jet Richardson number is a reasonably good indicator for turbulent kinetic energy over the urban domain in the LLJ-dominated atmospheric boundary layer.

  18. Transforming the representation of the boundary layer and low clouds for high-resolution regional climate modeling: Final report

    SciTech Connect (OSTI)

    Huang, Hsin-Yuan; Hall, Alex

    2013-07-24

    Stratocumulus and shallow cumulus clouds in subtropical oceanic regions (e.g., Southeast Pacific) cover thousands of square kilometers and play a key role in regulating global climate (e.g., Klein and Hartmann, 1993). Numerical modeling is an essential tool to study these clouds in regional and global systems, but the current generation of climate and weather models has difficulties in representing them in a realistic way (e.g., Siebesma et al., 2004; Stevens et al., 2007; Teixeira et al., 2011). While numerical models resolve the large-scale flow, subgrid-scale parameterizations are needed to estimate small-scale properties (e.g. boundary layer turbulence and convection, clouds, radiation), which have significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. To represent the contribution of these fine-scale processes to the resolved scale, climate models use various parameterizations, which are the main pieces in the model that contribute to the low clouds dynamics and therefore are the major sources of errors or approximations in their representation. In this project, we aim to 1) improve our understanding of the physical processes in thermal circulation and cloud formation, 2) examine the performance and sensitivity of various parameterizations in the regional weather model (Weather Research and Forecasting model; WRF), and 3) develop, implement, and evaluate the advanced boundary layer parameterization in the regional model to better represent stratocumulus, shallow cumulus, and their transition. Thus, this project includes three major corresponding studies. We find that the mean diurnal cycle is sensitive to model domain in ways that reveal the existence of different contributions originating from the Southeast Pacific land-masses. The experiments suggest that diurnal variations in circulations and thermal structures over this region are influenced by convection over the Peruvian sector of the Andes cordillera, while

  19. Investigation of Rossby-number similarity in the neutral boundary layer using large-eddy simulation

    SciTech Connect (OSTI)

    Ohmstede, W.D.; Cederwall, R.T.; Meyers, R.E.

    1988-01-01

    One special case of particular interest, especially to theoreticians, is the steady-state, horizontally homogeneous, autobarotropic (PLB), hereafter referred to as the neutral boundary layer (NBL). The NBL is in fact a 'rare' atmospheric phenomenon, generally associated with high-wind situations. Nevertheless, there is a disproportionate interest in this problem because Rossby-number similarity theory provides a sound approach for addressing this issue. Rossby-number similarity theory has rather wide acceptance, but because of the rarity of the 'true' NBL state, there remains an inadequate experimental database for quantifying constants associated with the Rossby-number similarity concept. Although it remains a controversial issue, it has been proposed that large-eddy simulation (LES) is an alternative to physical experimentation for obtaining basic atmospherc 'data'. The objective of the study reported here is to investigate Rossby-number similarity in the NBL using LES. Previous studies have not addressed Rossby-number similarity explicitly, although they made use of it in the interpretation of their results. The intent is to calculate several sets of NBL solutions that are ambiguous relative to the their respective Rossby numbers and compare the results for similarity, or the lack of it. 14 refs., 1 fig.

  20. Sensitivity of a global climate model to the critical Richardson number in the boundary layer parameterization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Ning; Liu, Yangang; Gao, Zhiqiu; Li, Dan

    2015-04-27

    The critical bulk Richardson number (Ricr) is an important parameter in planetary boundary layer (PBL) parameterization schemes used in many climate models. This paper examines the sensitivity of a Global Climate Model, the Beijing Climate Center Atmospheric General Circulation Model, BCC_AGCM to Ricr. The results show that the simulated global average of PBL height increases nearly linearly with Ricr, with a change of about 114 m for a change of 0.5 in Ricr. The surface sensible (latent) heat flux decreases (increases) as Ricr increases. The influence of Ricr on surface air temperature and specific humidity is not significant. The increasingmore » Ricr may affect the location of the Westerly Belt in the Southern Hemisphere. Further diagnosis reveals that changes in Ricr affect stratiform and convective precipitations differently. Increasing Ricr leads to an increase in the stratiform precipitation but a decrease in the convective precipitation. Significant changes of convective precipitation occur over the inter-tropical convergence zone, while changes of stratiform precipitation mostly appear over arid land such as North Africa and Middle East.« less

  1. Sensitivity of a global climate model to the critical Richardson number in the boundary layer parameterization

    SciTech Connect (OSTI)

    Zhang, Ning; Liu, Yangang; Gao, Zhiqiu; Li, Dan

    2015-04-27

    The critical bulk Richardson number (Ricr) is an important parameter in planetary boundary layer (PBL) parameterization schemes used in many climate models. This paper examines the sensitivity of a Global Climate Model, the Beijing Climate Center Atmospheric General Circulation Model, BCC_AGCM to Ricr. The results show that the simulated global average of PBL height increases nearly linearly with Ricr, with a change of about 114 m for a change of 0.5 in Ricr. The surface sensible (latent) heat flux decreases (increases) as Ricr increases. The influence of Ricr on surface air temperature and specific humidity is not significant. The increasing Ricr may affect the location of the Westerly Belt in the Southern Hemisphere. Further diagnosis reveals that changes in Ricr affect stratiform and convective precipitations differently. Increasing Ricr leads to an increase in the stratiform precipitation but a decrease in the convective precipitation. Significant changes of convective precipitation occur over the inter-tropical convergence zone, while changes of stratiform precipitation mostly appear over arid land such as North Africa and Middle East.

  2. A method for the direct numerical simulation of hypersonic boundary-layer instability with finite-rate chemistry

    SciTech Connect (OSTI)

    Marxen, Olaf, E-mail: olaf.marxen@vki.ac.be [Center for Turbulence Research, Building 500, Stanford University, Stanford, CA 94305-3035 (United States) [Center for Turbulence Research, Building 500, Stanford University, Stanford, CA 94305-3035 (United States); Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chausse de Waterloo, 72, 1640 Rhode-St-Gense (Belgium); Magin, Thierry E. [Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chausse de Waterloo, 72, 1640 Rhode-St-Gense (Belgium)] [Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chausse de Waterloo, 72, 1640 Rhode-St-Gense (Belgium); Shaqfeh, Eric S.G.; Iaccarino, Gianluca [Center for Turbulence Research, Building 500, Stanford University, Stanford, CA 94305-3035 (United States)] [Center for Turbulence Research, Building 500, Stanford University, Stanford, CA 94305-3035 (United States)

    2013-12-15

    A new numerical method is presented here that allows to consider chemically reacting gases during the direct numerical simulation of a hypersonic fluid flow. The method comprises the direct coupling of a solver for the fluid mechanical model and a library providing the physio-chemical model. The numerical method for the fluid mechanical model integrates the compressible NavierStokes equations using an explicit time advancement scheme and high-order finite differences. This NavierStokes code can be applied to the investigation of laminar-turbulent transition and boundary-layer instability. The numerical method for the physio-chemical model provides thermodynamic and transport properties for different gases as well as chemical production rates, while here we exclusively consider a five species air mixture. The new method is verified for a number of test cases at Mach 10, including the one-dimensional high-temperature flow downstream of a normal shock, a hypersonic chemical reacting boundary layer in local thermodynamic equilibrium and a hypersonic reacting boundary layer with finite-rate chemistry. We are able to confirm that the diffusion flux plays an important role for a high-temperature boundary layer in local thermodynamic equilibrium. Moreover, we demonstrate that the flow for a case previously considered as a benchmark for the investigation of non-equilibrium chemistry can be regarded as frozen. Finally, the new method is applied to investigate the effect of finite-rate chemistry on boundary layer instability by considering the downstream evolution of a small-amplitude wave and comparing results with those obtained for a frozen gas as well as a gas in local thermodynamic equilibrium.

  3. Retrieval of Urban Boundary Layer Structures from Doppler Lidar Data. Part I: Accuracy Assessment

    SciTech Connect (OSTI)

    Xia, Quanxin; Lin, Ching Long; Calhoun, Ron; Newsom, Rob K.

    2008-01-01

    Two coherent Doppler lidars from the US Army Research Laboratory (ARL) and Arizona State University (ASU) were deployed in the Joint Urban 2003 atmospheric dispersion field experiment (JU2003) held in Oklahoma City. The dual lidar data are used to evaluate the accuracy of the four-dimensional variational data assimilation (4DVAR) method and identify the coherent flow structures in the urban boundary layer. The objectives of the study are three-fold. The first objective is to examine the effect of eddy viscosity models on the quality of retrieved velocity data. The second objective is to determine the fidelity of single-lidar 4DVAR and evaluate the difference between single- and dual-lidar retrievals. The third objective is to correlate the retrieved flow structures with the ground building data. It is found that the approach of treating eddy viscosity as part of control variables yields better results than the approach of prescribing viscosity. The ARL single-lidar 4DVAR is able to retrieve radial velocity fields with an accuracy of 98% in the along-beam direction and 80-90% in the cross-beam direction. For the dual-lidar 4DVAR, the accuracy of retrieved radial velocity in the ARL cross-beam direction improves to 90-94%. By using the dual-lidar retrieved data as a reference, the single-lidar 4DVAR is able to recover fluctuating velocity fields with 70-80% accuracy in the along-beam direction and 60-70% accuracy in the cross-beam direction. Large-scale convective roll structures are found in the vicinity of downtown airpark and parks. Vortical structures are identified near the business district. Strong updrafts and downdrafts are also found above a cluster of restaurants.

  4. Turbulent kinetics of a large wind farm and their impact in the neutral boundary layer

    SciTech Connect (OSTI)

    Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo; Jin, Emilia Kyung; Linn, Rodman; Lee, Joon Sang

    2015-12-28

    High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines creates the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.

  5. Turbulent kinetics of a large wind farm and their impact in the neutral boundary layer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo; Jin, Emilia Kyung; Linn, Rodman; Lee, Joon Sang

    2015-12-28

    High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines createsmore » the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.« less

  6. Collaborative Research: ARM observations for the development and evaluation of models and parameterizations of cloudy boundary layers

    SciTech Connect (OSTI)

    Albrecht, Bruce,

    2013-07-12

    This is a collaborative project with Dr. Ping Zhu at Florida International University. It was designed to address key issues regarding the treatment of boundary layer cloud processes in climate models with UM’s research focusing on the analyses of ARM cloud radar observations from MMCR and WACR and FIU’s research focusing on numerical simulations of boundary layer clouds. This project capitalized on recent advancements in the ARM Millimeter Cloud Radar (MMCR) processing and the development of the WACR (at the SGP) to provide high temporal and spatial resolution Doppler cloud radar measurements for characterizing in-cloud turbulence, large-eddy circulations, and high resolution cloud structures of direct relevance to high resolution numerical modeling studies. The principal focus of the observational component of this collaborative study during this funding period was on stratocumulus clouds over the SGP site and fair-weather cumuli over the Nauru site. The statistical descriptions of the vertical velocity structures in continental stratocumulus clouds and in the Nauru shallow cumuli that are part of this study represents the most comprehensive observations of the vertical velocities in boundary layer clouds to date and were done in collaboration with Drs. Virendra Ghate and Pavlos Kollias.

  7. Vehicle cabin cooling system for capturing and exhausting heated boundary layer air from inner surfaces of solar heated windows

    DOE Patents [OSTI]

    Farrington, Robert B.; Anderson, Ren

    2001-01-01

    The cabin cooling system includes a cooling duct positioned proximate and above upper edges of one or more windows of a vehicle to exhaust hot air as the air is heated by inner surfaces of the windows and forms thin boundary layers of heated air adjacent the heated windows. The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a flow rate that captures the hot air in the boundary layer without capturing a significant portion of the cooler cabin interior air and to discharge the hot air at a point outside the vehicle cabin, such as the vehicle trunk. In a preferred embodiment, the cooling duct has a cross-sectional area that gradually increases from a distal point to a proximal point to the fan inlet to develop a substantially uniform pressure drop along the length of the cooling duct. Correspondingly, this cross-sectional configuration develops a uniform suction pressure and uniform flow rate at the upper edge of the window to capture the hot air in the boundary layer adjacent each window.

  8. Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Griffis, Timothy J.; Wood, Jeffrey D.; Baker, John M.; Lee, Xuhui; Xiao, Ke; Chen, Zichong; Welp, Lisa R.; Schultz, Natalie M.; Gorski, Galen; Chen, Ming; et al

    2016-04-25

    Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle – an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understand feedbacks in the climate system. We measured the oxygen and hydrogen isotope composition of water vapor at a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the planetary boundary layer (PBL) over a 3-year period (2010 to 2012). These measurements represent the first set of annual water vapor isotopemore » observations for this region. Several simple isotope models and cross-wavelet analyses were used to assess the importance of the Rayleigh distillation process, evaporation, and PBL entrainment processes on the isotope composition of water vapor. The vapor isotope composition at this tall tower site showed a large seasonal amplitude (mean monthly δ18Ov ranged from –40.2 to –15.9 ‰ and δ2Hv ranged from –278.7 to –113.0 ‰) and followed the familiar Rayleigh distillation relation with water vapor mixing ratio when considering the entire hourly data set. However, this relation was strongly modulated by evaporation and PBL entrainment processes at timescales ranging from hours to several days. The wavelet coherence spectra indicate that the oxygen isotope ratio and the deuterium excess (dv) of water vapor are sensitive to synoptic and PBL processes. According to the phase of the coherence analyses, we show that evaporation often leads changes in dv, confirming that it is a potential tracer of regional evaporation. Isotope mixing models indicate that on average about 31 % of the growing season PBL water vapor is derived from regional evaporation. However, isoforcing calculations and mixing model analyses for high PBL water vapor mixing ratio events ( > 25 mmol mol–1) indicate that regional

  9. RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings

    SciTech Connect (OSTI)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; Li, Zhijin; Xie, Shaocheng; Ackerman, Andrew S.; Zhang, Minghua; Khairoutdinov, Marat

    2015-06-19

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, ?, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  10. RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings

    SciTech Connect (OSTI)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; Li, Zhijin; Xie, Shaocheng; Ackerman, Andrew S.; Zhang, Minghua; Khairoutdinov, Marat

    2015-06-19

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  11. RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; et al

    2015-06-19

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functionsmore » for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.« less

  12. Global and regional modeling of clouds and aerosols in the marine...

    Office of Scientific and Technical Information (OSTI)

    A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October-November 2008 VOCALS REx (VAMOS Ocean ...

  13. Suppressed grain-boundary scattering in atomic layer deposited Nb:TiO{sub 2} thin films

    SciTech Connect (OSTI)

    Niemelä, Janne-Petteri; Karppinen, Maarit; Hirose, Yasushi; Hasegawa, Tetsuya; Shigematsu, Kei; Sano, Masahito

    2015-11-09

    We have fabricated high-quality thin films of the transparent conducting anatase Nb:TiO{sub 2} on glass substrates through atomic layer deposition, and a subsequent reductive heat treatment of the as-deposited amorphous films. Hall-effect measurements and Drude-fitting of the Vis-NIR spectra indicate that for lightly doped films deposited at temperatures around 170 °C, grain boundary scattering becomes negligible and the mobility is predominately limited by phonon-electron scattering inherent to the anatase lattice and by impurities. Simultaneously, such lighter doping leads to reduced plasma absorption, thereby improving material's performance as a transparent conductor.

  14. Ice at the Interface: Atmosphere-Ice-Ocean Boundary Layer Processes and Their Role in Polar Change---Workshop Report

    SciTech Connect (OSTI)

    Hunke, Elizabeth C.

    2012-07-23

    The atmosphere-ocean boundary layer in which sea ice resides includes many complex processes that require a more realistic treatment in GCMs, particularly as models move toward full earth system descriptions. The primary purpose of the workshop was to define and discuss such coupled processes from observational and modeling points of view, including insight from both the Arctic and Antarctic systems. The workshop met each of its overarching goals, including fostering collaboration among experimentalists, theorists and modelers, proposing modeling strategies, and ascertaining data availability and needs. Several scientific themes emerged from the workshop, such as the importance of episodic or extreme events, precipitation, stratification above and below the ice, and the marginal ice zone, whose seasonal Arctic migrations now traverse more territory than in the past.

  15. Nitrogen Oxides in the Nocturnal Boundary Layer: Chemistry of Nitrous Acid (HONO) and the Nitrate Radical (N03)

    SciTech Connect (OSTI)

    Jochen Stutz

    2005-05-24

    Summary Chemical processes occurring at night in the lowest part of the urban atmosphere, the so called nocturnal boundary layer (NBL), can influence the composition of the atmosphere during the night as well as the following day. They may impact the budgets of some of the most important pollutants, such as ozone and nitrogen oxides, as well as influence size and composition of particular matter. Few studies have thus far concentrated on the nocturnal chemistry of the urban NBL, most likely due to the strong influence of vertical transport and mixing, which requires the measurement of trace gas profiles instead of simple point observations. Motivated by our lack of observations and understanding of nocturnal chemistry, the focus of this project was the study of the vertical distribution of trace gases and the altitude dependence of nocturnal chemistry under polluted conditions through field observations and modeling studies. The analysis of three field experiments (TEXAQS, Houston, 2000; Phoenix Sunrise Ozone Experiment, 2001; NAPOX, Boston, 2002), two of which were performed in this project, showed that ozone concentrations typically increase with height in the lowest 150m, while NO2 typically decreases. NO3, the dominant nocturnal radical species, showed much higher concentrations in the upper part of the NBL, and was often not present at the ground. With the help of a one-dimensional chemical transport model, developed in this project, we found that the interaction of ground emissions of NOx and hydrocarbons, together with their vertical transport, is responsible for the vertical profiles. The dominant chemical reactions influencing ozone, NO2 and NO3 are the reaction of ozone and NO3 with freshly emitted NO. Sensitivity studies with our model showed that the magnitude of the trace gas gradients depend both on the emission rates and the vertical stability of the NBL. Observations and model analysis clearly show that nocturnal chemistry in urban areas is altitude

  16. TRANSPORT OF HEAT, WATER VAPOR AND CARBON DOXIDE BY LONG PERIOD EDDIES IN THE STABLE BOUNDARY LAYER

    SciTech Connect (OSTI)

    Kurzeja, R.

    2010-07-26

    The vertical transport of heat and trace chemicals for a night in April has been studied with a wavelet analysis and conventional one-hour averages. It was found that for the night of April 20, 2009, turbulent kinetic energy, heat and trace chemicals were transported directed downward from the jet core. The most significant periods for this transport were less than 5 minutes and greater than one hour with intermittent transport taking place in the 5 min to 1 hour time frame. The nocturnal boundary layer is characterized by turbulent intermittency, long period oscillations, and a slow approach to equilibrium, (Mahrt, 1999). Although turbulence is usually maintained by surface friction, downward transport from low-level jets can also play an important role in turbulence maintenance and in the transport of scalars, Mahrt (1999), Banta et al. (2006). The eddy covariance flux measurement technique assumes continuous turbulence which is unusual in the stable boundary because significant flux transport occurs via turbulent eddies whose periods are long compared with the averaging time (Goulden et al., 1996). Systematic error in eddy flux measurements is attributed mainly to the neglect of long period eddies. Banta et al. (2006) noted that observations of turbulence below the low level jet suggested that while upward transport of turbulence kinetic energy (TKE) is common, downward transport from the jet can also occur. They found that in the CASES 99 experiments that turbulence scaled well with the strength of the low-level jet, and that surface cooling was more important than surface roughness. Because nocturnal turbulence is intermittent and non-stationary, the appropriate averaging time for calculation of TKE and EC fluxes is not obvious. Wavelet analysis is, thus, a more suitable analysis tool than conventional Fourier analysis.

  17. RACORO continental boundary layer cloud investigations. 3. Separation of parameterization biases in single-column model CAM5 simulations of shallow cumulus

    SciTech Connect (OSTI)

    Lin, Wuyin; Liu, Yangang; Vogelmann, Andrew M.; Fridlind, Ann; Endo, Satoshi; Song, Hua; Feng, Sha; Toto, Tami; Li, Zhijin; Zhang, Minghua

    2015-06-19

    Climatically important low-level clouds are commonly misrepresented in climate models. The FAst-physics System TEstbed and Research (FASTER) project has constructed case studies from the Atmospheric Radiation Measurement (ARM) Climate Research Facility's Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary-layer clouds. This paper focuses on using the single-column Community Atmosphere Model version 5 (SCAM5) simulations of a multi-day continental shallow cumulus case to identify specific parameterization causes of low-cloud biases. Consistent model biases among the simulations driven by a set of alternative forcings suggest that uncertainty in the forcing plays only a relatively minor role. In-depth analysis reveals that the model's shallow cumulus convection scheme tends to significantly under-produce clouds during the times when shallow cumuli exist in the observations, while the deep convective and stratiform cloud schemes significantly over-produce low-level clouds throughout the day. The links between model biases and the underlying assumptions of the shallow cumulus scheme are further diagnosed with the aid of large-eddy simulations and aircraft measurements, and by suppressing the triggering of the deep convection scheme. It is found that the weak boundary layer turbulence simulated is directly responsible for the weak cumulus activity and the simulated boundary layer stratiform clouds. Increased vertical and temporal resolutions are shown to lead to stronger boundary layer turbulence and reduction of low-cloud biases.

  18. RACORO continental boundary layer cloud investigations. 3. Separation of parameterization biases in single-column model CAM5 simulations of shallow cumulus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Wuyin; Liu, Yangang; Vogelmann, Andrew M.; Fridlind, Ann; Endo, Satoshi; Song, Hua; Feng, Sha; Toto, Tami; Li, Zhijin; Zhang, Minghua

    2015-06-19

    Climatically important low-level clouds are commonly misrepresented in climate models. The FAst-physics System TEstbed and Research (FASTER) project has constructed case studies from the Atmospheric Radiation Measurement (ARM) Climate Research Facility's Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary-layer clouds. This paper focuses on using the single-column Community Atmosphere Model version 5 (SCAM5) simulations of a multi-day continental shallow cumulus case to identify specific parameterization causes of low-cloud biases. Consistent model biases among the simulations driven by a set of alternative forcings suggest that uncertainty in the forcing plays only amore » relatively minor role. In-depth analysis reveals that the model's shallow cumulus convection scheme tends to significantly under-produce clouds during the times when shallow cumuli exist in the observations, while the deep convective and stratiform cloud schemes significantly over-produce low-level clouds throughout the day. The links between model biases and the underlying assumptions of the shallow cumulus scheme are further diagnosed with the aid of large-eddy simulations and aircraft measurements, and by suppressing the triggering of the deep convection scheme. It is found that the weak boundary layer turbulence simulated is directly responsible for the weak cumulus activity and the simulated boundary layer stratiform clouds. Increased vertical and temporal resolutions are shown to lead to stronger boundary layer turbulence and reduction of low-cloud biases.« less

  19. Horizontal-Velocity and Variance Measurements in the Stable Boundary Layer Using Doppler Lidar: Sensitivity to Averaging Procedures

    SciTech Connect (OSTI)

    Pichugina, Yelena L.; Banta, Robert M.; Kelley, Neil D.; Jonkman, Bonnie J.; Tucker, Sara C.; Newsom, Rob K.; Brewer, W. A.

    2008-08-01

    Quantitative data on turbulence variables aloft--above the region of the atmosphere conveniently measured from towers--has been an important but difficult measurement need for advancing understanding and modeling of the stable boundary layer (SBL). Vertical profiles of streamwise velocity variances obtained from NOAAs High Resolution Doppler Lidar (HRDL), which have been shown to be numerically equivalent to turbulence kinetic energy (TKE) for stable conditions, are a measure of the turbulence in the SBL. In the present study, the mean horizontal wind component U and variance ?u2 were computed from HRDL measurements of the line-of-sight (LOS) velocity using a technique described in Banta, et al. (2002). The technique was tested on datasets obtained during the Lamar Low-Level Jet Project (LLLJP) carried out in early September 2003, near the town of Lamar in southeastern Colorado. This paper compares U with mean wind speed obtained from sodar and sonic anemometer measurements. It then describes several series of averaging tests that produced the best correlation between TKE calculated from sonic anemometer data at several tower levels and lidar measurements of horizontal velocity variance ?u2. The results show high correlation (0.71-0.97) of the mean U and average wind speed measured by sodar and in-situ instruments, independent of sampling strategies and averaging procedures. Comparison of estimates of variance, on the other hand, proved sensitive to both the spatial and temporal averaging techniques.

  20. Ellipsometry characterization of polycrystalline ZnO layers with the modeling of carrier concentration gradient: Effects of grain boundary, humidity, and surface texture

    SciTech Connect (OSTI)

    Sago, Keisuke; Fujiwara, Hiroyuki; Kuramochi, Hideto; Iigusa, Hitoshi; Utsumi, Kentaro

    2014-04-07

    Spectroscopic ellipsometry (SE) has been applied to study the effects of grain boundary, humidity, and surface texture on the carrier transport properties of Al-doped ZnO layers fabricated by dc and rf magnetron sputtering. In the SE analysis, the variation in the free carrier absorption toward the growth direction, induced by the ZnO grain growth on foreign substrates, has been modeled explicitly by adopting a multilayer model in which the optical carrier concentration (N{sub opt}) varies continuously with a constant optical mobility (?{sub opt}). The effect of the grain boundary has been studied by comparing ?{sub opt} with Hall mobility (?{sub Hall}). The change in ?{sub Hall}/?{sub opt} indicates a sharp structural transition of the ZnO polycrystalline layer at a thickness of d???500?nm, which correlates very well with the structure confirmed by transmission electron microscopy. In particular, below the transition thickness, the formation of the high density grain boundary leads to the reduction in the ?{sub Hall}/?{sub opt} ratio as well as N{sub opt}. As a result, we find that the thickness dependence of the carrier transport properties is almost completely governed by the grain boundary formation. On the other hand, when the ZnO layer is exposed to wet air at 85?C, ?{sub Hall} reduces drastically with a minor variation of ?{sub opt} due to the enhanced grain boundary scattering. We have also characterized textured ZnO:Al layers prepared by HCl wet etching by SE. The analysis revealed that the near-surface carrier concentration increases slightly after the etching. We demonstrate that the SE technique can be applied to distinguish various rough textured structures (size???1??m) of the ZnO layers prepared by the HCl etching.

  1. Boundary Layer Lubrication

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  2. Boundary Layer Lubrication Mechanisms

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  3. Boundary Layer Lubrication Mechanisms

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  4. Erosional remnants and adjacent unconformities along an eolian-marine boundary of the Page Sandstone and Carmel Formation, Middle Jurassic, south-central Utah

    SciTech Connect (OSTI)

    Jones, L.S.; Blakey, R.C. (Univ. of Northern Arizona, Flagstaff, AZ (United States). Dept. of Geology)

    1993-09-01

    Sandstone ridges along the marine-eolian boundary of the Middle Jurassic Page Sandstone (eolian) with the lower Carmel Formation (restricted marine) in south-central Utah have been identified as erosional remnants consisting of strata of siliciclastic sabkha and eolian origin. The ridges lie within two distinct units of the Thousand Pockets Tongue of the Page. Two equally plausible models explain the genesis of these ridges. One model involves (1) early cementation of eolian and sabkha strata, (2) wind erosion leading to development of yardangs and unconformities, (3) yardang tilting due to evaporite dissolution, and (4) renewed deposition and burial. The alternative model explains ridge development through (1) subsidence, with tilting, of eolian and sabkha strata into evaporites due to loading from linear dunes, (2) evaporite dissolution and unconformity development, and (3) renewed deposition and burial. These models provide important clues about the nature of a missing part of the rock record. Reconstruction of units that were deposited but later eroded improves paleogeographic interpretation and here indicates that the Carmel paleo-shoreline was considerably farther to the northwest than previously believed.

  5. Effect of radiation and magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid

    SciTech Connect (OSTI)

    Alkasasbeh, Hamzeh Taha Sarif, Norhafizah Md Salleh, Mohd Zuki; Tahar, Razman Mat; Nazar, Roslinda; Pop, Ioan

    2015-02-03

    In this paper, the effect of radiation on magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations in the form of nonlinear partial differential equations are solved numerically using an implicit finite difference scheme known as the Keller-box method. Numerical solutions are obtained for the local wall temperature and the local skin friction coefficient, as well as the velocity, angular velocity and temperature profiles. The features of the flow and heat transfer characteristics for various values of the Prandtl number Pr, micropolar parameter K, magnetic parameter M, radiation parameter N{sub R}, the conjugate parameter γ and the coordinate running along the surface of the sphere, x are analyzed and discussed.

  6. Measurement of Boundary-Layer Temperature Profiles by a Scanning 5-MM Radiometer During the 1999 Winter NSA/AAO Radiometer Exp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boundary-Layer Temperature Profiles by a Scanning 5-MM Radiometer During the 1999 Winter NSA/AAO Radiometer Experiment and WVIOP 2000 V. Y. Leuski and E. R. Westwater Cooperative Institute for Research in the Environmental Sciences National Oceanic and Atmospheric Administration Environmental Technology Laboratory University of Colorado Boulder, Colorado Introduction A scanning 5-mm-wavelength radiometer was deployed during two Intensive Operational Periods (IOPs) at the Atmospheric Radiation

  7. Horizontal Velocity and Variance Measurements in the Stable Boundary Layer Using Doppler Lidar: Sensitivity to Averaging Procedures

    SciTech Connect (OSTI)

    Pichugina, Y. L.; Banta, R. M.; Kelley, N. D.; Jonkman, B. J.; Tucker, S. C.; Newsom, R. K.; Brewer, W. A.

    2008-08-01

    Quantitative data on turbulence variables aloft--above the region of the atmosphere conveniently measured from towers--have been an important but difficult measurement need for advancing understanding and modeling of the stable boundary layer (SBL). Vertical profiles of streamwise velocity variances obtained from NOAA's high-resolution Doppler lidar (HRDL), which have been shown to be approximately equal to turbulence kinetic energy (TKE) for stable conditions, are a measure of the turbulence in the SBL. In the present study, the mean horizontal wind component U and variance {sigma}2u were computed from HRDL measurements of the line-of-sight (LOS) velocity using a method described by Banta et al., which uses an elevation (vertical slice) scanning technique. The method was tested on datasets obtained during the Lamar Low-Level Jet Project (LLLJP) carried out in early September 2003, near the town of Lamar in southeastern Colorado. This paper compares U with mean wind speed obtained from sodar and sonic anemometer measurements. The results for the mean U and mean wind speed measured by sodar and in situ instruments for all nights of LLLJP show high correlation (0.71-0.97), independent of sampling strategies and averaging procedures, and correlation coefficients consistently >0.9 for four high-wind nights, when the low-level jet speeds exceeded 15 m s{sup -1} at some time during the night. Comparison of estimates of variance, on the other hand, proved sensitive to both the spatial and temporal averaging parameters. Several series of averaging tests are described, to find the best correlation between TKE calculated from sonic anemometer data at several tower levels and lidar measurements of horizontal-velocity variance {sigma}{sup 2}{sub u}. Because of the nonstationarity of the SBL data, the best results were obtained when the velocity data were first averaged over intervals of 1 min, and then further averaged over 3-15 consecutive 1-min intervals, with best results

  8. XMM-NEWTON OBSERVATIONS OF THE DWARF NOVA RU Peg IN QUIESCENCE: PROBE OF THE BOUNDARY LAYER

    SciTech Connect (OSTI)

    Balman, Soelen; Godon, Patrick; Sion, Edward M.; Ness, Jan-Uwe; Schlegel, Eric; Barrett, Paul E.; Szkody, Paula E-mail: patrick.godon@villanova.edu E-mail: juness@sciops.esa.int E-mail: barrett.paul@usno.navy.mil

    2011-11-10

    We present an analysis of X-ray and UV data obtained with the XMM-Newton Observatory of the long-period dwarf nova RU Peg. RU Peg contains a massive white dwarf (WD), possibly the hottest WD in a dwarf nova (DN), it has a low inclination, thus optimally exposing its X-ray emitting boundary layer (BL), and has an excellent trigonometric parallax distance. We modeled the X-ray data using XSPEC assuming a multi-temperature plasma emission model built from the MEKAL code (i.e., CEVMKL). We obtained a maximum temperature of 31.7 keV, based on the European Photon Imaging Camera MOS1, 2 and pn data, indicating that RU Peg has an X-ray spectrum harder than most DNe, except U Gem. This result is consistent with and indirectly confirms the large mass of the WD in RU Peg. The X-ray luminosity we computed corresponds to a BL luminosity for a mass accretion rate of 2 Multiplication-Sign 10{sup -11} M{sub sun} yr{sup -1} (assuming M{sub wd} = 1.3 M{sub sun}), in agreement with the expected quiescent accretion rate. The modeling of the O VIII emission line at 19 A as observed by the Reflection Grating Spectrometer implies a projected stellar rotational velocity v{sub rot}sin i = 695 km s{sup -1}, i.e., the line is emitted from material rotating at {approx}936-1245 km s{sup -1} (i {approx} 34 Degree-Sign -48 Degree-Sign) or about 1/6 of the Keplerian speed; this velocity is much larger than the rotation speed of the WD inferred from the Far Ultraviolet Spectroscopic Explorer spectrum. Cross-correletion analysis yielded an undelayed (time lag {approx} 0) component and a delayed component of 116 {+-} 17 s where the X-ray variations/fluctuations lagged the UV variations. This indicates that the UV fluctuations in the inner disk are propagated into the X-ray emitting region in about 116 s. The undelayed component may be related to irradiation effects.

  9. Reynolds number scaling of the influence of boundary layers on the global behavior of laboratory quasi-Keplerian flows

    SciTech Connect (OSTI)

    Edlund, E. M.; Ji, H.

    2015-10-06

    Here, we present fluid velocity measurements in a modified Taylor-Couette device operated in the quasi-Keplerian regime, where it is observed that nearly ideal flows exhibit self-similarity under scaling of the Reynolds number. In contrast, nonideal flows show progressive departure from ideal Couette as the Reynolds number is increased. We present a model that describes the observed departures from ideal Couette rotation as a function of the fluxes of angular momentum across the boundaries, capturing the dependence on Reynolds number and boundary conditions.

  10. RACORO continental boundary layer cloud investigations. 2. Large-eddy simulations of cumulus clouds and evaluation with in-situ and ground-based observations

    SciTech Connect (OSTI)

    Endo, Satoshi; Fridlind, Ann M.; Lin, Wuyin; Vogelmann, Andrew M.; Toto, Tami; Ackerman, Andrew S.; McFarquhar, Greg M.; Jackson, Robert C.; Jonsson, Haflidi H.; Liu, Yangang

    2015-06-19

    A 60-hour case study of continental boundary layer cumulus clouds is examined using two large-eddy simulation (LES) models. The case is based on observations obtained during the RACORO Campaign (Routine Atmospheric Radiation Measurement [ARM] Aerial Facility [AAF] Clouds with Low Optical Water Depths [CLOWD] Optical Radiative Observations) at the ARM Climate Research Facility's Southern Great Plains site. The LES models are driven by continuous large-scale and surface forcings, and are constrained by multi-modal and temporally varying aerosol number size distribution profiles derived from aircraft observations. We compare simulated cloud macrophysical and microphysical properties with ground-based remote sensing and aircraft observations. The LES simulations capture the observed transitions of the evolving cumulus-topped boundary layers during the three daytime periods, and generally reproduce variations of droplet number concentration with liquid water content (LWC), corresponding to the gradient between the cloud centers and cloud edges at given heights. The observed LWC values fall within the range of simulated values; the observed droplet number concentrations are commonly higher than simulated, but differences remain on par with potential estimation errors in the aircraft measurements. Sensitivity studies examine the influences of bin microphysics versus bulk microphysics, aerosol advection, supersaturation treatment, and aerosol hygroscopicity. Simulated macrophysical cloud properties are found to be insensitive in this non-precipitating case, but microphysical properties are especially sensitive to bulk microphysics supersaturation treatment and aerosol hygroscopicity.

  11. RACORO continental boundary layer cloud investigations. 2. Large-eddy simulations of cumulus clouds and evaluation with in-situ and ground-based observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Endo, Satoshi; Fridlind, Ann M.; Lin, Wuyin; Vogelmann, Andrew M.; Toto, Tami; Ackerman, Andrew S.; McFarquhar, Greg M.; Jackson, Robert C.; Jonsson, Haflidi H.; Liu, Yangang

    2015-06-19

    A 60-hour case study of continental boundary layer cumulus clouds is examined using two large-eddy simulation (LES) models. The case is based on observations obtained during the RACORO Campaign (Routine Atmospheric Radiation Measurement [ARM] Aerial Facility [AAF] Clouds with Low Optical Water Depths [CLOWD] Optical Radiative Observations) at the ARM Climate Research Facility's Southern Great Plains site. The LES models are driven by continuous large-scale and surface forcings, and are constrained by multi-modal and temporally varying aerosol number size distribution profiles derived from aircraft observations. We compare simulated cloud macrophysical and microphysical properties with ground-based remote sensing and aircraft observations.more » The LES simulations capture the observed transitions of the evolving cumulus-topped boundary layers during the three daytime periods, and generally reproduce variations of droplet number concentration with liquid water content (LWC), corresponding to the gradient between the cloud centers and cloud edges at given heights. The observed LWC values fall within the range of simulated values; the observed droplet number concentrations are commonly higher than simulated, but differences remain on par with potential estimation errors in the aircraft measurements. Sensitivity studies examine the influences of bin microphysics versus bulk microphysics, aerosol advection, supersaturation treatment, and aerosol hygroscopicity. Simulated macrophysical cloud properties are found to be insensitive in this non-precipitating case, but microphysical properties are especially sensitive to bulk microphysics supersaturation treatment and aerosol hygroscopicity.« less

  12. On Techniques to Characterize and Correlate Grain Size, Grain Boundary Orientation and the Strength of the SiC Layer of TRISO Coated Particles: A Preliminary Study

    SciTech Connect (OSTI)

    I.J.van Rooyen; J.L. Dunzik Gougar; T. Trowbridge; Philip M van Rooyen

    2012-10-01

    The mechanical properties of the silicon carbide (SiC) layer of the TRi-ISOtropic (TRISO) coated particle (CP) for high temperature gas reactors (HTGR) are performance parameters that have not yet been standardized by the international HTR community. Presented in this paper are the results of characterizing coated particles to reveal the effect of annealing temperature (1000 to 2100C) on the strength and grain size of unirradiated coated particles. This work was further expanded to include possible relationships between the grain size and strength values. The comparative results of two strength measurement techniques and grain size measured by the Lineal intercept method are included. Preliminary grain boundary characterization results determined by electron backscatter diffraction (EBSD) are included. These results are also important for future fission product transport studies, as grain boundary diffusion is identified as a possible mechanism by which 110mAg, one of the fission activation products, might be released through intact SiC layers. Temperature is a parameter known to influence the grain size of SiC and therefore it is important to investigate the effect of high temperature annealing on the SiC grain size. Recommendations and future work will also be briefly discussed.

  13. Interface boundary conditions for dynamic magnetization and spin wave dynamics in a ferromagnetic layer with the interface Dzyaloshinskii-Moriya interaction

    SciTech Connect (OSTI)

    Kostylev, M.

    2014-06-21

    In this work, we derive the interface exchange boundary conditions for the classical linear dynamics of magnetization in ferromagnetic layers with the interface Dzyaloshinskii-Moriya interaction (IDMI). We show that IDMI leads to pinning of dynamic magnetization at the interface. An unusual peculiarity of the IDMI-based pinning is that its scales as the spin-wave wave number. We incorporate these boundary conditions into an existing numerical model for the dynamics of the Damon-Eshbach spin wave in ferromagnetic films. IDMI affects the dispersion and the frequency non-reciprocity of the travelling Damon-Eshbach spin wave. For a broad range of film thicknesses L and wave numbers, the results of the numerical simulations of the spin wave dispersion are in a good agreement with a simple analytical expression, which shows that the contribution of IDMI to the dispersion scales as 1/L, similarly to the effect of other types of interfacial anisotropy. Suggestions to experimentalists how to detect the presence of IDMI in a spin wave experiment are given.

  14. VARIATIONS OF SOLAR ELECTRON AND PROTON FLUX IN MAGNETIC CLOUD BOUNDARY LAYERS AND COMPARISONS WITH THOSE ACROSS THE SHOCKS AND IN THE RECONNECTION EXHAUSTS

    SciTech Connect (OSTI)

    Wang, Y.; Wei, F. S.; Feng, X. S.; Zuo, P. B.; Guo, J. P.; Xu, X. J.; Li, Z.

    2012-04-10

    The magnetic cloud boundary layer (BL) is a dynamic region formed by the interaction of the magnetic cloud (MC) and the ambient solar wind. In the present study, we comparatively investigate the proton and electron mean flux variations in the BL, in the interplanetary reconnection exhaust (RE), and across the MC-driven shock by using the Wind data from 1995 to 2006. In general, the proton flux has higher increments at lower energy bands compared with the ambient solar wind. Inside the BL, the core electron flux increases quasi-isotropically and the increments decrease monotonously with energy from {approx}30% (at 18 eV) to {approx}10% (at 70 eV); the suprathermal electron flux usually increases in either parallel or antiparallel direction; the correlation coefficient of electron flux variations in parallel and antiparallel directions changes sharply from {approx}0.8 below 70 eV to {approx}0 above 70 eV. Similar results are also found for RE. However, different phenomena are found across the shock where the electron flux variations first increase and then decrease with a peak increment (>200%) near 100 eV. The correlation coefficient of electron flux variations in parallel and antiparallel directions is always around 0.8. The similar behavior of flux variations in BL and RE suggests that reconnection may commonly occur in BL. Our work also implies that the strong energy dependence and direction selectivity of electron flux variations, which were previously thought to have not enough relevance to magnetic reconnection, could be considered as an important signature of solar wind reconnection in the statistical point of view.

  15. Marine04 Marine radiocarbon age calibration, 26 ? 0 ka BP

    SciTech Connect (OSTI)

    Hughen, K; Baille, M; Bard, E; Beck, J; Bertrand, C; Blackwell, P; Buck, C; Burr, G; Cutler, K; Damon, P; Edwards, R; Fairbanks, R; Friedrich, M; Guilderson, T; Kromer, B; McCormac, F; Manning, S; Bronk-Ramsey, C; Reimer, P; Reimer, R; Remmele, S; Southon, J; Stuiver, M; Talamo, S; Taylor, F; der Plicht, J v; Weyhenmeyer, C

    2004-11-01

    New radiocarbon calibration curves, IntCal04 and Marine04, have been constructed and internationally ratified to replace the terrestrial and marine components of IntCal98. The new calibration datasets extend an additional 2000 years, from 0-26 ka cal BP (Before Present, 0 cal BP = AD 1950), and provide much higher resolution, greater precision and more detailed structure than IntCal98. For the Marine04 curve, dendrochronologically dated tree-ring samples, converted with a box-diffusion model to marine mixed-layer ages, cover the period from 0-10.5 ka cal BP. Beyond 10.5 ka cal BP, high-resolution marine data become available from foraminifera in varved sediments and U/Th-dated corals. The marine records are corrected with site-specific {sup 14}C reservoir age information to provide a single global marine mixed-layer calibration from 10.5-26.0 ka cal BP. A substantial enhancement relative to IntCal98 is the introduction of a random walk model, which takes into account the uncertainty in both the calendar age and the radiocarbon age to calculate the underlying calibration curve. The marine datasets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed here. The tree-ring datasets, sources of uncertainty, and regional offsets are presented in detail in a companion paper by Reimer et al.

  16. Pyramidal inversion domain boundaries revisited

    SciTech Connect (OSTI)

    Remmele, T.; Albrecht, M.; Irmscher, K.; Fornari, R.; Strassburg, M.

    2011-10-03

    The structure of pyramidal inversion domain boundaries in GaN:Mg was investigated by aberration corrected transmission electron microscopy. The analysis shows the upper (0001) boundary to consist of a single Mg layer inserted between polarity inverted GaN layers in an abcab stacking. The Mg bound in these defects is at least one order of magnitude lower than the chemical Mg concentration. Temperature dependent Hall effect measurements show that up to 27% of the Mg acceptors is electrically compensated.

  17. Differences between nonprecipitating tropical and trade wind marine shallow cumuli

    SciTech Connect (OSTI)

    Ghate, Virendra P.; Miller, Mark A.; Zhu, Ping

    2015-11-13

    In this study, marine nonprecipitating cumulus topped boundary layers (CTBLs) observed in a tropical and in a trade wind region are contrasted based on their cloud macrophysical, dynamical, and radiative structures. Data from the Atmospheric Radiation Measurement (ARM) observational site previously operating at Manus Island, Papua New Guinea, and data collected during the deployment of ARM Mobile Facility at the island of Graciosa, in the Azores, were used in this study. The tropical marine CTBLs were deeper, had higher surface fluxes and boundary layer radiative cooling, but lower wind speeds compared to their trade wind counterparts. The radiative velocity scale was 50%-70% of the surface convective velocity scale at both locations, highlighting the prominent role played by radiation in maintaining turbulence in marine CTBLs. Despite greater thicknesses, the chord lengths of tropical cumuli were on average lower than those of trade wind cumuli, and as a result of lower cloud cover, the hourly averaged (cloudy and clear) liquid water paths of tropical cumuli were lower than the trade wind cumuli. At both locations ~70% of the cloudy profiles were updrafts, while the average amount of updrafts near cloud base stronger than 1 m s–1 was ~22% in tropical cumuli and ~12% in the trade wind cumuli. The mean in-cloud radar reflectivity within updrafts and mean updraft velocity was higher in tropical cumuli than the trade wind cumuli. Despite stronger vertical velocities and a higher number of strong updrafts, due to lower cloud fraction, the updraft mass flux was lower in the tropical cumuli compared to the trade wind cumuli. The observations suggest that the tropical and trade wind marine cumulus clouds differ significantly in their macrophysical and dynamical structures

  18. Differences between nonprecipitating tropical and trade wind marine shallow cumuli

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ghate, Virendra P.; Miller, Mark A.; Zhu, Ping

    2015-11-13

    In this study, marine nonprecipitating cumulus topped boundary layers (CTBLs) observed in a tropical and in a trade wind region are contrasted based on their cloud macrophysical, dynamical, and radiative structures. Data from the Atmospheric Radiation Measurement (ARM) observational site previously operating at Manus Island, Papua New Guinea, and data collected during the deployment of ARM Mobile Facility at the island of Graciosa, in the Azores, were used in this study. The tropical marine CTBLs were deeper, had higher surface fluxes and boundary layer radiative cooling, but lower wind speeds compared to their trade wind counterparts. The radiative velocity scalemore » was 50%-70% of the surface convective velocity scale at both locations, highlighting the prominent role played by radiation in maintaining turbulence in marine CTBLs. Despite greater thicknesses, the chord lengths of tropical cumuli were on average lower than those of trade wind cumuli, and as a result of lower cloud cover, the hourly averaged (cloudy and clear) liquid water paths of tropical cumuli were lower than the trade wind cumuli. At both locations ~70% of the cloudy profiles were updrafts, while the average amount of updrafts near cloud base stronger than 1 m s–1 was ~22% in tropical cumuli and ~12% in the trade wind cumuli. The mean in-cloud radar reflectivity within updrafts and mean updraft velocity was higher in tropical cumuli than the trade wind cumuli. Despite stronger vertical velocities and a higher number of strong updrafts, due to lower cloud fraction, the updraft mass flux was lower in the tropical cumuli compared to the trade wind cumuli. The observations suggest that the tropical and trade wind marine cumulus clouds differ significantly in their macrophysical and dynamical structures« less

  19. Retrieving 4-dimensional atmospheric boundary layer structure...

    Office of Scientific and Technical Information (OSTI)

    (BER) (SC-23) Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES Atmospheric System Research Word Cloud More Like This Full Text preview ...

  20. Stable Boundary Layer Education Field Campaign Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (STABLE) Final Campaign Summary DD Turner March 2016 DISCLAIMER This report was ... (STABLE) Final Campaign Summary DD Turner, National Oceanic and Atmospheric ...

  1. Stable Boundary Layer Education Field Campaign Summary

    Office of Scientific and Technical Information (OSTI)

    ... (derived from the temperature) and water vapor mixing ratio retrieved from the AERI ... The other panels show time- height cross sections of potential temperature, water vapor ...

  2. BOUndary Plasma Turbulence

    Energy Science and Technology Software Center (OSTI)

    2008-01-25

    BOUT is a parallelized 3D nonlocal electromagnetic turbulence code. The principal calculations are the boundary plasma turbulence in a realistic magnetic geometry. BOUT uses fluid Braginskii equations for plasma vorticity, density, electron and ion temperature and Parallel mementum. With sources added in the core-edge region and sinks in the scrape-off-layer (SOL), BOUT follows the self-consistent profile evolution together with turbulence. BOUT also includes coupling to a magnetohyfrodynamic equlibrium (EFIT package) and a two-dimensional hydrodynamic edgemore » transport model (UEDGE package).« less

  3. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kazil, Jan; Feingold, Graham; Yamaguchi, Takanobu

    2016-05-12

    Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and strongermore » entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning–afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ≳50 gm–2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. Here, we find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over from

  4. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kazil, Jan; Feingold, Graham; Yamaguchi, Takanobu

    2016-05-12

    Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and strongermore » entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning–afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ⪆ 50 g m−2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. We find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over

  5. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kazil, J.; Feingold, G.; Yamaguchi, T.

    2015-10-21

    Observed and projected trends in large scale wind speed over the oceans prompt the question: how might marine stratocumulus clouds and their radiative properties respond to future changes in large scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum, and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and stronger entrainment. The dynamicalmoredriver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ⪆ 50 g m?2, long wave emissions are very insensitive to LWP. This leads to the more general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. We find furthermore that large scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment, and in part because circulation driven by shear from large scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large scale

  6. Marine Services | Open Energy Information

    Open Energy Info (EERE)

    Marine Services Place: Florida Sector: Services Product: Marine Services is planning tidal energy projects off the coasts of California and Florida. References: Marine...

  7. Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem

    SciTech Connect (OSTI)

    Yang Q.; Lee Y.; Gustafson Jr., W. I.; Fast, J. D.; Wang, H.; Easter, R. C.; Morrison, H.; Chapman, E. G.; Spak, S. N.; Mena-Carrasco, M. A.

    2011-12-02

    This study assesses the ability of the recent chemistry version (v3.3) of the Weather Research and Forecasting (WRF-Chem) model to simulate boundary layer structure, aerosols, stratocumulus clouds, and energy fluxes over the Southeast Pacific Ocean. Measurements from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) and satellite retrievals (i.e., products from the MODerate resolution Imaging Spectroradiometer (MODIS), Clouds and Earth's Radiant Energy System (CERES), and GOES-10) are used for this assessment. The Morrison double-moment microphysics scheme is newly coupled with interactive aerosols in the model. The 31-day (15 October-16 November 2008) WRF-Chem simulation with aerosol-cloud interactions (AERO hereafter) is also compared to a simulation (MET hereafter) with fixed cloud droplet number concentrations in the microphysics scheme and simplified cloud and aerosol treatments in the radiation scheme. The well-simulated aerosol quantities (aerosol number, mass composition and optical properties), and the inclusion of full aerosol-cloud couplings lead to significant improvements in many features of the simulated stratocumulus clouds: cloud optical properties and microphysical properties such as cloud top effective radius, cloud water path, and cloud optical thickness. In addition to accounting for the aerosol direct and semi-direct effects, these improvements feed back to the simulation of boundary-layer characteristics and energy budgets. Particularly, inclusion of interactive aerosols in AERO strengthens the temperature and humidity gradients within the capping inversion layer and lowers the marine boundary layer (MBL) depth by 130 m from that of the MET simulation. These differences are associated with weaker entrainment and stronger mean subsidence at the top of the MBL in AERO. Mean top-of-atmosphere outgoing shortwave fluxes, surface latent heat, and surface downwelling longwave fluxes are in better agreement with observations

  8. Microphysical structure of simulated marine stratocumulus: Effects of physical and numerical approximations

    SciTech Connect (OSTI)

    Stevens, B.; Cotton, W.R.; Feingold, G.

    1996-04-01

    Over the past decade or so the evolution and equilibria of persistent decks of stratocumulus climatologically clinging to the edge of summertime subtropical highs have been an issue of increased scientific inquiry. The particular interest in the microphysical structure of these clouds stems from a variety of hypotheses which suggest that anthropogenic influences or biogenic feedbacks may alter the structure of these clouds in a climatically significant manner. Most of these hypotheses are quite tentative, based as they are on simple formulations of boundary layer structures and interactions between drops and aerosols. This work is concerned with an assessment of the microphysical structure of marine stratocumulus as simulated by an LES-EM model.

  9. Marine Ice Nuclei Collections … MAGIC (MAGIC-IN) Final Campaign...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... low Chlorophyll-a (with the exception of near-shore) ocean regions, which exist along the MAGIC transect. Current analyses suggest that INP numbers in the marine boundary ...

  10. Marine and Hydrokinetic Energy Research & Development | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Marine and Hydrokinetic Energy Research & Development Marine and Hydrokinetic Energy Research & Development Marine and Hydrokinetic Energy Research &...

  11. Prospects for Simulating Macromolecular Surfactant Chemistry at the Ocean-Atmosphere Boundary

    SciTech Connect (OSTI)

    Elliott, S.; Burrows, Susannah M.; Deal, C.; Liu, Xiaohong; Long, M.; Ogunro, O.; Russell, Lynn M.; Wingenter, O.

    2014-05-01

    Biogenic lipids and polymers are surveyed for their ability to adsorb at the water-air interfaces associated with bubbles, marine microlayers and particles in the overlying boundary layer. Representative ocean biogeochemical regimes are defined in order to estimate local concentrations for the major macromolecular classes. Surfactant equilibria and maximum excess are then derived based on a network of model compounds. Relative local coverage and upward mass transport follow directly, and specific chemical structures can be placed into regional rank order. Lipids and denatured protein-like polymers dominate at the selected locations. The assigned monolayer phase states are variable, whether assessed along bubbles or at the atmospheric spray droplet perimeter. Since oceanic film compositions prove to be irregular, effects on gas and organic transfer are expected to exhibit geographic dependence as well. Moreover, the core arguments extend across the sea-air interface into aerosol-cloud systems. Fundamental nascent chemical properties including mass to carbon ratio and density depend strongly on the geochemical state of source waters. High surface pressures may suppress the Kelvin effect, and marine organic hygroscopicities are almost entirely unconstrained. While bubble adsorption provides a well-known means for transporting lipidic or proteinaceous material into sea spray, the same cannot be said of polysaccharides. Carbohydrates tend to be strongly hydrophilic so that their excess carbon mass is low despite stacked polymeric geometries. Since sugars are abundant in the marine aerosol, gel-based mechanisms may be required to achieve uplift. Uncertainties in the surfactant logic distill to a global scale dearth of information regarding two dimensional kinetics and equilibria. Nonetheless simulations are recommended, to initiate the process of systems level quantification.

  12. Marine & Hydrokinetic Technologies

    SciTech Connect (OSTI)

    2011-07-01

    This fact sheet describes the Wind and Water Power Program's current approach to supporting the development and deployment of marine and hydrokinetic technologies.

  13. The Fate of Marine Bacterial Exopolysaccharide in Natural Marine...

    Office of Scientific and Technical Information (OSTI)

    Most marine bacteria produce exopolysaccharides (EPS), and bacterial EPS represent an important source of dissolved organic carbon in marine ecosystems. It was proposed that ...

  14. Optimized capping layers for EUV multilayers

    DOE Patents [OSTI]

    Bajt, Sasa; Folta, James A.; Spiller, Eberhard A.

    2004-08-24

    A new capping multilayer structure for EUV-reflective Mo/Si multilayers consists of two layers: A top layer that protects the multilayer structure from the environment and a bottom layer that acts as a diffusion barrier between the top layer and the structure beneath. One embodiment combines a first layer of Ru with a second layer of B.sub.4 C. Another embodiment combines a first layer of Ru with a second layer of Mo. These embodiments have the additional advantage that the reflectivity is also enhanced. Ru has the best oxidation resistance of all materials investigated so far. B.sub.4 C is an excellent barrier against silicide formation while the silicide layer formed at the Si boundary is well controlled.

  15. Seawind Marine | Open Energy Information

    Open Energy Info (EERE)

    Seawind Marine Jump to: navigation, search Name: Seawind Marine Place: Plymouth, England, United Kingdom Zip: PL1 5NE Sector: Services, Wind energy Product: Focused on project...

  16. Marine Scotland | Open Energy Information

    Open Energy Info (EERE)

    Scotland Place: Edinburgh, Scotland, United Kingdom Zip: EH14 1TY Product: Marine science, planning, policy and management body. References: Marine Scotland1 This article is...

  17. Posters Triggering of Boundary Layer Cumulus Clouds Over a Heterogeneo...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    distribution, and the parameters can be objectively determined with a relatively straightforward maximum-likelihood statistical fitting method. For the whole grid-cell domain,...

  18. RACORO continental boundary layer cloud investigations. 2. Large...

    Office of Scientific and Technical Information (OSTI)

    Facility AAF Clouds with Low Optical Water Depths CLOWD Optical Radiative ... droplet number concentration with liquid water content (LWC), corresponding to the ...

  19. Four-Dimensional Data Assimilation Boundary-Layer Observations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The profiler was operated in Doppler beam swinging (DBS) mode while also processing the signal using interferometry . Radiosondes were launched from both the central facility and ...

  20. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign...

    Office of Scientific and Technical Information (OSTI)

    Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. ... University of Oklahoma Lawrence Livermore National Laboratory Publication Date: ...

  1. Stable Boundary Layer Education (STABLE) Final Campaign Summary...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  2. RACORO continental boundary layer cloud investigations. 3. Separation...

    Office of Scientific and Technical Information (OSTI)

    Brookhaven National Lab. (BNL), Upton, NY (United States) NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States) UCLA Joint Institute for Regional Earth System ...

  3. RACORO continental boundary layer cloud investigations. 2. Large...

    Office of Scientific and Technical Information (OSTI)

    Brookhaven National Lab. (BNL), Upton, NY (United States) NASA Goddard Inst. for Space Studies (GISS), New York, NY (United States) Univ. of Illinois, Urbana, IL (United States) ...

  4. RACORO Extended-Term Aircraft Observations of Boundary-Layer...

    Office of Scientific and Technical Information (OSTI)

    the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative ... SURFACES; THERMAL RADIATION; USA; WATER RACORO Extended-Term; Aircraft ...

  5. Marine & hydrokinetic technology development.

    SciTech Connect (OSTI)

    LiVecchi, Al; Jepsen, Richard Alan

    2010-06-01

    The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and hydrokinetic power

  6. Leviathan Marine Development | Open Energy Information

    Open Energy Info (EERE)

    Marine Development Jump to: navigation, search Name: Leviathan Marine Development Sector: Marine and Hydrokinetic Website: www.leviathanenergy.com This company is listed in the...

  7. First State Marine Wind | Open Energy Information

    Open Energy Info (EERE)

    State Marine Wind Jump to: navigation, search Name First State Marine Wind Facility First State Marine Wind Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  8. Plymouth Marine Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Marine Laboratory Jump to: navigation, search Name: Plymouth Marine Laboratory Place: United Kingdom Product: Carries out strategic and applied marine research. References:...

  9. The Radiative Role of Free Tropospheric Aerosols and Marine Clouds over the Central North Atlantic

    SciTech Connect (OSTI)

    Mazzoleni, Claudio; Kumar, Sumit; Wright, Kendra; Kramer, Louisa; Mazzoleni, Lynn; Owen, Robert; Helmig, Detlev

    2014-12-09

    microscope – were often very compacted, suggesting cloud processing and exhibiting different optical properties from fresh emissions. In addition, black carbon was found to be sometimes mixed with mineral dust, affecting its optical properties and potential forcing. c) Some aerosols collected at PMO acted as ice nuclei, potentially contributing to cirrus cloud formation during their transport in the upper free troposphere. Identified good ice nuclei were often mineral dust particles. d) The free tropospheric aerosols studied at PMO have relevance to low level marine clouds due, for example, to synoptic subsidence entraining free tropospheric aerosols into the marine boundary layer. This has potentially large consequences on cloud condensation nuclei concentrations and compositions in the marine boundary layer; therefore, having an effect on the marine stratus clouds, with potentially important repercussions on the radiative forcing. The scientific products of this project currently include contributions to two papers published in the Nature Publishing group (Nature Communications and Scientific Reports), one paper under revision for Atmospheric Chemistry and Physics, one in review in Geophysical Research Letters and one recently submitted to Atmospheric Chemistry and Physics Discussion. In addition, four manuscripts are in advanced state of preparation. Finally, twenty-eight presentations were given at international conferences, workshops and seminars.

  10. Boundary Plasma Turbulence Simulations for Tokamaks

    SciTech Connect (OSTI)

    Xu, X; Umansky, M; Dudson, B; Snyder, P

    2008-05-15

    The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.

  11. Cell boundary fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  12. Marin Solar | Open Energy Information

    Open Energy Info (EERE)

    Zip: 94901 Sector: Solar Product: Marin Solar is a residential installer of photovoltaic systems. References: Marin Solar1 This article is a stub. You can help OpenEI by...

  13. 2015 Marine Energy Technology Symposium

    Broader source: Energy.gov [DOE]

    The 3rd Annual Marine Energy Technology Symposium (METS) will be held as part of the inaugural International Marine Energy Conference. This conference takes place April 27-29, 2015, at the Capital...

  14. Investigations on Marine Hydrokinetic Turbine Foil Structural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marine Hydrokinetic Turbine Foil Structural Health Monitoring Presented at GMREC METS - ... Investigations on Marine Hydrokinetic Turbine Foil Structural Health Monitoring ...

  15. Marine botany. Second edition

    SciTech Connect (OSTI)

    Dawes, C.J.

    1998-12-01

    Marine plants are a diverse group that include unicellular algae, seaweeds, seagrasses, salt marshes, and mangrove forests. They carry out a variety of ecological functions and serve as the primary producers in coastal wetlands and oceanic waters. The theme that connects such a wide variety of plants is their ecology, which was also emphasized in the 1981 edition. The goal of this revision is to present taxonomic, physiological, chemical, and ecological aspects of marine plants, their adaptations, and how abiotic and biotic factors interact in their communities. The data are presented in a concise, comparative manner in order to identify similarities and differences between communities such as salt marsh and mangroves or subtidal seaweeds and seagrasses. To accomplish this, the text is organized into five chapters that introduce the marine habitats, consider abiotic and biotic factors, and anthropogenic influences on the communities followed by seven chapters that deal with microalgae, seaweeds, salt marshes, mangroves, seagrasses, and coral reefs. Two appendixes are included; one presents simple field techniques and the other is a summary of seaweed uses.

  16. Cell boundary fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2011-04-19

    An apparatus and program product determine a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  17. Gradient zone boundary control in salt gradient solar ponds

    DOE Patents [OSTI]

    Hull, John R.

    1984-01-01

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  18. EO 13158: Marine Protected Areas

    Broader source: Energy.gov [DOE]

    This Executive Order will help protect the significant natural and cultural resources within the marine environment for the benefit of present and future generations by strengthening and expanding...

  19. Marin County- Solar Access Code

    Broader source: Energy.gov [DOE]

    Marin County's Energy Conservation Code is designed to assure new subdivisions provide for future passive or natural heating or cooling opportunities in the subdivision to the extent feasible. ...

  20. International Marine Renewable Energy Conference

    Broader source: Energy.gov [DOE]

    The International Marine Renewable Energy Conference (IMREC) offers researchers, technology developers, policy makers, NGOs, and industry representatives the opportunity to discuss financing...

  1. Marine & Hydrokinetic Technologies (Fact Sheet) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine & Hydrokinetic Technologies (Fact Sheet) Marine & Hydrokinetic Technologies (Fact Sheet) This fact sheet describes the Wind and Water Power Program's current approach to...

  2. Seoul Marine Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Seoul Marine Co Ltd Jump to: navigation, search Name: Seoul Marine Co Ltd Place: Gwangju, Korea (Republic) Sector: Solar Product: Korea-based solar project developer. References:...

  3. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Computer Modeling Workshop The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy...

  4. Marine Hydroelectric Company | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Marine Hydroelectric Company Address: 24040 Camino Del Avion A 107 Place: Monarch Beach Sector: Marine and Hydrokinetic Year Founded: 1983 Phone...

  5. Resolute Marine Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Resolute Marine Energy Inc Jump to: navigation, search Name: Resolute Marine Energy Inc Address: 3 Post Office Square 3rd floor Place: Massachusetts Country: United States Zip:...

  6. Marine and Hydrokinetic Resources | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 CurrentTidalRiverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic...

  7. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Center, Morgantown, WV (United States) Mound Area Office, Miamisburg, OH (United ... marine boundary layer (1) thorium (1) transmutation (1) transuranium ...

  8. Charge Transport Anisotropy Due to Grain Boundaries in Directionally

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crystallized Thin Films of Regio-Regular Poly(3-hexylthiophene) Charge Transport Anisotropy Due to Grain Boundaries in Directionally Crystallized Thin Films of Regio-Regular Poly(3-hexylthiophene) Semicrystalline polymers, such as polythiophenes, hold much promise as active layers in printable electronic devices such as photovoltaic cells, sensors, and thin film transistors. As organic semiconductors approach commercialization, there is a need to better understand the relationship between

  9. Diagnosis of the Marine Low Cloud Simulation in the NCAR Community Earth System Model (CESM) and the NCEP Global Forecast System (GFS)-Modular Ocean Model v4 (MOM4) coupled model

    SciTech Connect (OSTI)

    Xiao, Heng; Mechoso, C. R.; Sun, Rui; Han, J.; Pan, H. L.; Park, S.; Hannay, Cecile; Bretherton, Christopher S.; Teixeira, J.

    2014-07-25

    We present a diagnostic analysis of the marine low cloud climatology simulated by two state-of-the-art coupled atmosphere-ocean models: the NCAR Community Earth System Model (CESM) and the NCEP Global Forecasting System (GFS). In both models, the shallow convection and boundary layer turbulence parameterizations have been recently updated: both models now use a mass-flux scheme for the parameterization of shallow convection, and a turbulence parameterization capable of handling Stratocumulus (Sc)-topped Planetary Boundary Layers (PBLs). For shallow convection, both models employ a convective trigger function based on the concept of convective inhibition and both include explicit convective overshooting/penetrative entrainment formulation. For Sc-topped PBL, both models treat explicitly turbulence mixing and cloud-top entrainment driven by cloud-top radiative cooling. Our focus is on the climatological transition from Sc to shallow Cumulus (Cu)-topped PBL in the subtropical eastern oceans. We show that in the CESM the coastal Sc-topped PBLs in the subtropical Eastern Pacific are well-simulated but the climatological transition from Sc to shallow Cu is too abrupt and happens too close to the coast. By contrast, in the GFS coupled simulation the coastal Sc amount and PBL depth are severely underestimated while the transition from Sc to shallow Cu is delayed and offshore Sc cover is too extensive in the subtropical Eastern Pacific. We discuss the possible connections between such differences in the simulations and differences in the parameterizations of shallow convection and boundary layer turbulence in the two models.

  10. SOPAC marine geology atlases

    SciTech Connect (OSTI)

    Chase, T.E.; Seekins, B.A.; Young, J.D.; Wahler, J.A.

    1986-07-01

    The US Geological Survey conducted a series of marine geologic and geophysical cruises in the southwest Pacific Ocean in 1982 and 1984 as part of a program with participation by Australia and New Zealand. These two SOPAC expeditions obtained various data, which have been compiled into a series of charts and thematic products for the offshore areas of Tonga, Fiji, Vanuatu, the Solomon Islands, and Papua New Guinea. The maps and charts presently being compiled or revised combine previously collected data with information from the SOPAC expeditions. Regional charts at a scale of approximately 1:3 million are included, and more detailed coverage is available at 1:1 million. Additional geologic information-such as gravity, magnetics, and possibly sediment isopachs-is provided on overlays to the topographic base charts. Reproductions of the seismic reflection data are also included, and tracklines with both time marks and shotpoints will permit correlation with the analog and digital seismic records.

  11. Chemical Composition and Sources of Coastal Marine Aerosol Particles during the 2008 VOCALS-REx Campaign

    SciTech Connect (OSTI)

    Lee, Y.- N.; Springston, S.; Jayne, John T.; Wang, Jian; Hubbe, John M.; Senum, Gunnar I.; Kleinman, Lawrence I.; Daum, Peter H.

    2014-05-23

    The chemical composition of aerosol particles (Dp 1.5 ?m) was measured over the southeast Pacific Ocean during the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-Rex) between 16 October and 15 November 2008 using the US Department of Energy (DOE) G-1 aircraft. The objective of these flights was to gain an understanding of the sources and evolution of these aerosols, and of how they interact with the marine stratus cloud layer that prevails in this region of the globe. Our measurements showed that the marine boundary layer (MBL) aerosol mass was dominated by non-sea-salt SO2?4, followed by Na+, Cl?, Org (total organics), NH+4 , and NO?3 , in decreasing order of importance; CH3SO?3 (MSA), Ca2+, and K+ rarely exceeded their limits of detection. Aerosols were strongly acidic with a NH+4 to SO2?4 equivalents ratio typically < 0.3. Sea-salt aerosol (SSA) particles, represented by NaCl, exhibited Cl? deficits caused by both HNO3 and H2SO4, but for the most part were externally mixed with particles, mainly SO2?4. SSA contributed only a small fraction of the total accumulation mode particle number concentration. It was inferred that all aerosol species (except SSA) were of predominantly continental origin because of their strong land-to-sea concentration gradient. Comparison of relative changes in median values suggests that (1) an oceanic source of NH3 is present between 72 W and 76 W, (2) additional organic aerosols from biomass burns or biogenic precursors were emitted from coastal regions south of 31 S, with possible cloud processing, and (3) free tropospheric (FT) contributions to MBL gas and aerosol concentrations were negligible. The very low levels of CH3SO?3 observed as well as the correlation between SO2?4 and NO?3 (which is thought primarily anthropogenic) suggest a limited contribution of DMS to SO2?4 aerosol production during VOCALS.

  12. Antifouling marine concrete

    SciTech Connect (OSTI)

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as to their capability to prevent or inhibit the attachment of marine fouling organisms to concrete for OTEC plants. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6-1/2 years in seawater.

  13. Antifouling marine concrete

    SciTech Connect (OSTI)

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as the their capability to prevent or inhibit the attachment of marine fouling organisms to concrete. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6 1/2 years in seawater.

  14. Form:Marine and Hydrokinetic Technology | Open Energy Information

    Open Energy Info (EERE)

    Form Edit History Form:Marine and Hydrokinetic Technology Jump to: navigation, search Add a Marine and Hydrokinetic Technology Input the name of your Marine and Hydrokinetic...

  15. Marine Corps Base Quantico Achieves 85% Savings in Parking Lighting...

    Office of Environmental Management (EM)

    Quantico Achieves 85% Savings in Parking Lighting Marine Corps Base Quantico Achieves 85% Savings in Parking Lighting Marine Corps Base Quantico (MCBQ) in Virginia Marine Corps ...

  16. Photovoltaic devices comprising zinc stannate buffer layer and method for making

    DOE Patents [OSTI]

    Wu, Xuanzhi; Sheldon, Peter; Coutts, Timothy J.

    2001-01-01

    A photovoltaic device has a buffer layer zinc stannate Zn.sub.2 SnO.sub.4 disposed between the semiconductor junction structure and the transparent conducting oxide (TCO) layer to prevent formation of localized junctions with the TCO through a thin window semiconductor layer, to prevent shunting through etched grain boundaries of semiconductors, and to relieve stresses and improve adhesion between these layers.

  17. Photonic layered media

    DOE Patents [OSTI]

    Fleming, James G.; Lin, Shawn-Yu

    2002-01-01

    A new class of structured dielectric media which exhibit significant photonic bandstructure has been invented. The new structures, called photonic layered media, are easy to fabricate using existing layer-by-layer growth techniques, and offer the ability to significantly extend our practical ability to tailor the properties of such optical materials.

  18. Marine and Hydrokinetic Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOEs Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database was updated in 2009 to include ocean thermal energy technologies, companies, and projects.

  19. Marine and Hydrokinetic Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE’s Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database was updated in 2009 to include ocean thermal energy technologies, companies, and projects.

  20. Scintillator reflective layer coextrusion

    DOE Patents [OSTI]

    Yun, Jae-Chul; Para, Adam

    2001-01-01

    A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.

  1. Irradiation Assisted Grain Boundary Segregation in Steels

    SciTech Connect (OSTI)

    Lu, Zheng; Faulkner, Roy G.

    2008-07-01

    The understanding of radiation-induced grain boundary segregation (RIS) has considerably improved over the past decade. New models have been introduced and much effort has been devoted to obtaining comprehensive information on segregation from the literature. Analytical techniques have also improved so that chemical analysis of layers 1 nm thick is almost routine. This invited paper will review the major methods used currently for RIS prediction: namely, Rate Theory, Inverse Kirkendall, and Solute Drag approaches. A summary is made of the available data on phosphorus RIS in reactor pressure vessel (RPV) steels. This will be discussed in the light of the predictions of the various models in an effort to show which models are the most reliable and easy to use for forecasting P segregation behaviour in steels. A consequence of RIS in RPV steels is a radiation induced shift in the ductile to brittle transition temperature (DBTT). It will be shown how it is possible to relate radiation-induced P segregation levels to DBTT shift. Examples of this exercise will be given for RPV steels and for ferritic steels being considered for first wall fusion applications. Cr RIS in high alloy stainless steels and associated irradiation-assisted stress corrosion cracking (IASCC) will be briefly discussed. (authors)

  2. Marine Mammal Protection Act | Open Energy Information

    Open Energy Info (EERE)

    Marine Mammal Protection Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Marine Mammal Protection ActLegal Abstract The...

  3. Pure Marine Gen | Open Energy Information

    Open Energy Info (EERE)

    Gen Jump to: navigation, search Name: Pure Marine Gen Place: Belfast, United Kingdom Zip: BT3 9DTN Product: Northern Ireland-based wave project developer. References: Pure Marine...

  4. marine energy | OpenEI Community

    Open Energy Info (EERE)

    marine energy Home Kch's picture Submitted by Kch(24) Member 15 July, 2014 - 07:07 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine...

  5. Marine One Landing Exercise at Argonne

    SciTech Connect (OSTI)

    2013-03-20

    Marine One and its support helicopters conduct a landing exercise at Argonne prior to the President's visit.

  6. Development of Marine Thermoelectric Heat Recovery Systems

    Broader source: Energy.gov [DOE]

    Discusses benefits of integration of thermoelectrics into the marine industry, research program milestones, and prototype TEG design and integration

  7. Marine and Hydrokinetic Technology Instrumentation, Measurement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Instrumentation, Measurement, and Computer Modeling Workshop Marine and Hydrokinetic Technology Instrumentation, Measurement, and Computer Modeling Workshop The workshop ...

  8. Marine and Hydrokinetic Technology Instrumentation, Measurement, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computer Modeling Workshop | Department of Energy Technology Instrumentation, Measurement, and Computer Modeling Workshop Marine and Hydrokinetic Technology Instrumentation, Measurement, and Computer Modeling Workshop The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community, and to collect information to help identify ways in which the development of a commercially viable marine energy industry can be

  9. Sunnyvale Marine Climate Deep Retrofit

    SciTech Connect (OSTI)

    German, A.; Siddiqui, A.; Dakin, B.

    2014-11-01

    The Alliance for Residential Building Innovation (ARBI) and Allen Gilliland of One Sky Homes collaborated on a marine climate retrofit project designed to meet both Passive House (PH) and Building America program standards. The scope included sealing, installing wall, roof and floor insulation (previously lacking), replacing windows, upgrading the heating and cooling system, and installing mechanical ventilation.

  10. Sunnyvale Marine Climate Deep Retrofit

    SciTech Connect (OSTI)

    German, A.; Siddiqui, A.; Dakin, B.

    2014-11-01

    The Alliance for Residential Building Innovation (ARBI) and Allen Gilliland of One Sky Homes collaborated on a marine climate retrofit project designed to meet both Passive House (PH) and Building America (BA) program standards. The scope included sealing, installing wall, roof and floor insulation (previously lacking), replacing windows, upgrading the heating and cooling system, and installing.

  11. Plasma Boundary Colloquium.key

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Excitement at the Plasma Boundary Rob Goldston (with help from many) Fusion Plasma Physics is as Easy as 1-2-3 3)Manage the heat outflux 2)Hold onto the heat & amplify it by fusion 1)Inject heat into plasma Inject Heat into Plasma We put 40 MW of neutral beams into TFTR. Heating was ~ classical, with some *AE's, fishbones, etc. ITER needs ~ 2x more heating. Projections pretty reliable with multiple types of heating systems planned. Mike Williams Hold onto the heat... Empirical scaling

  12. Layered plasma polymer composite membranes

    DOE Patents [OSTI]

    Babcock, W.C.

    1994-10-11

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

  13. Layered plasma polymer composite membranes

    DOE Patents [OSTI]

    Babcock, Walter C.

    1994-01-01

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is .gtoreq.2 and is the number of selective layers.

  14. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, T.W.

    1994-09-06

    A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

  15. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, Terry W.

    1994-01-01

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  16. Multiple layer insulation cover

    DOE Patents [OSTI]

    Farrell, James J.; Donohoe, Anthony J.

    1981-11-03

    A multiple layer insulation cover for preventing heat loss in, for example, a greenhouse, is disclosed. The cover is comprised of spaced layers of thin foil covered fabric separated from each other by air spaces. The spacing is accomplished by the inflation of spaced air bladders which are integrally formed in the cover and to which the layers of the cover are secured. The bladders are inflated after the cover has been deployed in its intended use to separate the layers of the foil material. The sizes of the material layers are selected to compensate for sagging across the width of the cover so that the desired spacing is uniformly maintained when the cover has been deployed. The bladders are deflated as the cover is stored thereby expediting the storage process and reducing the amount of storage space required.

  17. PIA - Savannah River Remediation Accreditation Boundary (SRR...

    Energy Savers [EERE]

    PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation Boundary PIA - WEB Physical Security Major Application Occupational Medical Surveillance System (OMSS) PIA, ...

  18. Compliant layer chucking surface

    DOE Patents [OSTI]

    Blaedel, Kenneth L.; Spence, Paul A.; Thompson, Samuel L.

    2004-12-28

    A method and apparatus are described wherein a thin layer of complaint material is deposited on the surface of a chuck to mitigate the deformation that an entrapped particle might cause in the part, such as a mask or a wafer, that is clamped to the chuck. The harder particle will embed into the softer layer as the clamping pressure is applied. The material composing the thin layer could be a metal or a polymer for vacuum or electrostatic chucks. It may be deposited in various patterns to affect an interrupted surface, such as that of a "pin" chuck, thereby reducing the probability of entrapping a particle.

  19. Environmental boundaries to energy development

    SciTech Connect (OSTI)

    Trivelpiece, A.W.

    1989-01-01

    Public concern about the environment, health and safety consequences of energy technology has been growing steadily for more than two decades in the United States. This concern forms an important boundary condition as the United States seeks to develop a new National Energy Strategy. Furthermore, the international aspects of the energy/environment interface such as acid rain global climate change and stratospheric ozone depletion are very prominent in US thinking. In fact, the energy systems of the world are becoming more closely coupled environmentally and otherwise. Now where is this coupling more important than that between the industrialized and developing world; the choices made by each will have profound effects on the other. The development of energy technologies compatible with both economic growth and improving and sustaining environmental quality represents a major R D challenge to the US and USSR. Decision about adoption of new technology and R D priorities can be improved by better measurements of how energy sources and uses are changing throughout the world and better methods to project the potential consequences of these decisions. Such projection require understanding relative risks of alternating existing and evolving technologies. All of these R D areas, technology improvement energy system monitoring and projection and comparative risk assessment are the topics of this seminar. Progress in each may be enhanced by collaboration and cooperation between our two countries. 7 refs., 27 figs., 5 tabs.

  20. Marine and Hydrokinetic Resource Assessment and Characterization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy & Hydrokinetic » Marine and Hydrokinetic Resource Assessment and Characterization Marine and Hydrokinetic Resource Assessment and Characterization With more than 50% of the population living within 50 miles of coastlines, there is vast potential to provide clean, renewable electricity to communities and cities across the United States using marine and hydrokinetic (MHK) technologies. In order to understand the full potential for future electricity production that

  1. Structured luminescence conversion layer

    DOE Patents [OSTI]

    Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

    2012-12-11

    An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

  2. Marine Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Energy Corporation Jump to: navigation, search Name: Marine Energy Corporation Abbreviation: MEC Address: 1308 Waugh Drive PMB 465 Place: Houston, Texas Country: United States...

  3. Shafir Civil Marine Engineering | Open Energy Information

    Open Energy Info (EERE)

    Engineering Jump to: navigation, search Name: Shafir Civil & Marine Engineering Place: Israel Sector: Services Product: Services include infrastructure works, contracting, bridge...

  4. Marine and Hydrokinetic Market Acceleration and Deployment |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    robust portfolio of projects to accelerate wave, tidal and current project deployments and ... Learn more about the Water Power Program's work in the following areas of marine and ...

  5. EO 13158: Marine Protected Areas (2000)

    Broader source: Energy.gov [DOE]

    This Executive Order will help protect the significant natural and cultural resources within the marine environment for the benefit of present and future generations by strengthening and expanding...

  6. Hawaii National Marine Renewable Energy Center (HINMREC)

    SciTech Connect (OSTI)

    Rocheleau, Richard

    2011-09-27

    Presentation from the 2011 Water Peer Review in which the principal investigator discusses project progress to develop in-water testing facility for marine and hydrokinetics energy devices.

  7. Marine & Hydrokinetic Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine & Hydrokinetic Technologies This fact sheet describes the U.S. Department of Energy's Wind and Water Power Program efforts to develop advanced water power devices that ...

  8. Marine Current Turbines Ltd | Open Energy Information

    Open Energy Info (EERE)

    United Kingdom Zip: BS34 8PD Sector: Marine and Hydrokinetic Product: Developer of tidal stream turbine technology for exploiting flowing water in general and tidal streams in...

  9. Energy 101: Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    2013-04-29

    See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

  10. Marine and Hydrokinetic Technology Development and Testing |...

    Energy Savers [EERE]

    The Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, ...

  11. Marine and Hydrokinetic Resources | Open Energy Information

    Open Energy Info (EERE)

    and Characterization 2 CurrentTidalRiverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more...

  12. Development of Marine Thermoelectric Heat Recovery Systems

    Broader source: Energy.gov [DOE]

    Thermoelectric generator prototypes are evaluated in a dedicated hybrid vessel test platform fabricated from an encapsulated lifeboat to optimize performance and reliability for marine industry applications

  13. Sustainable Marine Energy | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: PO32 6RF Sector: Marine and Hydrokinetic, Renewable Energy Product: PLAT-O Year Founded: 2012 Phone Number: 019833297145 Website: www.sustainablemarine.com...

  14. Marine Renewable Technologies | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Marine Renewable Technologies Address: 319 Business Lane Suite 1000 Ashland VA 23005 Place: Ashland Zip: 23005 Region: United States...

  15. Energy 101: Marine and Hydrokinetic Energy

    ScienceCinema (OSTI)

    None

    2014-06-26

    See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

  16. Boundary conditions for the subdiffusion equation

    SciTech Connect (OSTI)

    Shkilev, V. P.

    2013-04-15

    The boundary conditions for the subdiffusion equations are formulated using the continuous-time random walk model, as well as several versions of the random walk model on an irregular lattice. It is shown that the boundary conditions for the same equation in different models have different forms, and this difference considerably affects the solutions of this equation.

  17. Marine & Hydrokinetic Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    This fact sheet describes the U.S. Department of Energy's Water Power Program. The program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new technologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity.

  18. Advanced materials in marine environments

    SciTech Connect (OSTI)

    Sedriks, A.J. )

    1994-02-01

    This article outlines engineering applications of advanced materials, such as polymer-matrix composites; superferritic, superaustenitic, and superduplex stainless steels (SS); and titanium alloys in hulls, condensers/heat exchangers, and centrifugal pumps operating in marine environments. Although many traditional seawater corrosion problems have been eliminated by the use of these materials, other environment-induced effects have been identified, notable among them strength degradation, blister formation, and cavitation in polymer-matrix composites; hydrogen embrittlement and crevice corrosion in superferritic SS; and hydride precipitation in titanium. Measures for avoiding these effects are discussed.

  19. Gradient zone-boundary control in salt-gradient solar ponds

    DOE Patents [OSTI]

    Hull, J.R.

    1982-09-29

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizeable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  20. U.S. Marine Corp Logistics Base | Open Energy Information

    Open Energy Info (EERE)

    Marine Corp Logistics Base Jump to: navigation, search Name U.S. Marine Corp Logistics Base Facility U.S. Marine Corp Logistics Base Sector Wind energy Facility Type Community Wind...

  1. Layered electrode for electrochemical cells

    DOE Patents [OSTI]

    Swathirajan, Swathy; Mikhail, Youssef M.

    2001-01-01

    There is provided an electrode structure comprising a current collector sheet and first and second layers of electrode material. Together, the layers improve catalyst utilization and water management.

  2. Ecotoxicology of tropical marine ecosystems

    SciTech Connect (OSTI)

    Peters, E.C.; Gassman, N.J.; Firman, J.C.; Richmond, R.H.; Power, E.A.

    1997-01-01

    The negative effects of chemical contaminants on tropical marine ecosystems are of increasing concern as human populations expand adjacent to these communities. Watershed streams and ground water carry a variety of chemicals from agricultural, industrial, and domestic activities, while winds and currents transport pollutants from atmospheric and oceanic sources to these coastal ecosystems. The implications of the limited information available on impacts of chemical stressors on mangrove forests, seagrass meadows, and coral reefs are discussed in the context of ecosystem management and ecological risk assessment. Three classes of pollutants have received attention: heavy metals, petroleum, and synthetic organics. Heavy metals have been detected in all three ecosystems, causing physiological stress, reduced reproductive success, and outright mortality in associated invertebrates and fishes. Oil spills have been responsible for the destruction of entire coastal shallow-water communities, with recovery requiring years. Herbicides are particularly detrimental to mangroves and seagrasses and adversely affect the animal-algal symbioses in corals. Pesticides interfere with chemical cues responsible for key biological processes, including reproduction and recruitment of a variety of organisms. Information is lacking with regard to long-term recovery, indicator species, and biomarkers for tropical communities. Critical areas that are beginning to be addressed include the development of appropriate benchmarks for risk assessment, baseline monitoring criteria, and effective management strategies to protect tropical marine ecosystems in the face of mounting anthropogenic disturbance.

  3. Submersible Generator for Marine Hydrokinetics

    SciTech Connect (OSTI)

    Cinq-Mars, Robert S; Burke, Timothy; Irish, James; Gustafson, Brian; Kirtley, James; Alawa, Aiman

    2011-09-01

    A submersible generator was designed as a distinct and critical subassembly of marine hydrokinetics systems, specifically tidal and stream energy conversion. The generator is designed to work with both vertical and horizontal axis turbines. The final product is a high-pole-count, radial-flux, permanent magnet, rim mounted generator, initially rated at twenty kilowatts in a two-meter-per-second flow, and designed to leverage established and simple manufacturing processes. The generator was designed to work with a 3 meter by 7 meter Gorlov Helical Turbine or a marine hydrokinetic version of the FloDesign wind turbine. The team consisted of experienced motor/generator design engineers with cooperation from major US component suppliers (magnetics, coil winding and electrical steel laminations). Support for this effort was provided by Lucid Energy Technologies and FloDesign, Inc. The following tasks were completed: Identified the conditions and requirements for MHK generators. Defined a methodology for sizing and rating MHK systems. Selected an MHK generator topology and form factor. Completed electromechanical design of submersible generator capable of coupling to multiple turbine styles. Investigated MHK generator manufacturing requirements. Reviewed cost implications and financial viability. Completed final reporting and deliverables

  4. ARM - Field Campaign - Marine ARM GPCI Investigation of Clouds (MAGIC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMarine ARM GPCI Investigation of Clouds (MAGIC) Campaign Links MAGIC Website ARM Data Discovery Browse Data Related Campaigns Marine ARM GPCI Investigations of Clouds (MAGIC): Measuring the Composition of Aerosol Particles 2013.07.01, Lewis, AMF Marine ARM GPCI Investigation of Clouds (MAGIC): Shortwave Hyperspectral Observations 2013.07.01, McBride, AMF Marine ARM GPCI Investigation of Clouds (MAGIC): Marine Ice Nuclei Collections 2013.06.01, DeMott, AMF Marine ARM GPCI

  5. Spatially Resolved Mapping of Electrical Conductivity around Individual Domain (Grain) Boundaries in Graphene

    SciTech Connect (OSTI)

    Li, An-Ping [ORNL; Clark, Kendal W [ORNL; Zhang, Xiaoguang [ORNL; Vlassiouk, Ivan V [ORNL; He, Guowei [Carnegie Mellon University (CMU); Feenstra, Randall [Carnegie Mellon University (CMU)

    2013-01-01

    Graphene films can now be produced on the scale of up to meters. However, all large-scale graphene films contain topological defects that can significantly affect the characteristic transport behaviors of graphene. Here, we spatially map the structures and electronic transport near specific domain and grain boundaries in graphene, and evaluate effects of different types of defect on the electronic conductivity in epitaxial graphene grown on SiC and CVD graphene on Cu subsequently transferred to a SiO2 substrate. We use a combined approach with a multi-probe scanning tunneling potentiometry to investigate both structures and transport at individual grain boundaries and domain boundaries that are defined by coalesced grains, surface steps, and changes in layer thickness. It is found that the substrate step on SiC presents a significant potential barrier for electron transport of epitaxial graphene due to the reduced charge transport from the substrate at the step edges, monolayer-bilayer boundaries exhibit a high resistivity that can change depending on directions of the current across the boundary, and the resistivity of grain boundaries changes with the transition width of the disordered region between two adjacent grains in graphene. The detailed understanding of graphene defects will provide the feedback for controlled engineering of defects in large-scale graphene films.

  6. Layered semiconductor neutron detectors

    DOE Patents [OSTI]

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  7. UK Centre for Marine Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Centre for Marine Renewable Energy Jump to: navigation, search Name: UK Centre for Marine Renewable Energy Place: United Kingdom Sector: Renewable Energy Product: UK Centre for...

  8. Role of Biofouling in Marine Renewable Energy Development Webinar

    Broader source: Energy.gov [DOE]

    Submerged structures in the sea almost universally harbour communities of organisms growing on exposed surfaces, marine renewable energy devices included. This marine growth, or biofouling, is...

  9. Sandia Energy - Biofouling Studies on Sandia's Marine Hydrokinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marine Hydrokinetic Coatings Initiated at PNNL's Sequim Bay Sandia's Materials & Manufacturing Reliability Program has begun testing their novel marine hydrokinetic (MHK)...

  10. Executive Summit on Marine and Hydrokinetic Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summit on Marine and Hydrokinetic Research and Development Agenda Executive Summit on Marine and Hydrokinetic Research and Development Agenda MHK-Summit-Agenda.jpg PDF ...