Powered by Deep Web Technologies
Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

CATIA at Martin Marietta Energy Systems  

SciTech Connect

Martin Marietta Energy System's methods to manage a CATIA model, from data input to inspecton on coordinate measuring machines, will be demonstrated in this presentation. This overview of CATIA model management will include: input data format, point distribution, CATGEO and data loading, model setup, surfacing of over 2,000 points in under three hours, solid modeling, drawing production using CADAM, CATIA NC output, machining procedures, and the inspection of the machined part. The objective of this presentation is to illustrate the systematic use of CATIA in the workplace. The geometry used to illustrate this standard model management system is based on a demonstration blade shown in figure 1. This is a complicated part with over 2000 definition points, resulting in a CATIA model over 1.5 megabits in size. A standard management method is essential to provide all members of a design-build team a quick way to familiarize themselves with and revise any model. 20 figs.

Byington, G.A.

1988-01-01T23:59:59.000Z

2

Martin Marietta Energy Systems, Inc., Groundwater Program Management Plan  

Science Conference Proceedings (OSTI)

The purpose of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Management Plan is to define the function, organizational structure (including associated matrix organizations), interfaces, roles and responsibilities, authority, and relationship to the Department of Energy for the Energy Systems Groundwater Program Office (GWPO). GWPO is charged with the responsibility of coordinating all components of the groundwater program for Energy Systems. This mandate includes activities at the three Oak Ridge facilities [Oak Ridge National Laboratory, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], as well as the Paducah and Portsmouth Gaseous Diffusion Plants.

Early, T.O.

1994-05-01T23:59:59.000Z

3

Marietta Power & Water - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marietta Power & Water - Residential Energy Efficiency Rebate Program Marietta Power & Water - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For...

4

Martin Marietta Energy Systems Nuclear Criticality Safety Improvement Program  

SciTech Connect

This report addresses questions raised by criticality safety violation at several DOE plants. Two charts are included that define the severity and reporting requirements for the six levels of accidents. A summary is given of all reported criticality incident at the DOE plants involved. The report concludes with Martin Marietta's Nuclear Criticality Safety Policy Statement. (JDH)

Speas, I.G.

1987-04-29T23:59:59.000Z

5

OAK RIDGE NATIONAL LABORATORY OPERATED BY MARTIN MARIETTA ENERGY...  

Office of Legacy Management (LM)

OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS. INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY RESULTS OF THE RADIOLOGICAL SURVEY OFTHE CARPENTER STEEL FACILITY READING, PENNSYLVANIA...

6

Marietta, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, Ohio. It falls under Ohio's 6th congressional district.12 Registered Energy Companies in Marietta, Ohio Michael Bradley Co. Michael Bradley Co.,Inc References ...

7

Abbreviations, acronyms, and initialisms frequently used by Martin Marietta Energy Systems, Inc.. Second edition  

Science Conference Proceedings (OSTI)

Guidelines are given for using abbreviations, acronyms, and initialisms (AAIs) in documents prepared by US Department of Energy facilities managed by Martin Marietta Energy Systems, Inc., in Oak Ridge, Tennessee. The more than 10,000 AAIs listed represent only a small portion of those found in recent documents prepared by contributing editors of the Information Management Services organization of Oak Ridge National Laboratory, the Oak Ridge K-25 Site, and the Oak Ridge Y-12 Plant. This document expands on AAIs listed in the Document Preparation Guide and is intended as a companion document

Miller, J.T.

1994-09-01T23:59:59.000Z

8

DOSEXPRT: A bioassay dosimetry code for Martin Marietta Energy Systems, Inc.  

Science Conference Proceedings (OSTI)

The bioassay code DOSEXPRT was developed for Martin Marietta Energy Systems, Inc., to provide compliance with Department of Energy (DOE) Order 5480, Chapter 11. DOSEXPRT computes the intake of a radionuclide in any year (considering both acute and chronic intakes) from in vivo measurements of the retained activity and/or measurements of the activity in excreta. The committed effective and organ doses for the intake are computed as well as the effective and organ doses expected to be received in each calendar year out to 50 years beyond the year of intake. The bioassay records used as input for DOSEXPRT are extracted from the Martin Marietta Energy Systems Occupational Health Information System (OHIS). DOSEXPRT implements a set of algorithms with parameters governing the translocation, retention, and excretion of the nuclide contained in data files specific to the nuclide. These files also contain dose-per-unit-intake coefficients used to compute the committed dose equivalent for the intakes in the year. Annual organ and effective doses are computed using additional dose-rate files that contain data on the dose rate at various times following a unit intake. If measurements are presented for more than one assay for a given nuclide, DOSEXPRT estimates the intake by applying weights assigned in the nuclide file for each assay. DOSEXPRT is accessed off the OHIS MENU No. 4 and designed to be run as a batch processor, but can also be run interactively for testing purposes.

Ward, R.C.; Eckerman, K.F.

1992-04-01T23:59:59.000Z

9

OAK RIDGE NATIONAL LABORATORY OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS, INC.  

Office of Legacy Management (LM)

' ! ' ! ,' c;. I' , . ad OAK RIDGE NATIONAL LABORATORY OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITE0 STATES DEPARTMENT OF ENERGY 0 1; , : 3 ., q (-g.lis oRNL/TM-11182 Results of the Preliminary Radiological Survey at the Former Diamond Magnesium Company Site, Luckey, Ohio (DMLOOI) R. D. Foley J. W. Crutcher b-1 ORNLKM-11182 HEALTH AND SAFEIY RESEARCH DIVISION Nuclear and Chemical Waste Programs (Activity No. AT3 10 05 00 0; ONLWCOl) RESULTS OFTHE PRELIMIN ARY RADIOLOGICAL SURVEY AT THE FORMER DIAMOND MAGNESIUM COMPANY SITE, LUCKEY, OHIO (D-1) R. D. Foley and J. W. Crutcher Date Published - February 1990 Investigation Team R. E. Swaja - Measurement Applications and Development Manager W. D. Cottrell - FUSRAP Project Director R. D. Foley - Field Survey Supervisor

10

Inspection of Concerns Regarding the Martin Marietta Corporate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 "Inspection of Concerns Regarding the Martin Marietta Corporate Review of Health and Safety at Martin Marietta Energy Systems"...

11

Program Management Plan for the Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory Site Environmental Restoration Program  

Science Conference Proceedings (OSTI)

This program management plan describes the scope, objectives, and method of accomplishment for the Martin Marietta Energy Systems, Inc. (Energy Systems) Oak Ridge National laboratory (ORNL) Environmental Restoration (ER) Program. The ORNL ER Program is one of five site program, receiving guidance from and reporting to the Energy Systems ER Division. Therefore, all ORNL ER policies and procedures are consistent with ER Division policies and procedures. This plan covers all ORNL ER activities, the participants involved in these activities (and their roles and responsibilities), and all phases of the remediation process. This plan will also serve as a template that may be supplemented as necessary to produce individual project management plans for specific projects. This document explains how the Energy Systems ORNL ER Program does business, so the ORNL ER Program`s management structure is illustrated in detail. Personnel are matrixed to the ER Program from other organizations to assist with specific projects. This plan identifies positions at the program level and discusses responsibilities and interactions with positions at the project level. This plan includes sections that describe requirements for project plans, work breakdown structures, schedules, project management and cost control systems, and information and reporting. Project management plans will utilize the work breakdown structure and dictionary pages in the appropriate life cycle baseline report This plan describes the information that should be contained in ORNL ER project management plans. The most important milestones are primary documents relating to the management and remediation of contaminated sites. Primary document milestones are subject to stipulated penalties and receive paramount attention.

Not Available

1994-07-01T23:59:59.000Z

12

Marietta Power and Water - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marietta Power and Water - Residential Energy Efficiency Rebate Marietta Power and Water - Residential Energy Efficiency Rebate Program Marietta Power and Water - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate $500 Program Info State Georgia Program Type Utility Rebate Program Rebate Amount Heat Pump: $150 Water Heater: $250 Heat Pump and Water Heater: $500 Provider Marietta Power and Water Marietta Power and Water provides rebates for electric water heaters ($250) and electric and dual-fuel heat pumps ($150). If both a water heater and heat pump are installed simultaneously, a rebate of $500 is available. Electric and dual-fuel heat pumps may be installed in newly constructed

13

An economic analysis of recordable injuries at Martin Marietta Energy Systems, Inc  

SciTech Connect

The William-Steiger Occupational Safety and Health Act (OSHA) was passed by the Congress and signed by the President of the United States in 1970. This law required all companies with more than 25 employees to maintain information about each recordable injury, which is defined as any occupational illness or any work-related injury requiring more extensive treatment than first aid. However, compliance with OSHA standards did not require employers to keep records regarding the costs of recordable injuries or illnesses. The purpose of this study was to evaluate actual recordable US Department of Energy injuries (as defined by OSHA standards) at a multi-plant corporation during a six-month period to determine the average costs of such injuries on the basis of site and payroll classification.

Johnson, E.K.

1992-03-01T23:59:59.000Z

14

An economic analysis of recordable injuries at Martin Marietta Energy Systems, Inc.  

SciTech Connect

The William-Steiger Occupational Safety and Health Act (OSHA) was passed by the Congress and signed by the President of the United States in 1970. This law required all companies with more than 25 employees to maintain information about each recordable injury, which is defined as any occupational illness or any work-related injury requiring more extensive treatment than first aid. However, compliance with OSHA standards did not require employers to keep records regarding the costs of recordable injuries or illnesses. The purpose of this study was to evaluate actual recordable US Department of Energy injuries (as defined by OSHA standards) at a multi-plant corporation during a six-month period to determine the average costs of such injuries on the basis of site and payroll classification.

Johnson, E.K.

1992-03-01T23:59:59.000Z

15

SOLERAS - Solar Energy Water Desalination Project: Martin Marietta Corporation. Pilot plant final report  

Science Conference Proceedings (OSTI)

This report documents the technical effort of Martin Marietta Corporation, in association with Black and Veatch International as a subcontractor for the trade studies performed to design a Solar Desalination Pilot Plant is documented. The final system configuration utilizes existing technology to convert seawater to potable water. This technology includes the collection of solar energy, storage of this energy in a fluid heat transfer medium, generation of steam and electricity from this stored energy, utilization of low pressure turbine exhaust steam as a source of energy to distill salt water, and also generation of potable water through the use of a reverse osmosis unit.

Not Available

1985-01-01T23:59:59.000Z

16

Inspection Report: IG-0384 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

84 Inspection Report: IG-0384 January 18, 1996 Inspection of Concerns Regarding the Martin Marietta Corporate Review of Health and Safety at Martin Marietta Energy Systems...

17

IO6264 OAK RIDGE NATIONAL LABORATORY POST OFFICE BOX 2008 WEMTED Sv MARTIN MARIETTA ENERGY SVPEUS. INC  

Office of Legacy Management (LM)

IO6264 IO6264 OAK RIDGE NATIONAL LABORATORY POST OFFICE BOX 2008 - WEMTED Sv MARTIN MARIETTA ENERGY SVPEUS. INC OAK RIDGE. TENNESSEE 37031 July 16, 1993 Dr. W. A Williams Department of Energy Trevion II Building EM-421 Washington, D. C. 205850002 Dear Dr. Williams: IndcperrdentVerihiatianoftbc~ConditioDofthtOId~~B~gOwnedbytht Gmnite city steel c2ltpmatiw, Gr8nite city, Illinois A team from the Measurement Applications and Development (MAD) group, Oak Ridge National Laboratory (ORNL), at the request of the Department of Energy (DOE) conducted an independent verification of the radiological condition of the old betatron building owned by the Granite City Steel Corporation. The uranium contamination present resulted from the handling of uranium slabs of

18

Oak' !Ridae Managed by Martin Marietta Energy Systems, Inc.,  

E-Print Network (OSTI)

Program: 1950s to Present 12 Japanese Atomic Bomb Dosimetry: 1950s to Present 15 THE SIXTIES 19 Nuclear Environmental Impacts Report Project 3 1 Uranium Mill Tailings Surveys 3 1 . HEED Studies-Risk Analysis 34 as chairman and prepared this report. The committee helped in the preparation of an outline

19

MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES  

E-Print Network (OSTI)

, Virginia University of Kentucky, Lexington, Kentucky University of L'Aquila, L'Aquila, Italy Lawrence III, and Geralyn Zeller Argonne National Laboratory, Argonne, Illinois University of Alabama, Tuscaloosa, Alabama Brookhaven National Laboratory, Upton, New York University of California, Davis

20

STATEMENT OF CONSIDERATIONS REQUEST BY MARTIN MARIETTA CORPORATION...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MARTIN MARIETTA CORPORATION (MMC) FORMERLY KNOWN AS GENERAL DYNAMICS - SPACE SYSTEMS DIVISION (GD- SSD) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE...

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

STATEMENT OF CONSIDERATIONS REQUEST BY MARTIN MARIETTA CORPORATION (MMC) FORMERLY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MARTIN MARIETTA CORPORATION (MMC) FORMERLY MARTIN MARIETTA CORPORATION (MMC) FORMERLY KNOWN AS GENERAL DYNAMICS - SPACE SYSTEMS DIVISION (GD- SSD) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE CONTRACT NO: DE-FC36- 93CH10554; W(A)-94-012; CH-0831 Martin Marietta Corporation (MMC) has recently acquired the Space Systems Division of the General Dynamics Corporation (GD- SSD) which had earlier requested a waiver of domestic and foreign patent rights for all subject inventions under a cooperative agreement for the development of a 1 kilo-Joule current limiter under DOE Contract No. DE-FC36-93CH10554. MMC, by accepting the Advance Waiver Patent Rights and certain amendments to the Data Rights, has indicated that they wish to proceed with the waiver petition. This agreement was awarded under DOE's

22

Martin Marietta Energy Systems, Inc. comprehensive earthquake management plan: Local Emergency Squads training manual  

Science Conference Proceedings (OSTI)

The training objectives are: Describe the Local Emergency Squad's goals and responsibilities during the damage assessment process and relate its importance to the protection and recovery of plant personnel following an earthquake.

Not Available

1990-01-01T23:59:59.000Z

23

Martin Marietta Energy Systems, Inc. comprehensive earthquake management plan: Plant Emergency Squad training manual  

Science Conference Proceedings (OSTI)

The training objectives are to: Describe the responsibilities of the Plant Emergency Squad during the damage assessment/abatement process and relate its importance to the protection and recovery of plant personnel following an earthquake.

Not Available

1990-01-01T23:59:59.000Z

24

Marietta, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

52602°, -84.5499327° 52602°, -84.5499327° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.952602,"lon":-84.5499327,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

25

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. EXECUTIVE SUMMARY Pyrene, also referred to as benzo(def)phenanthrene and...

26

OAK RIDGE NATIONAL LABORATORY MARTIN MARIETTA  

E-Print Network (OSTI)

FOR OFFICE AND RESIDENTIAL SYSTEMS OFFICE Minneapolis St. Louis Dallas Miami System/Control Total MBTU, VELOCITY, AND MEAN RADIANT TEMPERATURE. I #12;TASK II APPROACH PERFORM BUILDING LOAD/COMFORT VARIABLECD 5500 - 7000 HDD L3.Miami^ L2000 .-4000

Oak Ridge National Laboratory

27

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Rebate Program Georgia Residential Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Marietta Power & Water...

28

NREL: Energy Systems Integration - Energy Systems Integration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Systems Integration Facility NREL's Energy Systems Integration Facility Garners LEED Platinum View the NREL Press Release. NREL's multistory Energy Systems Integration...

29

Energy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Systems Energy Systems webinarsteamtrap20100605.pdf webcast2009-0827hvacefficiency.pdf webcast2009-0820whmanagephsystems.pdf More Documents & Publications New and...

30

NREL: Energy Systems Integration - Energy Systems Integration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Systems Integration Facility Newsroom The Energy Systems Integration Facility (ESIF) will be one of the only megawatt-scale test facilities in the United States that...

31

Sustainable Energy Systems Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Energy Systems Group The Sustainable Energy Systems Group studies the impacts of energy generation and use, manufacturing, and other activities on the environment, the...

32

Energy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Energy Systems webinarsteamtrap20100605.pdf webcast2009-0827hvacefficiency.pdf webcast2009-0820whmanagephsystems.pdf More Documents & Publications AMO Software...

33

Energy Systems Integration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Integration Systems Integration Ben Kroposki, PhD, PE Director, Energy Systems Integration National Renewable Energy Laboratory 2 Reducing investment risk and optimizing systems in a rapidly changing energy world * Increasing penetration of variable RE in grid * Increasing ultra high energy efficiency buildings and controllable loads * New data, information, communications and controls * Electrification of transportation and alternative fuels * Integrating energy storage (stationary and mobile) and thermal storage * Interactions between electricity/thermal/fuels/data pathways * Increasing system flexibility and intelligence Current Energy Systems Future Energy Systems Why Energy Systems Integration? 3 Energy Systems Integration Continuum Scale Appliance (Plug)

34

Centrifugal contactor modified for end stage operation in a multistage system  

DOE Patents (OSTI)

The present invention relates generally to centrifugal contactors in a multistage or cascade system for separating liquids of different weight phases, and more particularly to the modification of the centrifugal contactors functioning as the end stages in the cascade for enabling the cascade to continue operation when an end stage becomes inoperative. This invention was made as a result of work under contract AC05-84OR21400 between Martian Marietta Energy Systems, Inc., and the US Department of Energy. 4 figs.

Jubin, R.T.

1989-06-13T23:59:59.000Z

35

Energy Basics: Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

36

Energy Delivery Systems Cybersecurity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cybersecurity Energy Delivery Systems Cybersecurity Energy Delivery Systems Cybersecurity About the Cybersecurity for Energy Delivery Systems Program A key mission of the...

37

Energy Information Systems website  

NLE Websites -- All DOE Office Websites (Extended Search)

and visualize the energy use of their buildings. Please visit the recently updated Energy Information System website for EETD research papers, case studies, and a download...

38

Energy Basics: Heating Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of energy sources, including electricity, boilers, solar energy, and wood and pellet-fuel heating. Small Space Heaters Used when the main heating system is inadequate or when...

39

Energy Management Systems  

E-Print Network (OSTI)

This presentation will address results from a pilot project with 10 chemical plants on energy management systems and the development of an energy efficiency plant certification program.

Ferland, K.

2007-01-01T23:59:59.000Z

40

Energy monitoring system  

SciTech Connect

A system for monitoring and displaying the consumption of energy by measuring the actual energy consumed and comparing the measured energy consumption with an ideal or desired energy consumption. The desired energy consumption data may be based upon actual operations or may be generated by ideal consumption characteristics. In some instances, the ideal figures may be modified to compensate for variations in external conditions.

Bertolasi, R.B.

1976-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Redhawk Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Ohio. References "Redhawk Energy Systems" Retrieved from "http:en.openei.orgwindex.php?titleRedhawkEnergySystems&oldid366032" Categories: Companies Clean Energy...

42

Solar energy system  

SciTech Connect

A solar energy system is described for selectively absorbing or reflecting radiant energy entering through a window of a structure, the system comprising a window drape having a decorative side and a back side, and a removable liner adjacent the backside of the window drape. At least one side of the liner or window drape backside is a radiant energy reflecting surface and another of said sides is a radiant energy absorbing surface. Thus, depending upon the season of the year, the system may be arranged to selectively provide the appropriate surface to optimize or minimize the radiant energy maintained within the structure.

Mole, R.A.

1977-05-03T23:59:59.000Z

43

Nuclear Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Role of Synchrotron Radiation in Solving Scientific Challenges in Advanced Nuclear Energy Systems 27 to 28 January 2010 at Argonne's Advanced Photon Source Scope Third-generation...

44

Energy Basics: Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

an entire PV system. This system is usually everything needed to meet a particular energy demand, such as powering a water pump, the appliances and lights in a home, or-if the...

45

Lloyd Energy Systems | Open Energy Information  

Open Energy Info (EERE)

high-purity graphite blocks to store energy (particularly solar energy) as heat, with steam turbines to release the heat as electricity. References Lloyd Energy Systems1...

46

Renewable Energy Systems | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Systems SHARE Renewable Energy Systems Develop methods and models, conduct analyses and produce tools that address the potential and sustainability of biomass...

47

Renewable Energy Systems Americas | Open Energy Information  

Open Energy Info (EERE)

Americas Jump to: navigation, search Name Renewable Energy Systems Americas Place Broomfield, CO Website http:www.res-americas.com References Renewable Energy Systems...

48

Solar Energy System Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy System Exemption Solar Energy System Exemption Eligibility Residential Savings For Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity...

49

Rand Solar Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Rand Solar Energy Systems Jump to: navigation, search Name Rand Solar Energy Systems Place Petach Tikva, Israel Zip 49130 Sector Solar Product Israel-based manufacturer and...

50

American Energy Systems Inc | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name American Energy Systems Inc Place Minnesota Zip 55350 Product Biofuel burning appliance manufacturer (pellets & corn). References American Energy Systems...

51

Energy System Analysis at SINTEF Energy Research  

NLE Websites -- All DOE Office Websites (Extended Search)

1989. His main areas of work include distributed energy systems, energy system planning, operation and control, ancillary services, frequency and power control, and power flow...

52

Apollo Energy Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Systems Inc Place Pompano Beach, Florida Zip FLA 33069 Sector Hydro, Hydrogen, Renewable Energy Product Apollo Energy Systems is a developer, producer, marketor and licensor of new...

53

Energy systems programs funded by the Assistant Secretary for Environment, Safety and Health: FY 1993--FY 1994  

Science Conference Proceedings (OSTI)

This document presents an overview of work at Martin Marietta Energy Systems, Inc., (Energy Systems) during FY 1993--FY 1994 that was funded by the Department of Energy`s (DOE`s) Assistant Secretary for Environment, Safety and Health (ASEH). To illustrate the programmatic breadth of Energy Systems and to establish the context within which this work was accomplished, this document also includes representative descriptions of ASEH-related work at Energy Systems done for other sponsors. Activities for ASEH cover a wide variety of subjects that are geared towards the environmental, safety, and health aspects of DOE operations. Subjects include the following: environmental compliance, environmental guidance, environmental audits, NEPA oversight, epidemiology and health surveillance, transportation and packaging safety, safety and quality assurance; technical standards, performance indicators, occurrence reporting, health physics instrumentation, risk management, security evaluations, and medical programs. The technical support section describes work in progress for ASEH, including specific program accomplishments. The work for others section describes work for non-ASEH sponsors that reinforces and supplements the ASEH work. Appendix A includes a list of FY 1993--FY 1994 publications related to the ASEH work.

Buttram, A.W. [ed.

1994-12-31T23:59:59.000Z

54

Sustainable Electrical Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Electrical Energy Systems Speaker(s): Mark O'Malley Date: June 27, 2012 - 12:00pm Location: 90-1099 Seminar HostPoint of Contact: Sila Kiliccote The process of making...

55

Open Energy Information Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OpenEIS (energy information OpenEIS (energy information systems) Jessica Granderson Lawrence Berkeley National Laboratory JGranderson@lbl.gov, 510.486.6792 April 3, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Advanced algorithms and analyses can enable 5-40% savings, yet are rarely adopted; 3 relevant barriers include: 1. Lack of awareness that simple analytics can be used to generate valuable insights and actionable information, without further training

56

Open Energy Information Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

OpenEIS (energy information OpenEIS (energy information systems) Jessica Granderson Lawrence Berkeley National Laboratory JGranderson@lbl.gov, 510.486.6792 April 3, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Advanced algorithms and analyses can enable 5-40% savings, yet are rarely adopted; 3 relevant barriers include: 1. Lack of awareness that simple analytics can be used to generate valuable insights and actionable information, without further training

57

Evaluation of the computerized utilities energy monitoring and control system installed at the US Military Community at Goeppingen, Germany  

SciTech Connect

Under the provisions of an Interagency Agreement between the US Army and the Department of Energy, Martin Marietta Energy Systems, Inc., through the Oak Ridge National Laboratory, is evaluating the Utilities and Energy Monitoring and Control System (UEMCS) installed at the US Military Community Activity at Goeppingen, Germany. This evaluation relies on examination of existing data and information to determine the effectiveness of the UEMCS. The Goeppingen UEMCS is an integral part of a combined UEMCS/district heating system which includes the UEMCS at Schwaebisch Gmuend, Germany. The system was installed during 1985 and 1986. The UEMCS at Goeppingen and Schwaebisch Gmuend are both well designed, implemented, and maintained. The UEMCS is operated in a supervisory mode with distributed intelligence in local controllers. At present, the UEMCS is operated in a supervisory mode with distributed intelligence in local controllers. At present, the UEMCS at Schwaebisch Gmuend does not have a central computer, but requires only a dedicated phone line to couple with the one at Goeppingen. Though the conversion to district heat has produced the majority of energy savings, the UEMCS day/night setback program also contributes substantially, with additional savings from start/stop programs, such as seasonal switchover, and various temperature control programs. Further opportunities for savings exist in increasing monitoring and control of water usage and connecting the community`s electrical network to the UEMCS, permitting demand limiting and increased power factor control.

Purucker, S.L.; Gettings, M.B.

1991-11-18T23:59:59.000Z

58

Resource Energy Systems LLC | Open Energy Information  

Open Energy Info (EERE)

Energy Systems LLC Energy Systems LLC Jump to: navigation, search Name Resource Energy Systems, LLC Place Rochelle Park, New Jersey Zip 7662 Sector Services, Solar Product Resource Energy Systems (RES) provides property owners with turn-key solar energy services. RES completes all phases of solar design, installation, and completion. References Resource Energy Systems, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Resource Energy Systems, LLC is a company located in Rochelle Park, New Jersey . References ↑ "Resource Energy Systems, LLC" Retrieved from "http://en.openei.org/w/index.php?title=Resource_Energy_Systems_LLC&oldid=350391" Categories: Clean Energy Organizations

59

Living Systems Energy Module  

DOE Green Energy (OSTI)

The Living Systems Energy Module, renamed Voyage from the Sun, is a twenty-lesson curriculum designed to introduce students to the major ways in which energy is important in living systems. Voyage from the Sun tells the story of energy, describing its solar origins, how it is incorporated into living terrestrial systems through photosynthesis, how it flows from plants to herbivorous animals, and from herbivores to carnivores. A significant part of the unit is devoted to examining how humans use energy, and how human impact on natural habitats affects ecosystems. As students proceed through the unit, they read chapters of Voyage from the Sun, a comic book that describes the flow of energy in story form (Appendix A). During the course of the unit, an ``Energy Pyramid`` is erected in the classroom. This three-dimensional structure serves as a classroom exhibit, reminding students daily of the importance of energy and of the fragile nature of our living planet. Interactive activities teach students about adaptations that allow plants and animals to acquire, to use and to conserve energy. A complete list of curricular materials and copies of all activity sheets appear in Appendix B.

NONE

1995-09-26T23:59:59.000Z

60

Energy Basics: Concentrator Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Energy Basics: Photovoltaic System Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

62

Modular Integrated Energy Systems  

E-Print Network (OSTI)

energy system (or CHP -- Cooling, Heat and Power) system at Ft. Bragg. Much of this work is funded fired absorption chiller. The key goals of the project are: · Develop a set of "reference" CAD-based IES a 1000 Ton exhaust-driven absorption chiller, · Install and monitor the performance of a prototype IES

Oak Ridge National Laboratory

63

Nextronex Energy Systems LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Jump to: navigation, search Name Nextronex Energy Systems LLC Address 4400 Moline Martin Rd Place Millbury, Ohio Zip 43447-9401 Sector Efficiency, Renewable Energy, Services,...

64

Energy Systems Laboratory ESL | Open Energy Information  

Open Energy Info (EERE)

Product ESL specializes in the research fields of metering, modeling and data analysis of energy use in buildings. References Energy Systems Laboratory (ESL)1 LinkedIn...

65

Perpetual Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Sector Renewable Energy, Solar Product String representation "Perpetual Energ ... sustainability." is too long. References Perpetual Energy Systems1 LinkedIn Connections...

66

Sunpowered Energy Systems Ltd | Open Energy Information  

Open Energy Info (EERE)

Name Sunpowered Energy Systems Ltd Place Southsea, United Kingdom Zip PO5 2SN Sector Hydro, Services, Solar, Wind energy Product Offers fee-based consultancy services on...

67

Fossil Energy Web System (FEWEB) PIA, Office of Fossil Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Web System (FEWEB) PIA, Office of Fossil Energy Headquaters Fossil Energy Web System (FEWEB) PIA, Office of Fossil Energy Headquaters Fossil Energy Web System (FEWEB)...

68

NREL: Energy Systems Integration - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Your name: Your email address: Your message: Send Message Printable Version Energy Systems Integration Home Research & Development Energy Systems Integration Facility Working...

69

PIA - Fossil Energy Web System (FEWEB) | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Energy Web System (FEWEB) PIA - Fossil Energy Web System (FEWEB) PIA - Fossil Energy Web System (FEWEB) PIA - Fossil Energy Web System (FEWEB) More Documents & Publications...

70

State Energy Data System | Open Energy Information  

Open Energy Info (EERE)

State Energy Data System Jump to: navigation, search Name State Energy Data System Data Format CSV Geographic Scope United States TODO: Import actual dataset contents into OpenEI...

71

Bio Energy Systems LLC | Open Energy Information  

Open Energy Info (EERE)

search Name Bio-Energy Systems LLC Place san Anselmo, California Zip 94960 Product Biodiesel producer in Vallejo, California. References Bio-Energy Systems LLC1 LinkedIn...

72

Solimpeks Solar Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Solimpeks Solar Energy Systems Solimpeks Solar Energy Systems Jump to: navigation, search Name Solimpeks Solar Energy Systems Place Karatay - KONYA, Turkey Zip 42300 Sector Solar Product Turkish manufacturer of solar passive modules currently developing combined PV-passive systems for Turkish market. References Solimpeks Solar Energy Systems[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solimpeks Solar Energy Systems is a company located in Karatay - KONYA, Turkey . References ↑ "Solimpeks Solar Energy Systems" Retrieved from "http://en.openei.org/w/index.php?title=Solimpeks_Solar_Energy_Systems&oldid=351486" Categories: Clean Energy Organizations Companies Organizations

73

Global Energy Management System  

E-Print Network (OSTI)

Exxon Mobil Corporation has undertaken voluntary actions to continuously improve energy efficiency in our operations for many years. From 1973 to 1999, we improved the energy efficiency of our refineries and chemical plants by over 35 percent - saving the cumulative equivalent of 1.8 billion barrels of oil and reducing carbon dioxide emissions by over 200 million tonnes. In 2000, we redoubled our efforts with deployment of our Global Energy Management System (GEMS), which utilizes international best practices and benchmarking to identify energy efficiencies at each of our refineries and chemical plants. Thus far, we have identified opportunities to improve the energy efficiency of these facilities by an additional 15 to 20 percent. At full implementation, savings are expected to total $500 million to $1 billion per year, with an associated reduction in carbon dioxide emissions of about 10 million tonnes per year - roughly equivalent to removing 1.5 million cars from the world's roads.

Eidt, B. D.

2005-01-01T23:59:59.000Z

74

Aperion Energy Systems | Open Energy Information  

Open Energy Info (EERE)

controls, and fuel options with various stack technologies to supply optimized fuel cell systems. References Aperion Energy Systems1 LinkedIn Connections CrunchBase Profile...

75

Wind Energy Systems Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Exemption Wind Energy Systems Exemption Eligibility Commercial Industrial Utility Savings For Wind Buying & Making Electricity Maximum Rebate None Program Information Start...

76

American Alternative Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Alternative Energy Systems Alternative Energy Systems Jump to: navigation, search Name American Alternative Energy Systems Place Denton, Texas Zip 76209 Product An American company involved in project development through the provision of technology and engineering. References American Alternative Energy Systems[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. American Alternative Energy Systems is a company located in Denton, Texas . References ↑ "American Alternative Energy Systems" Retrieved from "http://en.openei.org/w/index.php?title=American_Alternative_Energy_Systems&oldid=342107" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

77

Powersource Energy Systems Ltd | Open Energy Information  

Open Energy Info (EERE)

Powersource Energy Systems Ltd Powersource Energy Systems Ltd Jump to: navigation, search Name Powersource Energy Systems Ltd Place Canada Product A spinoff from Soltek Powersource Ltd, since 1996, it merged back with them in 2002. References Powersource Energy Systems Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Powersource Energy Systems Ltd is a company located in Canada . References ↑ "Powersource Energy Systems Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Powersource_Energy_Systems_Ltd&oldid=349902" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

78

Modular Integrated Energy Systems  

E-Print Network (OSTI)

of Honeywell's data collection activity for the integrated energy system (or CHP -- Cooling, Heat and Power recovery steam generator, and a waste heat fired absorption chiller. The key goals of the project are having on-line optimization, · Develop a 1000 Ton exhaust-driven absorption chiller, · Install

Oak Ridge National Laboratory

79

Virent Energy Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Virent Energy Systems Inc Virent Energy Systems Inc Jump to: navigation, search Name Virent Energy Systems Inc Place Madison, Wisconsin Zip 53704 Sector Biomass, Hydro, Hydrogen Product A start-up focused on the development and commercialization of a new process called Aqueous-Phase Carbohydrate Reforming (APR); which produces hydrogen from biomass. The company seeks to produce a gasoline substitute made from sugars. References Virent Energy Systems Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Virent Energy Systems Inc is a company located in Madison, Wisconsin . References ↑ "Virent Energy Systems Inc" Retrieved from "http://en.openei.org/w/index.php?title=Virent_Energy_Systems_Inc&oldid=352839

80

Advancing Energy Systems through Integration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Energy Systems Advancing Energy Systems through Integration Presented in partnership with the United States Department of Energy November 20, 2012 Webinar Community Renewable Energy Success Stories: District Heating with Renewable Energy Saint Paul's Community Energy System * Underground network of pipes aggregate heating and cooling needs * Aggregated thermal loads allows application of technologies and fuels not feasible for individual buildings * Increases fuel flexibility, rate stability, and reliability Community Scale Heating and Cooling 4 ever-greenenergy.com Ever-Green Energy Integrated Energy System flexible & renewable fuel sources reliable and effective production & storage hot & chilled water loops maximize energy conservation & reliability

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Evaluation of the utility and energy monitoring and control system installed at the US Army, Europe, 409th Base Support Battalion, Military Community at Grafenwoehr, Germany  

SciTech Connect

Under the provisions of Interagency Agreement DOE 1938-B090-A1 between the US Department of Energy (DOE) and the US Army Europe (USAREUR), Martin Marietta Energy Systems, Inc., is providing technical assistance to USAREUR in the areas of computer science, information engineering, energy studies, and engineering and systems development. One of the initial projects authorized under this interagency agreement is the evaluation of utility and energy monitoring and control systems (UEMCSs) installed at selected US Army installations in Europe. This report is an evaluation of the overall energy-conservation effectiveness and use of the UEMCS at the 409th Base Support Battalion located in Grafenwoehr, Germany. The 409th Base Support Battalion is a large USAREUR military training facility that comprises a large training area, leased housing, the main post area, and the camp areas that include Camps Aachen, Algier, Normandy, Cheb, and Kasserine. All of these facilities are consumers of electrical and thermal energy. However, only buildings and facilities in the main post area and Camps Aachen, Algier, and Normandy are under the control of the UEMCS. The focus of this evaluation report is on these specific areas. Recommendations to further increase energy and cost savings and to improve operation of the UEMCS are proposed.

Broders, M.A.; Ruppel, F.R.

1993-05-01T23:59:59.000Z

82

NREL: Energy Systems Integration - Energy Systems Integration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory and Thermal Storage Materials Laboratory Video In a concentrating solar power plant, thermal energy collected by solar fields can be stored in large tanks for...

83

Wind energy conversion system  

DOE Patents (OSTI)

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

84

NETL: Energy System Dynamics Focus Area  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy System Dynamics Onsite Research Energy System Dynamics Energy System Dynamics (ESD) is a focus area of the National Energy Technology Laboratory's Office of Research and...

85

RELIABILITY PLANNING IN DISTRIBUTED ELECTRIC ENERGY SYSTEMS  

E-Print Network (OSTI)

the Systems Integration Office California Energy Resources Systems Integration Requi-rements for Decentralized Energy

Kahn, E.

2011-01-01T23:59:59.000Z

86

SolidEnergy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SolidEnergy Systems SolidEnergy Systems National Clean Energy Business Plan Competition SolidEnergy Systems Massachusetts Institute of Technology The Polymer Ionic Liquid (PIL) lithium battery combines the safety and energy density of a solid polymer lithium battery and the high performance of a lithium-ion battery. The battery developed by SolidEnergy achieves high energy density that works safely over a wide temperature range, which makes it ideal for electric vehicles and consumer electronics where both energy density and safety are essential. The PIL battery would also be successful in oil and gas drilling applications where the ability to recharge, store, transport, and perform at both very low and very high temperatures safely is mission critical. The PIL lithium battery dramatically improves both the safety and energy

87

SolidEnergy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SolidEnergy Systems SolidEnergy Systems National Clean Energy Business Plan Competition SolidEnergy Systems Massachusetts Institute of Technology The Polymer Ionic Liquid (PIL) lithium battery combines the safety and energy density of a solid polymer lithium battery and the high performance of a lithium-ion battery. The battery developed by SolidEnergy achieves high energy density that works safely over a wide temperature range, which makes it ideal for electric vehicles and consumer electronics where both energy density and safety are essential. The PIL battery would also be successful in oil and gas drilling applications where the ability to recharge, store, transport, and perform at both very low and very high temperatures safely is mission critical. The PIL lithium battery dramatically improves both the safety and energy

88

NREL: Energy Systems Integration - U.S. DOE's Energy Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

February 2013 U.S. DOE's Energy Systems Integration Facility at NREL photo showing the front view of the entrance to the Energy Systems Integration Facility Front view of the...

89

Clean Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Systems Place Rancho Cordova, California Zip 95742 Product The company has developed oxyfuel technology for zero emission fossil fuel power plants. References Clean Energy...

90

Energy conversion system  

DOE Patents (OSTI)

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

Murphy, L.M.

1985-09-16T23:59:59.000Z

91

Energy conversion system  

DOE Patents (OSTI)

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

Murphy, Lawrence M. (Lakewood, CO)

1987-01-01T23:59:59.000Z

92

Energy Systems and Population Health  

E-Print Network (OSTI)

1995. From Rio to Beijing. Energy Policy 23: 561-75 Cohen A,from South Africa. Energy Policy 26: 207-17 De Koning HW,Solar Home Systems Market. Energy Policy 30: 477-99 Dutt GS,

2004-01-01T23:59:59.000Z

93

Energy, Environmental & Economic Systems Analysis  

E-Print Network (OSTI)

Energy, Environmental & Economic Systems Analysis GTMax: A New Deregulated Power Market Analysis Tool Opportunity Decision and Information Sciences Division Center for Energy, Environmental & Economic hourly energy transactions, costs, and revenues. GTMax has a user-friendly geographical information

Kemner, Ken

94

NREL: Energy Systems Integration - Energy Systems Integration...  

NLE Websites -- All DOE Office Websites (Extended Search)

and concentrating solar systems are tested. There is an emphasis on measurement of parabolic trough mirror panels. For detailed laboratory specifications, download the Optical...

95

Building Energy Monitoring System: Making Energy Manageable  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Monitoring System: Making Energy Manageable Building Energy Monitoring System: Making Energy Manageable Speaker(s): Bob Hunter Date: July 21, 2006 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Peng Xu For any line-item expense to be managed, it must first be manageable. In most organizations, this means bringing that expense into the budget/forecast/variance cycle at the department and individual level. While energy costs are the second fastest growing for most organizations, they have simply received a pass on individual accountability. TrendPoint provides a patented system for monitoring energy at the department and user-level. By monitoring each circuit, we assign a circuit to a user, each user to a group and each group to a site. Energy budgets can then be created and assigned to departments, allowing energy costs become a part of

96

Available Energy of Geophysical Systems  

Science Conference Proceedings (OSTI)

An alternative derivation of the available energy for a geophysical fluid system is presented. It is shown that determination of the equilibrium temperature of the system by the minimization of an energy availability function is equivalent to that ...

Peter R. Bannon

2013-08-01T23:59:59.000Z

97

Renewable Energy Systems Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Exemption Systems Exemption Renewable Energy Systems Exemption < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Heating & Cooling Commercial Heating & Cooling Solar Heating Swimming Pool Heaters Water Heating Wind Program Info State Oregon Program Type Property Tax Incentive Rebate Amount 100% Provider Oregon Department of Energy Oregon law states that any change in real market value to property due to the installation of a qualifying renewable energy system is exempt from assessment of the property's value for property tax purposes. Qualifying renewables include solar, geothermal, wind, water, fuel cell or methane gas systems used to heat, cool or generate electricity. This exemption is

98

Electrochemical Thermodynamic Measurement System - Energy ...  

The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy ...

99

EIA - State Energy Data System  

U.S. Energy Information Administration (EIA)

State Energy Data System (SEDS) 500 . Unhandled exception thrown from /emeu/states/hf.jsp:90 jrun.jsp.runtime ...

100

Energy conservation system  

SciTech Connect

An energy conservation system is disclosed wherein power in a given area, such as in a hotel or other room, is controlled by means of an ultrasonic sound transmitter and a plurality of ultrasonic sound receivers, each receiver controlling power for a separate power outlet. Upon entering the room, a key is inserted into a key receptacle to activate the transmitter and thereby cause the receivers to couple power to the power outlets in the room. When the key is withdrawn from the key receptacle, the transmitter signals the receivers to decouple power from the power outlets.

Fichtner, R.L.

1977-07-19T23:59:59.000Z

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy Storage Systems 2007 Peer Review - International Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems...

102

SolidEnergy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Innovation » Commercialization » National Science & Innovation » Innovation » Commercialization » National Clean Energy Business Plan Competition » SolidEnergy Systems National Clean Energy Business Plan Competition SolidEnergy Systems Massachusetts Institute of Technology The Polymer Ionic Liquid (PIL) lithium battery combines the safety and energy density of a solid polymer lithium battery and the high performance of a lithium-ion battery. The battery developed by SolidEnergy achieves high energy density that works safely over a wide temperature range, which makes it ideal for electric vehicles and consumer electronics where both energy density and safety are essential. The PIL battery would also be successful in oil and gas drilling applications where the ability to recharge, store, transport, and perform at both very low and very high

103

Sustina Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Sustina Energy Systems Sustina Energy Systems Jump to: navigation, search Logo: Susitna Energy Systems Name Susitna Energy Systems Address 2507 Fairbanks Street Place Anchorage, Alaska Zip 99503 Product Energy Systems Phone number (877) 485-1100 Website http://www.susitnaenergy.com/ Coordinates 61.197291°, -149.871905° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.197291,"lon":-149.871905,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

Air Products Hydrogen Energy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Products Hydrogen Energy Systems Air Products Hydrogen Energy Systems Hydrogen Infrastructure Air Products Hydrogen Energy Systems More Documents & Publications Quadrennial...

105

Automated Estimating System (AES) version 6.0 - user`s manual. Revision 5  

SciTech Connect

This document describes Version 6.0 of the Automated Estimating System (AES), a personal computer-based software package. The AES is designed to aid in the creation, updating, and reporting of project cost estimates for the Estimating and Scheduling Engineering Department of Central Engineering Services of Martin Marietta Energy Systems, Inc. AES provides formatted input screens to guide the user through the estimate creation/update process and provides several standardized reports that allow cost to be sorted and summarized in many different formats and at several levels of aggregation.

Holder, D.A.; Schwarz, R.K. [ed.

1994-06-01T23:59:59.000Z

106

Energy recovery system  

DOE Patents (OSTI)

The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

Moore, Albert S. (Morgantown, WV); Verhoff, Francis H. (Morgantown, WV)

1980-01-01T23:59:59.000Z

107

Building Energy Information Systems: User Case Studies  

E-Print Network (OSTI)

Effectiveness of Energy Management Systems: What the expertsThe use of energy management and control systems to manageweb-based energy management and control system Introduction

Granderson, Jessica

2010-01-01T23:59:59.000Z

108

ITN Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Systems Systems Jump to: navigation, search Name ITN Energy Systems Place Littleton, CO Website http://www.itnes.com/ References NREL Research Review[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship Partnering Center within NREL National Center for Photovoltaics Partnership Year 2007 Link to project description http://www.nrel.gov/research_review/2007/deployment_thin_film.html LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! ITN Energy Systems is a company located in Littleton, CO. References ↑ "NREL Research Review" Retrieved from "http://en.openei.org/w/index.php?title=ITN_Energy_Systems&oldid=381779" Categories: Clean Energy Organizations Companies Organizations

109

US Department of Energy Portsmouth annual environmental report for 1996  

Science Conference Proceedings (OSTI)

The Portsmouth plant is one of two U.S. Department of Energy (DOE)-owned, contractor-managed uranium enrichment facilities in operation. As of July 1, 1993, responsibility for implementing environmental compliance at the facility was split between DOE, as site owner, and the United States Enrichment Corporation (USEC), a government-owned corporation formed by the National Energy Policy Act of 1992, to operate the nation`s uranium enrichment business. The management contractor for DOE is Lockheed Martin Energy Systems (formerly Martin Marietta Energy Systems), which is responsible for waste management, environmental restoration, removal of highly enriched uranium (HEU), and operation of nonleased facilities at the Portsmouth Gaseous Diffusion Plant (DOE/PORTS). Lockheed Martin Utility Services (formerly Martin Marietta Utility Services) provides management services for USEC. The Nuclear Regulatory Commission will assume direct oversight of USEC operations in 1997. Until then, DOE will provide oversight of nuclear safety and safeguards and security. DOE/PORTS is located on about six square miles in Pike County, Ohio. The County has approximately 24,250 residents. The total population within 50 miles of the plant is about 900,000. The main process at PORTS has been the separation of uranium isotopes through gaseous diffusion. Uranium is no longer enriched by DOE at PORTS. The uranium enrichment production operation facilities at the site are leased to USEC and are managed and operated by Lockheed Martin Utility Services.

NONE

1997-09-01T23:59:59.000Z

110

Energy, Environmental & Economic Systems Analysis  

E-Print Network (OSTI)

Market Simulations Opportunity Decision and Information Sciences Division Center for EnergyEnergy, Environmental & Economic Systems Analysis ENPEP-BALANCE: A Tool for Long-term Nuclear Power, Environmental & Economic Systems Analysis A resurgence of interest in nuclear energy is taking place

Kemner, Ken

111

Pump Systems Optimization: Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pump Systems Pump Systems Optimization: Energy Efficiency and Bottom-Line Savings Host this one-day course to help participants learn how to identify and reduce hidden operation and energy costs. Participants will: * Identify energy savings * Increase profitability * Increase reliability * Earn seven PDH credits Attendees of the "Pump Systems Optimization" one-day course will gain valuable new skills to help them improve centrifugal pump system efficiency to reduce energy and operating costs while earning seven professional development hour (PDH) credits from the Hydraulic Institute. Topics covered include:* * Why Efficient Pump Systems Are Important

112

Megawatt Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Megawatt Energy Systems Megawatt Energy Systems Jump to: navigation, search Name Megawatt Energy Systems Place Zionsville, Indiana Sector Renewable Energy, Services, Solar, Wind energy Phone number 317.797.3381 Website http://www.mwenergysystems.com Coordinates 39.9508733°, -86.261937° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9508733,"lon":-86.261937,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

113

ReEnergie Systems | Open Energy Information  

Open Energy Info (EERE)

ReEnergie Systems ReEnergie Systems Jump to: navigation, search Name ReEnergie Systems Place Behringersdorf, Germany Zip D-90571 Sector Biomass, Hydro, Solar, Wind energy Product Distributor and marketer of equipment using solar, wind, biomass and hydro energy generation techniques. Coordinates 49.480289°, 11.20016° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.480289,"lon":11.20016,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

114

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81 - 24090 of 28,905 results. 81 - 24090 of 28,905 results. Rebate Lewis County PUD- Commercial and Industrial Energy Efficiency Rebate Program [http://www.lcpud.org/index.html Lewis County PUD] offers rebates for commercial and industrial lighting, as well as industrial process upgrades, on a case-by-case basis. Eligible industrial... http://energy.gov/savings/lewis-county-pud-commercial-and-industrial-energy-efficiency-rebate-program Rebate Marietta Power and Water- Residential Energy Efficiency Rebate Program Marietta Power and Water provides rebates for electric water heaters ($250) and electric and dual-fuel heat pumps ($150). If both a water heater and heat pump are installed simultaneously, a rebate... http://energy.gov/savings/marietta-power-and-water-residential-energy-efficiency-rebate-program

115

NREL: Energy Systems Integration - Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Events NREL hosts events that promote understanding and collaboration on energy systems integration. Through seminars, workshops, and other educational opportunities, industry...

116

NREL: Energy Systems Integration - News  

NLE Websites -- All DOE Office Websites (Extended Search)

News Energy Systems Integration eNewsletter is a quarterly newsletter designed to keep industry partners, stakeholders, associations, and educational institutes up to date on the...

117

Very high energy explosives systems  

SciTech Connect

A discussion is given of where to go next in exploring HE systems with energy equal to LX-09, or better.

Scribner, K.

1968-08-01T23:59:59.000Z

118

Model Energy Conversion Efficiency of Biological Systems  

Science Conference Proceedings (OSTI)

MML Researchers Model Energy Conversion Efficiency of Biological Systems. Novel, highly efficient energy conversion ...

2013-03-15T23:59:59.000Z

119

Federal Energy Management Program: Facility Energy Decision System...  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Energy Decision System Software to someone by E-mail Share Federal Energy Management Program: Facility Energy Decision System Software on Facebook Tweet about Federal...

120

The World Energy Projection System  

Gasoline and Diesel Fuel Update (EIA)

World Energy Projection System World Energy Projection System May 1998 Continuing with this release, annual updates to the model will be available. Check this space for scheduled future releases. Note: If you are familiar with the model and just wish to download the latest version, click HERE. The World Energy Projection System The projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) are derived from the World Energy Projection System (WEPS). WEPS is an integrated set of personal computer-based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Mesdi Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SolidEnergy Systems SolidEnergy Systems Massachusetts Institute of Technology SolidEnergy Systems developed cutting-edge battery technologies to meet the world's growing energy storage demand. The Polymer Ionic Liquid (PIL) rechargeable lithium battery has four times the energy density of a conventional lithium-ion battery. Learn More Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process, termed "CANDO", for the removal and recovery of energy from waste nitrogen. The CANDO technology improves the efficiency of nitrogen treatment by lowering energy inputs and enabling energy recovery from waste nitrogen. Learn More NuMat Technologies, Inc. Northwestern University NuMat Technologies, Inc is a cleantech spin-out that computationally

122

NREL: Energy Systems Integration - Special Edition: NREL's Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

September 2012 September 2012 Special Edition: NREL's Energy Systems Integration Facility eNewsletter The Energy Systems Integration Facility eNewsletter is a quarterly publication, but there is so much going on we had to share the news early! At the top of the news, HP and Intel have been selected to help NREL create one of the world's fastest and most efficient high performance computing (HPC) data centers. The HPC data center will be located in the ESIF and will support R&D efforts in energy systems integration, renewable energy, and energy efficiency across the entire campus. We're also exited to announce the launch of several new ESI websites on NREL.gov that include an interactive online tour of the ESIF laboratories and an interactive graphic that explains the unique system-of-systems approach NREL is taking to

123

Transforming our Nation's Energy System, Energy Systems Integration Facility (ESIF)  

SciTech Connect

The Energy Systems Integration Facility (ESIF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will soon be the nation's first facility that can conduct integrated megawatt-scale testing of the components and strategies needed in order to safely move clean energy technologies onto the electrical grid 'in-flight' at the speed and scale required to meet national goals.

Not Available

2011-08-01T23:59:59.000Z

124

Optimal Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Optimal Energy Systems Optimal Energy Systems Jump to: navigation, search Name Optimal Energy Systems Place Torrance, California Zip 90505 Product Manufacturer of flywheel power system, specialising in aerospace and defence sector. Coordinates 40.417285°, -79.223959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.417285,"lon":-79.223959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

125

Integrated Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Integrated Energy Systems Integrated Energy Systems Jump to: navigation, search Name Integrated Energy Systems Address 747 N Main Street Place Orange, California Zip 92868 Sector Solar Product EPC Year founded 1985 Number of employees 51-200 Phone number 714-771-9098 Website http://ie-systems.net/ Coordinates 33.799624°, -117.86553° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.799624,"lon":-117.86553,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Depasol Eco Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Depasol Eco Energy Systems Depasol Eco Energy Systems Jump to: navigation, search Name Depasol - Eco-Energy Systems Place Trinitapoli, Italy Zip 71049 Sector Solar Product Manufacturer of PV modules and solar passive systems, plans an ingot and cell division as of January 2008. Coordinates 41.35687°, 16.091535° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.35687,"lon":16.091535,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Intrinsically resilient energy control systems  

Science Conference Proceedings (OSTI)

To preserve critical energy control functions while under attack, it is necessary to perform comprehensive analysis on the root cause and impact of an ongoing cyber intrusion without sacrificing the availability of energy delivery. In this position paper, ... Keywords: cybersecurity, data integration, energy control system, intrusion-tolerant scada, knowledge base, ontology, root cause analysis, semantic annotation, situational awareness

Frederick Sheldon; Daniel Fetzer; David Manz; Jingshan Huang; Stuart Goose; Thomas Morris; Jiangbo Dang; Jonathan Kirsch; Dong Wei

2013-01-01T23:59:59.000Z

128

Energy Basics: Ventilation Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

building through the roof, walls, and windows. Heat-reflecting roofs, insulation, and energy efficient windows will help to reduce that heat conduction. Radiation is heat...

129

Energy Basics: Cooling Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the...

130

Transportable Energy Storage Systems Project  

Science Conference Proceedings (OSTI)

This project will define the requirements and specification for a transportable energy storage system and then screen various energy storage options and assess their capability to meet that specification. The application will be designed to meet peak electrical loads (3-4 hours of storage) on the electrical distribution system.

2009-10-23T23:59:59.000Z

131

Mirasol Solar Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Mirasol Solar Energy Systems Mirasol Solar Energy Systems Jump to: navigation, search Logo: Mirasol Solar Energy Systems Name Mirasol Solar Energy Systems Address 101 Spring Road NE Place Rio Rancho, New Mexico Zip 87124 Sector Solar Product Solar energy systems and equipment Year founded 2006 Phone number 1-505-892-6406 Website http://www.mirasolenergysystem Coordinates 35.2575628°, -106.6869152° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2575628,"lon":-106.6869152,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

Building Energy Information Systems: User Case Studies  

E-Print Network (OSTI)

Web based enterprise energy and building automation systems.operations. Energy and Buildings, 33(8), 10. Heinemeier,from an analysis of building Energy Information System

Granderson, Jessica

2010-01-01T23:59:59.000Z

133

Distributed Energy Systems Corp | Open Energy Information  

Open Energy Info (EERE)

Systems Corp Systems Corp Jump to: navigation, search Name Distributed Energy Systems Corp Place Wallingford, Connecticut Zip CT 06492 Product The former holding company of Proton Energy Systems and Northern Power Systems that ceased to operate upon the sale of both subsidiaries. Coordinates 43.473755°, -72.976925° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.473755,"lon":-72.976925,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

Meridian Energy Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Energy Systems Inc Energy Systems Inc Jump to: navigation, search Name Meridian Energy Systems Inc Address 4109 Todd Lane Place Austin, Texas Zip 78744 Sector Solar Product Design, sales, installation and service of stand-alone and grid-tied PV applications Website http://www.meridiansolar.com/ Coordinates 30.210602°, -97.737331° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.210602,"lon":-97.737331,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

Titan Energy Systems Ltd | Open Energy Information  

Open Energy Info (EERE)

Titan Energy Systems Ltd Titan Energy Systems Ltd Jump to: navigation, search Name Titan Energy Systems Ltd Place Secunderabad, Andhra Pradesh, India Zip 500015 Sector Solar Product One of the leading Indian manufacturers and exporters of Solar Photovolatic modules. Coordinates 17.46071°, 78.49298° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":17.46071,"lon":78.49298,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Atlantis Energy Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Energy Systems Inc Energy Systems Inc Jump to: navigation, search Name Atlantis Energy Systems Inc Place Sacramento, California Zip 95826 Product US manufacturer of BIPV products and offers installation service. Coordinates 38.579065°, -121.491014° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.579065,"lon":-121.491014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Hydrovolt Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Hydrovolt Energy Systems Hydrovolt Energy Systems Jump to: navigation, search Name Hydrovolt Energy Systems Place Sacramento, California Product California based company developing Solid Oxide Fuel Cells and External Combustion powered generators. Coordinates 38.579065°, -121.491014° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.579065,"lon":-121.491014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

138

Thermal Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Energy Systems Energy Systems Jump to: navigation, search Name Thermal Energy Systems Place London, United Kingdom Sector Biomass Product UK based company that constructs and installs boilers for biomass projects. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Alstom Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Alstom Energy Systems Alstom Energy Systems Jump to: navigation, search Name Alstom Energy Systems Address 3 avenue André Malraux Place Levallois-Perret Cedex, France Website http://www.alstom.com/ Coordinates 48.8961097°, 2.2735771° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.8961097,"lon":2.2735771,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

140

Energy Automation Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Energy Automation Systems Inc Energy Automation Systems Inc Jump to: navigation, search Name Energy Automation Systems Inc. Place Hendersonville, Tennessee Zip 37075 Sector Buildings, Efficiency Product An energy efficiency consultancy firm focusing on analysis of energy consumption in buildings and providing improvments in the efficiency of the distribution system and equipment loads, similar to an ESCO. Coordinates 36.304861°, -86.620214° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.304861,"lon":-86.620214,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Modular Integrated Energy Systems  

E-Print Network (OSTI)

system (or CHP -- Cooling, Heat and Power) system at Ft. Bragg. Much of this work is funded by the U consists of a gas turbine-generator, a heat recovery steam generator, and a waste heat fired absorption-driven absorption chiller, · Install and monitor the performance of a prototype IES modular system employing

Oak Ridge National Laboratory

142

Energy, Environmental, and Economic Systems Analysis  

E-Print Network (OSTI)

Energy, Environmental, and Economic Systems Analysis Electricity Market Complex Adaptive System (EMCAS): A New Long-term Power Market Simulation Tool Opportunity Decision and Information Sciences Division Center for Energy, Environmental & Economic Systems Analysis Energy systems are being privatized

Kemner, Ken

143

National Energy Modeling System (NEMS)  

DOE Data Explorer (OSTI)

The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. through 2030. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). NEMS can be used to analyze the effects of existing and proposed government laws and regulations related to energy production and use; the potential impact of new and advanced energy production, conversion, and consumption technologies; the impact and cost of greenhouse gas control; the impact of increased use of renewable energy sources; and the potential savings from increased efficiency of energy use; and the impact of regulations on the use of alternative or reformulated fuels. NEMS has also been used for a number of special analyses at the request of the Administration, U.S. Congress, other offices of DOE and other government agencies, who specify the scenarios and assumptions for the analysis. Modules allow analyses to be conducted in energy topic areas such as residential demand, industrial demand, electricity market, oil and gas supply, renewable fuels, etc.

144

Energy Systems Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Jump to: navigation, search Name Energy Systems Group Place Newburgh, Indiana Zip 47630 Sector Efficiency, Services Product Energy services company focused on energy efficiency programmes and the development of landfill-gas to energy projects. Coordinates 41.499945°, -74.010229° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.499945,"lon":-74.010229,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

145

Building Technologies Office: Energy Systems Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Systems Energy Systems Innovations to someone by E-mail Share Building Technologies Office: Energy Systems Innovations on Facebook Tweet about Building Technologies Office: Energy Systems Innovations on Twitter Bookmark Building Technologies Office: Energy Systems Innovations on Google Bookmark Building Technologies Office: Energy Systems Innovations on Delicious Rank Building Technologies Office: Energy Systems Innovations on Digg Find More places to share Building Technologies Office: Energy Systems Innovations on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

146

Microhydropower Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Microhydropower Systems Microhydropower Systems Microhydropower Systems July 2, 2012 - 8:22pm Addthis Microhydropower can be one of the most simple and consistent forms or renewable energy on your property. Microhydropower can be one of the most simple and consistent forms or renewable energy on your property. What are the key facts? Microhydropower can be one of the most simple and consistent forms or renewable energy on your property. The amount of electricity you can generate depends on how much water flows and on the head (the vertical difference between where the water is taken into your system and where the turbine is located). If you have water flowing through your property, you might consider building a small hydropower system to generate electricity. Microhydropower systems usually generate up to 100 kilowatts of electricity. Most of the

147

Renewable Energy Systems Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Exemption Systems Exemption Renewable Energy Systems Exemption < Back Eligibility Agricultural Commercial Industrial Multi-Family Residential Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Solar Heating Home Weatherization Water Swimming Pool Heaters Water Heating Wind Maximum Rebate Based on investment of $20,000 for single family, and on investment of $100,000 for multi-family, non-residential. Program Info State Montana Program Type Property Tax Incentive Rebate Amount 100% for 10 years. Provider Montana Department of Revenue Montana's property tax exemption for recognized non-fossil forms of energy generation or low emission wood or biomass combustion devices may be

148

Unitil Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Systems Systems Jump to: navigation, search Name Unitil Energy Systems Place New Hampshire Utility Id 24590 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png D Domestic Rate Residential G1 Large General Service Commercial G2 General Service Commercial Average Rates Residential: $0.0576/kWh Commercial: $0.0510/kWh Industrial: $0.1210/kWh The following table contains monthly sales and revenue data for Unitil

149

Renewable Energy System Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System Exemption System Exemption Renewable Energy System Exemption < Back Eligibility Agricultural Commercial Industrial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Home Weatherization Water Heating & Cooling Swimming Pool Heaters Water Heating Heating Wind Maximum Rebate $50,000 or 70% of the assessed value of eligible property, whichever is greater Program Info State South Dakota Program Type Property Tax Incentive Rebate Amount $50,000 or 70% of the assessed value of eligible property, whichever is greater Provider S.D. Department of Revenue and Regulation In March 2010, South Dakota established a new property tax incentive that replaced two existing property tax incentives for renewable energy.

150

Planning for Home Renewable Energy Systems | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

for Home Renewable Energy Systems Planning for Home Renewable Energy Systems November 11, 2013 - 8:49pm Addthis Planning for a home renewable energy system is a process that...

151

An energy management framework for energy harvesting embedded systems  

Science Conference Proceedings (OSTI)

Energy harvesting (also known as energy scavenging) is the process of generating electrical energy from environmental energy sources. There exists a variety of different energy sources such as solar energy, kinetic energy, or thermal energy. In recent ... Keywords: Power management, embedded systems, energy harvesting, model predictive control, real-time scheduling, reward maximization

Clemens Moser; Jian-Jia Chen; Lothar Thiele

2010-06-01T23:59:59.000Z

152

NREL's Energy Systems Integration Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL's Energy Systems Integration Facility Speaker(s): Benjamin Kroposki Date: January 14, 2013 - 12:00pm Location: 90-1099 Seminar HostPoint of Contact: Sila Kiliccote The...

153

Operando Characterization of Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

S teve H eald ( XSD), Y ugang S un ( CNM), a nd J ianguo W en ( MSD) In the study of energy systems such as batteries, fuel cells, photovoltaics, and catalytic processes, it is...

154

Energy attack on server systems  

Science Conference Proceedings (OSTI)

Power management has become increasingly important for server systems. Numerous techniques have been proposed and developed to optimize server power consumption and achieve energy proportional computing. However, the security perspective of server power ...

Zhenyu Wu; Mengjun Xie; Haining Wang

2011-08-01T23:59:59.000Z

155

NETL: Energy Analyses -Quality Guidelines for Energy System Studies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Analyses Quality Guidelines for Energy System Studies for Fossil Energy Plants OVERVIEW Each year the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) and the...

156

MAXIMUM ENERGY HARVESTING CONTROL FOROSCILLATING ENERGY HARVESTING SYSTEMS.  

E-Print Network (OSTI)

??This thesis presents an optimal method of designing and controlling an oscillating energy harvesting system. Many new and emerging energy harvesting systems, such as the (more)

Elmes, John

2007-01-01T23:59:59.000Z

157

Solar Energy Systems Inc SES | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Systems Inc SES Jump to: navigation, search Name Solar Energy Systems, Inc (SES) Place Brooklyn, New York Zip 11222 Sector Solar Product Private company designing,...

158

Energy Mgmt. Systems/Building Controls | Open Energy Information  

Open Energy Info (EERE)

Energy Mgmt. SystemsBuilding Controls Incentives Retrieved from "http:en.openei.orgwindex.php?titleEnergyMgmt.SystemsBuildingControls&oldid267162" Category: Articles...

159

Direct energy conversion systems  

SciTech Connect

The potential importance of direct energy conversion to the long-term development of fusion power is discussed with stress on the possibility of alleviating waste heat problems. This is envisioned to be crucial for any central power station in the 21st century. Two approaches to direct conversion, i.e., direct collection and magnetic expansion, are reviewed. While other techniques may be possible, none have received sufficient study to allow evaluation. It is stressed that, due to the intimate connection between the type of fusion fuel, the confinement scheme, direct conversion, and the coupling technique, all four element must be optimized simultaneously for high overall efficiency.

Miley, G.H.

1978-01-01T23:59:59.000Z

160

Princeton Energy Systems PES | Open Energy Information  

Open Energy Info (EERE)

PES PES Jump to: navigation, search Name Princeton Energy Systems (PES) Place Philadelphia, Pennsylvania Zip PA 19118 Sector Efficiency, Services, Solar Product US-based energy services that combines distributed power generation (solar electric and combined heat and power) with traditional energy efficiency technologies. Coordinates 39.95227°, -75.162369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.95227,"lon":-75.162369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

SolidEnergy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stanford Nitrogen Group Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process, termed "CANDO", for the removal and recovery of energy from waste nitrogen. The CANDO technology improves the efficiency of nitrogen treatment by lowering energy inputs and enabling energy recovery from waste nitrogen. Learn More NuMat Technologies, Inc. Northwestern University NuMat Technologies, Inc is a cleantech spin-out that computationally designs and synthesizes high-performing nanomaterials for gas storage and separation applications. NuMat has developed materials that will fundamentally change the economics of gas storage in natural gas vehicles - supporting the gradual displacement of foreign oil. Learn More Mesdi Systems

162

Energy Basics: Flat-Plate Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

163

Heat Transfer and Alternative Energy Systems Group  

Science Conference Proceedings (OSTI)

... and validates computer models used to predict the energy performance of photovoltaics and other alternative energy production systems in ...

2011-10-31T23:59:59.000Z

164

Energy Programs | Advanced Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Storage Systems Advanced Storage Systems Tapping Into Fuel Cells and Batteries Page 1 of 2 Imagine being able to drive a forty-mile round-trip commute every day without ever going near a gas pump. As the United States moves towards an energy economy with reduced dependence on foreign oil and fewer carbon emissions, development of alternative fuel sources and transmission of the energy they provide is only part of the equation. An increase in energy generated from intermittent renewable sources and the growing need for mobile energy will require new, efficient means of storing it, and technological advancements will be necessary to support the nation's future energy storage needs. A change toward alternative transportation - hydrogen fuel-cell vehicles, hybrid electric vehicles, plug-in hybrid-electric vehicles and electric

165

The World Energy Projection System  

Gasoline and Diesel Fuel Update (EIA)

wepstitle.gif (8166 bytes) wepstitle.gif (8166 bytes) Continuing with this release, annual updates to the model will be available. Check this space for scheduled future releases. Note: If you are familiar with the model and just wish to download the latest version, click HERE. The World Energy Projection System The projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) are derived from the World Energy Projection System (WEPS). WEPS is an integrated set of personal computer-based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the

166

The World Energy Projection System  

Gasoline and Diesel Fuel Update (EIA)

Continuing with this release, annual updates to the model will be Continuing with this release, annual updates to the model will be available. Check this space for scheduled future releases. Note: If you are familiar with the model and just wish to download the latest version, click HERE. The World Energy Projection System The projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) are derived from the World Energy Projection System (WEPS). WEPS is an integrated set of personal computer-based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the

167

NREL: Energy Systems Integration - Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnerships Partnerships Photo of a researcher in a laboratory in front of various computer simulations Advanced Energy NREL and AE are teaming up on solar inverter testing. Photo of a hybrid sport utility vehicle in motion; the vehicle is marked with the National Renewable Energy Laboratory logo. Toyota NREL and Toyota are studying grid impacts of electric vehicles. Photo of a glass cube containing power electronics equipment in a laboratory. Wyle NREL and Wyle are building a hybrid power system for the Army. The Energy Systems Integration Facility (ESIF) at the National Renewable Energy Laboratory (NREL) was recently designated a national user facility by the Energy Department, so utilities, industry, and other national laboratories can use the facility to develop their technologies with the

168

Photon Energy Systems Ltd | Open Energy Information  

Open Energy Info (EERE)

Systems Ltd Systems Ltd Jump to: navigation, search Name Photon Energy Systems Ltd Place Hyderabad, Andhra Pradesh, India Zip 500033 Sector Solar Product Manufactures PV modules and PV-powered garden lights, pumps and fences, as well as solar passive water heating systems. Coordinates 17.6726°, 77.5971° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":17.6726,"lon":77.5971,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

SolidEnergy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiator Labs Radiator Labs Columbia University Radiator Labs developed a low-cost, easily installed radiator retrofit that converts radiator heating systems into a controlled-zoned system, which significantly increases the efficiency of radiator heating while improving occupant comfort. Learn More Navillum Nanotechnologies University of Utah Navillum Nanotechnologies developed a process to fabricate quantum dots and other types of semiconducting nanocrystals. When used in liquid crystal displays (LCD), quantum dots improve energy efficiency by up to 35 percent and in solar panels can increase efficiency up to 45 percent. Learn More Mesdi Systems University of Central Florida Mesdi Systems developed revolutionary equipment for manufacturing lithium-ion batteries, solar cells, and other high precision products that

170

EnergyCS Inc Energy Control Systems Engineering Inc | Open Energy...  

Open Energy Info (EERE)

EnergyCS Inc Energy Control Systems Engineering Inc Jump to: navigation, search Name EnergyCS Inc (Energy Control Systems Engineering, Inc) Sector Services Product String...

171

Advanced Energy Systems Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Ltd Jump to: navigation, search Name Advanced Energy Systems Ltd Place Welshpool, Western Australia, Australia Zip 6016 Sector Solar, Wind energy Product Manufacturer and distributor of micro wind turbines, solar systems, gas generators and balance of plant. Currently undergoing restructuring. Coordinates 38.211449°, -85.574524° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.211449,"lon":-85.574524,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

172

Star Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Star Energy Systems Star Energy Systems Place Ahmedabad, Gujarat, India Zip 380 009 Sector Solar Product Solar PV product distributor. Coordinates 26.93077°, 80.66416° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.93077,"lon":80.66416,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

ITN Energy Systems Inc | Open Energy Information  

Open Energy Info (EERE)

ITN Energy Systems Inc ITN Energy Systems Inc Place Littleton, Colorado Zip 80127-4107 Product Founded by a team of scientists and engineers from major aerospace corporations in 1995 to bring aerospace know-how to the commercial marketplace. Coordinates 39.697285°, -80.51095° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.697285,"lon":-80.51095,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

174

Proton Energy Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Proton Energy Systems Inc Proton Energy Systems Inc Jump to: navigation, search Name Proton Energy Systems Inc Place Wallingford, Connecticut Zip 6492 Sector Hydro, Hydrogen Product Develops, manufactures and sells proprietary Proton Exchange Membrane (PEM) cell stacks and incorporates them into products that serve existing industrial infrastructure and the emerging hydrogen economy. Coordinates 43.473755°, -72.976925° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.473755,"lon":-72.976925,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

175

Metering Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Systems Metering Systems October 7, 2013 - 9:23am Addthis A variety of metering systems are currently on the market for Federal facility implementation. The information below outlines common metering system capabilities and common metering system components. Metering System Capabilities The capabilities and functionality of metering systems vary depending on the individual metering system. The following are some of the more common features used by Federal facilities. Data Recording: Advanced meters can record total energy resource consumption in addition to enhanced functions like time-of-use, peak demand, load survey, and power outage. Electrical meters may also be able to record data points such as voltage, current, and power factor. Total Consumption: The most basic data function, total consumption records

176

Distributed Sensor Coordination for Advanced Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Sensor Coordination for Advanced Energy Systems Background As advanced energy systems grow in size, they require an increasing number of pressure, temperature, and...

177

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Update Conference Presentations - Day 1, Session 2 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 2 The U.S. DOE Energy Storage Systems Program...

178

Sustainable Systems LLC | Open Energy Information  

Open Energy Info (EERE)

Sustainable Systems LLC Jump to: navigation, search Name Sustainable Systems LLC Place Missoula, Montana Zip 59812 Sector Renewable Energy Product Renewable energy and biobased...

179

Roadmap to Achieve Energy Delivery Systems Cybersecurity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roadmap to Achieve Energy Delivery Systems Cybersecurity ii Acknowledgements The Energy Sector Control Systems Working Group (ESCSWG) developed this roadmap in support of the...

180

Vulnerability Analysis of Energy Delivery Control Systems  

Energy.gov (U.S. Department of Energy (DOE))

The Vulnerability Analysis of Energy Delivery Control Systems report, prepared by Idaho National Laboratory, describes the common vulnerabilities on energy sector control systems, and provides...

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy information systems (EIS): Technology costs, benefit,...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy information systems (EIS): Technology costs, benefit, and best practice uses Title Energy information systems (EIS): Technology costs, benefit, and best practice uses...

182

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for TETRACHLOROETHYLENE Condensed Toxicity Summary for TETRACHLOROETHYLENE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. MARCH 1993 Prepared by: Mary Lou Daugherty, M.S., Chemical Hazard Evaluation Group, Biomedical Environmental Information Analysis Section, Health and Safety Research Division, Oak Ridge National Laboratory*, Oak Ridge, Tennessee. Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Tetrachloroethylene (CAS No. 127-18-4) is a halogenated aliphatic

183

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for ETHYLBENZENE Condensed Toxicity Summary for ETHYLBENZENE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. Prepared by: Dennis M. Opresko, Ph.D., Chemical Hazard Evaluation Group in the Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, Oak Ridge National Laboratory*. Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Ethylbenzene is a colorless, flammable liquid with a pungent odor (Cavender 1994). The water solubility of ethylbenzene is 0.014 g/100 mL and its vapor

184

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

BENZO[A]PYRENE BENZO[A]PYRENE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. December 1994 Prepared by: Rosmarie A. Faust, Ph.D., Chemical Hazard Evaluation Group, Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, *, Oak Ridge, Tennessee. Prepared for: OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Benzo[a]pyrene is a polycyclic aromatic hydrocarbon (PAH) that can be derived from coal tar. Benzo[a]pyrene occurs ubiquitously in products of

185

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for AROCLOR-1260 Condensed Toxicity Summary for AROCLOR-1260 NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. Prepared by C. B. Bast, Ph.D., D.A.B.T., Chemical Hazard Evaluation Group, Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, *. Prepared for OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400 Aroclor® 1260 is a polychlorinated biphenyl (PCB) mixture containing approximately 38% C12H4Cl6, 41% C12H3Cl7, 8% C12H2Cl8, and 12% C12H5Cl5

186

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for ZINC AND ZINC COMPOUNDS Condensed Toxicity Summary for ZINC AND ZINC COMPOUNDS NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. April 1992 Prepared by Dennis M. Opresko, Ph.D., Chemical Hazard Evaluation and Communication Group, Biomedical and Environmental Information Analysis Section, Health and Safety Research Division, Oak Ridge National Laboratory*, Oak Ridge, Tennessee Prepared for OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400 Zinc is used primarily in galvanized metals and metal alloys, but zinc

187

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for THALLIUM Condensed Toxicity Summary for THALLIUM NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. DECEMBER 1994 Prepared by: Tim Borges and Mary Lou Daugherty, Chemical Hazard Evaluation Group, Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, Oak Ridge National Laboratory*, Oak Ridge, Tennessee. Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. This report is an update of the Toxicity Summary for Thallium (CAS Registry

188

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

-DINITROTOLUENE -DINITROTOLUENE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. Prepared by: Rosmarie A. Faust, Ph.D., Chemical Hazard Evaluation Group in the Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, Oak Ridge National Laboratory*. Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. This report is an update of the Toxicity Summary for 2,4-Dinitrotoluene (CAS Registry No. 121-14-2). The original summary for this chemical was

189

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for VANADIUM Condensed Toxicity Summary for VANADIUM NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. DECEMBER 1991 Prepared by: Dennis M. Opresko, Ph.D., Chemical Hazard Evaluation and Communication Group Biomedical and Environmental Information Analysis Section, Health and Safety Research Division, *. Oak Ridge, Tennessee Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Vanadium is a metallic element that occurs in six oxidation states and

190

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

CHLORDANE CHLORDANE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. December 1994 Prepared by: Carol S. Forsyth, Ph.D., Chemical Hazard Evaluation Group, Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, *, Oak Ridge, Tennessee. Prepared for: OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM. *Managed by Martin Marietta Energy Systems Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Technical grade chlordane is a mixture of structurally related compounds including trans-chlordane, cis-chlordane, -chlordene, heptachlor, and

191

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for METHYL MERCURY Condensed Toxicity Summary for METHYL MERCURY NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. FEBRUARY, 1992 Prepared by: Robert A. Young, Ph.D., D.A.B.T., Chemical Hazard Evaluation and Communication Group Biomedical and Environmental Information Analysis Section, Health and Safety Research Division, *, Oak Ridge, Tennessee. Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Methyl mercury is formed by biotic and abiotic methylation of mercury

192

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

FLUORANTHENE FLUORANTHENE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. August 1993 Prepared by Rosmarie A. Faust, Ph.D., Chemical Hazard Evaluation and Communication Program, Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, *, Oak Ridge, Tennessee. Prepared for OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under contract No. DE-AC05-84OR21400. Fluoranthene is a polycyclic aromatic hydrocarbon (PAH) that can be derived from coal tar. Occurring ubiquitously in products of incomplete combustion

193

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for BENZENE Condensed Toxicity Summary for BENZENE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. September 1992 Prepared by: Mary Lou Daugherty, M.S., Chemical Hazard Evaluation and Communication Group, Biomedical and Environmental Information Analysis Section, Health and Safety Research Division*, , Oak Ridge, Tennessee. Prepared for OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Benzene is absorbed via ingestion, inhalation, and skin application.

194

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for METHYLENE CHLORIDE Condensed Toxicity Summary for METHYLENE CHLORIDE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. September 1993 Prepared by Cheryl B. Bast, Ph.D., Chemical Hazard Evaluation and Communication Program, Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, *, Oak Ridge, Tennessee. Prepared for OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under contract No. DE-AC05-84OR21400. Methylene chloride (CH2Cl2, CAS No. 75-09-2), also known as dichloromethane

195

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

SELENIUM SELENIUM NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. MARCH 1993 Prepared by: Dennis M. Opresko, Ph.D, Chemical Hazard Evaluation Group, Biomedical Environmental Information Analysis Section, Health and Safety Research Division, Oak Ridge National Laboratory*, Oak Ridge, Tennessee. Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Selenium is an essential trace element important in many biochemical and physiological processes including the biosynthesis of coenzyme Q (a

196

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for MOLYBDENUM Condensed Toxicity Summary for MOLYBDENUM NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. JANUARY 1993 Prepared by: Dennis M. Opresko, Ph.D., Chemical Hazard Evaluation Group, Biomedical and Environmental Information Analysis Section, Health and Safety Research Division, *, Oak Ridge, Tennessee. Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Molybdenum (Mo) occurs naturally in various ores; the principal source being molybdenite (MoS2) (Stokinger, 1981). Molybdenum compounds are used

197

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

LITHIUM LITHIUM NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. May 1995 Prepared by Dennis M. Opresko, Ph.D., Chemical Hazard Evaluation and Communication Program, Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, *, Oak Ridge, Tennessee. Prepared for OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under contract No. DE-AC05-84OR21400. Lithium is an alkali metal similar to magnesium and sodium in its properties (Birch, 1988; Arena, 1986) and has a molecular weight of 6.941

198

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for ALUMINUM Condensed Toxicity Summary for ALUMINUM NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. September 1993 Prepared by Cheryl B. Bast, Chemical Hazard Evaluation Group, Biomedical Environmental Information Analysis Section, Health Sciences Research Division, *, Oak Ridge, Tennessee. Prepared for OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Aluminum is a silver-white flexible metal with a vast number of uses. It is poorly absorbed and efficiently eliminated; however, when absorption does

199

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

CYANIDE CYANIDE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. February 1994 Prepared by Rosmarie A. Faust, Ph.D., Chemical Hazard Evaluation and Communication Group, Biomedical and Environmental Information Analysis Section, Health and Safety Research Division, *, Oak Ridge, Tennessee. Prepared for OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400 Cyanide most commonly occurs as hydrogen cyanide and its salts--sodium and potassium cyanide. Cyanides are both man-made and naturally occurring

200

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for 1,4-DICHLOROBENZENE Condensed Toxicity Summary for 1,4-DICHLOROBENZENE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. Prepared by: James C. Norris, Ph.D, Chemical Hazard Evaluation Group in the Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, Oak Ridge National Laboratory*. Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. 1,4-Dichlorobenzene (CAS 106-46-7), also referred to as para-DCB, p-DCB, paracide, Paramoth®, Parazene®, PDB, and Santochlor®, has a benzene ring

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

2-DICHLOROETHANE 2-DICHLOROETHANE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. May 1994 Prepared by Dennis M. Opresko, Ph.D., Chemical Hazard Evaluation and Communication Program, Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, *, Oak Ridge, Tennessee. Prepared for OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under contract No. DE-AC05-84OR21400. 1,2-Dichloroethane is used primarily in the manufacture of vinyl chloride, as well as in the synthesis of tetrachloroethylene, trichloroethylene,

202

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

COPPER COPPER NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. DECEMBER 1992 Prepared by: Rosmarie A. Faust, Ph.D., Chemical Hazard Evaluation and Communication Group, Biomedical and Environmental Information Analysis Section, Health and Safety Research Division, *, Oak Ridge, Tennessee. Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Copper occurs naturally in elemental form and as a component of many minerals. Because of its high electrical and thermal conductivity, it is

203

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

TRICHLOROETHENE TRICHLOROETHENE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. MARCH 1993 Prepared by: Rosmarie A. Faust, Ph.D, Chemical Hazard Evaluation Group, Biomedical Environmental Information Analysis Section, Health and Safety Research Division, *, Oak Ridge, Tennessee Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Trichloroethene (TCE) is an industrial solvent used primarily in metal degreasing and cleaning operations. TCE can be absorbed through the lungs,

204

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for 2,6-DINITROTOLUENE Condensed Toxicity Summary for 2,6-DINITROTOLUENE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. Prepared by: Rosmarie A. Faust, Ph.D., Chemical Hazard Evaluation Group in the Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, Oak Ridge National Laboratory*. Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. 2,6-Dinitrotoluene (2,6-DNT; 2-methyl-1,3-dinitrobenzene; CAS Reg. No. 606-20-2) is a pale yellow crystalline solid and one of six possible

205

Energy optimization system  

DOE Patents (OSTI)

A system for optimizing customer utility usage in a utility network of customer sites, each having one or more utility devices, where customer site is communicated between each of the customer sites and an optimization server having software for optimizing customer utility usage over one or more networks, including private and public networks. A customer site model for each of the customer sites is generated based upon the customer site information, and the customer utility usage is optimized based upon the customer site information and the customer site model. The optimization server can be hosted by an external source or within the customer site. In addition, the optimization processing can be partitioned between the customer site and an external source.

Zhou, Zhi; de Bedout, Juan Manuel; Kern, John Michael; Biyik, Emrah; Chandra, Ramu Sharat

2013-01-22T23:59:59.000Z

206

Perpetual Energy Systems Ltd | Open Energy Information  

Open Energy Info (EERE)

Systems Ltd Systems Ltd Jump to: navigation, search Name Perpetual Energy Systems Ltd. Place Hyderabad, Andhra Pradesh, India Zip 500 029 Sector Biomass Product Biomass project developer in India Coordinates 17.6726°, 77.5971° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":17.6726,"lon":77.5971,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

207

Home Energy Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Systems Inc Systems Inc Jump to: navigation, search Name Home Energy Systems Inc Address 6996 Convoy Ct. Place San Diego, California Zip 92111 Sector Solar Product Solar PV installer Website http://www.homeenergysystemsin Coordinates 32.8346671°, -117.1645956° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.8346671,"lon":-117.1645956,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

208

SolidEnergy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mesdi Systems Mesdi Systems University of Central Florida Mesdi Systems developed revolutionary equipment for manufacturing lithium-ion batteries, solar cells, and other high precision products that will improve their performance and lifetime with advanced coatings and quality control. Learn More Navillum Nanotechnologies University of Utah Navillum Nanotechnologies developed a process to fabricate quantum dots and other types of semiconducting nanocrystals. When used in liquid crystal displays (LCD), quantum dots improve energy efficiency by up to 35 percent and in solar panels can increase efficiency up to 45 percent. Learn More NuMat Technologies, Inc. Northwestern University NuMat Technologies, Inc is a cleantech spin-out that computationally designs and synthesizes high-performing nanomaterials for gas storage and

209

Kinetic Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Systems Systems Jump to: navigation, search Name Kinetic Energy Systems Place Ocala, Florida Zip 34476 Sector Hydro Product Designs and develops tidal generators. Has notably patented the KESC Tidal Generator which is based on free flow hydrodynamics. Coordinates 29.187525°, -82.140394° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.187525,"lon":-82.140394,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

210

Innovative Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Systems Systems Jump to: navigation, search Name Innovative Energy Systems Place Oakfield, New York Zip 14125 Product New York state based company focusing on the recovery of methane gas from landfills. Coordinates 43.68577°, -88.547469° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.68577,"lon":-88.547469,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Energy Storage Systems 2007 Peer Review - International Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Energy International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to international energy storage programs are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - DOE-CEC Energy Storage Program FY07 Projects - Daniel Borneo, SNL.pdf ESS 2007 Peer Review - Joint NYSERDA-DOE Energy Storage Initiative Projects

212

Mesdi Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mesdi Systems Mesdi Systems National Clean Energy Business Plan Competition Mesdi Systems University of Central Florida Liquid spray, generated by pressurized gas or high-frequency vibrations, typically results in up to 50 percent material waste, inconsistent droplet size, and physical limitations on minimum droplet size. To overcome these limitations, Mesdi's equipment uses electricity to generate droplets that are an order of magnitude smaller and very uniform in size with zero waste by harnessing a technique known as electrospray. The Mesdi Systems team consists of the world leaders in multiplexed electrospray technology from the Droplet and Energy Lab at the University of Central Florida (UCF). Their goal is pioneering wide-area electrospray as the new standard in industrial manufacturing systems for coating and

213

Mesdi Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mesdi Systems Mesdi Systems National Clean Energy Business Plan Competition Mesdi Systems University of Central Florida Liquid spray, generated by pressurized gas or high-frequency vibrations, typically results in up to 50 percent material waste, inconsistent droplet size, and physical limitations on minimum droplet size. To overcome these limitations, Mesdi's equipment uses electricity to generate droplets that are an order of magnitude smaller and very uniform in size with zero waste by harnessing a technique known as electrospray. The Mesdi Systems team consists of the world leaders in multiplexed electrospray technology from the Droplet and Energy Lab at the University of Central Florida (UCF). Their goal is pioneering wide-area electrospray as the new standard in industrial manufacturing systems for coating and

214

Energy Systems Limited ESL | Open Energy Information  

Open Energy Info (EERE)

Limited ESL Limited ESL Jump to: navigation, search Name Energy Systems Limited- ESL Place Kampala, Uganda Zip 25928 Sector Renewable Energy, Solar Product ESL deals with design, supply, installations and maintenance of solar and other renewable energy systems in Uganda. The company has a special focus on the remote rural communitiies within Uganda. Coordinates 0.3228°, 32.574841° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":0.3228,"lon":32.574841,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Federal Energy Management Program: Metering Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Metering Systems Metering Systems to someone by E-mail Share Federal Energy Management Program: Metering Systems on Facebook Tweet about Federal Energy Management Program: Metering Systems on Twitter Bookmark Federal Energy Management Program: Metering Systems on Google Bookmark Federal Energy Management Program: Metering Systems on Delicious Rank Federal Energy Management Program: Metering Systems on Digg Find More places to share Federal Energy Management Program: Metering Systems on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements Program Management Commissioning Metering Systems Approaches Process Computerized Maintenance Management Systems Maintenance Types Major Equipment Types Resources Contacts Greenhouse Gases Water Efficiency

216

California Integrated Renewable Energy Systems Report California Renewable Energy Collaborative  

E-Print Network (OSTI)

1 California Integrated Renewable Energy Systems Report California Renewable Energy Collaborative UC Davis Energy Institute University of California I Shields Avenue Davis, California 95616 California Renewable Energy Center: Vision and Development Metrics Principal Author: Gerald Braun CREC

Islam, M. Saif

217

Solar energy power generation system  

SciTech Connect

A solar energy power generation system is described which consists of: (a) means for collecting and concentrating solar energy; (b) heat storage means; (c) Stirling engine means for producing power; (d) first heat transfer means for receiving the concentrated solar energy and for transferring heat to the heat storage means; and (e) second heat transfer means for controllably transferring heat from the storage means to the Stirling engine means and including a discharge heat pipe means for transferring heat to the Stirling engine means and further including means for inserting and withdrawing the discharge heat pipe means into and out of the heat storage means.

Nilsson, J.E.; Cochran, C.D.

1986-05-06T23:59:59.000Z

218

Adura Systems | Open Energy Information  

Open Energy Info (EERE)

Systems Systems Jump to: navigation, search Name Adura Systems Place Menlo Park, California Zip 94025 Product California-based, developer of hybrid vehicle technology. References Adura Systems[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Adura Systems is a company located in Menlo Park, California . References ↑ "Adura Systems" Retrieved from "http://en.openei.org/w/index.php?title=Adura_Systems&oldid=341767" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

219

Install renewable energy systems | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Directory of Solar PPA Providers (listing does not imply endorsement): Envision Solar Green Energy Finder Photon Energy Services PVOne Recurrent Energy Sun Edison SunPower Corp...

220

TMA Global Wind Energy Systems | Open Energy Information  

Open Energy Info (EERE)

TMA Global Wind Energy Systems TMA Global Wind Energy Systems Jump to: navigation, search Name TMA Global Wind Energy Systems Place Cheyenne, Wyoming Zip 82001 Sector Wind energy Product Involved in the development, manufacture, and marketing of vertical axis wind energy turbines and hybrid energy systems. References TMA Global Wind Energy Systems[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. TMA Global Wind Energy Systems is a company located in Cheyenne, Wyoming . References ↑ "TMA Global Wind Energy Systems" Retrieved from "http://en.openei.org/w/index.php?title=TMA_Global_Wind_Energy_Systems&oldid=352301" Categories: Clean Energy Organizations Companies Organizations

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Enhanced distributed energy resource system  

DOE Patents (OSTI)

A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.

Atcitty, Stanley (Albuquerque, NM); Clark, Nancy H. (Corrales, NM); Boyes, John D. (Albuquerque, NM); Ranade, Satishkumar J. (Las Cruces, NM)

2007-07-03T23:59:59.000Z

222

Energy Storage Systems 2006 Peer Review | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Systems 2006 Peer Review Energy Storage Systems 2006 Peer Review The 2006 Peer Review Meeting for the DOE Energy Storage Systems (ESS) Program was held in Washington DC on...

223

Commissioning Building Systems for Improved Energy ...  

Science Conference Proceedings (OSTI)

Commissioning Building Systems for Improved Energy Performance Project. Summary: NIST will advance commercial building ...

2012-12-17T23:59:59.000Z

224

Information Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Systems Information Systems Information Systems Project Assessment and Reporting System (PARS II) PARS II is the Department's official "System of Record" for capital asset project performance information. Because PARS II uses the same data as maintained in our contractors' project management systems, everyone from the Federal Project Director's staff to the Secretary of Energy will have easy access to the same data. The PARS II software application is managed by the MA Office of Acquisition and Project Management and is used by federal and contractor personnel across the nation to record and track the progress of major construction and environmental cleanup projects. Questions or comments about PARS II should be directed to the PARS II Help Desk via email at i-Manage.eas@hq.doe.gov or by calling 301-903-2500

225

U.S. Department of Energy Portsmouth Annual Environmental Report for 1998  

Science Conference Proceedings (OSTI)

The Portsmouth Gaseous Diffusion Plant (PORTS) is one of two U.S. Department of Energy (DOE)-owned contractor-managed uranium enrichment facilities operating in the United States. Responsibility for implementing environmental compliance at PORTS is split between DOE, as site owner, and the United States Enrichment Corporation (USEC), a corporation formed by the Energy Policy Act of 1992 to operate the nation's uranium enrichment business. The uranium enrichment production and operations facilities at the site are leased to USEC. Martin Marietta Energy Systems and Lockheed Martin Energy Systems were the management contractors for DOE from November 1986 through March 1998. On April 1, 1998, Bechtel Jacobs Company LLC assumed responsibility as the management contractor for DOE. Bechtel Jacobs Company is responsible for environmental restoration, waste management, removal of highly enriched uranium, and operation of nonleased facilities (facilities that are not leased to USEC) at PORTS. This report does not cover USEC operations at PORTS.

None

1999-12-01T23:59:59.000Z

226

NREL: Energy Systems Integration - Visualization of Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

Visualization of Electric Power System Information Workshop The Energy Systems Integration Facility workshop, Visualization of Electric Power System Information, was held September...

227

Integrated Security System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Security System Integrated Security System A security platform providing multi-layer intrusion detection and security management for a networked energy control systems...

228

International Energy Module of the National Energy Modeling System ...  

U.S. Energy Information Administration (EIA)

International Energy Module of the National Energy Modeling System Model Documentation 2012 November 2012 . Independent Statistics & Analysis . www.eia.gov

229

National Energy Modeling System (United States) | Open Energy Information  

Open Energy Info (EERE)

National Energy Modeling System (United States) National Energy Modeling System (United States) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National Energy Modeling System (United States) Focus Area: Biomass Topics: Policy, Deployment, & Program Impact Website: www.eia.gov/oiaf/aeo/overview/ Equivalent URI: cleanenergysolutions.org/content/national-energy-modeling-system-unite Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: Utility/Electricity Service Costs The National Energy Modeling System (NEMS) is a computer-based, energy-economy modelling system of the United States through 2030. NEMS

230

Regional Energy Deployment System (ReEDS) | Open Energy Information  

Open Energy Info (EERE)

Regional Energy Deployment System (ReEDS) Regional Energy Deployment System (ReEDS) (Redirected from Regional Energy Deployment System) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Regional Energy Deployment System Agency/Company /Organization: NREL Sector: Energy Topics: Pathways analysis, Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.nrel.gov/analysis/reeds/ OpenEI Keyword(s): EERE tool, Regional Energy Deployment System, ReEDS References: Regional Energy Deployment System (ReEDS) Web site[1] Regional Energy Deployment System (ReEDS) is a multiregional, multitimeperiod, Geographic Information System (GIS), and linear programming model of capacity expansion in the electric sector of the United States. The model, developed by NREL's Strategic Energy Analysis

231

Advanced Energy Efficient Roof System  

SciTech Connect

Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The options considered to date are not ideal. One approach is to insulate between the trusses at the roof plane. The construction process is time consuming and costs more than conventional attic construction. Moreover, the problems of air infiltration and thermal bridges across the insulation remain. Another approach is to use structurally insulated panels (SIPs), but conventional SIPs are unlikely to be the ultimate solution because an additional underlying support structure is required except for short spans. In addition, wood spline and metal locking joints can result in thermal bridges and gaps in the foam. This study undertook a more innovative approach to roof construction. The goal was to design and evaluate a modular energy efficient panelized roof system with the following attributes: (1) a conditioned and clear attic space for HVAC equipment and additional finished area in the attic; (2) manufactured panels that provide structure, insulation, and accommodate a variety of roofing materials; (3) panels that require support only at the ends; (4) optimal energy performance by minimizing thermal bridging and air infiltration; (5) minimal risk of moisture problems; (6) minimum 50-year life; (7) applicable to a range of house styles, climates and conditions; (8) easy erection in the field; (9) the option to incorporate factory-installed solar systems into the panel; and (10) lowest possible cost. A nationwide market study shows there is a defined market opportunity for such a panelized roof system with production and semi-custom builders in the United States. Senior personnel at top builders expressed interest in the performance attributes and indicate long-term opportunity exists if the system can deliver a clear value proposition. Specifically, builders are interested in (1) reducing construction cycle time (cost) and (2) offering increased energy efficiency to the homebuyer. Additional living space under the roof panels is another low-cost asset identified as part of the study. The market potential is enhanced through construction activity levels in target marke

Jane Davidson

2008-09-30T23:59:59.000Z

232

Facility Energy Decision System | Open Energy Information  

Open Energy Info (EERE)

efficiency in a single or multiple buildings, including central energy plants and thermal loops; compare energy savings potential across sites; identify retrofits by selecting...

233

Energy Crossroads: Home Energy Rating Systems | Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contractors Association (CBPCA) helps green contractors identify and perform quality Green Home Energy Upgrades - our name for comprehensive (i.e., whole-house) energy...

234

Energy Systems and Population Health  

Science Conference Proceedings (OSTI)

It is well-documented that energy and energy systems have a central role in social and economic development and human welfare at all scales, from household and community to regional and national (41). Among its various welfare effects, energy is closely linked with people s health. Some of the effects of energy on health and welfare are direct. With abundant energy, more food or more frequent meals can be prepared; food can be refrigerated, increasing the types of food items that are consumed and reducing food contamination; water pumps can provide more water and eliminate the need for water storage leading to contamination or increased exposure to disease vectors such as mosquitoes or snails; water can be disinfected by boiling or using other technologies such as radiation. Other effects of energy on public health are mediated through more proximal determinants of health and disease. Abundant energy can lead to increased irrigation, agricultural productivity, and access to food and nutrition; access to energy can also increase small-scale income generation such as processing of agricultural commodities (e.g., producing refined oil from oil seeds, roasting coffee, drying and preserving fruits and meats) and production of crafts; ability to control lighting and heating allows education or economic activities to be shielded from daily or seasonal environmental constraints such as light, temperature, rainfall, or wind; time and other economic resources spent on collecting and/or transporting fuels can be used for other household needs if access to energy is facilitated; energy availability for transportation increases access to health and education facilities and allow increased economic activity by facilitating the transportation of goods and services to and from markets; energy for telecommunication technology (radio, television, telephone, or internet) provides increased access to information useful for health, education, or economic purposes; provision of energy to rural and urban health facilities allows increased delivery and coverage of 3 various health services and interventions such as tests and treatments, better storage of medicine and vaccines, disinfection of medical equipment by boiling or radiation, and more frequent and efficient health system encounters through mobile clinics or longer working hours; and so on. In fact, while the dominant view of development-energy-health linkages has been that improvements in energy and health are outcomes of the socioeconomic development process (e.g., the ''energy ladder'' framework discussed below), it has even been argued that access to higher quality energy sources and technologies can initiate a chain of demographic, health, and development outcomes by changing the household structure and socioeconomic relationships. For example, in addition to increased opportunities for food and income production, reduced infant mortality as a result of transition to cleaner fuels or increased coverage of vaccination with availability of refrigerators in rural clinics may initiate a process of ''demographic transition'' to low-mortality and low-fertility populations (14). Such a transition has historically been followed with further improvements in maternal and child health and increased female participation in the labor markets and other economic activities.

Ezzati, Majid; Bailis, Rob; Kammen, Daniel M.; Holloway, Tracey; Price, Lynn; Cifuentes, Luis A.; Barnes, Brendon; Chaurey, Akanksha; Dhanapala, Kiran N.

2004-04-12T23:59:59.000Z

235

Project Records Information System (PRIS) user's manual  

SciTech Connect

The Projects Record Information System (PRIS) is an interactive system developed for the Information Services Division (ISD) of Martin Marietta Energy Systems, Inc., to perform indexing, maintenance, and retrieval of information about Engineering project record documents for which they are responsible. This PRIS User's Manual provides instruction on the use of this system. Section 2.0 of this manual presents an overview of PRIS, describing the system's purpose; the data that it handles, functions it performs; hardware, software, and access; and help and error functions. Section 3.0 describes the interactive menu-driven operation of PRIS. Appendixes A, B,C, and D contain the data dictionary, help screens, report descriptions, and a primary menu structure diagram, respectively.

Smith, P.S.; Nations, J.A.; Short, R.D.

1991-08-01T23:59:59.000Z

236

Energy savings potential from energy-conserving irrigation systems  

SciTech Connect

This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

1982-11-01T23:59:59.000Z

237

REpower Systems | Open Energy Information  

Open Energy Info (EERE)

Systems Systems Address 101 SW Main St Place Portland, Oregon Zip 97209 Sector Wind energy Product Wind energy developer Website http://www.repower.de/index.ph Coordinates 45.515534°, -122.675333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.515534,"lon":-122.675333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

OLADE-Geo-Information System Referenced Renewable Energy | Open Energy  

Open Energy Info (EERE)

OLADE-Geo-Information System Referenced Renewable Energy OLADE-Geo-Information System Referenced Renewable Energy Jump to: navigation, search Tool Summary Name: OLADE-Geo-Information System Referenced Renewable Energy Agency/Company /Organization: Latin American Energy Organization (OLADE) Sector: Energy Focus Area: Renewable Energy Resource Type: Case studies/examples, Maps, Training materials, Video User Interface: Website Website: www.hidroinformatica.org/siger/home/es/index.html Cost: Free Language: Spanish; Castilian OLADE-Geo-Information System Referenced Renewable Energy Screenshot References: OLADE-Geo-Information System Referenced Renewable Energy[1] "Renewable energy sources have an important contribution to meet the growing energy demand in a sustainable manner. These energy sources have a

239

Regional Energy Deployment System (ReEDS) | Open Energy Information  

Open Energy Info (EERE)

Regional Energy Deployment System (ReEDS) Regional Energy Deployment System (ReEDS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Regional Energy Deployment System Agency/Company /Organization: NREL Sector: Energy Topics: Pathways analysis, Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.nrel.gov/analysis/reeds/ OpenEI Keyword(s): EERE tool, Regional Energy Deployment System, ReEDS References: Regional Energy Deployment System (ReEDS) Web site[1] Regional Energy Deployment System (ReEDS) is a multiregional, multitimeperiod, Geographic Information System (GIS), and linear programming model of capacity expansion in the electric sector of the United States. The model, developed by NREL's Strategic Energy Analysis Center (SEAC), is designed to conduct analysis of the critical energy

240

Save Energy Now in Your Steam Systems  

SciTech Connect

This DOE Industrial Technologies Program fact sheet describes how manufacturing plants can save energy and money by making energy efficiency improvements to their industrial steam systems.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Building Energy Information Systems: User Case Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Office EETD Safety Program Development Contact Us Department Contacts Media Contacts Building Energy Information Systems: User Case Studies Title Building Energy Information...

242

Energy Accounting and Optimization for Mobile Systems.  

E-Print Network (OSTI)

??Energy accounting determines how much a software process contributes to the total system energy consumption. It is the foundation for evaluating software and has been (more)

Dong, Mian

2013-01-01T23:59:59.000Z

243

Long range Energy Alternatives Planning (LEAP) System | Open Energy  

Open Energy Info (EERE)

Long range Energy Alternatives Planning (LEAP) System Long range Energy Alternatives Planning (LEAP) System (Redirected from LEAP) Jump to: navigation, search Tool Summary Name: Long range Energy Alternatives Planning System Agency/Company /Organization: Stockholm Environment Institute Sector: Climate, Energy Focus Area: Non-renewable Energy, Agriculture, Biomass, - Anaerobic Digestion, - Biofuels, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Landfill Gas, - Waste to Energy, Buildings, Economic Development, Energy Efficiency, - Central Plant, Food Supply, Forestry, Geothermal, Goods and Materials, - Embodied Energy, - Materials, Greenhouse Gas, Ground Source Heat Pumps, Hydrogen, Industry, - Industrial Processes, Offsets and Certificates, People and Policy, Solar, - Concentrating Solar Power, - Solar Hot Water, - Solar PV, - Solar Ventilation Preheat, Transportation, Water Conservation, Water Power, Wind

244

Long range Energy Alternatives Planning (LEAP) System | Open Energy  

Open Energy Info (EERE)

Long range Energy Alternatives Planning (LEAP) System Long range Energy Alternatives Planning (LEAP) System Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Long range Energy Alternatives Planning System Agency/Company /Organization: Stockholm Environment Institute Sector: Climate, Energy Focus Area: Non-renewable Energy, Agriculture, Biomass, - Anaerobic Digestion, - Biofuels, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Landfill Gas, - Waste to Energy, Buildings, Economic Development, Energy Efficiency, - Central Plant, Food Supply, Forestry, Geothermal, Goods and Materials, - Embodied Energy, - Materials, Greenhouse Gas, Ground Source Heat Pumps, Hydrogen, Industry, - Industrial Processes, Offsets and Certificates, People and Policy, Solar, - Concentrating Solar Power, - Solar Hot Water, - Solar PV, - Solar Ventilation Preheat, Transportation, Water Conservation, Water Power, Wind

245

System Support for Distributed Energy Management in Modular Operating Systems.  

E-Print Network (OSTI)

??This thesis proposes a novel approach for managing energy in modular operating systems. Our approach enables energy awareness if the resource-management subsystem is distributed among (more)

St, Jan

2010-01-01T23:59:59.000Z

246

Ocean Engineering and Energy Systems | Open Energy Information  

Open Energy Info (EERE)

and Energy Systems Jump to: navigation, search Name Ocean Engineering and Energy Systems Sector Marine and Hydrokinetic Website http:www.ocees.com Region United States LinkedIn...

247

Stirling Energy Systems Inc SES | Open Energy Information  

Open Energy Info (EERE)

Hydrogen, Solar Product Developer of Stirling engine-based solar systems for STEG, biogas and hydrogen applications. References Stirling Energy Systems Inc (SES)1 LinkedIn...

248

Solahart All Valley Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Systems Jump to: navigation, search Name Solahart All Valley Energy Systems Place Clovis, California Zip 93612 Sector Solar Product Solar contractor installing all types of solar...

249

Titan Energy Systems Enfinity JV | Open Energy Information  

Open Energy Info (EERE)

Systems & Enfinity JV Place Andhra Pradesh, India Sector Solar Product India-based joint venture to develop solar PV projects. References Titan Energy Systems & Enfinity JV1...

250

NREL: Energy Systems Integration - Integrated Deployment Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Deployment Workshop Integrated Deployment Workshop The Energy Systems Integration Facility workshop, Integrated Deployment, was held August 21 - 23, 2012 at the National Renewable Energy Laboratory in Golden, Colorado. Each day of the workshop, which included a tour of the Energy Systems Integration Facility, focused on a different topic: Day 1: Utility-Scale Renewable Integration Day 2: Distribution-Level Integration Day 3: Isolated and Islanded Grid Systems The agenda and presentations from the workshop are below. Agenda Energy Systems Integration Facility Overview ESIF Technology Partnerships Integrated Deployment Model Integrated Deployment and the Energy Systems Integration Facility: Workshop Proceedings Printable Version Energy Systems Integration Home Research & Development

251

Models of National Energy Systems -focusing on biomass energy  

E-Print Network (OSTI)

Models of National Energy Systems - focusing on biomass energy Poul Erik Grohnheit Systems Analysis models · International development of large energy models · Biomass energy · Upstream expansion of the Pan European model for biomass and crops · Basic elements in a crop model for Denmark· Basic elements

252

NUCLEAR ENERGY SYSTEM COST MODELING  

Science Conference Proceedings (OSTI)

The U.S. Department of Energys Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative Island approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this islands used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an islands cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

Francesco Ganda; Brent Dixon

2012-09-01T23:59:59.000Z

253

Balance-of-System Equipment Required for Renewable Energy Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Balance-of-System Equipment Required for Renewable Energy Systems Balance-of-System Equipment Required for Renewable Energy Systems Balance-of-System Equipment Required for Renewable Energy Systems July 2, 2012 - 8:21pm Addthis Both grid-connected and off-grid home renewable energy systems require additional “balance-of-system” equipment. Both grid-connected and off-grid home renewable energy systems require additional "balance-of-system" equipment. How does it work? With a stand-alone system, depending on your needs, balance-of-system equipment could account for half of your total system costs. For both stand-alone and grid-connect systems, you will need power conditioning equipment, safety equipment, and meters and instrumentation. For stand-alone systems, you will also want batteries and charge controllers.

254

Practical Ocean Energy Management Systems Inc POEMS | Open Energy  

Open Energy Info (EERE)

Ocean Energy Management Systems Inc POEMS Ocean Energy Management Systems Inc POEMS Jump to: navigation, search Name Practical Ocean Energy Management Systems Inc (POEMS) Place San Diego, California Zip 92138 Sector Ocean, Renewable Energy Product POEMS was formed to involve the public in providing support for the development of ocean energy as a viable component of the renewable energy market. References Practical Ocean Energy Management Systems Inc (POEMS)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Practical Ocean Energy Management Systems Inc (POEMS) is a company located in San Diego, California . References ↑ "Practical Ocean Energy Management Systems Inc (POEMS)" Retrieved from

255

Energy Storage Systems 2007 Peer Review | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Peer Review 7 Peer Review Energy Storage Systems 2007 Peer Review The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. The agenda and ESS program overview presentation are below. Presentation categories Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems International Energy Storage Programs Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - Agenda.pdf ESS 2007 Peer Review - Program Overview - John Boyes, SNL.pdf More Documents & Publications Energy Storage Systems 2006 Peer Review Energy Storage & Power Electronics 2008 Peer Review - Agenda/Presentation List Energy Storage Systems 2007 Peer Review - International Energy Storage

256

KUKA Systems | Open Energy Information  

Open Energy Info (EERE)

KUKA Systems KUKA Systems Jump to: navigation, search Name KUKA Systems Place Augsburg, Germany Zip D-86165 Sector Solar, Wind energy Product German manufacturer of assembly lines for solar and wind industries. Coordinates 48.370335°, 10.897892° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.370335,"lon":10.897892,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

257

Integrated Energy System Dispatch Optimization  

DOE Green Energy (OSTI)

On-site cogeneration of heat and electricity, thermal and electrical storage, and curtailing/rescheduling demand options are often cost-effective to commercial and industrial sites. This collection of equipment and responsive consumption can be viewed as an integrated energy system(IES). The IES can best meet the sites cost or environmental objectives when controlled in a coordinated manner. However, continuously determining this optimal IES dispatch is beyond the expectations for operators of smaller systems. A new algorithm is proposed in this paper to approximately solve the real-time dispatch optimization problem for a generic IES containing an on-site cogeneration system subject to random outages, limited curtailment opportunities, an intermittent renewable electricity source, and thermal storage. An example demonstrates how this algorithm can be used in simulation to estimate the value of IES components.

Firestone, Ryan; Stadler, Michael; Marnay, Chris

2006-06-16T23:59:59.000Z

258

Envia systems | Open Energy Information  

Open Energy Info (EERE)

Envia systems Envia systems Jump to: navigation, search Name Envia systems Place Hayward, California Zip 94545 3732 Product California-based company specializing in high performance, low cost energy storage solutions using lithium iron batteries. Coordinates 46.014045°, -91.482944° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.014045,"lon":-91.482944,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Integrated Energy Systems International Ltd | Open Energy Information  

Open Energy Info (EERE)

Energy Systems International Ltd Energy Systems International Ltd Jump to: navigation, search Name Integrated Energy Systems International Ltd Place United Kingdom Zip PR1 2NL Sector Biomass Product UK-based firm which operates in energy technology management and cost control. The firm is working with International Paper on a biomass project. References Integrated Energy Systems International Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Integrated Energy Systems International Ltd is a company located in United Kingdom . References ↑ "Integrated Energy Systems International Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Integrated_Energy_Systems_International_Ltd&oldid=347005"

260

Special Assessment for Solar Energy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Special Assessment for Solar Energy Systems Special Assessment for Solar Energy Systems Special Assessment for Solar Energy Systems < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Maximum Rebate None Program Info State Illinois Program Type Property Tax Incentive Provider Illinois Department of Revenue Illinois offers a special assessment of solar energy systems for property-tax purposes. For property owners who register with a chief county assessment officer, solar energy equipment is valued at no more than a conventional energy system. Eligible equipment includes both active and passive solar-energy systems. The exemption is not valid for equipment that is equally usable in a conventional energy system or for components that

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Soursos Energy Systems Ltd SENERS | Open Energy Information  

Open Energy Info (EERE)

Soursos Energy Systems Ltd SENERS Soursos Energy Systems Ltd SENERS Jump to: navigation, search Name Soursos Energy Systems Ltd. (SENERS) Place Athens, Greece Product Seners engages in the design and installation of a range of PV applications. References Soursos Energy Systems Ltd. (SENERS)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Soursos Energy Systems Ltd. (SENERS) is a company located in Athens, Greece . References ↑ "Soursos Energy Systems Ltd. (SENERS)" Retrieved from "http://en.openei.org/w/index.php?title=Soursos_Energy_Systems_Ltd_SENERS&oldid=351559" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

262

Rithwik Energy System Limited RESL | Open Energy Information  

Open Energy Info (EERE)

Rithwik Energy System Limited RESL Rithwik Energy System Limited RESL Jump to: navigation, search Name Rithwik Energy System Limited (RESL) Place Hyderabad, Andhra Pradesh, India Zip 500 034 Sector Biomass Product Developing a biomass project in Chittoor, Andhra Pradesh. References Rithwik Energy System Limited (RESL)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Rithwik Energy System Limited (RESL) is a company located in Hyderabad, Andhra Pradesh, India . References ↑ "Rithwik Energy System Limited (RESL)" Retrieved from "http://en.openei.org/w/index.php?title=Rithwik_Energy_System_Limited_RESL&oldid=350438" Categories: Clean Energy Organizations Companies Organizations

263

Engineered Geothermal Systems Energy Return On Energy Investment  

NLE Websites -- All DOE Office Websites (Extended Search)

EGS EROI - 1 EGS EROI - 1 Engineered Geothermal Systems Energy Return On Energy Investment A.J. Mansure, Geothermal Consultant, ajm@q.com Albuquerque, NM 12/10/2012 Key Words: energy, EROI, EGS, efficiency, energy investment, energy return, input energy, energy payback, and net energy. Abstract Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. Too often comparisons of energy systems use "efficiency" when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS

264

Solco International Ltd formerly Solar Energy Systems | Open Energy  

Open Energy Info (EERE)

International Ltd formerly Solar Energy Systems International Ltd formerly Solar Energy Systems Jump to: navigation, search Name Solco International Ltd (formerly Solar Energy Systems) Place Welshpool, Western Australia, Australia Zip 6016 Sector Solar Product Solar techology company specialising in solar powered energy systems, pumps and reverse osmosis water purification systems. References Solco International Ltd (formerly Solar Energy Systems)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solco International Ltd (formerly Solar Energy Systems) is a company located in Welshpool, Western Australia, Australia . References ↑ "Solco International Ltd (formerly Solar Energy Systems)" Retrieved from

265

Energy Engineering and Systems Analysis - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Engineering and Systems Analysis U.S. Department of Energy Energy Engineering and Systems Analysis U.S. Department of Energy Search Argonne ... Search Decision and Information Sciences Energy Systems FutureGrid Infrastructure Assurance Center Intelligence Analysis National Security Nuclear Engineering Transportation Research and Analysis Computing Center Transportation Technology R&D Center EESA Intranet Image of battery development team standing by an electric vehicle in Argonne's Ev-Smart Grid Interoperability Center Features eesa success stories ebr-2 Argonne's Major Nuclear Energy Milestones Argonne's Nuclear Energy Exhibit Argonne's Nuclear Energy Exhibit Argonne's Glassblowing Studio Glassblowing Studio Reactor Advanced Burner Test Reactor Preconceptual Design Argonne Experts Guide Argonne Experts Guide

266

Energy Systems Integration | OpenEI Community  

Open Energy Info (EERE)

for Nuclear Power(Davis 2012) A Framework for the Optimization of Integrated Energy Systems(Jain and Alleyne 2012) Energy System Integration(Smith 2001) more Group members (8)...

267

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

268

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, Session 1 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 1 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update...

269

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

270

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, Session 1 Energy Storage Systems 2010 Update Conference Presentations - Day 3, Session 1 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update...

271

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Poster Session Energy Storage Systems 2010 Update Conference Presentations - Day 3: Poster Session The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking...

272

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 4 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

273

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, Session 4 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 4 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update...

274

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 4 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

275

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, Session 2 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update...

276

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, Session 4 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 4 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update...

277

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Energy Storage Systems 2010 Update Conference Presentations - Day 3, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

278

Energy Systems Integration | OpenEI Community  

Open Energy Info (EERE)

Systems Integration Home > Energy Systems Integration > Posts by term Content Group Activity By term Q & A Feeds developer (1) ESI (1) Literature Review (5) Maintenance (1)...

279

NREL: Energy Systems Integration - Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Development Energy systems integration optimizes the design and performance of electrical, thermal, and fuel systems at different but interrelated scales, ranging from...

280

NREL: Energy Systems Integration - Seminar Series  

NLE Websites -- All DOE Office Websites (Extended Search)

path of the power system of the future. Economic and Environmental Optimization of Microgrids Learn about a systemic approach for optimal building energy service provision using...

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Distributed Energy Systems Integration Group (Fact Sheet)  

Science Conference Proceedings (OSTI)

Factsheet developed to describe the activites of the Distributed Energy Systems Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

Not Available

2009-10-01T23:59:59.000Z

282

Building Energy Software Tools Directory: Cake Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Cake Systems software is built on the SIMPLE algorithm developed by nationally recognized energy efficiency expert, Michael Blasnik. Cake Systems was designed to provide an...

283

REpower Systems AG | Open Energy Information  

Open Energy Info (EERE)

Systems AG Jump to: navigation, search Name REpower Systems AG Place Hamburg, Germany Zip D-22297 Sector Services, Wind energy Product Wind turbine manufacturer with primary...

284

Solargy Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Biomass, Solar Product Solargy Systems designs and manufactures PV cells and develops waste to energy and biomass plants. References Solargy Systems Inc.1 LinkedIn...

285

Tahoe Water Systems | Open Energy Information  

Open Energy Info (EERE)

Tahoe Water Systems Jump to: navigation, search Name Tahoe Water Systems Sector Solar, Wind energy Product Develops a self-contained solarwind based water pumping technology....

286

Property Tax Exemption for Renewable Energy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Tax Exemption for Renewable Energy Systems Property Tax Exemption for Renewable Energy Systems Property Tax Exemption for Renewable Energy Systems < Back Eligibility Agricultural Commercial Industrial Multi-Family Residential Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Wind Manufacturing Program Info State Connecticut Program Type Property Tax Incentive Rebate Amount 100% exemption for renewable energy property; municipalities are authorized to exempt certain CHP systems Provider Connecticut Office of Policy and Management Connecticut provides a property tax exemption for "Class I" renewable energy systems* and hydropower facilities** that generate electricity for

287

National Energy Modeling System (NEMS) | Open Energy Information  

Open Energy Info (EERE)

National Energy Modeling System (NEMS) National Energy Modeling System (NEMS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National Energy Modeling System (NEMS) Agency/Company /Organization: Energy Information Administration Sector: Energy Focus Area: Economic Development Phase: Develop Goals Topics: Policies/deployment programs Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.eia.gov/oiaf/aeo/overview/index.html OpenEI Keyword(s): EERE tool, National Energy Modeling System, NEMS Language: English References: The National Energy Modeling System: An Overview[1] Project the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and

288

Climate-Proofing Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Proofing Energy Systems Proofing Energy Systems Jump to: navigation, search Tool Summary Name: Climate-Proofing Energy Systems Agency/Company /Organization: Helio-International Sector: Energy Topics: GHG inventory, Co-benefits assessment, - Energy Security, Pathways analysis Resource Type: Publications, Guide/manual Website: www.helio-international.org/uploads/Global%20Report.En.pdf?size=429055 Country: Benin, Burkina Faso, Cameroon, Democratic Republic of the Congo, Kenya, Mali, Nigeria, Senegal, Tanzania, Uganda UN Region: Middle Africa Climate-Proofing Energy Systems Screenshot References: CPES[1] Overview "This report explains why a metric for the vulnerability and resilience of energy systems is needed and proposes a methodology. It summarises anticipated climate-induced impacts on key energy systems and outlines

289

Advanced Wind Energy Systems AWES | Open Energy Information  

Open Energy Info (EERE)

AWES AWES Jump to: navigation, search Name Advanced Wind Energy Systems (AWES) Place Toms River, New Jersey Sector Wind energy Product Advanced Wind Energy Systems (AWES) was formed in 2006 to commercialize the novel wind turbine energy capture technologies invented by Frank McClintic, AWES founder and Chief Designer. References Advanced Wind Energy Systems (AWES)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Advanced Wind Energy Systems (AWES) is a company located in Toms River, New Jersey . References ↑ "Advanced Wind Energy Systems (AWES)" Retrieved from "http://en.openei.org/w/index.php?title=Advanced_Wind_Energy_Systems_AWES&oldid=341809

290

Hedgehog Water Contaminant Removal System - Energy Innovation ...  

The in-tank recirculating treatment system reduces the levels of ... Energy Innovation ... laboratory environment which includes the integration and ...

291

Method for simulating discontinuous physical systems - Energy ...  

The mathematical foundations of conventional numerical simulation of physical systems provide no consistent ... Energy Innovation Portal ... Property Management and ...

292

Heat Transfer & Alternative Energy Systems Group Staff ...  

Science Conference Proceedings (OSTI)

Heat Transfer and Alternative Energy Systems Group Staff. Staff Listing. Dr. William M. Healy, Leader, Supervisory Mechanical ...

2013-08-07T23:59:59.000Z

293

Integrating Renewable Energy Systems in Buildings (Presentation)  

SciTech Connect

This presentation on integrating renewable energy systems into building was presented at the August, 2011 ASHRAE Region IX CRC meetings.

Hayter, S. J.

2011-08-01T23:59:59.000Z

294

Integrated Energy System Dispatch Optimization  

E-Print Network (OSTI)

savings. R EFERENCES Distributed Energy Resources Researchand A. Davis, Distributed Energy Neural Network Integrationand C. Marnay, Distributed Energy Resources At Naval Base

Firestone, Ryan; Stadler, Michael; Marnay, Chris

2006-01-01T23:59:59.000Z

295

Energy Systems and Population Health  

E-Print Network (OSTI)

infrastructure Energy, gender, and health While much of theof energy and health linkages: poverty and gender. We thengender-based priorities, community and cultural factors, energy

2004-01-01T23:59:59.000Z

296

NREL: Energy Systems Integration - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

multipurpose, multi-laboratory facility focused on thermal energy processes, thermal handling equipment, and energy management. The Automated Home Energy Management Lab...

297

Renewable Energy Systems Ltd RES Group | Open Energy Information  

Open Energy Info (EERE)

Systems Ltd RES Group Systems Ltd RES Group Jump to: navigation, search Name Renewable Energy Systems Ltd (RES Group) Place Hertfordshire, United Kingdom Zip WD4 8LR Sector Wind energy Product UK based wind energy company with over 800 MW of capacity built and more than 600 MW in development in the UK, Europe, North America, the Caribbean and Asia. References Renewable Energy Systems Ltd (RES Group)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Systems Ltd (RES Group) is a company located in Hertfordshire, United Kingdom . References ↑ "Renewable Energy Systems Ltd (RES Group)" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Energy_Systems_Ltd_RES_Group&oldid=350336

298

Renegy Holdings Inc Formerly Catalytica Energy Systems Inc | Open Energy  

Open Energy Info (EERE)

Catalytica Energy Systems Inc Catalytica Energy Systems Inc Jump to: navigation, search Name Renegy Holdings Inc (Formerly Catalytica Energy Systems Inc) Place Tempe, Arizona Zip 85281 Sector Biomass Product Their primary focus has become to be a top North American producer of biomass-derived electricity using wood waste. References Renegy Holdings Inc (Formerly Catalytica Energy Systems Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renegy Holdings Inc (Formerly Catalytica Energy Systems Inc) is a company located in Tempe, Arizona . References ↑ "Renegy Holdings Inc (Formerly Catalytica Energy Systems Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Renegy_Holdings_Inc_Formerly_Catalytica_Energy_Systems_Inc&oldid=350290"

299

Bella Energy formely Sun Electric Systems | Open Energy Information  

Open Energy Info (EERE)

Energy formely Sun Electric Systems Energy formely Sun Electric Systems Jump to: navigation, search Name Bella Energy (formely Sun Electric Systems) Place Lafayette, Colorado Zip 80026 Sector Solar Product Solar electric company which offers residential and commercial solar power to customers in Colorado both on and off the grid. References Bella Energy (formely Sun Electric Systems)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Bella Energy (formely Sun Electric Systems) is a company located in Lafayette, Colorado . References ↑ "Bella Energy (formely Sun Electric Systems)" Retrieved from "http://en.openei.org/w/index.php?title=Bella_Energy_formely_Sun_Electric_Systems&oldid=342665

300

Grid-Connected Renewable Energy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid-Connected Renewable Energy Systems Grid-Connected Renewable Energy Systems Grid-Connected Renewable Energy Systems July 2, 2012 - 8:21pm Addthis When connecting a home energy system to the electric grid, research and consider equipment required as well as your power provider’s requirements and agreements. | Photo courtesy of Solar Design Associates, Inc. When connecting a home energy system to the electric grid, research and consider equipment required as well as your power provider's requirements and agreements. | Photo courtesy of Solar Design Associates, Inc. What are the key facts? While renewable energy systems are capable of powering houses and small businesses without any connection to the electricity grid, many people prefer the advantages that grid-connection offers. Aside from the major small renewable energy system components, you

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

L L I I  

Office of Legacy Management (LM)

Granite City, Illinois (GSGOOl) M . E. Murray K S. Brown MANAGED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT Of ENERGY - .-.-- -- .,ie --.......

302

unknown title  

E-Print Network (OSTI)

managed by Martin Marietta Energy Systems, Inc. for the U.S. Department of Energy under Contract No. DE-AC05840R2 1400r

Harold Greene; W. C. (charlie Kuykendall

1992-01-01T23:59:59.000Z

303

Aruna Ravinagarajan System Energy Efficiency Lab  

E-Print Network (OSTI)

Aruna Ravinagarajan System Energy Efficiency Lab Aruna Ravinagarajan Advisor : Prof. Tajana Simunic of monitoring a structure over time and identifying damage System Energy Efficiency Lab damage A wireless sensor Efficiency Lab #12;SHM ­ How is it done?SHM ­ How is it done? System Energy Efficiency Lab Stuart G Taylor

304

NRG Systems | Open Energy Information  

Open Energy Info (EERE)

NRG Systems NRG Systems Place Hinesburg, Vermont Zip 5461 Sector Wind energy Product A US-based manufacturer of wind measurement and turbine control equipment. Coordinates 44.335002°, -73.109687° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.335002,"lon":-73.109687,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

305

Building Energy Monitoring System: Making Energy Manageable  

NLE Websites -- All DOE Office Websites (Extended Search)

manageable. In most organizations, this means bringing that expense into the budgetforecastvariance cycle at the department and individual level. While energy costs are the...

306

Distributed Energy System Validation, Commissioning and  

E-Print Network (OSTI)

Distributed Energy System Validation, Commissioning and Qualification Test Report Prepared Agreement No. DE-FC26-06NT42847 Hawai`i Distributed Energy Resource Technologies for Energy Security Subtask for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Cooperative

307

Power system - Energy Innovation Portal  

Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic;

308

Hybrid electrical energy storage systems  

Science Conference Proceedings (OSTI)

Electrical energy is a high quality form of energy that can be easily converted to other forms of energy with high efficiency and, even more importantly, it can be used to control lower grades of energy quality with ease. However, building a cost-effective ... Keywords: charge, electrical storage, energy, energy storage, hybrid storage, management

Massoud Pedram; Naehyuck Chang; Younghyun Kim; Yanzhi Wang

2010-08-01T23:59:59.000Z

309

NREL: Technology Deployment - Building Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Systems Building Energy Systems NREL experts develop comprehensive energy assessments, models, and tools to optimize building systems across energy efficiency and renewable energy while also improving occupant comfort, safety, and productivity. Northeast Denver Housing Center Northeast Denver Housing Center NREL Identifies PV for 28 Affordable Housing Units Boulder County Housing Authority Boulder County Housing Authority NREL Recommendations Lead to 153 Net Zero Energy Residences Expertise and Knowledge NREL offers technical assistance and project development support by working closely with industry partners to research, develop, and deploy advanced building technologies. Examples include: Building Energy Audits and Assessments NREL provides technical assistance, guidelines, checklists, and data

310

Office of Energy Policy and Systems Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Energy Policy and Systems Analysis Office of Energy Policy and Systems Analysis Revolution Now For four key clean energy technologies, the clean energy future has already arrived. Read more U.S. Energy Sector Vulnerabilities Report A Department of Energy report examines current and potential future impacts of these climate trends on the U.S. energy sector. Read more eGallon eGallon provides a quick and simple metric to allow electric vehicle (EV) drivers to see how much they can save on fuel. Read more EPSA Leadership Melanie A. Kenderdine Director of the Office of Energy Policy and Systems Analysis More about Melanie A. Kenderdine Jonathan Pershing Principal Deputy Director of the Office of Energy Policy and Systems Analysis More about Jonathan Pershing Mike Carr Senior Advisor and EERE Principal Deputy Assistant Secretary

311

California Energy Commission Public Interest Energy Research/Energy System Integration -- Transmission-Planning Research & Development Scoping Project  

E-Print Network (OSTI)

Energy Research/ Energy System Integration Transmission-Research Program Energy System Integration Public InterestCommissions PIER Energy Systems Integration program for

Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

2004-01-01T23:59:59.000Z

312

Building-Level Energy Management Systems (BLEMS) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Building-Level Energy Management Systems Emerging Technologies » Building-Level Energy Management Systems (BLEMS) Building-Level Energy Management Systems (BLEMS) The U.S. Department of Energy (DOE) is currently conducting research into building-level energy management systems (BLEMS). Project Description BLEMS provide an integrated plug-and-play capability for legacy energy management systems (EMSs), such as those based on X-10, Zigbee, 802.15, and newly developed EMS for buildings of any size. Project Partners Research is being undertaken by DOE, the University of Southern California, General Electric (GE) Global Research, and GE Consumer & Industrial Division. Project Goals The goal of this project is to develop practical solutions that bring together ad-hoc legacy energy management systems under a single, unified

313

Energy supply network design optimization for distributed energy systems  

Science Conference Proceedings (OSTI)

Based on the fluctuations in power and heat demand of the consumers in a region, this paper presents a bi-level programming model for the regional DES (distributed energy system) network planning. The model aims to minimize the total cost of the regional ... Keywords: Bi-level programming, Distributed energy system, Energy supply network, Hybrid algorithm

Ming Dong; Fenglan He; Hairui Wei

2012-11-01T23:59:59.000Z

314

Renewable energy delivery systems and methods  

DOE Patents (OSTI)

A system, method and/or apparatus for the delivery of energy at a site, at least a portion of the energy being delivered by at least one or more of a plurality of renewable energy technologies, the system and method including calculating the load required by the site for the period; calculating the amount of renewable energy for the period, including obtaining a capacity and a percentage of the period for the renewable energy to be delivered; comparing the total load to the renewable energy available; and, implementing one or both of additional and alternative renewable energy sources for delivery of energy to the site.

Walker, Howard Andrew

2013-12-10T23:59:59.000Z

315

NREL: Energy Systems Integration - October 2011 Energy Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tim Enwall, Tendril Enabling Renewables with Energy Storage, Frank Novachek, Xcel Energy Integrating Renewables - Role of the Smart Grid, Daniel Brooks, Electric Power...

316

Ris Energy Report 7 Future low carbon energy systems  

E-Print Network (OSTI)

Risø Energy Report 7 Future low carbon energy systems Reprint of summary and recommendations Risø-R-1651(EN) October 2008 Edited by Hans Larsen and Leif Sønderberg Petersen #12;Risø Energy Report 7 Preface This Risø Energy Report, the seventh of a series that began in 2002, takes as its point

317

Space Power Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Technologies » Space Power Systems Reactor Technologies » Space Power Systems Space Power Systems Through a strong partnership between the Energy Department's office of Nuclear Energy and NASA, Radioisotope Power Systems have been providing the energy for deep space exploration. Through a strong partnership between the Energy Department's office of Nuclear Energy and NASA, Radioisotope Power Systems have been providing the energy for deep space exploration. The Department of Energy (DOE) and its predecessors have provided radioisotope power systems that have safely enabled deep space exploration and national security missions for five decades. Radioisotope power systems (RPSs) convert the heat from the decay of the radioactive isotope plutonium-238 (Pu-238) into electricity. RPSs are capable of producing heat and electricity under the harsh conditions

318

Web-based energy information systems for energy management and demand response in commercial buildings  

E-Print Network (OSTI)

also known as EMS (Energy Management Systems), BMS (Buildingfacility operator or energy management systems, often wasteand Control Systems Energy Management Systems Environmental

Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

2003-01-01T23:59:59.000Z

319

Test report : Princeton power systems prototype energy storage system.  

SciTech Connect

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

2013-08-01T23:59:59.000Z

320

Solving Energy Storage Economics with the Energy Operating System  

NLE Websites -- All DOE Office Websites (Extended Search)

Solving Energy Storage Economics with the Energy Operating System Speaker(s): Ryan Wartena Date: September 12, 2012 - 12:00pm Location: 90-3122 Dr. Ryan Wartena, CEO and founder of...

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Install renewable energy systems | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Install renewable energy systems Install renewable energy systems Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager Save energy Stamp out energy waste Find cost-effective investments Engage occupants Purchase energy-saving products Put computers to sleep Get help from an expert Take a comprehensive approach Install renewable energy systems

322

Inauguration of Headquarters' Solar Energy System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inauguration of Headquarters' Solar Energy System Inauguration of Headquarters' Solar Energy System Inauguration of Headquarters' Solar Energy System September 9, 2008 - 3:20pm Addthis Remarks As Prepared for Secretary Bodman Good morning and welcome to you all. This is a great day for the Department of Energy. As America's largest energy consumer, the U.S. government has the responsibility and the opportunity to lead the way to a cleaner, more efficient, more affordable and more secure energy future. In January 2007 President Bush issued an Executive Order calling on all federal agencies to reduce energy intensity, or consumption per square foot, by 30 percent. That order also calls for the percentage of new renewable sources in each agency's energy supply to be increased and asked agencies to put renewable energy generation projects into operation on

323

Inauguration of Headquarters' Solar Energy System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inauguration of Headquarters' Solar Energy System Inauguration of Headquarters' Solar Energy System Inauguration of Headquarters' Solar Energy System September 9, 2008 - 3:20pm Addthis Remarks As Prepared for Secretary Bodman Good morning and welcome to you all. This is a great day for the Department of Energy. As America's largest energy consumer, the U.S. government has the responsibility and the opportunity to lead the way to a cleaner, more efficient, more affordable and more secure energy future. In January 2007 President Bush issued an Executive Order calling on all federal agencies to reduce energy intensity, or consumption per square foot, by 30 percent. That order also calls for the percentage of new renewable sources in each agency's energy supply to be increased and asked agencies to put renewable energy generation projects into operation on

324

Energy Systems and Population Health  

E-Print Network (OSTI)

renewable and other new energy technologies have previously had high capital costsLevelized cost of electricity forecast for renewable energyRenewable energy technologies tend to be characterized by relatively low environmental costs.

2004-01-01T23:59:59.000Z

325

Energy Basics: Photovoltaic System Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

regulator, specified either as peak power or average power produced during one day. Energy output The energy (watt-hour or Wh) output. This indicates the amount of energy...

326

Distributed Energy Storage Systems: Deployments and Learnings  

Science Conference Proceedings (OSTI)

Distributed Energy Storage Systems (DESS) or so-called edge-of-grid systems are small scale energy storage systems that are positioned at the edge of the distribution grid, downstream of the distribution transformer, on the utility side of the meter. These systems have the potential to significantly improve power quality for the consumer, while also having the capability to provide distribution system support.Several field trials of these systems are presently underway or are being ...

2012-12-31T23:59:59.000Z

327

NREL: Sustainable NREL - Energy Systems Integration Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Systems Integration Facility Energy Systems Integration Facility A close-up photo of a grey and yellow research facility. The Energy Systems Integration Facility The Energy Systems Integration Facility (ESIF), designed to Platinum-level standards of U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED®), incorporates a large number of energy efficiency and sustainability practices. Researchers housed within will help overcome challenges related to the interconnection of distributed energy systems and the integration of renewable energy technologies into the electricity grid. The ESIF will also contain advanced computational capability. Fast Facts Cost: $135M Square feet: 182,500 Occupants: 205 Labs/Equipment: 14 laboratories, an Insight Visualization Center, a

328

Property Tax Exemption for Renewable Energy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Systems Renewable Energy Systems Property Tax Exemption for Renewable Energy Systems < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info Start Date 10/01/2008 State New Jersey Program Type Property Tax Incentive Rebate Amount 100% of value added by renewable system In October 2008, New Jersey enacted legislation exempting renewable energy systems used to meet on-site electricity, heating, cooling, or general energy needs from local property taxes. (There is not a state component to property taxes in New Jersey). Eligible renewable energy systems* include solar PV, wind, fuel cells, sustainable biomass, geothermal electric,

329

Track A - Energy Systems Innovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Track A - Energy Systems Innovations Track A - Energy Systems Innovations Track A - Energy Systems Innovations Presentations from Track A, Energy Systems Innovations, of the U.S. Department of Energy Building America program's 2012 Residential Energy Efficiency Stakeholder Meeting are provided below as Adobe Acrobat PDFs. These presentations for this track covered the following topics: Space Conditioning and Hot Water Systems; Options for Insulating Foundations; Mini-split Systems; Heat Pump Water Heaters; Hydronic Heating Control Strategies; and Exterior Insulation Breakthroughs. contractor_accept.pdf testing_water_heating.pdf combined_tankless_wh.pdf upgrade_below_grade.pdf assessing_priorities.pdf industry_perspective.pdf ductless_hp_factory.pdf ductless_heat_pumps_nw.pdf field_eval_hpwh.pdf

330

American Energy Power Systems Inc AEPS | Open Energy Information  

Open Energy Info (EERE)

Inc AEPS Inc AEPS Jump to: navigation, search Name American Energy Power Systems Inc (AEPS) Place Sacramento, California Sector Solar Product Offered distributed power systems including PV panels, solar water heating, fuel cells and radiant floor heating applications. References American Energy Power Systems Inc (AEPS)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. American Energy Power Systems Inc (AEPS) is a company located in Sacramento, California . References ↑ "American Energy Power Systems Inc (AEPS)" Retrieved from "http://en.openei.org/w/index.php?title=American_Energy_Power_Systems_Inc_AEPS&oldid=342116" Categories: Clean Energy Organizations

331

Energy Systems Integration: A Convergence of Ideas  

SciTech Connect

Energy systems integration (ESI) enables the effective analysis, design, and control of these interactions and interdependencies along technical, economic, regulatory, and social dimensions. By focusing on the optimization of energy from all systems, across all pathways, and at all scales, we can better understand and make use of the co-benefits that result to increase reliability and performance, reduce cost, and minimize environmental impacts. This white paper discusses systems integration and the research in new control architectures that are optimized at smaller scales but can be aggregated to optimize energy systems at any scale and would allow replicable energy solutions across boundaries of existing and new energy pathways.

Kroposki, B.; Garrett, B.; MacMillan, S.; Rice, B.; Komomua, C.; O'Malley, M.; Zimmerle, D.

2012-07-01T23:59:59.000Z

332

National Energy Modeling System: An Overview  

Gasoline and Diesel Fuel Update (EIA)

6) 6) Distribution Category UC-950 The National Energy Modeling System: An Overview March 1996 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. PREFACE The National Energy Modeling System: An Overview (Overview) provides a summary description of the National Energy Modeling System (NEMS), which was used to generate the forecasts of energy production, demand, imports, and prices through the year 2015 for the Annual Energy Outlook 1996 (AEO96), (DOE/EIA- 0383(96)), released in January

333

Engineered Geothermal Systems Energy Return On Energy Investment  

SciTech Connect

Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. Too often comparisons of energy systems use ??efficiency? when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS) are examined in this work. These include the input energy embodied into the system. Embodied energy includes the energy contained in the materials, as well as, that consumed in each stage of manufacturing from mining the raw materials to assembling the finished system. Also critical are the system boundaries and value of the energy ?? heat is not as valuable as electrical energy. The EROI of an EGS depends upon a number of factors that are currently unknown, for example what will be typical EGS well productivity, as well as, reservoir depth, temperature, and temperature decline rate. Thus the approach developed is to consider these factors as parameters determining EROI as a function of number of wells needed. Since the energy needed to construct a geothermal well is a function of depth, results are provided as a function of well depth. Parametric determination of EGS EROI is calculated using existing information on EGS and US Department of Energy (DOE) targets and is compared to the ??minimum? EROI an energy production system should have to be an asset rather than a liability.

Mansure, A J

2012-12-10T23:59:59.000Z

334

Energy Technology Systems Analysis Program (MARKAL) | Open Energy  

Open Energy Info (EERE)

Energy Technology Systems Analysis Program (MARKAL) Energy Technology Systems Analysis Program (MARKAL) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Technology Systems Analysis Program (MARKAL) Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Co-benefits assessment, Pathways analysis, Policies/deployment programs Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.etsap.org/index.asp Country: Belgium, Canada, Denmark, Finland, France, Germany, Greece, Italy, Japan, South Korea, Netherlands, Norway, Sweden, United States, United Kingdom, Switzerland, Albania, Australia, Austria, Bosnia and Herzegovina, Brazil, Bulgaria, Colombia, Croatia, India, Indonesia, Kazakhstan, Malaysia, New Zealand, China, Philippines, Poland, Portugal, South Africa, Romania, Serbia, Spain, Taiwan, Thailand, Vietnam

335

World Energy Projection System Plus: An Overview  

Reports and Publications (EIA)

This report contains a summary description of the methodology and scope of WEPS+ and each of its component models. WEPS+ is a computer-based, energy modeling system of long-term international energy markets for the period through 2035. The system was used to produce the International Energy Outlook 2011.

Brian Murphy

2011-09-29T23:59:59.000Z

336

Scalable and Energy Efficient Computer Systems - Energy ...  

Technology Marketing Summary Computer engineers have developed a new design to support construction of large computer systems that perform closer to ...

337

Planning for Home Renewable Energy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Planning for Home Renewable Energy Systems Planning for Home Renewable Energy Systems Planning for Home Renewable Energy Systems November 11, 2013 - 8:49pm Addthis Planning for a home renewable energy system is a process that includes analyzing your existing electricity use, looking at local codes and requirements, deciding if you want to operate your system on or off of the electric grid, and understanding technology options you have for your site. | Photo by Francis Fine Art Photography. Planning for a home renewable energy system is a process that includes analyzing your existing electricity use, looking at local codes and requirements, deciding if you want to operate your system on or off of the electric grid, and understanding technology options you have for your site. | Photo by Francis Fine Art Photography.

338

Currituck County - Wind Energy Systems Ordinance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Currituck County - Wind Energy Systems Ordinance Currituck County - Wind Energy Systems Ordinance Currituck County - Wind Energy Systems Ordinance < Back Eligibility Agricultural Commercial Industrial Institutional Nonprofit Residential Schools Utility Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards Provider Currituck County In January 2008, Currituck County adopted an ordinance to regulate the use of wind-energy systems. The ordinance directs any individual or organization wishing to install a wind-energy system to obtain a zoning permit from the county planning board. Small-scale systems require only administrative approval for the permit, while large systems and utility-scale projects require approval from the board of commissioners.

339

Solar Energy Systems Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corporate) Solar Energy Systems Tax Credit (Corporate) Eligibility Agricultural Commercial Residential Savings For Solar Buying & Making Electricity Heating & Cooling Water Heating...

340

Solar Energy Systems Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Personal) Solar Energy Systems Tax Credit (Personal) Eligibility Agricultural Commercial Residential Savings For Solar Buying & Making Electricity Heating & Cooling Water Heating...

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hybrid photovoltaic/thermal solar energy system  

DOE Green Energy (OSTI)

Heating and cooling systems that use hybrid solar energy collectors (combination photovoltaic-thermal) have the potential for considerable energy savings, particularly when the system includes a heat pump. Economic evaluations show that photovoltaic systems are potentially most economical, but results depend critically on future collector costs as well as energy prices. Results are based on a specially developed computer program that predicted the total auxiliary energy required for five different solar heating/cooling systems. Performance calculations for a modeled residence and small office building were made using meteorological data from four geographic locations. Annual system costs were also calculated.

Kern, E.C. Jr.; Russell, M.C.

1978-03-27T23:59:59.000Z

342

Definition: Customer Energy Management Device and System | Open Energy  

Open Energy Info (EERE)

Device and System Device and System Jump to: navigation, search Dictionary.png Customer Energy Management Device and System A device that can control other energy devices such as thermostats, lighting, direct load control devices, or distributed energy resource within the customer premise. These devices may also receive information or control signals from utillities or third party energy service providers. These devices can help customers manage electricity usage automatically by utilizing information from service providers, or preferences set by the customer.[1] Related Terms energy, electricity generation, distributed energy resource References ↑ https://www.smartgrid.gov/category/technology/customer_energy_management_device_and_system [[Cat LikeLike UnlikeLike You like this.Sign Up to see what your friends like.

343

New York's Energy Storage System Gets Recharged | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

York's Energy Storage System Gets Recharged York's Energy Storage System Gets Recharged New York's Energy Storage System Gets Recharged August 2, 2010 - 1:18pm Addthis Matt Rogers, Senior Advisor to Secretary Chu, explain why grid frequency regulation matters Jonathan Silver Jonathan Silver Executive Director of the Loan Programs Office What does this mean for me? AES Storage in New York got a $17.1M conditional loan guarantee to provide a more stable transmission grid. When thinking of clean technologies, energy storage might not be the first thing to come to mind, but with a $17.1 million conditional commitment for a loan guarantee from the Department of Energy AES Energy Storage will develop a battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission

344

Sedimentary Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Sedimentary Geothermal Systems Sedimentary Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geopressured Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Sedimentary Geothermal Links Related documents and websites Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana EGS Schematic.jpg ] Dictionary.png Sedimentary Geothermal Systems: Sedimentary Geothermal Systems produce electricity from medium temperature,

345

Wind Energy Systems Technologies LLC WEST | Open Energy Information  

Open Energy Info (EERE)

LLC WEST LLC WEST Jump to: navigation, search Name Wind Energy Systems Technologies LLC (WEST) Place New Iberia, Louisiana Sector Wind energy Product Wants to install wind turbines on abandoned Gulf of Mexico oil and natural gas platforms to generate electric power for both homes and secondary recovery efforts. References Wind Energy Systems Technologies LLC (WEST)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Wind Energy Systems Technologies LLC (WEST) is a company located in New Iberia, Louisiana . References ↑ "Wind Energy Systems Technologies LLC (WEST)" Retrieved from "http://en.openei.org/w/index.php?title=Wind_Energy_Systems_Technologies_LLC_WEST&oldid=353071

346

Alternative Energy Systems Consulting Inc AESC | Open Energy Information  

Open Energy Info (EERE)

Consulting Inc AESC Consulting Inc AESC Jump to: navigation, search Name Alternative Energy Systems Consulting Inc (AESC) Place Carlsbad, California Zip 92008 Sector Services Product Engineering and project development firm devoted to providing technical services available to a broad range of energy service providers and end-users. References Alternative Energy Systems Consulting Inc (AESC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alternative Energy Systems Consulting Inc (AESC) is a company located in Carlsbad, California . References ↑ "Alternative Energy Systems Consulting Inc (AESC)" Retrieved from "http://en.openei.org/w/index.php?title=Alternative_Energy_Systems_Consulting_Inc_AESC&oldid=342061

347

Ris Energy Report 4 Supply technologies in the future energy system 10 Supply technologies in the future energy system  

E-Print Network (OSTI)

Risø Energy Report 4 Supply technologies in the future energy system 10 Supply technologies of local and central production and close coupling between supply and end-use. Wind Global wind energy: Energy supply technologies #12;Risø Energy Report 4 Supply technologies in the future energy system4 used

348

A Total Energy & Water Quality Management System  

Science Conference Proceedings (OSTI)

This report develops a generic model for an energy and water quality management system for the water community, and defines standard specifications for software applications required to minimize energy costs within the constraints of water quality and operation goals.

1999-09-30T23:59:59.000Z

349

Mechanical Engineering Industrial Energy Systems Laboratory  

E-Print Network (OSTI)

of District Heating and Cooling with an Electro-Thermal Energy Storage System Master Thesis ANURAG KUMAR of the district energy systems is performed and modifications are proposed in a district heating network. Based of the ETES system to integrate the district heating and cooling networks. An operational synergy is developed

Candea, George

350

Forced Oscillations in Wind Energy Generation Systems  

Science Conference Proceedings (OSTI)

Use of the doubly fed induction generator (DFIG) in wind energy generation systems allows variable speed operation by using partially rated back-to-back quadruple active and reactive power PWM converters. The control of the system is very complex. Despite ... Keywords: Wind energy generation system, forced oscillation, stability

Zhen Li; Siu-Chung Wong; Chi K. Tse

2009-11-01T23:59:59.000Z

351

Taylor Munro Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Zip V4G 1E2 Sector Solar Product Taylor Munro focuses on design and installation of solar water heating systems for residential and commercial applications. References Taylor...

352

Camden County - Wind Energy Systems Ordinance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Camden County - Wind Energy Systems Ordinance Camden County - Wind Energy Systems Ordinance Camden County - Wind Energy Systems Ordinance < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards In September 2007, Camden County adopted a wind ordinance to regulate the use of wind-energy systems in the county and to describe the conditions by which a permit for installing such a system may be obtained. For the purposes of this ordinance, wind-energy systems are classified as "large" if they consist of one or more turbines with a rated generating capacity of more than 20 kilowatts (kW) and "small" if a project

353

Carteret County - Wind Energy System Ordinance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carteret County - Wind Energy System Ordinance Carteret County - Wind Energy System Ordinance Carteret County - Wind Energy System Ordinance < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Institutional Local Government Multi-Family Residential Residential Schools State Government Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards Provider Carteret County Carteret County passed an ordinance to specify the permitting process and establish siting requirements for wind energy systems. There are different rules and a different permitting process depending on the size and location of a system. Small systems up to 25 kilowatts (kW) are considered to be an accessory use and do not require the approval of a Wind Energy Permit

354

Energy Basics: Concentrator Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

inexpensive materials such as plastic lenses and metal housings to capture the solar energy shining on a fairly large area and focus that energy onto a smaller area-the solar...

355

NREL: Energy Systems Integration - NREL's Energy Systems Integration...  

NLE Websites -- All DOE Office Websites (Extended Search)

a variety of operating configurations including, grid connected stand-alone microgrids and hybrid power systems. The PSIL can accommodate large power system components...

356

NREL: Energy Systems Integration - Residential and Commercial...  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential and Commercial Integration Energy systems integration R&D at the small-scale, residential and commercial integration level encompasses diverse technologies such as...

357

American Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name American Geothermal Systems Place Austin, Texas Sector Geothermal energy Product Installer of geothermal heating and cooling technologies, also has a...

358

Facility Energy Decision System (FEDS) Software ...  

The Facility Energy Decision Systemor FEDSSoftware is a user-friendly, menu-driven, Windows-based software program that provides a comprehensive ...

359

Renewable Energy Systems Property Tax Exemption | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Date 711983 Nevada Program Type Property Tax Incentive Rebate Amount 100% Renewable energy systems which serve a residential, commercial or industrial building or irrigation...

360

RELIABILITY PLANNING IN DISTRIBUTED ELECTRIC ENERGY SYSTEMS  

E-Print Network (OSTI)

applied to the case of hydroelectric facilities with large3. For comparison, the hydroelectric system in California asas droughts which reduce hydroelectric energy availability,

Kahn, E.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Facility Energy Decision System (FEDS) Software ...  

Calculates lowest life cycle cost-effective energy systems for all building types; ... Reduces time and labor required to collect, analyze, store, ...

362

Materials Degradation in Alternative Energy Systems  

Science Conference Proceedings (OSTI)

Energy systems of interest include fuel cells, wind, coal gasification, solar (PV and thermal), geothermal, nuclear, batteries, hydrogen and biofuels. Proposed...

363

Structural Materials in Advanced Nuclear Energy Systems  

Science Conference Proceedings (OSTI)

Apr 28, 2008 ... Structural Materials in Advanced Nuclear Energy Systems: The Need for ... of functionalized interfaces for optimization of materials properties.

364

NREL: Energy Analysis - Electric Infrastructure Systems Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Analysis NREL's energy analysis supports distribution and interconnection R&D, which is responsible for distributed resources' system integration. Industrial...

365

Energy Storage: Materials, Systems and Applications  

Science Conference Proceedings (OSTI)

Mar 29, 2011 ... The transition from the fossil economy to a greener, sustainable economy cannot, however, be realized without efficient energy storage systems...

366

Environmental Data Science & Systems | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Change Science Institute Earth and Aquatic Sciences Ecosystem Science Environmental Data Science and Systems Energy, Water and Ecosystem Engineering Human Health Risk and...

367

Lincoln Electric System (Residential)- Sustainable Energy Program  

Energy.gov (U.S. Department of Energy (DOE))

Lincoln Electric System (LES) offers several rebates to residential customers who are interested in upgrading to energy efficient household equipment. The program includes rebates for insulation...

368

Consumers Power, Inc. - Solar Energy System Rebate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inc. - Solar Energy System Rebate Inc. - Solar Energy System Rebate Consumers Power, Inc. - Solar Energy System Rebate < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate $3,000 for PV Program Info State Oregon Program Type Utility Rebate Program Rebate Amount SWH: $500/system PV: $500/kW Provider Consumers Power, Inc. Consumers Power, Inc. (CPI) offers rebates to its residential customers who install solar water heating systems or solar photovoltaic (PV) systems from October 1, 2012 to September 30, 2013. The rebate for solar water heaters is $500 for systems with a collector area greater than 31 square feet. Systems used for hot tubs or swimming pools are not eligible. The rebate for solar PV systems is $500 per kilowatt-DC (kW), with a maximum rebate

369

Rangan Banerjee Energy Systems Engineering  

E-Print Network (OSTI)

¨ © © ¨ ¨ #12; ¡ ¢ £ ¤ ¥ ¤ £ ¢ ¦ § ¨ © ¡ £ ¡ ¡ © § ¦ § ¡ Diesel 0.4% Wind 1.0% Nuclear 2.5% Gas 8.7% Coal, Additional Cost #12;Renewable Energy Options Wind Solar Small Hydro Biomass Tidal Energy Wave Energy Ocean

Banerjee, Rangan

370

Energy Systems Fabrication Laboratory (Fact Sheet), NREL (National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fabrication Laboratory The Energy Systems Fabrication Laboratory at NREL's Energy Systems Integration Facility (ESIF) manufactures components for fuel cells and...

371

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network (OSTI)

of Novel Energy Conversion and Storage Systems By Andrewof Novel Energy Conversion and Storage Systems by Andrew

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

372

Non-ferrous Metals Industry Energy Management System Certification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-ferrous Metals Industry Energy Management System Certification Details about China Quality Certification Center and Energy Management System certifications....

373

Madison County - Wind Energy Systems Ordinance | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Madison County - Wind Energy Systems Ordinance Madison County - Wind Energy Systems Ordinance < Back Eligibility Agricultural Commercial Industrial Residential Savings Category...

374

Beyond energy monitors: interaction, energy, and emerging energy systems  

Science Conference Proceedings (OSTI)

Motivated by a recent surge of research related to energy and sustainability, this paper presents a review of energy-related work within HCI as well as from literature outside of HCI. Our review of energy-related HCI research identifies a central cluster ... Keywords: design, electricity, energy, sustainability

James Pierce; Eric Paulos

2012-05-01T23:59:59.000Z

375

AVESTAR® - Operational Excellence for Clean Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Operational Excellence for Clean Energy Systems Operational Excellence for Clean Energy Systems Chart The world-class Advanced Virtual Energy Simulation Training and Research (AVESTAR®) Center at the U.S. Department of Energy's National Energy Technology Laboratory (NETL) is dedicated to accelerating progress toward achieving operational excellence for commercial-scale, clean energy systems from smart plants to smart grid. With two locations in Morgantown, WV, one at the NETL and the other at West Virginia University's National Research Center for Coal and Energy, the AVESTAR Center is accomplishing its vital mission by bringing together: Advanced dynamic simulation, control, and virtual plant technologies Real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTS)

376

The World Energy Projection System April 2001  

Gasoline and Diesel Fuel Update (EIA)

The World Energy Projection System April 2001 The World Energy Projection System April 2001 Gasoline and Diesel Fuel Updates April 20, 2001 (Next Release: April, 2002) Related Links To Forecasting Home Page EIA Homepage Printer Friendly Version Continuing with this release, annual updates to the model will be available. Check this space for scheduled future releases. Note: If you are familiar with the model and just wish to download the latest version, click HERE. The World Energy Projection System The projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) are derived from the World Energy Projection System (WEPS). WEPS is an integrated set of personal computer-based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures,

377

The World Energy Projection System April 2002  

Gasoline and Diesel Fuel Update (EIA)

The World Energy Projection System April 2002 The World Energy Projection System April 2002 Continuing with this release, annual updates to the model will be available. Check this space for scheduled future releases. Note: If you are familiar with the model and just wish to download the latest version, click HERE. The World Energy Projection System The projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) are derived from the World Energy Projection System (WEPS). WEPS is an integrated set of personal computer-based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the

378

Hydrothermal System | Open Energy Information  

Open Energy Info (EERE)

Hydrothermal System Hydrothermal System (Redirected from Hydrothermal Systems) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hydrothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Dictionary.png Hydrothermal Systems: A hydrothermal system is one that included fluid, heat, and permeability in a naturally occurring geological formation for the production of electricity. Other definitions:Wikipedia Reegle Geothermal production well at Imperial Valley, California. The drilling of production wells, such as this one in southern California, results in

379

Residential Alternative Energy System Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Alternative Energy System Tax Credit Residential Alternative Energy System Tax Credit Residential Alternative Energy System Tax Credit < Back Eligibility Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Home Weatherization Water Water Heating Wind Maximum Rebate $500 per individual taxpayer; up to $1,000 per household Program Info Start Date 1/1/2002 Expiration Date none State Montana Program Type Personal Tax Credit Rebate Amount 100% Provider Montana Department of Environmental Quality Residential taxpayers who install an energy system using a recognized non-fossil form of energy on their home after December 31, 2001 are eligible for a tax credit equal to the amount of the cost of the system and

380

Energy Storage Systems 2006 Peer Review | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Peer Review 6 Peer Review Energy Storage Systems 2006 Peer Review The 2006 Peer Review Meeting for the DOE Energy Storage Systems (ESS) Program was held in Washington DC on November 2-3, 2006. Current and completed program projects were presented and reviewed by a group of industry professionals. The agenda and ESS program overview are available below. Day 1 morning session presentations Day 1 afternoon session presentations Day 2 morning session presentations Day 2 afternoon session presentations ESS 2006 Peer Review - Agenda.pdf ESS 2006 Peer Review - ESS Program Overview - John Boyes, SNL.pdf More Documents & Publications Energy Storage Systems 2007 Peer Review Energy Storage Systems 2007 Peer Review - Innovations in ESS Presentations Energy Storage Systems 2007 Peer Review - Utility & Commercial Applications

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Conservation Aspect of Energy Systems Technology Education Program  

E-Print Network (OSTI)

The primary purpose of this paper is to present a brief explanation of the Energy Systems Technology Education Program (ESTEP). This program is a system of continuing education that has been devised for the technical and supervisory personnel of the Energy Systems manufacturing units and the units that support the operation of the Energy Systems manufacturing units of the former Union Carbide Chemicals and Plastics Division plants plus the component of the Corporation that has been identified as the Agricultural Products Company. It is important that these facilities be operated at optimum levels in the areas of safety, reliability, and efficiency. The cost of energy consumed in operating the Union Carbide Corporation petrochemical complexes, of which these Energy Systems units are a part, increased 500% between 1970 and 1930.

McBride, R. B.

1982-01-01T23:59:59.000Z

382

Energy Conservation in the Bell System  

E-Print Network (OSTI)

In December 1973, the Bell System launched a comprehensive energy conservation program which includes immediate, intermediate, and long range steps. A computerized data base system was developed to permit monthly input of energy consumption, costs, and correlating factors, and to provide rapid determination of energy performance. Immediate steps, primarily in building and motor vehicle operations, resulted in approximately 10% energy conservation in 1974 compared with 1973. These, plus intermediate range steps, including replacement of remaining vacuum tubes and beginning the redesign and retrofitting of existing heating and cooling systems, resulted in the Bell System consuming 9% less energy during 1978 than was used in 1973. This reduction in energy use was accomplished while volume of business increased 47% and telephones served increased over 21%. Longer range steps include: introducing more energy efficient telecommunications equipment; improving building environmental systems; adapting alternate energy sources; increasing efficiency of motor vehicles; and expanding materials recycling. These longer range energy conservation steps will permit continued highest quality telecommunications while significantly restricting energy growth. The Bell System is committed to a long range objective of using less energy in 1984 than was used in 1973 even though business is expected to continue growing at approximately the same rate as the prior years.

Del Grande, M. R.

1979-01-01T23:59:59.000Z

383

REQUEST BY EATON CORPORATION FOR ADVANCE WAIVER OF DOMESTIC AND...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER A SUBCONTRACT LET BY MARTIN MARIETTA ENERGY SYSTEMS, INC., UNDER MANAGEMENT AND OPERATING CONTRACT NO....

384

Solar Energy Systems - Research - Systems Analysis - Smart Grid...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Fuels Research: Systems Analysis Smart grid photovoltaic Systems analysis photovoltaic A team of energy and grid experts from Agronne, ComEd, GridPoint, and the University of...

385

Pitt County - Wind Energy Systems Ordinance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pitt County - Wind Energy Systems Ordinance Pitt County - Wind Energy Systems Ordinance Pitt County - Wind Energy Systems Ordinance < Back Eligibility Commercial Residential Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards Provider Pitt County The Pitt County Board of Commissioners adopted amendments to the county zoning ordinance in March 2010 which classify wind energy systems as an accessory use and establish siting and permitting requirements for their installation. The ordinance applies to small to medium systems designed primarily for on-site use in conjunction with a principal dwelling unit or business. The ordinance does not apply to utility scale systems. '''Blade Clearance:''' Wind turbine blades may not be closer than 15 feet

386

Wind Energy Conversion Systems (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Conversion Systems (Minnesota) Wind Energy Conversion Systems (Minnesota) Wind Energy Conversion Systems (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Wind Buying & Making Electricity Program Info State Minnesota Program Type Siting and Permitting This section distinguishes between large (capacity 5,000 kW or more) and small (capacity of less than 5,000 kW) wind energy conversion systems (WECS), and regulates the siting of large conversion systems. The statute

387

Altergy Systems | Open Energy Information  

Open Energy Info (EERE)

95630 Product Designs and manufactures proprietary proton exchange membrane (PEM) fuel cell systems. References Altergy Systems1 LinkedIn Connections CrunchBase Profile No...

388

Energy Basics: Heat Pump Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating Heat...

389

Megtec Systems | Open Energy Information  

Open Energy Info (EERE)

Name Megtec Systems Address 830 Prosper Road Place De Pere, Wisconsin Zip 54115 Sector Carbon Product scrubbers, oxidizers, cleaners, capturing systems Phone number 1 920 336...

390

Energy Systems and Population Health  

E-Print Network (OSTI)

RH, Woods J. 1993. Biomass for Energy: Supply Prospects. In56). The supply is dominated by traditional biomass, mostlya sustainable supply of wood or an alternative biomass

2004-01-01T23:59:59.000Z

391

Legal Energy Information System (SIEL) Database | Open Energy Information  

Open Energy Info (EERE)

Legal Energy Information System (SIEL) Database Legal Energy Information System (SIEL) Database Jump to: navigation, search Tool Summary Name: Legal Energy Information System (SIEL) Database Agency/Company /Organization: Latin American Energy Organization Sector: Energy Focus Area: Renewable Energy Topics: Policies/deployment programs, Background analysis Resource Type: Dataset Website: www.olade.org/sielEn.html Country: Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama, Mexico, Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname, Uruguay, Venezuela, Barbados, Cuba, Grenada, Haiti, Jamaica, Trinidad & Tobago, Dominican Republic Central America, Central America, Central America, Central America, Central America, Central America, Central America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean

392

Renewable Energy Systems (RES Scandinavia) | Open Energy Information  

Open Energy Info (EERE)

Scandinavia) Scandinavia) Jump to: navigation, search Logo: Renewable Energy Systems (RES Scandinavia) Name Renewable Energy Systems (RES Scandinavia) Address Lilla Bommen 1 Place Gothenburg, Sweden Sector Wind energy Product Wind farm development and construction Phone number +46 (0) 313 395 960 Website http://www.res-group.com/ References RES Americas Web Site[1] About RES[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! TODO: Verify the location of Gothenburg, Sweden Renewable Energy Systems Inc (RES Scandinavia) is a company headquartered in Gothenburg, Sweden. RES Scandinavia is a leader in developing renewable energy projects across the globe. RES Scandinavia has been a part of the wind energy industry for over two decades. RES Scandinavia core activities

393

Cumberland System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cumberland System Cumberland System Cumberland System October 1, 2011 CTVI-1-A Wholesale Power Rate Schedule Area: Former customers of TVA System: Cumberland October 1, 2011 CTV-1-H Wholesale Power Rate Schedule Area: TVA System: CU October 1, 2011 CM-1-H Wholesale Power Rate Schedule Area: MEAM, MDEA, and SMEPA System: CU October 1, 2011 CBR-1-H Wholesale Power Rate Schedule Area: Big Rivers and Henderson, KY System: CU October 1, 2011 CSI-1-H Wholesale Power Rate Schedule Area: Southern Illinois System: CU October 1, 2011 CK-1-H Wholesale Power Rate Schedule Area: KU Area System: CU October 1, 2011 CEK-1-H Wholesale Power Rate Schedule Area: East Kentucky System: CU October 1, 2011 CC-1-I Wholesale Power Rate Schedule Area: CP&L Area, Western Division System: CU October 1, 2008 Replacement-3 Wholesale Power Rate Schedule

394

Unitron Energy Systems Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Unitron Energy Systems Pvt Ltd Unitron Energy Systems Pvt Ltd Jump to: navigation, search Name Unitron Energy Systems Pvt. Ltd. Place Pune, Maharashtra, India Zip 411 032 Sector Wind energy Product Pune-based anufacturer of small wind turbines and wind energy system components. Coordinates 18.52671°, 73.8616° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":18.52671,"lon":73.8616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

395

Wind energy systems information user study  

DOE Green Energy (OSTI)

This report describes the results of a series of telephone interviews with potential users of information on wind energy conversion. These interviews, part of a larger study covering nine different solar technologies, attempted to identify: the type of information each distinctive group of information users needed, and the best way of getting information to that group. Groups studied include: wind energy conversion system researchers; wind energy conversion system manufacturer representatives; wind energy conversion system distributors; wind turbine engineers; utility representatives; educators; county agents and extension service agents; and wind turbine owners.

Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

1981-01-01T23:59:59.000Z

396

RENEWABLES RESEARCH Boiler Burner Energy System Technology  

E-Print Network (OSTI)

RENEWABLES RESEARCH Boiler Burner Energy System Technology (BBEST) for Firetube Boilers PIER, industrial combined heat and power (CHP) boiler burner energy system technology ("BBEST"). Their research (unrecuperated) with an ultra- low nitrous oxide (NOx) boiler burner for firetube boilers. The project goals

397

Motivational aspects in energy feedback systems design  

Science Conference Proceedings (OSTI)

In harmony with the 3rd HCI wave, the design of residential energy feedback systems (REFS) is an emerging research area in HCI, stimulated by the changes the world has suffered for economic and environmental reasons. Theoretical background ... Keywords: eco-feedback technology, motivation, residential energy feedback systems

Lara Schibelsky Godoy Piccolo; Maria Ceclia Calani Baranauskas

2011-10-01T23:59:59.000Z

398

Energy Systems Engineering 1 Clean Coal Technologies  

E-Print Network (OSTI)

Energy Systems Engineering 1 Clean Coal Technologies Presentation at BARC 4th December 2007 #12.ofPlants Source: CEA,2006, Thermal performance report 377 plants Sub-critical Pulverised coal (535-575 oC, 175/kWh) 0.14 0.03 0.6 #12;Energy Systems Engineering 9 Status of Advanced Coal Technologies Types

Banerjee, Rangan

399

Energy Systems Integration Laboratory (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Systems Integration Laboratory at the Energy Systems Integration Facility. The Energy Systems Integration Laboratory at NREL's Energy Systems Integration Facility (ESIF) provides a flexible, renewable-ready platform for research, development, and testing of state-of-the-art hydrogen-based and other energy storage systems. The main focus of the laboratory is assessment of the technical readiness, performance characterization, and research to help industry move these systems towards optimal renewable-based production and efficient utilization of hydrogen. Research conducted in the Energy Systems Integration Laboratory will advance engineering knowledge and market deployment of hydrogen technologies to support a growing need for versatile distributed electricity generation, applications in microgrids, energy storage for renewables integration, and home and station-based hydrogen vehicle fueling. Research activities are targeted to improve the technical readiness of the following: (1) Low and high temperature electrolyzers, reformers and fuel cells; (2) Mechanical and electrochemical compression systems; (3) Hydrogen storage; (4) Hydrogen vehicle refueling; and (5) Internal combustion or turbine technology for electricity production. Examples of experiments include: (1) Close- and direct-coupling of renewable energy sources (PV and wind) to electrolyzers; (2) Performance and efficiency validation of electrolyzers, fuel cells, and compressors; (3) Reliability and durability tracking and prediction; (4) Equipment modeling and validation testing; (5) Internal combustion or turbine technology for electricity production; and (6) Safety and code compliance.

Not Available

2011-10-01T23:59:59.000Z

400

Hydrogen/halogen energy storage system  

DOE Green Energy (OSTI)

The hydrogen/chlorine energy storage system has been considered at BNL for large scale energy storage. In FY1978 work included an assessment of system safety and cost, investigations of cell performance under conditions elevated pressure and temperature, determination of the transport properties of Nafion membranes and electrochemical engineering studies. Results are summarized.

Spaziante, P M; Sioli, G C; Trotta, R; Perego, A; McBreen, J

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

HVAC system analysis: energy audit review  

SciTech Connect

Although most energy audits do not investigate HVAC systems in as much detail as would most design consultants, audit data can be most informative. For certain types of buildings, air-conditioning energy usage can be estimated by its absence from energy bills during winter months, and heating energy usage can be estimated by its absence from energy bills during the summer months. Cooling and heating energy usage can be even more accurately broken down when a fossil fuel is used for heating while electrical energy is used for cooling. It is easy to establish fairly accurate energy consumption estimates for lighting, fan motors, and pumps; this can be done by verifying their loads and multiplying them by known operating hours. The numerous notes contained in some energy audits may also provide ideas for retrofitting energy-consuming areas.

Harmon, K.S.

1983-01-01T23:59:59.000Z

402

Modular Energy Storage System for Alternative Energy Vehicles  

Science Conference Proceedings (OSTI)

An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles ?? plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems?? performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact of design alternatives and the impact of changes. Refinement of models was accomplished through correlation studies to measured data obtained from functioning hardware. Specifically, correlation and characterization of the boost converter resulted in a model that was effectively used to determine overall VEMS performance. The successful development of the boost converter can be attributed to utilization of previously proven technologies and adapting to meet the VEMS requirements. This program provided significant improvement in development time of various generations of boost converters. The software strategies and testing results support the development of current energy management systems and directly contribute to the future of similar, commercial products at Magna E-Car Systems. Because of this development project, Magna E-Car Systems is able to offer automotive customers a boost converter system with reduced time to market and decreased product cost, thus transferring the cost and timing benefits to the end use consumer.

Janice Thomas; Frank Ervin

2012-02-28T23:59:59.000Z

403

Intelligent Building Energy Information and Control Systems for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Information and Control Systems for Low-Energy Operations and Optimal Demand Response Title Intelligent Building Energy Information and Control Systems for...

404

Analyses of Wind Energy Impact on WFEC System Operations: Preprint  

DOE Green Energy (OSTI)

Article for the Journal of Solar Energy Engineering which analyzes system and wind energy data recorded by WFEC and evaluates the effects of wind energy on system operations.

Wan, Y.; Liao, J. R.

2006-05-01T23:59:59.000Z

405

NREL Leads Energy Systems Integration: Issue 4 (Book), Continuum...  

NLE Websites -- All DOE Office Websites (Extended Search)

- A Living Laboratory for Integrated Solutions for a A Renewable Electricity Future Energy Systems Integration Complex Energy World Energy Systems Integration NREL is a national...

406

Regional Energy Deployment System (ReEDS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Energy Deployment Regional Energy Deployment System (ReEDS) Walter Short, Patrick Sullivan, Trieu Mai, Matthew Mowers, Caroline Uriarte, Nate Blair, Donna Heimiller, and Andrew Martinez Technical Report NREL/TP-6A20-46534 December 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Regional Energy Deployment System (ReEDS) Walter Short, Patrick Sullivan, Trieu Mai, Matthew Mowers, Caroline Uriarte, Nate Blair, Donna Heimiller, and Andrew Martinez Prepared under Task Nos. DOCC.1014, SS10.2210,

407

Watauga County - Wind Energy System Ordinance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Watauga County - Wind Energy System Ordinance Watauga County - Wind Energy System Ordinance Watauga County - Wind Energy System Ordinance < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards Provider Planning and Inspections In 2006, Watauga County adopted a wind ordinance to regulate the use of wind-energy systems in the county and to describe the conditions by which a permit for installing such a system may be obtained. This policy was adopted in the context of an on-going debate over the legal interpretation of the [http://www.ncga.state.nc.us/EnactedLegislation/Statutes/HTML/ByArticle/C...

408

Ashe County - Wind Energy System Ordinance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ashe County - Wind Energy System Ordinance Ashe County - Wind Energy System Ordinance Ashe County - Wind Energy System Ordinance < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal Utility Nonprofit Residential Rural Electric Cooperative Schools State Government Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards Provider Ashe County Planning Department In 2007 Ashe County adopted a wind ordinance to regulate the use of wind-energy systems in unincorporated areas of the county and to describe the conditions by which a permit for installing such a system may be obtained. This policy was adopted in the context of an ongoing debate over

409

Property Tax Exemption for Renewable Energy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Tax Exemption for Renewable Energy Systems Property Tax Exemption for Renewable Energy Systems Property Tax Exemption for Renewable Energy Systems < Back Eligibility Agricultural Commercial Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Wind Maximum Rebate Not specified Program Info Start Date 01/01/1978 State Iowa Program Type Property Tax Incentive Rebate Amount Solar and wind: 100% exemption for 5 years Geothermal: 100% exemption for 10 years Provider Iowa Economic Development Authority In Iowa, the market value added to a property by a solar or wind energy system is exempt from the state's property tax for five full assessment years. Residential geothermal systems are exempt for 10 years. Eligible

410

ISO 50001 Conformant Energy Management Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

ISO 50001-conformant ISO 50001-conformant Energy Management Systems Aimee McKane Lawrence Berkeley National Laboratory atmckane@lbl.gov 518-782-7002 April 2, 2013 2 | Building Technologies Office eere.energy.gov * Energy efficiency improvements with very favorable payback periods often do not get implemented due to competing organizational priorities * Even projects that are implemented may not be sustained due to lack of supportive operational and maintenance practices Problem: Energy efficiency is not integrated into daily

411

ISO 50001 Conformant Energy Management Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ISO 50001-conformant ISO 50001-conformant Energy Management Systems Aimee McKane Lawrence Berkeley National Laboratory atmckane@lbl.gov 518-782-7002 April 2, 2013 2 | Building Technologies Office eere.energy.gov * Energy efficiency improvements with very favorable payback periods often do not get implemented due to competing organizational priorities * Even projects that are implemented may not be sustained due to lack of supportive operational and maintenance practices Problem: Energy efficiency is not integrated into daily

412

Integrating Process Unit Energy Metrics into Plant Energy Management Systems  

E-Print Network (OSTI)

As energy costs continue to rise across the process industry, many plants have responded by developing improved energy monitoring and reporting programs. At the center of such programs are typically spreadsheet or database applications that pull information, such as fired heater excess oxygen and steam vent rates, from the plant data historian and generate summary reports that compare and trend actual performance relative to targets. On average, plants can expect to reduce overall energy costs by up to 10% through improved management of plant variables, or metrics, that influence energy consumption. Energy metrics can generally be classified into three categories: Equipment, Utility System, and Process. Examples of each type of metric will be given in the paper. As a percentage of the overall savings sited above, the energy savings through stewardship and optimization of Equipment, Utility System and Process metrics are generally 50%, 40% and 10%, respectively. Plants have generally done a good job of stewarding the 90% of savings available through Utility and Equipment related energy metrics, primarily because target setting is fairly straightforward. However, the 10% of savings available from Process metrics, such as tower reflux ratios, pumparound rates, and steam stripping ratios, are typically missing from energy management systems due to the difficulty in first identifying them, and second in determining the optimum targets. Target setting is most difficult because with process metrics, yield considerations must be included in the target setting process. It is quite easy, for example, to save energy by cutting tower reflux rates. But too much reduction will sacrifice yield performance. Even at elevated energy prices, even the smallest reduction in yield will typically offset any energy savings that might have been captured. Therefore, in order to effectively incorporate Process energy metrics into the plant energy management system, knowledge of both energy and yield parameters is required. This paper will explore an effective methodology for determining what process unit energy metrics are important, how to effectively set their targets, and how to incorporate them into an effective energy management system. In terms of how to identify process energy metrics, the paper will discuss which energy intensive processes should be examined first, such as crude distillation and cat cracking. In terms of target setting, the paper will describe how process engineering experience is combined with simulation to develop meaningful targets that characterize the point where yield and energy are simultaneously optimized. Finally, the work process required

Davis, J. L.; Knight, N.

2005-01-01T23:59:59.000Z

413

Universal System Benefits Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Universal System Benefits Program Universal System Benefits Program Universal System Benefits Program < Back Eligibility Commercial General Public/Consumer Industrial Institutional Residential Utility Savings Category Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Wind Program Info State Montana Program Type Public Benefits Fund Provider Montana Public Service Commission Montana established the Universal System Benefits Program (USBP) in 1997 as part of its restructuring legislation. The USBP supports cost-effective energy conservation, low-income customer weatherization, renewable-energy projects and applications, research and development programs related to energy conservation and renewables, market transformation designed to encourage competitive markets for public purpose programs, and low-income

414

Energy management system with programmable thermostat  

Science Conference Proceedings (OSTI)

An electronic system and method including a user programmable thermostat for measuring temperature at the situs of the measurement unit and for signaling and controlling a remotely located energy controller which is connected to the programmable thermostat. By utilizing a multiplexed signal communication channel between the programmable thermostat and the energy controller, the energy controller activates preselected energy using units which may, for example, include a furnace and air conditioning units for controlling the temperature at the measurement unit situs and a power shedder unit for shedding energy usage to conserve energy all in accordance with a user provided program.

Stewart, J.T.

1983-05-10T23:59:59.000Z

415

Engineered Geothermal Systems Energy Return On Energy Investment  

DOE Green Energy (OSTI)

Critical factors in determining the EROI of Engineered Geothermal Systems (EGS) are examined in this work. These include the input energy embodied into the system. Embodied energy includes the energy contained in the materials, as well as, that consumed in each stage of manufacturing from mining the raw materials to assembling the finished system. Also critical are the system boundaries and value of the energy ?? heat is not as valuable as electrical energy. The EROI of an EGS depends upon a number of factors that are currently unknown, for example what will be typical EGS well productivity, as well as, reservoir depth, temperature, and temperature decline rate. Thus the approach developed is to consider these factors as parameters determining EROI as a function of number of wells needed. Since the energy needed to construct a geothermal well is a function of depth, results are provided as a function of well depth. Parametric determination of EGS EROI is calculated using existing information on EGS and US Department of Energy (DOE) targets and is compared to the ??minimum? EROI an energy production system should have to be an asset rather than a liability.

Mansure, A J

2012-12-10T23:59:59.000Z

416

Pilot Systems | Open Energy Information  

Open Energy Info (EERE)

Pilot Systems Place London, United Kingdom Zip W4 4PH Sector Services Product London-based provider of metering services to business consumers. References Pilot Systems1 LinkedIn...

417

Energy Systems and Population Health  

E-Print Network (OSTI)

small (20 - 100 Wp) solar PV systems have been commerciallyGasification-based) PV (Residential) Solar Thermal (Power

2004-01-01T23:59:59.000Z

418

Energy Systems Integration: A Convergence of Ideas  

Open Energy Info (EERE)

Integration Integration A Convergence of Ideas July 2012 Ben Kroposki, Bobi Garrett, Stuart Macmillan, Brent Rice, and Connie Komomua National Renewable Energy Laboratory Mark O'Malley University College Dublin Dan Zimmerle Colorado State University NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 1 Energy Systems Integration A Convergence of Ideas Benjamin Kroposki, Bobi Garrett, Stuart Macmillan, Brent Rice, Connie Komomua National Renewable Energy Laboratory Mark O'Malley University College Dublin Dan Zimmerle Colorado State University Prepared under Task No. 2940.5017 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency

419

Wind energy systems: program summary  

Science Conference Proceedings (OSTI)

The Federal Wind Energy Program (FWEP) was initiated to provide focus, direction and funds for the development of wind power. Each year a summary is prepared to provide the American public with an overview of government sponsored activities in the FWEP. This program summary describes each of the Department of Energy's (DOE) current wind energy projects initiated or renewed during FY 1979 (October 1, 1978 through September 30, 1979) and reflects their status as of April 30, 1980. The summary highlights on-going research, development and demonstration efforts and serves as a record of progress towards the program objectives. It also provides: the program's general management structure; review of last year's achievements; forecast of expected future trends; documentation of the projects conducted during FY 1979; and list of key wind energy publications.

None

1980-05-01T23:59:59.000Z

420

Energy Basics: Heat Pump Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of air-source heat pumps. Absorption Heat Pump Uses heat as its energy source. Geothermal Heat Pumps Use the constant temperature of the earth as the exchange medium instead...

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Denver Public Schools Get Solar Energy System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Denver Public Schools Get Solar Energy System Denver Public Schools Get Solar Energy System Denver Public Schools Get Solar Energy System November 1, 2010 - 11:22am Addthis Workers install a solar photovoltaic system on the roof of a Denver school.| Photo courtesy of Main Street Power Workers install a solar photovoltaic system on the roof of a Denver school.| Photo courtesy of Main Street Power Kevin Craft What are the key facts? Local company adds five full-time jobs to support solar panel project. Solar panels are estimated to generate 1,640,457 kWh of electricity per year. Denver Public Schools are expected to save more than $500,000 over a 20-year period . This school year, students in the Denver Public School system are getting a first-hand look at solar panel technology. Main Street Power, a solar development company based in Boulder, Colo., is

422

Denver Public Schools Get Solar Energy System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Denver Public Schools Get Solar Energy System Denver Public Schools Get Solar Energy System Denver Public Schools Get Solar Energy System November 1, 2010 - 11:22am Addthis Workers install a solar photovoltaic system on the roof of a Denver school.| Photo courtesy of Main Street Power Workers install a solar photovoltaic system on the roof of a Denver school.| Photo courtesy of Main Street Power Kevin Craft What are the key facts? Local company adds five full-time jobs to support solar panel project. Solar panels are estimated to generate 1,640,457 kWh of electricity per year. Denver Public Schools are expected to save more than $500,000 over a 20-year period . This school year, students in the Denver Public School system are getting a first-hand look at solar panel technology. Main Street Power, a solar development company based in Boulder, Colo., is

423

Energy-Economic Information System (SIEE) | Open Energy Information  

Open Energy Info (EERE)

Energy-Economic Information System (SIEE) Energy-Economic Information System (SIEE) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy-Economic Information System (SIEE) Database Agency/Company /Organization: Latin American Energy Organization Sector: Energy Topics: Baseline projection, GHG inventory, Background analysis Resource Type: Dataset Website: www.olade.org/sieeEn.html Country: Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama, Mexico, Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname, Uruguay, Venezuela, Barbados, Cuba, Grenada, Haiti, Jamaica, Trinidad & Tobago, Dominican Republic Central America, Central America, Central America, Central America, Central America, Central America, Central America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean

424

Oak Creek Energy Systems Wind Farm I | Open Energy Information  

Open Energy Info (EERE)

I I Facility Oak Creek Energy Systems Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Oak Creek Energy Systems Developer Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Oak Creek Energy Systems Wind Farm III | Open Energy Information  

Open Energy Info (EERE)

III III Facility Oak Creek Energy Systems Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Oak Creek Energy Systems Developer Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Stand Alone Renewable Energy Systems Case Studies | Open Energy Information  

Open Energy Info (EERE)

Stand Alone Renewable Energy Systems Case Studies Stand Alone Renewable Energy Systems Case Studies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Stand Alone Renewable Energy Systems Case Studies Agency/Company /Organization: World Bank Sector: Energy Focus Area: - Landfill Gas, Solar, - Solar PV, Offsets and Certificates Topics: Market analysis, Co-benefits assessment, - Energy Access, Background analysis Resource Type: Lessons learned/best practices, Case studies/examples Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, Country: Nepal, Sri Lanka, India, China, Bangladesh, Argentina, Honduras, Bolivia, Nicaragua, Uganda, Senegal Southern Asia, Southern Asia, Southern Asia, Eastern Asia, Southern Asia, South America, Central America, South America, Central America, Eastern Africa, Western Africa

427

Oak Creek Energy Systems Wind Farm II | Open Energy Information  

Open Energy Info (EERE)

II II Facility Oak Creek Energy Systems Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Oak Creek Energy Systems Developer Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

Energy Systems Integration | OpenEI Community  

Open Energy Info (EERE)

Literature Review Literature Review Type Term Title Author Replies Last Post sort icon Document Literature Review A Framework for the Optimization of Integrated Energy Systems(Jain and Alleyne 2012) Qinsun 15 Nov 2012 - 13:19 Document Literature Review Energy System Integration(Smith 2001) Qinsun 15 Nov 2012 - 13:09 Document Literature Review Integrated Energy Systems (IES) for Buildings: A Market Assessment(LeMar 2002) Qinsun 15 Nov 2012 - 13:05 Document Literature Review Optimal Power Flow of Multiple Energy Carriers(Geidl and Andersson 2007) Qinsun 15 Nov 2012 - 13:04 Document Literature Review Energy Forms or Energy Carriers(G, Herrmann et al. 1983) Qinsun 15 Nov 2012 - 10:28 Groups Menu You must login in order to post into this group.

429

Hydrothermal System | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Hydrothermal) (Redirected from Hydrothermal) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hydrothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Dictionary.png Hydrothermal Systems: A hydrothermal system is one that included fluid, heat, and permeability in a naturally occurring geological formation for the production of electricity. Other definitions:Wikipedia Reegle Geothermal production well at Imperial Valley, California. The drilling of production wells, such as this one in southern California, results in one-third to one-half of the cost of a geothermal project. Copyright ©

430

Hydrothermal System | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hydrothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Dictionary.png Hydrothermal Systems: A hydrothermal system is one that included fluid, heat, and permeability in a naturally occurring geological formation for the production of electricity. Other definitions:Wikipedia Reegle Geothermal production well at Imperial Valley, California. The drilling of production wells, such as this one in southern California, results in one-third to one-half of the cost of a geothermal project. Copyright ©

431

PIA - Energy Inspector General Project Tracking System (EIGPT...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspector General Project Tracking System (EIGPT) PIA - Energy Inspector General Project Tracking System (EIGPT) PIA - Energy Inspector General Project Tracking System (EIGPT) PIA...

432

Energy complexity of software in embedded systems  

E-Print Network (OSTI)

The importance of low power consumption is widely acknowledged due to the increasing use of portable devices, which require minimizing the consumption of energy. The energy in a computational system depends heavily on the software being executed, since it determines the activity in the underlying circuitry. In this paper we introduce the notion of energy complexity of an algorithm for estimating the required energy consumption. As test vehicle we employ matrix multiplication algorithms and from the results it can be observed that energy complexity in combination with computational complexity, provides an accurate estimation for the energy consumed in the system. KEY WORDS software design and implementation, computational complexity, low-power design, energy estimation 1.

Kostas Zotos; Andreas Litke; Er Chatzigeorgiou; Spyros Nikolaidis; George Stephanides

2005-01-01T23:59:59.000Z

433

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

energy conversion systems ..on thermal energy conversion systems As energy demandsefficient energy conversion in power systems," in Thermal

Ho, Tony

2012-01-01T23:59:59.000Z

434

Small Wind Electric Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Wind Electric Systems Small Wind Electric Systems Small Wind Electric Systems July 15, 2012 - 5:22pm Addthis Wind power is the fastest growing source of energy in the world -- efficient, cost effective, and non-polluting. What does this mean for me? Small wind electric systems can be one of the most efficient ways of producing electricity for your home. Wind energy is a fast growing market, because it is effective and cost efficient. If you have enough wind resource in your area and the situation is right, small wind electric systems are one of the most cost-effective home-based renewable energy systems -- with zero emissions and pollution. Small wind electric systems can: Lower your electricity bills by 50%-90% Help you avoid the high costs of having utility power lines extended

435

Simulation of Energy Management Systems in EnergyPlus  

SciTech Connect

An energy management system (EMS) is a dedicated computer that can be programmed to control all of a building's energy-related systems, including heating, cooling, ventilation, hot water, interior lighting, exterior lighting, on-site power generation, and mechanized systems for shading devices, window actuators, and double facade elements. Recently a new module for simulating an EMS was added to the EnergyPlus whole-building energy simulation program. An essential part of the EMS module is the EnergyPlus Runtime Language (ERL), which is a simple programming language that is used to specify the EMS control algorithms. The new EMS controls and the flexibility of ERL allow EnergyPlus to simulate many novel control strategies that are not possible with the previous generation of building energy simulation programs. This paper surveys the standard controls in EnergyPlus, presents the new EMS features, describes the implementation of the module, and explores some of the possible applications for the new EMS capabilities in EnergyPlus.

Ellis, P. G.; Torcellini, P. A.; Crawley, D.

2008-01-01T23:59:59.000Z

436

Comparative analysis of net energy balance for satellite power systems (SPS) and other energy systems  

DOE Green Energy (OSTI)

The net energy balance of seven electric energy systems is assessed: two coal-based, one nuclear, two terrestrial solar, and two solar power satellites, with principal emphasis on the latter two systems. Solar energy systems require much less operating energy per unit of electrical output. However, on the basis of the analysis used here, coal and nuclear systems are two to five times more efficient at extracting useful energy from the primary resource base than are the solar energy systems. The payback period for all systems is less than 1.5 years, except for the terrestrial photovoltaic (19.8 yr) and the solar power satellite system (6.4 yr), both of which rely on energy-intensive silicon cells.

Cirillo, R.R.; Cho, B.S.; Monarch, M.R.; Levine, E.P.

1980-04-01T23:59:59.000Z

437

Intelligent Transportation Systems Deployment Analysis System | Open Energy  

Open Energy Info (EERE)

Intelligent Transportation Systems Deployment Analysis System Intelligent Transportation Systems Deployment Analysis System Jump to: navigation, search Tool Summary Name: Intelligent Transportation Systems Deployment Analysis System Agency/Company /Organization: Cambridge Systematics Sector: Energy Focus Area: Transportation Resource Type: Software/modeling tools Website: idas.camsys.com/ Country: United States Northern America References: http://idas.camsys.com/ The ITS Deployment Analysis System (IDAS) is software developed by the Federal Highway Administration that can be used in planning for Intelligent Transportation System (ITS) deployments. State, regional, and local planners can use IDAS to estimate the benefits and costs of ITS investments - which are either alternatives to or enhancements of traditional highway

438

Energy Conservation in the Bell System  

E-Print Network (OSTI)

The Bell System provides numerous examples of ways in which demand for energy may be reduced, resulting in conservation of resources and preservation of the environment. The System's telecommunications network links nearly 185 million telephones and handles in excess of 850 million calls a day. In providing telecommunications services, the System employs more than one million people, utilizes 32,000 buildings, and operates more than 190,000 motor vehicles (the world's largest owned and operated private fleet). However, the Bell System is not energy intensive. It uses about one tenth of one percent of the Nation's energy, while contributing over two percent of the gross national product. During 1982, the System used 13 percent less energy than in 1973, although all business indicators increased: volume of business, 97 percent; customer lines, 38 percent; calls, 55 percent; number of motor vehicles, 19 percent; and floor space, 31 percent.

Draper, W. C.

1983-01-01T23:59:59.000Z

439

Industrial Compressed Air System Energy Efficiency Guidebook.  

DOE Green Energy (OSTI)

Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

United States. Bonneville Power Administration.

1993-12-01T23:59:59.000Z

440

Scanning the Technology Energy Infrastructure Defense Systems  

E-Print Network (OSTI)

of their own telecommunications systems, which often consist of backbone fiber-optic or microwave connectingScanning the Technology Energy Infrastructure Defense Systems MASSOUD AMIN, SENIOR MEMBER, IEEE systems and to develop de- fense plans to protect the network against extreme contingencies caused

Amin, S. Massoud

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

CALIFORNIA ENERGY Small HVAC System Design Guide  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION Small HVAC System Design Guide DESIGNGUIDELINES October 2003 500;#12;Small HVAC System Design Guide Acknowledgements i Acknowledgements The products and outcomes presented; Darren Goody, PECI, Design Guide review. #12;Small HVAC System Design Guide Preface ii Preface The Small

442

Drilling Systems | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Drilling Systems Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for Drilling Systems 2 Geothermal ARRA Funded Projects for Drilling Systems Geothermal Lab Call Projects for Drilling Systems Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

443

NREL: Energy Systems Integration - Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Integration Facility (ESIF) workshops. October 2012: Increasing the Value of Microgrids through Focused RD&D Information included an overview of commercial microgrids,...

444

Power system - Energy Innovation Portal  

The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include co ...

445

Energy Systems and Population Health  

E-Print Network (OSTI)

from combustion of biomass or fossil fuels, even using bestof the combustion of fossil fuels for transport, electricitygas, particularly in fossil fuel-based systems, it is the

2004-01-01T23:59:59.000Z

446

Surface Energy Balance System (SEBS) Handbook  

Science Conference Proceedings (OSTI)

A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system at the Southern Great Plains (SGP), North Slope of Alaska (NSA), Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

Cook, DR

2011-02-14T23:59:59.000Z

447

Concentrator Photovoltaic System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrator Photovoltaic System Basics Concentrator Photovoltaic System Basics Concentrator Photovoltaic System Basics August 20, 2013 - 4:12pm Addthis Concentrator photovoltaic (PV) systems use less solar cell material than other PV systems. PV cells are the most expensive components of a PV system, on a per-area basis. A concentrator makes use of relatively inexpensive materials such as plastic lenses and metal housings to capture the solar energy shining on a fairly large area and focus that energy onto a smaller area-the solar cell. One measure of the effectiveness of this approach is the concentration ratio-in other words, how much concentration the cell is receiving. Concentrator PV systems have several advantages over flat-plate systems. First, concentrator systems reduce the size or number of cells needed and

448

Update on DOE Integrated Energy Systems Projects  

E-Print Network (OSTI)

The Integrated Energy Systems Program, Office of Industrial Programs U. S. Department of Energy has responsibilities in diverse areas of Industrial Energy Conservation. These activities include Energy Analysis and Diagnostic Centers (EADC) providing energy audit support to small and medium sized manufacturing plants, technology transfer support in conjunction with industrial sector companies and trade associations, funding and direction of the Energy Integrated Farm program, administration of the Industrial Energy Efficiency Improvement Program, and the Industrial Sector Technology Use Model (ISTUM). Recent technology transfer activity with the major industrial trade associations and manufacturing firms has been for the development of industrial energy conservation guides, publication of association conservation seminar proceedings, and cooperative assistance in selected projects designed to enhance conservation in industrial manufacturing activities. This paper briefly describes specific federal industrial conservation program achievements and current and planned technology transfer and industrial conservation projects extending into 1986.

Williams, T. E., Jr.

1984-01-01T23:59:59.000Z

449

Thermal Energy Storage/Waste Heat Recovery Applications in the Cement Industry  

E-Print Network (OSTI)

The cement industry is the most energy-intensive industry in the United States in terms of energy cost as a percentage of the product according to a 1973 report by the Cost of Living Council. Martin Marietta Aerospace, Denver Division, and the Portland Cement Association have studied the potential benefits of using waste heat recovery methods and thermal energy storage systems in the cement manufacturing process. This work was performed under DOE Contract No. EC-77-C-01-50S4. The study has been completed and illustrates very attractive cost benefits realized from waste heat recovery/thermal storage systems. This paper will identify and quantify the sources of rejected energy in the cement manufacturing process, establish uses of this energy, exhibit various energy storage concepts, and present a methodology for selection of most promising energy storage systems. Two storage systems show the best promise - rock beds and draw salt storage. Thermal performance and detailed economic analyses have been performed on these systems and will be presented. Through use of thermal energy storage in conjunction with waste heat electric power generation units, an estimated 2.4 x 1013 BTU per year, or an equivalent of 4.0 x 10 barrels of oil per year, can be conserved. Attractive rates of return on investment of the proposed systems are an incentive for utilization and further development.

Beshore, D. G.; Jaeger, F. A.; Gartner, E. M.

1979-01-01T23:59:59.000Z

450

Army Energy and Water Reporting System Assessment  

SciTech Connect

There are many areas of desired improvement for the Army Energy and Water Reporting System. The purpose of system is to serve as a data repository for collecting information from energy managers, which is then compiled into an annual energy report. This document summarizes reported shortcomings of the system and provides several alternative approaches for improving application usability and adding functionality. The U.S. Army has been using Army Energy and Water Reporting System (AEWRS) for many years to collect and compile energy data from installations for facilitating compliance with Federal and Department of Defense energy management program reporting requirements. In this analysis, staff from Pacific Northwest National Laboratory found that substantial opportunities exist to expand AEWRS functions to better assist the Army to effectively manage energy programs. Army leadership must decide if it wants to invest in expanding AEWRS capabilities as a web-based, enterprise-wide tool for improving the Army Energy and Water Management Program or simply maintaining a bottom-up reporting tool. This report looks at both improving system functionality from an operational perspective and increasing user-friendliness, but also as a tool for potential improvements to increase program effectiveness. The authors of this report recommend focusing on making the system easier for energy managers to input accurate data as the top priority for improving AEWRS. The next major focus of improvement would be improved reporting. The AEWRS user interface is dated and not user friendly, and a new system is recommended. While there are relatively minor improvements that could be made to the existing system to make it easier to use, significant improvements will be achieved with a user-friendly interface, new architecture, and a design that permits scalability and reliability. An expanded data set would naturally have need of additional requirements gathering and a focus on integrating with other existing data sources, thus minimizing manually entered data.

Deprez, Peggy C.; Giardinelli, Michael J.; Burke, John S.; Connell, Linda M.

2011-09-01T23:59:59.000Z

451

Energistic Systems | Open Energy Information  

Open Energy Info (EERE)

Energistic Systems Energistic Systems Jump to: navigation, search Logo: Energistic Systems Name Energistic Systems Address 13551 W. 43rd Street Dr Place Golden, Colorado Zip 80403 Sector Solar Product Solar PV and solar thermal systems Website http://www.energisticsystems.u Coordinates 39.749637°, -105.215984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.749637,"lon":-105.215984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

NREL: Electric Infrastructure Systems Research - Distributed Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Resources Test Facility Distributed Energy Resources Test Facility NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility includes generation, storage, and interconnection technologies as well as electric power system equipment capable of simulating a real-world electric system. Photo of the Distributed Energy Resources Test Facility and an adjacent solar photovoltaic array. The Distributed Energy Resources Test Facility is located at the National Wind Technology Center near Boulder, Colorado. Take a virtual tour of the DERTF. Researchers at the facility can vary equipment configurations and introduce common electrical disturbances such as sags, swells, and harmonic issues on

453

Roadmap to Achieve Energy Delivery Systems Cybersecurity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roadmap to Achieve Energy Delivery Systems Cybersecurity Roadmap to Achieve Energy Delivery Systems Cybersecurity ii Acknowledgements The Energy Sector Control Systems Working Group (ESCSWG) developed this roadmap in support of the Electricity Sub-sector Coordinating Council, Oil and Natural Gas Sector Coordinating Council, and the Government Coordinating Council for Energy under the Critical Infrastructure Partnership Advisory Council (CIPAC) Framework; the roadmap has been approved for release by these councils. The ESCSWG members volunteered their time and expertise to this effort and would like to thank the other participants for their valuable perspectives and contributions to this important effort. Special thanks go to the U.S. Department of Energy, which provided the funds and support needed to convene participants

454

Renewable Energy Laboratory for Lighting Systems  

E-Print Network (OSTI)

Nowadays, the electric lighting is an important part of our lives and also represents a significant part of the electric power consumption. Alternative solutions such as renewable energy applied in this domain are thus welcomed. This paper presents a workstation conceived for the study of photovoltaic solar energy for lighting systems by students of power engineering and civil engineering faculty. The proposed system is realized to study the generated photovoltaic solar energy parameters for lighting systems. For an easier way to study the most relevant parameters virtual instrumentation is implemented. National Instruments LabWindows CVI environment is used as a platform for virtual instrumentation. For future developments remote communication feature intends to be added on which currently remote monitoring of solar photovoltaic energy and electric energy parameters are monitored.

Dumitru Cristian; Gligor Adrian

2010-02-23T23:59:59.000Z

455

Renewable Energy Laboratory for Lighting Systems  

E-Print Network (OSTI)

Nowadays, the electric lighting is an important part of our lives and also represents a significant part of the electric power consumption. Alternative solutions such as renewable energy applied in this domain are thus welcomed. This paper presents a workstation conceived for the study of photovoltaic solar energy for lighting systems by students of power engineering and civil engineering faculty. The proposed system is realized to study the generated photovoltaic solar energy parameters for lighting systems. For an easier way to study the most relevant parameters virtual instrumentation is implemented. National Instruments LabWindows CVI environment is used as a platform for virtual instrumentation. For future developments remote communication feature intends to be added on which currently remote monitoring of solar photovoltaic energy and electric energy parameters are monitored.

Cristian, Dumitru

2010-01-01T23:59:59.000Z

456

Renewable Energy Positioning System: Energy Positioning: Control and Economics  

Science Conference Proceedings (OSTI)

GENI Project: The University of Washington and the University of Michigan are developing an integrated system to match well-positioned energy storage facilities with precise control technologies so the electric grid can more easily include energy from renewable power sources like wind and solar. Because renewable energy sources provide intermittent power, it is difficult for the grid to efficiently allocate those resources without developing solutions to store their energy for later use. The two universities are working with utilities, regulators, and the private sector to position renewable energy storage facilities in locations that optimize their ability to provide and transmit electricity where and when it is needed most. Expanding the network of transmission lines is prohibitively expensive, so combining well-placed storage facilities with robust control systems to efficiently route their power will save consumers money and enable the widespread use of safe, renewable sources of power.

None

2012-03-01T23:59:59.000Z

457

Special Assessment for Wind Energy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Special Assessment for Wind Energy Systems Special Assessment for Wind Energy Systems Special Assessment for Wind Energy Systems < Back Eligibility Utility Savings Category Wind Buying & Making Electricity Program Info Start Date 7/2001 State West Virginia Program Type Property Tax Incentive Rebate Amount Property tax basis reduced to approximately 25% of assessed value Provider West Virginia Division of Energy For the purposes of property tax assessment, utility-owned wind projects are considered to have a value equal to their salvage value, with certain limitations. This incentive effectively lowers the property tax base on utility-owned wind turbines from 100% of fair market value to as little as 24.95% of fair market value.* This results in an effective property tax rate on wind turbines that is 24.95% of the effective tax rate on most

458

Teletrol Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Teletrol Systems Inc Teletrol Systems Inc Jump to: navigation, search Name Teletrol Systems Inc. Place Manchester, New Hampshire Zip NH 03101 Product A global supplier of building automation and management systems and components designed to reduce energy consumption, improve occupant comfort and reduce overall operating expenses. References Teletrol Systems Inc.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Teletrol Systems Inc. is a company located in Manchester, New Hampshire . References ↑ "Teletrol Systems Inc." Retrieved from "http://en.openei.org/w/index.php?title=Teletrol_Systems_Inc&oldid=352103" Categories: Clean Energy Organizations Companies Organizations

459

Building Energy Software Tools Directory: System Analyzer  

NLE Websites -- All DOE Office Websites (Extended Search)

System Analyzer System Analyzer System Analyzer logo. Software package for load calculation and energy and economic comparative analysis. System Analyzer permits a quick evaluation of virtually any building, system, and equipment combination. Thus, it can be used either as a scoping tool to decide what systems may be appropriate for an initial design, or to get a general feeling of how one system/equipment combination may perform over another. If a certain combination seems especially promising, further analysis can be done by exporting inputs into TRACE 600. The possibilities are endless. And since the program is Windows-based, virtually anyone with minimal HVAC training and experience can use it. Keywords Energy analyses, load calculation, comparison of system and equipment

460

Energy Systems Integration | OpenEI Community  

Open Energy Info (EERE)

Energy Systems Integration Energy Systems Integration Home > Groups Content Group Activity By term Q & A Feeds Share your own status updates, and follow the updates & activities of others by creating your own account. Or, remember to log in If you already have an account. Groups Menu You must login in order to post into this group. Recent content OpenEI maintenance March 8-9, 2013 Research topics related to ESI Prospects for Nuclear Power(Davis 2012) A Framework for the Optimization of Integrated Energy Systems(Jain and Alleyne 2012) Energy System Integration(Smith 2001) more Group members (8) Managers: Aaronbeach Recent members: Jim mcveigh Derekhogue Ads15 Marklane Qinsun Wisconsin Weatherall Windows Payne 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy Systems Integration | OpenEI Community  

Open Energy Info (EERE)

Groups > Groups > Energy Systems Integration Groups > Groups > Energy Systems Integration Content Group Activity By term Q & A Feeds There are no feeds from external sites for this group. Groups Menu You must login in order to post into this group. Groups Menu You must login in order to post into this group. Group members (8) Managers: Aaronbeach Recent members: Jim mcveigh Derekhogue Ads15 Marklane Qinsun Wisconsin Weatherall Windows Payne Recent content OpenEI maintenance March 8-9, 2013 Research topics related to ESI Prospects for Nuclear Power(Davis 2012) A Framework for the Optimization of Integrated Energy Systems(Jain and Alleyne 2012) Energy System Integration(Smith 2001) more Group members (8) Managers: Aaronbeach Recent members: Jim mcveigh Derekhogue Ads15 Marklane Qinsun Wisconsin Weatherall Windows Payne

462

Adaptive power management in energy harvesting systems  

Science Conference Proceedings (OSTI)

Recently, there has been a substantial interest in the design of systems that receive their energy from regenerative sources such as solar cells. In contrast to approaches that attempt to minimize the power consumption we are concerned with adapting ...

Clemens Moser; Lothar Thiele; Davide Brunelli; Luca Benini

2007-04-01T23:59:59.000Z

463

Pathways to Sustainable European Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Pathways to Sustainable European Energy Systems Speaker(s): Filip Johnsson Date: May 11, 2007 - 12:00pm Location: 90-3122 Seminar HostPoint of Contact: Peng Xu This talk gives a...

464

Energy Storage Systems 2005 Peer Review  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on October 20, 2005 in San Francisco, CA. The agenda and ESS program overview presentation are below.

465

Ashe County- Wind Energy System Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

In 2007 Ashe County adopted a wind ordinance to regulate the use of wind-energy systems in unincorporated areas of the county and to describe the conditions by which a permit for installing such a...

466

Optimal dynamic management of energy systems: implementations ...  

Science Conference Proceedings (OSTI)

Abstract Management of multiple systems to generate energy is important with regard to the costs to incur, the effects on the environment and the flexibility of the ...... The average values of the coefficients were obtained from the dated values of ...

467

Energy Transport in the Vaidya System  

E-Print Network (OSTI)

Energy transport mechanisms can be generated by imposing relations between null tetrad Ricci components. Several kinds of mass and density transport generated by these relations are studied for the generalized Vaidya system.

J. P. Krisch; E. N. Glass

2005-03-21T23:59:59.000Z

468

Definition: Enhanced Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Definition Also Known As EGS, Engineered Geothermal Systems References http:www1.eere.energy.govgeothermalenhancedsystems.html Ret LikeLike UnlikeLike You like this.Sign...

469

Arisdyne Systems | Open Energy Information  

Open Energy Info (EERE)

Arisdyne Systems Arisdyne Systems Jump to: navigation, search Name Arisdyne Systems Place Cleveland, Ohio Zip 44142 Product Arisdyne Systems is a former subsidiary of Five Star Technologies that concentrates on development of biofuel processing technologies, including its patented Controlled Flow Cavitation technology. Coordinates 41.504365°, -81.690459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.504365,"lon":-81.690459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

470

Redwood Systems | Open Energy Information  

Open Energy Info (EERE)

Redwood Systems Redwood Systems Place Fremont, California Zip 94538 Product Redwood Systems is a Fremont-based technology developer of lighting management systems. Coordinates 44.2605°, -88.880509° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2605,"lon":-88.880509,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

471

Bioconversion energy systems: new developments and opportunities  

Science Conference Proceedings (OSTI)

A discussion on bioconversion applications in beneficiation, direct conversion, and biotreatment is presented. Bioconversion constitutes an important element in meeting the nation's near-term energy goals. Anaerobic digestion is preferred over other biological processes because it produces a clean fuel, it has commercial applications, it produces an energy product and by-product, pretreatment is not necessary, product gases are easily separated, and it has a higher net energy production efficiency than fermentation. Advanced anaerobic digestion systems are described. (DMC)

Ghosh, S.

1981-01-01T23:59:59.000Z

472

Photovoltaic Geographical Information System | Open Energy Information  

Open Energy Info (EERE)

Photovoltaic Geographical Information System Photovoltaic Geographical Information System Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaic Geographical Information System Focus Area: Renewable Energy Topics: Opportunity Assessment & Screening Website: re.jrc.ec.europa.eu/pvgis/ Equivalent URI: cleanenergysolutions.org/content/photovoltaic-geographical-information Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This tool provides a geographical inventory of solar energy resources and an assessment of the electricity generation from photovoltaic systems in Europe, Africa, and southwest Asia. The tools allows for analysis of the technical, environmental, and socio-economic factors of solar electricity generation. Users may access maps and posters generated using the tool, as

473

MHK Technologies/OMI Combined Energy System | Open Energy Information  

Open Energy Info (EERE)

OMI Combined Energy System OMI Combined Energy System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OMI Combined Energy System.png Technology Profile Primary Organization Ocean Motion International LLC OMI Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Combined Energy System CES consists of four sub system components a seawater wave pump a hydro turbine electric generator a reverse osmosis filtration unit and an electrolysis hydrogen generation unit The CES is designed to operate on a large offshore platform which is essentially a modified version of a standard modular offshore drilling unit The system produces potable water electricity and hydrogen which is delivered to shore through service piping and cabling The OMI WavePump is technically described as a mass displacement wave energy conversion device The patented seawater pump and heart of the CES is an innovative design which uses a small number of simple moving components for minimal maintenance and wear The hydro turbine electric generator is driven by the output of multiple WavePumps which provide a constant flow of high volume high pressure seawater

474

An Implementation of Intellignt Energy Saving System  

Science Conference Proceedings (OSTI)

This study was constructed an intelligent energy saving system that based on the components of Zigbee. We proposed a modular design to adapt various utilized environments, such as the lighting, air condition, office automation devices etc. We also implemented ... Keywords: Wireless Sensor Network, Energy-Saving, Context-Aware, Intelligent Control

Dong-liang Lee; Chung-liang Hsu

2011-08-01T23:59:59.000Z

475

Energy Engineering & Systems Analysis Success Stories  

E-Print Network (OSTI)

Energy Engineering & Systems Analysis Success Stories For further information, contact: Glenn vehicle information on performance, fuel economy, energy consumption and emissions output. The Challenge. Having the data available before design will accelerate the time to market as manufacturers will not have

Hudson, Randy

476

Hybrid energy storage system integration for vehicles  

Science Conference Proceedings (OSTI)

Energy consumption and the associated environmental impact are a pressing challenge faced by the transportation sector. Emerging electric-drive vehicles have shown promises for substantial reductions in petroleum use and vehicle emissions. Their success, ... Keywords: analysis, electric-drive vehicles, energy storage systems

Jia Wang; Kun Li; Qin Lv; Hai Zhou; Li Shang

2010-08-01T23:59:59.000Z

477

3rd annual biomass energy systems conference  

DOE Green Energy (OSTI)

The main objectives of the 3rd Annual Biomass Energy Systems Conference were (1) to review the latest research findings in the clean fuels from biomass field, (2) to summarize the present engineering and economic status of Biomass Energy Systems, (3) to encourage interaction and information exchange among people working or interested in the field, and (4) to identify and discuss existing problems relating to ongoing research and explore opportunities for future research. Abstracts for each paper presented were edited separately. (DC)

Not Available

1979-10-01T23:59:59.000Z

478

Power Contro Energy Management and Market Systems  

SciTech Connect

More efficient use of the nation's electrical energy infrastructure will result in minimizing the cost of energy to the end user. Using real time electrical market information coupled with defined rules, market opportunities can be identified that provide economic benefit for both users and marketers of electricity. This report describes the design of one such system and the features a fully functional system would provide. This report documents several investigated methods of controlling load diversity or shifting.

Tom Addison; Andrew Stanbury

2005-12-15T23:59:59.000Z

479

Solar ADEPT: Efficient Solar Energy Systems  

DOE Green Energy (OSTI)

Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

None

2011-01-01T23:59:59.000Z

480

The National Energy Modeling System: An overview  

Science Conference Proceedings (OSTI)

The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period of 1990 to 2010. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system. The second chapter describes the modeling structure. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. Additional background on the development of the system is provided in Appendix A of this report, which describes the EIA modeling systems that preceded NEMS. More detailed model documentation reports for all the NEMS modules are also available from EIA.

Not Available

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "marietta energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Integrated Energy and Greenhouse Gas Management System  

E-Print Network (OSTI)

With Climate Change legislation on the horizon, the need to integrate energy reduction initiatives with greenhouse gas reduction efforts is critical to manufactures competitiveness and financial strength going forward. MPC has developed an integrated Energy and Greenhouse Gas Management System that allows companies to reduce energy and carbon intensity at the same time all the while bolstering bottom line performance. Reducing energy use and greenhouse gases is not an option but a necessity today. All manufacturing companies need to develop in-house capabilities to manage these important resources or pay the price of high carbon taxes and/or face a depletion in operating margins. MPC will present a case history highlighting the steps taken, the results obtained and the lessons learned in developing an integrated Energy and Greenhouse Gas Management System with a major industrial manufacturing company in the Midwest. Key subject areas covered include: Integration of Climate Change and Energy Management Strategies- a winning approach to meet the challenge; Turn a potential cost of compliance into a new cash flow source; Leveraging Energy Management Systems to optimize savings; Navigating through the new Greenhouse Gas reporting requirements; Utilizing Plant and Corporate Energy Management Dashboards to Control Energy Consumption and Greenhouse Gas emissions.

Spates, C. N.

2010-01-01T23:59:59.000Z

482

Regenerative Energie Systeme RegEnSys | Open Energy Information  

Open Energy Info (EERE)

Regenerative Energie Systeme RegEnSys Regenerative Energie Systeme RegEnSys Jump to: navigation, search Name Regenerative Energie Systeme (RegEnSys) Place Frankenthal, Rhineland-Palatinate, Germany Zip 67227 Sector Solar Product Sale and installation of solar (thermal and PV) and ventilation systems. Coordinates 51.131202°, 14.106809° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.131202,"lon":14.106809,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

483

Wind Energy Systems Technology LLC | Open Energy Information  

Open Energy Info (EERE)

Systems Technology LLC Systems Technology LLC Jump to: navigation, search Logo: Wind Energy Systems Technology LLC Name Wind Energy Systems Technology LLC Address 17350 State Highway 249 Place Houston, Texas Zip 78701 Sector Wind energy Product Offshore wind project development, EPC contracting, distributed wind generation (hybrid) Website http://www.windenergypartners. Coordinates 29.957211°, -95.541563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.957211,"lon":-95.541563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

484

CyVolt Energy Systems | Open Energy Information  

Open Energy Info (EERE)

CyVolt Energy Systems CyVolt Energy Systems Jump to: navigation, search Name CyVolt Energy Systems Place Seattle, Washington Zip 98104 Product Seattle-based developer fuel cell-powered battery systems for portable, hand-held consumer electronics Coordinates 47.60356°, -122.329439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.60356,"lon":-122.329439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

485

Definition: Distribution Management System | Open Energy Information  

Open Energy Info (EERE)

Management System Management System Jump to: navigation, search Dictionary.png Distribution Management System A Distribution Management System (DMS) is a utility IT system capable of collecting, organizing, displaying and analyzing real-time or near real-time electric distribution system information. A DMS can also allow operators to plan and execute complex distribution system operations in order to increase system efficiency, optimize power flows, and prevent overloads. A DMS can interface with other operations applications such as geographic information systems (GIS), outage management systems (OMS), and customer information systems (CIS) to create an integrated view of distribution operations.[1] View on Wikipedia Wikipedia Definition In the recent years, utilization of electrical energy increased