Powered by Deep Web Technologies
Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Definition: Capacity Benefit Margin | Open Energy Information  

Open Energy Info (EERE)

Benefit Margin Benefit Margin Jump to: navigation, search Dictionary.png Capacity Benefit Margin The amount of firm transmission transfer capability preserved by the transmission provider for Load- Serving Entities (LSEs), whose loads are located on that Transmission Service Provider's system, to enable access by the LSEs to generation from interconnected systems to meet generation reliability requirements. Preservation of CBM for an LSE allows that entity to reduce its installed generating capacity below that which may otherwise have been necessary without interconnections to meet its generation reliability requirements. The transmission transfer capability preserved as CBM is intended to be used by the LSE only in times of emergency generation deficiencies.[1] Related Terms

2

U.S. Refining Capacity Utilization  

Reports and Publications (EIA)

This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in reported crude oil distillation capacities and utilization rates among different classes of refineries.

Tancred Lidderdale

1995-10-01T23:59:59.000Z

3

Evaluating the role of uncertainty in electric utility capacity planning  

SciTech Connect

This final report on Evaluating the Role of Uncertainty in Electric Utility Capacity Planning is divided into separate sections addressing demand, supply and the simultaneous consideration of both and describes several mathematical characterizations of the effects of uncertainty on the capacity expansion decision. The basic objective is to develop more robust models which can appropriately include the fundamental uncertainties associated with capacity expansion planning in the electric utility industry. Much of what has been developed in this project has been incorporated into a long-term, computer model for capacity expansion planning. A review is provided of certain deterministic capacity expansion methodologies. The effect of load curve uncertainty on capacity planning is considered and the use of a certain expected load curve to account for uncertainty in demand is proposed. How uncertainty influences the allocation of capital costs among the various load curve realizations is also discussed. The supply side uncertainties of fuel prices and random availability of generating units are considered. In certain cases it is shown that the use of the expected fuel costs will furnish a solution which minimizes the total expected costs. The effect of derating units to account for their random availability is also characterized. A stochastic linear program formulated to examine the simultaneous consideration of fuel cost and demand uncertainties is analyzed. This volume includes the report text one appendix with information on linear programming-based analysis of marginal cost pricing in the electric utility industry.

Soyster, A.L.

1981-08-31T23:59:59.000Z

4

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline Utilization & Capacity Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average utilization rate (flow relative to design capacity) of a natural gas pipeline system seldom reaches 100%. Factors that contribute to outages include: Scheduled or unscheduled maintenance Temporary decreases in market demand Weather-related limitations to operations

5

Electric utility capacity expansion and energy production models for energy policy analysis  

DOE Green Energy (OSTI)

This report describes electric utility capacity expansion and energy production models developed for energy policy analysis. The models use the same principles (life cycle cost minimization, least operating cost dispatching, and incorporation of outages and reserve margin) as comprehensive utility capacity planning tools, but are faster and simpler. The models were not designed for detailed utility capacity planning, but they can be used to accurately project trends on a regional level. Because they use the same principles as comprehensive utility capacity expansion planning tools, the models are more realistic than utility modules used in present policy analysis tools. They can be used to help forecast the effects energy policy options will have on future utility power generation capacity expansion trends and to help formulate a sound national energy strategy. The models make renewable energy source competition realistic by giving proper value to intermittent renewable and energy storage technologies, and by competing renewables against each other as well as against conventional technologies.

Aronson, E.; Edenburn, M.

1997-08-01T23:59:59.000Z

6

U.S. Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Gross Input to Atmospheric Crude Oil Distillation Units 15,283 15,709 16,327 16,490 16,306 16,162 1985-2013 Operable Capacity (Calendar Day) 17,814 17,815 17,815 17,815 17,815 17,818 1985-2013 Operating 17,005 17,228 17,239 17,450 17,439 17,623 1985-2013 Idle 809 587 576 365 376 195 1985-2013 Operable Utilization Rate (%) 85.8 88.2 91.7 92.6 91.5 90.7 1985-2013 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum of components due to independent rounding. See Definitions, Sources, and Notes link above for more information on this table. Release Date: 11/27/2013

7

WHAT GOOD IS WEALTH WITHOUT HEALTH? THE EFFECT OF HEALTH ON THE MARGINAL UTILITY OF CONSUMPTION  

E-Print Network (OSTI)

We estimate how the marginal utility of consumption varies with health. To do so, we develop a simple model in which the impact of health on the marginal utility of consumption can be estimated from data on permanent income, ...

Finkelstein, Amy

8

PAD District 4 Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

Gross Input to Atmospheric Crude Oil Distillation Units: 575: 577: 562: 542: 578: 587: 1985-2013: Operable Capacity (Calendar Day) 625: 625: 630: 630: 630: 630: 1985 ...

9

Quarterly Survey of Plant Capacity Utilization | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Quarterly Survey of Plant Capacity Utilization Manufacturing DataTools ResearchTech Services Apps Challenges Blogs Let's Talk Manufacturing You are here Data.gov Communities...

10

U.S. Refining Capacity Utilization - Energy Information Administration  

U.S. Energy Information Administration (EIA)

distillation utilization rate that exceeded their reported stream day capacities. The observation that almost 40 percent of the domestic refineries reported a one ...

11

U.S. Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View History Gross Input to Atmospheric Crude Oil Distillation Units 15,450 15,027 14,659 15,177 15,289 15,362 1985-2012 Operable Capacity (Calendar...

12

NREL: Energy Analysis - Utility-Scale Energy Technology Capacity Factors  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility-Scale Energy Technology Capacity Factors Utility-Scale Energy Technology Capacity Factors This chart indicates the range of recent capacity factor estimates for utility-scale renewable energy technologies. The dots indicate the average, and the vertical lines represent the range: Average +1 standard deviation and average -1 standard deviation. If you are seeking utility-scale technology cost and performance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation. Capital Cost (September 2013 Update) Operations & Maintenance (September 2013 Update) Utility-Scale Capacity Factors Useful Life Land Use by System Technology LCOE Calculator Capacity factor for energy technologies. For more information, please download supporting data for energy technology costs.

13

Midwest (PADD 2) Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

Gross Input to Atmospheric Crude Oil Distillation Units: 3,318: 3,217: 3,151: 3,087: 3,336: 3,572: 1985-2013: Operable Capacity (Calendar Day) 3,769: 3,769: 3,769 ...

14

U.S. Percent Utilization of Refinery Operable Capacity (Percent)  

U.S. Energy Information Administration (EIA)

Annual : Download Data (XLS File) U.S. Percent Utilization of Refinery Operable Capacity (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1985: 74.0 ...

15

Capacity Utilization Study for Aviation Security Cargo Inspection Queuing System  

SciTech Connect

In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number of cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system s ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.

Allgood, Glenn O [ORNL; Olama, Mohammed M [ORNL; Lake, Joe E [ORNL; Brumback, Daryl L [ORNL

2010-01-01T23:59:59.000Z

16

Michalis Nikiforos On the Desired Rate of Capacity Utilization  

E-Print Network (OSTI)

This paper examines the endogeneity (or lack thereof) of the rate of capacity utilization in the long run within the context of the controversy surrounding the Kaleckian model of growth and distribution. We argue that the proposed long-run dynamic adjustment, proposed by Kaleckian scholars, lacks a coherent economic rationale. We provide economic justification for the adjustment of the desired rate of utilization towards the actual rate on behalf of a cost-minimizing firm, after examining the factors that determine the utilization of resources. The cost minimizing firm has an incentive to increase the utilization of its capital if the rate of the returns to scale decreases as its production increases. We show that there are evidence in the theory and the empirical research that justify this behavior of returns to scale. In that way the desired rate of utilization becomes endogenous.

Michalis Nikiforos; Laura Barbosa De Carvalho; Christian Schoder; Jonathan Cogliano For Useful

2011-01-01T23:59:59.000Z

17

Electrical utilities model for determining electrical distribution capacity  

Science Conference Proceedings (OSTI)

In its simplest form, this model was to obtain meaningful data on the current state of the Site`s electrical transmission and distribution assets, and turn this vast collection of data into useful information. The resulting product is an Electrical Utilities Model for Determining Electrical Distribution Capacity which provides: current state of the electrical transmission and distribution systems; critical Hanford Site needs based on outyear planning documents; decision factor model. This model will enable Electrical Utilities management to improve forecasting requirements for service levels, budget, schedule, scope, and staffing, and recommend the best path forward to satisfy customer demands at the minimum risk and least cost to the government. A dynamic document, the model will be updated annually to reflect changes in Hanford Site activities.

Fritz, R.L., Westinghouse Hanford, Richland, WA

1997-09-03T23:59:59.000Z

18

FINREG : a financialregulatory model for utility capacity expansion plan evaluation  

E-Print Network (OSTI)

A corporate financial/regulatory model, called FINREG, is presented to simulate a utility's accounting practices, financial policy and constraints, and ratemaking environment. For each year of simulation FINREG will yield ...

Klosowicz, Peter C.

1981-01-01T23:59:59.000Z

19

Impact of 1980 scheduled capacity additions on electric-utility oil consumption  

SciTech Connect

The electric-utility sector currently consumes approximately 8% of the total oil used in the Nation. This oil represented about 15% of total fuel consumed by electric utilities in 1979. Two important factors that affect the level of utility oil consumption in 1980 are the substantial increase in coal-fired generating capacity and the uncertainty surrounding nuclear-plant licensing. With particular emphasis on these considerations, this report analyzes the potential for changes in electric-utility oil consumption in 1980 relative to the 1979 level. Plant conversions, oil to coal, for example, that may occur in 1980 are not considered in this analysis. Only the potential reduction in oil consumption resulting from new generating-capacity additions is analyzed. Changes in electric-utility oil consumption depend on, among other factors, regional-electricity-demand growth and generating-plant mix. Five cases are presented using various electricity-demand-growth rate assumptions, fuel-displacement strategies, and nuclear-plant-licensing assumptions. In general, it is likely that there will be a reduction in electric-utility oil consumption in 1980. Using the two reference cases of the report, this reduction is projected to amount to a 2 to 5% decrease from the 1979 oil-consumption level; 7% reduction is the largest reduction projected.

Gielecki, M.; Clark, G.; Roberts, B.

1980-08-01T23:59:59.000Z

20

Natural gas repowering creates new capacity and efficiency options for utilities  

Science Conference Proceedings (OSTI)

Repowering of aging electrical generation units in the U.S. is becoming increasingly accepted as a key technology for meeting future electrical demands. Repowering of steam electric generating capacity can be broadly defined as the replacement of existing equipment with new, more efficient systems that also offer lower emissions and substantially increased capacity. The feasibility of repowering units has been largely established. The basic equipment needed for gas-based repowering, including state-of-the-art gas turbines and heat recovery steam generators, are considered established and mature technologies by the utility industry. Nevertheless, important questions exist about the future of the repowering market. GRI had addressed these issues through three different projects in the last year: A technology-based, bottom-up study of repowering issues and markets; A top-down, capacity growth/demographic study of repowering markets; and A workshop with gas equipment and electric utility representative to discuss the future of gas repowering. These studies are summarized.

NONE

1995-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

An examination of the costs and critical characteristics of electric utility distribution system capacity enhancement projects  

Science Conference Proceedings (OSTI)

This report classifies and analyzes the capital and total costs (e.g., income tax, property tax, depreciation, centralized power generation, insurance premiums, and capital financing) associated with 130 electricity distribution system capacity enhancement projects undertaken during 1995-2002 or planned in the 2003-2011 time period by three electric power utilities operating in the Pacific Northwest. The Pacific Northwest National Laboratory (PNNL), in cooperation with participating utilities, has developed a large database of over 3,000 distribution system projects. The database includes brief project descriptions, capital cost estimates, the stated need for each project, and engineering data. The database was augmented by additional technical (e.g., line loss, existing substation capacities, and forecast peak demand for power in the area served by each project), cost (e.g., operations, maintenance, and centralized power generation costs), and financial (e.g., cost of capital, insurance premiums, depreciations, and tax rates) data. Though there are roughly 3,000 projects in the database, the vast majority were not included in this analysis because they either did not clearly enhance capacity or more information was needed, and not available, to adequately conduct the cost analyses. For the 130 projects identified for this analysis, capital cost frequency distributions were constructed, and expressed in terms of dollars per kVA of additional capacity. The capital cost frequency distributions identify how the projects contained within the database are distributed across a broad cost spectrum. Furthermore, the PNNL Energy Cost Analysis Model (ECAM) was used to determine the full costs (e.g., capital, operations and maintenance, property tax, income tax, depreciation, centralized power generation costs, insurance premiums and capital financing) associated with delivering electricity to customers, once again expressed in terms of costs per kVA of additional capacity. The projects were sorted into eight categories (capacitors, load transfer, new feeder, new line, new substation, new transformer, reconductoring, and substation capacity increase) and descriptive statistics (e.g., mean, total cost, number of observations, and standard deviation) were constructed for each project type. Furthermore, statistical analysis has been performed using ordinary least squares regression analysis to identify how various project variables (e.g., project location, the primary customer served by the project, the type of project, the reason for the upgrade, size of the upgrade) impact the unit cost of the project.

Balducci, Patrick J.; Schienbein, Lawrence A.; Nguyen, Tony B.; Brown, Daryl R.; Fathelrahman, Eihab M.

2004-06-01T23:59:59.000Z

22

Regional Reserve Margins  

Science Conference Proceedings (OSTI)

This report explores the status of reserve margins across the country. Reserve margins represent the margin of excess capacity compared to demand. It is commonly calculated as the fraction of unused capacity during the summer peak. Simple in concept, the numbers can be difficult to calculate because of changes in geographic boundaries between regions, different views of what capacity qualifies to be counted, and changes in estimates of demand. This report provides a comprehensive and consistently calcula...

2009-03-23T23:59:59.000Z

23

Capacity mapping for optimum utilization of pulverizers for coal fired boilers - article no. 032201  

Science Conference Proceedings (OSTI)

Capacity mapping is a process of comparison of standard inputs with actual fired inputs to assess the available standard output capacity of a pulverizer. The base capacity is a function of grindability; fineness requirement may vary depending on the volatile matter (VM) content of the coal and the input coal size. The quantity and the inlet will change depending on the quality of raw coal and output requirement. It should be sufficient to dry pulverized coal (PC). Drying capacity is also limited by utmost PA fan power to supply air. The PA temperature is limited by air preheater (APH) inlet flue gas temperature; an increase in this will result in efficiency loss of the boiler. The higher PA inlet temperature can be attained through the economizer gas bypass, the steam coiled APH, and the partial flue gas recirculation. The PS/coal ratioincreases with a decrease in grindability or pulverizer output and decreases with a decrease in VM. The flammability of mixture has to be monitored on explosion limit. Through calibration, the PA flow and efficiency of conveyance can be verified. The velocities of coal/air mixture to prevent fallout or to avoid erosion in the coal carrier pipe are dependent on the PC particle size distribution. Metal loss of grinding elements inversely depends on the YGP index of coal. Variations of dynamic loading and wearing of grinding elements affect the available milling capacity and percentage rejects. Therefore, capacity mapping in necessary to ensure the available pulverizer capacity to avoid overcapacity or undercapacity running of the pulverizing system, optimizing auxiliary power consumption. This will provide a guideline on the distribution of raw coal feeding in different pulverizers of a boiler to maximize system efficiency and control, resulting in a more cost effective heat rate.

Bhattacharya, C. [National Power Training Institute, Durgapur (India)

2008-09-15T23:59:59.000Z

24

Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity  

SciTech Connect

Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations – may cause some voltage control challenges or overloading problems, respectively. But when combined, there – at least intuitively – could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

2012-11-30T23:59:59.000Z

25

Is there a case for broadband utility communications networks? Valuing and pricing incremental communications capacity on electric utility smart grid networks  

SciTech Connect

Analysis of the potential for selling non-utility uses of broadband capability constructed in conjunction with Smart Grid/AMI deserves careful consideration. These services can be provided in a manner that neither creates unfair competition nor results in cross-subsidization of unregulated services by regulated services. (author)

Heidell, James; Ware, Harold

2010-01-15T23:59:59.000Z

26

Capacity and Capacity Utilization in Fishing Industries  

E-Print Network (OSTI)

help design vessel decommissioning schemes such as a vesselof capital to reduce in decommissioning schemes, although it15 3.2. DEA and Vessel Decommissioning The need for vessel

Kirkley, James E; Squires, Dale

1999-01-01T23:59:59.000Z

27

Financial constraints in capacity planning: a national utility regulatory model (NUREG). Volume III of III: software description. Final report  

Science Conference Proceedings (OSTI)

This volume is the software description for the National Utility Regulatory Model (NUREG). This is the third of three volumes provided by ICF under contract number DEAC-01-79EI-10579. These three volumes are: a manual describing the NUREG methodology; a users guide; and a description of the software. This manual describes the software which has been developed for NUREG. This includes a listing of the source modules. All computer code has been written in FORTRAN.

None

1981-10-29T23:59:59.000Z

28

Electricity prices in a competitive environment: Marginal cost pricing of generation services and financial status of electric utilities. A preliminary analysis through 2015  

SciTech Connect

The emergence of competitive markets for electricity generation services is changing the way that electricity is and will be priced in the United States. This report presents the results of an analysis that focuses on two questions: (1) How are prices for competitive generation services likely to differ from regulated prices if competitive prices are based on marginal costs rather than regulated {open_quotes}cost-of-service{close_quotes} pricing? (2) What impacts will the competitive pricing of generation services (based on marginal costs) have on electricity consumption patterns, production costs, and the financial integrity patterns, production costs, and the financial integrity of electricity suppliers? This study is not intended to be a cost-benefit analysis of wholesale or retail competition, nor does this report include an analysis of the macroeconomic impacts of competitive electricity prices.

1997-08-01T23:59:59.000Z

29

Financial constraints in capacity planning: a national utility regulatory model (NUREG). Volume I of III: methodology. Final report  

SciTech Connect

This report develops and demonstrates the methodology for the National Utility Regulatory (NUREG) Model developed under contract number DEAC-01-79EI-10579. It is accompanied by two supporting volumes. Volume II is a user's guide for operation of the NUREG software. This includes description of the flow of software and data, as well as the formats of all user data files. Finally, Volume III is a software description guide. It briefly describes, and gives a listing of, each program used in NUREG.

Not Available

1981-10-29T23:59:59.000Z

30

GENERATING CAPACITY  

E-Print Network (OSTI)

Evidence from the U.S. and some other countries indicates that organized wholesale markets for electrical energy and operating reserves do not provide adequate incentives to stimulate the proper quantity or mix of generating capacity consistent with mandatory reliability criteria. A large part of the problem can be associated with the failure of wholesale spot market prices for energy and operating reserves to rise to high enough levels during periods when generating capacity is fully utilized. Reforms to wholesale energy markets, the introduction of well-design forward capacity markets, and symmetrical treatment of demand response and generating capacity resources to respond to market and institutional imperfections are discussed. This policy reform program is compatible with improving the efficiency of spot wholesale electricity markets, the continued evolution of competitive retail markets, and restores incentives for efficient investment in generating capacity consistent with operating reliability criteria applied by system operators. It also responds to investment disincentives that have been associated with volatility in wholesale energy prices, limited hedging opportunities and to concerns about regulatory opportunism. 1

Paul L. Joskow; Paul L. Joskow; Paul L. Joskow

2006-01-01T23:59:59.000Z

31

Marginal cost of electricity 1980-1995: an approximation based on the cost of new coal and nuclear generating plants  

SciTech Connect

This report presents estimates of the costs of new coal and nuclear base-load generating capacity which is either currently under construction or planned by utilities to meet their load-growth expectations during the period from 1980 to 1995. These capacity cost estimates are used in conjunction with announced plant capacities and commercial-operation dates to develop state-level estimates of busbar costs of electricity. From these projected busbar costs, aggregated estimates of electricity costs at the retail level are developed for DOE Regions. The introductory chapter explains the rationale for using the cost of electricity from base-load plants to approximate the marginal cost of electricity. The next major section of the report outlines the methodology and major assumptions used. This is followed by a detailed description of the empirical analysis, including the equations used for each of the cost components. The fourth section presents the resultant marginal cost estimates.

Nieves, L.A.; Patton, W.P.; Harrer, B.J.; Emery, J.C.

1980-07-01T23:59:59.000Z

32

Marginal, Erodible Land Retirement Policy (Minnesota) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marginal, Erodible Land Retirement Policy (Minnesota) Marginal, Erodible Land Retirement Policy (Minnesota) Marginal, Erodible Land Retirement Policy (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Environmental Regulations It is state policy to encourage the retirement of marginal, highly erodible

33

Modeling Capacity Reservation Contract  

E-Print Network (OSTI)

In this paper we model a scenario where a chip designer (buyer) buys capacity from chip manufacturers (suppliers) in the presence of demand uncertainty faced by the buyer. We assume that the buyer knows the probability distribution of his demand. The supplier offers the buyer to reserve capacity in advance at a price that is lower than the historical average of the spot price. The supplier’s price (if the buyer reserves capacity in advance) is function of her capacity, demand for her capacity, unit production cost, the average spot market price and the amount of capacity reserved by the buyer. Based on these parameters we derive the price the suppliers will charge. We formulate the problem from the buyer’s perspective. The buyer’s decisions are how much capacity to reserve and from how many suppliers. The optimal solution is obtained numerically. Our model addresses the following issues that are not covered in the current literature on capacity reservation models. In the existing literature the supplier’s price is an exogenous parameter. We model the supplier’s price from relevant parameters mentioned above. This makes our model richer. For example, if the expected capacity utilization for the supplier is likely to be low then the supplier will charge a lower price for capacity reservation. In reality, the buyer sources from multiple suppliers. Most mathematical models on capacity reservation, we are aware of, assumes a single buyer and a single supplier. We generalize this to a single buyer and multiple suppliers.

Jishnu Hazra; B. Mahadevan; Sudhi Seshadri

2002-01-01T23:59:59.000Z

34

Regional Profiles: Pipeline Capacity and Service  

U.S. Energy Information Administration (EIA)

Regional Profiles: Pipeline Capacity ... large petrochemical and electric utility industries drawn there ... accounts for large electricity load ...

35

Measuring wind plant capacity value  

DOE Green Energy (OSTI)

Electric utility planners and wind energy researchers pose a common question: What is the capacity value of a wind plant? Tentative answers, which can be phrased in a variety of ways, are based on widely varying definitions and methods of calculation. From the utility`s point of view, a resource that has no capacity value also has a reduced economic value. Utility planners must be able to quantify the capacity value of a wind plant so that investment in conventional generating capacity can be potentially offset by the capacity value of the wind plant. Utility operations personnel must schedule its conventional resources to ensure adequate generation to meet load. Given a choice between two resources, one that can be counted on and the other that can`t, the utility will avoid the risky resource. This choice will be reflected in the price that the utility will pay for the capacity: higher capacity credits result in higher payments. This issue is therefore also important to the other side of the power purchase transaction -- the wind plant developer. Both the utility and the developer must accurately assess the capacity value of wind. This article summarizes and evaluates some common methods of evaluating capacity credit. During the new era of utility deregulation in the United States, it is clear that many changes will occur in both utility planning and operations. However, it is my judgement that the evaluation of capacity credit for wind plants will continue to play an important part in renewable energy development in the future.

Milligan, M.R.

1996-01-01T23:59:59.000Z

36

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

37

Utility spot pricing study : Wisconsin  

E-Print Network (OSTI)

Spot pricing covers a range of electric utility pricing structures which relate the marginal costs of electric generation to the prices seen by utility customers. At the shortest time frames prices change every five ...

Caramanis, Michael C.

1982-01-01T23:59:59.000Z

38

Assessment of Reactivity Margins and Loading Curves for PWR Burnup Credit Cask Designs  

SciTech Connect

This report presents studies to assess reactivity margins and loading curves for pressurized water reactor (PWR) burnup-credit criticality safety evaluations. The studies are based on a generic high-density 32-assembly cask and systematically vary individual calculational (depletion and criticality) assumptions to demonstrate the impact on the predicted effective neutron multiplication factor, k{sub eff}, and burnup-credit loading curves. The purpose of this report is to provide a greater understanding of the importance of input parameter variations and quantify the impact of calculational assumptions on the outcome of a burnup-credit evaluation. This study should provide guidance to regulators and industry on the technical areas where improved information will most enhance the estimation of accurate subcritical margins. Based on these studies, areas where future work may provide the most benefit are identified. The report also includes an evaluation of the degree of burnup credit needed for high-density casks to transport the current spent nuclear fuel inventory. By comparing PWR discharge data to actinide-only based loading curves and determining the number of assemblies that meet the loading criteria, this evaluation finds that additional negative reactivity (through either increased credit for fuel burnup or cask design/utilization modifications) is necessary to accommodate the majority of current spent fuel assemblies in high-capacity casks. Assemblies that are not acceptable for loading in the prototypic high-capacity cask may be stored or transported by other means (e.g., lower capacity casks that utilize flux traps and/or increased fixed poison concentrations or high-capacity casks with design/utilization modifications).

Wagner, J.C.

2002-12-17T23:59:59.000Z

39

Heat Exchanger Thermal Performance Margin Guidelines  

Science Conference Proceedings (OSTI)

This report provides utility engineers with guidance on how to identify the thermal performance margin that is available in a given heat exchanger by comparing the thermal performance requirement at design limiting conditions to the thermal performance capability of the heat exchanger under those same conditions.

2005-11-30T23:59:59.000Z

40

Introduction to the Marginal Value Approach for Fossil Asset Management  

Science Conference Proceedings (OSTI)

As power markets become competitive, utilities will benefit from closely monitoring their fossil-fleet investment and deployment decisions. Adopting a marginal value approach for analyzing fossil asset management (FAM) decisions gives utilities a framework for systematically quantifying the corporate-level value of utility decisions.

1995-04-12T23:59:59.000Z

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Working crude oil storage capacity at Cushing, Oklahoma rises ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, ... as reported in EIA's recently released report on Working and Net Available Shell Storage Capacity. Utilization of working storage capacity ...

42

Solar Energy and Capacity Value (Fact Sheet), NREL (National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy and Capacity Value e Solar Energy Can Provide Valuable Capacity to Utilities and Power System Operators Solar photovoltaic (PV) systems and concentrating solar power...

43

Maintaining plant safety margins  

SciTech Connect

The Final Safety Analysis Report Forms the basis of demonstrating that the plant can operate safely and meet all applicable acceptance criteria. In order to assure that this continues through each operating cycle, the safety analysis is reexamined for each reload core. Operating limits are set for each reload core to assure that safety limits and applicable acceptance criteria are not exceeded for postulated events within the design basis. These operating limits form the basis for plant operation, providing barriers on various measurable parameters. The barriers are refereed to as limiting conditions for operation (LCO). The operating limits, being influenced by many factors, can change significantly from cycle to cycle. In order to be successful in demonstrating safe operation for each reload core (with adequate operating margin), it is necessary to continue to focus on ways to maintain/improve existing safety margins. Existing safety margins are a function of the plant type (boiling water reactor/pressurized water reactor (BWR/PWR)), nuclear system supply (NSSS) vendor, operating license date, core design features, plant design features, licensing history, and analytical methods used in the safety analysis. This paper summarizes the experience at Yankee Atomic Electric Company (YAEC) in its efforts to provide adequate operating margin for the plants that it supports.

Bergeron, P.A.

1989-01-01T23:59:59.000Z

44

Solar Energy and Capacity Value (Fact Sheet)  

SciTech Connect

This is a one-page, two-sided fact sheet on the capacity of solar power to provide value to utilities and power system operators.

Not Available

2013-09-01T23:59:59.000Z

45

Texas Gulf Coast Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum ...

46

Texas Inland Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum ...

47

Midwest (PADD 2) Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

Process: Area: 2007 2008 2009 2010 2011 2012 View History; Gross Input to Atmospheric Crude Oil Distillation Units: 3,238: 3,244: 3,153: 3,305: 3,395: 3,425: 1985-2012:

48

PAD District 5 Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum ...

49

New Mexico Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum ...

50

RISK-INFORMED SAFETY MARGIN CHARACTERIZATION  

Science Conference Proceedings (OSTI)

The concept of safety margins has served as a fundamental principle in the design and operation of commercial nuclear power plants (NPPs). Defined as the minimum distance between a system’s “loading” and its “capacity”, plant design and operation is predicated on ensuring an adequate safety margin for safety-significant parameters (e.g., fuel cladding temperature, containment pressure, etc.) is provided over the spectrum of anticipated plant operating, transient and accident conditions. To meet the anticipated challenges associated with extending the operational lifetimes of the current fleet of operating NPPs, the United States Department of Energy (USDOE), the Idaho National Laboratory (INL) and the Electric Power Research Institute (EPRI) have developed a collaboration to conduct coordinated research to identify and address the technological challenges and opportunities that likely would affect the safe and economic operation of the existing NPP fleet over the postulated long-term time horizons. In this paper we describe a framework for developing and implementing a Risk-Informed Safety Margin Characterization (RISMC) approach to evaluate and manage changes in plant safety margins over long time horizons.

Nam Dinh; Ronaldo Szilard

2009-07-01T23:59:59.000Z

51

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

52

Solar Valuation in Utility Planning Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Valuation in Utility Planning Studies Solar Valuation in Utility Planning Studies Title Solar Valuation in Utility Planning Studies Publication Type Presentation Year of Publication 2013 Authors Mills, Andrew D., and Ryan H. Wiser Keywords electricity markets and policy group, energy analysis and environmental impacts department, renewable energy: policy Abstract This webinar was presented by the Clean Energy States Alliance and featured Andrew Mills of Lawrence Berkeley National Lab (LBNL) discussing new research on solar valuation that he and his colleague, Ryan Wiser, have recently published. As renewable technologies mature, recognizing and evaluating their economic value will become increasingly important for justifying their expanded use. In their report, Mills and Wiser used a unique investment and dispatch model to evaluate the changes in the long-run value of variable renewables with increasing penetration levels, based on a case study of California. They found that the value of solar is high at low penetration levels owing to the capacity and energy value of solar, even accounting for an increased need for ancillary services and imperfect forecastability. At higher penetration levels, the marginal value of additional PV and concentrating solar power (CSP) without thermal storage declines, largely due to a decrease in capacity value. The value of CSP with thermal storage remains higher for similar penetration levels owing to the ability to continue to produce energy for hours after the sun goes down. By way of comparison, in California the value of wind at low penetrations is less than the value of solar at low penetrations, but its value is less sensitive to penetration levels. In addition to discussing these findings, Mills reviewed a recent sample of utility planning studies and procurement processes to identify how current practices reflect these drivers of solar's economic value. The LBNL report found that many of the utilities have a framework to capture and evaluate solar's value, but approaches vary widely: only a few studies appear to complement the framework with detailed analysis of key factors such as capacity credits, integration costs, and tradeoffs between distributed and utility-scale photovoltaics. In particular Mills and Wiser found that studies account for the capacity value of solar, though capacity credit estimates with increasing penetration can be improved. Similarly, few planning studies currently reflect the full range of potential benefits from adding thermal storage and/or natural gas augmentation to concentrating solar power plants.

53

Margins up; consumption down  

SciTech Connect

The results of a survey of dealers in the domestic fuel oil industry are reported. Wholesale prices, reacting to oversupply, decreased as did retail prices; retail prices decreased at a slower rate so profit margins were larger. This trend produced competitive markets as price-cutting became the method for increasing a dealer's share of the profits. Losses to other fuels decreased, when the figures were compared to earlier y; and cash flow was very good for most dealers. In summary, profits per gallon of oil delivered increased, while the consumption of gasoline per customer decreased. 22 tables.

Mantho, M.

1983-09-01T23:59:59.000Z

54

Long-run marginal costs lower than average costs  

SciTech Connect

The thesis of this article is that the long-run marginal costs of electricity are not always greater than the present average costs, as is often assumed. As long as short-run costs decrease with new plant additions, the long-run marginal cost is less than long-run average cost. When average costs increase with new additions, long-run marginal costs are greater than long-run average costs. The long-run marginal costs of a particular utility may be less than, equal to, or greater than its long-run average costs - even with inflation present. The way to determine which condition holds for a given utility is to estimate costs under various combinations of assumptions: probable load growth, zero load growth, and load growth greater than expected; and changes in load factor with attendant costs. Utilities that can demonstrate long-run marginal costs lower than long-run average costs should be encouraged to build plant and increase load, for the resulting productivity gains and slowing of inflation. Utilities that face long-run marginal costs greater than long-run average costs should discourage growth in sales through any available means.

Hunter, S.R.

1980-01-03T23:59:59.000Z

55

Dynamic Long-Term Modelling of Generation Capacity Investment and Capacity Margins  

E-Print Network (OSTI)

). Total interest accumulated during construction is given by TIACx = ICx ? cxpx. Finally, DCx is the present worth of the decommissioning cost. Only nuclear projects have considerable decommissioning costs (estimated at 12% of px4); in the case of other... plant types the decommissioning liabilities are assumed to be offset by the salvage value of the assets [22]. Nuclear decommissioning is assumed to take 150 years and the equivalent incidence of capital outlay matrix contains 0.05 for the first 10...

Eager, Dan; Hobbs, Benjamin; Bialek, Janusz

2012-04-25T23:59:59.000Z

56

Loads, capacity, and failure rate modeling  

SciTech Connect

Both failure rate and load capacity (stress-strength) interferenece methodologies are employed in the reliability analysis at nuclear facilities. Both of the above have been utilized in a heuristic failure rate model in terms of load capacity inference. Analytical solutions are used to demonstrate that infant mortality and random aging failures may be expressed implicity in terms of capacity variability, load variability, and capacity deterioration, and that mode interactions play a role in the formation of the bathtub curve for failure rates.

Lewis, E.E.; Chen, Hsin-Chieh

1994-12-31T23:59:59.000Z

57

Battery Capacity Measurement And Analysis  

E-Print Network (OSTI)

In this paper, we look at different battery capacity models that have been introduced in the literatures. These models describe the battery capacity utilization based on how the battery is discharged by the circuits that consume power. In an attempt to validate these models, we characterize a commercially available lithium coin cell battery through careful measurements of the current and the voltage output of the battery under different load profile applied by a micro sensor node. In the result, we show how the capacity of the battery is affected by the different load profile and provide analysis on whether the conventional battery models are applicable in the real world. One of the most significant finding of our work will show that DC/DC converter plays a significant role in determining the battery capacity, and that the true capacity of the battery may only be found by careful measurements.

Using Lithium Coin; Sung Park; Andreas Savvides; Mani B. Srivastava

2001-01-01T23:59:59.000Z

58

Capacity Markets for Electricity  

E-Print Network (OSTI)

ternative Approaches for Power Capacity Markets”, Papers andand Steven Stoft, “Installed Capacity and Price Caps: Oil onElectricity Markets Have a Capacity requirement? If So, How

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

59

2. Gas Productive Capacity  

U.S. Energy Information Administration (EIA)

2. Gas Productive Capacity Gas Capacity to Meet Lower 48 States Requirements The United States has sufficient dry gas productive capacity at the wellhead to meet ...

60

Margin turnaround at hand: reprieve for US refiners  

SciTech Connect

After unseasonal US gasoline price deterioration during the summer driving months, a turnaround in rack (unbranded, undelivered wholesale) prices is helping to reverse the downward trend in refining margins on the Gulf Coast. In turn, the improved margins are buoying up light crude oil prices in the US Gulf Coast and strengthening spot-market prices. A graph tracks apparent margins on four important crudes utilized on the US Gulf Coast. August 1984 saw negative margins even for heavy Venezuelan Lagunillas (15/sup 0/ API) and Mexican Maya (22/sup 0/ API), but both were again positive in September. Energy Detente refining netback data for September 1984 are presented for the US Gulf Coast, the US West Coast, Rotterdam, and Singapore. The fuel price/tax series and industrial fuel prices are presented for September 1984 for countries of the Western Hemisphere.

1984-09-26T23:59:59.000Z

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

FAQs about Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

about Storage Capacity about Storage Capacity How do I determine if my tanks are in operation or idle or non-reportable? Refer to the following flowchart. Should idle capacity be included with working capacity? No, only report working capacity of tanks and caverns in operation, but not for idle tanks and caverns. Should working capacity match net available shell in operation/total net available shell capacity? Working capacity should be less than net available shell capacity because working capacity excludes contingency space and tank bottoms. What is the difference between net available shell capacity in operation and total net available shell capacity? Net available shell capacity in operation excludes capacity of idle tanks and caverns. What do you mean by transshipment tanks?

62

The Marginal Utility of Cooperation in Sensor Networks  

E-Print Network (OSTI)

Electrical and Computer Engineering, and Coordinated ScienceMitter Electrical Engineering and Computer Science MIT,Shah Electrical Engineering and Computer Science, MIT,

Y.-C. Tong; G. Pottie

2008-01-01T23:59:59.000Z

63

New EIA data show total grid-connected photovoltaic solar capacity ...  

U.S. Energy Information Administration (EIA)

Using new information, EIA combines data on utility-scale solar photovoltaic (PV) capacity with customer-sited PV capacity, as reported in the graphic.

64

Building a "Margin of Safety" Into Renewable Energy  

E-Print Network (OSTI)

Building a "Margin of Safety" Into Renewable Energy Procurements: A Review of Experience January 2006 CEC-300-2006-004 #12;ABSTRACT In implementing state renewables portfolio standards, utility purchasers and electricity regulators must confront the reality that signed renewable energy contracts

65

Seismic margin review of the Maine Yankee Atomic Power Station: Summary report  

SciTech Connect

This Summary Report is the first of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 2 is the Systems Analysis of the first trial seismic margin review. Volume 3 documents the results of the fragility screening for the review. The three volumes demonstrate how the seismic margin review guidance (NUREG/CR-4482) of the Nuclear Regulatory Commission (NRC) Seismic Design Margins Program can be applied. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants.

Prassinos, P.G.; Murray, R.C.; Cummings, G.E.

1987-03-01T23:59:59.000Z

66

Seismic margin review of the Maine Yankee Atomic Power Station: Fragility analysis  

SciTech Connect

This Fragility Analysis is the third of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 1 is the Summary Report of the first trial seismic margin review. Volume 2, Systems Analysis, documents the results of the systems screening for the review. The three volumes are part of the Seismic Margins Program initiated in 1984 by the Nuclear Regulatory Commission (NRC) to quantify seismic margins at nuclear power plants. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants.

Ravindra, M. K.; Hardy, G. S.; Hashimoto, P. S.; Griffin, M. J.

1987-03-01T23:59:59.000Z

67

Comparison of Productive Capacity  

U.S. Energy Information Administration (EIA)

Appendix B Comparison of Productive Capacity Comparisons of base case productive capacities for this and all previous studies were made (Figure B1).

68

Tables - Refinery Capacity Report  

U.S. Energy Information Administration (EIA)

Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2009: PDF: 2: Production Capacity of Operable ...

69

Optimization of Electric Energy Consumption in Marginal California Oilfields  

Science Conference Proceedings (OSTI)

This report documents a pilot study of electricity consumption in California oilfields that found significant potential for reducing costs through energy efficiency improvements. It offers suggestions for reducing electricity consumption that, if implemented, could result in a system-wide demand reduction and reduce the need for additional generation and power infrastructure capacity. Moreover, reducing oilfield energy costs would reduce the overall cost of oil production, helping marginal wells remain a...

2003-01-17T23:59:59.000Z

70

Working and Net Available Shell Storage Capacity as of September ...  

U.S. Energy Information Administration (EIA)

Unfortunately, meaningful storage capacity utilization rates for operators of crude oil tank farms and pipelines, or for operators of products pipelines, ...

71

High capacity immobilized amine sorbents  

DOE Patents (OSTI)

A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

Gray, McMahan L. (Pittsburgh, PA); Champagne, Kenneth J. (Fredericktown, PA); Soong, Yee (Monroeville, PA); Filburn, Thomas (Granby, CT)

2007-10-30T23:59:59.000Z

72

Definition: Deferred Generation Capacity Investments | Open Energy  

Open Energy Info (EERE)

Generation Capacity Investments Generation Capacity Investments Utilities and grid operators ensure that generation capacity can serve the maximum amount of load that planning and operations forecasts indicate. The trouble is, this capacity is only required for very short periods each year, when demand peaks. Reducing peak demand and flattening the load curve should reduce the generation capacity required to service load and lead to cheaper electricity for customers.[1] Related Terms load, electricity generation, peak demand, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Deferred_Generation_Capacity_Investments&oldid=50257

73

Network Routing Capacity  

E-Print Network (OSTI)

We define the routing capacity of a network to be the supremum of all possible fractional message throughputs achievable by routing. We prove that the routing capacity of every network is achievable and rational, we present an algorithm for its computation, and we prove that every non-negative rational number is the routing capacity of some network. We also determine the routing capacity for various example networks. Finally, we discuss the extension of routing capacity to fractional coding solutions and show that the coding capacity of a network is independent of the alphabet used.

Jillian Cannons; Randall Dougherty; Christopher Freiling; Kenneth Zeger

2005-01-01T23:59:59.000Z

74

Marginal Energy Prices - RECS97 Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marginal Energy Prices - RECS97 Update Marginal Energy Prices - RECS97 Update The original estimation of residential marginal energy prices at the individual household level (as reported in the Marginal Energy Prices Report, http://www.eren.doe.gov/buildings/codes_standards/applbrf/pdfs/marginal_ energy_price.pdf) was based on household energy billing data from EIA's 1993 RECS survey. When the 1997 RECS survey data became available, LBNL updated its estimation of residential marginal energy prices at the individual household level using that data. In addition, LBNL incorporated several refinements (as described below) to the marginal price estimation method it had originally developed. Presented below are the: * RECS97-based results. * Refinements to LBNL's marginal price estimation method.

75

Marginal Energy Prices - RECS97 Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Marginal Energy Prices - RECS97 Update Marginal Energy Prices - RECS97 Update The original estimation of residential marginal energy prices at the individual household level (as reported in the Marginal Energy Prices Report, http://www.eren.doe.gov/buildings/codes_standards/applbrf/pdfs/marginal_ energy_price.pdf) was based on household energy billing data from EIA's 1993 RECS survey. When the 1997 RECS survey data became available, LBNL updated its estimation of residential marginal energy prices at the individual household level using that data. In addition, LBNL incorporated several refinements (as described below) to the marginal price estimation method it had originally developed. Presented below are the: * RECS97-based results. * Refinements to LBNL's marginal price estimation method.

76

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

77

Marginal Energy Prices- RECS97 Update  

Energy.gov (U.S. Department of Energy (DOE))

An updated estimation of residential marginal energy prices at the individual house level using the 1997 RECS survey data

78

Determining the value of conservation to Thailand's electric utility  

SciTech Connect

Incorporating demand-side resources into the planning regime of fast-growing electric utilities in developing countries is a particular challenge. In this paper, a method is developed for valuing the contribution of conservation under these circumstances and illustrated through scenarios of electricity savings in Thailand's large commercials sector. The primary value of these scenarios is in the creation of opportunities to defer or cancel plants planned for future inclusion in the system. The benefits of such deferments are twofold: a direct reduction in capacity needs commensurate with the load impacts of the scenario, plus a reduction in the reserve margin required to maintain system reliability. Comparison of the capital requirements of the conservation scenarios versus the deferrable plant capacity showed that conservation is substantially less capital intensive.

Busch, J.F. Jr. (Lawrence Berkeley Lab., Univ. of California, Berkeley, CA (US))

1992-08-01T23:59:59.000Z

79

Definition: Deferred Distribution Capacity Investments | Open Energy  

Open Energy Info (EERE)

Deferred Distribution Capacity Investments Deferred Distribution Capacity Investments Jump to: navigation, search Dictionary.png Deferred Distribution Capacity Investments As with the transmission system, reducing the load and stress on distribution elements increases asset utilization and reduces the potential need for upgrades. Closer monitoring and load management on distribution feeders could potentially extend the time before upgrades or capacity additions are required.[1] Related Terms load, transmission lines, transmission line, sustainability References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Deferred_Distribution_Capacity_Investments&oldid=502613

80

Marginal Lands: Concept, Assessment and Management  

SciTech Connect

Marginal lands have received wide attention for their potential to improve food security and support bioenergy production. However, environmental, ecosystem service, and sustainability concerns have been widely raised over the use of marginal land. Knowledge of the extent, location, and quality of marginal lands as well as their assessment and management are limited and diverse. This paper provides a review of the historical development of marginal concept, its application and assessment. Limitations and priority research needs of marginal land assessment and management were discussed.

Kang, Shujiang [ORNL; Post, Wilfred M [ORNL; West, Tristram O. [Joint Global Change Research Institute, PNNL; Bandaru, Vara Prasad [ORNL; Izaurralde, Dr. R. Cesar [Pacific Northwest National Laboratory (PNNL); Wang, Dali [ORNL; Nichols, Dr Jeff A [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Natural Gas Underground Storage Capacity (Summary)  

Gasoline and Diesel Fuel Update (EIA)

Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of...

82

Increasing State Capacity Through Clans  

E-Print Network (OSTI)

their role in increasing state capacity With the decline ofhere focus on state capacity and the associated discussionselements of state capacity during the transition from one

Doyle, Jr, Thomas Martin

2009-01-01T23:59:59.000Z

83

Capacity Markets for Electricity  

E-Print Network (OSTI)

Designing Markets for Electricity. Wiley IEEE Press. [25]in the England and Wales Electricity Market”, Power WorkingFelder (1996), “Should Electricity Markets Have a Capacity

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

84

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute...

85

NSLS Utilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Utilities Utilities The Utilities Group, led by project engineer Ron Beauman, is responsible for providing Utilities Engineering and Technical services to NSLS, Users, and SDL including cooling water at controlled flow rates, pressures, and temperatures, compressed air and other gases. In addition, they provide HVAC engineering, technical, and electrical services as needed. Utilities systems include cooling and process water, gas, and compressed air systems. These systems are essential to NSLS operations. Working behind the scenes, the Utilities group continuously performs preventative maintenance to ensure that the NSLS has minimal downtime. This is quite a feat, considering that the Utilities group has to maintain seven very large and independent systems that extent throughout NSLS. Part of the group's

86

Capacity on Finsler Spaces  

E-Print Network (OSTI)

Here, the concept of electric capacity on Finsler spaces is introduced and the fundamental conformal invariant property is proved, i.e. the capacity of a compact set on a connected non-compact Finsler manifold is conformal invariant. This work enables mathematicians and theoretical physicists to become more familiar with the global Finsler geometry and one of its new applications.

Bidabad, B

2009-01-01T23:59:59.000Z

87

Liquid heat capacity lasers  

DOE Patents (OSTI)

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

88

capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 9, and contains only the reference case. The dataset uses gigawatts. The data is broken down into power only, combined heat and power, cumulative planned additions, cumulative unplanned conditions, and cumulative retirements and total electric power sector capacity . Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO capacity consumption EIA Electricity generating Data application/vnd.ms-excel icon AEO2011: Electricity Generating Capacity- Reference Case (xls, 130.1 KiB) Quality Metrics Level of Review Peer Reviewed Comment

89

Battery capacity indicator  

SciTech Connect

This patent describes a battery capacity indicator for providing a continuous indication of battery capacity for a battery powered device. It comprises means for periodically effecting a first and a second positive discharge rate of the battery; voltage measurement means, for measuring the battery terminal voltage at the first and second positive discharge rates during the operation of the device, and for generating a differential battery voltage value in response thereto; memory means for storing a set of predetermined differential battery voltage values and a set of predetermined battery capacity values, each of the set of predetermined differential battery voltage values defining one of the set of predetermined battery capacity values; comparison means, coupled to the memory means and to the voltage measurement means, for comparing the measured differential battery voltage values with the set of predetermined differential battery voltage values, and for selecting the predetermined battery capacity value corresponding thereto.

Kunznicki, W.J.

1991-07-16T23:59:59.000Z

90

Marginal Energy Price Report - July 1999  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

J:\marginal\FinalDraftReport7-29-99.wpd J:\marginal\FinalDraftReport7-29-99.wpd DRAFT Marginal Energy Prices Report July 1999 U.S. Department of Energy Assistant Secretary, Energy Efficiency & Renewable Energy Office of Codes and Standards Washington, DC 20585 ii J:\marginal\FinalDraftReport7-29-99.wpd This document was prepared for the Department of Energy by staff members of the Lawrence Berkeley National Laboratory (LBNL) iii J:\marginal\FinalDraftReport7-29-99.wpd MARGINAL ENERGY PRICES Final Report Page Outline i Executive Summary 1 I. Background 2 II. Methods 4 III. Analysis and Results - Commercial 6 IV. Analysis and Results - Residential 12 V. Residential Heating Oil and Propane 19 VI. Taxes 22 Appendices Appendix 1. Tariffs Used in the Commercial Analysis 26

91

Marginal Energy Price Report - July 1999  

NLE Websites -- All DOE Office Websites (Extended Search)

J:\marginal\FinalDraftReport7-29-99.wpd J:\marginal\FinalDraftReport7-29-99.wpd DRAFT Marginal Energy Prices Report July 1999 U.S. Department of Energy Assistant Secretary, Energy Efficiency & Renewable Energy Office of Codes and Standards Washington, DC 20585 ii J:\marginal\FinalDraftReport7-29-99.wpd This document was prepared for the Department of Energy by staff members of the Lawrence Berkeley National Laboratory (LBNL) iii J:\marginal\FinalDraftReport7-29-99.wpd MARGINAL ENERGY PRICES Final Report Page Outline i Executive Summary 1 I. Background 2 II. Methods 4 III. Analysis and Results - Commercial 6 IV. Analysis and Results - Residential 12 V. Residential Heating Oil and Propane 19 VI. Taxes 22 Appendices Appendix 1. Tariffs Used in the Commercial Analysis 26

92

Diverse Engagement: Drawing in the Margins  

E-Print Network (OSTI)

that challenges the dominant theories and paradigms or research that involves marginalised communities. Or, the margin could simply mean a place to doodle to get the creative juices flowing. Whatever the meaning of the margin, each of the papers demonstrates... IN THE MARGINS, Proceedings of the Interdisciplinary Graduate Conference, Cambridge University, UK (28-29, June 2010) ISBN 978-0-9566139-1-2 © University of Cambridge, Graduate Development Programme. 10 Indeed all the essays contained in the volume...

French, Matthew; Jackson, Simon; Jokisuu, Elina

2010-06-28T23:59:59.000Z

93

UNDP-Low Emission Capacity Building Programme | Open Energy Information  

Open Energy Info (EERE)

Programme Programme Jump to: navigation, search Logo: UNDP-Low Emission Capacity Building Programme Name UNDP-Low Emission Capacity Building Programme Agency/Company /Organization United Nations Development Programme (UNDP), European Union Sector Climate, Energy, Land, Water Topics Low emission development planning Resource Type Training materials Website http://www.undp.org/climatestr References UNDP-Low Emission Capacity Building Programme[1] UNDP-Low Emission Capacity Building Programme Screenshot "This collaborative programme aims to strengthen technical and institutional capacities at the country level, while at the same time facilitating inclusion and coordination of the public and private sector in national initiatives addressing climate change. It does so by utilizing the

94

Lateral Capacity Exchange and Its Impact on Capacity Investment Decisions  

E-Print Network (OSTI)

We study the problem of capacity exchange between two …rms in anticipation of the mismatch between demand and capacity and its impact on …rm’s capacity investment decisions. For given capacity investment levels of the two …rms, we demonstrate how capacity price may be determined and how much capacity should be exchanged when either manufacturer acts as a Stackelberg leader in the capacity exchange game. By benchmarking against the centralized system, we show that a side payment may be used to coordinate the capacity exchange decisions. We then study the …rms’capacity investment decisions using a biform game framework in which capacity investment decisions are made individually and exchange decisions are made as in a centralized system. We demonstrate the existence and uniqueness of the Nash equilibrium capacity investment levels and study the impact of …rms’share of the capacity exchange surplus on their capacity investment levels.

Amiya K. Chakravartyz; Jun Zhangy

2005-01-01T23:59:59.000Z

95

Capacity Markets for Electricity  

E-Print Network (OSTI)

Global Agenda, August 15. [6] FERC, Docket No. EL01-63-003,at http://www.pjm.com. [7] FERC, Docket No. ER01-1440-capacity of the others” (FERC, 2001). Therefore, if an LSE

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

96

Refinery Capacity Report 2007  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2007-06-29T23:59:59.000Z

97

Refinery Capacity Report 2009  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2009-06-25T23:59:59.000Z

98

Refinery Capacity Report 2008  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2008-06-20T23:59:59.000Z

99

Forward capacity market CONEfusion  

Science Conference Proceedings (OSTI)

In ISO New England and PJM it was assumed that sponsors of new capacity projects would offer them into the newly established forward centralized capacity markets at prices based on their levelized net cost of new entry, or ''Net CONE.'' But the FCCMs have not operated in the way their proponents had expected. To clear up the CONEfusion, FCCM designs should be reconsidered to adapt them to the changing circumstances and to be grounded in realistic expectations of market conduct. (author)

Wilson, James F.

2010-11-15T23:59:59.000Z

100

Circulation and Exchange in Choked Marginal Seas  

Science Conference Proceedings (OSTI)

A theory for the exchange between a rotating, buoyancy-forced marginal sea and an ocean is developed and tested numerically. Cooling over the marginal sea leads to sinking and sets up a two-layer exchange flow, with a warm surface layer entering ...

Larry J. Pratt; Michael A. Spall

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Capacity and Energy Payments to Cogenerators Under PURPA Docket...  

Open Energy Info (EERE)

to PURPA. Avoided costs are the "incremental costs to an electric utility of electric energy or capacity or both which, but for the purchase from the qualifying facility or...

102

Trends in natural gas storage capacity utilization vary by ...  

U.S. Energy Information Administration (EIA)

Source: U.S. Energy Information Administration, Form EIA-191, Monthly Underground Gas Storage Report and Short-Term Energy Outlook Note: Dashed lines indicate ...

103

East Coast (PADD 1) Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum ...

104

Gulf Coast (PADD 3) Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum ...

105

Indiana, Illinois and Kentucky Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum ...

106

Weekly U.S. Percent Utilization of Refinery Operable Capacity ...  

U.S. Energy Information Administration (EIA)

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value End Date Value End Date Value; 1990-Nov: 11/02 : 84.0 : 11/09 : 83.0 : 11/16

107

Assessment of Commercial Space Conditioning Technologies: Variable Capacity Rooftop Units  

Science Conference Proceedings (OSTI)

Space conditioning in U.S. commercial buildings is commonly performed by a packaged air-source rooftop unit (RTU). In recent years, heating, ventilation, and air-conditioning (HVAC) manufacturers have begun to develop RTUs with higher efficiency through the implementation of variable capacity technology. Variable capacity RTUs potentially offer electric utilities a new resource for achieving energy and peak power reduction. This document aims to serve as a resource for electric utilities in ...

2013-12-16T23:59:59.000Z

108

Genetic-based modeling of uplift capacity of suction caissons  

Science Conference Proceedings (OSTI)

In this study, classical tree-based genetic programming (TGP) and its recent variants, namely linear genetic programming (LGP) and gene expression programming (GEP) are utilized to develop new prediction equations for the uplift capacity of suction caissons. ... Keywords: Formulation, Gene expression programming, Linear genetic programming, Standard genetic programming, Suction caissons, Uplift capacity

Amir Hossein Alavi; Pejman Aminian; Amir Hossein Gandomi; Milad Arab Esmaeili

2011-09-01T23:59:59.000Z

109

Utility-scale installations lead solar photovoltaic growth - Today ...  

U.S. Energy Information Administration (EIA)

... led by particularly strong growth in both utility-scale PV and commercial sector PV capacity. Although 2011 was a record year for solar PV growth, ...

110

New Ulm Public Utilities - Solar Electric Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Rebate Amount 1watt (nameplate capacity) New Ulm Public Utilities provides solar photovoltaic (PV) rebates for residential, commercial, and industrial customers....

111

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report June 2013 With Data as of January 1, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. Table 1. Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013

112

Dual capacity reciprocating compressor  

DOE Patents (OSTI)

A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

Wolfe, R.W.

1984-10-30T23:59:59.000Z

113

Dual capacity reciprocating compressor  

DOE Patents (OSTI)

A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

Wolfe, Robert W. (Wilkinsburg, PA)

1984-01-01T23:59:59.000Z

114

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report With Data as of January 1, 2013 | Release Date: June 21, 2013 | Next Release Date: June 20, 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1997 1995 1994 Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

115

Building REDD Capacity in Developing Countries | Open Energy Information  

Open Energy Info (EERE)

Building REDD Capacity in Developing Countries Building REDD Capacity in Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Building REDD Capacity in Developing Countries Agency/Company /Organization: International Institute for Sustainable Development (IISD) Sector: Land Focus Area: Forestry Topics: Policies/deployment programs Resource Type: Workshop, Lessons learned/best practices Website: www.iisd.org/climate/land_use/redd/ Country: Kenya, Vietnam Eastern Africa, South-Eastern Asia References: IISD Building REDD Capacity in Developing Countries[1] Background "To provide developing countries with this support, IISD has partnered with the Alternatives to Slash and Burn Partnership for the Tropical Forest Margins, World Agroforesty Centre (ASB-ICRAF), to deliver a series of

116

Utility Conservation Programs: Opportunities and Strategies  

E-Print Network (OSTI)

This paper examines the use of conservation programs to achieve utility goals in an electric industry environment subject to change. First, the importance of articulating clear goals for the mission of a utility is discussed. Second, a strategic framework for analysis of utility promotion of conservation investment is presented. Third, the rationale, design and marketing of basic conservation strategies based on differences in utility capacity and cost situations are examined. Particular attention is given to evaluating the establishment of a subsidiary by a utility to offer energy management services -- a relatively new concept that: may present great opportunities for many utilities.

Norland, D. L.; Wolf, J. L.

1986-06-01T23:59:59.000Z

117

1993 Pacific Northwest Loads and Resources Study, Technical Appendix: Volume 2, Book 2, Capacity.  

DOE Green Energy (OSTI)

Monthly totals of utility loads and capacities extrapolated as far as 2009 with a probability estimate of enough water resources for hydro power.

United States. Bonneville Power Administration.

1993-12-01T23:59:59.000Z

118

On the quantification of safety margins  

E-Print Network (OSTI)

The nuclear industry has relied on the concept of Defense in Depth (DID) and traditional safety margins to deal with the uncertainties associated with the design and operation of nuclear facilities. These concepts were ...

Pagani, Lorenzo P

2004-01-01T23:59:59.000Z

119

Marginal Energy Price Report- July 1999  

Energy.gov (U.S. Department of Energy (DOE))

Estimated Consumer Marginal Energy Prices for the Commercial and Residental Sectors for use in the Life-Cycle Cost Analyses for four of the High-Priority Appliance Rulemakings

120

Soil Moisture Impacts on Convective Margins  

Science Conference Proceedings (OSTI)

An idealized prototype for the location of the margins of tropical land region convection zones is extended to incorporate the effects of soil moisture and associated evaporation. The effect of evaporation, integrated over the inflow trajectory ...

Benjamin R. Lintner; J. David Neelin

2009-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Modeling On-Site Utility Systems Using "APLUS"  

E-Print Network (OSTI)

Most energy saving schemes on industrial sites lead to reductions in the steam and/or power demands on an on-site utility system. Accurate knowledge of the marginal and incremental costs of the available levels of steam and shaft power from such systems is, therefore, essential for the correct economic evaluation of proposed retrofit schemes. Knowledge of marginal costs is also essential for continuous optimal operation of on-site utility systems. "APLUS" is an IBM-PC based software package developed for evaluation of marginal and incremental costs of on-site utilities. "APLUS" allows the user to configure steam/power systems using sets of predefined icons. Once a flowsheet has been configured, the program can be used to solve the heat and mass balance and to generate accurate marginal costs. An overview of the package and examples illustrating its applications are presented in this paper.

Ranade, S. M.; Jones, D. H.; Shrec, S. C.

1988-09-01T23:59:59.000Z

122

Learning by extrapolation from marginal to full-multivariate probability distributions: decreasingly naive Bayesian classification  

Science Conference Proceedings (OSTI)

Averaged n-Dependence Estimators (AnDE) is an approach to probabilistic classification learning that learns by extrapolation from marginal to full-multivariate probability distributions. It utilizes a single parameter that transforms ... Keywords: Averaged one-dependence estimators, Bayesian learning, Classification learning, Ensemble learning, Feating, Learning without model selection, Naive Bayes, Probabilistic learning, Semi-naive Bayesian learning

Geoffrey I. Webb; Janice R. Boughton; Fei Zheng; Kai Ming Ting; Houssam Salem

2012-02-01T23:59:59.000Z

123

Seismic Margin Assessment of the Edwin I. Hatch Nuclear Plant, Unit 1  

Science Conference Proceedings (OSTI)

A seismic margin assessment of the Georgia Power Company Edwin I. Hatch, unit 1 nuclear power plant showed the practicality of an EPRI methodology for assessing the ability of nuclear plants to withstand large earthquakes. The assessment, performed by the utility, established that the plant can withstand an earthquake at least twice the magnitude for which it was designed.

1991-08-01T23:59:59.000Z

124

The basins on the Argentine continental margin  

Science Conference Proceedings (OSTI)

After the stabilization of the central Gondwana Craton, orogenic belts were accreted, as a result of convergence events and an extensive passive margin developed in southwestern Gondwana. Thermal subsidence in Parana, Karoo-Ventania basins and the Late Paleozoic-Early Mesozoic rifts, were modified by the Gondwana breakup and the South Atlantic opening. Early Paleozoic marine transgressions deposited the Table Mountain Group in Ventania. In southwestern Patagonia foreland clastics were deposited. Magmatic arcs and marine units indicate a tectonic trough was formed, alternating with continental sequences, over Late Paleozoic metamorphics and intrusives, resulting from plastered terrains along the Gondwana margin. In Patagonia, Permo-Carboniferous continental and glacio marine clastics infill the basins, while in Ventania, paralic sequences, grade from neritic to continental to the northeast, extending beneath the continental margin. The Triassic-Jurassic rift basins progressed onto regional widespread acid lavas and were infilled by lagoonal organic-rich sequences. Early drift phase built basins transverse to the margin, with fluvio-lacustrine sequences: Salado, Colorado, Valdes-Rawson, San Julian and North Malvinas intracratonic basins, which underwent transtensional faulting. Post-Oxfordian to Neocomian brackish sequences, onlapped the conjugate basins during the margin`s drift, with petroleum systems, as in Austral and Malvinas. In the Valanginian, basic extrusions commenced to form on the continental border, heralding the oceanic phase. Due to thermal subsidence, offlaping sediments prograded onto the remaining half-grabens. Several petroleum systems, proven and hypothetical, are identified in this region.

Urien, C.M. [Buenos Aires Technological Institute Petroleum School, Buenos Aires (Argentina)

1996-08-01T23:59:59.000Z

125

Quantum Zero-error Capacity  

E-Print Network (OSTI)

We define here a new kind of quantum channel capacity by extending the concept of zero-error capacity for a noisy quantum channel. The necessary requirement for which a quantum channel has zero-error capacity greater than zero is given. Finally, we point out some directions on how to calculate the zero-error capacity of such channels.

Rex A. C. Medeiros; Francisco M. De Assis

2006-11-08T23:59:59.000Z

126

Capacity Value of Solar Power  

Science Conference Proceedings (OSTI)

Evaluating the capacity value of renewable energy sources can pose significant challenges due to their variable and uncertain nature. In this paper the capacity value of solar power is investigated. Solar capacity value metrics and their associated calculation methodologies are reviewed and several solar capacity studies are summarized. The differences between wind and solar power are examined, the economic importance of solar capacity value is discussed and other assessments and recommendations are presented.

Duignan, Roisin; Dent, Chris; Mills, Andrew; Samaan, Nader A.; Milligan, Michael; Keane, Andrew; O'Malley, Mark

2012-11-10T23:59:59.000Z

127

Load Capacity of Bodies  

E-Print Network (OSTI)

For the stress analysis in a plastic body $\\Omega$, we prove that there exists a maximal positive number $C$, the \\emph{load capacity ratio,} such that the body will not collapse under any external traction field $t$ bounded by $Y_{0}C$, where $Y_0$ is the elastic limit. The load capacity ratio depends only on the geometry of the body and is given by $$ \\frac{1}{C}=\\sup_{w\\in LD(\\Omega)_D} \\frac{\\int_{\\partial\\Omega}|w|dA} {\\int_{\\Omega}|\\epsilon(w)|dV}=\\left\\|\\gamma_D\\right\\|. $$ Here, $LD(\\Omega)_D$ is the space of isochoric vector fields $w$ for which the corresponding stretchings $\\epsilon(w)$ are assumed to be integrable and $\\gamma_D$ is the trace mapping assigning the boundary value $\\gamma_D(w)$ to any $w\\in LD(\\Omega)_D$.

Reuven Segev

2005-11-01T23:59:59.000Z

128

Estimating Marginal Residential Energy Prices in the Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

Marginal Residential Energy Prices in the Analysis of Proposed Appliance Energy Efficiency Standards Title Estimating Marginal Residential Energy Prices in the Analysis of Proposed...

129

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200 ................................................................................................................................................................................................................................................................................................ Delaware......................................

130

Capacity and Energy Payments to Small Power Producers and Cogenerators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capacity and Energy Payments to Small Power Producers and Capacity and Energy Payments to Small Power Producers and Cogenerators Under PURPA Docket (Georgia) Capacity and Energy Payments to Small Power Producers and Cogenerators Under PURPA Docket (Georgia) < Back Eligibility Commercial Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Green Power Purchasing Renewables Portfolio Standards and Goals Docket No. 4822 was enacted by the Georgia Public Service Commission in accordance with The Public Utility Regulatory Policies Act of 1978 (PURPA)

131

Total Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt...

132

www.ucei.org Capacity Markets for Electricity ?  

E-Print Network (OSTI)

The creation of electricity markets has raised the fundamental question as to whether markets provide the right incentives for the provision of the reserves needed to maintain system reliability, or whether some form of regulation is needed. In some states in the US, electricity retailers have been made responsible for providing such reserves by contracting capacity in excess of their forecasted peak demand. The socalled Installed Capacity Markets (ICAP) provide one means for contracting reserves, and are the subject of this paper. In particular, for given productive and transmission capacities, we identify firms ’ opportunity costs of committing resources in the capacity market, and hence, the costs of inducing full capacity commitment. Regulatory issues such as the optimal choice of the reserve margin and the capacity deficiency rate (which serves as a price-cap) are analyzed. From a welfare view-point, we also compare the desirability of providing reserves either through capacity markets or through the demand side (i.e. power curtailments).

Anna Creti; Natalia Fabra; Iii Madrid; Anna Creti; Natalia Fabra; Iii Madrid

2004-01-01T23:59:59.000Z

133

Avoided Gigawatts Through Utility Capital Recovery Fees  

E-Print Network (OSTI)

Electric rate structures can be used to provide customers with the proper pricing signals as well as provide economic incentives for increased market penetration for energy efficient new buildings. An innovative, marginal (replacement cost) rate structure is possible through the use of capital recovery fees for new electric meter hookups similar to those commonly used for new water and wastewater hookups where the developer/owner is required to capitalize the marginal cost of new demand. By giving credit for the more efficient loads placed on an electric utility system, a utility could rapidly advance the market penetration of commercially available, highly efficient building systems and equipment resulting in potential gigawatts of conserved energy. Simultaneously, the capital costs of new generating plants could be shifted to the end-user from the already debt-burdened electric utility industry. This paper will explore this pricing option and analyze its potential on future electric load growth and the design of efficient new buildings.

Frosenfeld, A. N.; Verdict, M. E.

1985-01-01T23:59:59.000Z

134

Margins for an in-plant piping system under dynamic loading  

Science Conference Proceedings (OSTI)

The objective of this study is to verify that piping designed according to current practice does indeed have a large margin against failure and to quantify the excess capacity for piping and dynamic pipe supports on the basis of data obtained in a series of high-level seismic experiments (designated SHAM) on an in-plant piping system at the HDR (Heissdampfreaktor) Test Facility in Germany. 4 refs., 6 tabs.

Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.

1991-01-01T23:59:59.000Z

135

Solving the problems facing the electric utilities  

SciTech Connect

The dimensions of the current problems of attracting capital for utilities investment, of achieving more efficient utilization of capacity, of siting and construction of new power plants, and of utilities receiving a return on their investment large enough to enable them to continue their service to American consumers are examined. Federal actions that are being taken to help get the utilities out of their current state of malaise are described. The author concludes that positive electric power load management, through a system of cost-based pricing incentives and load controls, can achieve a balanced future both for total electricity usage and for peak demand. This would minimize the consumption of scarce fossil fuels in electricity generation, moderate the future need for construction of new capacity, improve utility revenues, and eventually reduce the need for rate increases to maintain utility viability. The FEA feels that is a reasonable, attainable objective for substantial electrification of the economy beyond 1985. (MCW)

Hill, J.A.

1975-01-01T23:59:59.000Z

136

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

137

OpenEI Community - utility rate  

Open Energy Info (EERE)

Rates API Rates API Version 2 is Live! http://en.openei.org/community/blog/utility-rates-api-version-2-live Smart metermargin:5px" title="" />After several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at util_rates">http://en.openei.org/services/doc/rest/util_ratesutility-rates-api-version-2-live" target="_blank">read more

138

The market potential for SMES in electric utility applications. Final report  

DOE Green Energy (OSTI)

Superconducting magnetic energy storage (SMES) is an emerging technology with features that are potentially attractive in electric utility applications. This study evaluates the potential for SMES technology in the generation, transmission, distribution, and use of electric energy; the time frame of the assessment is through the year 2030. Comparisons are made with other technology options, including both commercially available and advanced systems such as various peaking generation technologies, transmission stability improvement technologies, and power quality enhancement devices. The methodology used for this study focused on the needs of the market place, the capabilities of S and the characteristics of the competing technologies. There is widespread interest within utilities for the development of SMES technology, but there is no general consensus regarding the most attractive size. Considerable uncertainty exists regarding the eventual costs and benefits of commercial SMES systems, but general trends have been developed based on current industry knowledge. Results of this analysis indicate that as storage capacity increases, cost increases at a rate faster than benefits. Transmission system applications requiring dynamic storage appear to have the most attractive economics. Customer service applications may be economic in the near term, but improved ride-through capability of end-use equipment may limit the size of this market over time. Other applications requiring greater storage capacity appear to be only marginally economic at best.

Not Available

1994-06-01T23:59:59.000Z

139

Capacities associated with scalar signed Riesz kernels, and analytic capacity  

E-Print Network (OSTI)

The real and imaginari parts of the Cauchy kernel in the plane are scalar Riesz kernels of homogeneity -1. One can associate with each of them a natural notion of capacity related to bounded potentials. The main result of the paper asserts that these capacities are comparable to classical analytic capacity, thus stressing the real variables nature of analytic capacity. Higher dimensional versions of this result are also considered.

Mateu, Joan; Verdera, Joan

2010-01-01T23:59:59.000Z

140

Interactions between Energy Efficiency Programs funded under the Recovery Act and Utility Customer-Funded Energy Efficiency Programs  

E-Print Network (OSTI)

Program (WIP). “History of the State Energy Program. ”and history of utility customer- funded programs, institutional capacity of state energyand history of utility customer-funded programs, institutional capacity of state energy

Goldman, Charles A.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Utility Energy Savings Contract Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Energy Savings Utility Energy Savings Contract Project Redstone Arsenal, Alabama Presented by Doug Dixon, Pacific Northwest National Laboratory For Mark D. Smith, PE, CEM, CEA Energy Manager, Redstone Arsenal Federal Utility Partnership Working Group - Fall 2010 UNCLASSIFIED UNCLASSIFIED 0 50 100 150 200 250 Klbs FY09 Total Hourly Steam FY09 Total Threshold $22.76 / MMBTU (Minimum take-or-pay base rate) (Consumer Price Index) Average FY09 Natural Gas Price $5.52 / MMBTU $16.91 / MMBTU (High capacity rate) (Petroleum Price Index) Hours UNCLASSIFIED Resolution * Manage the steam load to the minimum take-or- pay thresholds under the existing contract.  Prune the distribution system by eliminating long runs with low density and high thermal losses.  Ensure summer steam loads are utilized.

142

Large margin mixture of AR models for time series classification  

Science Conference Proceedings (OSTI)

In this paper, we propose the large margin autoregressive (LMAR) model for classification of time series patterns. The parameters of the generative AR models for different classes are estimated using the margin of the boundaries of AR models as the optimization ... Keywords: Generative and discriminative hybrid models, Large margin autoregressive model, Large margin mixture autoregressive model, Outlier detection, Rejection option, Time series classification

B. Venkataramana Kini; C. Chandra Sekhar

2013-01-01T23:59:59.000Z

143

Marginally outer trapped surfaces in higher dimensions  

E-Print Network (OSTI)

We review the basic setup of Kaluza-Klein theory, namely a 5-dimensional vacuum with a cyclic isometry, which corresponds to Einstein-Maxwell-dilaton theory in 4-dimensional spacetime. We first recall the behaviour of Killing horizons and its generators under bundle lift and projection. We then show that the property of compact surfaces of being (stably) marginally trapped is preserved under lift and projection provided the appropriate ("Pauli-") conformal scaling is used for the spacetime metric. We also discuss and compare recently proven area inequalities for stable axially symmetric 2-dimensional and 3-dimensional marginally outer trapped surfaces.

Tim-Torben Paetz; Walter Simon

2013-02-13T23:59:59.000Z

144

Multipath Channels of Unbounded Capacity  

E-Print Network (OSTI)

The capacity of discrete-time, noncoherent, multipath fading channels is considered. It is shown that if the variances of the path gains decay faster than exponentially, then capacity is unbounded in the transmit power.

Koch, Tobias

2008-01-01T23:59:59.000Z

145

Heat capacities of elastic solids  

E-Print Network (OSTI)

The work function is embedded in the equation describing the relationship between the constant volume and constant pressure heat capacities. The modification of the work function results that the relationship between these quantities must be changed accordingly. Using the newly derived work functions of elastic solids the description of the heat capacities and the relationship between the heat capacities are given for solid phase.

Garai, J

2005-01-01T23:59:59.000Z

146

Symmetrical Symplectic Capacity with Applications  

E-Print Network (OSTI)

In this paper, we first introduce the concept of symmetrical symplectic capacity for symmetrical symplectic manifolds, and by using this symmetrical symplectic capacity theory we prove that there exists at least one symmetric closed characteristic (brake orbit and $S$-invariant brake orbit are two examples) on prescribed symmetric energy surface which has a compact neighborhood with finite symmetrical symplectic capacity.

Liu, Chungen

2010-01-01T23:59:59.000Z

147

November 2010CAPACITY FACTOR RISK AT NUCLEAR POWER PLANTS  

E-Print Network (OSTI)

We develop a model of the dynamic structure of capacity factor risk. It incorporates the risk that the capacity factor may vary widely from year-to-year, and also the risk that the reactor may be permanently shutdown prior to the end of its anticipated useful life. We then fit the parameters of the model to the IAEA’s PRIS dataset of historical capacity factors on reactors across the globe. The estimated capacity factor risk is greatest in the first year of operation. It then quickly declines over the next couple of years, after which it is approximately constant. Whether risk is constant or increasing in later years depends significantly on the probability of a premature permanent shutdown of the reactor. Because these should be very rare events, the probability is difficult to estimate reliably from the small historical sample of observations. Our base case is parameterized with a conservatively low probability of a premature permanent shutdown which yields the approximately constant variance. Our model, combined with the global historical dataset, also yields relatively low estimates for the expected level of the capacity factor through the life of the plant. Our base case estimate is approximately 74%. Focusing on alternative subsets of the data raises the estimated mean capacity factor marginally, but not significantly, unless the sample chosen is restricted to selected countries over select years. This emphasizes the need for judgment in exploiting the historical data to project future probabilities.

Yangbo Du; John E. Parsons; Yangbo Du; John E. Parsons

2010-01-01T23:59:59.000Z

148

An Assessment of Railway Capacity  

E-Print Network (OSTI)

In this paper, we review the main concepts and methods to perform capacity analyses, and we present an automated tool that is able to perform several capacity analyses. Capacity is extremely dependent on infrastructure, traffic, and operating parameters. Therefore, an in-depth study of the main factors that influence railway capacity is performed on several Spanish railway infrastructures. The results show how the capacity varies according to factors such as train speed, commercial stops, train heterogeneity, distance between railway signals, and timetable robustness.

M. Abril; F. Barber; A L. Ingolotti; A M. A. Salido; P. Tormos; B A. Lova

2007-01-01T23:59:59.000Z

149

Quantifying the margin sharpness of lesions on radiological images for content-based image retrieval  

Science Conference Proceedings (OSTI)

Purpose: To develop a method to quantify the margin sharpness of lesions on CT and to evaluate it in simulations and CT scans of liver and lung lesions. Methods: The authors computed two attributes of margin sharpness: the intensity difference between a lesion and its surroundings, and the sharpness of the intensity transition across the lesion boundary. These two attributes were extracted from sigmoid curves fitted along lines automatically drawn orthogonal to the lesion margin. The authors then represented the margin characteristics for each lesion by a feature vector containing histograms of these parameters. The authors created 100 simulated CT scans of lesions over a range of intensity difference and margin sharpness, and used the concordance correlation between the known parameter and the corresponding computed feature as a measure of performance. The authors also evaluated their method in 79 liver lesions (44 patients: 23 M, 21 F, mean age 61) and 58 lung nodules (57 patients: 24 M, 33 F, mean age 66). The methodology presented takes into consideration the boundary of the liver and lung during feature extraction in clinical images to ensure that the margin feature do not get contaminated by anatomy other than the normal organ surrounding the lesions. For evaluation in these clinical images, the authors created subjective independent reference standards for pairwise margin sharpness similarity in the liver and lung cohorts, and compared rank orderings of similarity used using our sharpness feature to that expected from the reference standards using mean normalized discounted cumulative gain (NDCG) over all query images. In addition, the authors compared their proposed feature with two existing techniques for lesion margin characterization using the simulated and clinical datasets. The authors also evaluated the robustness of their features against variations in delineation of the lesion margin by simulating five types of deformations of the lesion margin. Equivalence across deformations was assessed using Schuirmann's paired two one-sided tests. Results: In simulated images, the concordance correlation between measured gradient and actual gradient was 0.994. The mean (s.d.) and standard deviation NDCG score for the retrieval of K images, K = 5, 10, and 15, were 84% (8%), 85% (7%), and 85% (7%) for CT images containing liver lesions, and 82% (7%), 84% (6%), and 85% (4%) for CT images containing lung nodules, respectively. The authors' proposed method outperformed the two existing margin characterization methods in average NDCG scores over all K, by 1.5% and 3% in datasets containing liver lesion, and 4.5% and 5% in datasets containing lung nodules. Equivalence testing showed that the authors' feature is more robust across all margin deformations (p < 0.05) than the two existing methods for margin sharpness characterization in both simulated and clinical datasets. Conclusions: The authors have described a new image feature to quantify the margin sharpness of lesions. It has strong correlation with known margin sharpness in simulated images and in clinical CT images containing liver lesions and lung nodules. This image feature has excellent performance for retrieving images with similar margin characteristics, suggesting potential utility, in conjunction with other lesion features, for content-based image retrieval applications.

Xu Jiajing; Napel, Sandy; Greenspan, Hayit; Beaulieu, Christopher F.; Agrawal, Neeraj; Rubin, Daniel [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Computer Science, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States)

2012-09-15T23:59:59.000Z

150

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working Storage Capacity by PAD District as of September 30, 2013 Working Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity 1 2 3 4 5 U.S. Total Ending Stocks Utilization Rate 1 Refineries Crude Oil 15,154 17,952 72,858 4,109 35,324 145,397 90,778 62% Fuel Ethanol 151 142 257 114 79 743 482 65% Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,149 10,996 24,902 581 2,219 39,847 19,539 49% Propane/Propylene (dedicated) 3 405 3,710 3,886 54 199 8,254 4,104 NA Motor Gasoline (incl. Motor Gasoline Blending Components)

151

Entangling capacity with local ancilla  

E-Print Network (OSTI)

We investigate the entangling capacity of a dynamical operation with access to local ancilla. A comparison is made between the entangling capacity with and without the assistance of prior entanglement. An analytic solution is found for the log-negativity entangling capacity of two-qubit gates, which equals the entanglement of the Choi matrix isomorphic to the unitary operator. Surprisingly, the availability of prior entanglement does not affect this result; a property we call resource independence of the entangling capacity. We prove several useful upper-bounds on the entangling capacity that hold for general qudit dynamical operations, and for a whole family of entanglement measures including log-negativity and log-robustness. The log-robustness entangling capacity is shown to be resource independent for general dynamics. We provide numerical results supporting a conjecture that the log-negativity entangling capacity is resource independence for all two-qudit unitaries.

Campbell, Earl T

2010-01-01T23:59:59.000Z

152

OpenEI Community - Utility Rates  

Open Energy Info (EERE)

The utility rate The utility rate database version 1 API is now deprecated http://en.openei.org/community/blog/utility-rate-database-version-1-api-now-deprecated There comes a time in every API version's lifecycle when it needs to be deprecated.OpenEI's utility rate database version 1 API has been in use since the inception of the database in 2010.  As Illinois State University has taken a commanding lead of the project and its data curation, we have updated the schema and API to version 2 to present a richer spectrum of utility rate data.margin:5px; float:right" title="" />

153

Kauai Island Utility Co-op (KIUC) PV integration study.  

DOE Green Energy (OSTI)

This report investigates the effects that increased distributed photovoltaic (PV) generation would have on the Kauai Island Utility Co-op (KIUC) system operating requirements. The study focused on determining reserve requirements needed to mitigate the impact of PV variability on system frequency, and the impact on operating costs. Scenarios of 5-MW, 10-MW, and 15-MW nameplate capacity of PV generation plants distributed across the Kauai Island were considered in this study. The analysis required synthesis of the PV solar resource data and modeling of the KIUC system inertia. Based on the results, some findings and conclusions could be drawn, including that the selection of units identified as marginal resources that are used for load following will change; PV penetration will displace energy generated by existing conventional units, thus reducing overall fuel consumption; PV penetration at any deployment level is not likely to reduce system peak load; and increasing PV penetration has little effect on load-following reserves. The study was performed by EnerNex under contract from Sandia National Laboratories with cooperation from KIUC.

Ellis, Abraham; Mousseau, Tom (Knoxville, TN)

2011-08-01T23:59:59.000Z

154

Wind energy systems. Application to regional utilities  

DOE Green Energy (OSTI)

This study developed a generic planning process that utilities can use to determine the feasibility of utilizing WECS (Wind Energy Conversion Systems) as part of their future mix of equipment. While this is primarily an economic process, other questions dealing with WECS availability, capacity credit, operating reserve, performance of WECS arrays, etc., had to be addressed. The approach was to establish the worth, or breakeven value, of WECS to the utility and to determine the impact that WECS additions would have on the utilities mix of conventional source.

Not Available

1979-06-01T23:59:59.000Z

155

Marginally trapped surfaces in spaces of oriented geodesics  

E-Print Network (OSTI)

We investigate the geometric properties of marginally trapped surfaces (surfaces which have null mean curvature vector) in the spaces of oriented geodesics of Euclidean 3-space and hyperbolic 3-space, endowed with their canonical neutral Kaehler structures. We prove that every rank one surface in these four manifolds is marginally trapped. In the Euclidean case we show that Lagrangian rotationally symmetric sections are marginally trapped and construct an explicit family of marginally trapped Lagrangian tori. In the hyperbolic case we explore the relationship between marginally trapped and Weingarten surfaces, and construct examples of marginally trapped surfaces with various properties.

Brendan Guilfoyle; Nikos Georgiou

2013-05-28T23:59:59.000Z

156

Town of Spiceland, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Spiceland, Indiana (Utility Company) Spiceland, Indiana (Utility Company) Jump to: navigation, search Name Town of Spiceland Place Indiana Utility Id 17790 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Service Commercial Residential Residential Residential- Water Heater Service (30 to 74 gallon capacity) Residential Residential- Water Heater Service (30 to 74 gallon capacity) Residential Residential- Water Heater Service (75 gallons or greater capacity) Residential Residential- Water Heater Service (75 gallons or greater capacity)

157

Decentralized capacity management and internal pricing  

E-Print Network (OSTI)

Press. Goex, R. (2002). Capacity planning and pricing undermanufacturing on innovation, capacity and pro?tability.Mieghem, V. J. (2003). Capacity management, investment and

Dutta, Sunil; Reichelstein, Stefan

2010-01-01T23:59:59.000Z

158

Capacity consideration of wireless ad hoc networks  

E-Print Network (OSTI)

Capacity ProblemCurrent Research on Capacity of Wireless Ad HocChapter 3 Upper Bound on the Capacity of Wireless Ad Hoc

Tan, Yusong

2008-01-01T23:59:59.000Z

159

Are there capacity limitations in symmetry perception?  

E-Print Network (OSTI)

1980). The demonstration of capacity limitation. Cognitive1972). Visual processing capacity and attentional control.J. (1996). Goodness of CAPACITY LIMIT OF SYMMETRY PERCEPTION

Huang, L Q; Pashler, Harold; Junge, J A

2004-01-01T23:59:59.000Z

160

The Ergodic Capacity of Interference Networks  

E-Print Network (OSTI)

A. Jafar, “The ergodic capacity of interference networks,”Gupta and P. R. Kumar, “The capacity of wireless networks,”cooperation achieves optimal capacity scaling in ad hoc

Jafar, Syed A

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Mapping Individual Variations in Learning Capacity  

E-Print Network (OSTI)

in working memory capacity. Integrative Physiological andVariations in Learning Capacity Eduardo Mercado IIIdifferences in learning capacity are evident in humans and

Mercado III, Eduardo

2011-01-01T23:59:59.000Z

162

Definition: Capacity Emergency | Open Energy Information  

Open Energy Info (EERE)

Emergency Jump to: navigation, search Dictionary.png Capacity Emergency A capacity emergency exists when a Balancing Authority Area's operating capacity, plus firm purchases from...

163

Ocean Margins Programs, Phase I research summaries  

Science Conference Proceedings (OSTI)

During FY 1992, the DOE restructured its regional coastal-ocean programs into a new Ocean Margins Program (OMP), to: Quantify the ecological and biogeochemical processes and mechanisms that affect the cycling, flux, and storage of carbon and other biogenic elements at the land/ocean interface; Define ocean-margin sources and sinks in global biogeochemical cycles, and; Determine whether continental shelves are quantitatively significant in removing carbon dioxide from the atmosphere and isolating it via burial in sediments or export to the interior ocean. Currently, the DOE Ocean Margins Program supports more than 70 principal and co-principal investigators, spanning more than 30 academic institutions. Research funded by the OMP amounted to about $6.9M in FY 1994. This document is a collection of abstracts summarizing the component projects of Phase I of the OMP. This phase included both research and technology development, and comprised projects of both two and three years duration. The attached abstracts describe the goals, methods, measurement scales, strengths and limitations, and status of each project, and level of support. Keywords are provided to index the various projects. The names, addresses, affiliations, and major areas of expertise of the investigators are provided in appendices.

Verity, P. [ed.

1994-08-01T23:59:59.000Z

164

Electric Capacity | OpenEI  

Open Energy Info (EERE)

Capacity Capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated December 15th, 2010 (3 years ago) Keywords Electric Capacity Electricity Generation New Zealand projections

165

Adaptive capacity and its assessment  

SciTech Connect

This paper reviews the concept of adaptive capacity and various approaches to assessing it, particularly with respect to climate variability and change. I find that adaptive capacity is a relatively under-researched topic within the sustainability science and global change communities, particularly since it is uniquely positioned to improve linkages between vulnerability and resilience research. I identify opportunities for advancing the measurement and characterization of adaptive capacity by combining insights from both vulnerability and resilience frameworks, and I suggest several assessment approaches for possible future development that draw from both frameworks and focus on analyzing the governance, institutions, and management that have helped foster adaptive capacity in light of recent climatic events.

Engle, Nathan L.

2011-04-20T23:59:59.000Z

166

A Methodology for Assessment of Nuclear Power Plant Seismic Margin (Revision 1)  

Science Conference Proceedings (OSTI)

EPRI's seismic margin methodology enables utility engineers to quantify a nuclear power plant's ability to withstand an earthquake greater than design and still safely shut down for at least 72 hours. This cost-effective, practical methodology uses generic screening of systems and component seismic ruggedness and does not require probabilistic calculations. The revision adds depth, detail, and more complete procedures to the original report but does not change the basic method.

1991-08-01T23:59:59.000Z

167

Hualapai Tribal Utility Development Project  

SciTech Connect

The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribe’s tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon West Power Project construction of the power infrastructure at Grand Canyon West. Develop the maintenance and operations capacity necessary to support utility operations. Develop rates for customers on the Grand Canyon West “mini-grid” sufficient for the tribal utility to be self-sustaining. Establish an implementation strategy for tribal utility service at Grand Canyon West Objective 2 - Develop a strategy for tribal utility takeover of electric service on the Reservation. Perform a cost analysis of Reservation electrical service. Develop an implementation strategy for tribal takeover of Reservation electrical service. Examine options and costs associated with integration of the Tribe’s wind resources.

Hualapai Tribal Nation

2008-05-25T23:59:59.000Z

168

Utility Solar Generation Valuation Methods  

DOE Green Energy (OSTI)

Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public Service, Salt River Project, Xcel and Nevada Power Company as well as the Arizona electric cooperatives. In the second phase of the project, three years of 10 second power output data of the SGSSS was used to evaluate the effectiveness of frequency domain analysis, normal statistical distribution analysis and finally maximum/minimum differential output analysis to test the applicability of these mathematic methods in accurately modeling the output variations produced by clouds passing over the SGSSS array.

Hansen, Thomas N.; Dion, Phillip J.

2009-06-30T23:59:59.000Z

169

HEAT CAPACITY MEASUREMENTS IN PULSED MAGNETIC FIELDS  

E-Print Network (OSTI)

(World Scientific, to be published) The new NHMFL 60T quasi-continuous magnet produces a flat-top field for a period of 100 ms at 60 Tesla, and for longer time at lower fields, e.g. 0.5 s at 35 Tesla. We have developed for the first time the capability to measure heat capacity at very high magnetic fields in the NHMFL 60T quasi-continuous magnet at LANL, using a probe built out of various plastic materials. The field plateau allows us to utilize a heat-pulse method to obtain heat capacity data. Proof-of-principle heat capacity experiments were performed on a variety of correlated electron systems. Both magnet performance characteristics and physical properties of various materials studied hold out a promise of wide application of this new tool. 1 I. TECHNIQUE The 60 Tesla Long-Pulse (60TLP) magnet was recently commissioned at the Los Alamos National Laboratory. This magnet produces a flat-top field for a period of 100 ms at 60

M. Jaime; R. Movshovich; J. L. Sarrao; J. Kim; G. Stewart; W. P. Beyermann

1999-01-01T23:59:59.000Z

170

NET PRED UTILITY  

Energy Science and Technology Software Center (OSTI)

002602IBMPC00 Normalized Elution Time Prediction Utility  http://omics.pnl.gov/software/NETPredictionUtility.php 

171

DEMEC Member Utilities - Green Energy Program Incentives (8 utilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Member Utilities - Green Energy Program Incentives (8 utilities) DEMEC Member Utilities - Green Energy Program Incentives (8 utilities) Eligibility Agricultural Commercial...

172

Strategic Capacity Axial-Compressor Maintenance Program (SCAMP) Version 2  

Science Conference Proceedings (OSTI)

The Strategic Capacity Axial-Compressor Maintenance Program (SCAMP) spreadsheet provides combustion turbine operators with a low-cost, easy-to-install, easy-to-use program for monitoring combustion turbine (CT) axial compressor performance. Utilities can use it to diagnose the condition of axial compressors and to determine the benefits of maintenance actions such as an off-line compressor wash.

2000-11-29T23:59:59.000Z

173

Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Utilities Electric Utility Rates The Utilities Gateway houses OpenEI's free, community-editable utility rate repository. OpenEI users may browse, edit and add new electric utility rates to OpenEI's repository. EIA provides the authoritative list of utility companies in the United States, and thus OpenEI limits utility rates to companies listed by EIA. 43,031 rates have been contributed for 3,832 EIA-recognized utility companies. Browse rates by zip code Browse rates by utility name Create or edit a rate Number of Utility Companies by State Click on a state to view summaries for that state. See a list of all U.S. utility companies and aliases Utility Rate Database Description The Utility Rate Database (URDB) is a free storehouse of rate structure

174

Sylacauga Utilities Board | Open Energy Information  

Open Energy Info (EERE)

Sylacauga Utilities Board Sylacauga Utilities Board Jump to: navigation, search Name Sylacauga Utilities Board Place Alabama Utility Id 18395 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General Service Commercial Commercial Large General Service Industrial Industrial Large General Service Primary Service Credit with Standby Generator Capacity Industrial Large General Service Primary Service Credit Commercial Commercial Large General Service Primary Service Credit Industrial Industrial

175

Edinburg Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Edinburg Municipal Utilities Edinburg Municipal Utilities Jump to: navigation, search Name Edinburg Municipal Utilities Place Indiana Utility Id 5655 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric Residential and Farm Residential Electric Commercial Commercial Electric General Power Industrial Industrial Power(Transformer capacity Greater than 999kVA) Industrial Residential Residential Rural Commercial Commercial Rural Residential and Farm Residential Average Rates Residential: $0.0912/kWh

176

Power Sales to Electric Utilities  

SciTech Connect

The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

1989-02-01T23:59:59.000Z

177

Power Sales to Electric Utilities  

SciTech Connect

The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

None

1989-02-01T23:59:59.000Z

178

Characterizing entanglement with global and marginal entropic measures  

SciTech Connect

We qualify the entanglement of arbitrary mixed states of bipartite quantum systems by comparing global and marginal mixednesses quantified by different entropic measures. For systems of two qubits we discriminate the class of maximally entangled states with fixed marginal mixednesses, and determine an analytical upper bound relating the entanglement of formation to the marginal linear entropies. This result partially generalizes to mixed states the quantification of entanglement with marginal mixednesses holding for pure states. We identify a class of entangled states that, for fixed marginals, are globally more mixed than product states when measured by the linear entropy. Such states cannot be discriminated by the majorization criterion.

Adesso, Gerardo; Illuminati, Fabrizio; De Siena, Silvio [Dipartimento di Fisica 'E. R. Caianiello', Universita di Salerno, INFM UdR di Salerno, INFN Sezione di Napoli, Gruppo Collegato di Salerno, 84081 Baronissi, SA (Italy)

2003-12-01T23:59:59.000Z

179

Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

. . Underground Natural Gas Storage Capacity by State, December 31, 1996 (Capacity in Billion Cubic Feet) Table State Interstate Companies Intrastate Companies Independent Companies Total Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Percent of U.S. Capacity Alabama................. 0 0 1 3 0 0 1 3 0.04 Arkansas ................ 0 0 3 32 0 0 3 32 0.40 California................ 0 0 10 470 0 0 10 470 5.89 Colorado ................ 4 66 5 34 0 0 9 100 1.25 Illinois ..................... 6 259 24 639 0 0 30 898 11.26 Indiana ................... 6 16 22 97 0 0 28 113 1.42 Iowa ....................... 4 270 0 0 0 0 4 270 3.39 Kansas ................... 16 279 2 6 0 0 18 285 3.57 Kentucky ................ 6 167 18 49 0 0 24 216 2.71 Louisiana................ 8 530 4 25 0 0 12 555 6.95 Maryland ................ 1 62

180

Hierarchical Marginal Land Assessment for Land Use Planning  

SciTech Connect

Marginal land provides an alternative potential for food and bioenergy production in the face of limited land resources; however, effective assessment of marginal lands is not well addressed. Concerns over environmental risks, ecosystem services and sustainability for marginal land have been widely raised. The objective of this study was to develop a hierarchical marginal land assessment framework for land use planning and management. We first identified major land functions linking production, environment, ecosystem services and economics, and then classified land resources into four categories of marginal land using suitability and limitations associated with major management goals, including physically marginal land, biologically marginal land, environmental-ecological marginal land, and economically marginal land. We tested this assessment framework in south-western Michigan, USA. Our results indicated that this marginal land assessment framework can be potentially feasible on land use planning for food and bioenergy production, and balancing multiple goals of land use management. We also compared our results with marginal land assessment from the Conservation Reserve Program (CRP) and land capability classes (LCC) that are used in the US. The hierarchical assessment framework has advantages of quantitatively reflecting land functions and multiple concerns. This provides a foundation upon which focused studies can be identified in order to improve the assessment framework by quantifying high-resolution land functions associated with environment and ecosystem services as well as their criteria are needed to improve the assessment framework.

Kang, Shujiang [ORNL; Post, Wilfred M [ORNL; Wang, Dali [ORNL; Nichols, Dr Jeff A [ORNL; Bandaru, Vara Prasad [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Bowling Green Municipal Utilities - Net Metering (Ohio) | Open...  

Open Energy Info (EERE)

to investor-owned utilities.) A standard interconnection permit is available for wind, solar, hydro, fuel cells and microgenerators up to 25 kilowatts (kW) in capacity. Larger...

182

Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Risk Informed Safety Margin Characterization (RISMC) Advanced Test Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC)

183

Utility optimal scheduling in energy harvesting networks  

Science Conference Proceedings (OSTI)

In this paper, we show how to achieve close-to-optimal utility performance in energy harvesting networks with only finite capacity energy storage devices. In these networks, nodes are capable of harvesting energy from the environment. The amount ... Keywords: Lyapunov analysis, energy harvesting, queueing, stochastic network

Longbo Huang; Michael J. Neely

2011-05-01T23:59:59.000Z

184

COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY Empowering Communities in the Age of E-Government Prepared by Melinda Downing, Environmental Justice Program Manager, U.S. Department of Energy MAR 06 MARCH 2006 Since 1999, the Department of Energy has worked with the National Urban Internet and others to create community capacity through technology.  Empowering Communities in the Age of E-Government Table of Contents Message from the Environmental Justice Program Manager . . . . . . . . 3 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Partnerships. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Process Chart: From Agency to Community. . . . . . . . . . . . . . . . . . . 7 Case Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

185

PFBC Utility Demonstration Project  

Science Conference Proceedings (OSTI)

This report provides a summary of activities by American Electric Power Service Corporation during the first budget period of the PFBC Utility Demonstration Project. In April 1990, AEP signed a Cooperative Agreement with the US Department of Energy to repower the Philip Sporn Plant, Units 3 4 in New Haven, West Virginia, with a 330 KW PFBC plant. The purpose of the program was to demonstrate and verify PFBC in a full-scale commercial plant. The technical and cost baselines of the Cooperative Agreement were based on a preliminary engineering and design and a cost estimate developed by AEP subsequent to AEP's proposal submittal in May 1988, and prior to the signing of the Cooperative Agreement. The Statement of Work in the first budget period of the Cooperative Agreement included a task to develop a preliminary design and cost estimate for erecting a Greenfield plant and to conduct a comparison with the repowering option. The comparative assessment of the options concluded that erecting a Greenfield plant rather than repowering the existing Sporn Plant could be the technically and economically superior alternative. The Greenfield plant would have a capacity of 340 MW. The ten additional MW output is due to the ability to better match the steam cycle to the PFBC system with a new balance of plant design. In addition to this study, the conceptual design of the Sporn Repowering led to several items which warranted optimization studies with the goal to develop a more cost effective design.

Not Available

1992-11-01T23:59:59.000Z

186

High Capacity Immobilized Amine Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Immobilized Amine Sorbents Capacity Immobilized Amine Sorbents Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,288,136 entitled "High Capacity Immobilized Amine Sorbents." Disclosed in this patent is the invention of a method that facilitates the production of low-cost carbon dioxide (CO 2 ) sorbents for use in large-scale gas-solid processes. This method treats an amine to increase the number of secondary amine groups and impregnates the amine in a porous solid support. As a result of this improvement, the method increases CO 2 capture capacity and decreases the cost of using an amine-enriched solid sorbent in CO 2 capture systems. Overview The U.S. Department of Energy has placed a high priority on the separation

187

generation capacity | OpenEI  

Open Energy Info (EERE)

generation capacity generation capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

188

Building Regulatory Capacity for Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Capacity for Change PRESENTED BY Sarah Spencer-Workman, LEED AP July 27, 2011 "How to identify and review laws relevant to buildings and find places and opportunities...

189

Capacity Markets and Market Stability  

Science Conference Proceedings (OSTI)

The good news is that market stability can be achieved through a combination of longer-term contracts, auctions for far enough in the future to permit new entry, a capacity management system, and a demand curve. The bad news is that if and when stable capacity markets are designed, the markets may seem to be relatively close to where we started - with integrated resource planning. Market ideologues will find this anathema. (author)

Stauffer, Hoff

2006-04-15T23:59:59.000Z

190

Classical and quantum correlative capacities of quantum systems  

SciTech Connect

How strongly can one system be correlated with another? In the classical world, this basic question concerning correlative capacity has a very satisfying answer: The ''effective size'' of the marginal system, as quantified by the Shannon entropy, sets a tight upper bound to the correlations, as quantified by the mutual information. Although in the quantum world bipartite correlations, like their classical counterparts, are also well quantified by mutual information, the similarity ends here: The correlations in a bipartite quantum system can be twice as large as the marginal entropy. In the paradigm of quantum discord, the correlations are split into classical and quantum components, and it was conjectured that both the classical and quantum correlations are (like the classical mutual information) bounded above by each subsystem's entropy. In this work, by exploiting the interplay between entanglement of formation, mutual information, and quantum discord, we disprove that conjecture. We further indicate a scheme to restore harmony between quantum and classical correlative capacities. The results illustrate dramatically the asymmetric nature of quantum discord and highlight some subtle and unusual features of quantum correlations.

Li Nan; Luo Shunlong [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190 Beijing (China)

2011-10-15T23:59:59.000Z

191

Capacity Value of Wind Power  

Science Conference Proceedings (OSTI)

Power systems are planned such that they have adequate generation capacity to meet the load, according to a defined reliability target. The increase in the penetration of wind generation in recent years has led to a number of challenges for the planning and operation of power systems. A key metric for system adequacy is the capacity value of generation. The capacity value of a generator is the contribution that a given generator makes to overall system adequacy. The variable and stochastic nature of wind sets it apart from conventional energy sources. As a result, the modeling of wind generation in the same manner as conventional generation for capacity value calculations is inappropriate. In this paper a preferred method for calculation of the capacity value of wind is described and a discussion of the pertinent issues surrounding it is given. Approximate methods for the calculation are also described with their limitations highlighted. The outcome of recent wind capacity value analyses in Europe and North America are highlighted with a description of open research questions also given.

Keane, Andrew; Milligan, Michael; Dent, Chris; Hasche, Bernhard; DAnnunzio, Claudine; Dragoon, Ken; Holttinen, Hannele; Samaan, Nader A.; Soder, Lennart; O'Malley, Mark J.

2011-05-04T23:59:59.000Z

192

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

193

Utility Facility Siting and Environmental Protection Act (South Carolina) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Facility Siting and Environmental Protection Act (South Utility Facility Siting and Environmental Protection Act (South Carolina) Utility Facility Siting and Environmental Protection Act (South Carolina) < Back Eligibility Utility Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Siting and Permitting Provider South Carolina Public Service Commission This legislation applies to electric generating plants and associated facilities designed for or capable of operation at a capacity of more than 75 MW. A certificate from the Public Service Commission is required prior

194

Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)  

Science Conference Proceedings (OSTI)

Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

2014-01-01T23:59:59.000Z

195

MARGINAL EXPENSE OIL WELL WIRELESS SURVEILLANCE MEOWS  

SciTech Connect

A marginal expense oil well wireless surveillance system to monitor system performance and production from rod-pumped wells in real time from wells operated by Vaquero Energy in the Edison Field, Main Area of Kern County in California has been successfully designed and field tested. The surveillance system includes a proprietary flow sensor, a programmable transmitting unit, a base receiver and receiving antenna, and a base station computer equipped with software to interpret the data. First, the system design is presented. Second, field data obtained from three wells is shown. Results of the study show that an effective, cost competitive, real-time wireless surveillance system can be introduced to oil fields across the United States and the world.

Mason M. Medizade; John R. Ridgely; Donald G. Nelson

2004-11-01T23:59:59.000Z

196

ECN GHG Marginal Abatement Cost curves (NAMAC) | Open Energy Information  

Open Energy Info (EERE)

ECN GHG Marginal Abatement Cost curves (NAMAC) ECN GHG Marginal Abatement Cost curves (NAMAC) Jump to: navigation, search Tool Summary Name: ECN GHG Marginal Abatement Cost curves for the Non-Annex I region (NAMAC) Agency/Company /Organization: Energy Research Centre of the Netherlands Sector: Energy, Land Topics: Resource assessment, Pathways analysis, Background analysis Website: www.ecn.nl/docs/library/report/2006/e06060.pdf References: GHG Marginal Abatement Cost curves for the Non-Annex I region[1] GHG Marginal Abatement Cost curves for the Non-Annex I region (NAMAC) (1999-present) ECN has developed a Marginal Abatement Cost curve containing detailed information on mitigation technologies and abatement costs in developing countries. * The MAC was first developed for the Dutch Ministry of Foreign

197

Intrusion Margins and Associated Fractures | Open Energy Information  

Open Energy Info (EERE)

Intrusion Margins and Associated Fractures Intrusion Margins and Associated Fractures Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Intrusion Margins and Associated Fractures Dictionary.png Intrusion Margins and Associated Fractures: No definition has been provided for this term. Add a Definition Controlling Structures List of controlling structures typically associated with geothermal systems: Major Normal Fault Termination of a Major Normal Fault Stepover or Relay Ramp in Normal Fault Zones Apex or Salient of Normal Fault Fault Intersection Accommodation Zone Displacement Transfer Zone Pull-Apart in Strike-Slip Fault Zone Intrusion Margins and Associated Fractures Stratigraphic Boundaries Fissure Swarms Caldera Rim Margins Lithologically Controlled Fractures caused by igneous activity creates permeability, allowing water

198

Resource Adequacy Requirement: Reserve Margin, Contract Cover, and Price Caps  

Science Conference Proceedings (OSTI)

In setting RARs, some state agencies are proposing reserve margins greater than the pre-restructuring levels. But it would be a mistake to reach this conclusion unless other factors are explicitly considered. A simulation indicates that decisions on the reserve margin, the percentage of forward contract cover, and the level of price caps should not be made in isolation. The results support the conjecture that the higher the contract coverage, the less justifiable are high reserve margins or low price caps.

Rochlin, Cliff; Huang, Jeff

2005-09-01T23:59:59.000Z

199

Marginal Abatement Cost Tool (MACTool) | Open Energy Information  

Open Energy Info (EERE)

Marginal Abatement Cost Tool (MACTool) Marginal Abatement Cost Tool (MACTool) Jump to: navigation, search Tool Summary Name: Marginal Abatement Cost Tool (MACTool) Agency/Company /Organization: World Bank Climate Smart Planning Platform Sector: Climate, Energy Topics: Analysis Tools User Interface: Spreadsheet Complexity/Ease of Use: Simple Website: climatesmartplanning.org/node/33 Cost: Free Related Tools Global Relationship Assessment to Protect the Environment (GRAPE) Global Trade and Analysis Project (GTAP) Model MIT Emissions Prediction and Policy Analysis (EPPA) Model ... further results Find Another Tool FIND DEVELOPMENT IMPACTS ASSESSMENT TOOLS A spreadsheet tool for building marginal abatement cost curves, and for calculating break-even carbon prices. Supports comparison of costs and

200

A "joint+marginal" approach to parametric polynomial optimization  

E-Print Network (OSTI)

Jan 13, 2010 ... A "joint+marginal" approach to parametric polynomial optimization. Jean B. Lasserre(lasserre ***at*** laas.fr). Abstract: Given a compact ...

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Drivers of gross margins in UK retail electricity.  

E-Print Network (OSTI)

?? This thesis aims at explaining why the UK residential electricity (retail) market enjoys high gross margins in comparison to Vattenfall’s markets in for example… (more)

Törnqvist, Dan

2007-01-01T23:59:59.000Z

202

Optimal Capacity Adjustments for Supply Chain Control  

E-Print Network (OSTI)

Decisions on capacity are often treated separately from those of production and inventory. In most situations, capacity issues are longer-term, so capacity-related decisions are considered strategic and thus not part of ...

Budiman, Benny

203

production capacity | OpenEI  

Open Energy Info (EERE)

production capacity production capacity Dataset Summary Description No description given. Source Oak Ridge National Laboratory Date Released November 30th, 2009 (4 years ago) Date Updated Unknown Keywords biodiesel ethanol location production capacity transportation Data application/zip icon Biorefineries.zip (zip, 7 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments If you rate this dataset, your published comment will include your rating.

204

installed capacity | OpenEI  

Open Energy Info (EERE)

installed capacity installed capacity Dataset Summary Description Estimates for each of the 50 states and the entire United States show Source Wind Powering America Date Released February 04th, 2010 (4 years ago) Date Updated April 13th, 2011 (3 years ago) Keywords annual generation installed capacity usa wind Data application/vnd.ms-excel icon Wind potential data (xls, 102.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments

205

Building Regulatory Capacity for Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Capacity for Regulatory Capacity for Change PRESENTED BY Sarah Spencer-Workman, LEED AP July 27, 2011 "How to identify and review laws relevant to buildings and find places and opportunities that can accept changes that would support building energy objectives" Presentation Highlights Rulemaking Community and Stakeholder Identification To Support Code Changes Engagement: Building Capacity for Change Pay It Forward RULEMAKING : Plan Development and Research of Laws Relevant to Buildings How is it conducted? 'Landscape' Review Key words or phrases to look for Identify "home rule" jurisdictions Update and review cycle built in 'Landscape' Review:

206

Utility Battery Storage Systems Program report for FY93  

DOE Green Energy (OSTI)

Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses, contract development, and testing of rechargeable batteries and systems for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1993.

Butler, P.C.

1994-02-01T23:59:59.000Z

207

City of Troy, Kansas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Kansas Kansas Utility Id 18959 Utility Location Yes Ownership M NERC Location SPP Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Domestic and Commercial outside city limits- capacity charge Commercial Domestic and Commercial outside city limits- no capacity charge Commercial Domestic and Commercial w/in city limits- capacity charge Commercial Domestic and Commercial w/in city limits- no capacity charge Commercial Lighting- 100 watt Lighting Lighting- 250 watt Lighting Lighting- 400 watt Lighting Average Rates Residential: $0.0927/kWh Commercial: $0.0963/kWh

208

Cogeneration - A Utility Perspective  

E-Print Network (OSTI)

Cogeneration has become an extremely popular subject when discussing conservation and energy saving techniques. One of the key factors which effect conservation is the utility viewpoint on PURPA and cogeneration rule making. These topics are discussed from a utility perspective as how they influence utility participation in future projects. The avoided cost methodology is examined, and these payments for sale of energy to the utility are compared with utility industrial rates. In addition to utilities and industry, third party owner/operation is also a viable option to cogeneration. These options are also discussed as to their impact on the utility and the potential of these ownership arrangements.

Williams, M.

1983-01-01T23:59:59.000Z

209

Worldwide Energy Efficiency Action through Capacity Building...  

Open Energy Info (EERE)

Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and...

210

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

and tank farms. Excludes storage capacity of refineries, fuel ethanol plants, and pipelines. 2 Percent exclusive use is that portion of capacity in operation that is for the...

211

High Capacity Hydrogen Storage Nanocomposite - Energy ...  

Energy Storage Advanced Materials High Capacity Hydrogen Storage Nanocomposite Processes to add metal hydrideds to nanocarbon structures to yield high capacity ...

212

Property:Cooling Capacity | Open Energy Information  

Open Energy Info (EERE)

Capacity Jump to: navigation, search This is a property of type Number. Pages using the property "Cooling Capacity" Showing 2 pages using this property. D Distributed Generation...

213

Economic Dispatch of Electric Generation Capacity | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Dispatch of Electric Generation Capacity Economic Dispatch of Electric Generation Capacity A report to congress and the states pursuant to sections 1234 and 1832 of the...

214

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

215

Resource Adequacy Capacity - Power Marketing - Sierra Nevada...  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Adequacy Capacity Resource Adequacy Capacity Resource Adequacy Plan - Current Local Resource Adequacy Plan (Word - 175K) - Notice of Proposed Final Resource Adequacy Plan...

216

Washington Natural Gas Underground Storage Acquifers Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Washington Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

217

Missouri Natural Gas Underground Storage Acquifers Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Missouri Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

218

Mississippi Working Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

219

Minnesota Natural Gas Underground Storage Acquifers Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Minnesota Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

220

Pennsylvania Working Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Pennsylvania Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Washington Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Washington Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

222

EIA Crude Oil Distillation Capacity (Table 36)  

U.S. Energy Information Administration (EIA)

(Important Note on Sources of Crude Oil Distillation Capacity Estimates) Table 3.6 World Crude Oil Distillation Capacity, January 1, 1970 - January 1, 2009

223

Recovering associated gas from marginal fields  

SciTech Connect

To enable production from offshore gasfields too small to justify a pipeline, LGA Gastechnik G.m.b.H. has designed for a capacity of 30-90 million cu ft/day a system comprising a floating production unit on a catamaran barge complete with its own powerplant and personnel quarters plus a 15,000 cu m LNG/LPG/NGL tanker in the form of a catamaran holding two long cylindrical tanks. The catamaran barge production unit has a standard breadth of 27.5 m and depth of 6.5 m, with the length varying from 90 m to 120 m according to production and storage needs. There are ten cargo tanks located below decks in the two hulls. The tanker draft is either 7.7 m with LNG or 9.0 m with LPG. Tankers can be designed to match the actual production slate of a field. A possible third component of the system is a floating or a shore-based storage installation with capacity for 27,000 cu m LNG, 15,000 cu m LPG, and 7000 cu m natural gas liquids. At the beginning of 1978, Liquid Gas International G.m.b.H. was given an order for the preconstruction planning of a gas production and transport system such as described above.

1978-02-01T23:59:59.000Z

224

Determination of HEat Capacity of Yucca Mountain Strtigraphic Layers  

DOE Green Energy (OSTI)

The heat generated from the radioactive waste to be placed in the proposed geologic repository at Yucca Mountain, Nevada, will affect the thermal-hydrology of the Yucca Mountain stratigraphic layers. In order to assess the effect of the movement of repository heat into the fractured rocks accurate determination of thermodynamic and hydraulic properties is important. Heat capacity is one of the properties that are required to evaluate energy storage in the fractured rock. Rock-grain heat capacity, the subject of this study, is the heat capacity of the solid part of the rock. Yucca Mountain consists of alternating lithostratigraphic units of welded and non-welded ash-flow tuff, mainly rhyolitic in composition and displaying varying degrees of vitrification and alteration. A number of methods exist that can be used to evaluate heat capacity of the stratigraphic layers that consist of different compositions. In this study, the mineral summation method has been used to quantify the heat capacity of the stratigraphic layers based on Kopp's rule. The mineral summation method is an addition of the weighted heat capacity of each mineral found in a specific layer. For this study the weighting was done based on the mass percentage of each mineral in the layer. The method utilized a mineralogic map of the rocks at the Yucca Mountain repository site. The Calico Hills formation and adjacent bedded tuff layers display a bimodal mineral distribution of vitric and zeolitic zones with differing mineralogies. Based on this bimodal distribution in zeolite abundance, the boundary between the vitric and zeolitic zones was selected to be 15% zeolitic abundance. Thus, based on the zeolite abundance, subdivisions have been introduced to these layers into ''vitric'' and ''zeolitic'' zones. Heat capacity values have been calculated for these layers both as ''layer average'' and ''zone average''. The heat capacity determination method presented in this report did not account for spatial variability in the horizontal direction within each layer.

T. Hadgu; C. Lum; J.E. Bean

2006-06-20T23:59:59.000Z

225

Outlook for Regional Generation Capacity Balances: Report Series on Natural Gas and Power Reliability  

Science Conference Proceedings (OSTI)

The United States is in the midst of a power plant expansion boom, achieving record additions of natural gas-fired combustion turbines and combined-cycle units over the past two years, with 68,000 MW already added since 1998 and 17,000 MW more slated for completion by the end of 2001. This report provides a region-by-region accounting of how this new capacity -- plus hundreds of megawatts of possible additional natural gas and coal capacity -- may change reserve margins and result in many other impacts a...

2002-01-23T23:59:59.000Z

226

Wind turbine cost of electricity and capacity factor  

Science Conference Proceedings (OSTI)

Wind turbines are currently designed to minimize the cost of electricity at the wind turbine (the busbar cost) in a given wind regime, ignoring constraints on the capacity factor (the ratio of the average power output to the maximum power output). The trade-off between these two quantities can be examined in a straightforward fashion; it is found that the capacity factor can be increased by a factor of 30 percent above its value at the cost minimum for a ten percent increase in the busbar cost of electricity. This has important implications for the large-scale integration of wind electricity on utility grids where the cost of transmission may be a significant fraction of the cost of delivered electricity, or where transmission line capacity may be limited.

Cavallo, A.J. [Cavallo (A.J.), Princeton, NJ (United States)

1997-11-01T23:59:59.000Z

227

Bounds for the sum of dependent risks having overlapping marginals  

Science Conference Proceedings (OSTI)

We describe several analytical and numerical procedures to obtain bounds on the distribution function of a sum of n dependent risks having fixed overlapping marginals. As an application, we produce bounds on quantile-based risk measures for portfolios ... Keywords: 60E05, 60E15, Copula functions, Dependent risks, Fréchet bounds, Mass transportation theory, Overlapping marginals, Value-at-Risk

Paul Embrechts; Giovanni Puccetti

2010-01-01T23:59:59.000Z

228

A linear combination of classifiers via rank margin maximization  

Science Conference Proceedings (OSTI)

The method we present aims at building a weighted linear combination of already trained dichotomizers, where the weights are determined to maximize the minimum rank margin of the resulting ranking system. This is particularly suited for real applications ... Keywords: combination of classifiers, margin, ranking

Claudio Marrocco; Paolo Simeone; Francesco Tortorella

2010-08-01T23:59:59.000Z

229

A risk-informed approach to safety margins analysis  

SciTech Connect

The Risk Informed Safety Margins Characterization (RISMC) Pathway is a systematic approach developed to characterize and quantify safety margins of nuclear power plant structures, systems and components. The model has been tested on the Advanced Test Reactor (ATR) at Idaho National Lab.

Curtis Smith; Diego Mandelli

2013-07-01T23:59:59.000Z

230

Assessment of Biomass Resources from Marginal Lands in APEC Economies  

DOE Green Energy (OSTI)

The goal of this study is to examine the marginal lands in Asia-Pacific Economic Cooperation (APEC) economies and evaluate their biomass productivity potential. Twelve categories of marginal lands are identified using the Global Agro-Ecological Zones system of the United Nations Food and Agriculture Organization.

Milbrandt, A.; Overend, R. P.

2009-08-01T23:59:59.000Z

231

Property:PotentialUrbanUtilityScalePVCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialUrbanUtilityScalePVCapacity PotentialUrbanUtilityScalePVCapacity Jump to: navigation, search Property Name PotentialUrbanUtilityScalePVCapacity Property Type Quantity Description The nameplate capacity technical potential from utility-scale PV in urban areas of a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

232

Property:PotentialRuralUtilityScalePVCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialRuralUtilityScalePVCapacity PotentialRuralUtilityScalePVCapacity Jump to: navigation, search Property Name PotentialRuralUtilityScalePVCapacity Property Type Quantity Description The nameplate capacity technical potential from rural utility-scale PV for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

233

Utilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities Utilities Utilities Below are resources for Tribes about utilities. The Economics of Electric System Municipalization Looks at the economic environment in California to determine whether municipalization would be a beneficial option for many California cities. Source: Bay Area Economic Forum. Establishing a Tribal Utility Authority Handbook Provides an introduction to electric utility operation and general guidance for the steps required to form a tribal utility authority. Funded by an economic development grant awarded by the U.S. Department of the Interior's Office of Indian Energy and Economic Development to the Ak-Chin Indian Community and its tribal utility authority, Ak-Chin Energy Services. Source: Leonard S. Gold, Utility Strategies Consulting Group,

234

Capacity Value of Wind Plants and Overview of U.S. Experience (Presentation)  

DOE Green Energy (OSTI)

This presentation provides an overview and summary of the capacity value of wind power plants, based primarily on the U.S. experience. Resource adequacy assessment should explicitly consider risk. Effective load carrying capability (ELCC) captures each generators contribution to resource adequacy. On their own, reserve margin targets as a percent of peak can't capture risks effectively. Recommend benchmarking reliability-based approaches with others.

Milligan, M.

2011-08-01T23:59:59.000Z

235

Survivable IP topology design with re-use of backup wavelength capacity in optical backbone networks  

Science Conference Proceedings (OSTI)

In IP-over-WDM networks, wavelength circuits are often protected by dedicated backup circuits. Especially with future deployment of 100 G transmission systems, this will induce huge under-utilization of backup resources. Network utilization can be boosted ... Keywords: Backup capacity, IP-over-WDM networks, Packet services, Survivable IP topology, Wavelength services

Chaitanya S. K. Vadrevu; Massimo Tornatore

2010-12-01T23:59:59.000Z

236

Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(RISMC) Advanced Test (RISMC) Advanced Test Reactor Demonstration Case Study Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for

237

Risk Informed Safety Margin Characterization Case Study: Selection of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Case Study: Selection Case Study: Selection of Electrical Equipment To Be Subjected to Environmental Qualification Risk Informed Safety Margin Characterization Case Study: Selection of Electrical Equipment To Be Subjected to Environmental Qualification Reference 1 discussed key elements of the process for developing a margins-based "safety case" to support safe and efficient operation for an extended period. The present report documents (in Appendix A) a case study, carrying out key steps of the Reference 1 process, using an actual plant Probabilistic Risk Assessment (PRA) model. In general, the margins-based safety case helps the decision-maker manage plant margins most effectively. It tells the plant decision-maker such things as what margin is present (at the plant level, at the functional

238

Measurement-based Voltage Stability Margin Calculator (MVSMC) v1.0  

Science Conference Proceedings (OSTI)

Voltage stability is a major concern in daily power system operations and a leading factor to limit power transfers in a prevailing open access environment. Voltage instability usually starts from a local bus or area, and then may evolve into a wide-area instability problem if it cannot be controlled locally. This program utilizes EPRImeasurement-based voltage stability monitoring technology and is able to calculate voltage stability margin indices at a load bus or for an entire load area using the measu...

2009-10-30T23:59:59.000Z

239

FEMP Utility Services  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Services Utility Services Karen Thomas & Deb Beattie  SPONSORED BY THE FEDERAL ENERGY MANAGEMENT PROGRAM  Overview  UESC Project Support  Agency / Utility Partnerships  Renewable Project Support  Design Assistance  Agency Energy Implementation Plans * * * * * * UESC Project Support Education UESC Workshops Agency Briefings Utility Briefings On-site team training Communications Web site Enabling documents * Case studies UESC Project Support Direct Project Assistance Project facilitation Advise & Consult In depth Contract development Technical Proposal review Performance Verification Agency / Utility Partnerships Federal Utility Partnership Working Group Strategic Partnering Meeting Renewable Projects  Resource Screening: - PV - Solar Hot Water

240

Utility FGD survey, Janurary--December 1988  

SciTech Connect

The Utility FGD Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company. Simplified process flow diagrams of FGD systems, definitions, and a glossary of terms are attached to the report. Current data for domestic FGD systems show systems in operation, systems under construction, and systems planned. The current total FGD-controlled capacity in the United States is 67,091 MW. 2 figs., 9 tabs.

Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States)) [IT Corp., Cincinnati, OH (United States)

1991-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Utility FGD survey, January--December 1988  

Science Conference Proceedings (OSTI)

The Utility FGD Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company. Simplified process flow diagrams of FGD systems, definitions, and a glossary of terms are attached to the report. Current data for domestic FGD systems show systems in operation, systems under construction, and systems planned. The current total FGD-controlled capacity in the United States is 67,091 MW.

Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States)) [IT Corp., Cincinnati, OH (United States)

1991-09-01T23:59:59.000Z

242

Entangling and disentangling capacities of nonlocal maps  

E-Print Network (OSTI)

Entangling and disentangling capacities are the key manifestation of the nonlocal content of a quantum operation. A lot of effort has been put recently into investigating (dis)entangling capacities of unitary operations, but very little is known about capacities of non-unitary operations. Here we investigate (dis)entangling capacities of unital CPTP maps acting on two qubits.

Berry Groisman

2007-04-08T23:59:59.000Z

243

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity ...  

U.S. Energy Information Administration (EIA)

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

244

Oklahoma Refinery Vacuum Distillation Downstream Charge Capacity ...  

U.S. Energy Information Administration (EIA)

Oklahoma Refinery Vacuum Distillation Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

245

Georgia Refinery Marketable Petroleum Coke Production Capacity ...  

U.S. Energy Information Administration (EIA)

Georgia Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

246

Role of wind power in electric utilities  

SciTech Connect

Current estimates suggest that the cost of wind-generated power is likely to be competitive with conventionally generated power in the near future in regions of the United States with favorable winds and high costs for conventionally generated electricity. These preliminary estimates indicate costs of $500 to 700 per installed kW for mass-produced wind turbines. This assessment regarding competitiveness includes effects of reduced reliability of wind power compared to conventional sources. Utilities employing wind power are likely to purchase more peaking capacity and less baseload capacity than they would have otherwise to provide the lowest-cost reserve power. This reserve power is needed mainly when wind outages coincide with peak loads. The monetary savings associated with this shift contribute substantially to the value of wind energy to a utility.

Davitian, H

1977-09-01T23:59:59.000Z

247

Utility Brownfields Resource Guide  

Science Conference Proceedings (OSTI)

EPRI has established a program designed to assist utilities wishing to participate in local Brownfields redevelopment projects. EPRI developed this Brownfields guide to educate utility economic and real estate development personnel in identifying, screening, and supporting Brownfields projects.

1998-12-18T23:59:59.000Z

248

Avista Utilities- Net Metering  

Energy.gov (U.S. Department of Energy (DOE))

Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

249

OpenEI - Electric Capacity  

Open Energy Info (EERE)

New Zealand Energy New Zealand Energy Outlook (2010): Electricity and Generation Capacity http://en.openei.org/datasets/node/357 The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included.

License

250

By-Products Utilization  

E-Print Network (OSTI)

for rapid identification of buried utilities, blended coal ash, and non-spec./off-spec. aggregates and fly

Wisconsin-Milwaukee, University of

251

Capacity Proportional Unstructured Peer-to-Peer Networks  

E-Print Network (OSTI)

Existing methods to utilize capacity-heterogeneity in a P2P system either rely on constructing special overlays with capacity-proportional node degree or use topology adaptation to match a node's capacity with that of its neighbors. In existing P2P networks, which are often characterized by diverse node capacities and high churn, these methods may require large node degree or continuous topology adaptation, potentially making them infeasible due to their high overhead. In this thesis, we propose an unstructured P2P system that attempts to address these issues. We first prove that the overall throughput of search queries in a heterogeneous network is maximized if and only if traffic load through each node is proportional to its capacity. Our proposed system achieves this traffic distribution by biasing search walks using the Metropolis-Hastings algorithm, without requiring any special underlying topology. We then define two saturation metrics for measuring the performance of overlay networks: one for quantifying their ability to support random walks and the second for measuring their potential to handle the overhead caused by churn. Using simulations, we finally compare our proposed method with Gia, an existing system which uses topology adaptation, and find that the former performs better under all studied conditions, both saturation metrics, and such end-to-end parameters as query success rate, latency, and query-hits for various file replication schemes.

Reddy, Chandan Rama

2009-08-01T23:59:59.000Z

252

Energy utilization analysis of buildings  

DOE Green Energy (OSTI)

The accurate calculation of the energy requirements and heating and cooling equipment sizes for buildings is one of the most important, as well as one of the most difficult, problems facing the engineer. The fundamental principles utilized in the procedures developed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) are explained and brief descriptions of the computer programs using these procedures are given. Such computer programs generally are capable of: simulating the thermal response of a building to all sources of heat gains and losses, accounting for all non-thermal energy requirements in the building or on the sites, translating the building operating schedules into energy demand and consumption, identifying the peak capacity requirements of heating and cooling equipment, and performing an economic analysis that would select the most economical overall owning and operating cost equipment and energy source that minimize the building's life cycle cost.

Lokmanhekim, M.

1978-06-01T23:59:59.000Z

253

Building Energy Software Tools Directory : CHP Capacity Optimizer  

NLE Websites -- All DOE Office Websites (Extended Search)

CHP Capacity Optimizer Back to Tool CHP Capacity Optimizer data entry screen CHP Capacity Optimizer results screen CHP Capacity Optimizer restult map...

254

Estimating Marginal Residential Energy Prices in the Analysis of Proposed  

NLE Websites -- All DOE Office Websites (Extended Search)

Marginal Residential Energy Prices in the Analysis of Proposed Marginal Residential Energy Prices in the Analysis of Proposed Appliance Energy Efficiency Standards Title Estimating Marginal Residential Energy Prices in the Analysis of Proposed Appliance Energy Efficiency Standards Publication Type Report LBNL Report Number LBNL-44230 Year of Publication 2000 Authors Chaitkin, Stuart, James E. McMahon, Camilla Dunham Whitehead, Robert D. Van Buskirk, and James D. Lutz Document Number LBNL-44230 Date Published March 1 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Use of marginal energy prices, instead of average energy prices, represents a theoretically valuable and challenging refinement to the usual life-cycle cost analysis conducted for proposed appliance energy efficiency standards. LBNL developed a method to estimate marginal residential energy prices using a regression analysis based on a nationally representative sample of actual consumer energy bills. Based on the 1997 Residential Energy Consumption Survey (RECS), national mean marginal electricity prices were estimated to be 2.5% less than average electricity prices in the summer and 10.0% less than average prices in the non-summer months. For natural gas, marginal prices were 4.4% less than average prices in the winter and 15.3% less than average prices in the non-winter months.

255

MOLECULAR APPROACHES FOR IN SITU IDENTIFCIATION OF NITRATE UTILIZATION BY MARINE BACTERIA AND PHYTOPLANKTON  

SciTech Connect

Traditionally, the importance of inorganic nitrogen (N) for the nutrition and growth of marine phytoplankton has been recognized, while inorganic N utilization by bacteria has received less attention. Likewise, organic N has been thought to be important for heterotrophic organisms but not for phytoplankton. However, accumulating evidence suggests that bacteria compete with phytoplankton for nitrate (NO3-) and other N species. The consequences of this competition may have a profound effect on the flux of N, and therefore carbon (C), in ocean margins. Because it has been difficult to differentiate between N uptake by heterotrophic bacterioplankton versus autotrophic phytoplankton, the processes that control N utilization, and the consequences of these competitive interactions, have traditionally been difficult to study. Significant bacterial utilization of DIN may have a profound effect on the flux of N and C in the water column because sinks for dissolved N that do not incorporate inorganic C represent mechanisms that reduce the atmospheric CO2 drawdown via the ?biological pump? and limit the flux of POC from the euphotic zone. This project was active over the period of 1998-2007 with support from the DOE Biotechnology Investigations ? Ocean Margins Program (BI-OMP). Over this period we developed a tool kit of molecular methods (PCR, RT-PCR, Q-PCR, QRT-PCR, and TRFLP) and combined isotope mass spectrometry and flow-cytometric approaches that allow selective isolation, characterization, and study of the diversity and genetic expression (mRNA) of the structural gene responsible for the assimilation of NO3- by heterotrophic bacteria (nasA). As a result of these studies we discovered that bacteria capable of assimilating NO3- are ubiquitous in marine waters, that the nasA gene is expressed in these environments, that heterotrophic bacteria can account for a significant fraction of total DIN uptake in different ocean margin systems, that the expression of nasA is differentially regulated in genetically distinct NO3- assimilating bacteria, and that the best predictors of nasA gene expression are either NO3- concentration or NO3- uptake rates. These studies provide convincing evidence of the importance of bacterial utilization of NO3-, insight into controlling processes, and provide a rich dataset that are being used to develop linked C and N modeling components necessary to evaluate the significance of bacterial DIN utilization to global C cycling. Furthermore, as a result of BI-OMP funding we made exciting strides towards institutionalizing a research and education based collaboration between the Skidaway Institute of Oceanography (SkIO) and Savannah State University (SSU), an historically black university within the University System of Georgia with undergraduate and now graduate programs in marine science. The BI-OMP program, in addition to supporting undergraduate (24) graduate (10) and postdoctoral (2) students, contributed to the development of a new graduate program in Marine Sciences at SSU that remains an important legacy of this project. The long-term goals of these collaborations are to increase the capacity for marine biotechnology research and to increase representation of minorities in marine, environmental and biotechnological sciences.

Frischer, Marc E. [Skidaway Institute of Oceanography; Verity, Peter G.; Gilligan, Mathew R.; Bronk, Deborah A.; Zehr, Jonathan P.; Booth, Melissa G.

2013-09-12T23:59:59.000Z

256

Parrondo's paradox and superactivation of classical and quantum capacity of communication channels with memory  

E-Print Network (OSTI)

There exist memoryless zero-capacity quantum channels that when used jointly result in the channel with positive capacity. This phenomenon is called superactivation. Making use of Parrondo's paradox, we exhibit examples of superactivation-like effect for the capacity of classical communication channels as well as quantum and private capacity of quantum channels with memory. There are several ingredients necessary for superactivation of quantum capacity to occur in memoryless case. The first one is the requirement for the quantum channels which are amenable for superactivation to come from two distinct families - binding entanglement channels and erasure channels. The second one is the ability to utilize inputs which are entangled across the uses of the channels. Our construction uses a single family of erasure channels with classical memory to achieve the same superactivation-like effect for quantum capacity without any of the ingredients above.

Sergii Strelchuk

2013-05-06T23:59:59.000Z

257

electricity generating capacity | OpenEI  

Open Energy Info (EERE)

generating capacity generating capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity generating capacity datasets: annual operational electricity generation capacity by plant type (1975 - 2009); estimated generating capacity by fuel type for North Island, South Island and New Zealand (2009); and information on generating plants (plant type, name, owner, commissioned date, and capacity), as of December 2009. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords biomass coal Electric Capacity electricity generating capacity geothermal Hydro Natural Gas wind Data application/vnd.ms-excel icon Operational Electricity Generation Capacity by Plant Type (xls, 42.5 KiB)

258

The Effect of Technological Improvement on Capacity  

E-Print Network (OSTI)

We formulate a model of capacity expansion that is relevant to a service provider for whom the cost of capacity shortages would be considerable but difficult to quantify exactly. Due to demand uncertainty and a lead time for adding capacity, not all shortages are avoidable. In addition, technological innovations will reduce the cost of adding capacity but may not be completely predictable. Analytical expressions for the infinite horizon expansion cost and shortages are optimized numerically. Sensitivity analyses allow us to determine the impact of technological change on the optimal timing and sizes of capacity expansions to account for economies of scale, the time value of money and penalties for insufficient capacity.

Expansion For Uncertain; Dohyun Pak; Nattapol Pornsalnuwat; Sarah M. Ryan

2004-01-01T23:59:59.000Z

259

Assessment of Biomass Resources from Marginal Lands in APEC Countries |  

Open Energy Info (EERE)

from Marginal Lands in APEC Countries from Marginal Lands in APEC Countries Jump to: navigation, search Logo: Assessment of Biomass Resources from Marginal Lands in APEC Countries Name Assessment of Biomass Resources from Marginal Lands in APEC Countries Agency/Company /Organization National Renewable Energy Laboratory Sector Energy Focus Area Biomass Topics Resource assessment Resource Type Dataset, Maps, Publications Website http://www.biofuels.apec.org/p Country Australia, Brunei, Canada, Chile, China, Indonesia, Japan, South Korea, Malaysia, Mexico, New Zealand, Papua New Guinea, Peru, Philippines, Russia, Chinese Taipei, Thailand, United States, Vietnam Australia and New Zealand, South-Eastern Asia, Northern America, South America, Eastern Asia, South-Eastern Asia, Eastern Asia, Eastern Asia, South-Eastern Asia, Central America, Australia and New Zealand, Melanesia, South America, South-Eastern Asia, Eastern Europe, , South-Eastern Asia, Northern America, South-Eastern Asia

260

Marginal Sea Overflows and the Upper Ocean Interaction  

Science Conference Proceedings (OSTI)

Marginal sea overflows and the overlying upper ocean are coupled in the vertical by two distinct mechanisms—by an interfacial mass flux from the upper ocean to the overflow layer that accompanies entrainment and by a divergent eddy flux ...

Shinichiro Kida; Jiayan Yang; James F. Price

2009-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Electricity Prices in a Competitive Environment: Marginal Cost Pricing  

Reports and Publications (EIA)

Presents the results of an analysis that focuses on two questions: (1) How are prices for competitive generation services likely to differ from regulated prices if competitive prices are based on marginal costs rather than regulated cost-of-service pricing? (2) What impacts will the competitive pricing of generation services (based on marginal costs) have on electricity consumption patterns, production costs, and the financial integrity of electricity suppliers?

Information Center

1997-08-01T23:59:59.000Z

262

Survey of Western U.S. electric utility resource plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey Survey of Western U.S. electric utility resource plans Jordan Wilkerson a,n , Peter Larsen a,b , Galen Barbose b a Management Science and Engineering Department, School of Engineering, Stanford University, Stanford, CA 94305, United States b Energy Analysis and Environmental Impacts Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 90-4000, Berkeley, CA 94720, United States H I G H L I G H T S  Anticipated power plant retirements are split between coal and natural gas.  By 2030, natural gas-fired generation represents 60% of new capacity followed by wind (15%), solar (7%) and hydropower (7%).  Utilities anticipate most new solar capacity to come online before 2020 with significant growth in wind capacity after 2020.  Utilities focus their uncertainty analyses on future demand, fuel prices,

263

City of Delta, Colorado (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Delta Delta Place Colorado Utility Id 5036 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Greater than 50 KVA of Installed Transformer Capacity Industrial Residential Residential Security and Yard Lights Lighting Single Phase Less Than 50 KVA of Installed Transformer Capacity Commercial Street Lighting, Traffic Lighting, City Power Lighting Three Phase Less Than 50 KVA of Installed Transformer Capacity Commercial

264

"List of Covered Electric Utilities" under the Public Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

265

OpenEI Community - Utility+Utility Access Map  

Open Energy Info (EERE)

Finding Utility Finding Utility Companies Under a Given Utility ID http://en.openei.org/community/blog/finding-utility-companies-under-given-utility-id  Here's a quick way to find all the utility company pages under a given utility id.  From the Special Ask page, in the query box enter the following: [[Category:Utility Companies]][[EiaUtilityId::15248]] substituting your utility id of interest for 15248, and click "Find results". http://en.openei.org/community/blog/finding-utility-companies-under-given-utility-id#comments

266

Carrots for Utilities: Providing Financial Returns for Utility...  

Open Energy Info (EERE)

Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Jump to: navigation, search Name Carrots for Utilities: Providing Financial Returns...

267

Capacity Factor Risk At Nuclear Power Plants  

E-Print Network (OSTI)

We develop a model of the dynamic structure of capacity factor risk. It incorporates the risk that the capacity factor may vary widely from year-to-year, and also the risk that the reactor may be permanently shutdown prior ...

Du, Yangbo

268

Definition: Capacity Revenue | Open Energy Information  

Open Energy Info (EERE)

through the competitive capacity market for a capacity credit.1 References SmartGrid.gov 'Description of Benefits' An LikeLike UnlikeLike You like this.Sign Up to see...

269

Empirical Study of Ramp Metering and Capacity  

E-Print Network (OSTI)

Empirical Study of Ramp Metering and Capacity Michael J.EMPIRICAL STUDY OF RAMP METERING AND CAPACITY June 7, 2002Thus, the benefits of metering inflows at this on-ramp seem

Cassidy, Michael J.; Rudjanakanoknad, Jittichai

2002-01-01T23:59:59.000Z

270

On the capacity of bosonic channels  

E-Print Network (OSTI)

The capacity of the bosonic channel with additive Gaussian noise is unknown, but there is a known lower bound that is conjectured to be the capacity. We have quantified the gap that exists between this known achievable ...

Blake, Christopher Graham

2011-01-01T23:59:59.000Z

271

Capacity expansion in contemporary telecommunication networks  

E-Print Network (OSTI)

We study three capacity expansion problems in contemporary long distance telecommunication networks. The first two problems, motivated by a major long distance provider, address capacity expansion in national hybrid long ...

Sivaraman, Raghavendran

2007-01-01T23:59:59.000Z

272

The capacity of hybrid quantum memory  

E-Print Network (OSTI)

The general stable quantum memory unit is a hybrid consisting of a classical digit with a quantum digit (qudit) assigned to each classical state. The shape of the memory is the vector of sizes of these qudits, which may differ. We determine when N copies of a quantum memory A embed in N(1+o(1)) copies of another quantum memory B. This relationship captures the notion that B is as at least as useful as A for all purposes in the bulk limit. We show that the embeddings exist if and only if for all p >= 1, the p-norm of the shape of A does not exceed the p-norm of the shape of B. The log of the p-norm of the shape of A can be interpreted as the maximum of S(\\rho) + H(\\rho)/p (quantum entropy plus discounted classical entropy) taken over all mixed states \\rho on A. We also establish a noiseless coding theorem that justifies these entropies. The noiseless coding theorem and the bulk embedding theorem together say that either A blindly bulk-encodes into B with perfect fidelity, or A admits a state that does not visibly bulk-encode into B with high fidelity. In conclusion, the utility of a hybrid quantum memory is determined by its simultaneous capacity for classical and quantum entropy, which is not a finite list of numbers, but rather a convex region in the classical-quantum entropy plane.

Greg Kuperberg

2002-03-21T23:59:59.000Z

273

Utility Solar Business Models  

Science Conference Proceedings (OSTI)

Many utilities are initiating business plans that enable them to play a more integral role in the solar power value chain. This report summarizes research completed to identify and track utility solar business models (USBMs) in the United States. EPRI and the Solar Electric Power Association (SEPA) are conducting an ongoing joint research effort to evaluate the expanding range of utility activities in acquiring solar energy, including photovoltaic (PV) asset ownership. Throughout 2011, USBMs have been ca...

2011-11-21T23:59:59.000Z

274

On Working Memory: Its organization and capacity limits  

E-Print Network (OSTI)

64 iii 6.2 Working memory capacity10 1.4 Capacity limits of workingcapacity . . . . . . . . . . . . . . . . . . . . . . . . . .

Lara, Antonio Homero

2010-01-01T23:59:59.000Z

275

Marginal Abatement Costs and Marginal Welfare Costs for Greenhouse Gas Emissions Reductions: Results from the EPPA Model  

E-Print Network (OSTI)

Marginal abatement cost (MAC) curves, relationships between tons of emissions abated and the CO2 (or GHG) price, have been widely used as pedagogic devices to illustrate simple economic concepts such as the benefits of ...

Morris, Jennifer

276

Utilities weather the storm  

SciTech Connect

Utilities must restore power to storm-damaged transmission and distribution systems, even if it means going out in ice storms or during lightning and hurricane conditions. Weather forecasting helps utilities plan for possible damage as well as alerting them to long-term trends. Storm planning includes having trained repair personnel available and adjusting the system so that less power imports are needed. Storm damage response requires teamwork and cooperation between utilities. Utilities can strengthen equipment in storm-prone or vulnerable areas, but good data are necessary to document the incidence of lighning strikes, hurricanes, etc. 2 references, 8 figures.

Lihach, N.

1984-11-01T23:59:59.000Z

277

Tribal Utility Feasibility Study  

DOE Green Energy (OSTI)

• Facility scale, net metered renewable energy systems – These are renewable energy systems that provide power to individual households or facilities that are connected to conventional electric utility grid.

Engel, R. A.; Zoellick, J. J.

2007-06-30T23:59:59.000Z

278

Municipal Utility Districts (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

Municipal Utility Districts, regulated by the Texas Commission on Environmental Quality, may be created for the following purposes: (1) the control, storage, preservation, and distribution of its...

279

Peak Underground Working Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA)

Peak Working Natural Gas Capacity. Data and Analysis from the Energy Information Administration (U.S. Dept. of Energy)

280

Texas Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Capacity : Operable ... Idle refineries represent refineries where distillation units were completely idle but not ...

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Colorado Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Capacity : Operable ... Idle refineries represent refineries where distillation units were completely idle but not ...

282

Optimization of the Refrigerant Capacity in Multiphase ...  

Science Conference Proceedings (OSTI)

Symposium, Magnetic Materials for Energy Applications. Presentation Title, Optimization of the Refrigerant Capacity in Multiphase Magnetocaloric Materials.

283

Shannon capacity of nonlinear regenerative channels  

E-Print Network (OSTI)

We compute Shannon capacity of nonlinear channels with regenerative elements. Conditions are found under which capacity of such nonlinear channels is higher than the Shannon capacity of the classical linear additive white Gaussian noise channel. We develop a general scheme for designing the proposed channels and apply it to the particular nonlinear sine-mapping. The upper bound for regeneration efficiency is found and the asymptotic behavior of the capacity in the saturation regime is derived.

Sorokina, M A

2013-01-01T23:59:59.000Z

284

Robust Capacity Planning in Semiconductor Manufacturing  

E-Print Network (OSTI)

Oct 3, 2001 ... Abstract: We present a stochastic programming approach to capacity planning under demand uncertainty in semiconductor manufacturing.

285

Farmington Electric Utility System - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmington Electric Utility System - Net Metering Farmington Electric Utility System - Net Metering Farmington Electric Utility System - Net Metering < Back Eligibility Residential Savings Category Energy Sources Buying & Making Electricity Solar Home Weatherization Water Wind Program Info State New Mexico Program Type Net Metering Provider Farmington Electric Utility System Net metering rules developed by the New Mexico Public Regulation Commission (PRC) apply to the state's investor-owned utilities and electric cooperatives. Municipal utilities, which are not regulated by the commission, are exempt from the PRC rules but authorized to develop their own net metering programs. Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity.

286

Capacity of shrinking condensers in the plane  

E-Print Network (OSTI)

We show that the capacity of a class of plane condensers is comparable to the capacity of corresponding "dyadic condensers". As an application, we show that for plane condensers in that class the capacity blows up as the distance between the plates shrinks, but there can be no asymptotic estimate of the blow-up.

Arcozzi, N

2011-01-01T23:59:59.000Z

287

The Compound Capacity of Polar Codes  

E-Print Network (OSTI)

We consider the compound capacity of polar codes under successive cancellation decoding for a collection of binary-input memoryless output-symmetric channels. By deriving a sequence of upper and lower bounds, we show that in general the compound capacity under successive decoding is strictly smaller than the unrestricted compound capacity.

Hassani, S Hamed; Urbanke, Ruediger

2009-01-01T23:59:59.000Z

288

Do Americans Consume Too Little Natural Gas? An Empirical Test of Marginal Cost Pricing  

E-Print Network (OSTI)

implemented at relatively low cost. References [1] Averch,Departures from Marginal Cost Pricing,” American EconomicCoase, R.H. , “The Marginal Cost Controversy. ” Economica,

Davis, Lucas; Muehlegger, Erich

2009-01-01T23:59:59.000Z

289

Utility+Utility Access Map | OpenEI Community  

Open Energy Info (EERE)

the utility company pages under a given utility id. From the Special Ask page, in the query box enter the following: Category:Utility CompaniesEiaUtilityId::15248...

290

High current capacity electrical connector  

DOE Patents (OSTI)

An electrical connector is provided for coupling high current capacity electrical conductors such as copper busses or the like. The connector is arranged in a "sandwiched" configuration in which a conductor plate contacts the busses along major surfaces thereof clamped between two stainless steel backing plates. The conductor plate is provided with a plurality of contact buttons affixed therein in a spaced array such that the caps of the buttons extend above the conductor plate surface to contact the busses. When clamping bolts provided through openings in the sandwiched arrangement are tightened, Belleville springs provided under the rim of each button cap are compressed and resiliently force the caps into contact with the busses' contacting surfaces to maintain a predetermined electrical contact area provided by the button cap tops. The contact area does not change with changing thermal or mechanical stresses applied to the coupled conductors.

Bettis, Edward S. (Oak Ridge, TN); Watts, Harry L. (Lake City, TN)

1976-01-13T23:59:59.000Z

291

DOE Transmission Capacity Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmission Capacity Report Transmission Capacity Report DOE Transmission Capacity Report DOE Transmission Capacity Report: Transmission lines, substations, circuit breakers, capacitors, and other equipment provide more than just a highway to deliver energy and power from generating units to distribution systems. Transmission systems both complement and substitute for generation. Transmission generally enhances reliability; lowers the cost of electricity delivered to consumers; limits the ability of generators to exercise market power; and provides flexibility to protect against uncertainties about future fuel prices, load growth, generator construction, and other factors affecting the electric system. DOE Transmission Capacity Report More Documents & Publications Report to Congress:Impacts of the Federal Energy Regulatory Commission's

292

Capacity withholding in the Electricity Pool.  

E-Print Network (OSTI)

Electricity generators can raise the price of power by withholding their plant from the market. We discuss two ways in which this could have affected prices in the England and Wales Pool. Withholding low-cost capacity which should be generating will raise energy prices but make the pattern of generation less efficient. This pattern improved significantly after privatisation. Withholding capacity that was not expected to generate would raise the Capacity Payments based on spare capacity. On a multi-year basis, these did not usually exceed “competitive ” levels, the cost of keeping stations open. The evidence for large-scale capacity withholding is weak. Keywords: JEL:

Richard Green; Richard Green

2004-01-01T23:59:59.000Z

293

Capacity Value of Concentrating Solar Power Plants  

DOE Green Energy (OSTI)

This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2011-06-01T23:59:59.000Z

294

Property:InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

InstalledCapacity InstalledCapacity Jump to: navigation, search Property Name InstalledCapacity Property Type Quantity Description Installed Capacity (MW) or also known as Total Generator Nameplate Capacity (Rated Power) Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

295

Optimal entangling capacity of dynamical processes  

SciTech Connect

We investigate the entangling capacity of dynamical operations when provided with local ancilla. A comparison is made between the entangling capacity with and without the assistance of prior entanglement. An analytic solution is found for the log-negativity entangling capacity of two-qubit gates, which equals the entanglement of the Choi matrix isomorphic to the unitary operator. Surprisingly, the availability of prior entanglement does not affect this result, a property we call resource independence of the entangling capacity. We prove several useful upper bounds on the entangling capacity that hold for general qudit dynamical operations and for a whole family of entanglement monotones including log negativity and log robustness. The log-robustness entangling capacity is shown to be resource independent for general dynamics. We provide numerical results supporting a conjecture that the log-negativity entangling capacity is resource independent for all two-qudit unitary operators.

Campbell, Earl T. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

2010-10-15T23:59:59.000Z

296

Optimal Entangling Capacity of Dynamical Processes  

E-Print Network (OSTI)

We investigate the entangling capacity of dynamical operations when provided with local ancilla. A comparison is made between the entangling capacity with and without the assistance of prior entanglement. An analytic solution is found for the log-negativity entangling capacity of two-qubit gates, which equals the entanglement of the Choi matrix isomorphic to the unitary operator. Surprisingly, the availability of prior entanglement does not affect this result; a property we call resource independence of the entangling capacity. We prove several useful upper-bounds on the entangling capacity that hold for general qudit dynamical operations, and for a whole family of entanglement monotones including log-negativity and log-robustness. The log-robustness entangling capacity is shown to be resource independent for general dynamics. We provide numerical results supporting a conjecture that the log-negativity entangling capacity is resource independence for all two-qudit unitaries.

Earl T. Campbell

2010-07-08T23:59:59.000Z

297

Tectonic evolution of the southwestern Black Sea margin, offshore Turkey  

E-Print Network (OSTI)

The southwestern margin of the Black Sea was under the influence of a regional extensional tectonic regime behind an island arc during Late Cretaceous time. During this period, andesitic submarine volcanics covered the margin which was connected to the Srednogorie intra-arc zone in Bulgaria. Following back-arc extension, the whole margin was affected by a compressional tectonic regime during Paleocene-early Eocene time. Under this regime, a series of thrust faults formed, which were connected to the Stara Planina and the Fore-Balkan overthrust system, offshore Bulgaria. In the middle Eocene, the regional compressional regime gave way to an extensional phase which caused block faulting in the basement and triggered rapid subsidence on the outer shelf along these block faults. As a result, a transgressive period began across the region. In the south of the study area, a small basin formed and became isolated from the outer shelf behind a marginal rise which is bordered by several margin faults from the south and the north. The middle Eocene transgression reached its maximum during early Oligocene by covering the most of the land areas in the south. A regression in Late Oligocene deposited shallow marine sediments on the margin. During early to middle Mocene time, a delta system was formed by sediments that by-passed through a narrow corridor in the marginal rise and that were derived from the Srednogorie Zone. During early stages in the development of the North Anatolian Fault system and its probable northern strand in the Thrace Basin at the end of the middle Miocene, the southern and southeastern parts of the margin were left subaerially exposed. Late Miocene deposition was characterized by a long erosional period along the margin. Fluvial and shallow marine deposits of Pliocene age were deposited over the eroded Miocene unit during a sea-level rise. A sea-level fall in late Pliocene time formed a deep incised valley system on the shelf. A transgressive period during Quaternary time filled this valley system, and formed the present day Turkish Black Sea coast.

Can, Emrah

1996-01-01T23:59:59.000Z

298

Electric utility resource planning using Continuous-Discrete Modular Simulation and Optimization (CoDiMoSO)  

Science Conference Proceedings (OSTI)

Electric utility resource planning traditionally focuses on conventional energy supplies such as coal, natural gas, and oil. Nowadays, planning of renewable energy generation as well as its side necessity of storage capacities have become equally important ... Keywords: Continuous-discrete simulation modeling, Distributed energy generation and storage, Electric utility capacity planning, Integrated decision making

Juan Pablo SáEnz; Nurcin Celik; Shihab Asfour; Young-Jun Son

2012-11-01T23:59:59.000Z

299

Non-Federal Participation Capacity Ownership Contracts and Section 9(C) Policy; Record of Decision.  

SciTech Connect

On March 25, 1994, the BPA Administrator`s Record of Decision (ROD) on Non-Federal Participation Capacity Ownership was signed. Such ROD documented the decision to proceed with 725 MW of Capacity Ownership in the PNW-PSW AC Intertie for non-Federal parties, and specifically discussed (1) the background of the PNW-PSW AC Intertie and BPA`s access policies and proposals; (2) the general features of the Capacity Ownership proposal and its supporting NFP EIS analysis; (3) PNW-PSW AC Intertie capacity allocations between BPA and non-Federal parties; and (4) BPA`s Protected Area provisions and how they would be applied to Capacity Ownership. The Capacity Ownership decision followed extensive review and analysis by BPA, and expressions of interest by utilities and members of Congress to give full consideration to non-Federal participation in the financing and use of the Third AC Intertie expansion. As specified in Section 1.3.3.2 of the Non-Federal Participation Capacity Ownership ROD, BPA would address the final Capacity Ownership contract terms and the Northwest Power Act Section 9(c) Policy, and how it relates to BPA`s Capacity Ownership offering, in a separate ROD. Accordingly, such items are discussed herein.

United States. Bonneville Power Administration

1994-07-01T23:59:59.000Z

300

Utility Battery Exploratory Technology Development Program report for FY91  

DOE Green Energy (OSTI)

Sandia National Laboratories, Albuquerque, manages the Utility Battery Exploratory Technology Development Program, which is sponsored by the US Department of Energy's Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses and development of rechargeable batteries for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1991. Sodium/Sulfur, Zinc/Bromine, Nickel/Hydrogen, Aluminium/Air and Lead/Acid batteries are evaluated.

Magnani, N.J.; Butler, P.C.; Akhil, A.A.; Braithwaite, J.W.; Clark, N.H.; Freese, J.M.

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Utility Battery Exploratory Technology Development Program report for FY91  

DOE Green Energy (OSTI)

Sandia National Laboratories, Albuquerque, manages the Utility Battery Exploratory Technology Development Program, which is sponsored by the US Department of Energy`s Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses and development of rechargeable batteries for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1991. Sodium/Sulfur, Zinc/Bromine, Nickel/Hydrogen, Aluminium/Air and Lead/Acid batteries are evaluated.

Magnani, N.J.; Butler, P.C.; Akhil, A.A.; Braithwaite, J.W.; Clark, N.H.; Freese, J.M.

1991-12-01T23:59:59.000Z

302

Non-utility power generation continues to grow  

SciTech Connect

This article examines why the number of non-utility power plants is increasing. The topics include the impact of the changes to the Public Utility Holding Company Act, and bidding for capacity. It includes a look at Texaco's Puget Sound oil refinery and how its efficiency problems were solved using cogeneration including the need to improve energy balance and engineering of the plant. Grayling generating station (wood waste) and Kalaeloa cogeneration power plant (low sulfur fuel oil) are also discussed.

Smith, D.J.

1993-05-01T23:59:59.000Z

303

Estimates of emergency operating capacity in US manufacturing and nonmanufacturing industries - Volume 1: Concepts and Methodology  

SciTech Connect

Development of integrated mobilization preparedness policies requires planning estimates of available productive capacity during national emergency conditions. Such estimates must be developed in a manner to allow evaluation of current trends in capacity and the consideration of uncertainties in various data inputs and in engineering assumptions. This study developed estimates of emergency operating capacity (EOC) for 446 manufacturing industries at the 4-digit Standard Industrial Classification (SIC) level of aggregation and for 24 key nonmanufacturing sectors. This volume lays out the general concepts and methods used to develop the emergency operating estimates. The historical analysis of capacity extends from 1974 through 1986. Some nonmanufacturing industries are included. In addition to mining and utilities, key industries in transportation, communication, and services were analyzed. Physical capacity and efficiency of production were measured. 3 refs., 2 figs., 12 tabs. (JF)

Belzer, D.B. (Pacific Northwest Lab., Richland, WA (USA)); Serot, D.E. (D/E/S Research, Richland, WA (USA)); Kellogg, M.A. (ERCE, Inc., Portland, OR (USA))

1991-03-01T23:59:59.000Z

304

Non-Federal Participation Capacity Ownership : Administrator`s Final Record of Decision.  

Science Conference Proceedings (OSTI)

In a September 1988 Record of Decision (ROD), Bonneville Power Administration (BPA) explained its decision to proceed with the Third Alternating Current (Third AC) Intertie addition construction project using its own funding. At that time, BPA`s decision on non-Federal ownership access to the added capacity was deferred to a separate non-Federal participation policy development process. BPA`s preferred alternative for providing non-Federal Intertie access is to adopt Capacity Ownership for 725 MW. Capacity Ownership allows non-Federal PNW scheduling utilities to purchase contract rights to use protions of BPA`s share of AC Intertie capacity for the life of the Intertie facilities. This ROD documents BPA`s decision to proceed with Capacity Ownership for non-Federal parties.

United States. Bonneville Power Administration.

1994-03-01T23:59:59.000Z

305

Dekker PMIS Extraction Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1217. The Extraction Utility is used for retrieving project 1217. The Extraction Utility is used for retrieving project management data from a variety of source systems for upload into the Dekker PMIS(tm) (Dekker iPursuit®, Dekker iProgram(tm), or DOE PARSII). This release incorporates a number of new features and updates primarily focused to improve the existing functionality. The quality of each Dekker PMIS(tm) Extraction Utility release is a primary consideration at Dekker, Ltd. Since every customer environment is unique, Dekker strongly recommends that each implementation site validate all software updates prior to release into the production environment. Dekker continually strives to enhance the features and capabilities of the Dekker PMIS(tm) Extraction Utility. We are very excited about this update and look forward to its implementation in your

306

Dekker PMIS Extraction Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0907. The Extraction Utility is used for retrieving project 0907. The Extraction Utility is used for retrieving project management data from a variety of source systems for upload into Dekker PMIS(tm) (Dekker iPursuit®, Dekker iProgram(tm), or DOE PARSII). This release incorporates a number of new features and updates focused to improve existing functionality. The quality of each Dekker PMIS(tm) Extraction Utility release is a primary consideration at Dekker, Ltd. Since every customer environment is unique, Dekker strongly recommends that each implementation validate any software update prior to its release into the production environment. Dekker continually strives to enhance the features and capabilities of the Dekker PMIS(tm) Extraction Utility. We are very excited about this update and look forward to its implementation in your

307

Electric Utility Industry Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Industry Update Electric Utility Industry Update Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG Spring 2012 April 12, 2012 Edison Electric Institute  Investor-Owned Electric Companies  Membership includes  200 US companies,  More than 65 international affiliates and  170 associates  US members  Serve more than 95% of the ultimate customers in the investor-owned segment of the industry and  Nearly 70% of all electric utility ultimate customers, and  Our mission focuses on advocating public policy; expanding market opportunities; and providing strategic business information Agenda Significant Industry Trends Utility Infrastructure Investments Generation and Fuel Landscape

308

Gas Utilities (New York)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

309

U. S. refinery margin update: A late and tenuous reprieve  

SciTech Connect

Just as many refiners viewed margin recovery possibilities in 1991 as lost, a late Summer series of market adjustments has provided some improvement. Wholesale gasoline prices account for most of the modest recovery. This issue features latest trends affecting margins in the two main US refining centers, and offers a new comparison of the two. The issue also presents the following: (1) the ED Refining Netback Data Series for the US Gulf and West Coasts, Rotterdam and Singapore as of August 9, 1991; and (2) the ED Fuel Price/Tax Series for countries of the Western Hemisphere, August 1991 Edition. 7 figs., 5 tabs.

1991-08-21T23:59:59.000Z

310

Three faces of US refining: Margins by gasoline customer type  

SciTech Connect

While it is well known that the US gasoline market has become more volatile in recent years, it is less widely appreciated that the deeply structured, term-contract-oriented companies within the refining and marketing sectors are likely to obtain the best profit margins. This issue stratifies refining margins by class of wholesale-gasoline trade. This issue also presents the following: (a) ED refining netback data series for the US Gulf and West Coasts, Rotterdam, and Singapore as of September 8, 1989; and (b) ED fuel price/tax series for countries of the Western Hemisphere, September 1989 edition. 5 figs., 5 tabs.

1989-09-22T23:59:59.000Z

311

On the Value of Input-Efficiency, Capacity-Efficiency, and the Flexibility to Rebalance Them  

E-Print Network (OSTI)

Abstract: A common characteristic of basic material manufacturers (which account for 85 % of all industrial energy use) and of cleantech manufacturers is that they are price-takers in their input and output markets. Variability in those prices has implications for how much a manufacturer should invest in three fundamental types of process improvement. Input price variability reduces the value of improving input-efficiency (output produced per unit input) but increases that of capacityefficiency (the rate at which a production facility can convert input into output). Output price variability increases the value of capacity-efficiency, but it increases the value of input-efficiency if and only if the expected margin is small. Moreover, as the expected input cost rises, the value of input-efficiency decreases. A third type of process improvement is to develop flexibility in inputefficiency versus capacity-efficiency (the ability to respond to a rise in input cost or fall in output price by increasing input-efficiency at the expense of capacity-efficiency). The value of this flexibility decreases with variability in input and output prices, if and only if the expected margin is thin. Together, these results suggest that a carbon tax or cap-and-trade system may reduce investment by basic material manufacturers in improving energy-efficiency.

Erica L. Plambeck; Terry A. Taylor

2013-01-01T23:59:59.000Z

312

Utility Solar Business Models  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) and the Solar Electric Power Association (SEPA) are conducting an ongoing joint research effort, initiated in 2011, to define, track, and evaluate the expanding range of regulated utility solar energy acquisition activities. This report provides a high-level overview of the conceptual framework by which EPRI-SEPA are classifying regulated utility solar business models (USBMs) in the United States. It then provides five case studies detailing existing ...

2012-12-31T23:59:59.000Z

313

Property:MeanCapacity | Open Energy Information  

Open Energy Info (EERE)

MeanCapacity MeanCapacity Jump to: navigation, search Property Name MeanCapacity Property Type Quantity Description Mean capacity potential at location based on the USGS 2008 Geothermal Resource Assessment if the United States Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

314

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity With Data for September 2013 | Release Date: November 27, 2013 | Next Release Date: May 29, 2013 Previous Issues Year: September 2013 March 2013 September 2012 March 2012 September 2011 March 2011 September 2010 Go Containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an

315

Installed Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Geothermal Capacity Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Installed Geothermal Capacity International Market Map of U.S. Geothermal Power Plants List of U.S. Geothermal Power Plants Throughout the world geothermal energy is looked at as a potential source of renewable base-load power. As of 2005 there was 8,933 MW of installed power capacity within 24 countries. The International Geothermal Association (IGA) reported 55,709 GWh per year of geothermal electricity. The generation from 2005 to 2010 increased to 67,246 GWh, representing a 20% increase in the 5 year period. The IGA has projected that by 2015 the new installed capacity will reach 18,500 MW, nearly 10,000 MW greater than 2005. [1] Countries with the greatest increase in installed capacity (MW) between

316

Property:PlannedCapacity | Open Energy Information  

Open Energy Info (EERE)

PlannedCapacity PlannedCapacity Jump to: navigation, search Property Name PlannedCapacity Property Type Quantity Description The total planned capacity for a given area, region or project. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

317

The quantum capacity with symmetric side channels  

E-Print Network (OSTI)

We present an upper bound for the quantum channel capacity that is both additive and convex. Our bound can be interpreted as the capacity of a channel for high-fidelity quantum communication when assisted by a family of channels that have no capacity on their own. This family of assistance channels, which we call symmetric side channels, consists of all channels mapping symmetrically to their output and environment. The bound seems to be quite tight, and for degradable quantum channels it coincides with the unassisted channel capacity. Using this symmetric side channel capacity, we find new upper bounds on the capacity of the depolarizing channel. We also briefly indicate an analogous notion for distilling entanglement using the same class of (one-way) channels, yielding one of the few entanglement measures that is monotonic under local operations with one-way classical communication (1-LOCC), but not under the more general class of local operations with classical communication (LOCC).

Graeme Smith; John A. Smolin; Andreas Winter

2006-07-05T23:59:59.000Z

318

Channel capacities via $p$-summing norms  

E-Print Network (OSTI)

In this paper we show how \\emph{the metric theory of tensor products} developed by Grothendieck perfectly fits in the study of channel capacities, a central topic in \\emph{Shannon's information theory}. Furthermore, in the last years Shannon's theory has been generalized to the quantum setting to let the \\emph{quantum information theory} step in. In this paper we consider the classical capacity of quantum channels with restricted assisted entanglement. In particular these capacities include the classical capacity and the unlimited entanglement-assisted classical capacity of a quantum channel. To deal with the quantum case we will use the noncommutative version of $p$-summing maps. More precisely, we prove that the (product state) classical capacity of a quantum channel with restricted assisted entanglement can be expressed as the derivative of a completely $p$-summing norm.

Marius Junge; Carlos palazuelos

2013-05-05T23:59:59.000Z

319

Definition: Nameplate Capacity | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Nameplate Capacity Jump to: navigation, search Dictionary.png Nameplate Capacity The maximum amount of electric energy that a generator can produce under specific conditions, as rated by the manufacturer. Generator nameplate capacity is expressed in some multiple of watts such as megawatts (MW), as indicated on a nameplate that is physically attached to the generator.[1] View on Wikipedia Wikipedia Definition Also Known As Capacity Related Terms electricity generation, power References ↑ http://www.nrc.gov/reading-rm/basic-ref/glossary/generator-nameplate-capacity.html Retr LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ieved from "http://en.openei.org/w/index.php?title=Definition:Nameplate_Capacity&oldid=480378"

320

Table 8. Capacity and Fresh Feed Input to Selected Downstream ...  

U.S. Energy Information Administration (EIA)

Capacity Inputs CapacityInputs Capacity Inputs Table 8. ... (EIA) Form EIA-820, "Annual Refinery Report." Inputs are from the form EIA-810, "Monthly Refinery Report."

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Building Energy Software Tools Directory: CHP Capacity Optimizer  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Links CHP Capacity Optimizer CHP Capacity Optimizer logo Selecting the proper installed capacity for cooling, heating, and power (CHP) equipment is critical to the...

322

On the capacity of isolated, curbside bus stops  

E-Print Network (OSTI)

New Jersey. Kohler, U. , 1991. Capacity of transit lanes.Symposium on Highway Capacity, Karlsruhe, Germany. St.Paulo. TRB, 1985. Highway Capacity Manual. Transportation

Gu, Weihua; Li, Yuwei; Cassidy, Michael J.; Griswold, Julia B.

2010-01-01T23:59:59.000Z

323

Property:Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Capacity (MW) Jump to: navigation, search Property Name Installed Capacity (MW) Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:InstalledCapac...

324

Stochastic binary problems with simple penalties for capacity ...  

E-Print Network (OSTI)

capacity constraints, using simple penalties for capacities violations. In particular, we take a closer look at the knapsack problem with weights and capacity ...

325

Zero-rate feedback can achieve the empirical capacity  

E-Print Network (OSTI)

Achieving the empirical capacity using feedback: MemorylessGaussian feedback capacity,” IEEE Trans. Inf. Theory, vol.14] Y. -H. Kim, “Feedback capacity of stationary Gaussian

Eswaran, Krishnan; Sarwate, A D; Sahai, Anant; Gastpar, M

2010-01-01T23:59:59.000Z

326

Attention capacity and task difficulty in visual search  

E-Print Network (OSTI)

1980). The demonstration of capacity limitation. Cognitiveof automatic detection: Capacity and scanning in visualD. L. (1984). Central capacity limits in consistent mapping

Huang, L Q; Pashler, Harold

2005-01-01T23:59:59.000Z

327

Robust Dynamic Traffic Assignment under Demand and Capacity Uncertainty  

E-Print Network (OSTI)

Assignment under Demand and Capacity Uncertainty ? Giuseppeworst-case sce- nario of demand and capacity con?gurations.uncertain demands and capacities are modeled as unknown-but-

Calafiore, Giuseppe; El Ghaoui, Laurent

2008-01-01T23:59:59.000Z

328

End-to-end asymmetric link capacity estimation  

E-Print Network (OSTI)

A Simple and Accurate Capacity Estimation Technique. InGerla. Accuracy of Link Capacity Es- timates using Passiveto-end asymmetric link capacity estimation Ling-Jyh Chen,

Chen, Ling-Jyh; Sun, Tony; Yang, Guang; Sanadidi, Medy Y; Gerla, Mario

2005-01-01T23:59:59.000Z

329

EEI/DOE Transmission Capacity Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRANSMISSION CAPACITY: TRANSMISSION CAPACITY: PRESENT STATUS AND FUTURE PROSPECTS Eric Hirst Consulting in Electric-Industry Restructuring Bellingham, Washington June 2004 Prepared for Energy Delivery Group Edison Electric Institute Washington, DC Russell Tucker, Project Manager and Office of Electric Transmission and Distribution U.S. Department of Energy Washington, DC Larry Mansueti, Project Manager ii iii CONTENTS Page SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. TRANSMISSION CAPACITY: DATA AND PROJECTIONS . . . . . . . . . . . . . . . . . . . 5 HISTORICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 CURRENT CONDITIONS . . . . . . .

330

Quantum capacity of channel with thermal noise  

E-Print Network (OSTI)

The quantum capacity of thermal noise channel is studied. The extremal input state is obtained at the postulation that the coherent information is convex or concave at its vicinity. When the input energy tends to infinitive, it is verified by perturbation theory that the coherent information reaches its maximum at the product of identical thermal state input. The quantum capacity is obtained for lower noise channel and it is equal the one shot capacity.

Xiao-yu Chen

2006-02-11T23:59:59.000Z

331

North Dakota Refining Capacity Study  

Science Conference Proceedings (OSTI)

According to a 2008 report issued by the United States Geological Survey, North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. With the size and remoteness of the discovery, the question became 'can a business case be made for increasing refining capacity in North Dakota?' And, if so what is the impact to existing players in the region. To answer the question, a study committee comprised of leaders in the region's petroleum industry were brought together to define the scope of the study, hire a consulting firm and oversee the study. The study committee met frequently to provide input on the findings and modify the course of the study, as needed. The study concluded that the Petroleum Area Defense District II (PADD II) has an oversupply of gasoline. With that in mind, a niche market, naphtha, was identified. Naphtha is used as a diluent used for pipelining the bitumen (heavy crude) from Canada to crude markets. The study predicted there will continue to be an increase in the demand for naphtha through 2030. The study estimated the optimal configuration for the refinery at 34,000 barrels per day (BPD) producing 15,000 BPD of naphtha and a 52 percent refinery charge for jet and diesel yield. The financial modeling assumed the sponsor of a refinery would invest its own capital to pay for construction costs. With this assumption, the internal rate of return is 9.2 percent which is not sufficient to attract traditional investment given the risk factor of the project. With that in mind, those interested in pursuing this niche market will need to identify incentives to improve the rate of return.

Dennis Hill; Kurt Swenson; Carl Tuura; Jim Simon; Robert Vermette; Gilberto Marcha; Steve Kelly; David Wells; Ed Palmer; Kuo Yu; Tram Nguyen; Juliam Migliavacca

2011-01-05T23:59:59.000Z

332

CO? abatement by multi-fueled electric utilities: an analysis based on Japanese data  

E-Print Network (OSTI)

Multi-fueled electric utilities are commonly seen as offering relatively greater opportunities for reasonably priced carbon abatement through changes in the dispatch of generating units from capacity using high emission ...

Ellerman, A. Denny.; Tsukada, Natsuki.

333

Quantum Capacities of Channels with small Environment  

E-Print Network (OSTI)

We investigate the quantum capacity of noisy quantum channels which can be represented by coupling a system to an effectively small environment. A capacity formula is derived for all cases where both system and environment are two-dimensional--including all extremal qubit channels. Similarly, for channels acting on higher dimensional systems we show that the capacity can be determined if the channel arises from a sufficiently small coupling to a qubit environment. Extensions to instances of channels with larger environment are provided and it is shown that bounds on the capacity with unconstrained environment can be obtained from decompositions into channels with small environment.

Michael M. Wolf; David Perez-Garcia

2006-07-11T23:59:59.000Z

334

Share of Conversion Capacity - Energy Information Administration  

U.S. Energy Information Administration (EIA)

In the early to mid 1980’s, Atlantic Basin refiners rapidly expanded their conversion capacity as a consequence of the belief that world crude production would get ...

335

Total Natural Gas Underground Storage Capacity  

Annual Energy Outlook 2012 (EIA)

Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

336

Natural gas, renewables dominate electric capacity additions ...  

U.S. Energy Information Administration (EIA)

These appear in a separate EIA survey collecting data on net metering and distributed generation. More capacity was added in the first half of 2012 than was retired.

337

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA)

Containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell ...

338

When does noise increase the quantum capacity?  

E-Print Network (OSTI)

Superactivation is the property that two channels with zero quantum capacity can be used together to yield positive capacity. Here we demonstrate that this effect exists for a wide class of inequivalent channels, none of which can simulate each other. We also consider the case where one of two zero capacity channels are applied, but the sender is ignorant of which one is applied. We find examples where the greater the entropy of mixing of the channels, the greater the lower bound for the capacity. Finally, we show that the effect of superactivation is rather generic by providing example of superactivation using the depolarizing channel.

Fernando G. S. L. Brandão; Jonathan Oppenheim; Sergii Strelchuk

2011-07-21T23:59:59.000Z

339

,"Texas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Underground Natural Gas Storage Capacity",11,"Annual",2011,"6301988" ,"Release...

340

An FPTAS for Capacity Constrained Assortment Optimization  

E-Print Network (OSTI)

May 13, 2013 ... In this paper, we consider the capacity constrained version of the assortment optimization problem where each item $i$ has weight $w_i$, and ...

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

,"Nebraska Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Underground Natural Gas...

342

,"Kentucky Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Underground Natural Gas...

343

,"Wyoming Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Underground Natural Gas...

344

,"Minnesota Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Underground Natural Gas...

345

,"Maryland Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Underground Natural Gas...

346

,"Indiana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Underground Natural Gas...

347

,"West Virginia Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Underground Natural...

348

,"Michigan Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Underground Natural Gas...

349

,"California Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural...

350

,"Natural Gas Depleted Fields Storage Capacity "  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Storage Capacity " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural...

351

,"Mississippi Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Underground Natural...

352

,"Arkansas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Underground Natural Gas...

353

,"Alabama Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Underground Natural Gas...

354

,"Oregon Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Underground Natural Gas...

355

,"New York Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas...

356

,"Missouri Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Underground Natural Gas...

357

,"Oklahoma Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Underground Natural Gas...

358

,"Washington Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Underground Natural...

359

Refinery Capacity Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration (U.S. Dept. of Energy) ... Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of ...

360

,"Kansas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Underground Natural Gas...

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Quantum Communication With Zero-Capacity Channels  

E-Print Network (OSTI)

Communication over a noisy quantum channel introduces errors in the transmission that must be corrected. A fundamental bound on quantum error correction is the quantum capacity, which quantifies the amount of quantum data that can be protected. We show theoretically that two quantum channels, each with a transmission capacity of zero, can have a nonzero capacity when used together. This unveils a rich structure in the theory of quantum communications, implying that the quantum capacity does not uniquely specify a channel's ability for transmitting quantum information.

Graeme Smith; Jon Yard

2008-07-30T23:59:59.000Z

362

,"Natural Gas Salt Caverns Storage Capacity "  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Caverns Storage Capacity " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas...

363

,"New Mexico Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Underground Natural...

364

Optimization of Storage vs. Compression Capacity  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Volume vs. Compression Capacity Amgad Elgowainy Argonne National Laboratory Presentation at CSD Workshop Argonne National Laboratory March 21, 2013 0 5 10 15 20 25 0 100...

365

,"Montana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Underground Natural Gas...

366

,"Virginia Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Underground Natural Gas...

367

,"Colorado Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Underground Natural Gas...

368

,"Utah Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Underground Natural Gas...

369

Increasing water holding capacity for irrigation  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing water holding capacity for irrigation Reseachers recommend solutions for sediment trapping in irrigation system LANL and SNL leveraged technical expertise to determine...

370

,"Tennessee Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Underground Natural Gas...

371

,"Louisiana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Underground Natural Gas...

372

,"Ohio Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Underground Natural Gas...

373

,"Pennsylvania Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Underground Natural...

374

Total Atmospheric Crude Oil Distillation Capacity Former ...  

U.S. Energy Information Administration (EIA)

Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd)a New Corporation/Refiner Date of Sale Table 14. Refinery Sales During 2005

375

,"Illinois Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","52013" ,"Release...

376

Learning from marginalized users: reciprocity in HCI4D  

Science Conference Proceedings (OSTI)

Users in the developing world continue to appropriate information and communication technologies (ICTs) in pioneering ways resulting in innovations such as M-Pesa, the popular mobile money transfer system developed in Kenya. M-Pesa's success demonstrates ... Keywords: design and innovation, hci4d, marginalized users

Susan P. Wyche; Elisa Oreglia; Morgan G. Ames; Christopher Hoadley; Aditya Johri; Phoebe Sengers; Charles Steinfield

2012-02-01T23:59:59.000Z

377

Sustainable bioenergy production from marginal lands in the US Midwest  

SciTech Connect

Long-term measurements of global warming impact coupled with spatially explicit modeling suggests that both climate benefits and the production potential of cellulosic crops grown on marginal lands of the US North Central region are substantial but will be insufficient to meet long-term biofuel needs.

Gelfand, Ilya; Sahajpal, Ritvik; Zhang, Xuesong; Izaurralde, Roberto C.; Gross, Katherine L.; Robertson, G. P.

2013-01-24T23:59:59.000Z

378

Modelling Heterogeneous Dispersion in Marginal Models for Longitudinal Proportional Data  

E-Print Network (OSTI)

the fitted curves for the pattern of dispersion profile over time across three different gas concentrationModelling Heterogeneous Dispersion in Marginal Models for Longitudinal Proportional Data Peter X proportional data assumes a constant dispersion para- meter. This assumption of dispersion homogeneity

Song, Peter X.

379

Feature Extraction Based on Maximum Nearest Subspace Margin Criterion  

Science Conference Proceedings (OSTI)

Based on the classification rule of sparse representation-based classification (SRC) and linear regression classification (LRC), we propose the maximum nearest subspace margin criterion for feature extraction. The proposed method can be seen as a preprocessing ... Keywords: Dimensionality reduction, Face recognition, Feature extraction, Finger knuckle print recognition, Linear regression classification

Yi Chen; Zhenzhen Li; Zhong Jin

2013-06-01T23:59:59.000Z

380

Generation of Topographic Waves over the Continental Margin  

Science Conference Proceedings (OSTI)

Numerical experiments were carried out to simulate the generation of topographic waves by a Gulf Stream ring over the continental margin in a stratified ocean on an f-plane. The study was aimed at understanding the combined effect of density ...

Ping-Tung Shaw; S. Divakar

1991-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Wave-Induced Drift Force in the Marginal Ice Zone  

Science Conference Proceedings (OSTI)

Wind waves are commonly ignored when modeling the ice motion in the marginal ice zone. In order to estimate the importance of the wave forcing, an expression for the second-order wave-induced drift force on a floe exposed to a full directional ...

Diane Masson

1991-01-01T23:59:59.000Z

382

Capacity of Byzantine Consensus with Capacity-Limited Point-to-Point Links  

E-Print Network (OSTI)

We consider the problem of maximizing the throughput of Byzantine consensus, when communication links have finite capacity. Byzantine consensus is a classical problem in distributed computing. In existing literature, the communication links are implicitly assumed to have infinite capacity. The problem changes significantly when the capacity of links is finite. We define the throughput and capacity of consensus, and identify upper bound of achievable consensus throughput. We propose an algorithm that achieves consensus capacity in complete four-node networks with at most 1 failure with arbitrary distribution of link capacities.

Liang, Guanfeng

2011-01-01T23:59:59.000Z

383

Estimating the economic value of wind forecasting to utilities  

SciTech Connect

Utilities are sometimes reluctant to assign capacity value to wind plants because they are an intermittent resource. One of the potential difficulties is that the output of a wind plant may not be known in advance, thereby making it difficult for the utility to consider wind output as firm. In this paper, we examine the economics of an accurate wind forecast, and provide a range of estimates calculated by a production cost model and real utility data. We discuss how an accurate forecast will affect resource scheduling and the mechanism by which resource scheduling can benefit from an accurate wind forecast.

Milligan, M.R.; Miller, A.H. [National Renewable Energy Lab., Golden, CO (United States); Chapman, F. [Environmental Defense Fund, Oakland, CA (United States)

1995-05-01T23:59:59.000Z

384

Capacity Value of PV and Wind Generation in the NV Energy System  

Science Conference Proceedings (OSTI)

Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

2012-09-01T23:59:59.000Z

385

"List of Covered Electric Utilities" under the Public Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies...

386

"List of Covered Electric Utilities" under the Public Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978...

387

utilities | OpenEI  

Open Energy Info (EERE)

utilities utilities Dataset Summary Description Datasets are for the US electricity grid system interconnect regions (ASCC, FRCC, HICC, MRO, NPCC, RFC, SERC, SPP, TRE, WECC) for 2008. The data is provided in life cycle inventory (LCI) forms (both xls and xml). A module report and a detailed spreadsheet are also included. Source US Life Cycle Inventory Database Date Released May 01st, 2011 (3 years ago) Date Updated Unknown Keywords ASCC FRCC HICC interconnect region LCI life cycle inventory MRO NPCC RFC SERC SPP TRE unit process US utilities WECC Data application/zip icon interconnect_lci_datasets_2008.zip (zip, 6.3 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

388

Coal Utilization Science Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Utilization SCienCe Program Coal Utilization SCienCe Program Description The Coal Utilization Science (CUS) Program sponsors research and development (R&D) in fundamental science and technology areas that have the potential to result in major improvements in the efficiency, reliability, and environmental performance of advanced power generation systems using coal, the Nation's most abundant fossil fuel resource. The challenge for these systems is to produce power in an efficient and environmentally benign manner while remaining cost effective for power providers as well as consumers. The CUS Program is carried out by the National Energy Technology Laboratory (NETL) under the Office of Fossil Energy (FE) of the U.S. Department of Energy (DOE). The program supports DOE's Strategic Plan to:

389

Dynamic Capacity Investment with Two Competing Technologies  

Science Conference Proceedings (OSTI)

With the recent focus on sustainability, firms making adjustments to their production or distribution capacity levels often have the option of investing in newer technologies with lower carbon footprints and/or energy consumption. These more sustainable ... Keywords: dynamic capacity investment, sustainable operations, technology choice

Wenbin Wang, Mark E. Ferguson, Shanshan Hu, Gilvan C. Souza

2013-10-01T23:59:59.000Z

390

Challenging Times for Making Refinery Capacity Decisions  

Reports and Publications (EIA)

This presentation was given at the National Petrochemical and Refiners Association's annual meeting in March 2004. The presentation covers a wide range of refining issues from near term to long term, and focuses on refining capacity and factors affecting decisions to alter that capacity.

Information Center

2004-03-01T23:59:59.000Z

391

Constrained capacity of MIMO Rayleigh fading channels  

E-Print Network (OSTI)

In this thesis channel capacity of a special type of multiple-input multiple-output (MIMO) Rayleigh fading channels is studied, where the transmitters are subject to a finite phase-shift keying (PSK) input alphabet. The constraint on the input alphabet makes an analytical solution for the capacity beyond reach. However we are able to simplify the final expression, which requires a single expectation and thus can be evaluated easily through simulation. To facilitate simulations, analytical expressions are derived for the eigenvalues and eigenvectors of a covariance matrix involved in the simplified capacity expression. The simplified expression is used to provide some good approximations to the capacity at low signal-to-noise ratios (SNRs). Involved in derivation of the capacity is the capacity-achieving input distribution. It is proved that a uniform prior distribution is capacity achieving. We also show that it is the only capacity-achieving distribution for our channel model. On top of that we generalize the uniqueness case for an input distribution to a broader range of channels.

He, Wenyan

2011-05-01T23:59:59.000Z

392

On Quantum Capacity and its Bound  

E-Print Network (OSTI)

The quantum capacity of a pure quantum channel and that of classical-quantum-classical channel are discussed in detail based on the fully quantum mechanical mutual entropy. It is proved that the quantum capacity generalizes the so-called Holevo bound.

Masanori Ohya; Igor V. Volovich

2004-06-29T23:59:59.000Z

393

Capacity Bounded Grammars and Petri Nets  

E-Print Network (OSTI)

A capacity bounded grammar is a grammar whose derivations are restricted by assigning a bound to the number of every nonterminal symbol in the sentential forms. In the paper the generative power and closure properties of capacity bounded grammars and their Petri net controlled counterparts are investigated.

Stiebe, Ralf; 10.4204/EPTCS.3.18

2009-01-01T23:59:59.000Z

394

Table 6. Operable Crude Oil and Downstream Charge Capacity of ...  

U.S. Energy Information Administration (EIA)

Downstream Charge Capacity Table 6. ... (EIA), Form EIA-820, "Annual Refinery Report." Energy Information Administration, Refinery Capacity 2011 46. Title:

395

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

396

Property:Capacity | Open Energy Information  

Open Energy Info (EERE)

Capacity Capacity Jump to: navigation, search Property Name Capacity Property Type Quantity Description Potential electric energy generation, default units of megawatts. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

397

Planned Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Planned Geothermal Capacity Planned Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Planned Geothermal Capacity This article is a stub. You can help OpenEI by expanding it. General List of Development Projects Map of Development Projects Planned Geothermal Capacity in the U.S. is reported by the Geothermal Energy Association via their Annual U.S. Geothermal Power Production and Development Report (April 2011). Related Pages: GEA Development Phases Geothermal Development Projects Add.png Add a new Geothermal Project Please be sure the project does not already exist in the list below before adding - perhaps under a different name. Technique Developer Phase Project Type Capacity Estimate (MW) Location Geothermal Area Geothermal Region GEA Report

398

Property:GeneratingCapacity | Open Energy Information  

Open Energy Info (EERE)

GeneratingCapacity GeneratingCapacity Jump to: navigation, search Property Name GeneratingCapacity Property Type Quantity Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

399

Wind power and electric utilities: a review of the problems and prospects. [USA  

DOE Green Energy (OSTI)

The use of windpower poses a variety of problems for utilities primarily due to the uncontrollability of the power source and the high degree of variability of the wind. Differences in the dynamic behavior of the wind and of utility load patterns and the problems that arise from these differences are described. Utility capacity expansion methods and modifications to them to incorporate the characteristics of wind machines into the analytic procedure are outlined and results from initial studies employing these modifications are reviewed. These results indicate that, in general, storage devices are too expensive to be purchased by utilities if they serve mainly to balance the output of the wind machines; wind machines tend to supplant purchases of conventional baseload capacity but require additional peaking units; and the economic value of wind machines to utilities is composed of savings in both fuel and capacity related expenditures for conventional equipment.

Davitian, H

1978-04-01T23:59:59.000Z

400

City of Bedford, Virginia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Bedford Bedford Place Virginia Utility Id 1456 Utility Location Yes Ownership M NERC Location RFO NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Large 120 to 1000 Volts Industrial General Service- Large Over 1000 Volts Industrial Industrial power 4 Industrial Large capacity power 2.4 - 40 KV Industrial Large capacity power Over 40 KV Industrial Outdoor Lighting-Overhead Lighting Service-For each 175 w MV/100 w HPS

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The Strong Case for Thermal Energy Storage and Utility Incentives  

E-Print Network (OSTI)

With the general increase in electricity rates, commercial and industrial customers have become strongly motivated to seek innovative methods of achieving reductions of their electric bills. At the same time, utilities have been faced with rising construction costs, more stringent regulations, and increasing environmental constraints regarding development of new generating facilities. As the thermal cooling storage technology has matured, more and more utilities are recognizing that widespread use of cool storage will provide an inexpensive alternative to new generating capacity. Every megawatt of load shift from peak to off-peak hours is equivalent to a megawatt of new generating capacity. This paper will review the state-of-the-art of cool storage technology, the economic benefits and utility programs designed to encourage the application of cool storage systems.

McCannon, L. W.

1986-06-01T23:59:59.000Z

402

Determining the Capacity Value of Wind: A Survey of Methods and Implementation; Preprint  

DOE Green Energy (OSTI)

This paper focuses on methodologies for determining the capacity value of generating resources, including wind energy and summarizes several important state and regional studies. Regional transmission organizations, state utility regulatory commissions, the North American Electric Reliability Council, regional reliability councils, and increasingly, the Federal Energy Regulatory Commission all advocate, call for, or in some instances, require that electric utilities and competitive power suppliers not only have enough generating capacity to meet customer demand but also have generating capacity in reserve in case customer demand is higher than expected, or if a generator or transmission line goes out of service. Although the basic concept is the same across the country, how it is implemented is strikingly different from region to region. Related to this question is whether wind energy qualifies as a capacity resource. Wind's variability makes this a matter of great debate in some regions. However, many regions accept that wind energy has some capacity value, albeit at a lower value than other energy technologies. Recently, studies have been published in California, Minnesota and New York that document that wind energy has some capacity value. These studies join other initiatives in PJM, Colorado, and in other states and regions.

Milligan, M.; Porter, K.

2005-05-01T23:59:59.000Z

403

A Framework for Valuing Demand Response as a Capacity Adequacy Resource  

Science Conference Proceedings (OSTI)

This report demonstrates the importance of customer participation in decisions about how much reliability, in the form of capacity adequacy, to provide electricity consumers in centralized organized markets operated by independent system operators/regional transmission organizations (ISO/RTOs) or by electric utilities.

2009-12-23T23:59:59.000Z

404

Utility Stack Opacity Troubleshooting Guidelines  

Science Conference Proceedings (OSTI)

Utilities have become increasingly concerned about stack plume visibility, and some have been cited for excess plume opacity. This troubleshooting guide enables utilities to characterize plume opacity problems at full-scale utility sites and evaluate possible solutions.

1991-03-01T23:59:59.000Z

405

Table 5.9 Refinery Capacity and Utilization, 1949-2011  

U.S. Energy Information Administration (EIA)

1954. 308: 7,984: na: 7,266: 88.8: 1955. 296: 8,386: na: 7,820: 92.2: 1956. 317: 8,583: na: 8,250: 93.5: 1957. 317: 9,072: na: 8,222: 89.2: 1958. 315: ...

406

Table 5.9 Refinery Capacity and Utilization, 1949-2011  

U.S. Energy Information Administration (EIA)

1954. 308: 7,984: na : 2,651,992 : 88.8 : 1955. 296: 8,386: na : 2,854,137 : 92.2 : 1956. 317: 8,583: na : 3,019,601 : 93.5 : 1957. 317: 9,072: na : ...

407

Utility spot pricing, California  

E-Print Network (OSTI)

The objective of the present spot pricing study carried out for SCE and PG&E is to develop the concepts which wculd lead to an experimental design for spot pricing in the two utilities. The report suggests a set of experiments ...

Schweppe, Fred C.

1982-01-01T23:59:59.000Z

408

By-Products Utilization  

E-Print Network (OSTI)

was produced by Wisconsin Electric's coal-fired power plants. The criteria for selecting these mixtures was to utilize minimal cost materials, such as coal combustion by-products (fly ash, bottom ash, etc of sufficient strength to withstand handling, transfer and long term exposure. The final phase (4) was designed

Wisconsin-Milwaukee, University of

409

By-Products Utilization  

E-Print Network (OSTI)

investigation. Two additional ash samples were prepared by blending these selected conventional and clean coalCenter for By-Products Utilization HIGH-STRENGTH HVFA CONCRETE CONTAINING CLEAN COAL ASH By Tarun R #12;1 HIGH-STRENGTH HVFA CONCRETE CONTAINING CLEAN COAL ASH By Tarun R. Naik, Shiw S. Singh, and Bruce

Wisconsin-Milwaukee, University of

410

By-Products Utilization  

E-Print Network (OSTI)

Center for By-Products Utilization USE OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST by blending these selected conventional and clean coal ashes. Using these sixdifferent ash samples, eleven of 0 and60 percent by high-sulfurcoal ashes (Class F and clean-coal ashes) andcoal ash blends (Class F

Wisconsin-Milwaukee, University of

411

By-Products Utilization  

E-Print Network (OSTI)

Center for By-Products Utilization USE OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST CONCRETE PRODUCTS Authors: Tarun R. Naik, Director investigation. Two additional ash samples were prepared by blending these selected conventional and clean coal

Wisconsin-Milwaukee, University of

412

By-Products Utilization  

E-Print Network (OSTI)

as the coal ash derived from SOx control technology. Up to 80% of CCA was blended with ground portland cement: blended cement, clean coal ash, sulfate resistance, time of setting #12;3 Zichao Wu is Structural EngineerCenter for By-Products Utilization USE OF CLEAN COAL ASH AS SETTING TIME REGULATOR IN PORTLAND

Wisconsin-Milwaukee, University of

413

By-Products Utilization  

E-Print Network (OSTI)

and clean-coal ashes) andcoal ash blends (Class F plus clean-coal ash blends) in the range of 0 to 60Center for By-Products Utilization CHARACTERIZATION AND APPLICATION OF CLASSF FLY ASHCOAL AND CLEAN-COAL,and Bruce W. Ramme CBU-1996-08 REP-283 July 1996 Presented andPublished at the American Coal Ash Association

Wisconsin-Milwaukee, University of

414

By-Products Utilization  

E-Print Network (OSTI)

. Test results indicated that all the blends with coal ash had lower expansion than the control mixtureCenter for By-Products Utilization USE OF CLEAN-COAL ASH FOR MANAGING ASR By Zichao Wu and Tarun R College of Engineering and Applied Science THE UNIVERSITY OF WISCONSIN­MILWAUKEE #12;USE OF CLEAN-COAL ASH

Wisconsin-Milwaukee, University of

415

By-Products Utilization  

E-Print Network (OSTI)

mixtures were developed using blends of wood FA and Class C coal FA. Two levels of blended ash of concrete. Blending of wood FA with Class C coal FA improved performance of wood FA to a significant extentCenter for By-Products Utilization GREENER CONCRETE FROM WOOD FLY ASH AND COAL FLY ASH By Tarun R

Wisconsin-Milwaukee, University of

416

Utility Baghouse Survey 2009  

Science Conference Proceedings (OSTI)

EPRI conducted comprehensive surveys of utility baghouse installations in 1981, 1991, and 2005 to summarize the state of the technology. The current survey focuses on nine selected pulse-jet baghouses to provide a better understanding of the design, performance, and operation of recent installations.

2009-12-14T23:59:59.000Z

417

Advanced fossil energy utilization  

Science Conference Proceedings (OSTI)

This special issue of Fuel is a selection of papers presented at the symposium ‘Advanced Fossil Energy Utilization’ co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 26–30, 2009.

Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

2010-01-01T23:59:59.000Z

418

Reserve electric generating capacity helps keep the lights on ...  

U.S. Energy Information Administration (EIA)

Biofuels: Ethanol & Biodiesel ... Regional estimates of reserve margins are compared to pre-determined target levels to assess supply adequacy.

419

Breast Conservation Therapy: The Influence of Molecular Subtype and Margins  

SciTech Connect

Purpose: To evaluate treatment results and prognostic factors, especially margin status and molecular subtype, in early-stage breast cancer patients treated with breast conservation therapy (BCT). Methods and Materials: The records of 1,058 Stage I or II breast cancer patients treated with BCT (surgical excision plus radiotherapy) at Duke University Medical Center, Durham, North Carolina, from 1985-2005 were retrospectively reviewed. Conventional receptor analyses were used as surrogate markers for molecular subtype classification (luminal A, luminal B, Her2 positive, and basal like). Actuarial estimates of overall survival (OS), cause-specific survival (CSS), failure-free survival, and locoregional control (LRC) were computed by use of Kaplan-Meier plots. We analyzed prognostic variables for significance using Cox proportional hazards univariate and multivariate analysis. The study was approved by the Duke University Medical Center Institutional Review Board. Results: The median age of the patients was 56 years (range, 18-89 years). Of the patients, 80% had T1 disease and 66% N0 disease pathologically. With a median follow-up of 9.8 years, an in-breast recurrence developed in 53 patients and 10 patients had nodal failure. For all patients, the 10-year CSS rate was 94%; LRC rate, 94%; and failure-free survival rate, 88%. Luminal A patients had a CSS rate of 95% and LRC rate of 99%. Basal-type patients appeared to do worse, with regard to both CSS rate (74%) and LRC rate (76%), but the numbers were small and the difference was not statistically significant. LRC rates of patients with negative margins (widely negative, close, and extent of margin not known) were virtually identical (93%, 96%, and 94%, respectively). Those with positive margins appeared to fare slightly worse based on LRC rate (88%), but again, the numbers were small and the difference was not statistically significant. Conclusions: BCT remains the treatment of choice for early-stage breast cancer patients irrespective of molecular subtype. Negative margins of excision are desirable, but the width of the negative margin does not influence outcome.

Demirci, Senem, E-mail: senem.demirci@ege.edu.tr [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Department of Radiation Oncology, Ege University Faculty of Medicine, Izmir (Turkey); Broadwater, Gloria [Department of Biostatistics and Bioinformatics, Duke Cancer Institute, Durham, NC (United States); Cancer and Leukemia Group B Statistical Center, Duke Cancer Institute, Durham, NC (United States); Marks, Lawrence B. [Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC (United States); Clough, Robert; Prosnitz, Leonard R. [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States)

2012-07-01T23:59:59.000Z

420

City of Rensselaer, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Rensselaer, Indiana (Utility Company) Rensselaer, Indiana (Utility Company) Jump to: navigation, search Name City of Rensselaer Place Indiana Utility Id 15860 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Capacity Power Service Industrial Commercial Service: Single Phase Commercial Commercial Service: Three Phase Commercial Commercial Service: Two Phase Commercial Large Power Service Industrial Municipal Service: Electric Rate Commercial Municipal Service: Street Lighting Lighting

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Town of Manilla, Iowa (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Manilla, Iowa (Utility Company) Manilla, Iowa (Utility Company) Jump to: navigation, search Name Town of Manilla Place Iowa Utility Id 11568 Utility Location Yes Ownership M NERC Location MRO Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Rates Commercial Large Power Industrial Large Power(Special Capacity Charge) Industrial Residential-In Town Residential Residential-Rural Residential Street Lights Lighting Water Pumping Commercial Average Rates Residential: $0.0865/kWh Commercial: $0.0835/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

422

NARUC Releases Cybersecurity Primer for Utility Regulators (June 2012) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NARUC Releases Cybersecurity Primer for Utility Regulators (June NARUC Releases Cybersecurity Primer for Utility Regulators (June 2012) NARUC Releases Cybersecurity Primer for Utility Regulators (June 2012) June 14, 2012 - 4:50pm Addthis The National Association of Regulatory Utility Commissioners (NARUC) has released "Cybersecurity for State Regulators," a primer that explains conceptual cybersecurity basics and points to additional resources that can help regulators develop internal cybersecurity expertise, ask questions of their utilities, engage in partnerships with the public and private sector to develop and implement cost-effective cybersecurity, and begin to explore the integrity of their internal cybersecurity practices. The primer was developed by the State Electricity Regulators Capacity Assessment and Training (SERCAT) program and was funded by a $4 million

423

Industrial Load Shaping: A Utility Strategy to Deal with Competition  

E-Print Network (OSTI)

In recent years competition from various sources such as cogeneration and bypass has led many utilities to refocus attention on their large industrial customers. Industrial load shaping is a customized program involving cost-effective process modifications and operational changes which result in a restructuring of the electric load profile of individual manufacturing facilities. Both the customer and the utility should realize benefits from these changes. There are five generic load shaping categories: rescheduling operations, capacity additions, product storage, automation and flexible manufacturing and electrotechnologies. The customized nature of the program requires that the utility work with industry experts to help customers identify specific load shape opportunities. The remainder of this paper provides guidelines for utility planners interested in developing such a program. It begins with an overview of general objectives, technology alternatives, market evaluation and selection criteria, and program implementation and monitoring procedures. The paper concludes with two utility case studies.

Bules, D.

1987-09-01T23:59:59.000Z

424

Industrial - Utility Cogeneration Systems  

E-Print Network (OSTI)

Cogeneration may be described as an efficient method for the production of electric power in conjunction with process steam or heat which optimizes the energy supplied as fuel to maximize the energy produced for consumption. In a conventional electric utility power plant, considerable energy is wasted in the form of heat rejection to the atmosphere thru cooling towers, ponds or lakes, or to rivers. In a cogeneration system heat rejection can be minimized by systems which apply the otherwise wasted energy to process systems requiring energy in the form of steam or heat. Texas has a base load of some 75 million pounds per hour of process steam usage, of which a considerable portion could be generated through cogeneration methods. The objective of this paper is to describe the various aspects of cogeneration in a manner which will illustrate the energy saving potential available utilizing proven technology. This paper illustrates the technical and economical benefits of cogeneration in addition to demonstrating the fuel savings per unit of energy required. Specific examples show the feasibility and desirability of cogeneration systems for utility and industrial cases. Consideration of utility-industrial systems as well as industrial-industrial systems will be described in technical arrangement as well as including a discussion of financial approaches and ownership arrangements available to the parties involved. There is a considerable impetus developing for the utilization of coal as the energy source for the production of steam and electricity. In many cases, because of economics and site problems, the central cogeneration facility will be the best alternative for many users.

Harkins, H. L.

1979-01-01T23:59:59.000Z

425

Utility Line Inspections and Audits  

Science Conference Proceedings (OSTI)

Utility Line Inspections and Audits provides utility engineers with a concise reference for the pros, cons, and how to related to performing various line inspections and audits.

2007-03-21T23:59:59.000Z

426

Safety, Capacity, Maintenance and Major Repairs (SCMMR) ...  

Science Conference Proceedings (OSTI)

... repairing and replacing aging mechanical and electrical ... and replacing or upgrading site utility systems; ... will avoid costly infrastructure failures such ...

2010-10-05T23:59:59.000Z

427

Safety, Capacity, Maintenance, and Major Repair  

Science Conference Proceedings (OSTI)

... Continue repairing or replacing aging utility systems, exhaust and air ... Continue improvements to site infrastructure, including roads, loading docks ...

2010-10-05T23:59:59.000Z

428

Utility Optimal Scheduling in Energy Harvesting Networks  

E-Print Network (OSTI)

In this paper, we show how to achieve close-to-optimal utility performance in energy harvesting networks with only finite capacity energy storage devices. In these networks, nodes are capable of harvesting energy from the environment. The amount of energy that can be harvested is time varying and evolves according to some probability law. We develop an \\emph{online} algorithm, called the Energy-limited Scheduling Algorithm (ESA), which jointly manages the energy and makes power allocation decisions for packet transmissions. ESA only has to keep track of the amount of energy left at the network nodes and \\emph{does not require any knowledge} of the harvestable energy process. We show that ESA achieves a utility that is within $O(\\epsilon)$ of the optimal, for any $\\epsilon>0$, while ensuring that the network congestion and the required capacity of the energy storage devices are \\emph{deterministically} upper bounded by bounds of size $O(1/\\epsilon)$. We then also develop the Modified-ESA algorithm (MESA) to ac...

Huang, Longbo

2010-01-01T23:59:59.000Z

429

Photovoltaics effective capacity: Interim final report 2  

DOE Green Energy (OSTI)

The authors provide solid evidence, based on more than 8 million data points, that regional photovoltaic (PV) effective capacity is largely unrelated to the region`s solar resource. They confirm, however, that effective capacity is strongly related to load-shape characteristics. The load-shape effective-capacity relationship appears to be valid for end-use loads as small as 100 kW, except possibly in the case of electrically heated buildings. This relationship was used as a tool to produce a US map of PV`s effective capacity. The regions of highest effective capacities include (1) the central US from the northern Great Plains to the metropolitan areas of Chicago and Detroit, down to the lower Mississippi Valley, (2) California and western Arizona, and (3) the northeast metropolitan corridor. The features of this map are considerably different from the traditional solar resource maps. They tend to reflect the socio-economic and climatic factors that indirectly drive PV`s effective capacity: e.g., commercial air-conditioning, little use of electric heat, and strong summer heat waves. The map provides a new and significant insight to a comprehensive valuation of the PV resource. The authors assembled preliminary evidence showing that end-use load type may be related to PV`s effective capacity. Highest effective capacities were found for (nonelectrically heated) office buildings, followed by hospitals. Lowest capacities were found for airports and residences. Many more data points are needed, however, to ascertain and characterize these preliminary findings.

Perez, R.; Seals, R. [State Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center

1997-11-01T23:59:59.000Z

430

utility | OpenEI Community  

Open Energy Info (EERE)

utility utility Home Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 11:14 Utility Rates API Version 2 is Live! API developer OpenEI update utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at http://en.openei.org/services/doc/rest/util_rates Graham7781's picture Submitted by Graham7781(2002) Super contributor 11 January, 2013 - 14:21 Swinerton Renewable Energy Awarded Contract to Construct and Operate 250 MWac K Road Moapa Solar Plant Marketwire OpenEI Renewable Energy Solar Swinerton utility Syndicate content 429 Throttled (bot load)

431

wind power capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description These estimates are derived from a composite of high resolution wind resource datasets modeled for specific countries with low resolution data originating from the National Centers for Environmental Prediction (United States) and the National Center for Atmospheric Research (United States) as processed for use in the IMAGE model. The high resolution datasets were produced by the National Renewable Energy Laboratory (United States), Risø DTU National Laboratory (Denmark), the National Institute for Space Research (Brazil), and the Canadian Wind Energy Association. The data repr Source National Renewable Energy Laboratory Date Released Unknown Date Updated Unknown Keywords area capacity clean energy international

432

Preparing Guyana's REDD+ Participation: Developing Capacities for  

Open Energy Info (EERE)

Guyana's REDD+ Participation: Developing Capacities for Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Jump to: navigation, search Name Preparing Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Agency/Company /Organization Guyana Forestry Commission, The Government of Norway Sector Land Focus Area Forestry Topics Implementation, Policies/deployment programs, Background analysis Resource Type Workshop, Guide/manual Website http://unfccc.int/files/method Country Guyana UN Region Latin America and the Caribbean References Preparing Guyana's REDD+ Participation[1] Overview "In this context, the overall goal of the activities reported here are to develop a road map for the establishment of a MRV system for REDD+

433

Information Capacity of Energy Harvesting Sensor Nodes  

E-Print Network (OSTI)

Sensor nodes with energy harvesting sources are gaining popularity due to their ability to improve the network life time and are becoming a preferred choice supporting 'green communication'. We study such a sensor node with an energy harvesting source and compare various architectures by which the harvested energy is used. We find its Shannon capacity when it is transmitting its observations over an AWGN channel and show that the capacity achieving energy management policy is the same as the throughput optimal policy. We also obtain the capacity for the system with energy inefficiencies in storage and an achievable rate when energy conserving sleep-wake modes are supported.

Rajesh, R

2010-01-01T23:59:59.000Z

434

On channels with finite Holevo capacity  

E-Print Network (OSTI)

We consider a nontrivial class of infinite dimensional quantum channels characterized by finiteness of the Holevo capacity. Some general properties of channels of this class are described. In particular, a special sufficient condition of existence of an optimal measure is obtained and examples of channels with no optimal measure are constructed. It is shown that each channel with finite Holevo capacity has a natural extension to the set of all positive normalized functionals on the algebra of all bounded operators. General properties of such an extension are described. The class of infinite dimensional channels, for which the Holevo capacity can be explicitly determined, is considered.

M. E. Shirokov

2006-02-07T23:59:59.000Z

435

Victorian Queer: Marginality and Money in Nineteenth-Century Literature  

E-Print Network (OSTI)

This dissertation examines how Victorians used the word “queer” as associated with senses of “counterfeit” and “eccentricity” in selected Victorian novels. The word was popularly used, by Victorian writers of both genders and in various and diverse circumstances, to mean the unfamiliar, the unconventional, the incomprehensible, and the non-normal. Unlike the contemporary uses of the word, which are oriented toward a relatively particular meaning, the non-normal sexual, Victorian uses of the word had been fluid, unstable, and indeterminate, yet referring to or associating with the non-normal aspects in things and people. Knowing how the Victorians used the word helps us to understand that a concept of marginality can be extended to the extent of tolerating Otherness in marginalized positions and minority identities. Victorian novels including Mary Elizabeth Braddon’s Aurora Floyd (1863), Wilkie Collins’s Hide and Seek (1854), and Charlotte Brontë’s Jane Eyre (1847) demonstrate how the word “queer” is indeterminately used and also represent how queer marginality is appreciated or rejected, and tolerated or discriminated against. As queerness is defined as the status of counterfeitabilty, a counterpart of authenticity, queer subjects are described to provoke a feeling of repulsion and tend to be criminalized or pathologized. On the other hand, as queerness is defined as the status of eccentricity, queer subjects are sympathized and defended in the narrative. Manifestations of eccentricities in queer subjects are occasionally reprimanded, but admired for queer subjects’ uncommon or distinguished individuality. Victorian novels demonstrate that queer marginality can be employed as a self-fashioning identity or social status for any non-normal individual to deal with social pressure of conformity.

Choi, Jung Sun

2013-05-01T23:59:59.000Z

436

Bayesian learning for a class of priors with prescribed marginals  

Science Conference Proceedings (OSTI)

We discuss three learning rules for generalized Bayesian updating of an imprecise probability: (a modified version of) the generalized Bayes' rule, the maximum likelihood update rule (after Gilboa and Schmeidler) and a newly developed hybrid rule. We ... Keywords: Generalized Bayes rule, 62A01, 62F15, 62F35, 68T37, 86A04, Bayesian updating, Imprecise probability, Maximum likelihood update, Modeling expert opinions, Prescribed marginals, Probability of ruin, Robust Bayesian approach, Unknown correlation structure

Hermann Held; Thomas Augustin; Elmar Kriegler

2008-09-01T23:59:59.000Z

437

Weighted order statistic classifiers with large rank-order margin.  

Science Conference Proceedings (OSTI)

We describe how Stack Filters and Weighted Order Statistic function classes can be used for classification problems. This leads to a new design criteria for linear classifiers when inputs are binary-valued and weights are positive . We present a rank-based measure of margin that can be directly optimized as a standard linear program and investigate its effect on generalization error with experiment. Our approach can robustly combine large numbers of base hypothesis and easily implement known priors through regularization.

Porter, R. B. (Reid B.); Hush, D. R. (Donald R.); Theiler, J. P. (James P.); Gokhale, M. (Maya)

2003-01-01T23:59:59.000Z

438

Quantification Of Margins And Uncertainties: A Bayesian Approach (full Paper)  

SciTech Connect

Quantification of Margins and Uncertainties (QMU) is 'a formalism for dealing with the reliability of complex technical systems, and the confidence which can be placed in estimates of that reliability.' (Eardleyet al, 2005). In this paper, we show how QMU may be interpreted in the framework of Bayesian statistical inference, using a probabilistic network. The Bayesian approach clarifies the probabilistic underpinnings of the formalism, and shows how the formalism can be used for deciSion-making.

Wallstrom, Timothy C [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

439

pine (mail utility info)  

NLE Websites -- All DOE Office Websites (Extended Search)

pine (mail utility info) pine (mail utility info) Basics, FAQ, etc, On our UNIX machines, module load pine The line module load pine should ALSO be in the file ~/.rc/user_modules (The pine module also includes pico) pine usage with IMAP4 (UNIX) Moving pine email files into IMAP4 LBNL UNIX info on pine links to Pine Information Center Pine 4.2.1/Solaris: Forwarding as attachment; the following procedure has proved successful for at least some users: Check the option "enable-full-header-cmd". To get to this option, 1. M (Main Menu) 2. S (Setup) "Choose a setup task from the menu below :" 3. C (Configure) 4. Scroll down to "Advanced Command Preferences", and press "X" to set "enable-full-header-cmd". It looks like this: ================================================================

440

PDSF Utilization Graphs  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphs Graphs Utilization Graphs This page contains a series of graphs that use data from the PDSF batch scheduler (SGE) to show the utilization of the cluster over the past 24 hours. The graphs were generated with RRDTool and are updated approximately every 15 minutes. This graph shows the aggregate cluster CPU availablity and usage according to sgeload: 24 hour rolling usage graph (click to see long term averages) This graph shows the number of jobs being run by each group: Rolling 24 Running Jobs by Group (click to see long term averages) This is the same graph as above weighted by the clockspeed (GHz) of the node used for the job: Rolling 24 Running Jobs by Group (click to see long term averages) This graph show the number of pending jobs by group: Rolling 24 Pending Jobs

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Delivering energy services: the emerging role of California's municipal utilities  

SciTech Connect

The financial circumstances and energy service opportunities for California's municipal electric utilities are explored. The structure and financial operation of municipal utilities, including the new role of joint powers agency financing, are analyzed. The advantages which conservation and alternative energy resources can offer municipal utilities are discussed: reduced capital requirements, increased cash flow, oil displacement, improved air quality, reduced risk of large plant outages, and matching new capacity to uncertain load growth. Recommendations are presented for removing the existing barriers which discourage prospects for municipal utility energy service investments, such as wholesale rate design reflecting flat or declining block rates and high demand charges, control of bulk power transmission lines by investor-owned utilities, failure of federal power-marketing agencies to provide conservation incentives to their municipal utility customers, and tax credit provisions of the Crude Oil Windfall Profit Tax Act of 1980. Appendices include the municipal utilities' current resource plans, the history and process of the formation of new municipal utilities, and the energy service role of municipal agencies in cities which may not have municipal utilities.

Dawson, M.H.; Praul, C.G.; Marcus, W.B.

1982-11-01T23:59:59.000Z

442

Cogeneration: The Need for Utility-Industry Cooperation  

E-Print Network (OSTI)

Cogeneration is receiving increasing attention because of its potential for efficient utilization of energy. Many recent cogeneration studies, however, have concentrated on the benefits and costs of cogeneration to industry, giving little consideration to utility roles and perspectives. This paper provides an overview of a project sponsored by the Electric Power Research Institute to evaluate industrial cogeneration applications, taking into account utility interactions and impacts. Recent changes in federal legislation, particularly the enactment of the Public Utility Regulatory Policies Act (PURPA), have attempted to remove many of the institutional barriers which in the past made industry hesitant to invest in cogeneration. However, to implement the most attractive cogeneration systems industry must consider the changing economics of utility power generation. Also, despite the attractiveness of cogeneration, many industrial managers are reluctant to invest scarce capital in an area which they do not consider a natural extension of their business. At the same time, many utilities facing slower load growth and economic/environmental /institutional constraints on capacity expansion are willing to consider cogeneration as an option. Cogeneration projects can be highly complementary to the traditional utility business and possibly offer an attractive profit potential. Also, utilities can offer industry the needed expertise to implement and operate cogeneration systems. Considerable benefits may therefore be derived from cooperative cogeneration ventures among utilities and industrial firms. Many different organizational and financial arrangements can be structured, including third party financing. The, paper will briefly discuss the need for and benefits of cooperative efforts and provide illustrative examples of different institutional arrangements.

Limaye, D. R.

1982-01-01T23:59:59.000Z

443

Illinois Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History Total Storage Capacity 984,768 980,691...

444

Heat Capacity as A Witness of Entanglement  

E-Print Network (OSTI)

We demonstrate that the presence of entanglement in macroscopic bodies (e.g. solids) in thermodynamical equilibrium could be revealed by measuring heat-capacity. The idea is that if the system were in a separable state, then for certain Hamiltonians heat capacity would not tend asymptotically to zero as the temperature approaches absolute zero. Since this would contradict the third law of thermodynamics, one concludes that the system must contain entanglement. The separable bounds are obtained by minimization of the heat capacity over separable states and using its universal low-temperature behavior. Our results open up a possibility to use standard experimental techniques of solid state physics -- namely, heat capacity measurements -- to detect entanglement in macroscopic samples.

Marcin Wiesniak; Vlatko Vedral; Caslav Brukner

2005-08-26T23:59:59.000Z

445

renewable energy generating capacity | OpenEI  

Open Energy Info (EERE)

energy generating capacity energy generating capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 16, and contains only the reference case. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO generation renewable energy renewable energy generating capacity Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generating Capacity and Generation- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata

446

Definition: Capacity factor | Open Energy Information  

Open Energy Info (EERE)

power)12 View on Wikipedia Wikipedia Definition The net capacity factor of a power plant is the ratio of its actual output over a period of time, to its potential output if...

447

California Interstate Natural Gas Pipeline Capacity Levels ...  

U.S. Energy Information Administration (EIA)

PG&E Gas Transmission - NW Tuscarora Pipeline (Malin OR) 110 Mmcf/d 2,080 Mmcf/d Total Interstate Pipeline Capacity into California 7,435 Mmcf/d Net Natural Gas ...

448

,"California Natural Gas Underground Storage Capacity (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:21:10 PM" "Back to Contents","Data 1: California Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290CA2"...

449

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Note: 1) 'Demonstrated Peak Working Gas Capacity' is the sum of the highest storage inventory level of working gas observed in each facility over the prior 5-year period as...

450

Internal Markets for Supply Chain Capacity Allocation  

E-Print Network (OSTI)

This paper explores the possibility of solving supply chain capacity allocation problems using internal markets among employees of the same company. Unlike earlier forms of transfer pricing, IT now makes it easier for such ...

McAdams, David

2005-07-08T23:59:59.000Z

451

Optimal capacity adjustment for supply chain control  

E-Print Network (OSTI)

This research attempts to answer the questions involving the time and size of capacity adjustments for better supply chain management. The objective of this research is to analytically determine simple structures to adjust ...

Budiman, Benny S., 1969-

2004-01-01T23:59:59.000Z

452

Feedback Capacity of the Compound Channel  

E-Print Network (OSTI)

In this work, we find the capacity of a compound finite-state channel (FSC) with time-invariant deterministic feedback. We consider the use of fixed length block codes over the compound channel. Our achievability result ...

Shrader, Brooke E.

453

Capacity-Speed Relationships in Prefrontal Cortex  

E-Print Network (OSTI)

Working memory (WM) capacity and WM processing speed are simple cognitive measures that underlie human performance in complex processes such as reasoning and language comprehension. These cognitive measures have shown to ...

Prabhakaran, Vivek

454

Minimal capacity points and the Lowest eigenfunctions  

E-Print Network (OSTI)

We introduce the concept of the point of minimal capacity of the domain, and observe a connection between this point and the lowest eigenfunction of a Laplacian on this domain, in one special case.

Mark Levi; Jia Pan

2011-04-04T23:59:59.000Z

455

Influence of Defect Kind and Size on Margins With Respect to Fast Fracture of Irradiated PWR Vessels: Joint EPRI-CRIEPI RPV Embrittl ement Studies  

Science Conference Proceedings (OSTI)

This report examines the effects of improved analysis techniques on the calculated margins against crack initiation and fast fracture in PWR vessels. A comparison of this work with previous studies showed that use of more in-depth analytic techniques may lead to more-realistic treatment of surface flaws. Such findings are particularly valuable to utilities developing nondestructive inspection techniques and evaluation methods for demonstrating the acceptability of an irradiated PWR vessel.

1994-04-26T23:59:59.000Z

456

Lattice Heat Capacity of Mesoscopic Nanostructures  

E-Print Network (OSTI)

We present a rigorous full quantum mechanical model for the lattice heat capacity of mesoscopic nanostructures in various dimensions. Model can be applied to arbitrary nanostructures with known vibrational spectrum in zero, one, two, or three dimensions. The limiting case of infinitely sized multi-dimensional materials are also found, which are in agreement with well-known results. As examples, we obtain the heat capacity of fullerenes.

Gharekhanlou, B; Vafai, A

2010-01-01T23:59:59.000Z

457

Measuring the capacity impacts of demand response  

Science Conference Proceedings (OSTI)

Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

Earle, Robert; Kahn, Edward P.; Macan, Edo

2009-07-15T23:59:59.000Z

458

Technical Assessment Guide -- Generation Capacity Addition Topics  

Science Conference Proceedings (OSTI)

This report discusses the challenges facing the power industry with regard to capacity addition. These challenges include technological and regulatory risks, life cycle management, and material and labor escalation forecast. The report also examines the market trends for CT and CTCC, as this technology has become a reliable technology for capacity addition, and provides the cost data for various switchyard configurations. These topics have been addressed in past TAG reports and the content in this ...

2013-03-06T23:59:59.000Z

459

Heat capacity in weakly correlated liquids  

Science Conference Proceedings (OSTI)

Previously unavailable numerical data related to the heat capacity in two- and three-dimensional liquid Yukawa systems are obtained by means of fluctuation theory. The relations between thermal conductivity and diffusion constants are numerically studied and discussed. New approximation for heat capacity dependence on non-ideality parameter for weakly correlated systems of particles is proposed. Comparison of the obtained results to the existing theoretical and numerical data is discussed.

Khrustalyov, Yu. V.; Vaulina, O. S. [Joint Institute for High Temperatures RAS, 125412, Izhorskaya St., 13 bld.2, Moscow (Russian Federation); Moscow Institute of Physics and Technology, 117303, Kerchenskaya St., 1A bld.1, Moscow (Russian Federation); Koss, X. G. [Joint Institute for High Temperatures RAS, 125412, Izhorskaya St., 13 bld.2, Moscow (Russian Federation)

2012-12-15T23:59:59.000Z

460

EPRI Increased Transmission Capacity Workshop Proceedings  

Science Conference Proceedings (OSTI)

This report documents the proceedings of EPRI's Increased Overhead Transmission Capacity Workshop. The workshop was held on September 20, 2011 at the offices of the American Transmission Company in Waukesha, Wisconsin. Participants included members of the EPRI Increased Overhead Transmission Capacity Task Force. The workshop was a joint effort of two EPRI research projects: (1) Increased Power Flow Guidebook and Ratings for Overhead Lines, and (2) Impact of High Temperature Operation on Conductor Systems...

2011-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Innovative Utility Pricing for Industry  

E-Print Network (OSTI)

The electric utility industry represents only one source of power available to industry. Although the monopolistic structure of the electric utility industry may convey a perception that an electric utility is unaffected by competition, this is an erroneous perception with regard to industry. Electric utilities face increased competition, both from other utilities and from industrial self-generation. The paper discusses competition for industrial customers and innovative pricing trends that have evolved nationally to meet the growing competition for industrial sales. Cogeneration activities and the emerging concepts of wheeling power are also discussed. Specifics of industry evaluation and reaction to utility pricing are presented. Also enumerated are examples of the response various utilities throughout the United States have made to the needs of their industrial customers through innovative rate design. Industry/utility cooperation can result in benefits to industry, to the electric utility and to all other ratepayers. This discussion includes examples of successful cooperation between industry and utilities.

Ross, J. A.

1986-06-01T23:59:59.000Z

462

Mechanisms for Precipitation Variability of the Eastern Brazil/SACZ Convective Margin  

Science Conference Proceedings (OSTI)

The present study examines the mechanisms for the connection between the precipitation variability in eastern Brazil and the South Atlantic convergence zone (SACZ) convective margin (eastern Brazil/SACZ convective margin) and the variability of ...

H.-Y. Ma; X. Ji; J. D. Neelin; C. R. Mechoso

2011-07-01T23:59:59.000Z

463

Program on Technology Innovation: Advanced Nuclear Technology--Component Margins and Monitoring Database  

Science Conference Proceedings (OSTI)

The Advanced Nuclear Technology Margins and Monitoring Database, available to EPRI members, documents a consensus of experts on issues relating to equipment design margins and monitoring recommendations for large capital, balance-of-plant (BOP) components important to power production.

2008-04-21T23:59:59.000Z

464

Capacity Value of Wind Power - Summary  

Science Conference Proceedings (OSTI)

Power systems are planned such that they have adequate generation capacity to meet the load, according to a defined reliability target. The increase in the penetration of wind generation in recent years has led to a number of challenges for the planning and operation of power systems. A key metric for generation system adequacy is the capacity value of generation. The capacity value of a generator is the contribution that a given generator makes to generation system aequacy. The variable and stochastic nature of wind sets it apart from conventional energy sources. As a result, the modeling of wind generation in the same manner as conventional generation for capacity value calculations is inappropriate. In this paper a preferred method for calculation of the capacity value of wind is described and a discussion of the pertinent issues surrounding it is given. Approximate methods for the calculation are also described with their limitations highlighted. The outcome of recent wind capacity value analyses in Europe and North America, along with some new analysis, are highlighted with a discussion of relevant issues also given.

O'Malley, M.; Milligan, M.; Holttinen, H.; Dent, C.; Keane, A.

2010-01-01T23:59:59.000Z

465

Price and cost impacts of utility DSM programs  

Science Conference Proceedings (OSTI)

More US utilities are running more and larger demand-side management (DSM) programs. Assessing the cost-effectiveness of these programs raises difficult questions for utilities and their regulators. In particular, should these programs aim to minimize the total cost of providing electric-energy services or should they minimize the price of electricity Most of the debates about the appropriate economic tests to use in assessing utility programs do not address the magnitude of the impacts. As a result, questions remain about the relationships among utility DSM programs and acquisition of supply resources and the effects of these choices on electricity prices and costs. This study offers quantitative estimates on the tradeoffs between total costs and electricity prices. A dynamic model is used to assess the effects of energy-efficiency programs on utility revenues, total resource costs, electricity prices, and electricity consumption for the period 1990 to 2010. These DSM programs are assessed under alternative scenarios for three utilities: a base that is typical of US utilities; a surplus utility that has excess capacity, few planned retirements, and slow growth in fossil-fuel prices and incomes; and a deficit utility that has little excess capacity, many planned retirements, and rapid growth in fossil-fuel prices and incomes. Model results show that DSM programs generally reduce electricity costs and increase electricity prices. However, the percentage reduction in costs is usually greater than the percentage increase in prices. On the other hand, most of the cost benefits of DSM programs can be obtained without raising electricity prices.

Hirst, E. (Oak Ridge National Lab., TN (United States))

1992-01-01T23:59:59.000Z

466

A study on transformation of self-similar processes with arbitrary marginal distributions  

Science Conference Proceedings (OSTI)

Stochastic discrete-event simulation studies of communication networks often require a mechanism to transform self-similar processes with normal marginal distributions into self-similar processes with arbitrary marginal distributions. The problem of ... Keywords: arbitrary marginal distribution, autocorrelation function, inverse cumulative distribution function, self-similar process, stochastic simulation

Hae-Duck J. Jeong; Jong-Suk R. Lee

2006-09-01T23:59:59.000Z

467

A New Fuzzy Support Vector Machine Based on the Weighted Margin  

Science Conference Proceedings (OSTI)

The ideas from fuzzy neural networks and support vector machine (SVM) are incorporated to make SVM classifiers perform better. The influence of the samples with high uncertainty can be decreased by employing the fuzzy membership to weigh the margin of ... Keywords: fuzzy neural networks, fuzzy pattern recognition, margin, maximal margin algorithm, support vector machines

Qing Tao; Jue Wang

2004-11-01T23:59:59.000Z

468

Tribal Utility Feasibility Study  

SciTech Connect

The Schatz Energy Research Center (SERC) assisted the Yurok Tribe in investigating the feasibility of creating a permanent energy services program for the Tribe. The original purpose of the DOE grant that funded this project was to determine the feasibility of creating a full-blown Yurok Tribal electric utility to buy and sell electric power and own and maintain all electric power infrastructure on the Reservation. The original project consultant found this opportunity to be infeasible for the Tribe. When SERC took over as project consultant, we took a different approach. We explored opportunities for the Tribe to develop its own renewable energy resources for use on the Reservation and/or off-Reservation sales as a means of generating revenue for the Tribe. We also looked at ways the Tribe can provide energy services to its members and how to fund such efforts. We identified opportunities for the development of renewable energy resources and energy services on the Yurok Reservation that fall into five basic categories: • Demand-side management – This refers to efforts to reduce energy use through energy efficiency and conservation measures. • Off-grid, facility and household scale renewable energy systems – These systems can provide electricity to individual homes and Tribal facilities in areas of the Reservation that do not currently have access to the electric utility grid. • Village scale, micro-grid renewable energy systems - These are larger scale systems that can provide electricity to interconnected groups of homes and Tribal facilities in areas of the Reservation that do not have access to the conventional electric grid. This will require the development of miniature electric grids to serve these interconnected facilities. • Medium to large scale renewable energy development for sale to the grid – In areas where viable renewable energy resources exist and there is access to the conventional electric utility grid, these resources can be developed and sold to the wholesale electricity market. • Facility scale, net metered renewable energy systems – These are renewable energy systems that provide power to individual households or facilities that are connected to conventional electric utility grid.

Engel, R. A.; Zoellick, J. J.

2007-06-30T23:59:59.000Z

469

Electric utilities and residential solar systems  

DOE Green Energy (OSTI)

The long-run incremental cost (LRIC) of providing electricity for solar heating and hot water systems is estimated for three utilities using a utility capacity expansion model and compared to the cost of providing electricity to electric-only systems. All investment, fuel and operating costs are accounted for. Hot water systems and combined heating and hot water systems are analyzed separately. It is found that the LRIC for solar backup is no more than the LRIC of electricity used for purely electric heating and hot water devices and also no more than the incremental cost of normal load growth. For the three utilities studied, there appears to be little basis for rate distinctions between solar devices using electric backup and electric-only heating and hot water devices. Off-peak storage heating and hot water devices have a much lower LRIC than the standard systems; again, there appears to be no basis for distinguishing between solar and electric off-peak devices. Compared to average cost pricing, incremental cost pricing offers considerable benefits to customers using solar and electric heat and hot water, especially if a separate lower rate is adopted for off-peak storage devices; these benefits can amount to several hundred dollars per year. Substantial savings in the use of oil and gas fuels can be achieved if residences using these fuels convert to solar systems, savings not necessarily achievable by a shift, instead, to electric systems.

Bright, R; Davitian, H

1980-04-01T23:59:59.000Z

470

OpenEI - US utilities  

Open Energy Info (EERE)

Electric Utility Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011) http://en.openei.org/datasets/node/899 This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (Utilities" title="http://en.openei.org/wiki/Gateway:Utilities">http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011.

471

Heat capacity and compactness of denatured proteins  

E-Print Network (OSTI)

One of the striking results of protein thermodynamics is that the heat capacity change upon denaturation is large and positive. This change is generally ascribed to the exposure of non-polar groups to water on denaturation, in analogy to the large heat capacity change for the transfer of small non-polar molecules from hydrocarbons to water. Calculations of the heat capacity based on the exposed surface area of the completely unfolded denatured state give good agreement with experimental data. This result is difficult to reconcile with evidence that the heat denatured state in the absence of denaturants is reasonably compact. In this work, sample conformations for the denatured state of truncated CI2 are obtained by use of an effective energy function for proteins in solution. The energy function gives denatured conformations that are compact with radii of gyration that are slightly larger than that of the native state. The model is used to estimate the heat capacity, as well as that of the native state, at 300 and 350 K via finite enthalpy differences. The calculations show that the heat capacity of denaturation can have large positive contributions from non-covalent intraprotein interactions because these interactions change more with temperature in non-native conformations than in the native state. Including this contribution, which has been neglected in empirical surface area models, leads to heat capacities of unfolding for compact denatured states that are consistent with the experimental heat capacity data. Estimates of the stability curve of CI2 made with the effective energy function support the present model. # 1999 Elsevier Science B.V. All rights reserved.

Themis Lazaridis; Martin Karplus

1999-01-01T23:59:59.000Z

472

Extraction Utility Design Specification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Extraction Utility Extraction Utility Design Specification January 11, 2011 Document Version 1.9 1 Revision History Date Version Section and Titles Author Summary of Change January 15, 2010 1.0 All Eric Morgan, Dekker, Ltd. Initial Draft Document January 19, 2010 1.1 All Igor Pedan, Dekker, Ltd. Document update with EM team review notes January 20, 2010 1.2 2.1.1 EM Project Team Document Review January 27, 2010 1.3 All Bruce Bartells Final Draft Review May 10, 2010 1.4.1 2.8 Igor Pedan, Dekker, Ltd. Section Update May 14, 2010 1.4.2 2.3.1 Igor Pedan, Dekker, Ltd. System Tables Added May 17, 2010 1.4.3 2.3 Igor Pedan, Dekker, Ltd. Enhancements Update June 29, 2010 1.5 All Igor Pedan, Dekker, Ltd. Revised for Version 8.0.20100628 July 14, 2010 1.5.1 2.8 Igor Pedan,

473

2012 Green Utility Leaders | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Leaders 2012 Green Utility Leaders 2012 Green Utility Leaders Ranking the Top Green Utilities See All Rankings x Renewable Energy Sales Total Customer Participants...

474

PARS II Extraction Utility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Extraction Utility PARS II Extraction Utility PARS II Extraction Utility v8020130510.zip More Documents & Publications PARS II Extraction Utility Release Notes PARS II CPP...

475

Carrots for Utilities: Providing Financial Returns for Utility Investments  

Open Energy Info (EERE)

Carrots for Utilities: Providing Financial Returns for Utility Investments Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Focus Area: Energy Efficiency Topics: Socio-Economic Website: www.aceee.org/research-report/u111 Equivalent URI: cleanenergysolutions.org/content/carrots-utilities-providing-financial Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Cost Recovery/Allocation This report examines state experiences with shareholder financial incentives that encourage investor-owned utilities to provide energy

476

Treatment of Solar Generation in Electric Utility Resource Planning  

SciTech Connect

Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

2013-10-01T23:59:59.000Z

477

Colorado Springs Utilities - Renewable Energy Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Rebate Program Renewable Energy Rebate Program Colorado Springs Utilities - Renewable Energy Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Wind Maximum Rebate PV (Residential): $15,000 PV (Commercial): $37,500 Wind (Residential): $3,750 Wind (Commercial): $12,500 Program Info Start Date 1/1/2006 State Colorado Program Type Utility Rebate Program Rebate Amount PV: $1.50 per watt Wind: $1.25 per watt Solar Water Heating (Residential): $1,500 - $3,000 depending on heating capacity Solar Water Heating (Commercial): 30% of installed cost, up to $15,000 Provider Colorado Springs Utilities Through its Renewable Energy Rebate Program, Colorado Springs Utilities (CSU) offers a rebate to customers who install grid-connected

478

Can Bounded Rationality Explain Excess Capacity? ?  

E-Print Network (OSTI)

Excess capacity is observed in many markets especially those where a substantial initial investment is required. The theoretical literature often explains this feature by strategic attempts to deter entry or to limit new entrants ’ market shares but the empirical evidence for such a rationale is mixed. Moreover, excess capacity has also been observed in experimental studies on capacityconstrained games where there is no entry (and therefore no entry-deterrence motive). This paper explores experimentally another rationale for excess capacity: rather than (in addition to) being a threat to (potential) entrants, excess capacity held by incumbents may constitute a valuable option to reap extra gains from competition with an inexperienced entrant, if he turns out to makes a mistake. In our experimental design we used the level of experience (the number of periods played) as a proxy for the level of rationality and matched subjects with different levels of experience. We find evidence of excess capacity decreasing with opponent’s experience. ? This paper is a sustantially revised version of a chapter of Le Coq and Sturluson’s 2003 Stockholm School of Economics Ph.D. thesis. It was before circulated as "Does Opponent’s experience matter?". The authors would like to thank Tore Ellingsen for his insightful comments in the project’s infancy, Urs Fischbacher for allowig us tousethez-TreesoftwareandHans-TheoNorman for technical help. We thank also seminar participants at the IIOC 2004 (Chicago), EARIE 2003 (Lausanne), SAET 2003 (Rhodos) for helpful comments. We gratefully acknowledge financial

Chloélecoq Jon; Thor Sturluson

2006-01-01T23:59:59.000Z

479

Air conditioning system with supplemental ice storing and cooling capacity  

DOE Patents (OSTI)

The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

Weng, Kuo-Lianq (Taichung, TW); Weng, Kuo-Liang (Taichung, TW)

1998-01-01T23:59:59.000Z

480

U.S. Fuel Ethanol Plant Production Capacity  

U.S. Energy Information Administration (EIA)

U.S. Nameplate Fuel Ethanol Plant Production Capacity as of January 1, 2013 PAD District: Number of Plants: 2013 Nameplate Capacity: 2012 Nameplate Capacity

Note: This page contains sample records for the topic "marginal utility capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

On the capacity of network coding for random networks  

E-Print Network (OSTI)

d ) , the network NC coding capacity C s;t ; ;t > (1 0 )8, AUGUST 2005 On the Capacity of Network Coding for Randomthat the network coding capacity concentrates around the

Ramamoorthy, A; Shi, J; Wesel, R D

2005-01-01T23:59:59.000Z

482

Zero-error capacity of a quantum channel  

E-Print Network (OSTI)

We define the quantum zero-error capacity, a new kind of classical capacity of a noisy quantum channel. Moreover, the necessary requirement for which a quantum channel has zero-error capacity greater than zero is also given.

Rex A. C. Medeiros; Francisco M. de Assis

2004-03-26T23:59:59.000Z

483

Africa - CCS capacity building | Open Energy Information  

Open Energy Info (EERE)

Africa - CCS capacity building Africa - CCS capacity building Jump to: navigation, search Name Africa - CCS capacity building Agency/Company /Organization Energy Research Centre of the Netherlands Partner EECG Consultants, the University of Maputo, the Desert Research Foundation Namibia and the South Africa New Energy Research Institute Sector Energy Focus Area Conventional Energy Resource Type Training materials Website http://www.ccs-africa.org/ Program Start 2010 Program End 2011 Country Botswana, Mozambique, Namibia UN Region "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

484

DOE mixed waste treatment capacity analysis  

SciTech Connect

This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

1994-06-01T23:59:59.000Z

485

Heat capacity at the glass transition  

E-Print Network (OSTI)

A fundamental problem of glass transition is to explain the jump of heat capacity at the glass transition temperature $T_g$ without asserting the existence of a distinct solid glass phase. This problem is also common to other disordered systems, including spin glasses. We propose that if $T_g$ is defined as the temperature at which the liquid stops relaxing at the experimental time scale, the jump of heat capacity at $T_g$ follows as a necessary consequence due to the change of system's elastic, vibrational and thermal properties. In this picture, we discuss time-dependent effects of glass transition, and identify three distinct regimes of relaxation. Our approach explains widely observed logarithmic increase of $T_g$ with the quench rate and the correlation of heat capacity jump with liquid fragility.

Kostya Trachenko; Vadim Brazhkin

2010-02-10T23:59:59.000Z

486

Utility Data Collection Service  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Data Collection Service Data Collection Service Federal-Utility Partnership Working Group 4 May 2006 Paul Kelley, Chief of Operations, 78 th CES, Robins AFB David Dykes, Industrial Segment Mgr, Federal, GPC Topics  Background  Commodities Metered  Data Collection  Cost  Results Background  Robins AFB (RAFB) needed to:  Control electricity usage and considered Demand Control  Track and bill base tenants for energy usage  Metering Project Originated in 1993  $$ requirements limited interest  Developed criteria for available $$  Energy Policy Act 2005:  All facilities sub-metered by 2012  $$ no longer restricts metering project Metering Criteria prior to EPACT 2005  All New Construction - (per Air Force Instructions)

487

EM Utility Contracts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12 12 EM UTILITY CONTRACT Site State Supplier Executed Contract Type DOE Contract # East Tennessee Technology Park TN Tennessee Valley Authority 4/27/2007 Energy supply contract (retail) DE-AC05-07OR23242 Hanford WA Bonneville Power Administration 10/1/2001 Transmission Service Agreement Hanford WA Bonneville Power Administration 10/1/2011 Power Sales Agreement (retail) Moab UT Paducah KY Electric Energy, Inc. (EEI as agent for DOE) Original Power Contract Portsmouth OH Pike Natural Gas 2/28/2007 Negotiated contract Portsmouth OH Ohio Valley Electric Corporation (OVEC) 9/10/2008 Letter Agreement DE-AC05-03OR22988 Savannah River Site SC South Carolina Electric & Gas

488

Utility Metering - AGL Resources  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AGL Resources AGL Resources Mike Ellis Director, AGL Energy Services Federal Utility Partnership Working Group Spring 2013 - May 22-23 San Francisco, CA Hosted by: Pacific Gas and Electric Company  Multiple LDCs with legacy metering equipment  Several use Itron 100G technology ◦ Mobile, once-a-month data collection ◦ Meter can store interval data for >30 days ◦ Meter technology could be leverage on fixed-base network, however there are no current plans for upgrade  Technology for capturing interval data is installed on case by case basis ◦ Customers on Interruptible Rate ◦ Large users  Electronic corrector installed on the meter ◦ Pressure and Temperature compensation  Typically data is retrieved once a day ◦ Transmission frequency impacts battery life

489

Extraction Utility Design Specification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Extraction Extraction Utility Design Specification May 13, 2013 Document Version 1.10 1 Revision History Date Version Section and Titles Author Summary of Change January 15, 2010 1.0 All Eric Morgan, Dekker, Ltd. Initial Draft Document January 19, 2010 1.1 All Igor Pedan, Dekker, Ltd. Document update with EM team review notes January 20, 2010 1.2 2.1.1 EM Project Team Document Review January 27, 2010 1.3 All Bruce Bartells Final Draft Review May 10, 2010 1.4.1 2.8 Igor Pedan, Dekker, Ltd. Section Update May 14, 2010 1.4.2 2.3.1 Igor Pedan, Dekker, Ltd. System Tables Added May 17, 2010 1.4.3 2.3 Igor Pedan, Dekker, Ltd. Enhancements Update June 29, 2010 1.5 All Igor Pedan, Dekker, Ltd. Revised for Version

490

Carbon Dioxide Utilization Archived Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Mercury Sorbent Field Testing Program Sorbent Technologies Corporation Western Kentucky University 9292003 Enhanced Practical Photosynthesis Carbon Sequestration ORNL...

491

Correlation between thermal expansion and heat capacity  

E-Print Network (OSTI)

Theoretically predicted linear correlation between the volume coefficient of thermal expansion and the thermal heat capacity was investigated for highly symmetrical atomic arrangements. Normalizing the data of these thermodynamic parameters to the Debye temperature gives practically identical curves from zero Kelvin to the Debye temperature. This result is consistent with the predicted linear correlation. At temperatures higher than the Debye temperature the normalized values of the thermal expansion are always higher than the normalized value of the heat capacity. The detected correlation has significant computational advantage since it allows calculating the volume coefficient of thermal expansion from one experimental data by using the Debye function.

Jozsef Garai

2004-04-25T23:59:59.000Z

492

Development of the Zinc-Chloride Battery for Utility Applications  

Science Conference Proceedings (OSTI)

This report reviews progress in Phase 2 (April 1978-March 1980) of a program to develop the zinc-chloride battery for utility load-leveling applications. Tasks in this phase included refurbishment of a 45-kWh module to increase capacity and efficiency, cycle testing of a 1.7-kWh battery, and development of a 50-kWh module to serve as the building block for the 4-MWh battery for the Battery Energy Test Facility.

1980-05-01T23:59:59.000Z

493

Cogeneration Assessment Methodology for Utilities  

E-Print Network (OSTI)

A methodology is presented that enables electric utilities to assess the cogeneration potential among industrial, commercial, and institutional customers within the utility's service area. The methodology includes a survey design, analytic assessment model, and a data base to track customers over time. A case study is presented describing the background, procedures, and results of a cogeneration investigation for Northeast Utilities.

Sedlik, B.

1983-01-01T23:59:59.000Z

494

Modeling the Capacity and Emissions Impacts of Reduced Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand Title Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand Publication Type Report...

495

Changing World Product Markets and Potential Refining Capacity ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Asia Demand growth, product mix, trade Price Signals for Capacity Changes Capacity ... 150 AZ Clean Fuels FCC/RCC Coking ...

496

Indonesia-ECN Capacity building for energy policy formulation...  

Open Energy Info (EERE)

ECN Capacity building for energy policy formulation and implementation of sustainable energy projects Jump to: navigation, search Name CASINDO: Capacity development and...

497

GIZ-Developing Climate Policy Capacity within the South African...  

Open Energy Info (EERE)

Policy Capacity within the South African Department of Environmental Affairs (DEA) Jump to: navigation, search Name South Africa - Developing Climate Policy Capacity within DEA...

498

Changing World Product Markets and Potential Refining Capacity Increases  

Reports and Publications (EIA)

The presentation explores potential refinery capacity increases over the next 5 years in various world regions, based on changing demand patterns, changing price incentives, and capacity expansion announcements.

Information Center

2006-03-20T23:59:59.000Z

499

Assessing the Control Systems Capacity for Demand Response in...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Control Systems Capacity for Demand Response in California Industries Title Assessing the Control Systems Capacity for Demand Response in California Industries Publication Type...