National Library of Energy BETA

Sample records for marcellus pa wv

  1. Local Teams from PA, WV Travel to Washington D.C. for National Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | netl.doe.gov Regional News Local Teams from PA, WV Travel to Washington D.C. for National Science Bowl Pittsburgh, Pa. - The National Energy Technology Laboratory have sent the regional winners of the southwestern Pennsylvania (SWPA) and West Virginia Science Bowls off to compete in the U.S. Department of Energy National Science Bowl April 28-May 2, 2016, in Washington, D.C. By winning their regional tournaments, the Marshall Middle School (Wexford, PA), Morgantown High School (Morgantown,

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Center CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Hilary Olson Project Director/Principal Investigator University of Texas at Austin 1 University Station, C0300 Austin, TX

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Marte Gutierrez Principal Investigator Colorado School of Mines 1600 Illinois Street Golden, CO 80401 303-273-3468 Fax: 303-273-3602

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Bruce Brown Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7313 bruce.brown@netl.doe.gov Kathryn Baskin Principal Investigator Managing Director Southern States Energy Board 6325 Amherst Court Norcross, GA 30092 770-242-7712 baskin@sseb.org PARTNERS

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road PO Box 10940 Pittsburgh, PA 15236-0940 412-386-7594 andrea.dunn@netl.doe.gov Charles D. Gorecki Technical Contact Deputy Associate Director for Research Energy & Environmental Research Center University of North Dakota 15 North 23 rd Street, Stop 9018 Grand Forks, ND 58202-9018 701-777-5355 cgorecki@undeerc.org Edward N. Steadman

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Joshua Hull Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-0906 joshua.hull@netl.doe.gov Dr. Brenda Bowen Principal Investigator Associate Director, Global Change and Sustainability Center Associate Research Professor, Geology and Geophysics

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Ruben Juanes Principal Investigator Massachusetts Institute of Technology 77 Massachusetts Avenue Room 48-319 Cambridge, MA 02139

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Constantin Cranganu Principal Investigator Brooklyn College 2900 Bedford Avenue 4415 Ingersoll Hall Brooklyn, NY 11210 718-951-5000

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Joshua Hull Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P. O. Box 880 Morgantown, WV 26507-0880 304-285-0906 joshua.hull@netl.doe.gov William Lawson Principal Investigator Petroleum Technology Transfer Council P.O. Box 8531 Tulsa, OK 74101-8531 918-629-1056 wlawson@appg.org

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Darin Damiani Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4398 darin.damiani@netl.doe.gov Vivak Malhotra Principal Investigator Southern Illinois University Neckers 483A Mailcode: 4401 Carbondale, IL 62901 618-453-2643 Fax:

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Darin Damiani Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4398 darin.damiani@netl.doe.gov Robert J. Finley Principal Investigator Illinois State Geological Survey 615 E. Peabody Drive Champaign, IL 61820 217-244-8389 finley@illinois.edu PARTNERS Ameren American Air

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Dawn Deel Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4133 dawn.deel@netl.doe.gov Sherry Mediati Business Contact California Energy Commission 1516 9th Street, MS 1 Sacramento, CA 95814 916-654-4204 smediati@energy.state.ca.us Mike Gravely Principal

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O G R A M FAC T S Strategic Center for Natural Gas & Oil LOCATION Arctic Energy Office National Energy Technology Laboratory 420 L Street, Suite 305 Anchorage, Alaska 99501-5901 CONTACTS Albert B. Yost II Sr. Management Technical Advisor Strategic Center for Natural Gas & Oil National Energy Technology Laboratory 3610 Collins Ferry Road Morgantown, WV 26507-0880 304-285-4479 albert.yost@netl.doe.gov Maria Vargas Deputy Director Strategic Center for Natural Gas & Oil National Energy

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACTS J. Alexandra Hakala Geosciences Division Engineered Natural Systems Division National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-5487 Alexandra.Hakala@netl.doe.gov George Guthrie Geological and Environmental Sciences Focus Area Leader Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6571 George.Guthrie@netl.doe.gov PARTNERS Carnegie

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gov William Aljoe Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6569 william.aljoe@netl.doe.gov Lee Spangler Principal Investigator Montana State University P.O. Box 173905 Bozeman, MT 59717-3905 406-994-4399 spangler@montana.edu PARTNERS Altamont Oil & Gas Inc. Barnard College Columbia University Idaho National Laboratory Lawrence Berkeley National Laboratory Los Alamos National Laboratory Schlumberger Carbon

  16. Preliminary effects of Marcellus shale drilling on Louisiana waterthrush in West Virginia

    SciTech Connect (OSTI)

    Becker, D.; Sheehan, J.; Wood, P.B.; Edenborn, H.M.

    2011-01-01

    Preliminary effects of Marcellus shale drilling on Louisiana Waterthrush in West Virginia Page 1 of 1 Doug Becker and James Sheehan, WV Cooperative Fish and Wildlife Research Unit, West Virginia Univ., Morgantown, WV 26506, USA; Petra Bohall Wood, U.S. Geological Survey, WV Cooperative Fish and Wildlife Research Unit, West Virginia Univ., Morgantown, WV 26506, USA; Harry Edenborn, National Energy Technology Laboratory, U.S. Department of Energy, Pittsburgh, PA 15236, USA. Spurred by technological advances and high energy prices, extraction of natural gas from Marcellus shale is increasing in the Appalachian Region. Because little is known about effects on wildlife populations, we studied immediate impacts of oil and gas CO&G) extraction on demographics and relative abundance of Louisiana Waterthrush'CLOWA), a riparian obligate species, to establish a baseline for potential future changes. Annually in 2008-2010, we conducted point counts, monitored Mayfield nesting success, spotted-mapped territories, and measured habitat quality using the EPA Rapid Bioassessment protocol for high gradient streams and a LOWA Habitat Suitability Index CHSI) on a 4,100 ha study area in northern West Virginia. On 11 streams, the stream length affected by O&G activities was 0-58%. Relative abundance, territory denSity, and nest success varied annually but were not significantly different across years. Success did not differ between impacted and unimpacted nests, but territory density had minimal correlation with percent of stream impacted by O&G activities. Impacted nests had lower HSI values in 2010 and lower EPA indices in 2009. High site fidelity could mask the immediate impacts of habitat disturbance from drilling as we measured return rates of 57%. All returning individuals were on the same stream they were banded and 88% were within 250 m of their territory from the previous year. We also observed a spatial shift in LOWA territories, perhaps in response to drilling activities

  17. QER- Comment of Marcellus Shale Coalition

    Broader source: Energy.gov [DOE]

    Attached please find the Marcellus Shale Coalition’s comments with regard to the U.S. Department of Energy’s Quadrennial Energy Review Task Force Hearing - Natural Gas Transmission, Storage and Distribution. Thank you

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    samples. With scan times lasting only seconds, the system can capture, in real time, the migration of fluids and changes in rock material at in-situ petroleum and CO 2 storage ...

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Successful implementation of portfolio research objectives will ultimately increase America's domestic oil and gas supply, reduce our nation's dependency on foreign imports, and ...

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of recoverable petroleum within a reservoir, as well as the modeling of the flow of these fluids within the porous media and in wellbore. These properties are also used to design...

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Conversion Model allows for the transfer of elements from the JetPlume and Transport models, taking care to best amalgamate the two contrasting approaches in each, while...

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geomechanical Impacts of Shale Gas Activities Background Hydraulic fracturing of gas shale is the injection of large volumes of fluid at high pressures in low permeability shale to ...

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which can be then used in an inexpensive "breathalyzer" to test for and monitor diabetes. The NETLSC has also greatly accelerated progress on the development of...

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The facility was originally used to study the fate of CO 2 in the deep ocean, released ... Goals and Objectives The goal of the current research is to obtain fundamental, ...

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil and natural gas fuel America's economy and account for more than 60 percent of the energy ... The results can also be used to identify requirements for new materials with superior ...

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer at NETL Carbon capture, quantum mechanical simulations, integrated gasification, and clean power-words like these mean the future of energy to NETL's in-house...

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lower heat capacity, and reduced heat of reaction. The result is a lower overall cost for CO 2 capture and separation. Many different types of solid materials have been...

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kelly.rose@netl.doe.gov Jennifer Bauer Geospatial Researcher 541-918-4507 ... These interpretations support geospatial and geo-statistical evaluations associated with ...

  9. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jennifer Bauer Geospatial Researcher 541-918-4507 jennifer.bauer@contr.netl.doe.gov ... The original databook was started by NETL's Geology and Geospatial (G&G) team for the U.S. ...

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kelly.rose@netl.doe.gov Jennifer Bauer Geospatial Researcher 541-918-4507 ... The original databook was started by NETL's Geology and Geospatial (G&G) team for the U.S. ...

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and model data on high performance computers with pre-loaded software, such as ArcGIS, Petra, EarthVision, GoldSim, MATLAB, and other advanced analytical, statistical and...

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    their datasets using top-of-the-line research computers with key software, such as ArcGIS, Petra, GoldSim, and Earthvision, among other advanced geostatistical and analytical...

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quantifiable and relevant para- meters, while leaving the sample available for further testing. Facilities Medical CT Scanner Core-scale Characterization and Fluid Flow The...

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Inc. Equitable Resources Exxon Mobile Florida Municipal ... to monitor injection operations and to ensure public safety. ... to collect data on the performance of the lower part of the ...

  15. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cynthia Powell Director 541-967-5803 cynthia.powell@netl.doe.gov Grant Bromhal Technical Portfolio Lead National Risk Assessment Program 304-285-4688 grant.bromhal@netl.doe.gov ...

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    John Baltrus Acting Division Director Molecular Science Division 412-386-4570 john.baltrus@netl.doe.gov Paul Turner Division Director Materials Characterization Division...

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon capture, quantum mechanical simulations, integrated gasification, and clean ... And, as technology transfer cutting-edge inventions to present a wide energy research ...

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Structural Materials are being developed for use in extreme environments associated with combustion, turbine, gasification, drilling, and other applications. Research focuses on ...

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the exploration and production of deepwater and ultra-deepwater resources. Adequate definition of materials performance and properties is critical to this effort. The outcome...

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry and Surface Science CONTACTS OFFICE OF RESEARCH AND DEVELOPMENT Madhava Syamlal ... Computational Chemistry Research in Support of Future Energy Technologies Background ...

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activities to test and evaluate technologies; validate and couple geomechanical and flow reservoir models to provide accurate and reliable simulations in fractured reservoirs...

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Life prediction based on environmental and ...recipitation-strengthened nickel superalloys for oil and gas ... for these alloys as a function of borehole conditions. ...

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are an important target for studies seeking to positively affect both the efficiency and environmental impact of U.S. energy production. The diversity of available sources for...

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Combustion Project addresses fundamental issues of fire-side and steam-side corrosion in oxy-fuel combustion environments. NETL's advanced ultra-supercritical (A-USC)...

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ultimately CO 2 capture cost. The NETL-ORD is also conducting system and economic studies to R& D FAC T S Carbon Capture OFFICE OF RESEARCH AND DEVELOPMENT David Alman...

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimal Model Complexity in Geological Carbon Sequestration: A Response Surface Uncertainty Analysis Background The goal of the Department of Energy's (DOE) Carbon Storage Program...

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fossil Energy Plants estimated that the use of MEA to capture 90% of CO 2 in a pulverized coal power plant would impose a 30% energy penalty and ultimately result in an 85%...

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science and Engineering 304-285-4685 madhava.syamlal@netl.doe.gov David Miller Technical Director Carbon Capture Simulation Initiative 412-386-6555...

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are cheap and easy to process but are limited by an inherent tradeoff between permeability and selectivity - polymeric membranes can have high permeability or high...

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Analytical Simulation Tool for CO2 Storage Capacity Estimation and Uncertainty Quantification Background The goal of the Department of Energy's (DOE) Carbon Storage...

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and minimal soot formation. The syngas reformate will be used as fuel for solid oxide fuel cells developed in the Solid State Energy Conversion Alliance (SECA) program....

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of State Model Development for Extreme Temperatures and Pressures Background The density and viscosity of natural gas and crude oil at reservoir conditions are critical...

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's...

  14. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    require the production of clean hydrogen to fuel innovative combustion turbines and fuel cells. This research will focus on development and assessment of membranes tailored...

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 emissions from power plants that use fossil fuels ... first be overcome by methods that do not ... for repowering existing coal-fired facilities to capture CO ...

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security....

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and a burner) is coupled to heat exchangers and a turbine in order to evaluate the dynamics of a fully integrated system. R& D FAC T S Energy Systems Dynamics OFFICE OF...

  18. Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Houston, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL R&D Tackles Technological Challenges of the Williston Basin's Bakken Formation Recent development of the Bakken Formation in the Williston Basin of western North Dakota and eastern Montana is a good example of persistent analysis of geologic data and adaptation of new completion technologies overcoming the challenges posed by unconventional reservoirs. However, as with most unconventional plays, as Bakken development continues, questions regarding exactly how to refine newly applied

  19. Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugarland, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sugarland, TX Website: www.netl.doe.gov Customer Service: 1-800-553-7681 Enhanced Oil Recovery Program The mission of the Enhanced Oil Recovery Program is to provide information and technologies that will assure sustainable, reliable, affordable, and environmentally sound supplies of domestic oil resources. The Strategic Center for Natural Gas and Oil (SCNGO) seeks to accomplish this critical mission by advancing environmentally responsible technological solutions that enhance recovery of oil

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or moved into other parts of the capture portfolio for further development. Among the materials currently being examined are advanced polymers based on inorganic phosphazines and...

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deleterious Events Associated with Drilling and Production Background Increasingly, ... prediction of potential deleterious events in extreme offshore drilling and production. ...

  2. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... This recognition sparked a desire within NETL to leverage rapidly evolving technology, capabilities, and approaches to information sharing, big data, and computational resources, ...

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The goal is to simulate the conditions found in all of the major potential geological ... Objectives * Obtain representative strata samples per programproject constraints, working ...

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... and differential scanning calori- metry, NETL researchers test geological and environmental material samples to determine degradation and decom- position temperatures, absorbed ...

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of efficient and economical approaches to carbon capture. A typical coal gasification process produces H 2 , CO 2 , and steam at about 260 C and 25 bar after...

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in High Pressure, High Temperature (HPHT) Ultra-Deep Drilling Environments Background Oil and natural gas fuel America's economy-accounting for more than 60 percent of the...

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... (a GC-FID with sample introduction via thermal desorption) to measure VOC's; * Air Pollution Instruments gaseous monitors for NO x and O 3 ; * A Davis Instruments ...

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... via thermal desorption) to measure volatile organic compounds (VOCs); * Air Pollution Instruments gaseous monitors for NO x and O 3 ; * R.M. Young and Davis Instruments ...

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to focus on only the most promising materials. Substances designed using fundamental approaches are synthesized and characterized in NETL-ORD's fully equipped synthetic...

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods, limited variability is available in the final cathode structures. New approaches focus on generation of advanced microstructures that are more conducive to...

  11. Annual Energy Outlook 2013 Early Release Reference Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (CO, WY) Haynesville Utica (OH, PA & WV) Marcellus (PA,WV,OH & NY) Woodford (OK) Granite Wash (OK & TX) Austin Chalk (LA & TX) Monterey (CA) U.S. tight oil production...

  12. Category:Elkins, WV | Open Energy Information

    Open Energy Info (EERE)

    16 files are in this category, out of 16 total. SVFullServiceRestaurant Elkins WV Harrison Rural Elec Assn Inc.png SVFullServiceRestauran... 59 KB SVQuickServiceRestaurant...

  13. DOE - Office of Legacy Management -- Reduction Pilot Plant - WV 01

    Office of Legacy Management (LM)

    Reduction Pilot Plant - WV 01 FUSRAP Considered Sites Site: REDUCTION PILOT PLANT (WV.01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: International Nickel Company WV.01-1 Location: Cole Street at Alterizer Ave. , Huntington , West Virginia WV.01-2 Evaluation Year: 1987 WV.01-1 Site Operations: Manufactured powdered Nickel for use at Paducah and Portsmouth gaseous diffusion plants and Nickel plated a small quantity of Uranium slugs. WV.01-2

  14. Pores in Marcellus Shale: A Neutron Scattering and FIB-SEM Study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gu, Xin; Cole, David R.; Rother, Gernot; Mildner, David F. R.; Brantley, Susan L.

    2015-01-26

    The production of natural gas has become more and more important in the United States because of the development of hydraulic fracturing techniques, which significantly increase the permeability and fracture network of black shales. The pore structure of shale is a controlling factor for hydrocarbon storage and gas migration. In this work, we investigated the porosity of the Union Springs (Shamokin) Member of the Marcellus Formation from a core drilled in Centre County, PA, USA, using ultrasmall-angle neutron scattering (USANS), small-angle neutron scattering (SANS), focused ion beam scanning electron microscopy (FIB-SEM), and nitrogen gas adsorption. The scattering of neutrons bymore » Marcellus shale depends on the sample orientation: for thin sections cut in the plane of bedding, the scattering pattern is isotropic, while for thin sections cut perpendicular to the bedding, the scattering pattern is anisotropic. The FIB-SEM observations allow attribution of the anisotropic scattering patterns to elongated pores predominantly associated with clay. The apparent porosities calculated from scattering data from the bedding plane sections are lower than those calculated from sections cut perpendicular to the bedding. A preliminary method for estimating the total porosity from the measurements made on the two orientations is presented. This method is in good agreement with nitrogen adsorption for both porosity and specific surface area measurements. Neutron scattering combined with FIB-SEM reveals that the dominant nanosized pores in organic-poor, clay-rich shale samples are water-accessible sheetlike pores within clay aggregates. In contrast, bubble-like organophilic pores in kerogen dominate organic-rich samples. Lastly, developing a better understanding of the distribution of the water-accessible pores will promote more accurate models of water–mineral interactions during hydrofracturing.« less

  15. Pores in Marcellus Shale: A Neutron Scattering and FIB-SEM Study

    SciTech Connect (OSTI)

    Gu, Xin; Cole, David R.; Rother, Gernot; Mildner, David F. R.; Brantley, Susan L.

    2015-01-26

    The production of natural gas has become more and more important in the United States because of the development of hydraulic fracturing techniques, which significantly increase the permeability and fracture network of black shales. The pore structure of shale is a controlling factor for hydrocarbon storage and gas migration. In this work, we investigated the porosity of the Union Springs (Shamokin) Member of the Marcellus Formation from a core drilled in Centre County, PA, USA, using ultrasmall-angle neutron scattering (USANS), small-angle neutron scattering (SANS), focused ion beam scanning electron microscopy (FIB-SEM), and nitrogen gas adsorption. The scattering of neutrons by Marcellus shale depends on the sample orientation: for thin sections cut in the plane of bedding, the scattering pattern is isotropic, while for thin sections cut perpendicular to the bedding, the scattering pattern is anisotropic. The FIB-SEM observations allow attribution of the anisotropic scattering patterns to elongated pores predominantly associated with clay. The apparent porosities calculated from scattering data from the bedding plane sections are lower than those calculated from sections cut perpendicular to the bedding. A preliminary method for estimating the total porosity from the measurements made on the two orientations is presented. This method is in good agreement with nitrogen adsorption for both porosity and specific surface area measurements. Neutron scattering combined with FIB-SEM reveals that the dominant nanosized pores in organic-poor, clay-rich shale samples are water-accessible sheetlike pores within clay aggregates. In contrast, bubble-like organophilic pores in kerogen dominate organic-rich samples. Lastly, developing a better understanding of the distribution of the water-accessible pores will promote more accurate models of water–mineral interactions during hydrofracturing.

  16. shaleusa5.pdf

    Gasoline and Diesel Fuel Update (EIA)

    ... NY PA NJ OH DC DE WV MD KY VA NC TN SC MI CANADA 2 0 0 1 0 0 Marcellus Shale Gas Play, Appalachian Basin Source: US Energy Information Administration based on data from WVGES , PA ...

  17. ARM - Campaign Instrument - mfrsr-wv1mich

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mich Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : MFRSR-WV-Michalsky1 (MFRSR-WV1MICH) Instrument...

  18. DOE - Office of Legacy Management -- Food Machinery and Chemical Co - WV 04

    Office of Legacy Management (LM)

    Food Machinery and Chemical Co - WV 04 FUSRAP Considered Sites Site: Food Machinery and Chemical Co. (WV.04 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Food Machining Corp WV.04-1 Location: Nitro , West Virginia WV.04-1 Evaluation Year: 1994 WV.04-1 Site Operations: Proposed research and development on treatment of calcium and aluminum phosphate materials to extract uranium. WV.04-2 WV.04-3 Site Disposition: Eliminated - Operations were

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Oil Systems Analysis Program Background In support of its mission, to advance the efficient recovery of our nation's oil and natural gas resources in an environmentally safe manner, the Strategic Center for National Gas and Oil (SCNGO) carries out a variety of analyses. These generally fall into four categories: 1. Technology Analysis - Evaluation of the state of current technology, the potential benefits of technology advancements, and the research needed to overcome barriers to those

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure The various elements of the U.S. natural gas industry-production, gathering, processing, transportation, storage, and distribution-play important roles that affect nearly every sector of the economy. Natural gas accounts for 42 percent of the energy delivered to the U.S. industrial sector and provides heat for over 66 million residential consumers. Advances in unconventional gas production technology have led to a rapid increase in domestic gas production. In the decade between

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combining Space Geodesy, Seismology, and Geochemistry for MVA of CO2 in Sequestration Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO2) leakage at CO2 geologic storage sites. MVA efforts focus on the development and deployment of technologies

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GEOSEQ: Monitoring of Geological CO2 Sequestration Using Isotopes and Perfluorocarbon Tracers (PFTs) Background The purpose of this project is to develop monitoring, verification, and accounting (MVA) tools to ensure the safety and viability of long-term geologic storage of CO2. The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) and Oak Ridge National Laboratory (ORNL) will expand the lessons learned at the Frio Brine Pilot (as part of the GEO-SEQ project) to

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Near-Surface Leakage Monitoring for the Verification and Accounting of Geologic Carbon Sequestration Using a Field- Ready 14 C Isotopic Analyzer Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Capture and Storage Training Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements of 222 Rn, 220 Rn, and CO2 Emissions in Natural CO2 Fields in Wyoming: Monitoring, Verification, and Accounting Techniques for Determining Gas Transport and Caprock Integrity Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO 2 ). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space Geodesy and Geochemistry Applied to the Monitoring, Verification of Carbon Capture and Storage (CCS): Training and Research Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO2). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Actualistic and Geomechanical Modeling of Reservoir Rock, CO2 and FormationFluid Interaction, Citronelle Oil Field, Alabama Background Fundamental and applied research on carbon capture, utilization and storage (CCUS) technologies is necessary in preparation for future commercial deployment. These technologies offer great potential for mitigating carbon dioxide (CO2) emissions intothe atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wellbore Seal Repair Using Nanocomposite Materials Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lawrence Livermore National Laboratory - Advancing the State of Geologic Sequestration Technologies towards Commercialization Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop carbon capture and storage (CCS) technologies to capture, separate, and store carbon dioxide (CO 2 ) in order to reduce green-house gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory - Management of Water from Carbon Capture and Storage Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop technologies to capture, separate, and store carbon dioxide (CO 2 ) to aid in reducing green-house gas (GHG) emissions without adversely influencing energy use or hindering economic growth. Carbon capture and sequestra- tion (CCS) - the capture of CO 2 from large point sources and subsequent injection

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R &D FAC T S Carbon Storage CONTACTS Mary Anne Alvin Division Director Geosciences Division 412-386-5498 maryanne.alvin@netl.doe.gov T. Robert McLendon Geosciences Division 304-285-5749 t.mclendon@netl.doe.gov Geologic Sequestration Core Flow Laboratory Background Sequestration of CO 2 and production of coalbed methane (CBM) can affect the strata in various ways. For example, coal can swell or shrink, depending on the specific adsorbed/absorbed gas. In turn, this can affect permeability and

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FutureGen 2.0 Background The combustion of fossil fuels for electricity generation is one of the largest contributors to carbon dioxide (CO 2 ) emissions in the United States and the world. Future federal legislation and/or regulation may further limit CO 2 emissions from U.S. power generation. Efforts to control CO 2 emissions from this sector are under- way through the development of carbon capture and storage (CCS) technologies. CCS could virtually eliminate CO 2 emissions from power plants

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PROGRAM FACTS Strategic Center for Natural Gas & Oil CONTACTS Roy Long Offshore Technology Manager Strategic Center for Natural Gas & Oil 281-494-2520 roy.long@netl.doe.gov Kelly Rose Offshore Technical Portfolio Lead Office of Research and Development 541-967-5883 kelly.rose@netl.doe.gov William Fincham Project Manager Natural Gas & Oil Project Management Division 304-285-4268 william.fincham@netl.doe.govv Jared Ciferno Director Strategic Center for Natural Gas & Oil

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Storage Research Carbon capture and storage (CCS) is a key component of the U.S. carbon manage- ment portfolio. Numerous studies have shown that CCS can account for up to 55 percent of the emission reductions needed to stabilize and ultimately reduce atmospheric concentrations of CO 2 . The National Energy Technology Laboratory's (NETL) Carbon Storage Program is pre- paring CCS technologies for widespread laboratory deployment by 2020. The program goals are to: * Support industries'

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Performance Project Research programs initiated by the U.S. Department of Energy (DOE) to achieve increased efficiency and reduced emissions are expected to result in the development of highly integrated power generation technologies that are clean and use far less fuel to produce the same power as technologies used today. This highly efficient technology would extend our natural resources and reduce the dependence of the United States on foreign sources of oil and other energy

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yee Soong Principal Investigator Research Chemical Engineer 412-386-4925 yee.soong@netl.doe.gov Robert McLendon Research Engineer 412-386-5749 T.McLendon@netl.doe.gov Jamie Brown Associate Director 304-285-5428 jamie.brown@netl.doe.gov Grant Bromhal Acting Senior Fellow 304-285-4688 grant.bromhal@netl.doe.gov Cynthia Powell Executive Director 541-967-5803 cynthia.powell@netl.doe.gov Geologic Storage Core Flow Laboratory Background The storage of CO₂ and production of coalbed methane (CBM) can

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fractured Reservoir Generation and Simulation Codes: FracGen and NFflow Background Fluid flow through fractured media is becoming an ever more important part of our energy future for several reasons. Shale gas and shale oil are supplying larger amounts of our petroleum needs, and both rely on production from fractured rock. Other unconventional formations, such as tight sands, are also supplying a larger portion of our energy needs, and these also depend on flow through fractures for economical

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering & Manufacturing Onsite Research The National Energy Technology Laboratory (NETL) is the lead laboratory for the Depart- ment of Energy's Office of Fossil Energy research and development (R&D) program and has established a robust onsite research program. Federal scientists and engineers work closely with contractor organizations and researchers from universities to conduct cross- disciplinary research. Onsite R&D is managed by NETL's Research & Innovation Center (RIC),

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science & Engineering OFFICE OF RESEARCH AND DEVELOPMENT Madhava Syamlal Focus Area Lead Computational Science and Engineering 304-285-4685 madhava.syamlal@netl.doe.gov David Miller Technical Portfolio Lead Carbon Capture Simulation Initiative 412-386-6555 david.miller@netl.doe.gov Computational Science and Engineering Onsite Research As the lead field center for the DOE Office of Fossil Energy's research and development program, the National Energy Technology Laboratory (NETL)

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy System Dynamics OFFICE OF RESEARCH AND DEVELOPMENT George Richards Focus Area Lead Energy System Dynamics 304-285-4458 george.richards@netl.doe.gov Energy System Dynamics NETL Onsite Research As the lead field center for the DOE Office of Fossil Energy's research and development program, the National Energy Technology Laboratory (NETL) has established a strong onsite research program conducted by Federal scientists and engineers who work closely with employees of contractor organizations

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cynthia Powell Executive Director 541-967-5803 cynthia.powell@netl.doe.gov Bryan Morreale Deputy Executive Director (acting) 412-386-5929 bryan.morreale@netl.doe.gov Jimmy Thornton Chief of Staff 304-285-4427 jimmy.thornton@netl.doe.gov Research and Innovation Center The National Energy Technology Laboratory (NETL), one of the Depart- ment of Energy's (DOE) 17 national laboratories, is leading research, development, and demonstration programs to resolve the environmen- tal, supply, and

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process Development Division OFFICE OF RESEARCH AND DEVELOPMENT David Alman Acting Focus Area Lead Materials Science and Engineering 541-967-5885 david.alman@netl.doe.gov An Integrated Approach To Materials Development Traditional trial-and-error method in materials development is time consuming and costly. In order to speed up materials discovery for a variety of energy applications, an integrated approach for multi-scale materials simulations and materials design has been adopted at NETL. The

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equation of State Model Development for Extreme Temperatures and Pressures Background The density and viscosity of natural gas and crude oil at reservoir conditions are critical fundamental properties required to accurately assess the amount of recoverable petroleum within a reservoir, and to model the flow of these fluids within the porous media and wellbore. These properties are also used to design appropriate drilling and production equipment, such as blow-out preventers and risers. A limited

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance in High-Pressure, High-Temperature, and Ultra-Deep Drilling Environments Background Oil and natural gas fuel America's economy and account for more than 60 percent of the energy consumed in the United States (U.S.). Most forecasts indicate that these resources will continue to play a vital role in the U.S. energy portfolio for the next several decades. Increasingly, however, the domestic oil and gas industry must search for hydrocarbons in geologically challenging and operationally

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deepwater Research in the DOE NETL High-Pressure Water Tunnel Facility Background The National Energy Technology Laboratory's (NETL) High-Pressure Water Tunnel Facility (HWTF) allows researchers to investigate the chemistry, physics, and hydrodynamics of gas bubbles, liquid drops, and solid particles in deepwater environments. Built to withstand conditions at simulated ocean depths in excess of 3,000 meters, the facility was originally used to study the fate of carbon dioxide (CO₂) in the deep

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Research Portfolio Assessing Risk and Mitigating Adverse Events Associated with Drilling and Production Background Increasingly, offshore domestic oil and natural gas activities are associated with challenging offshore regions such as the ultra-deepwater (> 5,000 feet) Gulf of Mexico and the offshore Arctic. Development in these areas poses unique technical and operational challenges as well as distinct environmental and societal concerns. At present, offshore domestic resources

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unconventional Resources Background Natural gas and crude oil provide two-thirds of our Nation's primary energy supply and will continue to do so for at least the next several decades, as the Nation transitions to a more sustainable energy future. The natural gas resource estimated to exist within the United States has expanded significantly, but because this resource is increasingly harder to locate and produce, new technologies are required to extract it. Under the Energy Policy Act of 2005,

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OFFICE OF RESEARCH AND DEVELOPMENT Cynthia Powell Director 541-967-5803 cynthia.powell@netl.doe.gov Alexandra Hakala Technical Coordinator Unconventional Resources 412-386-5487 alexandra.hakala@netl.doe.gov Natalie Pekney Technical Coordinator Unconventional Resources 412-386-5953 natalie.pekney@netl.doe.gov PARTNERS Carnegie Mellon University Penn State University University of Pittsburgh URS Virginia Tech West Virginia University Analytical chemist working with the inductively coupled plasma

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subsurface Experimental Laboratory Autoclave and Core Flow Test Facilities Description Researchers at the National Energy Technology Laboratory (NETL) study subsurface systems to better characterize and understand gas-fluid-rock and material inter- actions that impact environmental and resource issues related to oil, gas, and CO2 storage development. However, studying the wide variety of subsurface environments related to hydrocarbon and CO2 systems requires costly and technically challenging

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Engineering Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security. Technical advancement for any type of gas turbine generally implies better performance, greater efficiency, and extended component life. From the standpoint of cycle efficiency and durability, this suggests that a continual goal for higher gas turbine- inlet

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Capture CONTACTS David Hopkinson Principal Investigator Technical Portfolio Lead for Carbon Capture 304-285-4360 david.hopkinson@netl.doe.gov David Alman Associate Director for Materials Engineering & Manufacturing 541-967-5885 david.alman@netl.doe.gov RESEARCH PARTNERS Energy Frontiers Research Centers Lawrence Berkeley National Laboratory AECOM Carbon Capture Research and Development Carbon capture and storage from fossil-based power generation is a critical component of realistic

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science & Engineering CONTACTS David Miller Technical Director Carbon Capture Simulation Initiative 412-386-6555 david.miller@netl.doe.gov Madhava Syamlal Senior Fellow Computational Engineering 304-285-4685 madhava.syamlal@netl.doe.gov RESEARCH PARTNERS AECOM Boston University Carnegie Mellon University Lawrence Berkeley National Laboratory Lawrence Livermore National Laboratory Los Alamos National Laboratory Pacific Northwest National Laboratory Princeton University

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL-RIC Geomaterials Research Facilities The National Energy Technology Laboratory (NETL) Research & Innovation Center (RIC) Geomaterials group uses unique facilities to analyze natural and manmade material samples and characterize the geologic framework of natural systems using the following tools: * Petrography * Scanning electron microscopy * X-ray microanalysis * X-ray- and micro-x-ray diffraction * Permeability measurements * Thermogravimetric analysis * Differential scanning

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL Geoimaging Characterization CT Scanners Background Traditional petrographic and core-evaluation techniques typically aim to determine the mineral make-up and internal structure of rock cores and to analyze the properties influencing fluid flow. Often this type of evaluation is destructive because it involves physically sectioning the core to capture details of the sample's internal composition. The National Energy Technology Laboratory's (NETL) geoimaging facility provides a non-destructive

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Risk Assessment Partnership The Need for Quantitative Risk Assessment for Carbon Utilization and Storage Carbon utilization and storage-the injection of carbon dioxide (CO2) into permanent underground and terrestrial storage sites-is an important part of our nation's strategy for managing CO2 emissions. Several pilot- to intermediate-scale carbon storage projects have been performed in the U.S. and across the world. However, some hurdles still exist before carbon storage becomes a

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells The Solid Oxide Fuel Cell (SOFC) Program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust SOFC system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $225 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per 1,000 hours over a 40,000 hour lifetime. The Fuel Cell Team performs fundamental SOFC technology evaluation, enhances

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EDX: NETL's Data Driven Tool for Science-Based Decision Making Data Exchange for Energy Solutions Background and Benefits In 2011, the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) initiated the Energy Data eXchange (EDX), an online collection of capabilities and resources that advance research and customize energy-related needs. EDX was developed and is maintained by NETL's Research & Innovation Center (NETL-RIC) researchers and technical computing teams to

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of Foamed Wellbore Cement Stability Under Deep-Water Conditions Background Foamed cement is a gas-liquid dispersion that is produced when an inert gas, typically nitrogen, is injected into a conventional cement slurry to form microscopic bubbles. Foamed cements are ultralow-density systems typically employed in formations that are unable to support the annular hydrostatic pressure exerted by conventional cement slurries. More recently, the use of foamed cement has expanded into

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geomechanical Impacts of Shale Gas Activities Background The technique of hydraulic fracturing, in which large volumes of fluid are injected at high pressures into low-permeability shale, can improve hydraulic connectivity and enable production of gas. In the past decade, hydraulic fracturing has dramatically increased the domestic production of natural gas due to widespread application in formations nationwide. This rapid increase in hydraulic fracturing activities has also created concern

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer at NETL Carbon capture, quantum mechanical simulations, integrated gasification, and clean power: words like these instill enthusiasm in National Energy Technology Laboratory (NETL) in-house researchers because they describe the future of energy. And, as technology transfer professionals who gather cutting-edge inventions to present a wide energy research portfolio, we find the excitement contagious. Facilities and Capabilities As a federal laboratory, we welcome the

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Figure 1. Predicted spill trajectory 40 days after a hypothetical blowout and the predicted location of beached oil as a result of this hypothetical spill. NETL's Blowout and Spill Occurrence Model (BLOSOM) Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) has created an integrated data and modeling system to support DOE's mission to produce science-based evaluations of engineered and natural systems to ensure sustainable, environmentally responsible

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kelly Rose Principal Investigator Research Scientist 541-967-5883 kelly.rose@netl.doe.gov Jennifer Bauer Geospatial Researcher 541-918-4507 jennifer.bauer@netl.doe.gov Jamie Brown Associate Director 304-285-5428 jamie.brown@netl.doe.gov Grant Bromhal Acting Senior Fellow 304-285-4688 grant.bromhal@netl.doe.gov Cynthia Powell Executive Director 541-967-5803 cynthia.powell@netl.doe.gov GAIA LOCATIONS Albany, Oregon Building 1, Room 315 541-918-4507 Building 28, Room 155 541-967-5964 Morgantown,

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pre-combustion Solvents for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical compo- nent of realistic strategies for arresting the rise in atmospheric CO 2 concentrations, but capturing substantial amounts of CO 2 using current technology would result in a pro- hibitive rise in the cost of producing energy. In high-pressure CO 2 -containing streams, such as those found in coal gasification processes, one well-established approach to removing

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Post-combustion Membranes for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in atmospheric CO 2 concentrations, but capturing substantial amounts of CO 2 using current technology would result in a prohibitive rise in the cost of producing energy. The National Energy Technology Laboratory (NETL) is pursuing a multi-faceted approach, which leverages cutting-edge research facilities,

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kelly Rose Principal Investigator Research Scientist 541-967-5883 kelly.rose@netl.doe.gov Jennifer Bauer Geospatial Researcher 541-918-4507 jennifer.bauer@contr.netl.doe.gov Jamie Brown Associate Director 304-285-5428 jamie.brown@netl.doe.gov Grant Bromhal Acting Senior Fellow 304-285-4688 grant.bromhal@netl.doe.gov Cynthia Powell Executive Director 541-967-5803 cynthia.powell@netl.doe.gov RESEARCH PARTNERS AECOM Oak Ridge Institute for Science and Education (ORISE) Oregon State University

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensors and Control CONTACTS OFFICE OF RESEARCH AND DEVELOPMENT Steven Woodruff Principal Investigator 304-285-4175 steven.woodruff@netl.doe.gov Benjamin Chorpening Research Mechanical Engineer 304-285-4673 benjamin.chorpening@netl.doe.gov Michael Buric Research Scientist/Engineer 304-285-2052 michael.buric@netl.doe.gov George Richards Focus Area Lead 304-285-4458 george.richards@netl.doe.gov Raman Gas Analyzer for Natural Gas and Syngas Applications Goal The goal of this project is to develop

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry and Surface Science CONTACTS OFFICE OF RESEARCH AND DEVELOPMENT Madhava Syamlal Focus Area Lead Computational Science and Engineering 304-285-4685 madhava.syamlal@netl.doe.gov Computational Chemistry Research in Support of Future Energy Technologies Background Development of efficient future technologies for energy production with zero carbon emissions based on the use of fossil fuels or novel renewable resources is highly dependent on solving a large number of individual break-through

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subsurface Experimental Laboratories Autoclave and Core Flow Test Facilities Description Researchers at the National Energy Technology Laboratory (NETL) study subsurface systems to better characterize and understand gas-fluid-rock and material inter- actions that impact environmental and resource issues related to oil, gas, and CO2 storage development. However, studying the wide variety of subsurface environments related to hydrocarbon and CO2 systems requires costly and technically challenging

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The NETL SuperComputer Introduction The National Energy Technology Laboratory (NETL) is home to Joule-one of the world's largest high-performance computers-along with advanced visualization centers serving the organization's research and development needs. Supercomputing provides the foundation of NETL's research efforts on behalf of the Department of Energy, and NETL maintains supercomputing capabilities to effectively support its research to meet DOE's Fossil Energy goals. Supercomputing

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southwestern United States Carbon Sequestration Training Center Background The focus of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2025 and 2035. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO 2 Geological Storage: Coupled Hydro- Chemo-Thermo-Mechanical Phenomena- From Pore-Scale Processes to Macroscale Implications Background The focus of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2025 and 2035. Research conducted to develop these technologies will ensure safe

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Analysis of CO2 Exposed Wells to Predict Long Term Leakage through the Development of an Integrated Neural-Genetic Algorithm Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southwest Regional Partnership Farnsworth Unit EOR Field Project - Development Phase Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO 2 ) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities, and

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O G R A M FAC T S Strategic Center for Natural Gas & Oil CONTACTS Roy Long Offshore Technology Manager Strategic Center for Natural Gas & Oil 281-494-2520 roy.long@netl.doe.gov Kelly Rose Offshore Technical Portfolio Lead Office of Research and Development 541-967-5883 kelly.rose@netl.doe.gov William Fincham Project Manager Natural Gas & Oil Project Management Division 304-285-4268 william.fincham@netl.doe.govv Jared Ciferno Director Strategic Center for Natural Gas & Oil

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geological Sequestration Consortium-Development Phase Illinois Basin - Decatur Project Site Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO 2 ) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities,

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Carbon Sequestration Partnership - Development Phase Large-Scale Field Project Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO 2 ) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities, and

  18. New York Marcellus Shale: Industry boom put on hold

    SciTech Connect (OSTI)

    Mercurio, Angelique

    2012-01-16

    Key catalysts for Marcellus Shale drilling in New York were identified. New York remains the only state in the nation with a legislative moratorium on high-volume hydraulic fracturing, as regulators and state lawmakers work to balance the advantages of potential economic benefits while protecting public drinking water resources and the environment. New York is being particularly careful to work on implementing sufficiently strict regulations to mitigate the environmental impacts Pennsylvania has already seen, such as methane gas releases, fracturing fluid releases, flowback water and brine controls, and total dissolved solids discharges. In addition to economic and environmental lessons learned, the New York Department of Environmental Conservation (DEC) also acknowledges impacts to housing markets, security, and other local issues, and may impose stringent measures to mitigate potential risks to local communities. Despite the moratorium, New York has the opportunity to take advantage of increased capital investment, tax revenue generation, and job creation opportunities by increasing shale gas activity. The combination of economic benefits, industry pressure, and recent technological advances will drive the pursuit of natural gas drilling in New York. We identify four principal catalysts as follows: Catalyst 1: Pressure from Within the State. Although high-volume hydraulic fracturing has become a nationally controversial technology, shale fracturing activity is common in every U.S. state except New York. The regulatory process has delayed potential economic opportunities for state and local economies, as well as many industry stakeholders. In 2010, shale gas production accounted for $18.6 billion in federal royalty and local, state, and federal tax revenues. (1) This is expected to continue to grow substantially. The DEC is under increased pressure to open the state to the same opportunities that Alabama, Arkansas, California, Colorado, Kansas, Louisiana, Montana

  19. ARM - Campaign Instrument - mfrsr-wv1barn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    barn Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : MFRSR Water-Vapor Barnard Algorithm (MFRSR-WV1BARN)...

  20. DOE - Office of Legacy Management -- Morgantown Ordnance Works - WV 03

    Office of Legacy Management (LM)

    Morgantown Ordnance Works - WV 03 FUSRAP Considered Sites Site: Morgantown Ordnance Works (WV.03 ) Regulated by the U.S. Environmental Protection Agency. More information at http://cumulis.epa.gov/supercpad/cursites/csitinfo.cfm?id=0302884&msspp=med Designated Name: Not Designated under FUSRAP Alternate Name: Ordnance Works Disposal Areas Location: Monongalia County, West Virginia Evaluation Year: Not considered for FUSRAP - in another program Site Operations: Industrial Site Disposition:

  1. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    SciTech Connect (OSTI)

    Chapman, Elizabeth C; Capo, Rosemary C.; Stewart, Brian W.; Kirby, Carl S.; Hammack, Richard W.; Schroeder, Karl T.; Edenborn, Harry M.

    2012-03-20

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of 375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (ε{sub Sr}{sup SW} = +13.8 to +41.6, where ε{sub Sr}{sup SW} is the deviation of the {sup 87}Sr/{sup 86}Sr ratio from that of seawater in parts per 10{sup 4}); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  2. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    SciTech Connect (OSTI)

    Elizabeth C. Chapman,† Rosemary C. Capo,† Brian W. Stewart,*,† Carl S. Kirby,‡ Richard W. Hammack,§ Karl T. Schroeder,§ and Harry M. Edenborn

    2012-02-24

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ∼375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (εSr SW = +13.8 to +41.6, where εSr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  3. Appendix PA: Performance Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the Waste Isolation Pilot Plant Appendix PA-2014 Performance Assessment United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Appendix PA Table of Contents PA-1.0 Introduction PA-1.1 Changes since the CRA-2009 PA PA-1.1.1 Replacement of Option D with the ROMPCS PA-1.1.2 Additional Mined Volume in the Repository North End PA-1.1.3 Refinement to the Probability of Encountering Pressurized Brine

  4. If you reside in WASHINGTON, DC - MD -VA- WV your salary will range from:

    National Nuclear Security Administration (NNSA)

    If you are employed in the WASHINGTON, DC Metropolitan Area (D.C., Baltimore, Northern VA, Eastern WV, and Southern PA) your salary will range from: Pay Band Pay Plan(s) Minimum Maximum Developmental EN $49,246 $74,872 01 EK/EJ $34,075 $58,511 02 EK/EJ $51,630 $84,855 03 EK/EJ/EN $74,872 $119,238 04 EK/EJ/EN $105,211 $165,300 05 EK/EJ/EN $148,510 $165,300 If you are employed in OAKLAND/LIVERMORE, CA your salary will range from: Pay Band Pay Plan(s) Minimum Maximum Developmental EN $53,579

  5. MINING PENNSYLVANIA NATIONAL ENERGY TECHNOLOGY LAB - PA POC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MINING PENNSYLVANIA NATIONAL ENERGY TECHNOLOGY LAB - PA POC Larry Sullivan Telephone (412) 386-6115 Email larry.sullivan@netl.doe.gov Support Activities for Oil and Gas Operations 213112 WEST VIRGINIA NATIONAL ENERGY TECHNOLOGY LAB -WV POC Larry Sullivan Telephone (412) 386-6115 Email larry.sullivan@netl.doe.gov Support Activities for Oil and Gas Operations 213112 WYOMING ROCKY MOUNTAIN OILFIELD CENTER POC Jenny Krom Telephone (307) 233-4818 Email jenny.krom@rmotc.doe.gov Support Activities for

  6. DOE - Office of Legacy Management -- The Carborundum Co Inc - WV 02

    Office of Legacy Management (LM)

    - WV 02 FUSRAP Considered Sites Site: THE CARBORUNDUM CO., INC (WV.02 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: AMAX Inc WV.02-1 Location: Wood County , West Virginia WV.02-1 Evaluation Year: 1982 WV.02-1 Site Operations: Produced high-grade Zirconium metal for use in construction of nuclear reactors for the Navy circa late-1950s and 1960s; Conducted small scale Zirconium and Uranium testing in the mid-1970s. WV.02-2 Site Disposition:

  7. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    SciTech Connect (OSTI)

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  8. Rare earth element geochemistry of outcrop and core samples from the Marcellus Shale

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Noack, Clinton W.; Jain, Jinesh C.; Stegmeier, John; Hakala, J. Alexandra; Karamalidis, Athanasios K.

    2015-06-26

    In this paper, we studied the geochemistry of the rare earth elements (REE) in eleven outcrop samples and six, depth-interval samples of a core from the Marcellus Shale. The REE are classically applied analytes for investigating depositional environments and inferring geochemical processes, making them of interest as potential, naturally occurring indicators of fluid sources as well as indicators of geochemical processes in solid waste disposal. However, little is known of the REE occurrence in the Marcellus Shale or its produced waters, and this study represents one of the first, thorough characterizations of the REE in the Marcellus Shale. In thesemore » samples, the abundance of REE and the fractionation of REE profiles were correlated with different mineral components of the shale. Namely, samples with a larger clay component were inferred to have higher absolute concentrations of REE but have less distinctive patterns. Conversely, samples with larger carbonate fractions exhibited a greater degree of fractionation, albeit with lower total abundance. Further study is necessary to determine release mechanisms, as well as REE fate-and-transport, however these results have implications for future brine and solid waste management applications.« less

  9. Rare earth element geochemistry of outcrop and core samples from the Marcellus Shale

    SciTech Connect (OSTI)

    Noack, Clinton W.; Jain, Jinesh C.; Stegmeier, John; Hakala, J. Alexandra; Karamalidis, Athanasios K.

    2015-06-26

    In this paper, we studied the geochemistry of the rare earth elements (REE) in eleven outcrop samples and six, depth-interval samples of a core from the Marcellus Shale. The REE are classically applied analytes for investigating depositional environments and inferring geochemical processes, making them of interest as potential, naturally occurring indicators of fluid sources as well as indicators of geochemical processes in solid waste disposal. However, little is known of the REE occurrence in the Marcellus Shale or its produced waters, and this study represents one of the first, thorough characterizations of the REE in the Marcellus Shale. In these samples, the abundance of REE and the fractionation of REE profiles were correlated with different mineral components of the shale. Namely, samples with a larger clay component were inferred to have higher absolute concentrations of REE but have less distinctive patterns. Conversely, samples with larger carbonate fractions exhibited a greater degree of fractionation, albeit with lower total abundance. Further study is necessary to determine release mechanisms, as well as REE fate-and-transport, however these results have implications for future brine and solid waste management applications.

  10. West Virginia Smart Grid Implementation Plan (WV SGIP) Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    West Virginia Smart Grid Implementation Plan (WV SGIP) Project APERC Report on Assessment of As-Is Grid by Non-Utility Stakeholders Introduction One goal of this grid modernization project is to assess the current status of the electric power grid in West Virginia in order to define the potential to implement smart grid technologies. Thus, an initial task of this project was to define the current state or "As-Is" grid in West Virginia. Financial and time constraints prohibited the

  11. Multi-scale and Integrated Characterization of the Marcellus Shale in the Appalachian Basin: From Microscopes to Mapping

    SciTech Connect (OSTI)

    Crandall, Dustin; Soeder, Daniel J; McDannell, Kalin T.; Mroz, Thomas

    2010-01-01

    Historic data from the Department of Energy Eastern Gas Shale Project (ESGP) were compiled to develop a database of geochemical analyses, well logs, lithological and natural fracture descriptions from oriented core, and reservoir parameters. The nine EGSP wells were located throughout the Appalachian Basin and intercepted the Marcellus Shale from depths of 750 meters (2500 ft) to 2500 meters (8200 ft). A primary goal of this research is to use these existing data to help construct a geologic framework model of the Marcellus Shale across the basin and link rock properties to gas productivity. In addition to the historic data, x-ray computerized tomography (CT) of entire cores with a voxel resolution of 240mm and optical microscopy to quantify mineral and organic volumes was performed. Porosity and permeability measurements in a high resolution, steady-state flow apparatus are also planned. Earth Vision software was utilized to display and perform volumetric calculations on individual wells, small areas with several horizontal wells, and on a regional basis. The results indicate that the lithologic character of the Marcellus Shale changes across the basin. Gas productivity appears to be influenced by the properties of the organic material and the mineral composition of the rock, local and regional structural features, the current state of in-situ stress, and lithologic controls on the geometry of induced fractures during stimulations. The recoverable gas volume from the Marcellus Shale is variable over the vertical stratigraphic section, as well as laterally across the basin. The results from this study are expected to help improve the assessment of the resource, and help optimize the recovery of natural gas.

  12. Quantification of Organic Porosity and Water Accessibility in Marcellus Shale Using Neutron Scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gu, Xin; Mildner, David F. R.; Cole, David R.; Rother, Gernot; Slingerland, Rudy; Brantley, Susan L.

    2016-04-28

    Pores within organic matter (OM) are a significant contributor to the total pore system in gas shales. These pores contribute most of the storage capacity in gas shales. Here we present a novel approach to characterize the OM pore structure (including the porosity, specific surface area, pore size distribution, and water accessibility) in Marcellus shale. By using ultrasmall and small-angle neutron scattering, and by exploiting the contrast matching of the shale matrix with suitable mixtures of deuterated and protonated water, both total and water-accessible porosity were measured on centimeter-sized samples from two boreholes from the nanometer to micrometer scale withmore » good statistical coverage. Samples were also measured after combustion at 450 °C. Analysis of scattering data from these procedures allowed quantification of OM porosity and water accessibility. OM hosts 24–47% of the total porosity for both organic-rich and -poor samples. This porosity occupies as much as 29% of the OM volume. In contrast to the current paradigm in the literature that OM porosity is organophilic and therefore not likely to contain water, our results demonstrate that OM pores with widths >20 nm exhibit the characteristics of water accessibility. In conclusion, our approach reveals the complex structure and wetting behavior of the OM porosity at scales that are hard to interrogate using other techniques.« less

  13. A5 PA Addendum 1

    National Nuclear Security Administration (NNSA)

    Performance Assessment for the Area 5 Radioactive Waste Management Site at the Nevada Test ... Nevada Operations Office NTS Nevada Test Site PA Performance Assessment RWMS ...

  14. DOE - Office of Legacy Management -- Springdale PA - PA 11

    Office of Legacy Management (LM)

    FACT SHEET This fact sheet provides information about the Springdale, Pennsylvania, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management. PA.11-1 ...

  15. PaR-PaR Laboratory Automation Platform

    SciTech Connect (OSTI)

    Linshiz, G; Stawski, N; Poust, S; Bi, CH; Keasling, JD; Hilson, NJ

    2013-05-01

    Labor-intensive multistep biological tasks, such as the construction and cloning of DNA molecules, are prime candidates for laboratory automation. Flexible and biology-friendly operation of robotic equipment is key to its successful integration in biological laboratories, and the efforts required to operate a robot must be much smaller than the alternative manual lab work. To achieve these goals, a simple high-level biology-friendly robot programming language is needed. We have developed and experimentally validated such a language: Programming a Robot (PaR-PaR). The syntax and compiler for the language are based on computer science principles and a deep understanding of biological workflows. PaR-PaR allows researchers to use liquid-handling robots effectively, enabling experiments that would not have been considered previously. After minimal training, a biologist can independently write complicated protocols for a robot within an hour. Adoption of PaR-PaR as a standard cross-platform language would enable hand-written or software-generated robotic protocols to be shared across laboratories.

  16. Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering

    SciTech Connect (OSTI)

    Jin, Lixin; Ryan, Mathur; Rother, Gernot; Cole, David; Bazilevskaya, Ekaterina; Williams, Jennifer; Alex, Carone; Brantley, S. L.

    2013-01-01

    Soils developed on the Oatka Creek member of the Marcellus Formation in Huntingdon, Pennsylvania were analyzed to understand the evolution of black shale matrix porosity and the associated changes in elemental and mineralogical composition during infiltration of water into organic-rich shale. Making the reasonable assumption that soil erosion rates are the same as those measured in a nearby location on a less organic-rich shale, we suggest that soil production rates have on average been faster for this black shale compared to the gray shale in similar climate settings. This difference is attributed to differences in composition: both shales are dominantly quartz, illite, and chlorite, but the Oatka Creek member at this location has more organic matter (1.25 wt.% organic carbon in rock fragments recovered from the bottom of the auger cores and nearby outcrops) and accessory pyrite. During weathering, the extremely low-porosity bedrock slowly disaggregates into shale chips with intergranular pores and fractures. Some of these pores are eitherfilled with organic matter or air-filled but remain unconnected, and thus inaccessible to water. Based on weathering bedrock/soil profiles, disintegration is initiated with oxidation of pyrite and organic matter, which increases the overall porosity and most importantly allows water penetration. Water infiltration exposes fresh surface area and thus promotes dissolution of plagioclase and clays. As these dissolution reactions proceed, the porosity in the deepest shale chips recovered from the soil decrease from 9 to 7% while kaolinite and Fe oxyhydroxides precipitate. Eventually, near the land surface, mineral precipitation is outcompeted by dissolution or particle loss of illite and chlorite and porosity in shale chips increases to 20%. As imaged by computed tomographic analysis, weathering causes i) greater porosity, ii) greater average length of connected pores, and iii) a more branched pore network compared to the unweathered

  17. Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering

    SciTech Connect (OSTI)

    Jin, Lixin; Mathur, Ryan; Rother, Gernot; Cole, David; Bazilevskaya, Ekaterina; Williams, Jennifer; Carone, Alex; Brantley, Susan L

    2013-01-01

    Soils developed on the Oatka Creek member of the Marcellus Formation in Huntingdon, Pennsylvania were analyzed to understand the evolution of black shale matrix porosity and the associated changes in elemental and mineralogical composition during infiltration of water into organic-rich shale. Making the reasonable assumption that soil erosion rates are the same as those measured in a nearby location on a less organic-rich shale, we suggest that soil production rates have on average been faster for this black shale compared to the gray shale in similar climate settings. This difference is attributed to differences in composition: both shales are dominantly quartz, illite, and chlorite, but the Oatka Creek member at this location has more organic matter (1.25 wt% organic carbon in rock fragments recovered from the bottom of the auger cores and nearby outcrops) and accessory pyrite. During weathering, the extremely low-porosity bedrock slowly disaggregates into shale chips with intergranular pores and fractures. Some of these pores are either filled with organic matter or air-filled but remain unconnected, and thus inaccessible to water. Based on weathering bedrock/soil profiles, disintegration is initiated with oxidation of pyrite and organic matter, which increases the overall porosity and most importantly allows water penetration. Water infiltration exposes fresh surface area and thus promotes dissolution of plagioclase and clays. As these dissolution reactions proceed, the porosity in the deepest shale chips recovered from the soil decrease from 9 to 7 % while kaolinite and Fe oxyhydroxides precipitate. Eventually, near the land surface, mineral precipitation is outcompeted by dissolution or particle loss of illite and chlorite and porosity in shale chips increases to 20%. As imaged by computed tomographic analysis, weathering causes i) greater porosity, ii) greater average length of connected pores, and iii) a more branched pore network compared to the

  18. Scoping Study for Demand Respose DFT II Project in Morgantown, WV

    SciTech Connect (OSTI)

    Lu, Shuai; Kintner-Meyer, Michael CW

    2008-06-06

    This scoping study describes the underlying data resources and an analysis tool for a demand response assessment specifically tailored toward the needs of the Modern Grid Initiatives Demonstration Field Test in Phase II in Morgantown, WV. To develop demand response strategies as part of more general distribution automation, automated islanding and feeder reconfiguration schemes, an assessment of the demand response resource potential is required. This report provides the data for the resource assessment for residential customers and describes a tool that allows the analyst to estimate demand response in kW for each hour of the day, by end-use, season, day type (weekday versus weekend) with specific saturation rates of residential appliances valid for the Morgantown, WV area.

  19. Comparative study of microfacies variation in two samples from the Chittenango member, Marcellus shale subgroup, western New York state, USA

    SciTech Connect (OSTI)

    Balulla, Shama Padmanabhan, E.; Over, Jeffrey

    2015-07-22

    This study demonstrates the significant lithologic variations that occur within the two shale samples from the Chittenango member of the Marcellus shale formation from western New York State in terms of mineralogical composition, type of lamination, pyrite occurrences and fossil content using thin section detailed description and field emission Scanning electron microscope (FESEM) with energy dispersive X-Ray Spectrum (EDX). This study is classified samples as laminated clayshale and fossiliferous carbonaceous shale. The most important detrital constituents of these shales are the clay mineral illite and chlorite, quartz, organic matter, carbonate mineral, and pyrite. The laminated clayshale has a lower amount of quartz and carbonate minerals than fossiliferous carbonaceous shale while it has a higher amount of clay minerals (chlorite and illite) and organic matter. FESEM analysis confirms the presence of chlorite and illite. The fossil content in the laminated clayshale is much lower than the fossiliferous carbonaceous shale. This can provide greater insights about variations in the depositional and environmental factors that influenced its deposition. This result can be compiled with the sufficient data to be helpful for designing the horizontal wells and placement of hydraulic fracturing in shale gas exploration and production.

  20. US MidAtl PA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    MidAtl PA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl PA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl PA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl PA Expenditures dollars ELECTRICITY ONLY average per household * Pennsylvania households consume an average of 96 million Btu per year, 8% more than the U.S. average. Pennsylvania residents also

  1. Palmetto Clean Energy (PaCE) Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    PaCE funding comes from the customers of participating utilities who voluntarily choose to support the program through an additional charge on their monthly utility bills. Of the $4, $3.50 goes t...

  2. DOE - Office of Legacy Management -- Aeroprojects Inc - PA 22

    Office of Legacy Management (LM)

    Aeroprojects Inc - PA 22 FUSRAP Considered Sites Site: Aeroprojects, Inc. (PA.22 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Sonabound Ultrasonics PA.22-1 Location: 200-T E. Rosedale Avenue , West Chester , Pennsylvania PA.22-3 Evaluation Year: Circa 1990 PA.22-1 PA.22-2 Site Operations: Research/Development including investigation of the use of ultrasonic energy. PA.22-1 Site Disposition: Eliminated - Conditions at site meet current

  3. DOE - Office of Legacy Management -- Sharples Corp - PA 29

    Office of Legacy Management (LM)

    Sharples Corp - PA 29 FUSRAP Considered Sites Site: SHARPLES CORP. (PA.29 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 201 Spring Garden Street , Philadelphia , Pennsylvania & Philadelphia , Pennsylvania PA.29-2 PA.29-1 Evaluation Year: 1986 PA.29-1 Site Operations: Producer/broker of special chemicals - major MED supplier. PA.29-2 PA.29-3 Site Disposition: Eliminated - No indication that radioactive materials were used

  4. PaTu Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    PaTu Wind Farm Jump to: navigation, search Name PaTu Wind Farm Facility PaTu Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer...

  5. NUG Meeting November 9, 2004 (Pittsburgh, PA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NUG Meeting November 9, 2004 (Pittsburgh, PA) Dates November 9, 2004 Location SuperComputing 2004 (SC2004) David L. Lawrence Convention Center Room 319/320 Pittsburgh, PA Agenda NERSC User Group (NUG) Meeting, Tuesday November 9th 2004 5:30 - 07:00 PM at SC2004 in Pittsburgh, Room 319/320 The NERSC User Group (NUG) is composed of all NERSC users to provide guidance in provision of center services and future development. NUG holds annual meetings, including BoFs at SC meetings, to discuss topics

  6. DOE - Office of Legacy Management -- Philadelphia Navy Yard - PA 08

    Office of Legacy Management (LM)

    Philadelphia Navy Yard - PA 08 Site ID (CSD Index Number): PA.08 / PA.26 Site Name: PHILADELPHIA NAVY YARD Site Summary: This site was mistakenly assigned two numbers during FUSRAP's initial evaluation in the 1980s and 1990s. PA.26 was later removed from the site documents, and only PA.08 was used. Site Link: External Site Link: Alternate Name(s): Naval Boiler and Turbine Lab Alternate Name Documents: Location: Philadelphia , Pennsylvania Location Documents: PA.08-1 Historical Operations

  7. DOE - Office of Legacy Management -- Superior Steel Co - PA 03

    Office of Legacy Management (LM)

    Superior Steel Co - PA 03 FUSRAP Considered Sites Superior Steel, PA Alternate Name(s): Copper Weld, Inc. Superbolt Location: Carnegie, Pennsylvania PA.03-1 Historical Operations: Milled uranium metal for AEC. PA.03-4 Eligibility Determination: Eligible Radiological Survey(s): Assessment Survey PA.03-4 Site Status: Cleanup in progress by U.S. Army Corps of Engineers. USACE Website Long-term Care Requirements: To be determined upon completion. Also see Documents Related to Superior Steel, PA

  8. DOE - Office of Legacy Management -- Try Street Terminal - PA 14

    Office of Legacy Management (LM)

    Try Street Terminal - PA 14 FUSRAP Considered Sites Site: TRY STREET TERMINAL (PA.14 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Try Street Terminal , Pittsburgh , Pennsylvania PA.14-1 Evaluation Year: 1987 PA.14-1 Site Operations: Circa 1943 - facility used to store 20 plus drums of uranium slag. PA.14-1 Site Disposition: Eliminated - Potential for residual radioactive contamination considered remote PA.14-1 Radioactive

  9. DOE - Office of Legacy Management -- Heppanstall Co - PA 19

    Office of Legacy Management (LM)

    further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Tippens Inc. PA.19-1 Location: 4620 Hatfield Street , Pittsburgh , Pennsylvania PA.19-4...

  10. PA Sangli Bundled Wind Project | Open Energy Information

    Open Energy Info (EERE)

    PA Sangli Bundled Wind Project Jump to: navigation, search Name: PA Sangli Bundled Wind Project Place: Maharashtra, India Zip: 416115 Sector: Wind energy Product:...

  11. DOE - Office of Legacy Management -- Carpenter Steel Co - PA...

    Office of Legacy Management (LM)

    Carpenter Steel Co - PA 12 FUSRAP Considered Sites Site: Carpenter Steel Co. (PA.12 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate ...

  12. DOE - Office of Legacy Management -- Jessop Steel Co - PA 17

    Office of Legacy Management (LM)

    Jessop Steel Co - PA 17 FUSRAP Considered Sites Site: JESSOP STEEL CO. (PA.17 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: ...

  13. DOE - Office of Legacy Management -- Beryllium Corp - PA 39

    Office of Legacy Management (LM)

    Beryllium Corp - PA 39 FUSRAP Considered Sites Site: BERYLLIUM CORP. (PA.39 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Brush Beryllium PA.39-1 Location: Reading , Pennsylvania PA.39-1 Evaluation Year: 1987 PA.39-1 Site Operations: Production of Beryllium circa late 1940s - 50s. PA.39-1 Site Disposition: Eliminated - No radioactive material handled at this site, only Beryllium PA.39-1 Radioactive Materials Handled: No PA.39-1 Primary

  14. Technical Insights for Saltstone PA Maintenance

    SciTech Connect (OSTI)

    Flach, G.; Sarkar, S.; Mahadevan, S.; Kosson, D.

    2011-07-20

    The Cementitious Barriers Partnership (CBP) is a collaborative program sponsored by the US DOE Office of Waste Processing. The objective of the CBP is to develop a set of computational tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers and waste forms used in nuclear applications. CBP tools are expected to better characterize and reduce the uncertainties of current methodologies for assessing cementitious barrier performance and increase the consistency and transparency of the assessment process, as the five-year program progresses. In September 2009, entering its second year of funded effort, the CBP sought opportunities to provide near-term tangible support to DOE Performance Assessments (PAs). The Savannah River Saltstone Disposal Facility (SDF) was selected for the initial PA support effort because (1) cementitious waste forms and barriers play a prominent role in the performance of the facility, (2) certain important long-term behaviors of cementitious materials composing the facility are uncertain, (3) review of the SDF PA by external stakeholders is ongoing, and (4) the DOE contractor responsible for the SDF PA is open to receiving technical assistance from the CBP. A review of the current (SRR Closure & Waste Disposal Authority 2009) and prior Saltstone PAs (e.g., Cook et al. 2005) suggested five potential opportunities for improving predictions. The candidate topics considered were (1) concrete degradation from external sulfate attack, (2) impact of atmospheric exposure to concrete and grout before closure, such as accelerated slag and Tc-99 oxidation, (3) mechanistic prediction of geochemical conditions, (4) concrete degradation from rebar corrosion due to carbonation, and (5) early age cracking from drying and/or thermal shrinkage. The candidate topics were down-selected considering the feasibility of addressing each issue within approximately six months, and

  15. DOE - Office of Legacy Management -- Koppers Co Inc - PA 25

    Office of Legacy Management (LM)

    Koppers Co Inc - PA 25 FUSRAP Considered Sites Site: KOPPERS CO., INC. (PA.25 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Pittsburgh , Pennsylvania PA.25-1 Evaluation Year: 1987 PA.25-2 Site Operations: Conducted pilot-scale studies on the commercial production of UF4 and UF6. PA.25-1 Site Disposition: Eliminated - No Authority - Facility was licensed to handle nuclear materials PA.25-2 PA.25-3 Radioactive Materials Handled:

  16. DOE - Office of Legacy Management -- Catalytic Co - PA 40

    Office of Legacy Management (LM)

    Catalytic Co - PA 40 FUSRAP Considered Sites Site: Catalytic Co. (PA.40 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Philadelphia , Pennsylvania PA.40-1 Evaluation Year: 1991 PA.40-1 Site Operations: Prime contractor for construction of the Fernald facility. Records indicate one time shipment of a very small quantity (4 lbs) of uranium metal to this site. PA.40-1 Site Disposition: Eliminated - Construction contractor -

  17. DOE - Office of Legacy Management -- Foote Mineral Co - PA 27

    Office of Legacy Management (LM)

    Foote Mineral Co - PA 27 FUSRAP Considered Sites Site: Foote Mineral Co. (PA.27 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Exton , Pennsylvania PA.27-1 Evaluation Year: 1987 PA.27-1 Site Operations: Processed rare earth, principally zirconium and monazite sand was processed on a pilot-plant scale. PA.27-2 Site Disposition: Eliminated - Limited quantity of material handled - Potential for contamination considered remote

  18. DOE - Office of Legacy Management -- Heppenstall Co - PA 19

    Office of Legacy Management (LM)

    Heppenstall Co - PA 19 Site ID (CSD Index Number): PA.19 Site Name: Heppenstall Co. Site Summary: Site Link: External Site Link: Alternate Name(s): Tippens Inc. Alternate Name Documents: PA.19-1 Location: 4620 Hatfield Street , Pittsburgh , Pennsylvania Location Documents: PA.19-4 Historical Operations (describe contaminants): Forged approximately 100,000 pounds of uranium during a six month period in 1955. Historical Operations Documents: PA.19-1 Eligibility Determination: Eliminated -

  19. DOE - Office of Legacy Management -- Shippingport Atomic Power Plant - PA

    Office of Legacy Management (LM)

    13 Shippingport Atomic Power Plant - PA 13 FUSRAP Considered Sites Site: SHIPPINGPORT ATOMIC POWER PLANT (PA.13 ) Eliminated from further consideration under FUSRAP. Designated Name: Not Designated Alternate Name: Duquesne Light Company PA.13-1 Location: 25 miles west of Pittsburgh in Beaver County , Shippingport , Pennsylvania PA.13-2 Evaluation Year: circa 1987 PA.13-3 Site Operations: First commercially operated nuclear power reactor. Joint project (Federal Government an Duquesne Light

  20. DOE - Office of Legacy Management -- Summerville Tube Co - PA 24

    Office of Legacy Management (LM)

    Summerville Tube Co - PA 24 FUSRAP Considered Sites Site: SUMMERVILLE TUBE CO. (PA.24) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Bridgeport , Pennsylvania PA.24-1 Evaluation Year: 1987 PA.24-1 Site Operations: Metal fabrication research and development on uranium metal in the early 1940s - Cold drawing of tuballoy aluminum sheathing. PA.24-1 Site Disposition: Eliminated - Potential for residual radioactive contamination

  1. DOE-RL FOIA/PA Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2/03 FRI 10:02 FAX 1 509 376 9704 DOE-RL FOIA/PA Office [41002 .,UU".. ...,. '.1..1 Department of Energy .Rlchland Operations Office P.O. Box 550 Richland, Washington 993.52 APR. 4 2fJOa ( 03~PRO.O389 Mr. D. B. Van Leuven, President and Chief Executive Officer Fluor Hanford, Inc. Richland, Washington 993~2 DearMr; Van Leuven: CONTRACT NO. DB-ACO6-96RL13200 -REDUCTION IN LONG-TERM LIABll..ITIES The U.S. Department of Energy (DOE), Richland Operations Office (RL). is C1UTCntly reviewing the

  2. PaSol Italia SpA | Open Energy Information

    Open Energy Info (EERE)

    Name: PaSol Italia SpA Place: Varallo Pombia, Italy Zip: 28040 Sector: Solar Product: PA.SOL was formed by local private investors in order to initiate local PV module...

  3. Meeting Summary for HTF PA Scoping | Department of Energy

    Office of Environmental Management (EM)

    for HTF PA Scoping Meeting Summary for HTF PA Scoping Meeting Notes for the Savannah River Site H-Area Tank Farm Performance Assessment Scoping Meeting PDF icon Savannah River Site...

  4. DOE - Office of Legacy Management -- Frankford Arsenal - PA 21

    Office of Legacy Management (LM)

    DOD PA.21-2 Also see Documents Related to Frankford Arsenal PA.21-1 - AEC Memorandum; Smith to Hughes; Subject: Shipment of Uranium Metal to Frankfort Arsenal; June 23, 1952 ...

  5. DOE - Office of Legacy Management -- Bettis Atomic Power Laboratories - PA

    Office of Legacy Management (LM)

    44 Bettis Atomic Power Laboratories - PA 44 FUSRAP Considered Sites Site: Bettis Atomic Power Laboratories (PA.44 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Allegheny County , West Mifflin , Pennsylvania PA.44-1 Evaluation Year: Circa 1987 PA.44-2 Site Operations: Conducted activities directed toward the design, development, testing, and operational follow of nuclear reactor propulsion plants for Naval surface and

  6. Analysis of natural gases, AL, AR, FL, GA, IL, IN, IA, KY, LA, MD, MI, MS, MO, NJ, NY, NC, OH, PA, TN, VA, and WV; 1951-1991 (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The U.S. Bureau of Mines diskette contains analysis and related source data for 2,357 natural gas samples collected from miscellaneous states, which include the following states: Alabama, Arkansas (except Arkoma Basin), Florida, Georgia, Illinois, Indiana, Iowa, Kentucky, Louisiana, Maryland, Michigan, Mississippi, Missouri, New Jersey, New York, North Carolina, Ohio, Pennsylvania, Tennessee, Virginia, and West Virginia. All samples were obtained and analyzed as part of the Bureau's investigations of occurrences of helium in natural gases of countries with free market economies. The survey has been conducted since 1917. The analysis contained on the diskette contain the full range of component analysis data. Five files are on the diskette: READ.ME, MISC.TXT, MISC.DBF, USHEANAL.DBF, and BASINCDE.TXT.

  7. Demonstration Assessment of LED Roadway Lighting: Philadelphia, PA

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Demonstration Assessment of LED Roadway Lighting: Philadelphia, PA Citation Details In-Document Search Title: Demonstration Assessment of LED Roadway Lighting: Philadelphia, PA For this demonstration assessment, 10 different groups of LED luminaires were installed at three sites in Philadelphia, PA. Each of the three sites represented a different set of conditions, most importantly with regard to the incumbent HPS luminaires, which were nominally 100 W,

  8. DOE - Office of Legacy Management -- Canonsburg Industrial Park - PA 05

    Office of Legacy Management (LM)

    Canonsburg Industrial Park - PA 05 Site ID (CSD Index Number): PA.05 Site Name: Canonsburg Industrial Park Site Summary: Site Link: Canonsburg, Pennsylvania, Disposal Site External Site Link: Alternate Name(s): Alternate Name Documents: Location: Location Documents: Historical Operations (describe contaminants): Historical Operations Documents: Eligibility Determination: Eligibility Determination Documents: Radiological Surveys Conducted (List of different Rad Surveys): Radiological Surveys

  9. Palmco Power PA, LLC (Pennsylvania) | Open Energy Information

    Open Energy Info (EERE)

    Pennsylvania) Jump to: navigation, search Name: Palmco Power PA, LLC Place: Pennsylvania Phone Number: (877) 726-5862 Website: www.palmcoenergy.com Outage Hotline: (877) 726-5862...

  10. DOE - Office of Legacy Management -- Aliquippa - PA 07

    Office of Legacy Management (LM)

    This site is managed by the U.S. Department of Energy Office of Legacy Management. PA.07-1 - DOE Memorandum; Coffman to LaGrone; Designation of Universal Cyclops, Inc., Titusville ...

  11. Hanford Site Waste Management Area C Performance Assessment (PA) Current

    Office of Environmental Management (EM)

    Status | Department of Energy Assessment (PA) Current Status Hanford Site Waste Management Area C Performance Assessment (PA) Current Status Marcel Bergeron Washignton River Protection Solutions Alaa Aly INTERA Performance and Risk Assessment Community of Practice Technical Exchange December 11-12, 2014 To view all the P&RA CoP 2014 Technical Exchange Meeting videos click here. Video Presentation - Part 1 Video Presentation - Part 2 Hanford Site Waste Management Area C Performance

  12. DOE - Office of Legacy Management -- Pennsylvania Disposal Site - PA 43

    Office of Legacy Management (LM)

    Disposal Site - PA 43 FUSRAP Considered Sites Site: Pennsylvania Disposal Site (PA.43) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is one of a group of 77 FUSRAP considered sites for which few, if any records are available in their respective site files to provide an historical account of past operations and their relationship, if

  13. DOE - Office of Legacy Management -- Pennsylvania Ordnance Works - PA 32

    Office of Legacy Management (LM)

    Ordnance Works - PA 32 FUSRAP Considered Sites Site: Pennsylvania Ordnance Works (PA.32 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is one of a group of 77 FUSRAP considered sites for which few, if any records are available in their respective site files to provide an historical account of past operations and their relationship,

  14. DOE - Office of Legacy Management -- U S Bureau of Mines - PA 36

    Office of Legacy Management (LM)

    PA 36 FUSRAP Considered Sites Site: U. S. BUREAU OF MINES (PA.36) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Bruceton , Pennsylvania PA.36-1 Evaluation Year: 1987 PA.36-2 Site Operations: Conducted studied on explosiveness of Uranium, Thorium and Beryllium. PA.36-1 PA.36-3 Site Disposition: Eliminated - Small amounts of radioactive materials used - Potential for residual radioactive contamination considered remote PA.36-2

  15. DOE - Office of Legacy Management -- Shallow Land Disposal Area - PA 45

    Office of Legacy Management (LM)

    Shallow Land Disposal Area - PA 45 FUSRAP Considered Sites Shallow Land Disposal Area, PA Alternate Name(s): Parks Township Shallow Land Disposal Area Nuclear Materials and Equipment Corporation (NUMEC) Babcock and Wilcox Parks Facilities PA.45-1 PA.45-5 PA.45-6 Location: PA Route 66 and Kissimere Road, Parks Township, Apollo, Pennsylvania PA.45-1 Historical Operations: Fabricated nuclear fuel under an NRC license as an extension of NUMEC Apollo production facilities. PA.45-1 PA.45-5 Eligibility

  16. Morphological studies on block copolymer modified PA 6 blends

    SciTech Connect (OSTI)

    Poindl, M. E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C. E-mail: christian.bonten@ikt.uni-stuttgart.de

    2014-05-15

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  17. Appendix SCR: Feature, Event, and Process Screening for PA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SCR-2014 Feature, Event, and Process Screening for PA United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Appendix SCR-2014 Feature, Event, and Process Screening for PA Table of Contents SCR-1.0 Introduction SCR-2.0 Basis for FEPs Screening Process SCR-2.1 Requirement for FEPs SCR-2.2 FEPs List Development for the CCA SCR-2.3 Criteria for Screening of FEPs and Categorization of Retained FEPs

  18. DOE - Office of Legacy Management -- Babcock and Wilcox Co - PA 18

    Office of Legacy Management (LM)

    Babcock and Wilcox Co - PA 18 FUSRAP Considered Sites Site: Babcock and Wilcox Co (PA 18) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Tubular Products Division PA.18-1 Location: Beaver Falls , Pennsylvania PA.18-1 Evaluation Year: 1990 PA.18-1 Site Operations: Performed development work to pierce uranium billets for extrusion to tubes. No indication that the piercing operation was conducted. PA.18-1 Site Disposition: Eliminated - No

  19. DOE - Office of Legacy Management -- Bartol Research Foundation - PA 0-02

    Office of Legacy Management (LM)

    Bartol Research Foundation - PA 0-02 FUSRAP Considered Sites Site: Bartol Research Foundation (PA 0-02) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: The Franklin Institute PA.0-02-1 Location: Swathmore , Pennsylvania PA.0-02-1 Evaluation Year: 1987 PA.0-02-1 Site Operations: Research organization. Possibly performed radiation monitoring and possibly supplied monitoring equipment to Monsanto Chemical Company. PA.0-02-1 Site Disposition:

  20. DOE - Office of Legacy Management -- Curtiss-Wright Corp - PA 37

    Office of Legacy Management (LM)

    - PA 37 FUSRAP Considered Sites Site: Curtiss-Wright Corp. ( PA.37 ) Eliminated from further consideration under FUSRAP - Referred to the Pennsylvania Department of Environmental Resources, Bureau of Radiation Protection Designated Name: Not Designated Alternate Name: Quehanna Site Quehanna Radioisotopes Pilot Plant Radiation Process Center PA.37-1 Location: Northwest Clearfield County , Quehanna , Pennsylvania PA.37-2 PA.37-3 Evaluation Year: Circa 1990 PA.37-1 Site Operations: 1955-1960

  1. DOE - Office of Legacy Management -- Landis Machine Tool Co - PA 34

    Office of Legacy Management (LM)

    Landis Machine Tool Co - PA 34 FUSRAP Considered Sites Site: LANDIS MACHINE TOOL CO. (PA.34 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Teledyne Landis Machine PA.34-1 Location: Waynesboro , Pennsylvania PA.34-2 Evaluation Year: 1991 PA.34-1 Site Operations: Manufactured metal fabrication equipment for machining uranium metal slugs. PA.34-1 Site Disposition: Eliminated - Limited scope of activities performed quantities of radioactive

  2. DOE - Office of Legacy Management -- Roberts and Manders Corp - PA 28

    Office of Legacy Management (LM)

    Roberts and Manders Corp - PA 28 FUSRAP Considered Sites Site: ROBERTS AND MANDERS CORP. (PA.28 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Hatboro , Pennsylvania PA.28-1 Evaluation Year: 1987 PA.28-2 Site Operations: Research/Development operation. Company was considered a candidate for work with beryllium metal - but rejected the opportunity. PA.28-2 PA.28-3 Site Disposition: Eliminated - No indication that radioactive

  3. DOE - Office of Legacy Management -- Rohm and Hass Co - PA 02

    Office of Legacy Management (LM)

    Rohm and Hass Co - PA 02 FUSRAP Considered Sites Site: ROHM & HASS CO. (PA.02 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 5000 Richmond Street , Philadelphia , Pennsylvania PA.02-1 Evaluation Year: 1985 PA.02-2 Site Operations: Research and development on uranium recovery from carbonate leach liquors in the mid-1950s. PA.02-3 Site Disposition: Eliminated - Radiation levels below criteria PA.02-4 Radioactive Materials Handled:

  4. WC_1992_002_CLASS_WAIVER_of_the_Government_US_and_Foreign_Pa...

    Energy Savers [EERE]

    2002CLASSWAIVERoftheGovernmentUSandForeignPa.pdf WC1992002CLASSWAIVERoftheGovernmentUSandForeignPa.pdf WC1992002CLASSWAIVERoftheGovernmentUSandForeig...

  5. DOE - Office of Legacy Management -- Meili and Worthington - PA 0-04

    Office of Legacy Management (LM)

    Meili and Worthington - PA 0-04 FUSRAP Considered Sites Site: MEILI & WORTHINGTON (PA.0-04 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Hatboro , Pennsylvania PA.0-04-1 PA.0-04-2 Evaluation Year: 1987 PA.0-04-1 Site Operations: Manufacturing facility. PA.0-04-1 Site Disposition: Eliminated - No indication radioactive material was used on this site PA.0-04-1 Radioactive Materials Handled: None Indicated PA.0-04-1 Primary

  6. DOE - Office of Legacy Management -- Aluminum Co of America - PA 23

    Office of Legacy Management (LM)

    PA 23 FUSRAP Considered Sites Site: Aluminum Company of America (ALCOA) ( PA.23 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: ALCOA Research Laboratory ALCOA New Kensington Works PA.23-3 PA.23-4 Location: 600 Freeport Road and Pine and Ninth Streets , New Kensington , Pennsylvania PA.23-1 PA.23-4 Evaluation Year: Circa 1993 PA.23-1 Site Operations: Research/Development and Production activities in support of the MED uranium slug canning and

  7. DOE - Office of Legacy Management -- Palmerton Ore Buying Site - PA 33

    Office of Legacy Management (LM)

    Palmerton Ore Buying Site - PA 33 FUSRAP Considered Sites Site: PALMERTON ORE BUYING SITE (PA.33) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: New Jersey Zinc Company PA.33-1 Location: Palmerton , Pennsylvania PA.33-2 Evaluation Year: 1994 PA.33-3 Site Operations: Mid-1950s - AEC leased the New Jersey Zinc Company property and established a uranium ore stockpile on the property in the vicinity of Palmerton, PA. PA.33-4 Site Disposition:

  8. Demonstration Assessment of LED Roadway Lighting: Philadelphia, PA

    SciTech Connect (OSTI)

    Royer, Michael P.; Tuenge, Jason R.; Poplawski, Michael E.

    2012-09-01

    For this demonstration assessment, 10 different groups of LED luminaires were installed at three sites in Philadelphia, PA. Each of the three sites represented a different set of conditions, most importantly with regard to the incumbent HPS luminaires, which were nominally 100 W, 150 W, and 250 W. The performance of each product was evaluated based on manufacturer data, illuminance calculations, field measurements of illuminance, and the subjective impressions of both regular and expert observers.

  9. QER Public Meeting in Pittsburgh, PA: Natural Gas: Transmission, Storage

    Broader source: Energy.gov (indexed) [DOE]

    and Distribution | Department of Energy 21, 2014 - 10:00 A.M. EDT Rashid Auditorium Hillman Center Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213 Parking is available for attendees in Carnegie Mellon University's East Campus Garage, accessible using the entrance at the intersection of Forbes Avenue and Devon Street. For additional information about visiting Carnegie Mellon University's campus, Click Here Meeting Information Click here to comment on the QER Public Meeting,

  10. Privacy Act (PA) of 1974 | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Privacy Act (PA) of 1974 The purpose of the Privacy Act of 1974 (Act), Title 5, United States Code, Section 552a, is to balance the government's need to maintain information about individuals with the rights of individuals to be protected against unwarranted invasions of their privacy stemming from federal agencies' collection, maintenance, use, and disclosure of personal information about them. Therefore, unlike the Freedom of Information Act, the Act is not a disclosure Act and is

  11. Designation Survey - Palmerton, Pa. Ore Storage Site William Bibb

    Office of Legacy Management (LM)

    Designation Survey - Palmerton, Pa. Ore Storage Site William Bibb Oak Ridge Operations Office Based on the information furnished in Aerospace's Review of the.subject site (Attachment 1) and the ORKL/RASA (Attachment 2), it Is requested that designation survey of the Palmerton Ore Storage Pennsylvania. The survey should be detailed to and subsurface data to make up for the lack of the previous AEC surveys and in keeping with ORNL/RASA group should furnish a draft survey approval prior to

  12. DOE - Office of Legacy Management -- University of Pennsylvania - PA 0-06

    Office of Legacy Management (LM)

    Pennsylvania - PA 0-06 FUSRAP Considered Sites Site: UNIVERSITY OF PENNSYLVANIA (PA.0-06 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Philadelphia , Pennsylvania PA.0-06-1 Evaluation Year: 1987 PA.0-06-1 Site Operations: Research activities involving small quantities of radioactive materials in a controlled environment. PA.0-06-1 Site Disposition: Eliminated - Potential for residual radioactive contamination considered remote

  13. DOE - Office of Legacy Management -- University of Pittsburgh - PA 0-07

    Office of Legacy Management (LM)

    Pittsburgh - PA 0-07 FUSRAP Considered Sites Site: UNIVERSITY OF PITTSBURGH (PA.0-07) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Pittsburgh , Pennsylvania PA.0-07-1 Evaluation Year: 1987 PA.0-07-1 Site Operations: Research activities involving small quantities of radioactive materials in a controlled environment. PA.0-07-1 Site Disposition: Eliminated - Potential for residual radioactive contamination considered remote

  14. DOE - Office of Legacy Management -- Westinghouse Atomic Power Div - PA 16

    Office of Legacy Management (LM)

    Power Div - PA 16 FUSRAP Considered Sites Site: WESTINGHOUSE ATOMIC POWER DIV. (PA.16 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Route 30 (Forrest Hills) , Pittsburgh , Pennsylvania PA.16-1 Evaluation Year: 1985 PA.16-1 Site Operations: Processed uranium metal for research and development and pilot-scale production of uranium oxide fuel elements. Prepared uranium metal for Enrico Fermi's Stagg Field experiment. PA.16-1 Site

  15. DOE - Office of Legacy Management -- Paul and Beekman - PA 0-05

    Office of Legacy Management (LM)

    Paul and Beekman - PA 0-05 FUSRAP Considered Sites Site: PAUL AND BEEKMAN (PA.0-05) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Philadelphia , Pennsylvania PA.0-05-1 Evaluation Year: 1987 PA.0-05-1 Site Operations: Produced aluminum cans for AEC slug development program. PA.0-05-1 Site Disposition: Eliminated - No indication radioactive material was used at the site PA.0-05-1 Radioactive Materials Handled: None Indicated

  16. State College Area High School From State College, PA Wins DOE...

    Office of Environmental Management (EM)

    College Area High School From State College, PA Wins DOE's National Science Bowl State College Area High School From State College, PA Wins DOE's National Science Bowl May 1, ...

  17. DOE - Office of Legacy Management -- Vanadium Corp of America - PA 15

    Office of Legacy Management (LM)

    Vanadium Corp of America - PA 15 Site ID (CSD Index Number): PA.15 Site Name: Vanadium Corp. of America Site Summary: Site Link: http://www.lm.doe.gov/canonsburg/Sites.aspx External Site Link: Alternate Name(s): UMTRAP Vicinity Property No. CA-401 Vanadium Corp of America Alternate Name Documents: PA.15-5 Location: Mayer Street - Collier Township , Bridgeville , Pennsylvania Location Documents: PA.15-1 Historical Operations (describe contaminants): Faclility used to grind pitchblende ore during

  18. EERE PROJECT MANAGEMENT CENTER Nl!PA DFTFnIINATION RECIPIENT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Il.II.': , u.s. DEPARTMENT OFFNERGY EERE PROJECT MANAGEMENT CENTER NlPA DFTFnIINATION ... publication, and distribution: and classroom training and informational programs), ...

  19. Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD

    U.S. Energy Information Administration (EIA) Indexed Site

    tight oil plays: production and proved reserves, 2013-14 million barrels 2013 2013 Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD 270 4,844 387 5,972 1,128 Western Gulf Eagle Ford TX 351 4,177 497 5,172 995 Permian Bone Spring, Wolfcamp NM, TX 21 335 53 722 387 Denver-Julesberg Niobrara CO, KS, NE, WY 2 17 42 512 495 Appalachian Marcellus* PA, WV 7 89 13 232 143 Fort Worth Barnett TX 9 58 9 47 -11 Sub-total 660 9,520 1,001 12,657 3,137 Other tight oil 41 523 56 708 185 U.S.

  20. Biofuels Issues and Trends - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    tight oil plays: production and proved reserves, 2013-14 million barrels 2013 2013 Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD 270 4,844 387 5,972 1,128 Western Gulf Eagle Ford TX 351 4,177 497 5,172 995 Permian Bone Spring, Wolfcamp NM, TX 21 335 53 722 387 Denver-Julesberg Niobrara CO, KS, NE, WY 2 17 42 512 495 Appalachian Marcellus* PA, WV 7 89 13 232 143 Fort Worth Barnett TX 9 58 9 47 -11 Sub-total 660 9,520 1,001 12,657 3,137 Other tight oil 41 523 56 708 185 U.S.

  1. Vehicle Technologies Office Merit Review 2016: BatPaC Model Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy BatPaC Model Development Vehicle Technologies Office Merit Review 2016: BatPaC Model Development Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries es228_ahmed_2016_o_web.pdf (1.17 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: BatPaC Model Development Vehicle Technologies Office Merit

  2. Vehicle Technologies Office Merit Review 2015: BatPaC Model Development

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about BatPaC model...

  3. 01 Team Black_Presentation _LANL?s PaScalBB IO.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    multiple 10-Gigabit Ethernet bonding Small-scale PaScalBB test bed and conduct a sequence of IO node performance tests. Discovery of enhanced IO node network...

  4. File:USDA-CE-Production-GIFmaps-PA.pdf | Open Energy Information

    Open Energy Info (EERE)

    PA.pdf Jump to: navigation, search File File history File usage Pennsylvania Ethanol Plant Locations Size of this preview: 776 600 pixels. Full resolution (1,650 1,275...

  5. DOE - Office of Legacy Management -- Penn Central Transportation Co - PA 06

    Office of Legacy Management (LM)

    Central Transportation Co - PA 06 FUSRAP Considered Sites Site: Penn Central Transportation Co. (PA.06) Licensed to DOE for long-term custody and managed by the Office of Legacy Management. Designated Name: Burrell, Pennsylvania, Disposal Site Alternate Name: Penn Central Transportation Co. Location: Blairsville, Pennsylvania Evaluation Year: Site Operations: Site Disposition: Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I site. Radioactive Materials Handled: Primary Radioactive

  6. State College Area High School From State College, PA Wins DOE's National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Bowl® | Department of Energy College Area High School From State College, PA Wins DOE's National Science Bowl® State College Area High School From State College, PA Wins DOE's National Science Bowl® May 1, 2006 - 10:34am Addthis WASHINGTON , DC - State College Area High School from State College, Pennsylvania, today won the Department of Energy's (DOE) National Science Bowl®. Teams representing 65 schools from across the United States competed in this "Science Jeopardy"

  7. Graphene oxide-silica nanohybrids as fillers for PA6 based nanocomposites

    SciTech Connect (OSTI)

    Maio, A.; Fucarino, R.; Khatibi, R.; Botta, L.; Scaffaro, R.; Rosselli, S.; Bruno, M.

    2014-05-15

    Graphene oxide (GO) was prepared by oxidation of graphite flakes by a mixture of H{sub 2}SO{sub 4}/H{sub 3}PO{sub 4} and KMnO{sub 4} based on Marcano's method. Two different masterbatches containing GO (33.3%) and polyamide-6 (PA6) (66.7%) were prepared both via solvent casting in formic acid and by melt mixing in a mini-extruder (Haake). The two masterbatches were then used to prepare PA6-based nanocomposites with a content of 2% in GO. For comparison, a nanocomposite by direct mixing of PA6 and GO (2%) and PA6/graphite nanocomposites were prepared, too. The oxidation of graphite into GO was assessed by X-ray diffraction (XRD), Micro-Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) analyses. All these techniques demonstrated the effectiveness of the graphite modification, since the results put into evidence that, after the acid treatment, interlayer distance, oxygen content and defects increased. SEM micrographs carried out on the nanocomposites, showed GO layers totally surrounded by polyamide-6, this feature is likely due to the strong interaction between the hydrophilic moieties located both on GO and on PA6. On the contrary, no interactions were observed when graphite was used as filler. Mechanical characterization, carried out by tensile and dynamic-mechanical tests, marked an improvement of the mechanical properties observed. Photoluminescence and EPR measurements were carried out onto nanoparticles and nanocomposites to study the nature of the interactions and to assess the possibility to use this class of materials as semiconductors or optical sensors.

  8. Project Plan 7930 Cell G PaR Remote Handling System Replacement

    SciTech Connect (OSTI)

    Kinney, Kathryn A

    2009-10-01

    For over 40 years the US Department of Energy (DOE) and its predecessors have made Californium-252 ({sup 252}Cf) available for a wide range of industries including medical, nuclear fuels, mining, military and national security. The Radiochemical Engineering Development Center (REDC) located within the Oak Ridge National Laboratory (ORNL) processes irradiated production targets from the High Flux Isotope Reactor (HFIR). Operations in Building 7930, Cell G provide over 70% of the world's demand for {sup 252}Cf. Building 7930 was constructed and equipped in the mid-1960s. Current operations for {sup 252}Cf processing in Building 7930, Cell G require use of through-the-wall manipulators and the PaR Remote Handling System. Maintenance and repairs for the manipulators is readily accomplished by removal of the manipulator and relocation to a repair shop where hands-on work can be performed in glove boxes. Contamination inside cell G does not currently allow manned entry and no provisions were created for a maintenance area inside the cell. There has been no maintenance of the PaR system or upgrades, leaving operations vulnerable should the system have a catastrophic failure. The Cell G PaR system is currently being operated in a run to failure mode. As the manipulator is now 40+ years old there is significant risk in this method of operation. In 2006 an assessment was completed that resulted in recommendations for replacing the manipulator operator control and power centers which are used to control and power the PaR manipulator in Cell G. In mid-2008 the chain for the bridge drive failed and subsequent examinations indicated several damaged links (see Figure 1). To continue operations the PaR manipulator arm is being used to push and pull the bridge as a workaround. A retrieval tool was fabricated, tested and staged inside Cell G that will allow positioning of the bridge and manipulator arm for removal from the cell should the PaR system completely fail. A fully

  9. Oil-shale utilization at Morgantown, WV

    SciTech Connect (OSTI)

    Shang, J.Y.; Notestein, J.E.; Mei, J.S.; Romanosky, R.R.; King, J.A.; Zeng, L.W.

    1982-01-01

    Fully aware of the nation's need to develop high-risk and long-term research in eastern oil-shale and low-grade oil-shale utilization in general, the US DOE/METC initiated an eastern oil-shale characterization program. In less than 3 months, METC produced shale oil from a selected eastern-US oil shale with a Fischer assay of 8.0 gallons/ton. In view of the relatively low oil yield from this particular oil shale, efforts were directed to determine the process conditions which give the highest oil yield. A 2-inch-diameter electrically heated fluidized-bed retort was constructed, and Celina oil shale from Tennessee was selected to be used as a representative eastern oil shale. After more than 50 runs, the retorting data were analyzed and reviewed and the best oil-yield operating condition was determined. In addition, while conducting the oil-shale retorting experiments, a number of technical problems were identified, addressed, and overcome. Owing to the inherent high rates of heat and mass transfers inside the fluidized bed, the fluidized-bed combustor and retorting appear to be a desirable process technology for an effective and efficient means for oil-shale utilization. The fluidized-bed operation is a time-tested, process-proven, high-throughput, solid-processing operation which may contribute to the efficient utilization of oil-shale energy.

  10. Determination of the structure of the X(3872) in anti pA collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Larionov, A. B.; Strikman, M.; Bleicher, M.

    2015-07-22

    The structure of the X(3872) meson is unknown. Different competing models of the cc exotic state X(3872) exist, including the possibilities that this state is either a mesonic molecule with dominating D0D*0 + c.c. composition, a ccqq tetraquark, or a cc-gluon hybrid state. It is expected that the X(3872) state is rather strongly coupled to the pp channel and, therefore, can be produced in pp and pA collisions at PANDA. We propose to test the hypothetical molecular structure of X(3872) by studying the D or D* source stripping reactions on a nuclear residue.

  11. 18 MILES NORTH OF PHlLADEl.PHlA HATBORO, PA. August

    Office of Legacy Management (LM)

    8 MILES NORTH OF PHlLADEl.PHlA HATBORO, PA. August 27, 1948 ! ! Frank Giaccio' Commission / I This follows my letter of August ZOth, in which I promised to advise you of our thoughts concerning beryllium, after I had completed a series of con- tacts with both.Government and private,grou?s and had an opportunity to evaluate the possibilities of using our process from the point of view of industrial research. By this, I meanthe possibility of the research leading into substantial production of

  12. Oxidation of zirconium alloys in 2.5 kPa water vapor for tritium readiness.

    SciTech Connect (OSTI)

    Mills, Bernice E.

    2007-11-01

    A more reactive liner material is needed for use as liner and cruciform material in tritium producing burnable absorber rods (TPBAR) in commercial light water nuclear reactors (CLWR). The function of these components is to convert any water that is released from the Li-6 enriched lithium aluminate breeder material to oxide and hydrogen that can be gettered, thus minimizing the permeation of tritium into the reactor coolant. Fourteen zirconium alloys were exposed to 2.5 kPa water vapor in a helium stream at 300 C over a period of up to 35 days. Experimental alloys with aluminum, yttrium, vanadium, titanium, and scandium, some of which also included ternaries with nickel, were included along with a high nitrogen impurity alloy and the commercial alloy Zircaloy-2. They displayed a reactivity range of almost 500, with Zircaloy-2 being the least reactive.

  13. Multiscale Modeling of the Orthotropic Behaviour of PA6-6 overmoulded Composites using MMI Approach

    SciTech Connect (OSTI)

    Bikard, Jerome; Robert, Gilles; Moulinjeune, Olivier [RHODIA ENGINEERING PLASTICS, Technyl Application Center Avenue Ramboz, BP 64, 69192 Saint FONS CEDEX (France)

    2011-05-04

    In this study the MMI ConfidentDesign multiscale approach (consisting in a non-linear multiscale simulation based on DIGIMAT registered including the injection modeling of the filled polymer and a multiscale mechanical model using the fiber orientation tensor resulting from the injection) has been combined with an orthotropic damageable elastic simulation. The anisotropic properties (including rupture criterion) are estimated and a multiscale simulation including the heterogeneous material properties issued from injection process is done. The impact of fiber ratios is then investigated. The structural simulation predicts stresses localized close to the punch, as well in injected PA66 than in composite part. Greater the fiber volume ratio, greater the modulus and more brittle the composite.

  14. Dynamic impact and pressure analysis of the insensitive munitions container PA103 with modified design features

    SciTech Connect (OSTI)

    Handy, K.D.

    1993-06-01

    This report presents analytical analyses of the insensitive munitions container PA103, with modified design features for a static internal pressure of 500 psi and for a dynamic impact resulting from a 7-ft free fall onto a rigid surface. The modified design features addressed by the analyses were the inclusion of a score pattern on the container cylindrical body and a plastic plate (fuse) sandwiched between metal flanges on the container end. The objectives of both the pressure and impact analyses were to determine if the induced stresses at the score patterns in the cylindrical body of the container were sufficient to induce failure. Analytical responses of the container to the imposed loads were obtained with finite element analysis methodology. The computer codes ABAQUS and VEC/DYNA3D were used to obtain the results. Results of the pressure analysis indicate that failure of the container body would be expected to occur at the score pattern for a static internal pressure of 500 psi. Also, results from three impact orientations for a 7-ft drop indicate that membrane stresses in the vicinity of the score pattern are above critical crack growth stress magnitudes, especially at low ([minus]60[degrees]F) temperatures.

  15. Dynamic impact and pressure analysis of the insensitive munitions container PA103 with modified design features

    SciTech Connect (OSTI)

    Handy, K.D.

    1993-06-01

    This report presents analytical analyses of the insensitive munitions container PA103, with modified design features for a static internal pressure of 500 psi and for a dynamic impact resulting from a 7-ft free fall onto a rigid surface. The modified design features addressed by the analyses were the inclusion of a score pattern on the container cylindrical body and a plastic plate (fuse) sandwiched between metal flanges on the container end. The objectives of both the pressure and impact analyses were to determine if the induced stresses at the score patterns in the cylindrical body of the container were sufficient to induce failure. Analytical responses of the container to the imposed loads were obtained with finite element analysis methodology. The computer codes ABAQUS and VEC/DYNA3D were used to obtain the results. Results of the pressure analysis indicate that failure of the container body would be expected to occur at the score pattern for a static internal pressure of 500 psi. Also, results from three impact orientations for a 7-ft drop indicate that membrane stresses in the vicinity of the score pattern are above critical crack growth stress magnitudes, especially at low ({minus}60{degrees}F) temperatures.

  16. Characterization, organic modification of wollastonite coated with nano-Mg(OH){sub 2} and its application in filling PA6

    SciTech Connect (OSTI)

    Wang, Caili; Wang, Dong; Zheng, Shuilin

    2014-02-01

    Highlights: • Wollastonite is first inorganic modified by coating nano-Mg(OH){sub 2} and then organic modified with silane. • Filling 30% of this composite powder in PA6 the mechanical properties, the heat distortion temperature and oxygen index of the PA6 composites were notably enhanced. - Abstract: Nano-Mg(OH){sub 2} was deposited on the surface of wollastonite (MW) powder with heterogeneous nucleation method and then modified with silane. The microstructure and surface properties of wollastonite (W) and MW powders were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDS) and X-ray diffraction (XRD), respectively. The microstructure of W, MW and silane modified MW (SMW) powders were characterized by Fourier translation infrared spectroscopy (FTIR). The mechanical properties, heat distortion temperature (HDT) and oxygen index (OI) of PA6 composites having different fillers were discussed. It was shown that the surface of wollastonite was coated with a layer of 33 nm thickness of Mg(OH){sub 2} grains and the distribution of which was uniform. The number of the hydroxyl groups on the surface of wollastonite powder increased after coated with Mg(OH){sub 2}. Filling 30% of SMW powder in PA6 the mechanical properties, HDT and OI were notably enhanced.

  17. Intercomparison of the seasonal cycle in 200 hPa kinetic energy in AMIP GCM simulations

    SciTech Connect (OSTI)

    Boyle, J.S.

    1996-10-01

    The 200 hPa kinetic energy is represented by means of the spherical harmonic components for the Atmospheric Model Intercomparison Project (AMIP) simulations, the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis and the European Centre for Medium Range Weather Forecast Reanalysis (ERA). The data used are the monthly mean wind fields from 1979 to 1988. The kinetic energy is decomposed into the divergent (DKE) and rotational (RKE) components and emphasis is placed on examining the former. The two reanalysis data sets show reasonable agreement that is best for the rotational kinetic energy. The largest difference in the divergent kinetic energy occurs during the northern summer. As might be expected, the two analyses are closet in regions where there are sufficient observations such that the effect of the model used in the assimilation cycle are minimized. The observed RKE show only a slight seasonal cycle with a maximum occuring during the northern winter. The DKE, on the other hand, has a very pronounced seasonal cycle with maxima at the solsticial seasons and minima during the equinoctial seasons. The model results show a very large spread in the magnitudes of the RKE and DKE although the models all evince a seasonal variation in phase with that observed. The median values of the seasonal cycle of RKE and DKE for the models are usually superior to those of any individual model. Results are also presented for simulation following the AMIP protocol but using updated versions of the original AMIP entries. In most cases these new integrations show better agreement with the observations.

  18. Water management technologies used by Marcellus Shale Gas Producers.

    SciTech Connect (OSTI)

    Veil, J. A.; Environmental Science Division

    2010-07-30

    Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

  19. Depositional Model of the Marcellus Shale in West Virginia Based...

    Office of Scientific and Technical Information (OSTI)

    To the contrary, our sedimentary data suggest a rather shallow water depth, intermittent ... most simply by fluctuations in water depth coupled with fluctuations in sediment supply. ...

  20. Water Treatment System Cleans Marcellus Shale Wastewater | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas ...

  1. Remote Gas Well Monitoring Technology Applied to Marcellus Shale...

    Energy Savers [EERE]

    ... the drilling effort in Washington County, WVU had been testing the remote, wireless system for the past year. Its success during testing demonstrates its ability to be a cost-effec...

  2. HIA 2015 DOE Zero Energy Ready Home Case Study: High Performance Homes, Chamberlain Court #75, Gettysburg, PA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Homes Chamberlain Court #75 Gettysburg, PA DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are

  3. NETL'S DAVID MILLER RECEIVES 2014 ARTHUR S. FLEMMING AWARD Pittsburgh, Pa. - The Trachtenberg School of Public Policy and Public Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DAVID MILLER RECEIVES 2014 ARTHUR S. FLEMMING AWARD Pittsburgh, Pa. - The Trachtenberg School of Public Policy and Public Administration has selected David Miller of the National Energy Technology Laboratory (NETL) as a recipient of the 2014 Arthur S. Flemming Award recognizing outstanding men and women in the federal government. Dr. Miller was chosen in recognition of his innovative leadership as Technical Director of the Department of Energy's Carbon Capture Simulation Initiative (CCSI). The

  4. Basin Shale Play State(s) Production Reserves Production Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    shale gas plays: natural gas production and proved reserves, 2013-14 2013 2014 Change 2014-2013 Basin Shale Play State(s) Production Reserves Production Reserves Production Reserves Marcellus* PA,WV 3.6 62.4 4.9 84.5 1.3 22.1 TX 2.0 26.0 1.8 24.3 -0.2 -1.7 TX 1.4 17.4 1.9 23.7 0.5 6.3 TX,LA 1.9 16.1 1.4 16.6 -0.5 0.5 TX, OK 0.7 12.5 0.8 16.6 0.1 4.1 AR 1.0 12.2 1.0 11.7 0.0 -0.5 OH 0.1 2.3 0.4 6.4 0.3 4.1 Sub-total 10.7 148.9 12.3 183.7 1.4 34.8 Other shale gas 0.7 10.2 1.1 15.9 0.4 5.7 All

  5. UNREVIEWED DISPOSAL QUESTION EVALUATION: IMPACT OF NEW INFORMATION SINCE 2008 PA ON CURRENT LOW-LEVEL SOLID WASTE OPERATIONS

    SciTech Connect (OSTI)

    Flach, G.; Smith, F.; Hamm, L.; Butcher, T.

    2014-10-06

    Solid low-level waste disposal operations are controlled in part by an E-Area Low-Level Waste Facility (ELLWF) Performance Assessment (PA) that was completed by the Savannah River National Laboratory (SRNL) in 2008 (WSRC 2008). Since this baseline analysis, new information pertinent to disposal operations has been identified as a natural outcome of ongoing PA maintenance activities and continuous improvement in model simulation techniques (Flach 2013). An Unreviewed Disposal Question (UDQ) Screening (Attachment 1) has been initiated regarding the continued ability of the ELLWF to meet Department of Energy (DOE) Order 435.1 performance objectives in light of new PA items and data identified since completion of the original UDQ Evaluation (UDQE). The present UDQE assesses the ability of Solid Waste (SW) to meet performance objectives by estimating the influence of new information items on a recent sum-of-fractions (SOF) snapshot for each currently active E-Area low-level waste disposal unit. A final SOF, as impacted by this new information, is projected based on the assumptions that the current disposal limits, Waste Information Tracking System (WITS) administrative controls, and waste stream composition remain unchanged through disposal unit operational closure (Year 2025). Revision 1 of this UDQE addresses the following new PA items and data identified since completion of the original UDQE report in 2013:  New K{sub d} values for iodine, radium and uranium  Elimination of cellulose degradation product (CDP) factors  Updated radionuclide data  Changes in transport behavior of mobile radionuclides  Potential delay in interim closure beyond 2025  Component-in-grout (CIG) plume interaction correction Consideration of new information relative to the 2008 PA baseline generally indicates greater confidence that PA performance objectives will be met than indicated by current SOF metrics. For SLIT9, the previous prohibition of non-crushable containers in

  6. Exchanges of Energy, Water and Carbon Dioxide Xuhui Lee (Yale University) and Edward Pa:on (NCAR)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influences of the Boundary Layer Flow on Vegeta8on-Air Exchanges of Energy, Water and Carbon Dioxide Xuhui Lee (Yale University) and Edward Pa:on (NCAR) * Summarize your projects and its scienFfic objecFves for the next 3-5 years The objecFve of this project is to establish a mechanisFc understanding of the interplay between flow heterogeneity in the atmospheric boundary layer (ABL), land surface heterogeneity, and vegetaFon-air exchange of energy, water and CO 2 . The project will invesFgate

  7. SciTech Connect:

    Office of Scientific and Technical Information (OSTI)

    Laboratory, Pittsburgh, PA, and Morgantown, WV (United States) National Institute for Petroleum and Energy Research, Bartlesville, OK (United States) National Nuclear Security...

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    PA, and Morgantown, WV (United States) National Institute for Petroleum and Energy Research, Bartlesville, OK (United States) National Nuclear Security Administration...

  9. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Kansas City Site Office (United States) National Energy Technology Laboratory - In-house Research National Energy Technology Laboratory, Pittsburgh, PA, and Morgantown, WV (United...

  10. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Environmental Measurements Laboratory (EML), New York, NY (United States) Federal Energy Technology Center (FETC), Morgantown, WV, and Pittsburgh, PA (United States) Fermi...