Powered by Deep Web Technologies
Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collins Ferry Road Morgantown, WV 26507-0880 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator, Ultra-Deepwater Resources Portfolio Office of Research and...

2

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Acting Geology Team Lead Office of Research and Development National Energy...

3

Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose EDX Coordinator Office of Research and Development National Energy Technology...

4

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator National Energy Technology Laboratory 1450 Queen Ave SW...

5

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R R &D FAC T S Natural Gas & Oil R&D CONTACTS George Guthrie Focus Area Lead Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator Office of Research and Development National Energy Technology Laboratory 1450 Queen Avenue SW Albany, OR 97321-2152 541-967-5883 kelly.rose@netl.doe.gov PARTNERS Carnegie Mellon University Pittsburgh, PA Oregon State University Corvallis, OR Pennsylvania State University State College, PA University of Pittsburgh Pittsburgh, PA URS Corporation Pittsburgh, PA Virginia Tech Blacksburg, VA West Virginia University Morgantown, WV

6

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R& R& D FAC T S Natural Gas & Oil R&D CONTACTS George Guthrie Focus Area Lead Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator Office of Research and Development National Energy Technology Laboratory 1450 Queen Avenue SW Albany, OR 97321-2152 541-967-5883 kelly.rose@netl.doe.gov PARTNERS Carnegie Mellon University Pittsburgh, PA Oregon State University Corvallis, OR Pennsylvania State University State College, PA University of Pittsburgh Pittsburgh, PA URS Corporation Pittsburgh, PA Virginia Tech Blacksburg, VA West Virginia University Morgantown, WV

7

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Romanosky Romanosky Crosscutting Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4721 robert.romanosky@netl.doe.gov Richard Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Shizhong Yang Principal Investigator Southern University

8

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CONTACTS Joseph Stoffa Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-0285 joseph.stoffa@netl.doe.gov Xingbo Liu Principal Investigator Dept. MechanaWest Virginia University P.O. Box 6106 Morgantown, WV 26506-6106 304-293-3339 xingbo.liu@mail.wvu.edu Shailesh D. Vora Technology Manager, Fuel Cells National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-7515 shailesh.vora@netl.doe.gov PARTNERS None PROJECT DURATION Start Date End Date 08/31/2012 09/30/2015 COST Total Project Value $634,839 DOE/Non-DOE Share $499,953 / $134,886 AWARD NUMBER FE0009675 Fundamental Understanding of Oxygen Reduction and Reaction Behavior and Developing High Performance and Stable

9

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FACTS FACTS Carbon Storage - ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Robert Noll Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7597 robert.noll@netl.doe.gov Joseph Labuz Principal Investigator University of Minnesota 500 Pillsbury Drive SE Room 122 CivE 0851 Minneapolis, MN 55455 612-625-9060 jlabuz@umn.edu PARTNERS None PROJECT DURATION Start Date End Date 12/01/2009 11/30/2012 COST Total Project Value $299,568 DOE/Non-DOE Share $299,568 / $0 PROJECT NUMBER DE-FE0002020 Government funding for this project is provided in whole or in part through the

10

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PROJEC PROJEC T FAC TS Carbon Storage - ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-1345 traci.rodosta@netl.doe.gov Robert Noll Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7597 robert.noll@netl.doe.gov Gordon Bierwagen Principal Investigator North Dakota State University P.O. Box 6050 Department 2760 Fargo, ND 58108-6050 701-231-8294 gordon.bierwagen@ndsu.edu PARTNERS None PROJECT DURATION Start Date 12/01/2009 End Date 11/30/2011 COST Total Project Value $298,949 DOE/Non-DOE Share $298,949 / $0 PROJECT NUMBER DE-FE0002054 Government funding for this project is provided in whole or in part through the

11

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Jose Castillo Principal Investigator San Diego State University 5500 Campanile Drive San Diego, CA 92122 619-594-7205 castillo@myth.sdsu.edu PARTNERS Sienna Geodynamics and Consulting, Inc. PROJECT DURATION Start Date End Date 12/01/2009 11/30/2012 COST Total Project Value $299,993 DOE/Non-DOE Share $299,993 / $0 PROJECT NUMBER DE-FE0002069 Government funding for this project is provided in whole or in part through the

12

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Traci Rodosta Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Karen Kluger Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6667 karen.kluger@netl.doe.gov Gary Mavko Principal Investigator Stanford University 397 Panama Mall Stanford, CA 94305-2215 650-723-9438 Fax: 650-723-1188 mavko@stanford.edu PROJECT DURATION Start Date 12/01/2009 End Date 06/30/2013 COST Total Project Value $385,276 DOE/Non-DOE Share $295,777/ $89,499 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. Rock Physics of Geologic Carbon Sequestration/Storage

13

Albany, OR Anchorage, AK Morgantown, WV Pittsburgh, PA Sugar Land, TX Website: www.netl.doe.gov  

E-Print Network [OSTI]

Albany, OR · Anchorage, AK · Morgantown, WV · Pittsburgh, PA · Sugar Land, TX Website: www.netl-285-5437 briggs.white@netl.doe.gov Neil Nofziger Principal Investigator seM-coM company, Inc. 1040 North Westwood 304-285-4717 daniel.driscoll@netl.doe.gov PARTNERS University of Toledo Ceramatec, Inc. PROJECT

Azad, Abdul-Majeed

14

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Traci Rodosta Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Joshua Hull Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-0906 joshua.hull@netl.doe.gov Erik Westman Principal Investigator Virginia Polytechnic Institute and State University 100 Holden Hall Blacksburg, VA 24061 540-0231-7510 Fax: 540-231-4070 ewestman@vt.edu PROJECT DURATION Start Date End Date 12/01/2009 12/31/2012 COST Total Project Value $257,818 DOE/Non-DOE Share $248,441 / $9,377 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. P R OJ E C T FAC T

15

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Technology Program Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Dawn Deel Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4133 dawn.deel@netl.doe.gov Sherry Mediati Business Contact California Energy Commission 1516 9th Street, MS 1 Sacramento, CA 95814 916-654-4204 smediati@energy.state.ca.us Mike Gravely Principal Investigator California Energy Commission 1516 Ninth Street, MS 43 Sacramento, CA 95814 916-327-1370 mgravely@energy.state.ca.us Elizabeth Burton Technical Director Lawrence Berkeley National Laboratory 1 Cyclotron Road, MS 90-1116 Berkeley, CA 94720 925-899-6397 eburton@lbl.gov West Coast Regional Carbon

16

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Turbines Hydrogen Turbines CONTACTS Richard A. Dennis Technology Manager, Turbines National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4515 richard.dennis@netl.doe.gov Travis Shultz Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507-0880 304-285-1370 travis.shultz@netl.doe.gov Jacob A. Mills Principal Investigator Florida Turbine Technologies, Inc 1701 Military Trail Suite 110 Jupiter, FL 33458-7887 561-427-6349 jmills@fttinc.com PARTNERS None PROJECT DURATION Start Date End Date 06/28/2012 08/13/2015 COST Total Project Value $1,149,847 DOE/Non-DOE Share $1,149,847 / $0 AWARD NUMBER SC0008218 Air-Riding Seal Technology for Advanced Gas Turbine Engines-Florida Turbine

17

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rodosta Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Darin Damiani Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4398 darin.damiani@netl.doe.gov Vivak Malhotra Principal Investigator Southern Illinois University Neckers 483A Mailcode: 4401 Carbondale, IL 62901 618-453-2643 Fax: 618-453-1056 vmalhotra@physics.siu.edu PARTNERS None Risk Assessment and Monitoring of Stored CO2 in Organic Rock under Non-Equilibrium Conditions Background Fundamental and applied research on carbon capture, utilization and storage (CCUS)

18

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PO Box 880 PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Charles D. Gorecki Technical Contact Senior Research Manager Energy & Environmental Research Center University of North Dakota 15 North 23 rd Street, Stop 9018 Grand Forks, ND 58202-9018 701-777-5355 cgorecki@undeerc.org Edward N. Steadman Deputy Associate Director for Research Energy & Environmental Research Center University of North Dakota 15 North 23 rd Street, Stop 9018 Grand Forks, ND 58202-9018 701-777-5279 esteadman@undeerc.org John A. Harju Associate Director for Research Energy & Environmental Research Center University of North Dakota

19

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maira Reidpath Maira Reidpath Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304- 285-4140 maria.reidpath@netl.doe.gov Steven S.C. Chuang Principal Investigator The University of Akron Department of Chemical and Biomolecular Engineering 230 E. Buchtel Commons Akron, OH 44325 330-972-6993 schuang@uakron.edu PARTNERS None PROJECT DURATION Start Date End Date 09/01/2009 08/31/2013 COST Total Project Value $1,713,961 DOE/Non-DOE Share $1,370,977/$342,984 AWARD NUMBER Techno-Economic Analysis of Scalable Coal-Based Fuel Cells-University of Akron Background In this congressionally directed project, the University of Akron (UA) will develop a scalable coal fuel cell manufacturing process to a megawatt scale. UA has demonstrated the

20

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maria Reidpath Maria Reidpath Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304- 285-4140 maria.reidpath@netl.doe.gov Bogdan Gurau Principal Investigator NuVant Systems, Inc. 130 N West Street Crown Point, IN 46307 219-644-3232 b.gurau@nuvant.com PARTNERS None PROJECT DURATION Start Date End Date 08/01/2009 05/31/2013 COST Total Project Value $1,142,481 DOE/Non-DOE Share $913,985 / $228,496 AWARD NUMBER Improved Flow-field Structures for Direct Methanol Fuel Cells-NuVant Systems, Inc. Background In this congressionally directed project, NuVant Systems, Inc. (NuVant) will improve the performance of direct methanol fuel cells (DMFCs) by designing anode flow-fields specifically for the delivery of liquid methanol. The goal is to deliver concentrated

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Briggs White Briggs White Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-5437 briggs.white@netl.doe.gov Jeff Stevenson Principal Investigator Pacific Northwest National Laboratory P.O. Box 999, MS K2-44 Richland, WA 99352 509-372-4697 jeff.stevenson@pnl.com PARTNERS Oak Ridge National Laboratory University of Connecticut PROJECT DURATION Start Date End Date 10/01/1999 09/30/2013 (annual continuations) COST Total Project Value $52,889,667 DOE/Non-DOE Share $52,889,667 / $0 AWARD NUMBER FWP40552 PR OJ E C T FAC T S Fuel Cells Low Cost Modular SOFC Development- Pacific Northwest National Laboratory Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) has a mission to advance energy options to fuel our economy, strengthen our security,

22

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rick Dunst Rick Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 MS 922-273C Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Felicia Manciu Principal Investigator University of Texas at El Paso 500 West University Avenue El Paso, TX 79968-8900 915-747-5715 fsmanciu@utep.edu PROJECT DURATION Start Date 01/15/2009 End Date 12/15/2013 COST Total Project Value $249,546 DOE/Non-DOE Share $249,546 / $0

23

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Patricia Rawls Patricia Rawls Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-5882 patricia.rawls@netl.doe.gov Sankaran Sundaresan Principal Investigator Princeton University Department of Chemical Engineering Princeton, NJ 08544 609-258-4583 sundar@princeton.edu PROJECT DURATION Start Date 10/01/2011 End Date 09/30/2014 COST Total Project Value $420,366 DOE/Non-DOE Share $300,000 / $120,366 Implementation and Refinement

24

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Andrea Dunn Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Marte Gutierrez Principal Investigator Colorado School of Mines 1600 Illinois Street Golden, CO 80401 303-273-3468 Fax: 303-273-3602 mgutierr@mines.edu PROJECT DURATION Start Date 12/01/2009 End Date 5/31/2013 COST Total Project Value $297,505 DOE/Non-DOE Share $297,505 / $0 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Background Fundamental and applied research on carbon capture, utilization and storage (CCUS)

25

Water Treatment System Cleans Marcellus Shale Wastewater | Department of  

Broader source: Energy.gov (indexed) [DOE]

Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater April 13, 2011 - 1:00pm Addthis Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain® 4000 water desalination system was tested at BLX, Inc.'s Sleppy well site in Indiana County, Pa. as part of a National Energy Technology Laboratory (NETL)-sponsored demonstration. During nine continuous months of operation, the unit successfully treated 77 percent of the water stream onsite, providing distilled water as the product. The average treated water cost per barrel over the demonstration period was

26

Water Treatment System Cleans Marcellus Shale Wastewater | Department of  

Broader source: Energy.gov (indexed) [DOE]

Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater April 13, 2011 - 1:00pm Addthis Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain® 4000 water desalination system was tested at BLX, Inc.'s Sleppy well site in Indiana County, Pa. as part of a National Energy Technology Laboratory (NETL)-sponsored demonstration. During nine continuous months of operation, the unit successfully treated 77 percent of the water stream onsite, providing distilled water as the product. The average treated water cost per barrel over the demonstration period was

27

MARCELLUS SHALE APRIL 2011 EDITION  

E-Print Network [OSTI]

Wells (213111); Support Activities for Oil & Gas Operations (213112); Oil & Gas Pipeline & Related Structures Construction (237120); and Pipeline Transportation of Natural Gas (486210). Marcellus Shale (541620); Remediation Services (562910); Commercial & Industrial Machinery & Equipment Repair

Boyer, Elizabeth W.

28

1Prepared by BG Rahm & SJ Riha (NYS Water Resources Institute), D Yoxtheimer (Penn State Marcellus Center for Outreach and Research), E Boyer (PA Water Resources Research Center), D Carder (WVU Center for Alternative Fuels, Engines, and Emissions), K Davi  

E-Print Network [OSTI]

for Alternative Fuels, Engines, and Emissions), K Davis & S Belmecheri (Penn State University) Environmental water Center for Outreach and Research), E Boyer (PA Water Resources Research Center), D Carder (WVU Center sessions: 1. What data sources are currently available for collecting information on water and air systems

29

Focus on the Marcellus Shale By Lisa Sumi  

E-Print Network [OSTI]

Shale Gas: Focus on the Marcellus Shale By Lisa Sumi FOR THE OIL & GAS ACCOUNTABILITY PROJECT on potential oil and gas development in the Marcellus Shale formation in northeastern Pennsylvania and gas development. We hope that this report will help address many questions about the Marcellus Shale

Boyer, Elizabeth W.

30

Category:Elkins, WV | Open Energy Information  

Open Energy Info (EERE)

Elkins, WV Elkins, WV Jump to: navigation, search Go Back to PV Economics By Location Media in category "Elkins, WV" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Elkins WV Harrison Rural Elec Assn Inc.png SVFullServiceRestauran... 59 KB SVQuickServiceRestaurant Elkins WV Harrison Rural Elec Assn Inc.png SVQuickServiceRestaura... 60 KB SVHospital Elkins WV Harrison Rural Elec Assn Inc.png SVHospital Elkins WV H... 57 KB SVLargeHotel Elkins WV Harrison Rural Elec Assn Inc.png SVLargeHotel Elkins WV... 57 KB SVLargeOffice Elkins WV Harrison Rural Elec Assn Inc.png SVLargeOffice Elkins W... 58 KB SVMediumOffice Elkins WV Harrison Rural Elec Assn Inc.png SVMediumOffice Elkins ... 59 KB SVMidriseApartment Elkins WV Harrison Rural Elec Assn Inc.png

31

Remote Gas Well Monitoring Technology Applied to Marcellus Shale Site |  

Broader source: Energy.gov (indexed) [DOE]

Remote Gas Well Monitoring Technology Applied to Marcellus Shale Remote Gas Well Monitoring Technology Applied to Marcellus Shale Site Remote Gas Well Monitoring Technology Applied to Marcellus Shale Site February 10, 2012 - 12:00pm Addthis Washington, DC - A technology to remotely monitor conditions at energy-rich Marcellus Shale gas wells to help insure compliance with environmental requirements has been developed through a research partnership funded by the U.S. Department of Energy (DOE). NETL-RUA researcher Dr. Michael McCawley hasdeveloped a technology to remotely monitor theenvironment around energy-rich Marcellus Shale gas wells. Photo courtesy of West Virginia University.The technology - which involves three wireless monitoring modules to measure volatile organic compounds, dust, light and sound - is currently being tested at a Marcellus

32

Category:Charleston, WV | Open Energy Information  

Open Energy Info (EERE)

WV WV Jump to: navigation, search Go Back to PV Economics By Location Media in category "Charleston, WV" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Charleston WV Harrison Rural Elec Assn Inc.png SVFullServiceRestauran... 59 KB SVQuickServiceRestaurant Charleston WV Harrison Rural Elec Assn Inc.png SVQuickServiceRestaura... 60 KB SVHospital Charleston WV Harrison Rural Elec Assn Inc.png SVHospital Charleston ... 57 KB SVLargeHotel Charleston WV Harrison Rural Elec Assn Inc.png SVLargeHotel Charlesto... 57 KB SVLargeOffice Charleston WV Harrison Rural Elec Assn Inc.png SVLargeOffice Charlest... 58 KB SVMediumOffice Charleston WV Harrison Rural Elec Assn Inc.png SVMediumOffice Charles... 60 KB SVMidriseApartment Charleston WV Harrison Rural Elec Assn Inc.png

33

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Houston, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NETL R&D Tackles Technological NETL R&D Tackles Technological Challenges of the Williston Basin's Bakken Formation Recent development of the Bakken Formation in the Williston Basin of western North Dakota and eastern Montana is a good example of persistent analysis of geologic data and adaptation of new completion technologies overcoming the challenges posed by unconventional reservoirs. However, as with most unconventional plays, as Bakken development continues, questions regarding

34

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 s o l u b i li t y at r o o m temperature. CO 2 solubility testing of the most prom- ising eutectic combinations was completed. The results indicate that increasing the...

35

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

412-386-7343 Hunaid.Nulwala@contr.netl.doe.gov David Luebke Technical Co-ordinator for Carbon Capture National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940...

36

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage Research Carbon capture and storage (CCS) is a key component of the U.S. carbon management portfolio. Numerous studies have shown that CCS can account for up to 55...

37

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Membranes for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in...

38

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solvents for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical com- ponent of realistic strategies for arresting the rise in...

39

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sorbents for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in...

40

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Los Alamos National Laboratory Pacific Northwest National Laboratory Princeton University Carbon Capture Simulation Initiative The Carbon Capture Simulation Initiative (CCSI) is a...

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Midwest Regional Carbon Sequestration Partnership - Development Phase Large-Scale Field Project Background The U.S. Department of Energy Regional Carbon Sequestration Partnership...

42

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Non-Thermal Plasma for Fossil Energy Related Applications Background The U.S. Department of Energy is investigating various non-thermal plasma tech- nologies for their catalytic...

43

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. industry in a complementary research program designed to develop and demonstrate oil and natural gas drilling and production methodologies in ultra-deep formations. This...

44

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer at NETL Carbon capture, quantum mechanical simulations, integrated gasification, and clean power-words like these mean the future of energy to NETL's in-house...

45

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

estimates could result in a 4 - 6% gain in overall system efficiency. Rotating Detonation Combustion (RDC) capitalizes on this cycle and offers potential as a drop in...

46

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Engineering 304-285-4685 madhava.syamlal@netl.doe.gov David Miller Technical Director Carbon Capture Simulation Initiative 412-386-6555 david.miller@netl.doe.gov RESEARCH...

47

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

needs of advanced power systems. Industries that utilize natural gas, gasifier syngas, biogas, landfill gas, or any type of fuel gas can benefit from knowing the composition of the...

48

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of feedstock, gasifier geometry and flow conditions. Using palladium sorbents for high temperature capture of mercury and other trace elements in flue gases is also under...

49

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solvents for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in...

50

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

541-967-5885 david.alman@netl.doe.gov David Hopkinson Technical Portfolio Lead Carbon Capture 304-285-4360 david.hopkinson@netl.doe.gov OTHER PARTNERS Energy Frontiers Research...

51

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Membranes for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical com- ponent of realistic strategies for arresting the rise in...

52

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

541-967-5885 david.alman@netl.doe.gov David Hopkinson Technical Portfolio Lead Carbon Capture 304-285-4360 david.hopkinson@netl.doe.gov Figure 1: Film made from a...

53

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

science to ensure safe, essentially permanent carbon sequestration; develop reliable measurement, monitoring and verification technologies acceptable to permitting agencies;...

54

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

can simulate reservoirs that are multi-layered, exhibit dip, and have variable thickness, rock porosity, and rock permeability. The reservoirs can have fractures that open and...

55

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessment Partnership Initiative The National Risk Assessment Partnership (NRAP) is a DOE initiative that harnesses core capabilities developed across the National Laboratory...

56

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to offshore hydrocarbon production and the recovery of unconventional resources like shale gas, estimating CO 2 storage potential in various types of geologic formations, and...

57

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

these emissions can negatively impact air quality. The environmental risks of shale gas and shale oil development may be very different from that of conventional oil and gas...

58

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of carbon dioxide in tight formations. Benefits Production of natural gas from hydraulically-fractured shales surrounding horizontal wells is a relatively recent and...

59

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

waters with geologic media such as confining layers and fossil fuels (e.g., coal, oil shale, natural gas bearing formations); and unconventional fossil fuel extraction...

60

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AND DEVELOPMENT Cynthia Powell Director 514-967-5803 cynthia.powell@netl.doe.gov Kelly Rose Technical Portfolio Lead Offshore Resources 541-967-5883 kelly.rose@netl.doe.gov...

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AND DEVELOPMENT Cynthia Powell Director 541-967-5803 cynthia.powell@netl.doe.gov Kelly Rose Technical Portfolio Lead Offshore Resources 541-967-5883 kelly.rose@netl.doe.gov...

62

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical Portfolio Lead Carbon Storage 412-386-4962 angela.goodman@netl.doe.gov Kelly Rose Technical Portfolio Lead Offshore Resources 541-967-5883 kelly.rose@netl.doe.gov...

63

Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Portfolio Lead National Risk Assessment Program 304-285-4688 grant.bromhal@netl.doe.gov Kelly Rose Technical Portfolio Lead Offshore Resources 541-967-5883 kelly.rose@netl.doe.gov...

64

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geological and Environmental Sciences Division 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Acting Geology Team Lead Office of Research and Development National Energy...

65

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

REARCH AND DEVELOPMENT Cynthia Powell Director 541-967-5803 cynthia.powell@netl.doe.gov Kelly Rose Technical Portfolio Lead Offshore Resources 541-967-5883 kelly.rose@netl.doe.gov...

66

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Portfolio Lead National Risk Assessment Program 304-285-4688 grant.bromhal@netl.doe.gov Kelly Rose Technical Portfolio Lead Offshore Resources 541-967-5883 kelly.rose@netl.doe.gov...

67

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhanced Analytical Simulation Tool for CO2 Storage Capacity Estimation and Uncertainty Quantification Background The overall goal of the Department of Energy's (DOE) Carbon...

68

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting (MVA) and...

69

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

potential risks associated with oil and gas resources in shale reservoirs that require hydraulic fracturing or other engineering measures to produce. The major areas of focus...

70

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

related impacts to human health and the natural environment, and induced seismicity from hydraulic fracturing. Project Description Through collaboration with its research...

71

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

related impacts to human health and the natural environment, and induced seismicity from hydraulic fracturing. Project Description Through collaboration with its Regional...

72

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geomechanical Impacts of Shale Gas Activities Background Hydraulic fracturing of gas shale is the injection of large volumes of fluid at high pressures in low permeability shale to...

73

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deleterious Events Associated with Drilling and Production Background Increasingly, offshore domestic oil and natural gas activities are associated with remote and challenging...

74

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

routes responsible for the observed catalytic effects. Such efforts will allow for the optimization of plasma systems so that they may be incorporated into a broad range of...

75

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

number of individual break-through tasks in diverse number of areas. These range from identification of new materials for gas capture, storage or separation to optimization of...

76

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and material interactions that impact environmental and resource issues related to oil, gas, and CO2 storage development. However, studying the wide variety of subsurface...

77

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Association of American Railroads Augusta Systems, Incorporated Southeast Regional Carbon Sequestration Partnership-Development Phase Cranfield Site and Citronelle Site...

78

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EOR Field Project - Development Phase Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The...

79

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Services Vecta Oil & Gas, Ltd. Washington State University Big Sky Regional Carbon Sequestration Partnership-Kevin Dome Development Phase Project Background The U.S....

80

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Southwestern United States Carbon Sequestration Training Center Background The focus of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance...

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to 200 o C for combustion is inefficient from both a cost and net electricity perspective. Hydrophobic solvents could be operated at higher temperatures and minimize...

82

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heat in a combustion process while producing a concentrated CO 2 stream to facilitate carbon capture. Chemical looping research efforts can be categorized as: modeling tool...

83

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that are difficult or impossible to measure, such as coal jet penetration into a gasifier. This system provides the capabilities for running modeling tools at various scales...

84

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and implementing a Sponsorship Development Program that allows SECARB-Ed to be self-sustaining after the initial three-year period by establishing an advisory board, developing...

85

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

priations) to the FutureGen Industrial Alliance (Alliance) to build FutureGen 2.0-a clean coal repowering program and CO 2 pipeline and storage network. The FutureGen 2.0 Program...

86

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from Fossil Energy R&D 1 Bezdek, R. Wendling, R., The Return on Investment of the Clean Coal Technology Program in the USA. Energy Policy, Vol. 54, March 2013, pp. 104-112 2...

87

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust...

88

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R&D 070, November 2011, rev 1114 Research facilities include the Severe Environment Corrosion Erosion Research Facility (SECERF) for assessing materials performance in a variety...

89

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

can affect permeability and porosity (flow properties), depending on the amount of sorptiondesorption. If the geological formations of interest are deep and have high...

90

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

well and post- placement. Foamed cement stability depends on time evolution of the gas bubble-size distribution (BSD) and varies as it is pumped and placed in the well. Unstable...

91

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

or particles. * High-definition, high-speed video capabilities: - Detailed information on bubble hydrodynamics. - Unprecedented resolution of hydrate surface morphology. * Provide...

92

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

changes in CO 2 -water inter- facial tension. * Experimental CO 2 injection tests in pore micro-models and parallel network model simulations demonstrate that the sweep efficiency...

93

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pollutants and CO 2 . Oxy-fuel combustion of hydrocarbon fuel (coal, natural-gas, biomass) generates denitrified combustion gas comprising dominantly CO 2 and H 2 O. The...

94

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the same amount of energy produced, thereby facilitating a reduction in greenhouse gas emissions. When combined, oxy-combustion comes with an efficiency loss, so it will...

95

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

near 276 MPa. Therefore, the per turbed-chain statistical associating fluid theory (PC-SAFT) model was used to calculate the fluid density, which is an input into the improved...

96

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of meeting such a challenge is the combination of a high temperature fuel cell and a gas turbine with a gasifier or reformer. This hybrid technology has been studied...

97

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's...

98

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are used to characterize the fundamental properties of unconventional natural gas and oil reservoirs, ultra-deepwater and frontier-region reservoirs, and reservoirs that offer...

99

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

being developed for geologic carbon storage are focused on five storage types: (1) oil and natural gas reservoirs; (2) saline formations; (3) unmineable coal seams; (4)...

100

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Performance Project Research programs initiated by the U.S. Department of Energy (DOE) to achieve increased efficiency and reduced emissions are expected to result in the...

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

S Materials Science Fuels Gasification will likely be the cornerstone of future energy and chemical processes due to its flexibility to accommodate numerous feedstocks such as...

102

Panama (PA)  

Science Journals Connector (OSTI)

Die Geschichte des Staates PA ist aufs Engste verknpft mit der Entwicklung des Panama-Kanals, und, aufgrund dessen Kontrolle durch...

Achim Wachendorfer

1982-01-01T23:59:59.000Z

103

DOE - Office of Legacy Management -- Reduction Pilot Plant - WV 01  

Office of Legacy Management (LM)

Reduction Pilot Plant - WV 01 Reduction Pilot Plant - WV 01 FUSRAP Considered Sites Site: REDUCTION PILOT PLANT (WV.01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: International Nickel Company WV.01-1 Location: Cole Street at Alterizer Ave. , Huntington , West Virginia WV.01-2 Evaluation Year: 1987 WV.01-1 Site Operations: Manufactured powdered Nickel for use at Paducah and Portsmouth gaseous diffusion plants and Nickel plated a small quantity of Uranium slugs. WV.01-2 WV.01-1 Site Disposition: Eliminated - Limited quantities of radioactive material used on the site. Potential for residual radioactive material from AEC operations conducted at the site considered remote - confirmed by radiological survey. WV.01-1 WV.01-3

104

Marcellus Shale Natural Gas Drilling Operators' Choice of Wastewater Disposal Method.  

E-Print Network [OSTI]

??As natural gas drilling in the Marcellus Shale region moves forward, the issue of wastewater disposal has risen to the forefront. In 2010, the Pennsylvania (more)

Edmundson, Caitlyn

2012-01-01T23:59:59.000Z

105

Municipal officials decisions to lease watershed lands for Marcellus shale gas exploration  

Science Journals Connector (OSTI)

This paper provides insight into municipalities decisions to lease watershed lands for Marcellus shale gas exploration in Pennsylvania. The focus was on...

Charles Abdalla; Renata Rimsaite

2014-03-01T23:59:59.000Z

106

Life Cycle Analysis on Greenhouse Gas (GHG) Emissions of Marcellus Shale Gas Supporting Information  

E-Print Network [OSTI]

Life Cycle Analysis on Greenhouse Gas (GHG) Emissions of Marcellus Shale Gas Supporting Information 1. GHG Emissions Estimation for Production of Marcellus Shale Gas 1.1 Preparation of Well Pad The greenhouse gas (GHG) emissions resulting from the preparation of well pad consist of two parts: the carbon

Jaramillo, Paulina

107

Life Cycle Greenhouse Gas Emissions and Freshwater Consumption of Marcellus Shale Gas  

Science Journals Connector (OSTI)

Life Cycle Greenhouse Gas Emissions and Freshwater Consumption of Marcellus Shale Gas ... We present results of a life cycle assessment (LCA) of Marcellus shale gas used for power generation. ... The analysis employs the most extensive data set of any LCA of shale gas to date, encompassing data from actual gas production and power generation operations. ...

Ian J. Laurenzi; Gilbert R. Jersey

2013-04-02T23:59:59.000Z

108

West Virginia Smart Grid Implementation Plan (WV SGIP) Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WV DoE-NRCCE-APERC DRAFT February 16, 2009 WV DoE-NRCCE-APERC DRAFT February 16, 2009 1 West Virginia Smart Grid Implementation Plan (WV SGIP) Project APERC Report on Customer Complaints to WV PSC about Electric Power Service Ali Feliachi, Muhammad Choudhry, John Saymansky and Ed Sneckenberger February 16, 2009 Introduction APERC has appreciated that one of the most important sources for data on the consumer perspective of the current electric power grid in West Virginia would be the WV Public Service Commission (WV PSC). Thus, an email request was sent on December 19, 2008 to Byron Harris at the WV PSC to request any advice or approaches to determine customer and regulatory perspectives of the current electric power grid in WV. Customer Complaint Data Bryon Harris was able to provide a spreadsheet of customer complaints in West Virginia for

109

NETL: 2010 WV Science Bowl Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2010 WV Science Bowl 2010 WV Science Bowl The U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) invites you to participate in one of the premier scientific events for high school students, the West Virginia High School Science Bowl 2010 on February 6, 2010. This will be NETL's 19th year sponsoring the high school competition. There is a change this year in the registration process from past years, all teams who are registering to complete, must do so through the National Science Bowl website. For those who are not familiar with the West Virginia Science Bowl here are some highlights: The competition is open to high school students (school, scouts, home school) from West Virginia. Complete eligibility requirements are located at the National Science Bowl website.

110

The Framing of Marcellus Shale Gas Drilling Issues in Pennsylvania Newspapers.  

E-Print Network [OSTI]

??Thousands of articles on Marcellus Shale gas drilling and development were written in Pennsylvania newspapers from 2008-2012 (NewsBank, 2013). These stories can have an influence (more)

Brown, Elise

2013-01-01T23:59:59.000Z

111

Extracting the economic benefits of natural resources in the Marcellus Shale Region  

E-Print Network [OSTI]

My thesis seeks to explore the challenge of value capture from natural resources using the case of the Marcellus Shale in West Virginia and Pennsylvania as an exemplar. I examine the mechanisms in place to capture the ...

Hess, Sara Lynn

2014-01-01T23:59:59.000Z

112

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on Local and Regional Air on Local and Regional Air Quality Impacts of Oil and Natural Gas Development Goal The NETL research effort in improving the assessment of impacts to air quality from oil and gas exploration and production activities has the following goals: (1) using NETL's mobile air monitoring laboratory, conduct targeted on-site measurements of emissions from oil and gas production activities that may impact the environment and (2) use collected data in atmospheric chemistry and transport models to further understanding of local and regional air quality impacts. Background The development of shale gas and shale oil resources requires horizontal drilling and multi-stage hydraulic fracturing, two processes that have been known for many years but have only recently become common practice. In addition, fugitive atmospheric

113

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of the Carbon Sequestration Evaluation of the Carbon Sequestration Potential of the Cambro Ordovician Strata of the Illinois and Michigan Basins Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strand- plain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef.

114

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Air Products and Chemicals, Inc.: Air Products and Chemicals, Inc.: Demonstration of CO2 Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production Background Carbon dioxide (CO2) emissions from industrial processes, among other sources, are linked to global climate change. Advancing development of technologies that capture and store or beneficially reuse CO2 that would otherwise reside in the atmosphere for extended periods is of great importance. Advanced carbon capture, utilization and storage (CCUS) technologies offer significant potential for reducing CO2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. Under the Industrial Carbon Capture and Storage (ICCS) program, the U.S. Department

115

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Filtration to Improve Single Filtration to Improve Single Crystal Casting Yield-Mikro Systems Background Single crystal (SX) nickel superalloys are a primary material choice for gas turbine hot gas path component castings because of their high resistance to deformation at elevated temperatures. However, the casting yields of these components need to be improved in order to reduce costs and encourage more widespread use within the gas turbine industry. Low yields have been associated with a number of process-related defects common to the conventional casting of SX components. One innovative improvement, advanced casting filter designs, has been identified as a potential path toward increasing the yield rates of SX castings for high-temperature gas turbine applications. Mikro Systems, Inc. (Mikro) proposes to increase SX casting yields by developing

116

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Siemens Energy Siemens Energy Background Siemens Energy, along with numerous partners, has an ongoing U.S. Department of Energy (DOE) program to develop hydrogen turbines for coal-based integrated gasification combined cycle (IGCC) power generation that will improve efficiency, reduce emissions, lower costs, and allow for carbon capture and storage (CCS). Siemens Energy is expanding this program for industrial applications such as cement, chemical, steel, and aluminum plants, refineries, manufacturing facilities, etc., under the American Recovery and Reinvestment Act (ARRA). ARRA funding will be utilized to facilitate a set of gas turbine technology advancements that will improve the efficiency, emissions, and cost performance of turbines for industrial CCS. ARRA industrial technology acceleration,

117

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Design of Advanced Engineering Design of Advanced Hydrogen-Carbon Dioxide Palladium and Palladium/Alloy Composite Membrane Separations and Process Intensification Background Technologies for pre-combustion carbon dioxide (CO2) capture and economical hydrogen (H2) production will contribute to the development of a stable and sustainable U.S. energy sector. The integrated gasification combined cycle (IGCC) system can produce synthesis gas (syngas) that can be used to produce electricity, hydrogen, fuels, and/or chemicals from coal and coal/biomass-mixtures in an environmentally responsible manner. The water-gas shift (WGS) reaction is a key part of this process for production of H2. The application of H2 separation technology can facilitate the production of high-purity H2 from gasification-based systems, as well as allow for process

118

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhancement of SOFC Cathode Electro- Enhancement of SOFC Cathode Electro- chemical Performance Using Multi-Phase Interfaces- University of Wisconsin Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. The electrochemical performance of SOFCs can be substantially influenced by

119

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computational Materials Design of Computational Materials Design of Castable SX Ni-based Superalloys for IGT Blade Components-QuesTek Innovations Background Higher inlet gas temperatures in industrial gas turbines (IGTs) enable improved thermal efficiencies, but creep-the tendency of materials to deform gradually under stress-becomes more pronounced with increasing temperature. In order to raise inlet temperatures of IGTs, turbine blade materials are required to have superior creep rupture resistance. Nickel (Ni)-based single crystal (SX) blades have higher creep strength in comparison with directionally solidified blades and are widely used in aerospace engines. However, their use in IGTs, which require larger-size castings (two to three times the size needed in aerospace applications), is limited

120

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combined Pressure, Temperature Combined Pressure, Temperature Contrast, and Surface-Enhanced Separation of Carbon Dioxide (CO 2 ) for Post-Combustion Carbon Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Carbon Capture Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The Carbon Capture R&D Program portfolio of carbon dioxide (CO 2 ) emissions control tech- nologies and CO 2 compression is focused on advancing technological options for new and existing coal-fired

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Conductivity, High Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments-University of Connecticut Background Improved turbine materials are needed to withstand higher component surface temperatures and water vapor content for successful development and deployment of integrated gasification combined cycle (IGCC) power plants. Thermal barrier coatings (TBCs) in particular are required to have higher surface temperature capability, lower thermal conductivity, and resistance to attack at high temperature by contaminants such as calcium-magnesium-alumina-silicate (CMAS) and water vapor. There is also a concurrent need to address cost and availability issues associated with rare earth elements used in all low thermal conductivity TBCs.

122

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reducing Uncertainties in Model Reducing Uncertainties in Model Predictions via History Matching of CO2 Migration and Reactive Transport Modeling of CO2 Fate at the Sleipner Project, Norwegian North Sea Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is todevelop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations

123

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molecular Separations Using Micro- Molecular Separations Using Micro- Defect Free Ultra-Thin Films Background Current methods for separating carbon dioxide (CO 2 ) from methane (CH 4 ) in fuel gas streams are energy and cost-intensive. Molecular sieve membrane development for carbon capture has been pursued for several decades because of the potential these membranes have for high selectivity while using less energy than cryogenic separation methods and greater flux (permselectivity) than is possible from polymeric membranes. However, the adoption of molecular sieve membrane technology has been hindered by high production costs and the micro-defect fissures that always accompany this type of membrane when fabricated using conventional techniques. The Department of Energy's (DOE) National Energy Technology Laboratory (NETL), has

124

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization of the South Characterization of the South Georgia Rift Basin for Source Proximal CO 2 Storage Background Carbon capture, utilization and storage (CCUS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Conventional

125

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Scale Liquids Production Laboratory Scale Liquids Production and Assessment: Coal and Biomass to Drop-In Fuels Background A major problem with the production of liquid fuels from coal is that the production process and subsequent combustion of the fuel generate excessive greenhouse gases over the entire production and usage lifecycle. Adding lignocellulosic biomass (as a raw feed material) along with coal has the potential to reduce lifecycle greenhouse gas emissions to below those of petroleum products. Altex Technologies Corporation (Altex) has developed an innovative thermo-chemical process capable of converting coal and biomass to transportation fuel ready for blending. The Department of Energy (DOE) National Energy Technology Laboratory (NETL) has partnered with Altex to

126

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Capture and Storage Training Carbon Capture and Storage Training Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to enhance the existing CCUS workforce and to develop new professionals can be accomplished through focused educational initiatives in the CCUS technology area. Key educational topics include simulation and risk assessment; monitoring, verification, and accounting (MVA); geology-related

127

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficiency Efficiency Molten Bed Oxy- Coal Combustion with Low Flue Gas Recirculation Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO 2 ) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO 2 capture. Additionally, the program looks to accomplish this while maintaining near

128

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasification Characteristics of Gasification Characteristics of Coal/Biomass Mixed Fuels Background Domestically abundant coal is a primary energy source and when mixed with optimum levels of biomass during the production of liquid fuels may have lower carbon footprints compared to petroleum fuel baselines. Coal and biomass mixtures are converted via gasification into synthesis gas (syngas), a mixture of predominantly carbon monoxide and hydrogen, which can be subsequently converted to liquid fuels by Fischer-Tropsch chemistry. The Department of Energy (DOE) is supporting research focused on using coal and biomass to produce clean and affordable power, fuels and chemicals. The DOE's National Energy Technology Laboratory (NETL) is partnering with Leland Stanford Junior

129

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbonaceous Chemistry for Carbonaceous Chemistry for Computational Modeling (C3M) Description C3M is chemistry management software focused on computational modeling of reacting systems. The primary function of C3M is to provide direct links between r e l i a b l e s o u r c e s o f k i n e t i c information (kinetic modeling soft- ware, databases, and literature) and commonly used CFD software su ch as M FIX , FLUEN T, an d BARRACUDA with minimal effort from the user. C3M also acts as a virtual kinetic laboratory to allow a CFD practitioner or researcher to evaluate complex, large sets of kinetic expressions for reliability and suitability and can interact with spreadsheet and process models. Once the chemical model is built within C3M, the software also allows the user to directly export

130

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phase III Xlerator Program: Electro-deposited Phase III Xlerator Program: Electro-deposited Mn-Co Alloy Coating for Solid Oxide Fuel Cell Interconnects-Faraday Technology Background Based on preliminary cost analysis estimates, Faraday Technology has shown that its FARADAYIC TM electrodeposition process for coating interconnects is cost competitive. Funding from the American Recovery and Reinvestment Act (ARRA) under the Small Business Innovation Research (SBIR) Phase III Xlerator Program will be directed toward developing, optimizing, and validating the FARADAYIC process as an effective and economical manufacturing method for coating interconnect materials with a manganese-cobalt (Mn-Co) alloy for use in solid oxide fuel cell (SOFC) stacks. This project is managed by the U.S. Department of Energy (DOE) National Energy

131

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology to Mitigate Syngas Technology to Mitigate Syngas Cooler Fouling Background Coal gasification, in conjunction with integrated gasification combined cycle (IGCC) power production, is under development to increase efficiency and reduce greenhouse gas emissions associated with coal-based power production. However, coal gasification plants have not achieved their full potential for superior performance and economics due to challenges with reliability and availability. In particular, performance of the syngas cooler located downstream of the gasifier has been an issue. The syngas cooler is a fire tube heat exchanger located between the gasifier and the gas turbine. The purpose of the syngas cooler is to cool the raw syngas from the gasifier and recover heat. Although

132

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Processing and Evaluation of Next Processing and Evaluation of Next Generation Oxygen Carrier Materials for Chemical Looping Combustion Background The Department of Energy (DOE) supports research towards the development of efficient and inexpensive CO 2 capture technologies for fossil fuel based power generation. The Department of Energy Crosscutting Research Program (CCR) serves as a bridge between basic and applied research. Projects supported by the Crosscutting Research Program conduct a range of pre-competitive research focused on opening new avenues to gains in power plant efficiency, reliability, and environmental quality by research in materials and processes, coal utilization science, sensors and controls, and computational energy science. Within the CCR, the University Coal Research (UCR) Program sponsors

133

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Studies to Enable Robust, Studies to Enable Robust, Reliable, Low Emission Gas Turbine Combustion of High Hydrogen Content Fuels-University of Michigan Background The University of Michigan will perform experimental and computational studies which can provide an improved and robust understanding of the reaction kinetics and other fundamental characteristics of combustion of high hydrogen content (HHC) fuels that are vital to advancing HHC turbine design and to making coal gasification power plants environmentally sustainable and cost- competitive. The scope of work includes Rapid Compression Facility (RCF) studies of HHC ignition delay times and hydroxyl radical (OH) time-histories, flame speeds, and flammability limits. A range of temperatures, pressures, and test gas mixture compositions will

134

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Considerations and Environmental Considerations and Cooling Strategies for Vane Leading Edges in a Syngas Environment- University of North Dakota Background Cooling airfoil leading edges of modern first stage gas turbine vanes presents a con- siderable challenge due to the aggressive heat transfer environment and efficiency penalties related to turbine hot gas path cooling. This environment is made more complex when natural gas is replaced by high hydrogen fuels (HHF) such as synthesis gas (syngas) derived from coal gasification with higher expected levels of impurities. In this project the University of North Dakota (UND) and The Ohio State University (OSU) will explore technology opportunities to improve the reliability of HHF gas turbines by analyzing the effects

135

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alternative Low-Cost Process for Alternative Low-Cost Process for Deposition of MCrAlY Bond Coats for Advanced Syngas/Hydrogen Turbine Applications-Tennessee Technological University Background One of the material needs for the advancement of integrated gasification combined cycle (IGCC) power plants is the development of low-cost effective manufacturing processes for application of coating architectures with enhanced performance and durability in coal derived synthesis gas (syngas)/hydrogen environments. Thermal spray technologies such as air plasma spray (APS) and high-velocity oxy-fuel (HVOF) are currently used to fabricate thermal barrier coating (TBC) systems for large land- based turbine components. In this research Tennessee Technological University (TTU) will develop metal chromium-aluminum-yttrium (MCrAlY; where M = nickel [Ni], cobalt

136

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solid-Fueled Pressurized Chemical Solid-Fueled Pressurized Chemical Looping with Flue-Gas Turbine Combined Cycle for Improved Plant Efficiency and CO2 Capture Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while

137

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hafnia-Based Nanostructured Hafnia-Based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology- University of Texas at El Paso Background Thermal barrier coatings (TBCs) are protective layers of low thermal conductivity ceramic refractory material that protect gas turbine components from high temperature exposure. TBCs improve efficiency by allowing gas turbine components to operate at higher temperatures and are critical to future advanced coal-based power generation systems. Next generation gas turbine engines must tolerate fuel compositions ranging from natural gas to a broad range of coal-derived synthesis gasses (syngas) with high hydrogen content. This will require TBCs to withstand surface temperatures much higher than those currently experienced by standard materials. In this project the University of Texas at El Paso (UTEP)

138

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Utilization of Coal Syngas in High Direct Utilization of Coal Syngas in High Temperature Fuel Cells-West Virginia University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/ NETL is leading the research, development, and demonstration SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. West Virginia University's (WVU) project will establish the tolerance limits of contaminant

139

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Geotechnical Site and Geotechnical Site Investigations for the Design of a CO2 Rich Flue Gas Direct Injection and Storage Facility in an Underground Mine in the Keweenaw Basalts Background Fundamental and applied research on carbon capture, utilization and storage (CCUS) technologies is necessary in preparation for future commercial deployment. These technologies offer great potential for mitigating carbon dioxide (CO2) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCUS technical and non-technical disciplines that are currently under-represented in the United States. Education and training

140

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Risk Assessment Partnership National Risk Assessment Partnership The Need for Quantitative Risk Assessment for Carbon Utilization and Storage Carbon utilization and storage-the injection of carbon dioxide (CO2) into permanent underground and terrestrial storage sites-is an important part of our nation's strategy for managing CO2 emissions. Several pilot- to intermediate-scale carbon storage projects have been performed in the U.S. and across the world. However, some hurdles still exist before carbon storage becomes a reality in the U.S. at a large scale. From a technical point of view, carbon storage risk analysis is complicated by the fact that all geologic storage sites are not created equally. Every potential site comes with an individual set of characteristics, including type of storage formation, mineral make-

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Model Development-LG Fuel Model Development-LG Fuel Cell Systems Background In this congressionally directed project, LG Fuel Cell Systems Inc. (LGFCS), formerly known as Rolls-Royce Fuel Cell Systems (US) Inc., is developing a solid oxide fuel cell (SOFC) multi-physics code (MPC) for performance calculations of their fuel cell structure to support product design and development. The MPC is based in the computational fluid dynamics software package STAR-CCM+ (from CD-adapco) which has been enhanced with new models that allow for coupled simulations of fluid flow, porous flow, heat transfer, chemical, electrochemical and current flow processes in SOFCs. Simulations of single cell, five-cell, substrate and bundle models have been successfully validated against experimental data obtained by LGFCS. The MPC is being

142

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the Highest- of the Highest- Priority Geologic Formations for CO 2 Storage in Wyoming Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strand- plain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef.

143

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessment of Factors Influencing Assessment of Factors Influencing Effective CO2 Storage Capacity and Injectivity in Eastern Gas Shales Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

144

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reflection Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

145

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dry Sorbent Technology Dry Sorbent Technology for Pre-Combustion CO 2 Capture Background An important component of the Department of Energy (DOE) Carbon Capture Program is the development of carbon capture technologies for power systems. Capturing carbon dioxide (CO 2 ) from mixed-gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and practical CO 2 loading volumes. Current technologies that are effective at separating CO 2 from typical CO 2 -containing gas mixtures, such as coal-derived shifted synthesis gas (syngas), are both capital and energy intensive. Research and development is being conducted to identify technologies that will provide improved economics and

146

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Turbine Thermal Gas Turbine Thermal Performance-Ames Laboratory Background Developing turbine technologies to operate on coal-derived synthesis gas (syngas), hydrogen fuels, and oxy-fuels is critical to the development of advanced power gener-ation technologies such as integrated gasification combined cycle and the deployment of near-zero-emission type power plants with capture and separation of carbon dioxide (CO 2 ). Turbine efficiency and service life are strongly affected by the turbine expansion process, where the working fluid's high thermal energy gas is converted into mechanical energy to drive the compressor and the electric generator. The most effective way to increase the efficiency of the expansion process is to raise the temperature of the turbine's

147

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Statistical Analysis of CO2 Exposed Wells Statistical Analysis of CO2 Exposed Wells to Predict Long Term Leakage through the Development of an Integrated Neural-Genetic Algorithm Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

148

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geological Sequestration Geological Sequestration Consortium-Development Phase Illinois Basin - Decatur Project Site Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO2) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities, and nonprofit organizations. These partnerships are the core of a nationwide network helping to establish the most suitable technologies, regulations, and infrastructure needs for carbon storage. The partnerships include more than 400 distinct organizations, spanning 43 states

149

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CONTACT CONTACT Cathy Summers Director, Process Development Division National Energy Technology Laboratory 1450 Queen Ave., SW Albany, OR 97321-2198 541-967-5844 cathy.summers@netl.doe.gov An Integrated Approach To Materials Development Traditional trial-and-error method in materials development is time consuming and costly. In order to speed up materials discovery for a variety of energy applications, an integrated approach for multi-scale materials simulations and materials design has

150

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Scale Simulations of the Large Scale Simulations of the Mechanical Properties of Layered Transition Metal Ternary Compounds for FE Power Systems Background The U.S. Department of Energy (DOE) promotes the advancement of computational capabilities to develop materials for advanced fossil energy power systems. The DOE's National Energy Technology Laboratory (NETL) Advanced Research (AR) Program is working to enable the next generation of Fossil Energy (FE) power systems. The goal of

151

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigations and Investigations and Rational Design of Durable High- Performance SOFC Cathodes- Georgia Institute of Technology Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/ NETL is leading the research, development, and demonstration of solid SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Cathode durability is critical to long-term SOFC performance for commercial deployment.

152

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxygen Carriers for Coal-Fueled Oxygen Carriers for Coal-Fueled Chemical Looping Combustion Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

153

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel Supercritical Carbon Dioxide Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressurized Oxy-combustion in Conjunction with Cryogenic Compression Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while maintaining near

154

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geological & Environmental Sciences Geological & Environmental Sciences Subsurface Experimental Laboratories Autoclave and Core Flow Test Facilities Description Researchers at NETL study subsurface systems in order to better characterize and understand gas-fluid-rock and material interactions that impact environmental and resource issues related to oil, gas, and CO2 storage development. However, studying the wide variety of subsurface environments related to hydrocarbon and CO2 systems requires costly and technically challenging tools and techniques. As a result, NETL's Experimental Laboratory encompasses multi-functional, state-of-the-art facilities that perform a wide spectrum of geological studies providing an experimental basis for modeling of various subsurface phenomena and processes. This includes, but is not

155

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improving Durability of Turbine Components through Trenched Film Cooling and Contoured Endwalls-University of Texas at Austin Background Gas turbine operation utilizing coal-derived high hydrogen fuels (synthesis gas, or syngas) requires new cooling configurations for turbine components. The use of syngas is likely to lead to degraded cooling performance resulting from rougher surfaces and partial blockage of film cooling holes. In this project the University of Texas at Austin (UT) in cooperation with The Pennsylvania State University (Penn State) will investigate the development of new film cooling and endwall cooling designs for maximum performance when subjected to high levels of contaminant depositions. This project was competitively selected under the University Turbine Systems Research

156

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Single-Crystal Sapphire Optical Fiber Single-Crystal Sapphire Optical Fiber Sensor Instrumentation for Coal Gasifiers Background Accurate temperature measurement inside a coal gasifier is essential for safe, efficient, and cost-effective operation. However, current sensors are prone to inaccurate readings and premature failure due to harsh operating conditions including high temperatures (1,200-1,600 degrees Celsius [°C]), high pressures (up to 1000 pounds per square inch gauge [psig]), chemical corrosiveness, and high flow rates, all of which lead to corrosion, erosion, embrittlement, and cracking of gasifier components as well as sensor failure. Temperature measurement is a critical gasifier control parameter because temperature is a critical factor influencing the gasification and it leads to impacts in efficiency and

157

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Unraveling the Role of Transport, Unraveling the Role of Transport, Electrocatalysis, and Surface Science in the SOFC Cathode Oxygen Reduction Reaction-Boston University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture The electrochemical performance of SOFCs can be substantially influenced by

158

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low-Swirl Injectors for Hydrogen Gas Low-Swirl Injectors for Hydrogen Gas Turbines in Near-Zero Emissions Coal Power Plants-Lawrence Berkeley National Laboratory Background The U.S. Department of Energy Hy(DOE) Lawrence Berkeley National Laboratory (LBNL) is leading a project in partnership with gas turbine manufacturers and universities to develop a robust ultra-low emission combustor for gas turbines that burn high hydrogen content (HHC) fuels derived from gasification of coal. A high efficiency and ultra-low emissions HHC fueled gas turbine is a key component of a near-zero emis- sions integrated gasification combined cycle (IGCC) clean coal power plant. This project is managed by the DOE National Energy Technology Laboratory (NETL). NETL is researching advanced turbine technology with the goal of producing reliable,

159

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demonstration of a Coal-Based Demonstration of a Coal-Based Transport Gasifier Background Coal is an abundant and indigenous energy resource and currently supplies almost 38 percent of the United States' electric power. Demand for electricity, vital to the nation's economy and global competitiveness, is projected to increase by almost 28 percent by 2040. The continued use of coal is essential for providing an energy supply that supports sustainable economic growth. Unfortunately, nearly half of the nation's electric power generating infrastructure is more than 30 years old and in need of substantial refurbishment or replacement. Additional capacity must also be put in service to keep pace with the nation's ever-growing demand for electricity. It is in the public interest

160

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Foamed Wellbore Cement Foamed Wellbore Cement Stability under Deep Water Conditions Background Foamed cement is a gas-liquid dispersion that is produced when an inert gas, typically nitrogen, is injected into a conventional cement slurry to form microscopic bubbles. Foamed cements are ultralow-density systems typically employed in formations that are unable to support annular hydrostatic pressure exerted by conventional cement slurries. More recently, the use of foamed cement has expanded into regions with high-stress environments, for example, isolating problem formations typical in the Gulf of Mexico. In addition to its light-weight application, foamed cement has a unique resistance to temperature and pressure-induced stresses. Foamed cement exhibits superior fluid

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scale Computational Design and Scale Computational Design and Synthesis of Protective Smart Coatings for Refractory Metal Alloys Background The goal of the University Coal Research (UCR) Program within the Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to further the understanding of coal utilization. Since the program's inception in 1979, its primary objectives have been to (1) improve understanding of the chemical and physical processes involved in the conversion and utilization of coal so it can be used in an environmentally acceptable manner, (2) maintain and upgrade the coal research capabilities of and facilities at U.S. colleges and universities, and (3) support the education of students in the area of coal science. The National Energy Technology Laboratory's Office of Coal and Power Systems supports

162

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of CO2 in Commercial Conversion of CO2 in Commercial Materials using Carbon Feedstocks Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

163

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Experimental and Chemical Kinetics Experimental and Chemical Kinetics Study of the Combustion of Syngas and High Hydrogen Content Fuels- Pennsylvania State University Background Pennsylvania State University is teaming with Princeton University to enhance scientific understanding of the underlying factors affecting combustion for turbines in integrated gasification combined cycle (IGCC) plants operating on synthesis gas (syngas). The team is using this knowledge to develop detailed, validated combustion kinetics models that are useful to support the design and future research and development needed to transition to fuel flexible operations, including high hydrogen content (HHC) fuels derived from coal syngas, the product of gasification of coal. This project also funda- mentally seeks to resolve previously reported discrepancies between published ex-

164

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coating Issues in Coal-Derived Synthesis Coating Issues in Coal-Derived Synthesis Gas/Hydrogen-Fired Turbines-Oak Ridge National Laboratory Background The Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) is leading research on the reliable operation of gas turbines when fired with synthesis gas (syngas) and hydrogen-enriched fuel gases with respect to firing temperature and fuel impurity levels (water vapor, sulfur, and condensable species). Because syngas is derived from coal, it contains more carbon and more impurities than natural gas. In order to achieve the desired efficiency, syngas-fired systems need to operate at very high temperatures but under combustion conditions necessary to reduce nitrogen oxide (NO X ) emissions. ORNL's current project is focused on understanding the performance of high-

165

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Diode Laser Cladding of High Diode Laser Cladding of High Temperature Alloys Used in USC Coal- Fired Boilers Background The Advanced Research (AR) Materials Program addresses materials requirements for all fossil energy systems, including materials for advanced power generation and coal fuels technologies. Examples of these technologies include coal gasification, heat engines such as turbines, combustion systems, fuel cells, hydrogen production, and carbon capture

166

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Processes Electrochemical Processes for CO2 Capture and Conversion to Commodity Chemicals Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the

167

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Preparation and Testing of Corrosion- Preparation and Testing of Corrosion- and Spallation-Resistant Coatings- University of North Dakota Background The life of turbine components is a significant issue in gas fired turbine power systems. In this project the University of North Dakota (UND) will advance the maturity of a process capable of bonding oxide-dispersion strengthened alloy coatings onto nickel-based superalloy turbine parts. This will substantially improve the lifetimes and maximum use temperatures of parts with and without thermal barrier coatings (TBCs). This project is laboratory research and development and will be performed by UND at their Energy & Environmental Research Center (EERC) facility and the Department of Mechanical Engineering. Some thermal cycle testing will occur at Siemens Energy

168

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Assessment Model for Predicting Integrated Assessment Model for Predicting Potential Risks to Groundwater and Surface Water Associated with Shale Gas Development Background The EPAct Subtitle J, Section 999A-999H established a research and development (R&D) program for ultra-deepwater and unconventional natural gas and other petroleum resources. This legislation identified three program elements to be administered by a consortium under contract to the U.S. Department of Energy. Complementary research performed by the National Energy Technology Laboratory's (NETL) Office of Research and Development (ORD) is a fourth program element of this cost-shared program. NETL was also tasked with managing the consortium: Research Partnership to Secure Energy for America (RPSEA). Historically, the Complementary R&D Program being carried out by NETL's ORD has focused

169

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demonstration of Enabling Spar-Shell Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines - Florida Turbine Technologies Background The Florida Turbine Technologies (FTT) spar-shell gas turbine airfoil concept has an internal structural support (the spar) and an external covering (the shell). This concept allows the thermal-mechanical and aerodynamic requirements of the airfoil design to be considered separately, thereby enabling the overall design to be optimized for the harsh environment these parts are exposed to during operation. Such optimization is one of the major advantages of the spar-shell approach that is not possible with today's conventional monolithic turbine components. The proposed design integrates a novel cooling approach based on Advanced Recircu-

170

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Los Alamos National Laboratory - Los Alamos National Laboratory - Advancing the State of Geologic Sequestration Technologies towards Commercialization and Pre-Combustion Capture Goals Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop technologies to capture, separate, and store carbon dioxide (CO 2 ) to aid in reducing greenhouse gas (GHG) emissions without adversely influencing energy use or hindering economic growth. Carbon capture and sequestration (CCS) - the capture of CO 2 from large point sources and subsequent injection into deep geologic formations for permanent storage - is one option that is receiving considerable attention. NETL is devoted to improving geologic carbon sequestration technology by funding research projects aimed at removing barriers to commercial-scale

171

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solid Oxide Fuel Cell Cathodes: Solid Oxide Fuel Cell Cathodes: Unraveling the Relationship among Structure, Surface Chemistry, and Oxygen Reduction-Boston University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture The Boston University (BU) project was competitively selected to acquire the fundamental

172

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials for Robust Repair Materials for Robust Repair of Leaky Wellbores in CO2 Storage Formations Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

173

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxy-fired Pressurized Fluidized Bed Oxy-fired Pressurized Fluidized Bed Combustor Development and Scale-up for New and Retrofit Coal-fired Power Plants Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy-combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to

174

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quantification Quantification of Wellbore Leakage Risk Using Non-Destructive Borehole Logging Techniques Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the

175

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Research Storage Research Carbon capture and storage (CCS) is a key component of the U.S. carbon management portfolio. Numerous studies have shown that CCS can account for up to 55 percent of the emissions reductions needed to stabilize and ultimately reduce atmospheric concentrations of CO 2 . NETL's Carbon Storage Program is readying CCS technologies for widespread commercial deployment by 2020. The program's goals are:

176

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sequestration Sequestration Training and Research Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO2). Carbon capture and storage (CCS) technologies offer great potential for reducing CO2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess the skills required for implementing and deploying CCS technologies.

177

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gulf of Mexico Miocene CO Gulf of Mexico Miocene CO 2 Site Characterization Mega Transect Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Conventional storage types are porous permeable clastic or carbonate rocks that have

178

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Leads Collaborative Effort DOE Leads Collaborative Effort to Quantify Environmental Changes that Coincide with Shale Gas Development Background DOE's National Energy Technology Laboratory (NETL) is leading a joint industry/ government research project to document environmental changes that occur during the lifecycle of shale gas development. The research plan calls for one year of environmental monitoring before development takes place to establish baseline conditions and account for seasonal variations. Monitoring then will continue through the different stages of unconventional shale gas development including: road and pad construction, drilling, and hydraulic fracturing, and for at least one year of subsequent production operations. The study will take place at a Range Resources-Appalachia

179

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

General Electric General Electric Background GE Power & Water, along with GE Global Research Center, has an ongoing U.S. Depart- ment of Energy (DOE) program to develop gas turbine technology for coal-based integrated gasification combined cycle (IGCC) power generation that will improve efficiency, reduce emissions, lower costs, and allow for carbon capture and storage (CCS). GE is broadening this development effort, along with expanding applicability to industrial applications such as refineries and steel mills under the American Recovery and Reinvestment Act (ARRA). ARRA funding will be utilized to facilitate a set of gas turbine technology advancements that will improve the efficiency, emissions, and cost performance of turbines with industrial CCS. ARRA industrial technology acceleration,

180

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Livermore National Laboratory Livermore National Laboratory - Advancing the State of Geologic Sequestration Technologies towards Commercialization Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop carbon capture and storage (CCS) technologies to capture, separate, and store carbon dioxide (CO 2 ) in order to reduce green-house gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO 2 by injecting and permanently storing it in underground geologic formations. NETL is working to advance geologic carbon sequestration technology by funding research projects that aim to accelerate deployment and remove barriers to commercial-scale carbon sequestration. Lawrence Livermore National Laboratory

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

r r oj e c t Fac t s Advanced Research Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High Temperature and Dynamic Gas Pressure in Harsh Environments Background Securing a sustainable energy economy by developing affordable and clean energy from coal and other fossil fuels is central to the mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). To further this mission, NETL funds research and development of novel sensors that can function under the

182

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxy-Fuel Turbo Machinery Oxy-Fuel Turbo Machinery Development for Energy Intensive Industrial Applications-Clean Energy Systems Background Clean Energy Systems (CES), with support from Siemens Energy and Florida Turbine Technologies (FTT), has an ongoing U.S. Department of Energy (DOE) program to develop an oxy-fuel combustor for highly efficient near zero emission power plants. CES is expanding this development for an industrial-scale, oxy-fuel reheat combustor- equipped intermediate-pressure oxy-fuel turbine (IP-OFT) under the American Recovery and Reinvestment Act (ARRA). Through the design, analysis, and testing of a modified Siemens SGT-900 gas turbine, the team will demonstrate a simple-cycle oxy-fuel system. ARRA funding is accelerating advancement in OFT technology for

183

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Passive Wireless Acoustic Wave Sensors Passive Wireless Acoustic Wave Sensors for Monitoring CO 2 Emissions for Geological Sequestration Sites Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO 2 into underground formations that have the ability to securely contain the CO

184

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Criteria for Flame- Criteria for Flame- holding Tendencies within Premixer Passages for High Hydrogen Content Fuels-University of California, Irvine Background The gas turbine community must develop low emissions systems while increasing overall efficiency for a widening source of fuels. In this work, the University of California, Irvine (UCI) will acquire the fundamental knowledge and understanding to facilitate the development of robust, reliable, and low emissions combustion systems with expanded high hydrogen content (HHC) fuel flexibility. Specifically, understanding flashback and the subsequent flameholding tendencies associated with geometric features found within combustor fuel/air premixers will enable the development of design guides to estimate flame holding tendencies for lean, premixed emission combustion systems

185

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combining Space Geodesy, Seismology, Combining Space Geodesy, Seismology, and Geochemistry for MVA of CO2 in Sequestration Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO2) leakage at CO2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO2, with a high level of confidence that the CO2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

186

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhanced Analytical Simulation Tool for Enhanced Analytical Simulation Tool for CO2 Storage Capacity Estimation and Uncertainty Quantification Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

187

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reactive Transport Models with Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

188

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a Prototype Commercial a Prototype Commercial Gasifier Sensor Background Integrated gasification combined cycle (IGCC) technology has the potential to improve the efficiency and environmental performance of fossil fuel based electric power production. During the IGCC process, coal and/or biomass is gasified at high temperature and pressure to form synthesis gas (syngas), a mixture of hydrogen, carbon monoxide, carbon dioxide, and small amounts of contaminants such as hydrogen sulfide. The syngas can be used to produce power, chemicals, and/or fuels. The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Gasification Technologies Program is focused on enhancing the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of

189

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phase III Xlerator Program: Rapid Phase III Xlerator Program: Rapid Commercialization of Advanced Turbine Blades for IGCC Power Plants-Mikro Systems Background Mikro Systems, Inc. is developing their proprietary TOMO SM manufacturing technology to produce turbine blades with significantly improved internal cooling geometries that are beyond current manufacturing state-of-the-art, thus enabling higher operating temperatures. Funding from the American Recovery and Reinvestment Act (ARRA) under the Small Business Innovation Research (SBIR) Phase III Xlerator Program will be directed towards accelerating commercial adoption of TOMO SM technology by leading turbine manufacturers through the demonstration of superior manufacturability, cost, and performance. Ultimately, this technology will lead to improved efficiency

190

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Non-Thermal Plasma for Fossil Energy Non-Thermal Plasma for Fossil Energy Related Applications Background The U.S. Department of Energy is investigating various non-thermal plasma tech- nologies for their catalytic properties related to fossil energy conversion and carbon dioxide decomposition. Non-thermal plasma is an ionized gas comprised of a mixture of charged particles (electrons, ions), active chemical radicals (O 3 , O, OH), and highly excited species that are known to accelerate reforming reactions in

191

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Training Toward Advanced 3-D Seismic Training Toward Advanced 3-D Seismic Methods for CO 2 Monitoring, Verification, and Accounting Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effective- ness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce greenhouse gas (GHG) emissions without adversely af fecting energy use or hindering economic grow th. Geologic carbon storage involves the injection of CO 2 into underground formations that have the ability to securely contain the CO

192

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cathode Surface Chemistry and Cathode Surface Chemistry and Optimization Studies-Carnegie Mellon University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Carnegie Mellon University's (CMU) project was selected to acquire the fundamental knowledge and understanding that will facilitate research and development to enhance

193

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a Coal-Biomass to Liquids a Coal-Biomass to Liquids Plant in Southern West Virginia Background Concerns regarding global supplies of oil, energy security, and climate change have generated renewed interest in alternative energy sources. The production of liquid fuels from coal provides an option for reducing petroleum use in the U.S. transportation sector and enhancing national and economic security by decreasing the nation's reliance on foreign oil. Two basic methods can be employed to produce liquid fuels

194

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Creep-Fatigue-Environment Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultrasupercritical Coal Power Plants Background The U.S. Department of Energy (DOE) promotes the advancement of computational capabilities to develop materials for advanced fossil energy power systems. The DOE's National Energy Technology Laboratory (NETL) Advanced Research (AR) Program is working to enable the next generation of Fossil Energy (FE) power systems. One goal of the AR Materials Program is to conduct research leading to a scientific understanding of high-performance materials capable of service in the hostile environments associated with advanced ultrasupercritical (A-USC) coal-fired power plants. A-USC plants will increase coal-fired power plant efficiency by allowing operation

195

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NETL's Fluid Chemistry Analysis NETL's Fluid Chemistry Analysis Capacity Background Establishing the geochemistry of surface and ground waters requires an arsenal of techniques devoted to determining the constituents these waters contain and the environment in which they exist. Many standard techniques have been developed over the years, and new ones continue to be explored as more complex matrices and harsher environments are encountered. Deep geologic storage of carbon dioxide and the development of unconventional oil and gas resourses are two areas of current concern where the study of geochemical processes is challenging due to the complex nature of the natural samples, and where routine analytical techniques are being pushed to their limits. The facilities at NETL include both conventional and cutting-edge instrumentation

196

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

29,759 29,759 PROJECT NUMBER FWP-2012.03.03 Task 3 Conversion and Fouling Background Coal and biomass gasification is an approach to cleaner power generation and other uses of these resources. Currently, the service life of gasifiers does not meet the performance needs of users. Gasifiers fail to achieve on-line availability of 85-95 percent in utility applications and 95 percent in applications such as chemical production. The inability to meet these goals has created a potential roadblock to widespread acceptance and commercialization of advanced gasification technologies. Gasifier output is a hot gas mixture consisting primarily of hydrogen and carbon monoxide (CO), known as synthesis gas (syngas). The syngas cooler is one of the key components identified as negatively impacting gasifier availability. Ash originating from impurities

197

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compact Eye-safe Scanning Differential Compact Eye-safe Scanning Differential Absorption LIDAR (DIAL) for Spatial Mapping of Carbon Dioxide for MVA at Geologic Carbon Sequestration Sites Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that

198

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Energy California Project Hydrogen Energy California Project Background A need exists to further develop carbon management technologies that capture and store or beneficially reuse carbon dioxide (CO 2 ) that would otherwise be emitted into the atmosphere from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. Under the Clean Coal Power Initiative (CCPI) Round 3 program, the U.S. Department of Energy (DOE) is providing financial assistance, including funding under the American Recovery and Reinvestment Act (ARRA) of 2009, to industry to demonstrate the commercial viability of technologies that will capture CO

199

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simulation of CO Simulation of CO 2 Leakage and Caprock Remediation Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the environment, and can provide the basis for establishing carbon credit trading markets

200

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pressure Membrane Contactors for Pressure Membrane Contactors for CO 2 Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Carbon Capture Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The Carbon Capture R&D Program portfolio of carbon dioxide (CO 2 ) emissions control technologies and CO 2 compression is focused on advancing technological options for new and existing coal- fired power plants in the event of carbon constraints. Post-combustion separation and capture of CO

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shizhong Yang Shizhong Yang Principal Investigator Department of computer science/LoNI southern University and a&M college Baton rouge, Louisiana 70813 225-771-2060 shizhong_yang@subr.edu PROJECT DURATION Start Date End Date 06/01/2012 05/31/2015 COST Total Project Value $200,000 DOE/Non-DOE Share $200,000 / $0 Novel Nano-Size Oxide Dispersion Strengthened Steels Development through Computational and Experimental Study Background Ferritic oxide dispersion strengthened (oDs) steel alloys show promise for use at higher temperatures than conventional alloys due to their high-temperature oxidation resistance and dislocation creep properties. the development of oDs alloys with nanoscale powders of transition metal oxides (yttrium and chromium) dispersed in

202

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Coal Power Initiative (CCPI 3) Clean Coal Power Initiative (CCPI 3) NRG Energy: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project Background Additional development and demonstration is needed to improve the cost and efficiency of carbon management technologies that capture and store carbon dioxide (CO 2 ) that would otherwise be emitted from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. The U.S. Department of Energy (DOE) is providing financial assistance through the Clean Coal Power Initiative (CCPI) Round 3, which includes funding from the American Recovery and Reinvestment Act (ARRA), to demonstrate the commercial viability

203

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiocarbon as a Reactive Tracer for Radiocarbon as a Reactive Tracer for Tracking Permanent CO2 Storage in Basaltic Rocks Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

204

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Degradation of TBC Systems in Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems- University of Pittsburgh Background The conditions inside integrated gasification combined cycle (IGCC) systems, such as high steam levels from hydrogen firing, high carbon dioxide steam mixtures in oxy- fired systems, and different types of contaminants, introduce complexities associated with thermal barrier coating (TBC) durability that are currently unresolved. In this work the University of Pittsburgh will team with Praxair Surface Technologies (PST) to deter- mine the degradation mechanisms of current state-of-the-art TBCs in environments consisting of deposits and gas mixtures that are representative of gas turbines using coal-derived synthesis gas (syngas).

205

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low-Cost Alloys for High-Temperature Low-Cost Alloys for High-Temperature SOFC Systems Components - QuesTek Innovations Background One of the key opportunities for cost reduction in a solid oxide fuel cell (SOFC) system is the set of balance of plant (BOP) components supporting the fuel cell itself, including the heat exchanger and air/fuel piping. These represent about half of the overall cost of the system. A major enabling technological breakthrough is to replace incumbent nickel-based superalloys in high-temperature BOP components with low-cost ferritic stainless steel. However, the ferritic alloys are unsuitable for SOFC application without additional coatings due to the inherent volatile nature of the alloy's chromium oxide (Cr2O3) element, which tends to poison the fuel cell's cathode

206

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Southwestern United States Carbon Southwestern United States Carbon Sequestration Training Center Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to enhance the existing CCUS workforce and to develop new professionals can be accomplished through focused educational initiatives in the CCUS technology area. Key educational topics include simulation and risk assessment; monitoring, verification,

207

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beneficial Use of CO2 in Precast Beneficial Use of CO2 in Precast Concrete Products Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

208

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Barrier Coatings for Thermal Barrier Coatings for Operation in High Hydrogen Content Fueled Gas Turbines-Stony Brook University Background Traditional thermal barrier coatings (TBCs) based on yttria-stabilized zirconia (YSZ) will likely not be suitable in gas turbines used in integrated gasification combined cycle (IGCC) power plants. This is due to higher operating temperatures that will not only affect phase stability and sintering but will accelerate corrosive degradation phenomena. Coatings provide a framework to combat degradation issues and provide performance improvements needed for higher temperature environments. The Center for Thermal Spray Research (CTSR) at Stony Brook University, in partnership with its industrial Consortium for Thermal Spray Technology, is investigating science and

209

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cooling for IGCC Turbine Cooling for IGCC Turbine Blades-Mikro Systems Background Turbine blade and vane survivability at higher operating temperatures is the key to improving turbine engine performance for integrated gasification combined cycle (IGCC) power plants. Innovative cooling approaches are a critical enabling technology to meet this need. Mikro Systems, Inc. is applying their patented Tomo-Lithographic Molding (TOMO) manufacturing technology to produce turbine blades with significantly improved internal cooling geometries that go beyond the current manufacturing state-of-the-art to enable higher operating temperatures. This project addresses two important aspects. First is the need to increase the quality and reliability of the core manufacturing process capability to

210

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion Dynamics in Multi-Nozzle Combustion Dynamics in Multi-Nozzle Combustors Operating on High- Hydrogen Fuels-Pennsylvania State University Background Combustion dynamics is a major technical challenge to the development of efficient, low emission gas turbines. Current information is limited to single-nozzle combustors operating on natural gas and neglects combustors with configurations expected to meet operability requirements using a range of gaseous fuels such as coal derived synthesis gas (syngas). In this project, Pennsylvania State University (Penn State) in collaboration with Georgia Institute of Technology (Georgia Tech) will use multiple-nozzle research facilities to recreate flow conditions in an actual gas turbine to study complicated interactions between flames that can aggravate the combustion dynamics in syngas-

211

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summit Texas Clean Energy, LLC: Texas Summit Texas Clean Energy, LLC: Texas Clean Energy Project: Pre-Combustion CO 2 Capture and Sequestration Background A need exists to further develop carbon management technologies that capture and store, or beneficially reuse, carbon dioxide (CO 2 ) that would otherwise be emitted into the atmosphere from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer the potential to significantly reduce CO 2 emissions and mitigate the anthropogenic contribution to global climate change, while substantially reducing or minimizing the economic impacts of the solution. Under Round 3 of the Clean Coal Power Initiative (CCPI), the U.S. Department of Energy (DOE) is providing up to $450 million in co-funded financial assistance to industry,

212

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficiency Solar-Based Catalytic Efficiency Solar-Based Catalytic Structure for CO2 Reforming Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

213

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE-WRI Cooperative Research and DOE-WRI Cooperative Research and Development Program for Fossil Energy- Related Resources Background Our nation's demand for cleaner and more efficient fossil energy production will increase during the coming decades, necessitating the development of new energy technologies to achieve energy independence in an environmentally responsible manner. The University of Wyoming (UW) Research Corporation's Western Research Institute (WRI) has been supporting the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) and its mission of developing fossil energy and related environmental technologies for over two decades. Federal funding for these research efforts has usually been provided through congressionally mandated cooperative agreements, with cost share

214

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Unconventional Resources Unconventional Resources Background Natural gas and crude oil provide two-thirds of our Nation's primary energy supply and will continue to do so for at least the next several decades, as the Nation transitions to a more sustainable energy future. The natural gas resource estimated to exist within the United States has expanded significantly, but because this resource is increasingly harder to locate and produce, new technologies are required to extract it. Under the Energy Policy Act of 2005, the National Energy Technology Laboratory is charged with developing a complementary research program supportive of improving safety and minimizing the environmental impacts of activities related to unconventional natural gas and other petroleum resource exploration and production technology

215

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Staged, High-Pressure Oxy-Combustion Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-up Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available CO2 capture and storage significantly reduces efficiency of the power cycle. The aim of the ACS program is to develop advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while maintaining near zero emissions of other flue gas pollutants.

216

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solid Oxide Fuel Cells Operating on Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels- Pennsylvania State University Background In this congressionally directed project, the Earth and Mineral Science (EMS) Energy Institute at Pennsylvania State University (PSU) focuses on the development of fuel processors, reforming catalysts, and chemical sorbents to support the production of electricity from anaerobic digester gas (ADG) and ultra-low sulfur diesel (ULSD) via solid-oxide fuel cells (SOFCs). PSU will use the fuel processors, reforming catalysts, and chemical sorbents developed under this work to transform and clean ADG and ULSD into a syngas stream suitable as a feedstock for SOFCs. This project is managed by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), whose mission is to advance energy options to fuel

217

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solid Oxide Fuel Cell Cathode Enhancement Solid Oxide Fuel Cell Cathode Enhancement Through a Vacuum-assisted Infiltration- Materials and Systems Research, Inc. Background Solid oxide fuel cell (SOFC) technology promises to provide an efficient method to generate electricity from coal-derived synthesis gas (syngas), biofuels, and natural gas. The typical SOFC composite cathode (current source) possesses excellent performance characteristics but is subject to chemical stability issues at elevated temperatures both during manufacturing and power generation. Costs attributed to the cathode and its long-term stability issues are a current limitation of SOFC technologies. These must be addressed before commercial SOFC power generation can be realized. Materials and Systems Research, Inc. (MSRI) will develop a vacuum-assisted infiltration

218

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Study of the Durability of Doped Study of the Durability of Doped Lanthanum Manganite and Cobaltite Based Cathode Materials under "Real World" Air Exposure Atmospheres- University of Connecticut Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO

219

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comprehensive Comprehensive Monitoring Techniques to Verify the Integrity of Geological Storage Reservoirs Containing Carbon Dioxide Background Research aimed at monitoring the long-term storage stability and integrity of carbon dioxide (CO2) stored in geologic formations is one of the most pressing areas of need if geological storage is to become a significant factor in meeting the United States' stated objectives to reduce greenhouse gas emissions. The most promising geologic formations under consideration for CO2 storage are active and depleted oil and gas formations, brine formations, and deep, unmineable coal seams. Unfortunately, the long-term CO2 storage capabilities of these formations are not yet well understood. Primary Project Goal The goal of this effort is to develop

220

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SO SO 2 -Resistent Immobilized Amine Sorbents for CO 2 Capture Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies for Monitoring Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic

222

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Monitoring and Numerical Modeling of Monitoring and Numerical Modeling of Shallow CO 2 Injection, Greene County, Missouri Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO 2 ). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess the

223

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tagging Carbon Dioxide to Enable Tagging Carbon Dioxide to Enable Quantitative Inventories of Geological Carbon Storage Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

224

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanoporous, Metal Carbide, Surface Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations Background Both coal and biomass are readily available in the U.S. and can be thermally processed to produce hydrogen and/or power. The produced hydrogen can be sent directly to a fuel cell or hydrogen turbines for efficient and environmentally clean power generation. More efficient hydrogen production processes need to be developed before coal and biomass can become economically viable sources of hydrogen. To meet this need, the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is partnering with the Colorado School of Mines and Pall Corporation to develop nanoporous metal carbide surface diffusion membranes for use in high temperature

225

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigation on Flame Characteristics Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently underrepresented in the United States. Education and training activities

226

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Object Optimization Approaches Object Optimization Approaches for the Design of Carbon Geological Sequestration Systems Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO 2 ). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess

227

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensors and Control Sensors and Control CONTACTS Ben Chorpening Sensors & Controls Technical Team Coordinator 304-285-4673 benjamin.chorpening@netl.doe.gov Steven Woodruff Principal Investigator 304-285-4175 steven.woodruff@netl.doe.gov Michael Buric Co-Principal Investigator 304-285-2052 michael.buric@netl.doe.gov Raman Gas Composition Sensor System for Natural Gas and Syngas Applications Goal The goal of this project is to develop and test a Raman laser spectroscopy system for responsive gas composition monitoring, and to transfer the technology to industry for commercial implementation. The instrument provides state-of-the-art improvement of reduced size and increased sensitivity and sample rate to facilitate the process control

228

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Joining of Advanced Joining of Advanced High-Temperature Materials Background To remain economically competitive, the coal-fired power generation industry needs to increase system efficiency, improve component and system reliability, and meet ever tightening environmental standards. In particular, cost-effective improvements in thermal efficiency are particularly attractive because they offer two potential benefits: (1) lower variable operating cost via increased fuel utilization (fuel costs represent over 70 percent of the variable operating cost of a fossil fuel-fired power plant) and (2) an economical means of reducing carbon dioxide (CO2) and other emissions. To achieve meaningful gains, steam pressure and temperature must be increased to

229

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basin-Scale Leakage Risks from Geologic Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on Carbon Capture and Storage Energy Market Competitiveness Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the

230

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Surface-Modified Electrodes: Enhancing Surface-Modified Electrodes: Enhancing Performance Guided by In-Situ Spectroscopy and Microscopy- Stanford University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. The electrochemical performance of SOFCs can be substantially influenced by mass and

231

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Eddy Simulation Modeling of Large Eddy Simulation Modeling of Flashback and Flame Stabilization in Hydrogen-Rich Gas Turbines using a Hierarchical Validation Approach- University of Texas at Austin Background The focus of this project is the development of advanced large eddy simulation (LES)-based combustion modeling tools that can be used to design low emissions combustors burning high hydrogen content fuels. The University of Texas at Austin (UT) will develop models for two key topics: (1) flame stabilization, lift- off, and blowout when fuel-containing jets are introduced into a crossflow at high pressure, and (2) flashback dynamics of lean premixed flames with detailed description of flame propagation in turbulent core and near-wall flows. The jet- in-crossflow (JICF) configuration is widely used for rapid mixing of reactants

232

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficient Efficient Regeneration of Physical and Chemical Solvents for CO 2 Capture Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

233

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Scale CO2 Injection and Commercial Scale CO2 Injection and Optimization of Storage Capacity in the Southeastern United States Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

234

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Turbine Thermal Management-NETL-RUA Turbine Thermal Management-NETL-RUA Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is researching advanced turbine technology with the goal of producing reliable, affordable, and environmentally friendly electric power in response to the nation's increasing energy challenges. With the Hydrogen Turbine Program, NETL is leading the research, development, and demonstration of technologies to achieve power production from high-hydrogen-content fuels derived from coal that is clean, efficient, and cost-effective, and minimizes carbon dioxide (CO 2 ) emissions, and will help maintain the nation's leadership in the export of gas turbine equipment. The NETL Regional University Alliance (RUA) is an applied research collaboration that

235

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scoping Studies to Evaluate the Benefits Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low Rank Coal in Integrated Gasification Combined Cycle Background Gasification of coal or other solid feedstocks (biomass, petroleum coke, etc.) produces synthesis gas (syngas), which can be cleaned and used to produce electricity and a variety of commercial products that support the U.S. economy, decrease U.S. dependence on oil imports, and meet current and future environmental emission standards. The major challenge is cost, which needs to be reduced to make integrated gasification combined cycle (IGCC) technology competitive. An IGCC plant combines a combustion turbine operating on a gasified fuel stream--syngas--with a steam turbine to capture what would otherwise be waste heat. Currently, the estimated cost of power from IGCC is higher than

236

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reliability and Durability of Materials Reliability and Durability of Materials and Components for SOFCs - Oak Ridge National Laboratory Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) has a mission to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Oak Ridge National Laboratory's (ORNL) project was selected to acquire the fundamental

237

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOFC Protection Coatings Based on a SOFC Protection Coatings Based on a Cost-Effective Aluminization Process- NexTech Materials Background To make solid oxide fuel cell (SOFC) systems easier to manufacture and reduce costs, less expensive stainless steels have been substituted into the stack design as alternatives to ceramic interconnects. Stainless has also been substituted for high-cost, nickel-based superalloys in balance of plant (BOP) components. For successful implementation of these steels, protective coatings are necessary to protect the air-facing metal surfaces from high-temperature corrosion/oxidation and chromium (Cr) volatilization. NexTech Materials Ltd. (NexTech) will develop an aluminide diffusion coating as a low- cost alternative to conventional aluminization processes and evaluate the ability of the

238

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methanol Economy Methanol Economy Background Fossil fuels such as coal, oil, and natural gas are composed of hydrocarbons with varying ratios of carbon and hydrogen. Consumption of hydrocarbons derived from fossil fuels is integral to modern day life in the U.S. Hydrocarbons are used as fuels and raw materials in the transportation sector and in many industrial production processes including chemicals, petrochemicals, plastics, pharmaceuticals, agrochemicals, and rubber.

239

Microsoft Word - 2014 WVSB - WV HS letter (generic for PDF).docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

610 Collins Ferry Road, P.O. Box 880, Morgantown, WV 26507-0880 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940 610 Collins Ferry Road, P.O. Box 880, Morgantown, WV 26507-0880 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940 REPLY TO: Morgantown Office  steven.woodruff@netl.doe.gov  Voice (304) 285-4175  Fax (304) 285-0903  www.netl.doe.gov September 23, 2013 Dear Science Chair or Principal: On behalf of the Secretary of Energy, I am pleased to announce the opening of the 2014 National Science Bowl, a tournament-style academic competition challenging students in the fields of science and mathematics. In support of the National Science Bowl, the U.S. Dept of Energy's National Energy Technology Laboratory is once again proud to host the West Virginia Regional Science Bowl. The WVSB is one of many regional competitions held for high school teams across

240

Natural Gas Plays in the Marcellus Shale: Challenges and Potential Opportunities  

Science Journals Connector (OSTI)

Seismic surveys have been used to produce 3-D images of the subsurface (Figure 2) including images of very productive natural shale gas reservoirs. ... Recently, about 12 ML (3 million gal) of treated AMD was obtained from the Blue Valley Fish Culture Station and used in a Marcellus completion hydrofracture process (29). ...

David M. Kargbo; Ron G. Wilhelm; David J. Campbell

2010-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction  

Science Journals Connector (OSTI)

...2011 ) Natural gas: Should fracking stop? Nature 477 ( 7364 ): 271...13 Boyer EW ( 2012 ) The Impact of Marcellus Gas Drilling on Rural Drinking Water Supplies...the Nicholas School of the Environment and Center on Global Change...derived from depositional environments that ranged from proposed...

Robert B. Jackson; Avner Vengosh; Thomas H. Darrah; Nathaniel R. Warner; Adrian Down; Robert J. Poreda; Stephen G. Osborn; Kaiguang Zhao; Jonathan D. Karr

2013-01-01T23:59:59.000Z

242

DOE - Office of Legacy Management -- The Carborundum Co Inc - WV 02  

Office of Legacy Management (LM)

The Carborundum Co Inc - WV 02 The Carborundum Co Inc - WV 02 FUSRAP Considered Sites Site: THE CARBORUNDUM CO., INC (WV.02 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: AMAX Inc WV.02-1 Location: Wood County , West Virginia WV.02-1 Evaluation Year: 1982 WV.02-1 Site Operations: Produced high-grade Zirconium metal for use in construction of nuclear reactors for the Navy circa late-1950s and 1960s; Conducted small scale Zirconium and Uranium testing in the mid-1970s. WV.02-2 Site Disposition: Eliminated - AEC/NRC licensed site. No Authority for cleanup under FUSRAP WV.02-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Thorium, Uranium WV.02-2 Radiological Survey(s): Yes WV.02-3 Site Status: Eliminated from further consideration under FUSRAP

243

Civil society research and Marcellus Shale natural gas development: results of a survey of volunteer water monitoring organizations  

Science Journals Connector (OSTI)

This paper reports the results of a survey of civil society organizations that are monitoring surface water for impacts of Marcellus Shale development in Pennsylvania and New York. We ... of surface water quali...

Kirk Jalbert; Abby J. Kinchy

2014-03-01T23:59:59.000Z

244

A New York or Pennsylvania state of mind: social representations in newspaper coverage of gas development in the Marcellus Shale  

Science Journals Connector (OSTI)

What first comes to mind when you think of natural gas development in the Marcellus Shale region? The information and ideas we hold about shale gas development can strongly influence our discussion of ... environ...

Darrick T. Evensen; Christopher E. Clarke

2014-03-01T23:59:59.000Z

245

DOE - Office of Legacy Management -- Springdale PA - PA 11  

Office of Legacy Management (LM)

Springdale PA - PA 11 Springdale PA - PA 11 FUSRAP Considered Sites Springdale, PA Alternate Name(s): C.H. Schnoor - Misspelling of Schnorr from historical documents Conviber, Inc. Premier Manufacturing Company Unity Railway Supply Company PA.11-1 PA.11-2 PA.11-4 PA.11-9 Location: 644 Garfield Street, Springdale, Pennsylvania PA.11-2 Historical Operations: Machined extruded uranium for the Hanford Pile Project to produce an alternate charge for the Hanford reactor and machined uranium slugs for MED contractors. PA.11-9 Eligibility Determination: Eligible PA.11-4 PA.11-5 Radiological Survey(s): Assessment Surveys, Verification Surveys PA.11-4 PA.11-6 PA.11-7 PA.11-8 Site Status: Certified - Cleanup completed - Certification Basis, Federal Register Notice Included PA.11-9

246

DOE - Office of Legacy Management -- Springdale PA - PA 11  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Springdale PA - PA 11 Springdale PA - PA 11 FUSRAP Considered Sites Springdale, PA Alternate Name(s): C.H. Schnoor - Misspelling of Schnorr from historical documents Conviber, Inc. Premier Manufacturing Company Unity Railway Supply Company PA.11-1 PA.11-2 PA.11-4 PA.11-9 Location: 644 Garfield Street, Springdale, Pennsylvania PA.11-2 Historical Operations: Machined extruded uranium for the Hanford Pile Project to produce an alternate charge for the Hanford reactor and machined uranium slugs for MED contractors. PA.11-9 Eligibility Determination: Eligible PA.11-4 PA.11-5 Radiological Survey(s): Assessment Surveys, Verification Surveys PA.11-4 PA.11-6 PA.11-7 PA.11-8 Site Status: Certified - Cleanup completed - Certification Basis, Federal Register Notice Included PA.11-9

247

West Virginia Smart Grid Implementation Plan (WV SGIP) Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

West Virginia Smart Grid Implementation Plan (WV SGIP) Project West Virginia Smart Grid Implementation Plan (WV SGIP) Project APERC Report on Assessment of As-Is Grid by Non-Utility Stakeholders Introduction One goal of this grid modernization project is to assess the current status of the electric power grid in West Virginia in order to define the potential to implement smart grid technologies. Thus, an initial task of this project was to define the current state or "As-Is" grid in West Virginia. Financial and time constraints prohibited the development and execution of formal surveys to solicit input from the various stakeholders. However attempts were made to obtain their input through informal questionnaires and meeting with focus groups. list of stakeholders which

248

Comment on Modeling and prediction of natural gas fracking pad landscapes in the Marcellus Shale region, USA by Qingming Meng  

Science Journals Connector (OSTI)

Abstract In modeling and prediction of natural gas fracking pad landscapes in the Marcellus Shale region, USA, the author asserts that landscape and environmental characteristics are the driving factors behind the siting of natural gas pads in the southwestern area of the Marcellus Shale, Pennsylvania, USA. In the article, the author largely dismisses the importance of geology for site prediction. Although the study is useful for understanding landscape characteristics in a small area of the Marcellus Shale, his premise that the key variables for natural gas fracking can be landscape and environmental variables rather than geological variables is flawed and thus could lead to erroneous assumptions when creating land use plans. A more reasonable assumption is that the surface siting of natural gas wells is secondary to geologic considerations, as the current topography bears little influence on the geology.

Wendy A. Klein; Alex K. Manda

2015-01-01T23:59:59.000Z

249

A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Comparative Study of the A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin DOE/NETL-2011/1478 Cover. Top left: The Barnett Shale exposed on the Llano uplift near San Saba, Texas. Top right: The Marcellus Shale exposed in the Valley and Ridge Province near Keyser, West Virginia. Photographs by Kathy R. Bruner, U.S. Department of Energy (USDOE), National Energy Technology Laboratory (NETL). Bottom: Horizontal Marcellus Shale well in Greene County, Pennsylvania producing gas at 10 million cubic feet per day at about 3,000 pounds per square inch. Photograph by Tom Mroz, USDOE, NETL, February 2010. ACKNOWLEDGMENTS The authors greatly thank Daniel J. Soeder (U.S. Department of Energy) who kindly reviewed the manuscript. His criticisms,

250

Appendix PA: Performance Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The process that led to the final T-fields used in the PA is discussed below. Geologic data, including (1) depth to the top of the Culebra, (2) reduction in thickness of the...

251

Impact of Sorption Isotherms on the Simulation of CO2-Enhanced Gas Recovery and Storage Process in Marcellus Shale  

E-Print Network [OSTI]

reservoirs, natural gas occurs as free gas in the intergranular and fracture porosity and is adsorbed on clay Continuous, low-permeability, fractured, organic-rich gas shale units are widespread and are possible geologic storage targets .The Marcellus could act as a storage reservoir for captured CO2. In this scenario

Mohaghegh, Shahab

252

Shale we look for gas?............................................................................. 1 The Marcellus shale--An old "new" gas reservoir in Pennsylvania ............ 2  

E-Print Network [OSTI]

#12;CONTENTS Shale we look for gas?............................................................................. 1 The Marcellus shale--An old "new" gas reservoir in Pennsylvania ............ 2 Meet the staff, the contour interval should be 6 inches. #12;STATE GEOLOGIST'S EDITORIAL Shale We Look For Gas? Recently, you

Boyer, Elizabeth W.

253

Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales  

Science Journals Connector (OSTI)

...two previously normal wells that displayed increased...tectonic (e.g., geothermal springs) or microbial...subset of drinking water wells near Marcellus shale...Domestic and Municipal Water Wells for Dissolved Gas Analysis...nitrate flux to the Gulf of Mexico. Ground Water 42...

Thomas H. Darrah; Avner Vengosh; Robert B. Jackson; Nathaniel R. Warner; Robert J. Poreda

2014-01-01T23:59:59.000Z

254

Neutron Absorption Cross Sections of Pa231 and Pa232  

Science Journals Connector (OSTI)

Activation studies of Pa231 in the graphite region of the Materials Testing Reactor have resulted in a value of 20015 barns for the thermal neutron absorption cross section of Pa231. Resonance neutron effects were eliminated by the method of cadmium differences and by conducting the irradiations in a region where the ratio of resonance to thermal neutrons is small.Measurements of the Pa232 and Pa233 activities produced in a highly intense neutron irradiation of Pa231 have resulted in a value of 760100 barns for the absorption cross section of Pa232.

R. R. Smith; N. P. Alley; R. H. Lewis; A. VanderDoes

1956-02-01T23:59:59.000Z

255

PA Nanotechnology 2012 Nanotech's Role in Advancing PA's Economy  

E-Print Network [OSTI]

PA Nanotechnology 2012 Nanotech's Role in Advancing PA's Economy June 5, 2012 Harrisburg University University Drexel Nanotechnology Institute (DNI) Harrisburg Area Community College Harrisburg University of Science and Technology Lehigh University Center for Advanced Materials and Nanotechnology (CAMN) Penn

Gilchrist, James F.

256

PA Nanotechnology 2012: Nanotech's Role in Advancing PA's Economy  

E-Print Network [OSTI]

PA Nanotechnology 2012: Nanotech's Role in Advancing PA's Economy Date: June 5, 2012 Time: 7:30 am collaborative nanotechnology research, education, technology transfer, entrepreneurship, and commercialization within the Commonwealth. · Publicize and promote PA leadership in nanotechnology R&D, workforce education

Gilchrist, James F.

257

Multi-scale and Integrated Characterization of the Marcellus Shale in the Appalachian Basin: From Microscopes to Mapping  

SciTech Connect (OSTI)

Historic data from the Department of Energy Eastern Gas Shale Project (ESGP) were compiled to develop a database of geochemical analyses, well logs, lithological and natural fracture descriptions from oriented core, and reservoir parameters. The nine EGSP wells were located throughout the Appalachian Basin and intercepted the Marcellus Shale from depths of 750 meters (2500 ft) to 2500 meters (8200 ft). A primary goal of this research is to use these existing data to help construct a geologic framework model of the Marcellus Shale across the basin and link rock properties to gas productivity. In addition to the historic data, x-ray computerized tomography (CT) of entire cores with a voxel resolution of 240mm and optical microscopy to quantify mineral and organic volumes was performed. Porosity and permeability measurements in a high resolution, steady-state flow apparatus are also planned. Earth Vision software was utilized to display and perform volumetric calculations on individual wells, small areas with several horizontal wells, and on a regional basis. The results indicate that the lithologic character of the Marcellus Shale changes across the basin. Gas productivity appears to be influenced by the properties of the organic material and the mineral composition of the rock, local and regional structural features, the current state of in-situ stress, and lithologic controls on the geometry of induced fractures during stimulations. The recoverable gas volume from the Marcellus Shale is variable over the vertical stratigraphic section, as well as laterally across the basin. The results from this study are expected to help improve the assessment of the resource, and help optimize the recovery of natural gas.

Crandall, Dustin; Soeder, Daniel J; McDannell, Kalin T.; Mroz, Thomas

2010-01-01T23:59:59.000Z

258

East North Central Pa  

Gasoline and Diesel Fuel Update (EIA)

East East North Central Pa cif ic Contiguous Mountain West North Central West South Central Pacific Noncontiguous East South Central Sout h At lant ic Middle Atlantic New England 35. Average Price of Natural Gas Delivered to Consumers by Census Division, 1995-1996 (Dollars per Thousand Cubic Feet) Table Census Division Residential Commercial 1995 1996 1995 1996 New England ........................................................... 9.06 9.03 6.78 6.96 Middle Atlantic ......................................................... 7.75 8.00 6.04 6.57 East North Central ................................................... 5.05 5.44 4.57 4.94 West North Central .................................................. 4.97 5.54 4.08 4.71 South Atlantic........................................................... 6.89 7.50 5.33 6.14 East South Central...................................................

259

2010 PA CoP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(Continued) Video Download PDF Download NRC Part 61 Update and PA Implications David Esh (NRC) Video Download PDF Download EPA Modeling Community of PracticeISCMEM Gene...

260

Depositional Model of the Marcellus Shale in West Virginia Based on Facies Analysis  

SciTech Connect (OSTI)

A lithologic analysis of well exposed Marcellus outcrops has identified six different facies in West Virginia and neighboring states: (1) light gray calcareous shale, (2) fossiliferous limestone, (3) black calcareous shale, (4) black noncalcareous shale, (5) dark gray noncalcareous shale, and (6) K-bentonite. Close interbedding of these rock types attests to a complex, ever-changing environment on the eastern foreland ramp of the Appalachian Basin. The environmental setting was clearly not a deep trough, permanently anoxic, salinity stratified, sediment starved, and populated exclusively by phytoplanktonthe traditional depositional model. To the contrary, our sedimentary data suggest a rather shallow water depth, intermittent anoxia, normal-marine salinity, a fluctuating input of siliciclastic mud, and faunal communities of low and moderate diversity. Interbedding of the shale and limestone lithofacies as well as the vertical stacking of facies associations is explained most simply by fluctuations in water depth coupled with fluctuations in sediment supply. The sea floor was, at times, immediately below wave base (Facies 1 and 2), around the depth of the thermocline (Facies 2 and 3), or below the thermocline (Facies 4 and 5), relative sea level changing through two sequences of lowstand, transgression, and highstand. Simultaneously the supply of siliciclastic mud was greater at times of lowstand (increased erosion) and highstand (prograding shoreline), and the supply smaller during transgression (sediment stored in distant coastal plain).

Bruner, Kathy

2011-11-14T23:59:59.000Z

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Speaker to Address Impact of Natural Gas Production on Greenhouse Gas Emissions When used for power generation, Marcellus Shale natural gas can significantly reduce carbon  

E-Print Network [OSTI]

generation, Marcellus Shale natural gas can significantly reduce carbon dioxide emissions, but questions have, that using natural gas for electricity generation is better than coal for the long-term healthSpeaker to Address Impact of Natural Gas Production on Greenhouse Gas Emissions When used for power

Boyer, Elizabeth W.

262

Category:Philadelphia, PA | Open Energy Information  

Open Energy Info (EERE)

PA PA Jump to: navigation, search Go Back to PV Economics By Location Media in category "Philadelphia, PA" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Philadelphia PA PECO Energy Co.png SVFullServiceRestauran... 65 KB SVHospital Philadelphia PA PECO Energy Co.png SVHospital Philadelphi... 59 KB SVLargeHotel Philadelphia PA PECO Energy Co.png SVLargeHotel Philadelp... 60 KB SVLargeOffice Philadelphia PA PECO Energy Co.png SVLargeOffice Philadel... 61 KB SVMediumOffice Philadelphia PA PECO Energy Co.png SVMediumOffice Philade... 63 KB SVMidriseApartment Philadelphia PA PECO Energy Co.png SVMidriseApartment Phi... 64 KB SVOutPatient Philadelphia PA PECO Energy Co.png SVOutPatient Philadelp... 62 KB SVPrimarySchool Philadelphia PA PECO Energy Co.png

263

Category:Pittsburgh, PA | Open Energy Information  

Open Energy Info (EERE)

Pittsburgh, PA Pittsburgh, PA Jump to: navigation, search Go Back to PV Economics By Location Media in category "Pittsburgh, PA" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Pittsburgh PA PECO Energy Co.png SVFullServiceRestauran... 65 KB SVHospital Pittsburgh PA PECO Energy Co.png SVHospital Pittsburgh ... 60 KB SVLargeHotel Pittsburgh PA PECO Energy Co.png SVLargeHotel Pittsburg... 60 KB SVLargeOffice Pittsburgh PA PECO Energy Co.png SVLargeOffice Pittsbur... 61 KB SVMediumOffice Pittsburgh PA PECO Energy Co.png SVMediumOffice Pittsbu... 63 KB SVMidriseApartment Pittsburgh PA PECO Energy Co.png SVMidriseApartment Pit... 64 KB SVOutPatient Pittsburgh PA PECO Energy Co.png SVOutPatient Pittsburg... 62 KB SVPrimarySchool Pittsburgh PA PECO Energy Co.png

264

Eduardo S. Brondizio,¹ Anthony Cak,² Marcellus M. Caldas,³ Carlos Mena,⁴  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 a 143 7 a 143 Pequenos Produtores e o Desmatamento na Amazônia Eduardo S. Brondizio,¹ Anthony Cak,² Marcellus M. Caldas,³ Carlos Mena,⁴ , ⁵ Richard Bilsborrow,⁶ Celia Futemma,⁷ Thomas Ludewigs,⁸ Emilio F. Moran,¹ e Mateus Batistella⁹ Este capítulo discute a relação entre o uso da terra por pequenos agricultores e o desmatamento, com uma atenção especial aos últimos 30 anos da colonização amazônica no Brasil e Equador. Nossa análise chama a atenção para aspectos comuns que unem diferentes grupos sociais, como os pequenos produtores (ex. identidade social, acesso à terra e recursos, tecnologia, mercado e crédito), assim como para a variabilidade entre pequenos produtores em termos de tempo de permanência na

265

File:EIA-Appalach6-WV-VA-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

Appalach6-WV-VA-BOE.pdf Appalach6-WV-VA-BOE.pdf Jump to: navigation, search File File history File usage Appalachian Basin, Southern West Virginia and Southwestern Virginia By 2001 BOE Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 17.02 MB, MIME type: application/pdf) Description Appalachian Basin, Southern West Virginia and Southwestern Virginia By 2001 BOE Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States West Virginia, Virginia File history Click on a date/time to view the file as it appeared at that time.

266

File:EIA-Appalach6-WV-VA-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

Appalach6-WV-VA-GAS.pdf Appalach6-WV-VA-GAS.pdf Jump to: navigation, search File File history File usage Appalachian Basin, Southern West Virginia and Southwestern Virginia By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 18.09 MB, MIME type: application/pdf) Description Appalachian Basin, Southern West Virginia and Southwestern Virginia By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States West Virginia, Virginia File history Click on a date/time to view the file as it appeared at that time.

267

File:EIA-Appalach5-eastWV-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

Appalach5-eastWV-BOE.pdf Appalach5-eastWV-BOE.pdf Jump to: navigation, search File File history File usage Appalachian Basin, Eastern West Virginia and Western Maryland By 2001 BOE Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 17.26 MB, MIME type: application/pdf) Description Appalachian Basin, Eastern West Virginia and Western Maryland By 2001 BOE Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States West Virginia, Maryland File history Click on a date/time to view the file as it appeared at that time.

268

Modeling and prediction of natural gas fracking pad landscapes in the Marcellus Shale region, USA. A rejoinder to Klein and Manda's commentary  

Science Journals Connector (OSTI)

Abstract In a comment on my early article (Meng, 2014) published in this journal, Klein and Manda (2015) critiqued some of my discussion points. Most significantly, they posited that it is [therefore] erroneous to state that [in the Marcellus Shale region] land use characteristics are driving factors in well site/pad determination because my speculation that in the Marcellus Shale region the key variables for natural gas fracking can be landscape and environmental variables rather than geological variables is flawed. In this rejoinder, I demonstrate that not only are their criticisms based on limited geological understanding of fracking, but they are also on an incorrect analysis. Therefore, my original results and conclusions on the driving force of landscape and environmental variables and on the implications to environment management and ecosystem administration and conservation remain stable and valid.

Qingmin Meng

2015-01-01T23:59:59.000Z

269

Half-Life of Pa232  

Science Journals Connector (OSTI)

The half-life of Pa232 from two methods of preparation (Pa231+n, and Th232+d) has been measured and found to be 1.32 days.

Arthur H. Jaffey and Earl K. Hyde

1950-07-15T23:59:59.000Z

270

D"E(:pa  

Office of Legacy Management (LM)

e e D"E(:pa . EFG (0744 United States Government .;,~&ljy gb' /fq Department of Eneigy memorandum JUN 4 1992 DATE: REPLY TO ATTN OF: EM-421 (W. A. Williams, 903-8149) SUBJECT: Authority Determination -- Springdale, Pennsylvania Former C. H. Schnoor & Company facility, TO: The File The attached review documents the basis for determining whether DOE has authority for taking remedial action at the former C. H. Schnoor & Company facility in Springdale, Pennsylvania, under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The facility was used for the shaping of uranium by the Manhattan Engineer District (MED) during the Second World War. The following factors are significant in reaching a decision and are discussed in more detail in the attached authority review:

271

SBOT WEST VIRGINIA NATIONAL ENERGY TECHNOLOGY LAB -WV POC Larry Sullivan  

Broader source: Energy.gov (indexed) [DOE]

WEST VIRGINIA WEST VIRGINIA NATIONAL ENERGY TECHNOLOGY LAB -WV POC Larry Sullivan Telephone (412) 386-6115 Email larry.sullivan@netl.doe.gov ADMINISTATIVE / WASTE / REMEDIATION Facilities Support Services 561210 Employment Placement Agencies 561311 Temporary Help Services 561320 Professional Employer Organizations 561330 Document Preparation Services 561410 Security Guards and Patrol Services 561612 Security Systems Services (except Locksmiths) 561621 Janitorial Services 561720 Landscaping Services 561730 Hazardous Waste Treatment and Disposal 562211 Remediation Services 562910 Materials Recovery Facilities 562920 All Other Miscellaneous Waste Management Services 562998 CONSTRUCTION Industrial Building Construction 236210 Commercial and Institutional Building Construction 236220 Power and Communication Line and Related Structures Construction

272

DOE - Office of Legacy Management -- Aliquippa - PA 07  

Office of Legacy Management (LM)

Aliquippa - PA 07 Aliquippa - PA 07 FUSRAP Considered Sites Aliquippa, PA Alternate Name(s): Cyclops Corporation, Titusville Plant Univesal Cyclops, Inc Aliquippa Forge Site Vulcan Crucible Site PA.07-2 PA.07-4 Location: 100 First Street, Aliquippa, Pennsylvania PA.07-4 Historical Operations: During the late 1940s, performed metal fabrication services under contracct with the AEC that included rolling natural uranium metal into rods. PA.07-3 PA.07-5 PA.07-6 PA.07-7 Eligibility Determination: Eligible PA.07-1 Radiological Survey(s): Assessment Surveys, Verification Surveys PA.07-8 PA.07-9 PA.07-10 PA.07-11 PA.07-12 Site Status: Certified- Certification Basis, Federal Register Notice included PA.07-4 Long-term Care Requirements: Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites S07566_FUSRAP

273

DOE - Office of Legacy Management -- Frankford Arsenal - PA 21  

Office of Legacy Management (LM)

Frankford Arsenal - PA 21 Frankford Arsenal - PA 21 FUSRAP Considered Sites Site: Frankford Arsenal (PA.21 ) Eliminated from further consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Pitman -Dunn Laboratories Dept. , Philadelphia , Pennsylvania PA.21-1 Evaluation Year: 1987 PA.21-2 Site Operations: Conducted research involving the use of uranium tetrachloride and metal fabrication operations with uranium metal. PA.21-2 PA.21-4 PA.21-5 Site Disposition: Eliminated - Referred to DOD PA.21-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium PA.21-2 PA.21-3 PA.21-4 PA.21-5 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP - Referred to DOD PA.21-2

274

Natural gas distributed throughout the Marcellus black shale in northern Appalachia could boost proven U.S. gas reserves by trillions of cubic feet (see http://live.psu.edu/story/28116).  

E-Print Network [OSTI]

Natural gas distributed throughout the Marcellus black shale in northern Appalachia could boost is the second largest producing on-shore domestic natural gas field in the United States after the San Juan and opportunities faced by landowners navigating the legal and practical issues of leasing their land for natural

Boyer, Elizabeth W.

275

Technical Publications in Refereed Journals, Invited Contributions in Edited Technical Books and extended juried  

E-Print Network [OSTI]

shear wave polarization corrections across multiple offsets and anisotropic in the productive zone for the Marcellus Shale, WV -- Expanded Abstracts, Vol. 33, 84th

Yang, Zong-Liang

276

QER Public Meeting in Pittsburgh, PA: Natural Gas: Transmission...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Pittsburgh, PA: Natural Gas: Transmission, Storage and Distribution QER Public Meeting in Pittsburgh, PA: Natural Gas: Transmission, Storage and Distribution Meeting Date and...

277

DOE - Office of Legacy Management -- Carpenter Steel Co - PA...  

Office of Legacy Management (LM)

consideration under FUSRAP Designated Name: Not Designated Alternate Name: Carpenter Technology Corporation PA.12-1 Location: 101 West Bern Street , Reading , Pennsylvania PA.12-2...

278

US MidAtl PA Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

MidAtl PA MidAtl PA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl PA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl PA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl PA Expenditures dollars ELECTRICITY ONLY average per household * Pennsylvania households consume an average of 96 million Btu per year, 8% more than the U.S. average. Pennsylvania residents also spend 16% more than the average U.S. households for energy consumed in their homes. * Average electricity consumption in Pennsylvania homes is 10,402 kWh per year, which is lower than the national average, but 58% more than New York households and 17% more than New Jersey residents.

279

US MidAtl PA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

MidAtl PA MidAtl PA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl PA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl PA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl PA Expenditures dollars ELECTRICITY ONLY average per household * Pennsylvania households consume an average of 96 million Btu per year, 8% more than the U.S. average. Pennsylvania residents also spend 16% more than the average U.S. households for energy consumed in their homes. * Average electricity consumption in Pennsylvania homes is 10,402 kWh per year, which is lower than the national average, but 58% more than New York households and 17% more than New Jersey residents.

280

DOE - Office of Legacy Management -- Jessop Steel Co - PA 17  

Office of Legacy Management (LM)

Jessop Steel Co - PA 17 Jessop Steel Co - PA 17 FUSRAP Considered Sites Site: JESSOP STEEL CO. (PA.17 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 500 Green Street , Washington , Pennsylvania PA.17-3 Evaluation Year: 1991 PA.17-1 Site Operations: Metal fabrication for the AEC in the early 1950s. PA.17-1 Site Disposition: Eliminated - Limited quantities of radioactive material handled on site - Potential for residual radioactive contamination is considered remote - Confirmed by radiological survey PA.17-1 PA.17-2 PA.17-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium PA.17-1 Radiological Survey(s): Yes PA.17-3 Site Status: Eliminated from further consideration under FUSRAP

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Northeast - NY NJ CT PA Area | Open Energy Information  

Open Energy Info (EERE)

Northeast - NY NJ CT PA Area Northeast - NY NJ CT PA Area (Redirected from New York Area - NY NJ CT PA) Jump to: navigation, search Contents 1 Clean Energy Clusters in the Northeast - NY NJ CT PA Area 1.1 Products and Services in the Northeast - NY NJ CT PA Area 1.2 Research and Development Institutions in the Northeast - NY NJ CT PA Area 1.3 Networking Organizations in the Northeast - NY NJ CT PA Area 1.4 Investors and Financial Organizations in the Northeast - NY NJ CT PA Area 1.5 Policy Organizations in the Northeast - NY NJ CT PA Area Clean Energy Clusters in the Northeast - NY NJ CT PA Area Products and Services in the Northeast - NY NJ CT PA Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

282

NETL: Science Bowl Information - Southwestern PA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Bowl Information > Science Bowl Information - South West PA Science Bowl Information > Science Bowl Information - South West PA Educational Initiatives Science Bowl Information - Southwestern PA Facebook Visit us on Facebook CLICK ON IMAGE TO SEE LARGER VIEW SWPA SWPA SWPA 2012 SWPA Science Bowl Results Congratulations! North Allegheny High School and Ingomar Middle School The finals for the SWPA Science Bowl were held on March 7th. The winner of the SWPA High School Science Bowl is North Allegheny High School. The winner of the SWPA Middle School Science Bowl is Ingomar Middle School Team 2 from the North Allegheny School District. The final team results are High School: 1st - North Allegheny HS 2nd - Mt. Lebanon HS 3rd - Baldwin HS 4th - Pine-Richland HS Middle School: 1st - Ingomar MS Team 2 (North Allegheny School District)

283

The Thermal Neutron Capture Cross Sections of Pa231 and Pa232  

Science Journals Connector (OSTI)

The neutron capture cross section of Pa231 has been determined to be 293 barns, the largest uncertainty in this determination being due to the uncertainty in the half-life of U232 and being of the order of 15 percent.The neutron capture cross section of Pa232 was determined to be about 40{+40}{-20} barns.

R. Elson; P. A. Sellers; E. R. John

1953-04-01T23:59:59.000Z

284

PA Regional Nanotechnology Conference Nanotechnology for Industry  

E-Print Network [OSTI]

4/19/2011 Present PA Regional Nanotechnology Conference Nanotechnology for Industry May 31, 2011 9 _____________________________________________________________ _____________The field of nanotechnology continues to be one of the leading forces behind our nation's ability to develop, commercialize, and produce advancements that are enabled by nanotechnology. Therefore, Drexel

Gilchrist, James F.

285

DOE - Office of Legacy Management -- Bettis Atomic Power Laboratories - PA  

Office of Legacy Management (LM)

Bettis Atomic Power Laboratories - Bettis Atomic Power Laboratories - PA 44 FUSRAP Considered Sites Site: Bettis Atomic Power Laboratories (PA.44 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Allegheny County , West Mifflin , Pennsylvania PA.44-1 Evaluation Year: Circa 1987 PA.44-2 Site Operations: Conducted activities directed toward the design, development, testing, and operational follow of nuclear reactor propulsion plants for Naval surface and submarine vessels. PA.44-1 Site Disposition: Eliminated - Active DOE facility PA.44-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Radioactive Materials Associated with Reactor Operation PA.44-3 Radiological Survey(s): None Indicated

286

Seepage Model for PA Including Dift Collapse  

SciTech Connect (OSTI)

The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M&O 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M&O 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in niches and in the cross drift to stochastically simulate the 3D flow of water in the fractured host rock (in the vicinity of potential emplacement drifts) under ambient conditions. The Disturbed Drift Seepage Submodel evaluates the impact of the partial collapse of a drift on seepage. Drainage in rock below the emplacement drift is also evaluated.

G. Li; C. Tsang

2000-12-20T23:59:59.000Z

287

DOE - Office of Legacy Management -- Sharples Corp - PA 29  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sharples Corp - PA 29 Sharples Corp - PA 29 FUSRAP Considered Sites Site: SHARPLES CORP. (PA.29 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 201 Spring Garden Street , Philadelphia , Pennsylvania & Philadelphia , Pennsylvania PA.29-2 PA.29-1 Evaluation Year: 1986 PA.29-1 Site Operations: Producer/broker of special chemicals - major MED supplier. PA.29-2 PA.29-3 Site Disposition: Eliminated - No indication that radioactive materials were used on the site PA.29-1 Radioactive Materials Handled: No Primary Radioactive Materials Handled: None Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to SHARPLES CORP. PA.29-1 - Memorandum/Checklist; D. Levine to the File; Subject:

288

DOE - Office of Legacy Management -- Heppanstall Co - PA 19  

Office of Legacy Management (LM)

Heppanstall Co - PA 19 Heppanstall Co - PA 19 FUSRAP Considered Sites Site: Heppanstall Co. (PA.19 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Tippens Inc. PA.19-1 Location: 4620 Hatfield Street , Pittsburgh , Pennsylvania PA.19-4 Evaluation Year: 1987 PA.19-2 Site Operations: Forged approximately 100,000 pounds of uranium during a six month period in 1955. PA.19-1 Site Disposition: Eliminated - Potential for contamination remote. Radiological screening survey results indicate radiation levels well below DOE guidelines. Conditions at site meet applicable requirements - No further investigation of site necessary. PA.19-1 PA.19-4 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium PA.19-3

289

DOE - Office of Legacy Management -- Beryllium Corp - PA 39  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beryllium Corp - PA 39 Beryllium Corp - PA 39 FUSRAP Considered Sites Site: BERYLLIUM CORP. (PA.39 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Brush Beryllium PA.39-1 Location: Reading , Pennsylvania PA.39-1 Evaluation Year: 1987 PA.39-1 Site Operations: Production of Beryllium circa late 1940s - 50s. PA.39-1 Site Disposition: Eliminated - No radioactive material handled at this site, only Beryllium PA.39-1 Radioactive Materials Handled: No PA.39-1 Primary Radioactive Materials Handled: None Indicated Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to BERYLLIUM CORP. PA.39-1 - Memorandum/Checklist; D. Levine to the File; Subject:

290

Northeast - NY NJ CT PA Area | Open Energy Information  

Open Energy Info (EERE)

Northeast - NY NJ CT PA Area Northeast - NY NJ CT PA Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Northeast - NY NJ CT PA Area 1.1 Products and Services in the Northeast - NY NJ CT PA Area 1.2 Research and Development Institutions in the Northeast - NY NJ CT PA Area 1.3 Networking Organizations in the Northeast - NY NJ CT PA Area 1.4 Investors and Financial Organizations in the Northeast - NY NJ CT PA Area 1.5 Policy Organizations in the Northeast - NY NJ CT PA Area Clean Energy Clusters in the Northeast - NY NJ CT PA Area Products and Services in the Northeast - NY NJ CT PA Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

291

DOE - Office of Legacy Management -- Foote Mineral Co - PA 27  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Foote Mineral Co - PA 27 Foote Mineral Co - PA 27 FUSRAP Considered Sites Site: Foote Mineral Co. (PA.27 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Exton , Pennsylvania PA.27-1 Evaluation Year: 1987 PA.27-1 Site Operations: Processed rare earth, principally zirconium and monazite sand was processed on a pilot-plant scale. PA.27-2 Site Disposition: Eliminated - Limited quantity of material handled - Potential for contamination considered remote PA.27-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Zirconium, Possibly Uranium PA.27-1 PA.27-2 PA.27-3 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to Foote Mineral Co.

292

DOE - Office of Legacy Management -- Philadelphia Navy Yard - PA 08  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Philadelphia Navy Yard - PA 08 Philadelphia Navy Yard - PA 08 FUSRAP Considered Sites Site: PHILADELPHIA NAVY YARD (PA.08) Eliminated from further consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Philadelphia , Pennsylvania PA.08-1 Evaluation Year: 1987 PA.08-1 Site Operations: Abelson's S-50 thermal diffusion pilot plant was built and operated on this facility in 1944 and large quantities of uranium hexafluoride were processed in 1945. PA.08-1 Site Disposition: Eliminated - Referred to DOD PA.08-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium oxide (hexaflouride) PA.08-1 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP - Referred to DOD PA.08-1

293

PA.03 A' EROSPACE~CORPORATI'  

Office of Legacy Management (LM)

PA.03 PA.03 ? A' EROSPACE~CORPORATI' ON / A. Plato, S. W., Washington, D. C. ZOOZJ. Telephone: (20.2) 488.6000 7117-Oli85.cdy.X 30'Septemberl985 Mr. Arthur Whitman, NE-24 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Whitman: AUTHORITY ,REVIEW. - THE FORMER SUPERIOR,STEEL CORPORATION SITE - AECCONTRACT NO. AT(30-l)- 1412 Aer0spac.e has completed.assembly and analysis.of, available documentation,, and'.prepared the,subject review for'your consideration and. determination ifthere.is authority for. remedial action. under FUSRAP' at the former Superior SteellCorporation facility in-Carnegie, Pennsylvania. As indica,ted,in the attached~review, the Superior Steel Corporation was one of three principal contractors involved in AEC's initial fuel element

294

DOE - Office of Legacy Management -- Catalytic Co - PA 40  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Catalytic Co - PA 40 Catalytic Co - PA 40 FUSRAP Considered Sites Site: Catalytic Co. (PA.40 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Philadelphia , Pennsylvania PA.40-1 Evaluation Year: 1991 PA.40-1 Site Operations: Prime contractor for construction of the Fernald facility. Records indicate one time shipment of a very small quantity (4 lbs) of uranium metal to this site. PA.40-1 Site Disposition: Eliminated - Construction contractor - Potential for residual contamination from the very small quantity of uranium shipped to this site is considered remote PA.40-2 Radioactive Materials Handled: None - as a construction contractor Primary Radioactive Materials Handled: Uranium Metal - Believed to be a Souvenier. PA.40-1

295

DOE - Office of Legacy Management -- Summerville Tube Co - PA 24  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summerville Tube Co - PA 24 Summerville Tube Co - PA 24 FUSRAP Considered Sites Site: SUMMERVILLE TUBE CO. (PA.24) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Bridgeport , Pennsylvania PA.24-1 Evaluation Year: 1987 PA.24-1 Site Operations: Metal fabrication research and development on uranium metal in the early 1940s - Cold drawing of tuballoy aluminum sheathing. PA.24-1 Site Disposition: Eliminated - Potential for residual radioactive contamination considered remote due to limited scope of operations and quantity of radioactive material handled PA.24-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium PA.24-1 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP

296

Electron affinity of Pa by 7p attachment and hyperfine structure constants for Pa-  

Science Journals Connector (OSTI)

Valence shell relativistic configuration interaction calculations for the 7p attachment to the Pa I ground state yield one bound state, viz., Pa- 5f26d7s27p J=6, with electron affinity of 0.222 eV. We found no other Js for this configuration to be bound, nor are any of the Pa- 5f26d27s2 levels expected to be bound. The hyperfine structure constants for the Pa-231 bound state are A=741.3 MHz and B=1309 MHz. Although the core-valence correlation effects are absent the agreement between the theory (4736 cm-1) and experiment (4121 cm-1) for the position of the first excited state of Pa is good (15%). We review our previous studies for the np attachment in rare earths to systematically analyze the binding of np1/2 and np3/2 electrons, in these species. 1996 The American Physical Society.

Konstantin D. Dinov and Donald R. Beck

1996-06-01T23:59:59.000Z

297

DOE - Office of Legacy Management -- Shippingport Atomic Power Plant - PA  

Office of Legacy Management (LM)

Shippingport Atomic Power Plant - Shippingport Atomic Power Plant - PA 13 FUSRAP Considered Sites Site: SHIPPINGPORT ATOMIC POWER PLANT (PA.13 ) Eliminated from further consideration under FUSRAP. Designated Name: Not Designated Alternate Name: Duquesne Light Company PA.13-1 Location: 25 miles west of Pittsburgh in Beaver County , Shippingport , Pennsylvania PA.13-2 Evaluation Year: circa 1987 PA.13-3 Site Operations: First commercially operated nuclear power reactor. Joint project (Federal Government an Duquesne Light Company) to demonstrate pressurized water reactor technology and to generate electricity. Plant operated by Duquesne Light Company under supervision of the Office of the DOE Deputy Assistant Secretary for Naval Reactors -- 1957 to October 1982. PA.13-2 Site Disposition: Eliminated - No Authority. DOE chartered Major Project #118, Shippingport Station Decommissioning Project completed cleanup in 1989. PA.13-1

298

NETL: Science Bowl Information - Southwestern PA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2011 SWPA Science Bowl 2011 SWPA Science Bowl CLICK ON IMAGE TO SEE LARGER VIEW SWPA West Chester East Team 1 SWPA Hempfield Team 1 SWPA State College Team 1 and SWPA Winner SWPA Norwin Team 1 Lilas Soukup,SB Coordinator NETL, The Honorable Tim Murphy, U.S. House, Dr. Charlene Newkirk, Dr. Anthony Cugini, Director, NETL Click here to watch the archived webcast of the Southwestern PA Science Bowl Finals High School Congratulations to our four division winners: View full results here Division Einstein - West Chester East Team 1 - Frances Poodry, Coach - Jon C, Captain - Ashish B - Alex C - Dan D Division Carson - Hempfield Team 1 - Thomas Harden, Coach - Jake K, Captain - Chase L - Rob R - Mike T - Priya B Division Tesla - State College Team 1 and SWPA Winner - Christoph S, Captain - Joe L - Monica M

299

WC_1993_005__CLASS_WAIVER_of_the_Goernment_US_and_Foreign_Pa...  

Broader source: Energy.gov (indexed) [DOE]

5CLASSWAIVERoftheGoernmentUSandForeignPa.pdf WC1993005CLASSWAIVERoftheGoernmentUSandForeignPa.pdf WC1993005CLASSWAIVERoftheGoernmentUSandForeignPa...

300

PA Regional Nanotechnology Conference Collaborating in Today's Economy  

E-Print Network [OSTI]

4/23/2009 Present PA Regional Nanotechnology Conference Collaborating in Today's Economy May 27 of green technologies and alternative energy. The PA Initiative for Nanotechnology (PIN), established organizations - Drexel University's DNI, the LNN of Lehigh University, and The Nanotechnology Institute (NTI

Gilchrist, James F.

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Ultrasound images in the new `iPA Phonetics' App  

E-Print Network [OSTI]

Ultrasound images in the new `iPA Phonetics' App Christopher Coey1 , John H. Esling1 , Scott R in an App iPA Phonetics is an application that illustrates the sounds and articulations of an expanded version of the IPA chart. The App gives users of Apple iOS mobile electronic devices the ability to access

Edinburgh, University of

302

X rays following the alpha decay of Pa231  

Science Journals Connector (OSTI)

More detailed information is presented concerning the L and K x-ray spectra due to internal conversion of the electromagnetic transitions following the ? decay of Pa231. Some of the difficulties discussed in Ref. 1 are clarified by the new results.[RADIOACTIVITY Pa231; measured L and K Ac x-ray components, ?? and ?XL coin Ac227 deduced levels, ICC.

A. G. de Pinho; L. T. Auler; A. G. da Silva

1974-05-01T23:59:59.000Z

303

Comment on the question of reflection asymmetry in Pa229  

Science Journals Connector (OSTI)

The alpha decay hindrance factors from the Pa229 5/2+ ground state to the 5/2 parity doublet bands in Ac225 suggest strong reflection asymmetry in Pa229 and the expectation that a 5/2 parity doublet will be found in this nucleus.

Raymond K. Sheline

1993-09-01T23:59:59.000Z

304

Coriolis Interaction Between Three Nilsson Bands in Pa  

Science Journals Connector (OSTI)

By comparing new experimental results with calculations, it is shown that the levels above the [5,- 3, 0] ground-state band in Pa233 and Pa231 may be interpreted as resulting from the +[6, 6, 0], the 32+[6,5,1], and the 52+[6,4,2] bands involved in a three-band Coriolis interaction.

W. Hoekstra and A. H. Wapstra

1969-04-21T23:59:59.000Z

305

Building Energy Software Tools Directory: Power Calc PaK  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Calc PaK Power Calc PaK Power Calc PaK logo Power Calc PaK is smart electrical engineering software with a proprietary database. With just 3 inputs (load kVA, load type, and number of poles), it automatically calculates, and recalculates for changes (upstream and downstream), the entire power distribution system in a building providing more than 300 outputs that are compliant with the National Electrical Code (NEC). Power Calc PaK is a patent-protected innovation (covered by U.S. Patent No. 7,636,650). One bundled calculation integrates all the outputs across all the panelboards and equipment worksheets required for the power distribution system from the branch circuit to the electrical service. A few highlights are: 3 inputs for 300 NEC-compliant outputs; ends tedious and repetitive

306

Privacy Act (PA) of 1974 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

(PA) of 1974 | National Nuclear Security Administration (PA) of 1974 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Privacy Act (PA) of 1974 Home > About Us > Our Operations > NNSA Office of General Counsel > Privacy Act (PA) of 1974 Privacy Act (PA) of 1974 The purpose of the Privacy Act of 1974 (Act), Title 5, United States Code,

307

BatPaC - Battery Performance and Cost model - About BatPaC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About BatPaC About BatPaC The starting point for this work is based on the decades of battery design work headed by Paul Nelson at Argonne National Laboratory. These design models were based in Microsoft Office Excel® resulting in a flexible and straightforward format. The current effort builds on this previous experience by adding a manufacturing cost calculation as well as increasing the fidelity of the performance calculations all while maintaining efficient calculations (e.g. fractions of a second). The cost of a battery will change depending upon the materials chemistry, battery design, and manufacturing process. Therefore, it is necessary to account for all three areas with a bottom-up cost model. Other bottom-up cost models exist but are not generally available and have not been explicitly detailed in a public document. The motivation for our approach is based on a need for a battery performance and cost model that meets the following requirements:

308

DOE - Office of Legacy Management -- Shallow Land Disposal Area - PA 45  

Office of Legacy Management (LM)

Shallow Land Disposal Area - PA 45 Shallow Land Disposal Area - PA 45 FUSRAP Considered Sites Shallow Land Disposal Area, PA Alternate Name(s): Parks Township Shallow Land Disposal Area Nuclear Materials and Equipment Corporation (NUMEC) Babcox and Wilcox Parks Facilities PA.45-1 PA.45-5 PA.45-6 Location: PA Route 66 and Kissimere Road, Parks Township, Apollo, Pennsylvania PA.45-1 Historical Operations: Fabricated nulcear fuel under an NRC license as an extension of NUMEC Apollo production facilities. PA.45-1 PA.45-5 Eligibility Determination: Eligible PA.45-6 Radiological Survey(s): None Site Status: Cleanup in progress by U.S. Army Corps of Engineers. PA.45-6 USACE Website Long-term Care Requirements: To be determined upon completion. Also see Documents Related to Shallow Land Disposal Area, PA

309

PaTu Wind Farm | Open Energy Information  

Open Energy Info (EERE)

PaTu Wind Farm PaTu Wind Farm Jump to: navigation, search Name PaTu Wind Farm Facility PaTu Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Oregon Trail Wind Farm Location Sherman County OR Coordinates 45.603734°, -120.618621° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.603734,"lon":-120.618621,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

Palmetto Clean Energy (PaCE) Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Palmetto Clean Energy (PaCE) Program Palmetto Clean Energy (PaCE) Program Palmetto Clean Energy (PaCE) Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Buying & Making Electricity Solar Home Weatherization Water Wind Program Info State South Carolina Program Type Performance-Based Incentive Rebate Amount Varies by technology and customer demand for Palmetto Clean Energy (PaCE) Provider South Carolina Energy Office '''''Note: For a limited time, generators of 6 kilowatts or less of renewable energy can now take advantage of a premium $0.10 per kilowatt hour. This premium is available on a first-come-first-serve basis to generators of solar, wind, hydro or biomass-based electricity.'''''

311

Potentiell miljo?pa?verkan fra?n kontorsstol 6110.  

E-Print Network [OSTI]

?? Livscykelanalys (LCA) a?r ett verktyg fo?r att analysera potentiell miljo?pa?verkan fra?n en produkts livscykel. I studien underso?ks vilka som a?r de mest betydande processerna (more)

Elmertoft, Emelie

2014-01-01T23:59:59.000Z

312

Structure and function of Pseudomonas aeruginosa protein PA1324 (21170)  

E-Print Network [OSTI]

Northwest National Laboratory, Biological Sciences Division, Northeast Structural Genomics Consortium and Northeast Structural Genomics Consortium, Miami University, Oxford, Ohio 45056 Received 12 June 2008 aeruginosa PA1324; NMR; functional genomics; NMR high-throughput screens; protein-ligand binding; protein

Powers, Robert

313

Observation of a new isomeric state in 217Pa  

Science Journals Connector (OSTI)

A new isomeric state in 217Pa has been observed with an ?-decay of E?=9.5400.050 MeV and T1/2=1.5-0.4+0.9 ms. The isotope 217Pa was produced in the reaction 28Si+194Pt at a beam energy of 163 MeV. Measured ?-decay half-life was reproduced by the cluster model calculation with a transferred angular momentum of l=7 ?.

T. Ikuta; H. Ikezoe; S. Mitsuoka; I. Nishinaka; K. Tsukada; Y. Nagame; J. Lu; T. Kuzumaki

1998-06-01T23:59:59.000Z

314

DOE - Office of Legacy Management -- Aluminum Co of America - PA 23  

Office of Legacy Management (LM)

PA 23 PA 23 FUSRAP Considered Sites Site: Aluminum Company of America (ALCOA) ( PA.23 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: ALCOA Research Laboratory ALCOA New Kensington Works PA.23-3 PA.23-4 Location: 600 Freeport Road and Pine and Ninth Streets , New Kensington , Pennsylvania PA.23-1 PA.23-4 Evaluation Year: Circa 1993 PA.23-1 Site Operations: Research/Development and Production activities in support of the MED uranium slug canning and other programs, 1943-1945. PA.23-5 Site Disposition: Eliminated - Based upon results of radiological surveys of the properties, potential for residual radioactive contamination is considered remote PA.23-1 PA.23-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium PA.23-1

315

E-Print Network 3.0 - aeruginosa protein pa1324 Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: Structure and function of Pseudomonas aeruginosa protein PA1324 (21-170) Kelly A. Mercier,1 John R... aeruginosa PA1324; NMR; functional genomics; NMR...

316

WC_1991_003_CLASS_WAIVER_of_the_Government_US_and_Foreign_Pa...  

Broader source: Energy.gov (indexed) [DOE]

1003CLASSWAIVERoftheGovernmentUSandForeignPa.pdf WC1991003CLASSWAIVERoftheGovernmentUSandForeignPa.pdf WC1991003CLASSWAIVERoftheGovernmentUSandForeig...

317

WC_1991_002_CLASS_WAIVER_OF_the_Government_US_and_Foreign_Pa...  

Broader source: Energy.gov (indexed) [DOE]

WC1991002CLASSWAIVEROFtheGovernmentUSandForeignPa.pdf WC1991002CLASSWAIVEROFtheGovernmentUSandForeignPa.pdf WC1991002CLASSWAIVEROFtheGovernmentUSand...

318

WC_1992_002_CLASS_WAIVER_of_the_Government_US_and_Foreign_Pa...  

Broader source: Energy.gov (indexed) [DOE]

2002CLASSWAIVERoftheGovernmentUSandForeignPa.pdf WC1992002CLASSWAIVERoftheGovernmentUSandForeignPa.pdf WC1992002CLASSWAIVERoftheGovernmentUSandForeig...

319

State College Area High School From State College, PA Wins DOE...  

Broader source: Energy.gov (indexed) [DOE]

State College Area High School From State College, PA Wins DOE's National Science Bowl State College Area High School From State College, PA Wins DOE's National Science Bowl...

320

Morphological studies on block copolymer modified PA 6 blends  

SciTech Connect (OSTI)

Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

Poindl, M., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de [Institut fr Kunststofftechnik, University of Stuttgart (Germany)

2014-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DOE - Office of Legacy Management -- Rohm and Hass Co - PA 02  

Office of Legacy Management (LM)

Rohm and Hass Co - PA 02 Rohm and Hass Co - PA 02 FUSRAP Considered Sites Site: ROHM & HASS CO. (PA.02 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 5000 Richmond Street , Philadelphia , Pennsylvania PA.02-1 Evaluation Year: 1985 PA.02-2 Site Operations: Research and development on uranium recovery from carbonate leach liquors in the mid-1950s. PA.02-3 Site Disposition: Eliminated - Radiation levels below criteria PA.02-4 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium PA.02-3 Radiological Survey(s): Yes PA.02-4 Site Status: Eliminated from consideration under FUSRAP PA.02-5 Also see Documents Related to ROHM & HASS CO. PA.02-1 - DOE Letter; Thornton to Bjuvik; Subject: Radiological

322

DOE - Office of Legacy Management -- Palmerton Ore Buying Site - PA 33  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Palmerton Ore Buying Site - PA 33 Palmerton Ore Buying Site - PA 33 FUSRAP Considered Sites Site: PALMERTON ORE BUYING SITE (PA.33) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: New Jersey Zinc Company PA.33-1 Location: Palmerton , Pennsylvania PA.33-2 Evaluation Year: 1994 PA.33-3 Site Operations: Mid-1950s - AEC leased the New Jersey Zinc Company property and established a uranium ore stockpile on the property in the vicinity of Palmerton, PA. PA.33-4 Site Disposition: Eliminated - Potential for residual contamination and resulting exposure beyond that associated with natural background radiation considered remote PA.33-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium Ore PA.33-4 Radiological Survey(s): Yes PA.33-5

323

RECIPIENT:County of Chester STATE: PA PROJECT  

Broader source: Energy.gov (indexed) [DOE]

County of Chester STATE: PA County of Chester STATE: PA PROJECT EECBG - Chester County (PA) Installation of Cool Roof at Coatesville District Court TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number cm Number DE-FOA0000013 EE0000932 GFO-O000932-003 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy. demonstrate potential energy conservation. and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical assistance to individuals (such as builders, owners, consultants, designers), organizations (such as utilities), and state

324

DOE - Office of Legacy Management -- Pennsylvania Ordnance Works - PA 32  

Office of Legacy Management (LM)

Ordnance Works - PA 32 Ordnance Works - PA 32 FUSRAP Considered Sites Site: Pennsylvania Ordnance Works (PA.32 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is one of a group of 77 FUSRAP considered sites for which few, if any records are available in their respective site files to provide an historical account of past operations and their relationship, if any, with MED/AEC operations. Reviews of contact lists, accountable station lists, health and safety records and other documentation of the period do not provide sufficient information to warrant further search of historical records for information on these sites. These site files remain "open" to

325

P.A. Capdau Charter School | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

P.A. Capdau Charter School P.A. Capdau Charter School P.A. Capdau Charter School August 8, 2007 - 3:16pm Addthis Prepared Remarks for Secretary Bodman Thank you, Principal Mitchell, for your kind introduction. I am glad to be back here in New Orleans to witness the tremendous progress all of you have made after the devastating events of two years ago. I am here not only to commend your efforts but also to state my commitment and the Department of Energy's commitment to the continued rebuilding effort. With great challenges come great opportunities. While there are tangible losses to grieve over when such devastation occurs, the resilient American spirit also finds unique ways to maximize any positive impact. In this case, the chance to rebuild much of the physical infrastructure that has

326

Microsoft PowerPoint - PA CoP.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Community of Practice Roger Seitz (Savannah River National Laboratory) David Kosson (CRESP/Vanderbilt University) Martin Letourneau (DOE EM-41) 10 March 2010 WM '10, Phoenix Arizona SRNL-MS-2010-00037-S 2 WM 10, March 10, 2010 Safety Case Concept IAEA, Nuclear Energy Agency and others Reflects use of PA as only one part of a package used to support decisions "The purpose of computing is insight, not numbers" - Richard Hamming PA PA Uncertainty/ Importance Analysis Uncertainty/ Importance Analysis Safety Case Design Design Stakeholder Stakeholder Demonstrations Demonstrations R&D R&D Monitoring Monitoring Documentation Documentation WAC WAC Uncertainties can be managed in many different ways in addition to modeling 3 WM 10, March 10, 2010 Allow Low-level Waste Disposal Facility Federal

327

Excited states of the odd-odd nucleus 230Pa  

Science Journals Connector (OSTI)

The completely unknown spectrum of excited states of the odd-odd nucleus 230Pa was studied employing the one-neutron transfer reaction 231Pa(d,t)230Pa at a beam energy of 22 MeV. The excitation energy and the cross section were measured for, in total, 81 states below 1.4 MeV. Level assignments of these states are based on a semiempirical model and comparison with theoretical predictions, based on distorted-wave Born approximation (DWBA) calculations for the cross sections. For 12 rotational bands the band-head energy and the rotational parameter are determined. The K quantum numbers and the Nilsson configurations are established. Empirical values for the Gallagher-Moszkowski splittings and for Newby shifts are obtained.

T. Kotthaus; P. Reiter; H. Hess; M. Kalkhler; A. Wendt; A. Wiens; R. Hertenberger; T. Morgan; P. G. Thirolf; H.-F. Wirth; T. Faestermann

2013-04-15T23:59:59.000Z

328

Electromagnetic transitions and ? decay of the 223Pa nucleus  

Science Journals Connector (OSTI)

Actinides with N?132 present the best explored region of pear shape nuclei. Still almost no spectroscopic information is available for the heaviest elements, Z=9198, which are predicted to be octupole instable. The lack of data for the latter nuclei results from the high fission probability encountered in the heavy-ion reactions used to populate them. In order to overcome this handicap, an ?-decay tagging technique was used to identify ? rays in 223Pa produced through the 208Pb(19F,4n) reaction. A new value of 4.9(4) ms for the half-life of 223Pa was obtained as a by-product.

F. Hoellinger; B. J. P. Gall; N. Schulz; N. Amzal; P. A. Butler; P. T. Greenlees; D. Hawcroft; J. F. C. Cocks; K. Helariutta; P. M. Jones; R. Julin; S. Juutinen; H. Kankaanp; H. Kettunen; P. Kuusiniemi; M. Leino; M. Muikku; D. Savelius

1999-10-04T23:59:59.000Z

329

?-decay properties of the new neutron deficient isotope 212Pa  

Science Journals Connector (OSTI)

The new neutron deficient isotope 212Pa has been produced in the 182W(35Cl,5n) reaction at a beam energy of 182.5 MeV. Evaporation residues have been separated with the JAERI recoil mass separator and identified on the basis of time- and position-correlated ?-decay chains. The ? decay from the ground state of 212Pa has been observed with an ?-particle energy of 8.270(30) MeV and a half-life of 5.1-1.9+6.1 ms.

S. Mitsuoka; H. Ikezoe; T. Ikuta; Y. Nagame; K. Tsukada; I. Nishinaka; Y. Oura; Y. L. Zhao

1997-03-01T23:59:59.000Z

330

The drill down.  

E-Print Network [OSTI]

??The town of Millerton, Pa., has always been a small, rural farming community. Settled atop of the famed Marcellus Shale in the foothills of the (more)

Friel, Katherine Dailey

2014-01-01T23:59:59.000Z

331

By Terry Engelder and Gary G. Lash UNIVERSITY PARK, PA.The shale gas rush is on. Excitement over natural gas production from a  

E-Print Network [OSTI]

natural gas production from a number of Devonian-Mississippian black shales such as the Barnett of fracture generation during the burial history of the Marcellus Shale. Source Of Stress The primary source to- ward a central point. Gravity acts normal to the earth's surface, generating the vertical

Engelder, Terry

332

DO NOT WRITE IN THIS SPACE PA USE ONLY  

E-Print Network [OSTI]

Graduate Household Members: List the first names and ages of people who live with you: First Name Age Monthly Household Income $___________________________ DO NOT WRITE IN THIS SPACE PA USE ONLY Lesson Type you identify with (All answers are voluntary): Hispanic/Latino Non-Hispanic/Non-Latino Check the race

Liskiewicz, Maciej

333

Observation of the negative ions: Ra-, Pa-, and Pu-  

Science Journals Connector (OSTI)

The negative ions of the isotopes Ra226, Pa231, and Pu244 have been observed by means of accelerator mass spectrometry and their properties compared with the negative ions of Th and U. The electron affinities of all these elements have been estimated to be similar and greater than 50 meV.

X.-L. Zhao; M.-J. Nadeau; M. A. Garwan; L. R. Kilius; A. E. Litherland

1993-11-01T23:59:59.000Z

334

Possible Ground-State Octupole Deformation in Pa229  

Science Journals Connector (OSTI)

Evidence is presented for the occurrence of a 52 parity doublet as the ground state of Pa229, in agreement with a previous theoretical prediction. The doublet splitting energy is measured to be 0.220.05 keV. The relation of this doublet to ground-state octupole deformation is discussed.

I. Ahmad; J. E. Gindler; R. R. Betts; R. R. Chasman; A. M. Friedman

1982-12-13T23:59:59.000Z

335

Transmission resonance spectroscopy in the third minimum of 232Pa  

Science Journals Connector (OSTI)

The fission probability of 232Pa was measured as a function of the excitation energy in order to search for hyperdeformed (HD) transmission resonances using the (d,pf) transfer reaction on a radioactive 231Pa target. The experiment was performed at the Tandem accelerator of the Maier-Leibnitz Laboratory (MLL) at Garching using the 231Pa(d,pf) reaction at a bombarding energy of Ed=12 MeV and with an energy resolution of ?E=5.5keV. Two groups of transmission resonances have been observed at excitation energies of E*=5.7 and 5.9 MeV. The fine structure of the resonance group at E*=5.7 MeV could be interpreted as overlapping rotational bands with a rotational parameter characteristic to a HD nuclear shape (?2/2?=2.100.15 keV). The fission barrier parameters of 232Pa have been determined by fitting talys 1.2 nuclear reaction code calculations to the overall structure of the fission probability. From the average level spacing of the J=4 states, the excitation energy of the ground state of the third minimum has been deduced to be EIII=5.05?0.10+0.40 MeV.

L. Csige; M. Csatls; T. Faestermann; J. Gulys; D. Habs; R. Hertenberger; M. Hunyadi; A. Krasznahorkay; H. J. Maier; P. G. Thirolf; H.-F. Wirth

2012-05-07T23:59:59.000Z

336

DOE - Office of Legacy Management -- Curtis-Wright Corp - PA 37  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Curtis-Wright Corp - PA 37 Curtis-Wright Corp - PA 37 FUSRAP Considered Sites Site: Curtis-Wright Corp. ( PA.37 ) Eliminated from further consideration under FUSRAP - Referred to the Pennsylvania Department of Environmental Resources, Bureau of Radiation Protection Designated Name: Not Designated Alternate Name: Quehanna Site Quehanna Radioisotopes Pilot Plant Radiation Process Center PA.37-1 Location: Northwest Clearfield County , Quehanna , Pennsylvania PA.37-2 PA.37-3 Evaluation Year: Circa 1990 PA.37-1 Site Operations: 1955-1960 Conducted research in nucleonics, electronics, chemicals and plastics - work for AEC primarily isotope separation and heat sources for space application. Also work for U.S. Air Force. AEC licensed facility. PA.37-1 PA.37-3 Site Disposition: Eliminated - No Authority to perform remedial action. Commercial facility operated under AEC license. Cleanup by the Commonwealth of Pennsylvania under plan approved by NRC. PA.37-2

337

DOE - Office of Legacy Management -- U S Bureau of Mines - PA 36  

Office of Legacy Management (LM)

PA 36 PA 36 FUSRAP Considered Sites Site: U. S. BUREAU OF MINES (PA.36) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Bruceton , Pennsylvania PA.36-1 Evaluation Year: 1987 PA.36-2 Site Operations: Conducted studied on explosiveness of Uranium, Thorium and Beryllium. PA.36-1 PA.36-3 Site Disposition: Eliminated - Small amounts of radioactive materials used - Potential for residual radioactive contamination considered remote PA.36-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium and Thorium PA.36-2 Radiological Survey(s): Yes - health and safety monitoring during operations only PA.36-1 Site Status: Eliminated from further consideration under FUSRAP

338

DOE - Office of Legacy Management -- Landis Machine Tool Co - PA 34  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Landis Machine Tool Co - PA 34 Landis Machine Tool Co - PA 34 FUSRAP Considered Sites Site: LANDIS MACHINE TOOL CO. (PA.34 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Teledyne Landis Machine PA.34-1 Location: Waynesboro , Pennsylvania PA.34-2 Evaluation Year: 1991 PA.34-1 Site Operations: Manufactured metal fabrication equipment for machining uranium metal slugs. PA.34-1 Site Disposition: Eliminated - Limited scope of activities performed quantities of radioactive materials involved suggest little or no potential for residual radioactive contamination PA.34-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium PA.34-2 Radiological Survey(s): Yes - health and safety monitoring during operations PA.34-3

339

DOE - Office of Legacy Management -- Birdsboro Steel and Foundry Co - PA 31  

Office of Legacy Management (LM)

Birdsboro Steel and Foundry Co - PA Birdsboro Steel and Foundry Co - PA 31 FUSRAP Considered Sites Site: Birdsboro Steel and Foundry Co. (PA.31 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Birdsboro Steel Foundry & Machine Company PA.31-1 Location: Birdsboro , Pennsylvania PA.31-1 Evaluation Year: 1987 PA.31-2 Site Operations: Designed and developed metal fabrication facilities installed at the AEC Feed Materials Production Center at Fernald, Ohio; no information on metal fabrication at Birdsboro, although the site received small quantities of uranium metal - presumably for testing purposes. PA.31-2 PA.31-3 Site Disposition: Eliminated - Limited scope of activities and quantity of radioactive material used at the site suggest that the potential for residual radioactive material at the site is remote PA.31-2

340

DOE - Office of Legacy Management -- Bartol Research Foundation - PA 0-02  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bartol Research Foundation - PA Bartol Research Foundation - PA 0-02 FUSRAP Considered Sites Site: Bartol Research Foundation (PA 0-02) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: The Franklin Institute PA.0-02-1 Location: Swathmore , Pennsylvania PA.0-02-1 Evaluation Year: 1987 PA.0-02-1 Site Operations: Research organization. Possibly performed radiation monitoring and possibly supplied monitoring equipment to Monsanto Chemical Company. PA.0-02-1 Site Disposition: Eliminated - No indication that radioactive materials were used on this site PA.0-02-1 Radioactive Materials Handled: None Indicated PA.0-02-1 Primary Radioactive Materials Handled: None Indicated Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DOE - Office of Legacy Management -- Teledyne-Columbia-Summerville - PA 01  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Teledyne-Columbia-Summerville - PA Teledyne-Columbia-Summerville - PA 01 FUSRAP Considered Sites Site: TELEDYNE-COLUMBIA-SUMMERVILLE (PA.01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Columbia Steel, Summerill Tube, Columbia-Summerill PA.01-1 Location: Pittsburgh , Pennsylvania PA.01-1 Evaluation Year: 1987 PA.01-1 Site Operations: Metal fabrication operations. No indication radioactive materials were involved. PA.01-1 Site Disposition: Eliminated - Site was not involved in the handling of radioactive materials PA.01-1 PA.01-2 Radioactive Materials Handled: No Primary Radioactive Materials Handled: None Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see

342

DOE - Office of Legacy Management -- Westinghouse Atomic Power Div - PA 16  

Office of Legacy Management (LM)

Power Div - PA Power Div - PA 16 FUSRAP Considered Sites Site: WESTINGHOUSE ATOMIC POWER DIV. (PA.16 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Route 30 (Forrest Hills) , Pittsburgh , Pennsylvania PA.16-1 Evaluation Year: 1985 PA.16-1 Site Operations: Processed uranium metal for research and development and pilot-scale production of uranium oxide fuel elements. Prepared uranium metal for Enrico Fermi's Stagg Field experiment. PA.16-1 Site Disposition: Eliminated - Radiation levels below criteria PA.16-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium PA.16-1 Radiological Survey(s): Yes PA.16-3 Site Status: Eliminated from further consideration under FUSRAP

343

Designation Survey - Palmerton, Pa. Ore Storage Site William Bibb  

Office of Legacy Management (LM)

Designation Survey - Palmerton, Pa. Ore Storage Site Designation Survey - Palmerton, Pa. Ore Storage Site William Bibb Oak Ridge Operations Office Based on the information furnished in Aerospace's Review of the.subject site (Attachment 1) and the ORKL/RASA (Attachment 2), it Is requested that designation survey of the Palmerton Ore Storage Pennsylvania. The survey should be detailed to and subsurface data to make up for the lack of the previous AEC surveys and in keeping with ORNL/RASA group should furnish a draft survey approval prior to conducting any survey activities. If there are any questions, please call Edward DeLaney 04 FTS 253-4716. Arthur J. Whitman / '/ Division of Facility and Site ' Deconrnissioning P,rojects Office of Nuclear Energy : 2 Attachments I bee: I E. Keller, OR, w/attachs:

344

Pa0148 from Pseudomonas aeruginosa Catalyzes the Deamination of Adenine  

SciTech Connect (OSTI)

Four proteins from NCBI cog1816, previously annotated as adenosine deaminases, have been subjected to structural and functional characterization. Pa0148 (Pseudomonas aeruginosa PAO1), AAur1117 (Arthrobacter aurescens TC1), Sgx9403e, and Sgx9403g have been purified and their substrate profiles determined. Adenosine is not a substrate for any of these enzymes. All of these proteins will deaminate adenine to produce hypoxanthine with k{sub cat}/K{sub m} values that exceed 10{sup 5} M{sup -1} s{sup -1}. These enzymes will also accept 6-chloropurine, 6-methoxypurine, N-6-methyladenine, and 2,6-diaminopurine as alternate substrates. X-ray structures of Pa0148 and AAur1117 have been determined and reveal nearly identical distorted ({beta}/{alpha}){sub 8} barrels with a single zinc ion that is characteristic of members of the amidohydrolase superfamily. Structures of Pa0148 with adenine, 6-chloropurine, and hypoxanthine were also determined, thereby permitting identification of the residues responsible for coordinating the substrate and product.

A Goble; Z Zhang; J Sauder; S Burley; S Swaminathan; F Raushel

2011-12-31T23:59:59.000Z

345

Record of Decision and Floodplain Statement of Findings: Western Greenbrier Co-Production Demonstration Project, Rainelle, Greenbrier County, WV (DOE/EIS-0361) (04/29/08)  

Broader source: Energy.gov (indexed) [DOE]

14 Federal Register 14 Federal Register / Vol. 73, No. 83 / Tuesday, April 29, 2008 / Notices DEPARTMENT OF ENERGY Record of Decision and Floodplain Statement of Findings: Western Greenbrier Co-Production Demonstration Project, Rainelle, Greenbrier County, WV AGENCY: Office of Fossil Energy, U.S. Department of Energy (DOE). ACTION: Record of Decision (ROD) and Floodplain Statement of Findings. SUMMARY: DOE has decided to implement the Proposed Action alternative, identified as the preferred alternative, in the Western Greenbrier Co-Production Demonstration Project, Final Environmental Impact Statement (DOE/EIS-0361; November 2007) (FEIS). That alternative is to provide approximately $107.5 million (up to 50% of the development costs) to Western Greenbrier Co-Generation, LLC

346

SOFC Anode Interaction with Trace Coal Syngas Species U.S. Dept of Energy, National Energy Technology Laboratory, Morgantown, WV 26507  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOFC Anode Interaction with Trace Coal Syngas Species SOFC Anode Interaction with Trace Coal Syngas Species U.S. Dept of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 Gregory Hackett, Kirk Gerdes, Randall Gemmen Phone: (304)285-5279, Gregory.Hackett@NETL.DOE.GOV Utilization of coal as a fuel source for highly efficient integrated gasification fuel cell (IGFC) power generation facilities is technologically and environmentally attractive. IGFC plants are expected to offer the highest efficiency coal gasification processes, even when carbon capture and storage systems are included in the design. One element of IGFC research at the National Energy Technology Laboratory is the investigation of syngas cleanup processes for these integrated systems. Of particular interest are the effects of trace elements naturally contained in

347

DOE - Office of Legacy Management -- University of Pittsburgh - PA 0-07  

Office of Legacy Management (LM)

Pittsburgh - PA 0-07 Pittsburgh - PA 0-07 FUSRAP Considered Sites Site: UNIVERSITY OF PITTSBURGH (PA.0-07) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Pittsburgh , Pennsylvania PA.0-07-1 Evaluation Year: 1987 PA.0-07-1 Site Operations: Research activities involving small quantities of radioactive materials in a controlled environment. PA.0-07-1 Site Disposition: Eliminated - Potential for residual radioactive contamination considered remote PA.0-07-1 Radioactive Materials Handled: Yes PA.0-07-1 Primary Radioactive Materials Handled: Not Indicated Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to UNIVERSITY OF PITTSBURGH

348

DOE - Office of Legacy Management -- Babcock and Wilcox Co - PA 18  

Office of Legacy Management (LM)

Babcock and Wilcox Co - PA 18 Babcock and Wilcox Co - PA 18 FUSRAP Considered Sites Site: Babcock and Wilcox Co (PA 18) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Tubular Products Division PA.18-1 Location: Beaver Falls , Pennsylvania PA.18-1 Evaluation Year: 1990 PA.18-1 Site Operations: Performed development work to pierce uranium billets for extrusion to tubes. No indication that the piercing operation was conducted. PA.18-1 Site Disposition: Eliminated - No indication that the metal fabrication (piercing) operation was conducted on this site. Records indicate small radiation sources were used on the site. Potential for residual radioactive contamination considered remote due to the limited quantities of material handled on the site. PA.18-3

349

DOE - Office of Legacy Management -- University of Pennsylvania - PA 0-06  

Office of Legacy Management (LM)

Pennsylvania - PA Pennsylvania - PA 0-06 FUSRAP Considered Sites Site: UNIVERSITY OF PENNSYLVANIA (PA.0-06 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Philadelphia , Pennsylvania PA.0-06-1 Evaluation Year: 1987 PA.0-06-1 Site Operations: Research activities involving small quantities of radioactive materials in a controlled environment. PA.0-06-1 Site Disposition: Eliminated - Potential for residual radioactive contamination considered remote PA.0-06-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Radium PA.0-06-2 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to UNIVERSITY OF PENNSYLVANIA

350

DOE - Office of Legacy Management -- Vanadium Corp of America - PA 15  

Office of Legacy Management (LM)

Vanadium Corp of America - PA 15 Vanadium Corp of America - PA 15 FUSRAP Considered Sites Site: Vanadium Corp. of America (PA.15) Eliminated from further consideration under FUSRAP. Designated Name: Not Designated Alternate Name: UMTRAP Vicinity Property No. CA-401 PA.15-5 Location: Mayer Street - Collier Township , Bridgeville , Pennsylvania PA.15-1 Evaluation Year: 1985 PA.15-2 Site Operations: Faclility used to grind pitchblende ore during the early 1940's for processing by Vitro at Canonsburg. Conducted research and developed processes for concentration of Colorado Plateau ores (uranium-vanadium) PA.15-3 Site Disposition: Eliminated - site cleaned up as a vicinity property of the Canonsburg Site in 1986 under the Uranium Mill Tailings Remedial Action Program (UMTRAP). PA.15-5

351

Hemi Orolingual Angioedema after tPA Administration for Acute Ischemic Stroke  

E-Print Network [OSTI]

to improve. As the tPA infusion was ending, the patientplasminogen activator infusion. Figure 2. Patients tongueevery 15 minutes during tPA infusion for signs of clinical

Madden, Bryan; Chebl, Ralphe B.

2015-01-01T23:59:59.000Z

352

SBOT PENNSYLVANIA NATIONAL ENERGY TECHNOLOGY LAB - PA POC Larry Sullivan  

Broader source: Energy.gov (indexed) [DOE]

PENNSYLVANIA PENNSYLVANIA NATIONAL ENERGY TECHNOLOGY LAB - PA POC Larry Sullivan Telephone (412) 386-6115 Email larry.sullivan@netl.doe.gov ADMINISTATIVE / WASTE / REMEDIATION Facilities Support Services 561210 Employment Placement Agencies 561311 Temporary Help Services 561320 Professional Employer Organizations 561330 Document Preparation Services 561410 Security Guards and Patrol Services 561612 Security Systems Services (except Locksmiths) 561621 Janitorial Services 561720 Landscaping Services 561730 Hazardous Waste Treatment and Disposal 562211 Remediation Services 562910 Materials Recovery Facilities 562920 All Other Miscellaneous Waste Management Services 562998 CONSTRUCTION Industrial Building Construction 236210 Commercial and Institutional Building Construction 236220 Power and Communication Line and Related Structures Construction

353

A Political Ecology of Hydraulic Fracturing for Natural Gas in  

E-Print Network [OSTI]

environments, both in terms of perception and in terms of physical space. (Robbins 2004) #12;Outline ! Background of Marcellus Shale Gas Play ! Current Events: The Case of PA ! Geography of Fracking in Study Corbett #12;PA's Marcellus Shale Country is constructed as a Neoliberal Environment · Residents

Scott, Christopher

354

NETL: 2010 SW PA High School Science Bowl  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High School Science Bowl High School Science Bowl The U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL), and the Community College of Allegheny County (CCAC), South Campus, would like to invite you to participate in one of the premier scientific events for high school students, the Southwestern Pennsylvania High School Science Bowl 2010 on February 20, 2010. This will be NETL's 19th year sponsoring the high school competition. There is a change this year in the registration process from past years, all teams who are registering to complete, must do so through the National Science Bowl website by January 7, 2010. For those who are not familiar with the Science Bowl here are some highlights: The competition is open to high school students (school, scouts, home school) from Southwestern Pennsylvania (SW PA). Complete eligibility requirements are located at the National Science Bowl website.

355

Decay of 7.3-min Th235 and 24.6-min Pa235  

Science Journals Connector (OSTI)

Sources of Th235 and Pa235 were prepared by medium energy neutron and proton irradiations of uranium followed by radiochemical separations. Gamma-ray spectroscopy showed 13 new ? rays in the decay of Th235. Its half-life is 7.30.1 min, and that of Pa235 is 24.60.2 min. A partial decay scheme is proposed for Th235, and a large anomalous retardation is reported in one branch of the Pa235 ?- decay.

S. Mirzadeh; Y. Y. Chu; S. Katcoff; L. K. Peker

1986-06-01T23:59:59.000Z

356

Distribution of Arsenic in Presque Isle, PA, Pond Sediments Jason Murnock, Master of Science Candidate,  

E-Print Network [OSTI]

Distribution of Arsenic in Presque Isle, PA, Pond Sediments Jason Murnock, Master of Science........................................................................................ 3 Arsenic in Soil & Sediments......................................................................................... 12 Sediment Digestion and Analysis

Short, Daniel

357

Table 4. Principal shale gas plays: natural gas production and proved reserves,  

U.S. Energy Information Administration (EIA) Indexed Site

Principal shale gas plays: natural gas production and proved reserves, 2010-2011" Principal shale gas plays: natural gas production and proved reserves, 2010-2011" "trillion cubic feet" ,,, 2010,, 2011,," Change 2011-2010" "Basin","Shale Play","State(s)","Production","Reserves","Production","Reserves","Production","Reserves" "Fort Worth","Barnett","TX",1.9,31,2,32.6,0.1,1.6 "Appalachian","Marcellus","PA, WV, KY, TN, NY, OH",0.5,13.2,1.4,31.9,0.9,18.7 "Texas-Louisiana Salt","Haynesville/Bossier","TX, LA",1.5,24.5,2.5,29.5,1,5 "Arkoma","Fayetteville","AR",0.8,12.5,0.9,14.8,0.1,2.3

358

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

Joint Forum on US Shale Gas & Pacific Gas Markets Joint Forum on US Shale Gas & Pacific Gas Markets May 14, 2013 | New York, NY By Adam Sieminski, Administrator U.S. Shale Gas 2 Adam Sieminski , May 14, 2013 Domestic production of shale gas has grown dramatically over the past few years Adam Sieminski , May 14, 2013 3 0 5 10 15 20 25 30 2000 2002 2004 2006 2008 2010 2012 Rest of US Marcellus (PA and WV) Haynesville (LA and TX) Eagle Ford (TX) Bakken (ND) Woodford (OK) Fayetteville (AR) Barnett (TX) Antrim (MI, IN, and OH) shale gas production (dry) billion cubic feet per day Sources: LCI Energy Insight gross withdrawal estimates as of March 2013 and converted to dry production estimates with EIA-calculated average gross-to-dry shrinkage factors by state and/or shale play. Shale gas leads growth in total gas production through 2040 to

359

EIA Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Drilling Productivity Report Drilling Productivity Report For Center on Global Energy Policy, Columbia University October 29, 2013 | New York, NY By Adam Sieminski, Administrator The U.S. has experienced a rapid increase in natural gas and oil production from shale and other tight resources Adam Sieminski, EIA Drilling Productivity Report October 29, 2013 2 0 5 10 15 20 25 30 35 2000 2002 2004 2006 2008 2010 2012 Rest of US Marcellus (PA and WV) Haynesville (LA and TX) Eagle Ford (TX) Bakken (ND) Woodford (OK) Fayetteville (AR) Barnett (TX) Antrim (MI, IN, and OH) 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 2000 2002 2004 2006 2008 2010 2012 Eagle Ford (TX) Bakken (MT & ND) Granite Wash (OK & TX) Bonespring (TX Permian) Wolfcamp (TX Permian) Spraberry (TX Permian) Niobrara-Codell (CO) Woodford (OK)

360

Decay of 37.5-min Th236 and 9.1-min Pa236  

Science Journals Connector (OSTI)

The decays of Th236 and its Pa236 daughter were studied by ?-ray spectroscopy. By means of radiochemical methods and a continuous separation technique pure sources of parent and daughter were prepared so that each was free (or almost free) of the other. For Th236, 14 of the 17 observed ? rays are new; for Pa236 16 new ? rays were found. Absolute intensities of all the ? rays were determined with the aid of 4? beta measurements on Pa236. A new decay scheme is proposed for Th236 and a considerably expanded one is given for Pa236. The half-lives determined are 37.50.2 min for Th236 and 9.10.1 min for Pa236.

S. Mirzadeh; Y. Y. Chu; S. Katcoff; L. K. Peker

1984-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Improved half-life measurement of 224Pa and its 209Bi(18O,3n)224Pa production cross section  

Science Journals Connector (OSTI)

224Pa was produced via the 209Bi(18O,3n) reaction at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron and the half-life was determined to be 85020 ms by measuring its alpha decay using our rotating wheel system. Our value is consistent with a previously reported half-life of 950150 ms for 224Pa produced via the 205Tl(22Ne,3n) reaction, but its much more precise. The cross section for the 209Bi(18O,3n)224Pa reaction was measured to be 0.50.1 mb for 8789 MeV 18O5+ projectiles incident on the target.

P. A. Wilk; K. E. Gregorich; M. B. Hendricks; M. R. Lane; D. M. Lee; C. A. McGrath; D. A. Shaughnessy; D. A. Strellis; E. R. Sylwester; D. C. Hoffman

1997-09-01T23:59:59.000Z

362

Calculation of the neutron-induced fission cross section of Pa233  

Science Journals Connector (OSTI)

Since very recently, experimental data for the energy dependence of the Pa233(n,f) cross section are finally available. This has stimulated a new, self-consistent cross section evaluation for the system n+Pa233 in the incident neutron energy range 0.016MeV. The results are quite different compared to earlier evaluation attempts. Since Pa233 is an important intermediary in the thorium based fuel cycle, its neutron reaction cross sections are key parameters in the modeling of future advanced reactor concepts.

G. Vladuca; F.-J. Hambsch; A. Tudora; S. Oberstedt; F. Tovesson; A. Oberstedt; D. Filipescu

2004-02-26T23:59:59.000Z

363

Microsoft PowerPoint - Freeze.NE PA Overview_052511.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Used Fuel Disposition Campaign Used Fuel Disposition Campaign Summary of DOE-NE PA Modeling for Storage and Disposal of Used Nuclear Fuel (UNF), High-Level Radioactive Waste (HLW), and Low-Level Waste (LLW) Geoff Freeze Sandia National Laboratories PA Community of Practice Technical Exchange May 25-26, 2011 Print Close Used Fuel Disposition 2 DOE-Nuclear Energy (NE) - PA Modeling Activities NE Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (Waste IPSC) Used Fuel Disposition (UFD) Generic Performance Assessment Model (GPAM) *** Initial modeling focus in both campaigns in on UNF/HLW disposal Print Close Used Fuel Disposition 3  UFD GPAM  Short time horizon (2-3 yrs) - Simplified generic system models (i.e., PA-fidelity using GoldSim) - Current computing capabilities

364

Hemi Orolingual Angioedema after tPA Administration for Acute Ischemic Stroke  

E-Print Network [OSTI]

after alteplase treatment of stroke. Neurology. Volume2015 tPA for ischemic stroke: case report. Air Med J. 2011;in acute ischemic stroke. an in vitro experimental approach.

Madden, Bryan; Chebl, Ralphe B.

2015-01-01T23:59:59.000Z

365

VaPa - nuorten varhennettu kuntoutus Lappeenrannassa; Backdated rehabilitation of youngsters in Lappeenranta.  

E-Print Network [OSTI]

??Kehittmishanke ksittelee Lappeenrannassa vuosina 2001-2003 toteutettua nuorten varhennettua kuntoutusta VaPa- hanketta. Kuntoutuskokeilun jrjestettiin Lappeenrannan sosiaali- ja terveysviraston ostopalveluna yhteis-voimin Lappeenrannan Kelan, tyvoimatoimiston ja toteuttajatahon Laptuote-stin (more)

Korja,Minna-Liisa

2006-01-01T23:59:59.000Z

366

Some Spectroscopic Properties of Fine Structures Observed near the Pa231(n,f) Fission Threshold  

Science Journals Connector (OSTI)

The Pa231 neutron-induced fission cross section from 140 to 400 keV was resolved into finer structures. For some of the fractionated vibrational resonances in this energy region, the assignment of spectroscopic parameters may support evidence for an asymmetrically deformed third minimum in the Pa232 fission barrier. Also, for the first time, narrow fission resonances are observed above 1.3 eV exhibiting an average fission width ??f?ob s=8 ?eV.

S. Plattard; G. F. Auchampaugh; N. W. Hill; G. de Saussure; J. A. Harvey; R. B. Perez

1981-03-09T23:59:59.000Z

367

High-Resolution Gamma Spectroscopy in the Decay of Pa231  

Science Journals Connector (OSTI)

The decay of Pa231 was reinvestigated by means of Ge(Li) singles and coincidence techniques. Our best spectrometer showed a resolution (full width at half maximum) of 850 eV for the 300-keV ? rays. 78 ? rays were attributed to the decay of Pa231. A level scheme for Ac227 was proposed and interpreted in terms of rotation bands. Alternating terms in the K=32 bands were discussed in connection with Coriolis coupling to K=12 bands.

A. G. de Pinho; E. F. da Silveira; N. L. da Costa

1970-08-01T23:59:59.000Z

368

4.110-8 Second Metastable State in Pa231  

Science Journals Connector (OSTI)

A metastable state of Pa231 with a half-life of (4.10.4)10-8 second has been observed. This half-life is exhibited by both 26- and 85-kev E1 gamma transitions. A comparison is made with the metastable state in Pa233. Upper limits on lifetimes are given for the E1 gamma transitions in Np239 and Ac225. The erratic variation in the lifetimes for E1 transitions is discussed.

D. Strominger and J. O. Rasmussen

1955-11-01T23:59:59.000Z

369

Pressure-induced phase transitions in Pa metal from first-principles theory  

Science Journals Connector (OSTI)

Protactinium metal is shown to undergo a phase transition to the ?-U orthorhombic structure below 1 Mbar pressure. At higher pressures, the bct phase reenters in the phase diagram and at the highest pressures, an ideal hcp structure becomes stable. Hence, Pa undergoes a sequence of transitions; bct??-U?bct?hcp, with the first transition taking place at 0.25 Mbar and the subsequent ones above 1 Mbar. The bct??-U transition is triggered by the pressure-induced promotion of the spd valence states to 5f states. In this regard, Pa approaches uranium which at ambient conditions has one more 5f electron than Pa at similar conditions. At higher compression of Pa, the 5f band broadens and electrostatic interactions in combination with Born-Mayer repulsion become increasingly important and this drives Pa to gradually more close-packed structures. At ultrahigh pressures, the balance between electrostatic energy, Born-Mayer repulsion, and one-electron band energy stabilizes the hcp (ideal packing) structure. The electrostatic energy and Born-Mayer repulsion rule out open crystal structures under these conditions in Pa and between the close-packed structures, the hcp structure is shown to be stabilized by filling of the 5f band.

Per Sderlind and Olle Eriksson

1997-11-01T23:59:59.000Z

370

Potential Ecological Effects of Marcellus Shale Activities  

E-Print Network [OSTI]

· Timber · Agriculture · Oil & Gas · Iron · Limestone · Water #12;Conceptual Model with Fresh water usage, management, recycling · Air fugitive emissions, diesel engines, gas is cleaner as fuel compared to coal & oil · Offgasing from · condensate and · storage tanks · Vs. oil and coal #12;Ecological Impacts ­ Chemical Use

Jiang, Huiqiang

371

January 20, 2011 Marcellus Shale 101  

E-Print Network [OSTI]

. Will oil shale be viable as well? Oil shale will not be economically viable anytime in the near future

Hardy, Christopher R.

372

Determining Pa234(n,f) cross sections using the surrogate method  

Science Journals Connector (OSTI)

The fission decay probabilities of the Pa235 and U236 compound nuclei produced in a single experiment in Th232(Li7, ?f)Pa235 and Th232(Li7, tf)U236 transfer induced fission reaction channels, have been measured at Elab=39.5 MeV in the excitation energy range of 1420 MeV. The Pa234(n, f) cross sections are then deduced from the measured fission decay probability ratios of Pa235 and U236 compound systems in the equivalent neutron energy range of 814 MeV within the framework of the hybrid surrogate ratio method, considering the well-measured U235(n, f) cross sections as the reference. The experimental data on Pa234(n, f) cross sections have been compared with the calculated fission cross sections using empire-3.1 code with the fission barrier height values obtained from barrier formula (BF) as well as ripl-3 [24]. The present experimental results are found to be in very good agreement with the empire-3.1 predictions for the fission barrier heights predicted by the BF.

V. V. Desai; B. K. Nayak; A. Saxena; E. T. Mirgule

2014-02-13T23:59:59.000Z

373

Second Meeting, July 13, 1999 Crowne Plaza Center City Philadelphia, PA  

Broader source: Energy.gov (indexed) [DOE]

Second Meeting, July 13, 1999 Crowne Plaza Center City Philadelphia, PA Second Meeting, July 13, 1999 Crowne Plaza Center City Philadelphia, PA The second meeting of the Transportation External Coordination Working Group (TEC/WG) DOE Transportation Protocols Topic Group took place on July 13, 1999 at the Crowne Plaza Center City in Philadelphia, PA. MORNING SESSION Ms. Williams began the meeting by stating this was the second face-to-face session of the group; several conference calls had also been held since the first meeting in Jacksonville, FL in January 1999. She indicated there were some materials available in addition to the draft protocols that had been promised; one was a comment response document containing written comments received from participants on the different protocols, and the other was a draft schedule for completion of the other protocols. She said the milestones in the schedule were

374

State College Area High School From State College, PA Wins DOE's National  

Broader source: Energy.gov (indexed) [DOE]

College Area High School From State College, PA Wins DOE's College Area High School From State College, PA Wins DOE's National Science Bowl® State College Area High School From State College, PA Wins DOE's National Science Bowl® May 1, 2006 - 10:34am Addthis WASHINGTON , DC - State College Area High School from State College, Pennsylvania, today won the Department of Energy's (DOE) National Science Bowl®. Teams representing 65 schools from across the United States competed in this "Science Jeopardy" competition, which concluded this afternoon. Members of the winning team include Jason Ma, Ylaine Gerardin, Barry Liu, Galen Lynch, Francois Greer and coach, Julie Gittings. This team won a research trip to France and $1,000 for their school's science department. The answer that clinched the championship was in response to an earth

375

k=0 Libron Spectrum for Solid Hydrogen in the Pa3andCmmm Structures  

Science Journals Connector (OSTI)

The libron wave spectrum at zero wave vector for solid hydrogen in the Pa3andCmmm structures is calculated at zero temperature. Interactions other than the electrostatic interactions between molecular quadrupole moments are treated perturbatively. Comparison of our numerical and analytic results for libron frequencies and Raman intensities with the observed Raman spectrum gives strong evidence for the Pa3 structure. The scaling relation between the frequencies of the classical and quantum-librational systems is found to hold for the Pa3 but not for the Cmmm structure. The effects of zero-point librations and libron-libron interactions are studied to lowest order in 1z, where z is the number of nearest neighbors. Although the static effects are quite small, the shifts in the libron frequencies due to these interactions are of order 15%.

Cornelius F. Coll; III and A. Brooks Harris

1970-08-15T23:59:59.000Z

376

Notice of Intent to prepare an Environmental Impact Statement for the Western Greenbrier Co-Production Demonstration Project, Rainelle, WV and Notice of Floodplain/Wetlands Involvement (6/3/03)  

Broader source: Energy.gov (indexed) [DOE]

11 11 Federal Register / Vol. 68, No. 106 / Tuesday, June 3, 2003 / Notices Dated: May 27, 2003. Judge Eric Andell, Deputy Under Secretary for Safe and Drug- Free Schools. [FR Doc. 03-13836 Filed 6-2-03; 8:45 am] BILLING CODE 4000-01-P DEPARTMENT OF ENERGY Notice of Intent To Prepare an Environmental Impact Statement for the Western Greenbrier Co-Production Demonstration Project, Rainelle, WV and Notice of Floodplain/Wetlands Involvement AGENCY: Department of Energy. ACTION: Notice of Intent to prepare an Environmental Impact Statement and Notice of Floodplain/Wetlands Involvement. SUMMARY: The U.S. Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS) pursuant to the National Environmental Policy Act (NEPA), the

377

STAPLE USE IN LIBERTY-AND ROUNDUP-TOLERANT COTTON P.A. Dotray  

E-Print Network [OSTI]

STAPLE USE IN LIBERTY- AND ROUNDUP-TOLERANT COTTON P.A. Dotray Texas Tech University, Texas (pyrithiobac) received a Federal 3 label for use in cotton in 1996. Staple provides broad-spectrum, over-the-top weed control with both foliar and soil activity. The use of Staple in cotton has been limited because

Mukhtar, Saqib

378

PA-40-201 1 Department of Health and Human Services  

E-Print Network [OSTI]

PA-40-201 1 Department of Health and Human Services Part 1. Overview Information Participating Human Genome Research Institute (NHGRI) National Institute on Aging (NIA) National Institute on Alcohol Imaging and Bioengineering (NIBIB) Eunice Kennedy Shriver National Institute of Child Health and Human

Baker, Chris I.

379

An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants  

Science Journals Connector (OSTI)

...total of 416 PA14NR Set mutants with a PVC attachment phenotype were identified in the primary screen, including insertions in pilC, rpoN, algR, clpP, crc, fleR, fliP, sadB, sadA, and sadR, which had previously been shown to be required for PVC attachment...

Nicole T. Liberati; Jonathan M. Urbach; Sachiko Miyata; Daniel G. Lee; Eliana Drenkard; Gang Wu; Jacinto Villanueva; Tao Wei; Frederick M. Ausubel

2006-01-01T23:59:59.000Z

380

PA Nutrient Management Regulations: Act 38 of 2005 Summary of Regulations  

E-Print Network [OSTI]

PA Nutrient Management Regulations: Act 38 of 2005 Summary of Regulations Effective October 1, 2006 Who is regulated under this law (see Fact Sheet 54, from PSU): o Must be high animal density AND must of animals/4 acres = 2,500 lbs per acre (this is a regulated farm) o Also must have over 8,000 lbs of animals

Guiltinan, Mark

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Friedrich-Schiller-Universitt zu Jena Chemisch-Geowissenschaftliche Fakultt PA Chemie (B.Sc.)  

E-Print Network [OSTI]

Friedrich-Schiller-Universität zu Jena Chemisch-Geowissenschaftliche Fakultät PA Chemie (B-Arbeit im Studiengang Chemie Antragsteller Name, Vorname Geburtsdatum und Ort Staatsangehörigkeit Matrikel Chemie mit dem Abschluss Bachelor of Science die Zulassung zur Bachelor-Arbeit. Ich versichere, dass ich

Knüpfer, Christian

382

Paramagnetic Resonance Hyperfine Structure of Tetravalent Pa231 in Cs2ZrCl6  

Science Journals Connector (OSTI)

Paramagnetic resonance absorption at 3-cm wavelengths is observed for tetravalent Pa231 in a single crystal of Cs2ZrCl6 at helium temperatures. The observed spectra correspond to the allowed transitions (Sz,Iz?Sz1,Iz) and the forbidden transitions (Sz, Iz?Sz1, Iz?1) of a system described by the spin Hamiltonian, Hs=g?HS+AIS-gn??HI, with S=12, I=32, |A|h=1578.61.4 Mc/sec, |g|=1.14230.0014, and |gn?|?810-4. The errors indicate a small deviation from isotropy. It is further observed that gn?g<0, indicating that if gn? is positive, as is strongly indicated by the nuclear shell model, then g is negative. An additional electron-nuclear double-resonance experiment is used to determine directly the nuclear magnetic moment ?(Pa231)=1.96 nuclear magnetons. This value includes a correction of 9% due to perturbations of an excited state about 1900 cm-1 above the ground-state doublet of Pa4+ in its octahedral crystal field. A lower frequency double-resonance experiment is used to measure the weak hyperfine interaction of the Pa4+ ion with its Cs133 neighbors, of order A??h?0.5 Mc/sec.

J. D. Axe; H. J. Stapleton; C. D. Jeffries

1961-03-15T23:59:59.000Z

383

Orientational-ordering transition fcc-Pa3 of Ar1-x(N2)x  

Science Journals Connector (OSTI)

Solid solutions of Ar1-x(N2)x, 0.83Pa3-fcc) transition precedes the fcc-hcp reconstruction of the center-of-mass lattice. The long-range orientational-order parameter has been determined.

H. Klee and K. Knorr

1991-04-01T23:59:59.000Z

384

Graphene oxide-silica nanohybrids as fillers for PA6 based nanocomposites  

SciTech Connect (OSTI)

Graphene oxide (GO) was prepared by oxidation of graphite flakes by a mixture of H{sub 2}SO{sub 4}/H{sub 3}PO{sub 4} and KMnO{sub 4} based on Marcano's method. Two different masterbatches containing GO (33.3%) and polyamide-6 (PA6) (66.7%) were prepared both via solvent casting in formic acid and by melt mixing in a mini-extruder (Haake). The two masterbatches were then used to prepare PA6-based nanocomposites with a content of 2% in GO. For comparison, a nanocomposite by direct mixing of PA6 and GO (2%) and PA6/graphite nanocomposites were prepared, too. The oxidation of graphite into GO was assessed by X-ray diffraction (XRD), Micro-Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) analyses. All these techniques demonstrated the effectiveness of the graphite modification, since the results put into evidence that, after the acid treatment, interlayer distance, oxygen content and defects increased. SEM micrographs carried out on the nanocomposites, showed GO layers totally surrounded by polyamide-6, this feature is likely due to the strong interaction between the hydrophilic moieties located both on GO and on PA6. On the contrary, no interactions were observed when graphite was used as filler. Mechanical characterization, carried out by tensile and dynamic-mechanical tests, marked an improvement of the mechanical properties observed. Photoluminescence and EPR measurements were carried out onto nanoparticles and nanocomposites to study the nature of the interactions and to assess the possibility to use this class of materials as semiconductors or optical sensors.

Maio, A. [Department of Civil, Environmental, Aerospace, Materials Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo, Italy and STEBICEF, Section of Biology and Chemistry, University of Palermo, Viale delle Scienze, Parco d'Orleans (Italy); Fucarino, R.; Khatibi, R. [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo (Italy); Botta, L.; Scaffaro, R. [Department of Civil, Environmental, Aerospace, Materials Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo (Italy); Rosselli, S.; Bruno, M. [STEBICEF, Section of Biology and Chemistry, University of Palermo, Viale delle Scienze, Parco d'Orleans II, 90128 Palermo (Italy)

2014-05-15T23:59:59.000Z

385

Prompt fission neutron multiplicity and spectrum calculations for thermal and fast neutron induced reactions on 233,231Pa nuclei  

Science Journals Connector (OSTI)

The prompt fission neutron multiplicity and spectra of 233Pa(n, f) and 231Pa(n, f) were calculated for incident neutron energies up to 50MeV and 30MeV, respectively using refined neutron evaporation models. Those models have been already successfully applied to calculate the prompt neutron multiplicities and spectra for many actinides. The unique experimental data concerning the fission fragment mass distribution and total kinetic energy for the 234,233,232Pa fissioning nuclei were exploited in the frame of the Point-by-Point treatment. The total average prompt neutron multiplicity, the fission fragment pair multiplicity and the multiplicity dependence on fragment mass (sawtooth) for the reactions 233,232,231Pa(nth, f) and the average values of the model parameters for 234-232Pa fissioning nuclei were calculated. For the other Pa fissioning nuclei involved in the studied reactions relevant parameters were established following systematic trends. Due to a total lack of experimental prompt fission neutron multiplicity and spectrum data for Pa isotopes, the present results were compared with systematic trends following from neighboring actinides. The calculated prompt fission neutron multiplicity as well as the prompt ?-ray energy of the 233,231Pa(n, f) reactions are obtained in very good agreement with all systematic trends.

Anabella Tudora; G. Vladuca; F.-J. Hambsch; D. Filipescu; S. Oberstedt

2008-01-01T23:59:59.000Z

386

Project Plan 7930 Cell G PaR Remote Handling System Replacement  

SciTech Connect (OSTI)

For over 40 years the US Department of Energy (DOE) and its predecessors have made Californium-252 ({sup 252}Cf) available for a wide range of industries including medical, nuclear fuels, mining, military and national security. The Radiochemical Engineering Development Center (REDC) located within the Oak Ridge National Laboratory (ORNL) processes irradiated production targets from the High Flux Isotope Reactor (HFIR). Operations in Building 7930, Cell G provide over 70% of the world's demand for {sup 252}Cf. Building 7930 was constructed and equipped in the mid-1960s. Current operations for {sup 252}Cf processing in Building 7930, Cell G require use of through-the-wall manipulators and the PaR Remote Handling System. Maintenance and repairs for the manipulators is readily accomplished by removal of the manipulator and relocation to a repair shop where hands-on work can be performed in glove boxes. Contamination inside cell G does not currently allow manned entry and no provisions were created for a maintenance area inside the cell. There has been no maintenance of the PaR system or upgrades, leaving operations vulnerable should the system have a catastrophic failure. The Cell G PaR system is currently being operated in a run to failure mode. As the manipulator is now 40+ years old there is significant risk in this method of operation. In 2006 an assessment was completed that resulted in recommendations for replacing the manipulator operator control and power centers which are used to control and power the PaR manipulator in Cell G. In mid-2008 the chain for the bridge drive failed and subsequent examinations indicated several damaged links (see Figure 1). To continue operations the PaR manipulator arm is being used to push and pull the bridge as a workaround. A retrieval tool was fabricated, tested and staged inside Cell G that will allow positioning of the bridge and manipulator arm for removal from the cell should the PaR system completely fail. A fully functioning and reliable Par manipulator arm is necessary for uninterrupted {sup 252}Cf operations; a fully-functioning bridge is needed for the system to function as intended.

Kinney, Kathryn A [ORNL

2009-10-01T23:59:59.000Z

387

EIS-0357 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA  

Broader source: Energy.gov (indexed) [DOE]

7 - Gilberton Coal-to-Clean Fuels and Power Project in 7 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA EIS-0357 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA Summary This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action to provide cost-shared funding for construction and operation of facilities near Gilberton, Pennsylvania, which have been proposed by WMPI PTY, LLC, for producing electricity, steam, and liquid fuels from anthracite coal waste (culm). The project was selected by DOE under the Clean Coal Power Initiative (CCPI) to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale. PUBLIC COMMENT OPPORTUNITIES

388

U.S. DEPARTMENT OF ENERGY EERE PROJECT MAN AGEMENT CENTER Nl!PA DETERMINATION  

Broader source: Energy.gov (indexed) [DOE]

Nl!PA DETERMINATION Nl!PA DETERMINATION RI':CIPIENT:Western Iowa Tech Community College PROJECT TITLE: Western Iowa Tech Community College Renewable Energy Economy Conidor Page 1 of2 STATE: IA Funding Opportunity Announcement Number Proeurement lnstrument Number NEPA Control Number CID Number CongressIOnally Directed DE-EEOOO3285 GF0-10-329 0 Based on my review orthe Inrormation concerning the proposed action, B5 NEPA Compliance Officer (authorb-.ed under DOE Order 451.IA), I have made the rollo wing determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including. but not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

389

STATEMENT OF CONSIDERATIONS REQUEST BY 3M COMPANY FOR AN ADVANCE WAIVER OF PA ENT  

Broader source: Energy.gov (indexed) [DOE]

3M COMPANY FOR AN ADVANCE WAIVER OF PA ENT 3M COMPANY FOR AN ADVANCE WAIVER OF PA ENT RIGHTS UNDEF DOE COOPERATIVE AGREEMENT NO. DE-FC36- 01AL67621 ENTITLED "ADVANCED MEA'S FOR ENHANCED OPERATING CONDITIONS"; W(A)-04-038; CH-1205 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, 3M Company (3M) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above-identified cooperative agreement by its employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title pursuant to P.L. 96-517, as amended, and National Laboratories. Referring to item 2 of 3M's waiver petition, the purpose of this agreement encompasses the design, development and manufacturing of polymer electrolyte membrane fuel cells

390

US. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NJ1PA DETERMINATION  

Broader source: Energy.gov (indexed) [DOE]

OF ENERGY OF ENERGY EERE PROJECT MANAGEMENT CENTER NJ1PA DETERMINATION Page 1 of2 RECIPIENT:ELECTRATHERM, Inc. STATE: NV PROJECT TITLE: ·Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: MiningOperation" Funding Opportunity Announcement Number PNK:urement Instrument Number N£PA Control Number em Number OE+FOAOOOO336 DE-EEOOO4435 GF0-0004435-002 G04435 Based on my review of the information c:oncerning tbe proposed action, 85 NEPA Compliance Officer (authorized under DOE Order 451.IA),1 have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Info rm ation gathering, analysis, and d issemination Information gathering (including , but not limited to, literature surveys, inventories, site visits, and

391

U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DEl1!RMINATION  

Broader source: Energy.gov (indexed) [DOE]

PA DEl1!RMINATION PA DEl1!RMINATION RECIPIENT:Snohomish County PUD PROJECT TITLE: Acoustic Effects of Hydrokinetic Tidal Turbines Page 1 00 STATE: WA funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-FOA..()()()()()69 DE-EEOOO2654 GF0-10-171 0 Based on my review oflhe information concerning the proposed adion, as NEPA CompliaDce Officer (authorized under DOE Order451.1A), I have made tbe following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 83.1 OnSlle and off site site characterizatIOn and environmental monitonng, Induding siting, construction (or modification). operatJon, and dismantlement or dosing (abandonment) of characterization and monitoring devices and siting, constructJon, and aSSOCIated operation of a small-scale laboratory building or renovation of a room in an existing building

392

File:EIA-Appalach2-OH-PA-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

Appalach2-OH-PA-GAS.pdf Appalach2-OH-PA-GAS.pdf Jump to: navigation, search File File history File usage Appalachian Basin, Northern Ohio, Southwestern New York, and Western Pennsylvania By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 10.31 MB, MIME type: application/pdf) Description Appalachian Basin, Northern Ohio, Southwestern New York, and Western Pennsylvania By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Ohio, New York, Pennsylvania File history Click on a date/time to view the file as it appeared at that time.

393

u.s. DEPARTMENT OF ENERGY EERE PROJECT MAN AGEMENT CENTER Nl!PA DETERMINATION  

Broader source: Energy.gov (indexed) [DOE]

Nl!PA DETERMINATION Nl!PA DETERMINATION RECIPIENT :Ruby Mountain Inc for EI Paso County PROJECf TITLE : EI Paso County Geothermal Project at Fort Bliss - Phase 2-8 and Phase 3 Page 1 of2 STATE : TX Funding Opportunity Announcement Number Procuremenllnstrument Number NEPA Control Number CID Number DE-FOA-0000109 DE-EEOOO2827 GFO-O002827-OO4 Based on my review ofthe information concerning the proposed action, as NEPA Compliance Officer (autborlzed under DOE Order 45I.lA), I have made the following determination : ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited la, literature surveys, inventories, audits). data analysis (including computer modeling). document preparation (such as conceptual design or feasibility studies, analytical energy supply

394

File:EIA-Appalach3-eastPA-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

Appalach3-eastPA-BOE.pdf Appalach3-eastPA-BOE.pdf Jump to: navigation, search File File history File usage Appalachian Basin, Eastern Pennsylvania By 2001 BOE Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 17.04 MB, MIME type: application/pdf) Description Appalachian Basin, Eastern Pennsylvania By 2001 BOE Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Pennsylvania File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

395

u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NllPA DETERMINATION  

Broader source: Energy.gov (indexed) [DOE]

NllPA DETERMINATION NllPA DETERMINATION REClPI[NT:General Molors LlC Page I 0[2 STATE: MI PROJECf TITLE: Investigation of Micra.andMacro-scale Transport Processes for Improved Fuel Cell Performance Funding Opportunity Announcement Number Proc:urement Instrument Number NEPA Control Number CID Number DE·PS36-08G098OO9 EE0000470 GF0-10-353 EE470 Based on my review orthe information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4SI.IA},1 have made the following determination : ex, EA, EIS APPENDIX AND NUMBER: Description: B3.6 Siting, construction (or modification). operation, and decommissioning of facilities for indoor bench-scale research projects and conventional laboratory operations (fOf example, preparation of chemical standards and sample analYSIS);

396

U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NJ1PA DETERMINATION  

Broader source: Energy.gov (indexed) [DOE]

NJ1PA DETERMINATION NJ1PA DETERMINATION RECIPIENT:Abengoa Solar Inc. Page 1 of2 STATE: CO PROJECT TITLE: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Power Plants Funding Opportunity Announcement Numbu Procurement Instrument Number NEPA Control Numbu ell) Number DE·PS36-08G098032 G018156 GFQ.G018156-003 G018156 Based on my review oflhe information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A),1 have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but nollimiled to, literature surveys. inventories. audits), data analysis (indudm9 computer modeling). document preparation (such as conceptual design or feasibility studies, analytical energy supply

397

File:USDA-CE-Production-GIFmaps-PA.pdf | Open Energy Information  

Open Energy Info (EERE)

PA.pdf PA.pdf Jump to: navigation, search File File history File usage Pennsylvania Ethanol Plant Locations Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 419 KB, MIME type: application/pdf) Description Pennsylvania Ethanol Plant Locations Sources United States Department of Agriculture Related Technologies Biomass, Biofuels, Ethanol Creation Date 2010-01-19 Extent State Countries United States UN Region Northern America States Pennsylvania External links http://www.nass.usda.gov/Charts_and_Maps/Ethanol_Plants/ File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:20, 27 December 2010 Thumbnail for version as of 16:20, 27 December 2010 1,650 × 1,275 (419 KB) MapBot (Talk | contribs) Automated bot upload

398

Fission of light actinides: Th232(n,f) and Pa231(n,f) reactions  

Science Journals Connector (OSTI)

A model to describe fission on light actinides, which takes into account transmission through a triple-humped fission barrier with absorption, is proposed. The fission probability derived in the WKB approximation within an optical model for fission has been incorporated into the statistical model of nuclear reactions. The complex resonant structure in the first-chance neutron-induced fission cross sections of Th232 and Pa231 nuclei has been reproduced by the proposed model. Consistent sets of parameters describing the triple-humped fission barriers of Th233 and Pa232 have been obtained. The results confirm the attribution of the gross resonant structure in the fission probability of these light actinides to partially damped vibrational states in the second well and undamped vibrational states in the third well of the corresponding fission barriers.

M. Sin; R. Capote; A. Ventura; M. Herman; P. Obloinsk

2006-07-27T23:59:59.000Z

399

D E PA R T M E N T O F EDUCATIONAL PSYCHOLOGY  

E-Print Network [OSTI]

D E PA R T M E N T O F EDUCATIONAL PSYCHOLOGY T E X A S A & M U N I V E R S I T Y ACADEMIC PROGRAM REVIEW Self Study Report November 6-8, 2011 #12;EDUCATIONAL PSYCHOLOGY Academic Program Review 2011 DEPARTMENT OF EDUCATIONAL PSYCHOLOGY Academic Program Review November 6-8, 2011 Texas A&M University College

400

Measurement Specialties, Inc. P.O. Box 799, Valley Forge, PA 19482 15 MAY 01  

E-Print Network [OSTI]

610.650.1509 Page 1 of 27 Internet: www.msiusa.com e-mail: sensors@msiusa.com P/N: 1005602-1 REV K Forge, PA 19482 15 MAY 01 Tel: 610.650.1500 FAX 610.650.1509 Page 2 of 27 Internet: www.msiusa.com e.650.1509 Page 3 of 27 Internet: www.msiusa.com e-mail: sensors@msiusa.com C D A B t Metallization Piezo Film

Kleinfeld, David

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Si m pa rele : 29 septembre 1991-14 octobre 1994  

E-Print Network [OSTI]

distribution one of Haiti's most important public documents of this century, the Haitian-language version of the Constitution of 1987, we are reproducing here another important public document, "Si m pa rele" ("If I don't cry out"), which, unlike... other members. According to the 31 December 1994 Miami Herald this decree received little or no publicity, and was seen as a decidedly negative sign. However, a later presidential decree on 28 March 1995 spelled out in 26 Articles the composition...

1998-01-01T23:59:59.000Z

402

Characterizing Biofuel Combustion with Patterns of Real-Time Emission Data (PaRTED)  

Science Journals Connector (OSTI)

Characterizing Biofuel Combustion with Patterns of Real-Time Emission Data (PaRTED) ... Oanh, N. T. K.; Reutergardh, L. B.; Dung, N. T.Emission of polycyclic aromatic hydrocarbons and particulate matter from domestic combustion of selected fuels Environ. ... Pollutant emissions increased with increasing stove thermal efficiency, implying that thermal efficiency enhancement in the improved stoves was mainly from design features leading to increased heat transfer but not combustion efficiency. ...

Yanju Chen; Christoph A. Roden; Tami C. Bond

2012-04-25T23:59:59.000Z

403

PA 9949 Hertz Exhibit E Pricing Sheet Revised by Amendment No. 7  

E-Print Network [OSTI]

/A International Locations International rentals do not include third party liability and loss damage waiver.00 ID Sun Valley $6.00 IL Chicago $8.00 MA Boston $8.00 MD Baltimore $8.00 MI Detroit $8.00 MT Missoula.00 OR Redmond $10.00 OR Salem Airport Only $10.00 OR Sun River $10.00 PA Philadelphia $8.00 WA Pasco $10.00 WA

Maxwell, Bruce D.

404

Possibility of modification of the 231Pa Mssbauer spectra due to polarization-selective optical pumping  

Science Journals Connector (OSTI)

The possibility of optical pumping of nuclei in solids is considered. In spite of the fact that inhomogeneous and homogeneous linewidths typically exceed the hyperfine splitting in solid hosts it is possible to redistribute the population of the hyperfine nuclear sublevels by means of polarization-selective optical pumping. Such redistribution can be detected by NMR methods or Mssbauer spectroscopic techniques. The latter case is considered in this work. The Mssbauer isotope 231Pa is proposed as a candidate for possible experiment.

Roman Kolesov and Elena Kuznetsova

2001-04-18T23:59:59.000Z

405

Emission of F23 and Ne24 in cluster radioactivity of Pa231  

Science Journals Connector (OSTI)

Using a track-recording phosphate glass detector with a standard deviation ?Z=0.23 charge unit, we collected ?2100 tracks of energetic clusters emitted from Pa231. Of these, 1348 survived cuts on energy, angle of incidence to the detectors, and ?2. All but one of them are consistent with Ne24, and our measured branching ratio, B(Ne/?)=(13.41.7)10-12, for an alpha-decay half-life for Pa231 of 3.28104 yr. This value of B is a factor of 2.2 greater than was determined by Tretyakova et al., who observed 252 Ne decays. We identify one event as F23, the nucleus predicted by cluster emission models to have the second highest branching ratio for emission from Pa231. This corresponds to a branching ratio B(Ne/F)=1347-940+6440, the 1? limits being governed by inverse Poisson statistics. Published models predict lower values of B(Ne/F), ranging from 3 to 400. Our event, if its 4? deviation from Ne is regarded as sufficient evidence for F, would be the first example of emission of an odd-Z cluster in spontaneous cluster radioactivity.

P. B. Price; R. Bonetti; A. Guglielmetti; C. Chiesa; R. Matheoud; C. Migliorino; K. J. Moody

1992-11-01T23:59:59.000Z

406

Post-yield fracture behaviour of PA-6/LDPE-g-MA/nanoclay ternary nanocomposites: semiductile-to-ductile transition  

Science Journals Connector (OSTI)

Melt-mixed ternary nanocomposites of PA-6/LDPE-g-MA/organoclay, (CloisiteTM...30B) with microscopically confirmed flocculated-intercalated morphology have been evaluated for their plane-stress fracture and failur...

Naresh Dayma; Harjeet S. Jaggi; Bhabani K. Satapathy

2012-11-01T23:59:59.000Z

407

Recipient: County of Lancaster, PA ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANTS NEPA COMPLIANCE FORM  

Broader source: Energy.gov (indexed) [DOE]

5 5 Recipient: County of Lancaster, PA ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANTS NEPA COMPLIANCE FORM Activities Determination/ Categorical Exclusion Reviewer's Specific Instructions and Rationale (Restrictions and Allowable Activity) Lancaster County Environmental Center Energy Efficiency Retrofits A9, All, B5.1 Waste Stream Clause Historic Preservation Clause Engineering Clause **This NEPA determination is limited to lighting upgrades, installation of a PV system; installation of a geothermal heat pump is conditioned pending further NEPA review. Lancaster County Environmental Center Renewable Energy System B5.1 Waste Stream clause Historic Preservation clause Engineering clause County Facility Energy Audits A9 None. This NEPA determination is limited to audits only.

408

Microsoft PowerPoint - PA CoP Status and plans.pptx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Practice Status and Plans Performance Assessment Community of Practice Technical Exchange May 25, 2011 Martin J Letourneau DOE Office of Environmental Compliance 5/25/2011 Print Close 2 History and Background * Originally envisioned and established in 2008 under DOE HLW Corporate Board * Very DOE and EM oriented * Sponsored 2 technical exchange meetings (Salt Lake and Richland) * Went dormant when HLW Corporate Board was on hiatus * Corporate Board Shifted to Office of Environmental Compliance * Identified opportunity to make PA CoP broader and free- standing 5/25/2011 Print Close 3 Initial Steering Committee Meeting * Met Monday to develop path forward and work on charter - Alaa aly, Intera

409

Influence of defects on excess charge carrier kinetics studied by transient PC and transient PA  

SciTech Connect (OSTI)

By comparison of transient photoconductivity (TPC) and transient photoinduced absorption (PA) the influence of the density of states in the bandgap on excess charge carrier kinetics is studied for a-Si:H films deposited at different temperatures and for state of the art a-Si:H films in two different states of light soaking. In both series the rising deep defect density leads to an enhancement of electron trapping rather than recombination via deep defects. The samples deposited at temperatures lower than 250 C additionally show a lower effective electron mobility, i.e., a broader conduction band tail.

Feist, H.; Kunst, M.; Swiatkowski, C.

1997-07-01T23:59:59.000Z

410

Crystal-structure stabilities and electronic structure for the light actinides Th, Pa, and U  

Science Journals Connector (OSTI)

The crystal-structure stabilities, equilibrium volumes, and bulk moduli (at T=0) of the light actinides Th, Pa, and U, have been calculated by means of full-potential, total-energy band-structure calculations. The total energies of the three elements were calculated as a function of volume in the three experimentally observed crystal structures: fcc, bct, and orthorhombic (?-U). Our calculations reproduce the experimentally observed crystal structures, as well as the equilibrium volumes and bulk moduli (the bulk modulus of Pa being an exception). Other calculated ground-state properties are also in good agreement with experiment, e.g., crystal-structure parameters (c/a ratio and positional parameters). On the basis of our results, we argue that the 5f electrons are participating in the chemical bonds, and that they have a large influence on the crystal structure. The equilibrium volumes of hypothetical fcc structures are found to show increasing deviations from the volumes obtained in the true crystal structures, as the 5f band becomes filled. Also, these fully relativistic calculations (assuming a fcc structure) show a smaller volume for Pu than for Np, in contrast to the experimental finding. We therefore propose that the anomalous volume of ?-Pu is associated with its very unusual crystal structure, rather than with relativistic effects. Detailed information from the calculations is presented, such as the density of states, charge-density contour plots, and orbital occupation numbers.

J. M. Wills and Olle Eriksson

1992-06-15T23:59:59.000Z

411

U234 excited states fed in the ? decay of Pa234  

Science Journals Connector (OSTI)

The decay of radiochemically separated Pa234 (UZ) sources has been reinvestigated by means of single and ?-? coincidence spectrometry using planar and high efficiency coaxial HPGe detectors. Of the 330 ? rays observed in the 402100 keV energy range, of which 140 are new, more than 310 ? rays are accommodated in an improved U234 level scheme, accounting for 98% of the Pa234 ? decay; of the 77 excited states observed here, 37 had not been previously found in this decay. Within the framework of the collective model of strongly deformed nuclei, couplings between the collective positive parity K?=01+ (g.s. band), 02+, 21+, 03+, and 22+ bands are estimated from the perturbed transition probabilities and the distortions to the adiabatic energy systematics. The Coriolis interaction weakly coupling the K?=0-, 1-, and 2- octupole bands was evaluated consistently by a fit to the experimental energy levels. Several new levels and a tentative K?=3+ band (at 1770 keV) are discussed in terms of Nilsson orbitals assignments.

C. Ardisson; J. Dalmasso; G. Ardisson

1986-06-01T23:59:59.000Z

412

Study of Bk249, Am241, and Pa231 with proton transfer reactions  

Science Journals Connector (OSTI)

Proton single-particle states have been studied in the isotopes Bk249, Am241, and Pa231. The reaction (?,t) was utilized in the three studies. Additionally, the reaction (He3, d) was used in the study of levels in Bk249. Many new levels were observed and some could be interpreted in terms of single-particle orbitals. Also several assignments previously made on the basis of radioactive decay studies were confirmed by the orbital signatures seen in the proton transfer spectra. Single-particle energies are extracted from the experimental data. Deformations of the nuclear central potential are deduced for Bk249 and Am241. By use of the parameters of the central field for Bk249, the f72-f52 splitting is deduced for mass 250 at zero deformation and estimated for mass 300.NUCLEAR REACTIONS Cm248(He3,d), Cm248, Pu240, Th230(?,t) E=29 MeV; measured E (excitation), ?; deduced orbitals, s.p. energies, deformations in Bk249, Am241, Pa231.

J. R. Erskine; G. Kyle; R. R. Chasman; A. M. Friedman

1975-02-01T23:59:59.000Z

413

wvBLACK DIAMONDS table of contents  

E-Print Network [OSTI]

'RE ON THE WEB! www.mine.cemr.wvu.edu Statler College of Engineering and Mineral Resources DEPARTMENT OF MINING

Mohaghegh, Shahab

414

wvBLACK DIAMONDS table of contents  

E-Print Network [OSTI]

with mining! WE'RE ON THE WEB! www.mine.cemr.wvu.edu College of Engineering and Mineral Resources DEPARTMENT

Mohaghegh, Shahab

415

Spin-Lattice Relaxation of Tetravalent Pa231 in Cs2ZrCl6  

Science Journals Connector (OSTI)

The paramagnetic relaxation time was measured for Pa4+ in the cubic matrix Cs2(99% Zr, 1% Pa) Cl6 between 1.4 and 4.2K, using pulse-saturation techniques. This complex, with its known and comparable spin-orbit and crystal field interactions, was chosen to determine whether the approximations for the orbit-lattice interaction, which are apparently valid for rare-earth ions, would remain so for ions of the 5f transition group. The data fit T1-1=A?T+C?T9, where A?=3.460.34 sec-1 deg-1 and C?=5.110-51.510-5 sec-1 deg-9. The static crystal field parameters A40?r4?=888 cm-1 and A60?r6?=41.9 cm-1 are used to estimate the coupling parameters |a4m?r4?| and |a6m?r6?| to the fourth- and sixth-degree spherical harmonics in the orbit-lattice interaction. The coupling to the second-degree spherical harmonics is treated in terms of a a single parameter |a20?r2?|. The speed of longitudinal sound waves in a polycrystalline sample of pure Cs2ZrCl6 was measured and found to be 4.5105 cm/sec. Using this value for the effective phonon velocity, the theoretical relaxation rate is computed in terms of the single parameter |a20?r2?|. A comparison with the experimental direct-process coefficient A? indicates |a20?r2?|?17 000 cm-1, while comparison with the Raman coefficient C? yields |a20?r2?|?30 000 cm-1. A dynamic point-charge model, based upon a phonon-induced distrotion of the octahedron of Cl- ions surrounding the Pa4+ site, shows that |a20?r2?| should be approximately 23 000 cm-1 if it is to be consistent with the values of |a4m?r4?| and |a6m?r6?| obtained from the static crystal field parameters. This reasonable agreement supports the contention that estimating correct order-of-magnitude spin-lattice relaxation rates by Orbach's simple phenomenological approach is not restricted to the rare-earth series.

L. J. Raubenheimer; E. Boesman; H. J. Stapleton

1965-03-01T23:59:59.000Z

416

EERE PROJECT MANAGEMENT CENTER Nl!PA DETl!R}.JINATION  

Broader source: Energy.gov (indexed) [DOE]

OFl!NERGY OFl!NERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETl!R}.JINATION RECIPIENT:State of Wisconsin * Office of Energy Independence PROJECf TITLE: WI Biodiesel Blending Program Page 1 of2 STATE: WI Funding Opportunity Announttmenf Number Proc:unment Instrument Numbu NEPA Control Number CID Number COP DE-EEOOO3117 GFO-l0-4t4 EE3117 Based on my nview oftbe information concerning the proposed action, as NEPA Compliance Officer (authori7.ed undu DOE Onter 451.1A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathenng (Including, but not limited to, literature surveys, inventories, audits). data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies. analytical energy supply

417

EERE PROJECT MANAGEMENT CENTER Nl!PA DFTFnIINATION RECIPIENT:  

Broader source: Energy.gov (indexed) [DOE]

Il.II.': , Il.II.': , u.s. DEPARTMENT OFFNERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DFTFnIINATION RECIPIENT: FDC Enterprises, Inc. Page 1 of2 STATE: KS PROJECT TITLE: Design and Demonstration of an Advanced Agricultural Feedstock Supply System for lignocellulosic Bioenergy Production Funding Opportunity AonOUDCtment Number DE-FOA-0000060 Pnxunmtol Instrument Number EEOOO1033 NEPA Control Number em Number GF()..10-532 0 Based on my review oflbe information concerning the propostd action, 85 NEPA Compliance Officer (authorized under DOE Order 4Sl.IA). I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, literature surveys, inventories, audits). data analysis (including

418

U.S. DEPARTIl1FNT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETERMINATION  

Broader source: Energy.gov (indexed) [DOE]

FNT OF ENERGY FNT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETERMINATION RECIPIENT:Oregon Department of Energy PROJECf TITLE: Farm Power Tillamook, LLC Page I of2 STATE: OR Funding Opportunity Announcement Number DE-FOA-0000052 Procurement Instrument Number NEPA Control Number ell> Number DE-EEOOOO140 GFO-OOO0140-OO5 EE140 Based on my review oftbe information concerning the proposed aetion, as NEPA Compliance Officer (autborized under DOE Order 451.1A), I have made the following determination: ex, EA, EI S APP~:NDIX AND NUMBER: Description: 85.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

419

TMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETERMINATION  

Broader source: Energy.gov (indexed) [DOE]

u~\ u~\ u.s. DEPAR TMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETERMINATION RECIPIENT:Hawaii Natural Energy Institute STATE : HI PROJECf TITLE: Hawaii Hydrogen Power Park - Technology Validation of a Hydrogen Fueling System Funding Opportunity Announcement Number n/a Procurement Instrument Number DE·FC51-02R021399 NEPA Control Number GFO-R021399-002 Page 1 of2 em Number 21399 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.IA), I have made the following determination : ex, EA, EIS APPENDIX AND NUMBER: Description; 85.1 Adions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

420

18 MILES NORTH OF PHlLADEl.PHlA HATBORO, PA. August  

Office of Legacy Management (LM)

8 MILES NORTH OF PHlLADEl.PHlA 8 MILES NORTH OF PHlLADEl.PHlA HATBORO, PA. August 27, 1948 ! ! Frank Giaccio' Commission / I This follows my letter of August ZOth, in which I promised to advise you of our thoughts concerning beryllium, after I had completed a series of con- tacts with both.Government and private,grou?s and had an opportunity to evaluate the possibilities of using our process from the point of view of industrial research. By this, I meanthe possibility of the research leading into substantial production of parts. I believe I mentioned some of the contacts to you when I was in your office, and that we still had more to make. It is my opinion now that as far as beryllium is concerned, I cannot visualize the possibility of large production runs of parts; because it is

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Recipient. County of Berks, PA ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANTS NEPA COMPLIANCE FORM  

Broader source: Energy.gov (indexed) [DOE]

0 0 Recipient. County of Berks, PA ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANTS NEPA COMPLIANCE FORM Activities Determination/ Categorical Exclusion Reviewer's Specific Instructions and Rationale (Restrictions and Allowable Activity) Replacement of Steam and Condensation Lines at North Campus B5.1 Waste Stream, Engineering, and Historical Preservation clauses. The new boiler cannot result in a net increase in air emissions. Additional Comments: Based on my review of information conveyed to me and in my possession (or attached) concerning the proposed action, as NEPA Compliance Officer (as authorized under DOE Order 451.1B), I have determined that the proposed action fits within the specified class of actions, other applicable regulatory requirements are met, and the proposed action is hereby categorically excluded from further

422

u.s. Dl!PARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETERMINATION  

Broader source: Energy.gov (indexed) [DOE]

PARTMENT OF ENERGY PARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETERMINATION RECIPIENT:WA Dept of Commerce Page 1 of3 STATE: WA PROJECT TITLE: SEP ARRA · WSU Anaerobic Digester - Nutrient Recovery Technology - Vander Haak Dairy Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number EEOOOO139 GF0-0000139-040 0 Based on my review of the Information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4S1.1A), I have made tbe following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering, analysis, and dissemination Information gathering (including, but not limited to, literature surveys, inventories, site visils, and audits), data analysis (including

423

2013 NETL CO2 Capture Technology Meeting Sheraton Station Square, Pittsburgh, PA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NETL CO2 Capture Technology Meeting NETL CO2 Capture Technology Meeting Sheraton Station Square, Pittsburgh, PA July 8 - 11, 2013 ION Novel Solvent System for CO 2 Capture FE0005799 Nathan Brown ION Engineering Presentation Outline 2  ION Advanced Solvent Background  Project Overview  Technology Fundamentals  Progress & Current Status  Plans for Future Commercialization  Acknowledgements ION Engineering Background 3 Mission Statement: Develop new solvents and processes for economic removal of CO 2 from industrial emissions. Markets:  Coal-fired flue gas  NGCC-fired flue gas  Sour gas processing 1 st & 2 nd Generation CO 2 Capture 4 Aqueous MEA Commercial Use Existing Commercial Technology Lateral Transfer of Existing Technology Aqueous MEA

424

EERE PROJECT MANAGEMENT CENTER Nl!PA DI!Tl!Rl\.lINAIION  

Broader source: Energy.gov (indexed) [DOE]

DFPARTIlIENT OFI!NERGY DFPARTIlIENT OFI!NERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DI!Tl!Rl\.lINAIION RECIPIENT:NH Office of Energy and Planning PROJECf TITLE : Fonnula Grant for State Energy Program· NH Page 1 of2 STATE: NH Funding Opportunity Announ~ement Number Procurement Instrument Number NEPA Control Number CID Number DE FDA 0000643 DE-FG26-06R130472 GF()'()130472-OO1 Based on my review orlbe information concerning the proposed action, as NEPA Compliance OffICer (authorized under DOE Order 4sl.tA), I have made the foUowing determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A11 Technical advice and assistance to organizations A9 Information gathering, analysis, and dissemination Rational for detennination: Technical advice and planning assistance to international, national, state, and local organizatioos

425

EERE PROJECT MANAGEMENT CENTER Nl!PA DI!TFIU.nNATION  

Broader source: Energy.gov (indexed) [DOE]

PARTh1l1NT OFI!NERGY PARTh1l1NT OFI!NERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DI!TFIU.nNATION Page I of2 RECIPIENT: City of SI. Petersburg STATE: FL PROJECT TITLE: SI. Petersburg Solar Pilol Project (FL) FUnding Opportunity Announcement Number Procunml'nt Instrument Numbu NEPA Control Number CID Number DE-EEOOOO284 GF().OQ()()284-003 G0284 Based on my review ortbe information concerning the proposed action, as NEPA Compliance Officer (authorized UDder DOE Order 451.1A), I have made the (ollowing determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 8 5.16 Sola r photovoltaic systems The installation, modification, operation, and removal of commercially available solar photovoltaic systems located on a building or other structure (such as rooftop, parking lot or facility, and mounted to Signage,

426

u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETERMINATION  

Broader source: Energy.gov (indexed) [DOE]

~) ~) u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETERMINATION RECIPI[NT :Dehlsen Associates. LlC (DA) Page 1 of2 STATE: CA PROJECT TITLE: High Energy Density Distributed Hydrostatic Direct Drive for large Wind Turbine and MHK Device Applications Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number DE-FOA-0000439 DE-EEOOO5139 GFO-OOOS139-001 0 Based on my review ofthe information concerning tbe proposed acrion, as NEPA Compliance Officer (authorized under DOE Order451.IA), J have made tbe following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (Including, but nollimited to, literature surveys, inventories, audits), data analysis (including

427

EERE PROJECT MANAGEMENT CENTER Nl!PA DI!Tl!RMINATION  

Broader source: Energy.gov (indexed) [DOE]

DFPARTlIIENT OFI!NERGY DFPARTlIIENT OFI!NERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DI!Tl!RMINATION Page 1 of2 RECIPIENT: Energent Corporation STATE: CA PROJECT TITLE: Scale Resistant Heat Exchangers for Low Temperature Geothermal Binary Cycle Power Plant Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number elD Number DE-FOA-0000318 DE-EE0004423 GFO-OOO4423-OO2 G04423 Based on my review ofthe information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order4S1.1A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Inf ormation Information gathering (including, but not limited to, literature surveys, inventories, site visits, and gathering, analYSiS, and audits), data analysis (including, but not limited to, computer modeling), document preparation

428

US DEPARl'lIIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETERMINATION  

Broader source: Energy.gov (indexed) [DOE]

DEPARl'lIIENT OF ENERGY DEPARl'lIIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETERMINATION RECIPIENT: Snohomish County PUD PROJECf TITLE: Acoustic Effects of Hydrokinetic Tidal Turbines Page 1 on STATE: WA Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-FOA-0000069 DE-EEOOO2654 GFQ-0002654-OO2 0 Based on my review orlhe Information concerning the proposed action, as NEPA Compliance Officer (authori1.ed under DOE Order 4S1.1A), I have made the following determination: ex, EA, EIS APPENDIX ANO NUMBER: Description: B3.3 Field and laboratory research, inventory, and information collection activities that are directly related to the conservation of fish or wildlife resources and that involve only negligible habitat destruction or population reduction

429

Microsoft PowerPoint - Cheng-PA Presentation-v5.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applications Applications of RESRAD-OFFSITE Presented At PA Community of Practice Technical Exchange Richland, WA April 14, 2010 Jing-Jy Cheng, Ph.D. Environmental Science Division Argonne National Laboratory RESRAD - A Regulatory Tool for Addressing Site Cleanup Issues 2 RESRAD, an internationally utilized model, successfully addresses the critical question "How clean is clean enough?" Supports government regulatory endeavors in cleanup * DOE (Designated by Order 5400.5) * NRC (License Termination Rule; 10 CFR 20 Subpart E; NUREG/1757) * EPA (CERCLA) * State agencies In use for about 30 years * Evaluation of more than 300 cleanup sites * Over 100 training workshops * International (e.g., IAEA) recognition RESRAD Development Philosophy : Bridging Science with Regulatory Compliance

430

Oxidation of zirconium alloys in 2.5 kPa water vapor for tritium readiness.  

SciTech Connect (OSTI)

A more reactive liner material is needed for use as liner and cruciform material in tritium producing burnable absorber rods (TPBAR) in commercial light water nuclear reactors (CLWR). The function of these components is to convert any water that is released from the Li-6 enriched lithium aluminate breeder material to oxide and hydrogen that can be gettered, thus minimizing the permeation of tritium into the reactor coolant. Fourteen zirconium alloys were exposed to 2.5 kPa water vapor in a helium stream at 300 C over a period of up to 35 days. Experimental alloys with aluminum, yttrium, vanadium, titanium, and scandium, some of which also included ternaries with nickel, were included along with a high nitrogen impurity alloy and the commercial alloy Zircaloy-2. They displayed a reactivity range of almost 500, with Zircaloy-2 being the least reactive.

Mills, Bernice E.

2007-11-01T23:59:59.000Z

431

EERE PROJECT MANAGEMENT CDITER Nl!PA Dl!Tl!Rl\llNATION  

Broader source: Energy.gov (indexed) [DOE]

... ... ~ . u.s DEPAR lENT OFl!NERG' EERE PROJECT MANAGEMENT CDITER Nl!PA Dl!Tl!Rl\llNATION Page 1 of2 RECIPIENT:Stanford University STATE: CA PROJECf TITLE: In·Situ X·Ray Analysis of Rapid Thermal Processing for Thin·FiI Solar Cells: Closing the Gap between Production and Laboratory Efficiency Funding Opportunity Announcement Number DE·FOA-0000654 Procurement Instrument Number DE·EE0005951 NEPA Control Number em Number GFQ-0005951·001 G05951 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4SI.IA), I have made the following determination: CX, EA, EIS APP~:NDIX AND NUMBER: Description: A9 Information gathering, analysis, and dissemination 81.31 Installation or

432

Mechanism of the reaction Th232(d ,2n)Pa232  

Science Journals Connector (OSTI)

The excitation function for the reaction Th232(d ,2n) Pa232 has been reinvestigated in the energy range 10-26 MeV, using a different technique, to check the earlier report of the existence of two maxima in the excitation function. The present results, while confirming the first maximum, have not shown any indication of a second peak. The shape of the present excitation function generally agrees with that predicted by the hybrid model. On this basis, the mechanism of the reaction could be explained in terms of the usual evaporation and preequilibrium decay of the compound system.NUCLEAR REACTIONS Th232 (d ,2n), E=10-26 MeV, measured ?(E), foil stack technique, ? counting method.

J. Rama Rao; H. Machner; J. Ernst; T. Mayer-Kuckuk

1977-06-01T23:59:59.000Z

433

Scissors resonance in the quasicontinuum of Th, Pa, and U isotopes  

Science Journals Connector (OSTI)

The ?-ray strength function in the quasicontinuum has been measured for 231233Th, 232,233Pa, and 237239U using the Oslo method. All eight nuclei show a pronounced increase in ? strength at ?SR?2.4 MeV, which is interpreted as the low-energy M1 scissors resonance (SR). The total strength is found to be BSR=911?N2 when integrated over the 14 MeV ?-energy region. The SR displays a double-hump structure that is theoretically not understood. Our results are compared with data from (?, ??) experiments and theoretical sum-rule estimates for a nuclear rigid-body moment of inertia.

M. Guttormsen; L. A. Bernstein; A. Grgen; B. Jurado; S. Siem; M. Aiche; Q. Ducasse; F. Giacoppo; F. Gunsing; T. W. Hagen; A. C. Larsen; M. Lebois; B. Leniau; T. Renstrm; S. J. Rose; T. G. Tornyi; G. M. Tveten; M. Wiedeking; J. N. Wilson

2014-01-06T23:59:59.000Z

434

Multipole character of the proposed 220 eV transition in Pa229  

Science Journals Connector (OSTI)

Internal conversion coefficients (ICCs) have been calculated for protactinium and transition energies between 170 eV and 10 keV. The ICCs for E1 multipolarity show an unusual behavior, which cannot be approximated by an exponential dependence on the transition energy, whereas the ICCs for M1 and E2 multipolarities closely follow such a dependence. Using the newly calculated ICCs the unusually strong enhancement of a possible 220 eV E1 transition in Pa229 proposed earlier is reduced by a factor of ?5, yielding an induced electric dipole moment similar to that observed in the neighboring octupole-deformed isotopes.

O. Dragoun; M. Rysavy; C. Gnther

1993-02-01T23:59:59.000Z

435

DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER N1!PA Dl!1'ElU.llNATION  

Broader source: Energy.gov (indexed) [DOE]

N1!PA Dl!1'ElU.llNATION N1!PA Dl!1'ElU.llNATION RECIPIENT:City of Perth Amboy PROJECT TITLE : Municipal Complex Solar Power Project Page 1 of2 STATE: NJ Funding Opportunity Announl::ement Number Procurement Instrument Number NEPA Control Number elD Number Congressionally Directed Project DE· EEOOO3172 GF0-0003172..Q01 EE3172 Based on my review of the information concerning the proposed action, as N[PA Compliance Officer (authoro.ed under DOE Order451.1A),1 have made tbe following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 8 5.1 Adions to oonserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentratIOns of potentially harmful substances. These actions may involve financial and technical

436

Partial Solutions for Assignment 1 (1) In a certain random experiment, let A and B be two events such that P(A) = 0.7,  

E-Print Network [OSTI]

and 36 inclusive are odd, half are even. A ball is rolled around the wheel and ends up in one of the 38) P(A B) = 0.6, (b) P(A B ) = 0.1, (c) P(A B ) = 0.7. (5) A typical American roulette wheel used of the slots in which the ball falls. (a) The sample space S = {1, 2, · · ·, 35, 36, 0, 00}. (b) Let B = {0, 00

Chen, Chaur-Chin

437

COTTON RESPONSE TO SOIL APPLIED CADRE AND PURSUIT. J.R. Karnei, P.A. Dotray, J.W. Keeling,  

E-Print Network [OSTI]

COTTON RESPONSE TO SOIL APPLIED CADRE AND PURSUIT. J.R. Karnei, P.A. Dotray, J.W. Keeling, W are faced with numerous weed problems in cotton and peanut, including yellow and purple nutsedge these weeds, but can significantly injure cotton the following growing season. Most of the approximately 200

Mukhtar, Saqib

438

Policy ReseaRch WoRking PaPeR 4680 Safeguards and Antidumping in Latin  

E-Print Network [OSTI]

Policy ReseaRch WoRking PaPeR 4680 Safeguards and Antidumping in Latin American Trade Agreement on Tariffs and Trade/World Trade Organization-sanctioned safeguards and antidumping mechanisms supported liberalization; the economic content did not. #12;Safeguards and Antidumping in Latin American

439

Optics in Computing OC03 Pa-OFB2 Two-photon volumetric optical disk storage systems  

E-Print Network [OSTI]

Optics in Computing OC03 Pa-OFB2 Two-photon volumetric optical disk storage systems: experimental: sesener@ece.ucsd.edu ABSTRACT Recent performance in two-photon volumetric data storage is presented. Experimental results are presented and theoretical potentials are analyzed. Keywords: volumetric data storage

Esener, Sadik C.

440

A space-charge-neutralizing plasma for beam drift compression P.K. Roya,, P.A. Seidl a  

E-Print Network [OSTI]

- long final focus solenoid (FFS). Measured data show that the plasma forms a thin column of diameter $5A space-charge-neutralizing plasma for beam drift compression P.K. Roya,?, P.A. Seidl a , A. Anders of California, Berkeley, CA 94720, USA c Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA d

Gilson, Erik

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Levels of isotopes Pa233,235,237 and Ac229,231 studied by the (t ,?) reaction  

Science Journals Connector (OSTI)

The U234(t ,?)Pa233, U236(t ,?)Pa 235, U238(t ,?)Pa 237, Th230(t ,?)Ac 229, and Th232(t ,?)Ac 231 reactions were studied with a 15-MeV triton beam. The reaction results are interpreted in terms of a distorted-wave-Born-approximation analysis. Theoretical cross sections, calculated in the framework of the Nilsson model with pairing and Coriolis interactions included, are compared with experimental values. The following Nilsson proton configurations are identified in all of the residual nuclei: 1/2+[400], 3/2+[402], 3/2+[651], 1/2-[530]. The 1/2-[541] and 9/2-[514] configurations are tentatively assigned. Due to the increase in deformation with neutron number, the ground state configuration of the Pa isotopes changes from 3/2-[530] to 1/2+[400] as A increases.NUCLEAR REACTIONS U234(t ,?), U236(t ,?), U238(t ,?), Th230(t ,?), and Th232-(t ,?), E=15 MeV, measured ?(E?,?), deduced levels, J, ?, K, enriched targets.

R. C. Thompson; W. Wilcke; J. R. Huizenga; W. K. Hensley; D. G. Perry

1977-06-01T23:59:59.000Z

442

Geochemical data package for the Hanford immobilized low-activity tank waste performance assessment (ILAW PA)  

SciTech Connect (OSTI)

Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as low-activity waste is to vitrify the liquid/slurry and place the solid product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford Immobilized Low-Activity Tank Waste (ILAW) Performance Assessment (PA) activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the porewater of the vadose zone. Pacific Northwest National Laboratory assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the disposal facility, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (K{sub d}) and the thermodynamic solubility product (K{sub sp}), respectively. In this data package, the authors approximate the solubility of contaminants using a more simplified construct, called the solution concentration limit, a constant value. In future geochemical data packages, they will determine whether a more rigorous measure of solubility is necessary or warranted based on the dose predictions emanating from the ILAW 2001 PA and reviewers' comments. The K{sub d}s and solution concentration limits for each contaminant are direct inputs to subsurface flow and transport codes used to predict the performance of the ILAW system. In addition to the best-estimate K{sub d}s, a reasonable conservative value and a range are provided. They assume that K{sub d} values are log normally distributed over the cited ranges. Currently, they do not give estimates for the range in solubility limits or their uncertainty. However, they supply different values for both the K{sub d}s and solution concentration limits for different spatial zones in the ILAW system and supply time-varying K{sub d}s for the concrete zone, should the final repository design include concrete vaults or cement amendments to buffer the system pH.

DI Kaplan; RJ Serne

2000-02-24T23:59:59.000Z

443

The Life of Sum-pa mkhan-po (1704-1788), The Celebrated Author of dPag-bsam ljon-bzan (trans.)  

E-Print Network [OSTI]

. In the account of Erti-ni tha'i-ji tshans-pa-skyabs (of Kokonor), Sum pa was born in the Wood-Monkey year (A.D. 1704) of the 12th Rab-byun cycle. Sum-pa read Erti-ni ... 's Brag-dkar me-Ion and learned the rules of the religious practice. When he was admitted... scholar dGe 'dun don-grub. He received religious instructions from Khri-chen sprul sku, dKa'-chen smon-Iam-pa, Tshis-ka'i sriags-rim-pa, etc. in La-mo bde chen monastery. He inquires about the religious advice on 3 man-nag, etc. which successively came...

Sadhukhan, Sanjit Kumar

1992-01-01T23:59:59.000Z

444

U.S. DEPARTMENT OFENl!RGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETlffiMINATION  

Broader source: Energy.gov (indexed) [DOE]

Nl!PA DETlffiMINATION Nl!PA DETlffiMINATION R[CIPIENT:New York State Energy Research and Development Authority PROJECf TITLE: Program Year 2012 Formula Grants - State Energy Program Page 1 of3 STATE: NY Funding Opportunity Announcement Numbel" Procurement Instrument Number NEPA Control Number CID Number DE-FOA-Q000643 R130772 GF0-0130772-OO1 Based on my review orlbe information concerning the proposed action, as NEPA Compliance Omen (authorized under DOE Order 451.1A), I hne made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: All Technical advice and assistance to organization, A9 Information gathering, analysis, and dissemination Rational for determination: Technical advice and planning aSSistance to international, national, slate, and local organizations.

445

DEPARThIl!NT OF ENERGY EERE PROJECT MANAGEMENT CENTER NllPA DEl'ER}.fiNATION  

Broader source: Energy.gov (indexed) [DOE]

DEPARThIl!NT OF ENERGY DEPARThIl!NT OF ENERGY EERE PROJECT MANAGEMENT CENTER NllPA DEl'ER}.fiNATION RECIPIENT:Cortiand County Business Development Corporation PROJE(.T TITLE : Energy Independent Agri-Business Outreach Page I of2 STATE: NY Funding Opportunity Announcement Number DE-EOOO3110 Procurement Instrument Number EEOOO3110 NEPA Control Number em Number GFO-10-573 0 Based on my review orlbe information concerning the proposed action, as N[PA Compliance Officer (autborized under DOE Order 4SI.IA),1 have made tbe follol'iing determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, bul nollimiled 10, literature surveys. inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

446

Team Name State Div Team Relay 1 Relay 2 Power Indiv Grand Total 1 LEHIGH VALLEY A1 PA A 45 20 18 43 78 204  

E-Print Network [OSTI]

Wild West B1 AZ, et B 20 5 0 18 30 73 78 LEHIGH VALLEY B1 PA B 20 0 3 15 33 71 79 Indiana B1 IN B 20 8Team Name State Div Team Relay 1 Relay 2 Power Indiv Grand Total 1 LEHIGH VALLEY A1 PA A 45 20 18 LEHIGH VALLEY A2 PA A 20 6 16 29 58 129 35 Chicago A2 IL A 25 3 11 36 51 126 36 NASSAU CNTY B1 NY B 30 10

Davis, Donald M.

447

A study of natural gas extraction in Marcellus shale .  

E-Print Network [OSTI]

??With the dramatic increases in crude oil prices there has been a need to find reliable energy substitutions. One substitution that has been used in (more)

Boswell, Zachary (Zachary Karol)

2011-01-01T23:59:59.000Z

448

Water management technologies used by Marcellus Shale Gas Producers.  

SciTech Connect (OSTI)

Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

Veil, J. A.; Environmental Science Division

2010-07-30T23:59:59.000Z

449

SPE-163690-MS Synthetic, Geomechanical Logs for Marcellus Shale  

E-Print Network [OSTI]

by the author(s). The material does not necessarily reflect any position of the Society of Petroleum Engineers of hydrocarbons from the reservoirs, notably shale, is attributed to realizing the key fundamentals of reservoir

Mohaghegh, Shahab

450

A study of natural gas extraction in Marcellus shale  

E-Print Network [OSTI]

With the dramatic increases in crude oil prices there has been a need to find reliable energy substitutions. One substitution that has been used in the United States is natural gas. However, with the increased use of natural ...

Boswell, Zachary (Zachary Karol)

2011-01-01T23:59:59.000Z

451

Marcellus Shale Drilling and Hydraulic Fracturing; Technicalities and  

E-Print Network [OSTI]

Pipe · Air Rotary Drilling Rig · Hydraulic Rotary Drilling Rig ­ Barite/Bentonite infused drilling muds A "Thumper Truck" #12;Rigging Up #12;Drilling · The Drill String ­ Diesel Powered ­ Drilling Bit ­ Drilling

Jiang, Huiqiang

452

UNREVIEWED DISPOSAL QUESTION EVALUATION: IMPACT OF NEW INFORMATION SINCE 2008 PA ON CURRENT LOW-LEVEL SOLID WASTE OPERATIONS  

SciTech Connect (OSTI)

Solid low-level waste disposal operations are controlled in part by an E-Area Low-Level Waste Facility (ELLWF) Performance Assessment (PA) that was completed by the Savannah River National Laboratory (SRNL) in 2008 (WSRC 2008). Since this baseline analysis, new information pertinent to disposal operations has been identified as a natural outcome of ongoing PA maintenance activities and continuous improvement in model simulation techniques (Flach 2013). An Unreviewed Disposal Question (UDQ) Screening (Attachment 1) has been initiated regarding the continued ability of the ELLWF to meet Department of Energy (DOE) Order 435.1 performance objectives in light of new PA items and data identified since completion of the original UDQ Evaluation (UDQE). The present UDQE assesses the ability of Solid Waste (SW) to meet performance objectives by estimating the influence of new information items on a recent sum-of-fractions (SOF) snapshot for each currently active E-Area low-level waste disposal unit. A final SOF, as impacted by this new information, is projected based on the assumptions that the current disposal limits, Waste Information Tracking System (WITS) administrative controls, and waste stream composition remain unchanged through disposal unit operational closure (Year 2025). Revision 1 of this UDQE addresses the following new PA items and data identified since completion of the original UDQE report in 2013: ? New K{sub d} values for iodine, radium and uranium ? Elimination of cellulose degradation product (CDP) factors ? Updated radionuclide data ? Changes in transport behavior of mobile radionuclides ? Potential delay in interim closure beyond 2025 ? Component-in-grout (CIG) plume interaction correction Consideration of new information relative to the 2008 PA baseline generally indicates greater confidence that PA performance objectives will be met than indicated by current SOF metrics. For SLIT9, the previous prohibition of non-crushable containers in revision 0 of this UDQE has rendered the projected final SOF for SLIT9 less than the WITS Admin Limit. With respect to future disposal unit operations in the East Slit Trench Group, consideration of new information for Slit Trench#14 (SLIT14) reduced the current SOF for the limiting All-Pathways 200-1000 year period (AP2) by an order of magnitude and by one quarter for the Beta-Gamma 12-100 year period (BG2) pathway. On the balance, updates to K{sub d} values and dose factors and elimination of CDP factors (generally favorable) more than compensated for the detrimental impact of a more rigorous treatment of plume dispersion. These observations suggest that future operations in the East Slit Trench Group can be conducted with higher confidence using current inventory limits, and that limits could be increased if desired for future low-level waste disposal units. The same general conclusion applies to future STs in the West Slit Trench Group based on the Impacted Final SOFs for existing STs in that area.

Flach, G.; Smith, F.; Hamm, L.; Butcher, T.

2014-10-06T23:59:59.000Z

453

Alle Angaben ohne Gewhr -fr eine verbindliche Festlegung wenden Sie sich bitte an den PA Zuordnungsliste Studienschwerpunkt Numerik und Simulation Studiengang Physikalische Ingenieurwissenschaft  

E-Print Network [OSTI]

Zuordnungsliste Studienschwerpunkt Numerik und Simulation Studiengang Physikalische Ingenieurwissenschaft Datum 27 bitte an den PA Zuordnungsliste Studienschwerpunkt Numerik und Simulation Studiengang Physikalische Studienschwerpunkt Numerik und Simulation Studiengang Physikalische Ingenieurwissenschaft Datum 27.08.07 Prüfungsfach

Berlin,Technische Universität

454

Safety evaluation of a recombinant plasmin derivative lacking kringles 2-5 and rt-PA in a rat model of transient ischemic stroke  

E-Print Network [OSTI]

al. Experimental & Translational Stroke Medicine 2012, 4:102012 References 1. NINDS (rt-PA Stroke Study Group): Tissueactivator for acute ischemic stroke. N Engl J Med 1995, 333:

2012-01-01T23:59:59.000Z

455

1210 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 5, MAY 2006 A SiGe PA With Dual Dynamic Bias Control and  

E-Print Network [OSTI]

1210 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 5, MAY 2006 A SiGe PA With Dual Dynamic from the battery, is the key factor determining the talk time and battery life for portable wireless

Asbeck, Peter M.

456

PA2663 (PpyR) increases biofilm formation in Pseudomonas aeruginosa PAO1 through the psl operon and stimulates virulence and quorum-sensing phenotypes  

Science Journals Connector (OSTI)

To explore the mechanism by which PA2663 induces biofilm formation in P. aeruginosa, differential gene expression in biofilms was performed. The most striking changes in gene expression were found in the genes re...

Can Attila; Akihiro Ueda; Thomas K. Wood

2008-02-01T23:59:59.000Z

457

Assignment 1 (1) In a certain random experiment, let A and B be two events such that P(A) = 0.7,  

E-Print Network [OSTI]

are even. A ball is rolled around the wheel and ends up in one of the 38 slots; we assume that each slot(A B), (b) P(A B ), (c) P(A B ). (5) A typical American roulette wheel used in a casino has 38 slots has equal probability of 1/38 and we are interested in the number of the slots in which the ball falls

Chen, Chaur-Chin

458

Abstract Atmospheric CO2 partial pressure (pCO2) was as low as 18 Pa during the Pleistocene and is projected to  

E-Print Network [OSTI]

Abstract Atmospheric CO2 partial pressure (pCO2) was as low as 18 Pa during the Pleistocene and is projected to increase from 36 to 70 Pa CO2 before the end of the 21st century. High pCO2 often increases the growth and repro- duction of C3 annuals, whereas low pCO2 decreases growth and may reduce or prevent

Antonovics, Janis

459

An air line carries air at 800 kPa and 80C. An Air line ~ O O C insulated tank initially contains 20C air at a  

E-Print Network [OSTI]

An air line carries air at 800 kPa and 80°C. An Air line ~ O O C insulated tank initially contains 20°C air at a pressure of 90kPa. The valve is opened, and air flows into the tank. Determine the final temperature of the air in the tank and the mass of air that enters the tank if the valve is left

Huang, Haimei

460

SciTech Connect:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PA, and Morgantown, WV (United States) National Institute for Petroleum and Energy Research, Bartlesville, OK (United States) National Nuclear Security Administration...

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Effect of Bubbles on Liquid Nitrogen Breakdown in Plane-Plane Electrode Geometry From 100-250 kPa  

SciTech Connect (OSTI)

Liquid nitrogen (LN(2)) is used as the cryogen and dielectric for many high temperature superconducting, high voltage applications. When a quench in the superconductor occurs, bubbles are generated which can affect the dielectric breakdown properties of the LN(2). Experiments were performed using plane-plane electrode geometry where bubbles were introduced into the gap through a pinhole in the ground electrode. Bubbles were generated using one or more kapton heaters producing heater powers up to 30 W. Pressure was varied from 100-250 kPa. Breakdown strength was found to be relatively constant up to a given heater power and pressure at which the breakdown strength drops to a low value depending on the pressure. After the drop the breakdown strength continues to drop gradually at higher heater power. This is particularly illustrated at 100 kPa. After the drop in breakdown strength the breakdown is believed to be due to the formation of a vapor bridge. Also the heater power at which the breakdown strength changes from that of LN(2) to that of gaseous nitrogen increases with increasing pressure. The data can provide design constraints for high temperature superconducting fault current limiters (FCLs) so that the formation of a vapor bridge can be suppressed or avoided.

Sauers, Isidor [ORNL; James, David Randy [ORNL; Tuncer, Enis [ORNL; Polyzos, Georgios [ORNL; Pace, Marshall O [ORNL

2011-01-01T23:59:59.000Z

462

Thermal stability of the endohedral fullerenes NaC60, NaC70, and PaC60  

Science Journals Connector (OSTI)

Nitrogen and phosphorus atoms enclosed in fullerenes keep their atomic ground-state configuration, and no charge transfer or covalent bonding to the cage occurs. These systems can be dissolved in organic solvents and reacted with addends without losing the atomic character of the guest atom. In this paper, we present a detailed study of the annealing behavior of NaC60, NaC70, PaC60, and of some NaC60 adducts. The disintegration of these systems, as recorded by electron paramagnetic resonance measurements, occurs in the temperature range between 400 K and 600 K. The results are in qualitative agreement with potential energy calculations and confirm the proposed escape mechanism that proceeds via bond formation of the trapped atom with the cage. It is found that other combinations of group-V elements with fullerenes, e.g., NaC84, PaC70, and AsaC60 are not stable at room temperature. The escape mechanism and the possibility of disabling this path are discussed.

M. Waiblinger; K. Lips; W. Harneit; A. Weidinger; E. Dietel; A. Hirsch

2001-01-09T23:59:59.000Z

463

U.S. DEPARTMENT OFI!NFRGY EERE PROJECT MANAGEMENT CENTER Nl!PA DI!TI!RMINATION  

Broader source: Energy.gov (indexed) [DOE]

Richland county Richland county U.S. DEPARTMENT OFI!NFRGY EERE PROJECT MANAGEMENT CENTER Nl!PA DI!TI!RMINATION PROJECT TITLE: Irmo Char1ing Cross Sidewalk Project Page 1 of2 STATE: SC Funding Opportunity AnnouDcement Num~r Procurement Instrument Number NEPA Control Number CID Number EEOOOO95O GF().()()()()95()3 0 Based on my review ofthe information concerning tbe proposed action, as NEPA Compliance Officer (authom.ed under DOE Order 451.1A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy, demonstrate potential energy conservation , and promote energy-efficJency that do not increase the indoor ooncentrations of potentially harmful substances. These actions may involve financial and technical

464

u.s. DI!PARThIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NJ!PA DETEJU,llNATION  

Broader source: Energy.gov (indexed) [DOE]

MANAGEMENT CENTER MANAGEMENT CENTER NJ!PA DETEJU,llNATION RECIPIENT :Ocean Renewable Power Company, LlC Page I of2 STATE: AK PROJECf TITLE: Acoustic Monitoring of Beluga Whale Interactions withCook Inlet Tidal Energy Project Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number DE-FOA-OOOOO69 DE-EE0002657 GFO-O002657-002 G02657 Based on my review oftbe information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: B3.3 Research related to Field and laboratory research, inventory, and information collection activities that are directly conservation of fish, wildlife, related to the conservation of fish and wildlife resources or to the protection of cultural

465

US DFPARThIFNT OF ENERGY EERE PROJECT MANAGEMENT CENTER NllPA DETFID.llNATION  

Broader source: Energy.gov (indexed) [DOE]

DFPARThIFNT OF ENERGY DFPARThIFNT OF ENERGY EERE PROJECT MANAGEMENT CENTER NllPA DETFID.llNATION RECIPIENT:Mercedes·Benz Research & Development, North America PROJECT TITLE : Light· Duty Fuel Cell Electric Vehicle Validation Data Page I of2 STATE : CA Funding Opportunity Announcemcnt Number DE·FOA·0000625 Procurement Instrument Number DE-EEOOO5971 NEPA Control Number CID Number GFO"'()005971...{)()1 G05971 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4SI. IA), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering, analysis, and dissemination Rational for detennination: Information gathering (including, but not limited to, literature surveys. inventories, site visits, and

466

u.s. DIiPARTMENT OF ENFR Y EERE PROJECT MANAGEMENT C NTER NIiPA DETERMINATION  

Broader source: Energy.gov (indexed) [DOE]

DIiPARTMENT OF ENFR Y DIiPARTMENT OF ENFR Y EERE PROJECT MANAGEMENT C NTER NIiPA DETERMINATION RECIPIENT:Califomia Energy Commission PROJE('T TITLE: SEP Annual Formula Page 1 of2 STATE: CA Funding Opportunity Announcement Number Procurement Instrument umber NEPA Control Number em Number DE-FOA-0000643 DE-EE-0003941 GFO-O003941-OO1 Based on my review of the information concerning the proposed action, as NEP Compliance Officer (authorized under DOE Order 451.lA), I have made the (ollowlng determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering, analysis, and dissemination Information gathering (including , bul nol limiled 10, lite alure surveys, inventories, site visits, and audits), data analysis (including , but nol limiled 10. co puler modeling), document preparation

467

Exchanges of Energy, Water and Carbon Dioxide Xuhui Lee (Yale University) and Edward Pa:on (NCAR)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Influences of the Boundary Layer Flow on Vegeta8on-Air Influences of the Boundary Layer Flow on Vegeta8on-Air Exchanges of Energy, Water and Carbon Dioxide Xuhui Lee (Yale University) and Edward Pa:on (NCAR) * Summarize your projects and its scienFfic objecFves for the next 3-5 years The objecFve of this project is to establish a mechanisFc understanding of the interplay between flow heterogeneity in the atmospheric boundary layer (ABL), land surface heterogeneity, and vegetaFon-air exchange of energy, water and CO 2 . The project will invesFgate mechanisms by which mesoscale moFons in the ABL influence vegetaFon-air exchange. It will also quanFfy the influence of heterogeneity on predicFons by 1D column models used in regional and global scale climate models. It is hypothesized that two important ABL processes entrainment and flow

468

u.s. DEP.-\RTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETl!RMINATION  

Broader source: Energy.gov (indexed) [DOE]

*** *** ~ , RECI P I [NT :Riverheath u.s. DEP.-\RTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETl!RMINATION Page 1 of2 STATE: WI PROJECT TITLE: RiverHeath: Neighborhood loop Geothermal Exchange System: Technology Demonstration Project Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number DE-FOA-OOOO116 DE-EEOOO3005 GFO-OO03005-OO2 G03005 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4Sl.1A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description : 85.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may Involve financial and technical

469

U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER N1!PA DE1'l!RlInNATION  

Broader source: Energy.gov (indexed) [DOE]

DE1'l!RlInNATION DE1'l!RlInNATION Page I of2 RECIPIENT:West Chester University of Pennsylvania STATE: PA PROJECT TITLE: Design and Implementation of Geothermal Energy Systems at West Chester University Funding Opportunity Announcement Number 70.10 Procurement Instrument Number DE-EEOOO3217 NEPA Control Number GFO-1Q-484 cm Number o Based on my review oflhe informallon concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

470

DEPARTII'IENT OF ENERGY EERE PROJECT MA'<AGEMENT CENTER Nl!PA DETEIU.fiNATION  

Broader source: Energy.gov (indexed) [DOE]

DEPARTII'IENT OF ENERGY DEPARTII'IENT OF ENERGY EERE PROJECT MA'PA DETEIU.fiNATION RECIPIENT:ldaho Office of Energy Resources PROJECT TITLE : Program Year 2012 State Energy Program Formula Grants Page 1 of2 STATE: fD Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CIO Number DE-FOA0000643 DE-EEOOO3681 GFD-0003681-OO3 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 45 1. IA), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering, analysis, and dissemination A11 Technical advice and assistance to organizations Rational for determination: Information gathering (induding, but not limited to, literature surveys, inventories, site visits, and

471

US. DI!PARTlIIENT OFI!NFRGY EERE PROJECT MANAGEMENT CENTER Nl!PA DI!TIIU.fiNATION  

Broader source: Energy.gov (indexed) [DOE]

DI!PARTlIIENT OFI!NFRGY DI!PARTlIIENT OFI!NFRGY EERE PROJECT MANAGEMENT CENTER Nl!PA DI!TIIU.fiNATION REClPI[NT:The Regents of the University of Califomia; University of California Berkley Page I of2 STATE: CA PROJEcr TITLE: Advanced Manufacturing MedicaVBiosciences Pipeline for Economic Development {AM2PED)is a regional medical and biosciences manufacturing initiative targeting the 180/880 corridor in the SF East Bay. Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number JlAC2102AM DE-EE0006026 GF().()()()6()26-001 G06026 Based on my TCview ortbe information concerning the proposed aclion, as NEPA Compliance Officer (authoru.ed under DOE Order 451.1A), I have made tbe following detel"mination: ex, EA, [IS APPENDIX AND NUMBER:

472

U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETl!Rl\lINATION  

Broader source: Energy.gov (indexed) [DOE]

.**.* : .**.* : , U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETl!Rl\lINATION RECIPIENT :DOE Solar Energy Technology Program PROJECf TITLE: Solar Energy Evolution and Diffusion Studies (SE EDS) Page 1 of2 STATE: DC Funding Opportunity Annouoc:emenf Number Procurement Instrument Number NEPA Control Number em Number OE-FOA-OOOO740 GFO-FOA0740-001 Based on my review orehe information concerning the proposed aetion, as NEPA Compliance Officer (authorized under DOE Order 4Sl.IA), I have made tbe following determination: ex, EA, EIS APPENDlX AND NUMBER: Description: A91nformation gatheri ng, analYSiS, and d isseminatio n Information gathering (including, but nollimiled 10, literature surveys, Inventories, site visits, and audits), data analysis (including, but not limited 10, computer modeling), document preparation

473

U.S. DFPARThIENT OFENYRGY EERE PROJECT MANAGEMENT CENTER Nl'PA DETFlUllNATION  

Broader source: Energy.gov (indexed) [DOE]

DFPARThIENT OFENYRGY DFPARThIENT OFENYRGY EERE PROJECT MANAGEMENT CENTER Nl'PA DETFlUllNATION RECIPIENT:State of louisiana-Louisiana Department of Natural Resources PROJECf TITLE: ARRA EECBG-Slale of louisiana Pointe Coupe Parish Page 1 of3 STATE : LA Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Numbu DE-FOA-OOOOO13 DE-EEOOOO735 GF0-0000735-OO5 0 Based on my review of the informafion concerning tbe proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Adions to conserve energy. demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

474

DEPARTMENT OFENl!RGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETl!lU.nNATION  

Broader source: Energy.gov (indexed) [DOE]

OFENl!RGY OFENl!RGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETl!lU.nNATION RECIPIENT:Atargis Energy Inc. PROJECT TITLE : Cycloidal Wave Energy Converter Page lof2 STATE: CO Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number elD Number DE·FOA-OOOO293 DE-EEOOO3635 GFQ-000363S-001 0 Based on my review of tbe information concerning tbe proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.IA). I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, bul not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies. analytical energy supply

475

Influence of relative humidity and loading frequency on the PA6.6 thermomechanical cyclic behavior: Part II. Energy aspects  

Science Journals Connector (OSTI)

Abstract In this study, we investigated the influence of relative humidity (RH) and loading rate on the energy response of PA6.6 matrix specimens. The latter were subjected to oligocyclic tensile-tensile tests at 3 different RH and 2 loading rates. Infrared thermography was used to obtain a direct estimate of heat sources using the heat diffusion equation. Using the mechanical and thermal responses discussed in the first part of this work, complete energy rate balances were drawn up. In particular, the time courses of deformation, and dissipated and stored energy rates are discussed. The strong influence of the loading frequency and RH on the energy storage mechanisms is also highlighted.

Adil Benaarbia; Andr Chrysochoos; Gilles Robert

2015-01-01T23:59:59.000Z

476

{sup 226}Ra and {sup 231}Pa systematics of axial MORB, crustal residence ages, and magma chamber characteristics at 9--10{degree}N East Pacific Rise  

SciTech Connect (OSTI)

Mass spectrometric measurements of {sup 30}Th-22{sup 226}Ra and {sup 235}-U{sup 231}Pa disequilibria for axial basalts are used to determine crustal residence ages for MORB magma and investigate the temporal and spatial characteristics of axial magma chambers (AMC) at 9--10{degrees}N East Pacific Rise (EPR). Relative crustal residence ages can be calculated from variations in {sup 226}Ra/{sup 230}Th and {sup 231}Pa/{sup 235}U activity ratios for axial lavas, if (1) mantle sources and melting are uniform, and mantle transfer times are constant or rapid for axial N-MORB, and (2) {sup 231}Pa/{sup 235}U and {sup 226}Ra/{sup 230}Th in the melt are unaffected by shallow level fractional crystallization. Uniform Th, Sr, and Nd isotopic systematics and incompatible element ratios for N-MORB along the 9--10{degrees}N segment indicate that mantle sources and transfer times are similar. In addition, estimated bulk solid/melt partition coefficients for U, Th, and Pa are small, hence effects of fractional crystallization on {sup 231}Pa/{sup 235}U ratios for the melt are expected to be negligible. However, fractional crystallization of plagioclase in the AMC would lower {sup 226}Ra/{sup 230}Th ratios in the melt and produce a positive bias in {sup 226}Ra crustal residence ages for fractionated lavas.

Goldstein, S.J.; Murrell, M.T. [Los Alamos National Lab., NM (United States); Perfit, M.R. [Univ., of Florida, Gainesville, FL (United States). Dept. of Geology; Batiza, R. [Univ., of Hawaii, Honolulu, HI (United States); Fornari, D.J. [Woods Hole Oceanographic Institution, MA (United States). Dept. of Geology and Geophysics

1994-06-01T23:59:59.000Z

477

Cross sections of the reaction Pa231(d,3n)U230 for the production of U230/Th226 for targeted ? therapy  

Science Journals Connector (OSTI)

U230 and its daughter nuclide Th226 are novel therapeutic nuclides for application in targeted ? therapy of cancer. We investigated the feasibility of producing U230/Th226 via deuteron irradiation of Pa231 according to the reaction Pa231(d,3n)U230. The experimental excitation function for a deuteron-induced reaction on Pa231 is reported for the first time. Cross sections were measured using thin targets of Pa231 prepared by electrodeposition and U230 yields were analysed using ? spectrometry. Beam energies were calculated from measured beam orbits and compared with the values obtained via monitor reactions on aluminium foils using high-resolution ? spectrometry and IAEA recommended cross sections. Beam intensities were determined using a beam current integrator. The experimental cross sections are in excellent agreement with model calculations allowing for deuteron breakup using the EMPIRE 3 code. According to thick-target yields calculated from the experimental excitation function, the reaction Pa231(d,3n)U230 allows the production of U230/Th226 at moderate levels.

A. Morgenstern; O. Lebeda; J. Stursa; R. Capote; M. Sin; F. Bruchertseifer; B. Zielinska; C. Apostolidis

2009-11-25T23:59:59.000Z

478

Book Review: Error: On Our Predicament When Things Go Wrong Nicholas Rescher Pittsburgh, PA: University of Pittsburgh Press, 2007 ISBN 9780822943271  

E-Print Network [OSTI]

Book Reviews 27 Error: On Our Predicament When Things Go Wrong Nicholas Rescher Pittsburgh, PA: University o f Pittsburgh Press, 2007 ISBN 9 7 8 0 8 2 2 9 4 3 2 7 1 Review by Mark Cyzyk, Johns Hopkins University This is a short, dense book...

Cyzyk, Mark

479

Hydrogen Storage in Carbon Nanotubes A.C. Dillon, P.A. Parilla, K.E.H. Gilbert, J.L. Alleman, T. Gennett*,  

E-Print Network [OSTI]

Hydrogen Storage in Carbon Nanotubes A.C. Dillon, P.A. Parilla, K.E.H. Gilbert, J.L. Alleman, T. Gennett*, and M.J. Heben National Renewable Energy Laboratory *Rochester Institute of Technology 2003 DOE HFCIT Program Review Meeting DOE Office of Energy Efficiency and Renewable Energy DOE Office of Science

480

HYDROGEN STORAGE IN CARBON SINGLE-WALL NANOTUBES A.C. Dillon, K.E.H. Gilbert, P.A. Parilla, J.L. Alleman,  

E-Print Network [OSTI]

HYDROGEN STORAGE IN CARBON SINGLE-WALL NANOTUBES A.C. Dillon, K.E.H. Gilbert, P.A. Parilla, J.L. Alleman, G.L. Hornyak, K.M. Jones, and M.J. Heben National Renewable Energy Laboratory Golden, CO 80401-3393 Abstract Carbon single-wall nanotubes (SWNTs) and other nanostructured carbon materials have attracted

Note: This page contains sample records for the topic "marcellus pa wv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

4th Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, PA, 2005 Systematic Reduction of Large Chemical Mechanisms  

E-Print Network [OSTI]

of en- gine combustion chambers, require the accurate prediction of chemical features like heat release4th Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, PA, 2005. Detailed kinetic mechanisms are now available for a large number of hydrocarbon fuels. However

Pitsch, Heinz

482

The Innocent Habiyaremye Fellowship Information Networking Institute --Carnegie Mellon | 4616 Henry Street Pittsburgh, PA 15213 | Phone: 412.268.7195 | www.ini.cmu.edu  

E-Print Network [OSTI]

Henry Street � Pittsburgh, PA 15213 | Phone: 412.268.7195 | www.ini.cmu.edu Information Networking Institute (INI) who embodies a sense of community spirit in his or her everyday actions, while also meeting of an INI alumnus and a native of Rwanda who inspired others through his kindness and volunteer activities

McGaughey, Alan

483

N E W S O L A R H O M E S PA R T N E R S H I P GoSolarCalifornia.org  

E-Print Network [OSTI]

N E W S O L A R H O M E S PA R T N E R S H I P GoSolarCalifornia.org Energy Efficient Solar Homes- TheWave of the Future, Grounded in Research The California Energy Commission's New Solar Homes Partnership (NSHP) recently commissioned a study* of the California housing market to gauge both buyer

484

ELECTRICITY TRANSMISSION IN DEREGULATED MARKETS; CONFERENCE AT CARNEGIE MELLON UNIVERSITY, PITTSBURGH PA USA DECEMBER 2004 1 A criticality approach to monitoring cascading  

E-Print Network [OSTI]

, PITTSBURGH PA USA DECEMBER 2004 1 A criticality approach to monitoring cascading failure risk and failure is with the ECE department, University of Wisconsin, Madi- son WI 53706 USA; email dobson@engr.wisc.edu. B.A. Carreras is with Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; email: car- rerasba@ornl.gov. D

Dobson, Ian

485

Evidence for O+ and 1- Levels in U234 Populated in the One-Minute Beta Decay of Pa234  

Science Journals Connector (OSTI)

A directional correlation measurement has been performed on the 250-kev vs (751+795)-kev composite cascade in U234 following the 24-day beta decay of Th234 and the subsequent one-minute beta decay of Pa234. The "770"-kev (751+795 kev) composite photopeak spectrum coincident with the 250-kev gamma ray was displayed on a multichannel pulse-height analyzer for different positions of the scintillation counters. From these spectra the directional correlations between the 250-kev gamma ray and the lower and upper sides of the 770-kev composite line were measured. The results together with other measurements are consistent with assignments of multipolarity E1 to the 250-, 751-, and 795-kev gamma rays and spin and parity assignments 0+-1--2+ and 0+-1--0+ to the levels involved in the 250-751 kev and 250-795 kev gamma-gamma cascades, respectively. Thus new levels are proposed at 795 and 1046 kev with spin and parity 1- and 0+, respectively.

G. T. Wood

1960-09-15T23:59:59.000Z

486

ZERH Lender PA Final  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Services are services that ensure a green appraiser and hand-off of the Residential Green and Energy Efficient Addendum to the green appraiser for consideration in the...

487

ZERH Training PA Final  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from compliance software. It includes energy savings information as well as a HERS Index Score. e. DOE Zero Energy Ready Home verification form provides information needed...

488

Berthon P, Katoh M, Dusanter-Fourt 1, Kelly PA, Djiane J, 1986b. Purification of prolactin receptor from sow mam-mary gland and polyclonal antibodies production. Mol Cell Endocrinol, soumis publication  

E-Print Network [OSTI]

Berthon P, Katoh M, Dusanter-Fourt 1, Kelly PA, Djiane J, 1986b. Purification of prolactin receptor publication Djiane J, Durand P, Kelly PA, 1977. Evolution of prolactin receptors in rabbit mammary gland during pregnancy and lactation. Endocrinology, 100:1348-1356 Djiane J, Dusanter-Fourt 1, Katoh M, Kelly

Paris-Sud XI, Université de

489

Grant Title: NIH SMALL RESEARCH GRANT PROGRAM (PARENT R03) Funding Opportunity Number: PA-11-262. CFDA Number(s): 93.866, 93.273, 93.855, 93.856, 93.286, 93.865,  

E-Print Network [OSTI]

to two years. Eligible Applicants: Public and State controlled institutions of higher education. See of new research technology. Detailed Information: http://grants.nih.gov/grants/guide/pa-files/PA-11: September 8, 2014. Application Deadline: New: February 16 June 16 October 16. Renewal, resubmission

Farritor, Shane

490

P O Box 6004 Morgantown, WV 26506-6004  

E-Print Network [OSTI]

Miller, Veterans Advocate at (304)293-8262 or email tdmiller@mail.wvu.edu Those needing to renew benefits

Mohaghegh, Shahab

491

West Virginia Smart Grid Implementation Plan (WV SGIP) Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

views on the following: 1) whether the electric power utilities have shown interests in upgrading their distribution service equipment, etc., 2) whether the state regulatory...

492

P O Box 6004 Morgantown, WV 26506-6004  

E-Print Network [OSTI]

-5242 Fax: (304) 293-4890 Email: finaid@mail.wvu.edu We're on the Web! www.finaid.wvu.edu 2010-2011 STUDENT

Mohaghegh, Shahab

493

P O Box 6004 Morgantown, WV 26506-6004  

E-Print Network [OSTI]

% of students complete online at www.fafsa.gov Please consider using FAFSA on the Web. There is a FAFSA worksheet that can be downloaded from the FAFSA web site. The Financial Aid Office will also have a supply

Mohaghegh, Shahab

494

P O Box 6004 Morgantown, WV 26506-6004  

E-Print Network [OSTI]

're on the Web! www.finaid.wvu.edu 2009-2010 STUDENT AID REPORT Once you submit your FAFSA to the federal

Mohaghegh, Shahab

495

P O Box 6004 Morgantown, WV 26506-6004  

E-Print Network [OSTI]

-5242 Fax: (304) 293-4890 Email: finaid@mail.wvu.edu We're on the Web! www.finaid.wvu.edu 2011-2012 STUDENT

Mohaghegh, Shahab

496

U.S. DEPARTMENT OF l!Nl!RGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETl!la.llNATION  

Broader source: Energy.gov (indexed) [DOE]

Nl!PA DETl!la.llNATION Nl!PA DETl!la.llNATION RECIPIENT:lmpact Technologies llC PROJECf TITLE : Deep Geothermal Drilling using Millimeter Wave Technology Page 1 of2 STATE: OK Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number DE-FOA-OOOOS22 DE-EEOOO5504 GFO-OOO5504-OO1 G05504 Based on my review or lhe infonnation concerning the proposed action, as NEPA Compliance OtrlCCf (authorized unde r DOE OTdu451.IA), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering, analysis, and dissemination Information gathering (induding. but not limited to. literature surveys, inventories, site visits, and audits), data analysis (induding. but not limited 10, computer modeling), document preparation (induding. bul nollimited to, conceptual design,

497

First proton-pair breaking in semi-magic nuclei beyond 132Sn and 208Pb: Configuration of the long-lived isomer of 217Pa  

Science Journals Connector (OSTI)

The close similarity between the shell structures in the 132Sn and 208Pb regions is a well known phenomenon. Thus, using the correspondence between the high-j orbits located above the Z=50 and Z=82 shell gaps, we discuss the evolutions of the fully aligned states with one broken proton pair in the N=82 and N=126 isotones. A long-lived isomeric state was discovered in 217Pa more than thirty years ago and, despite two other experiments giving new experimental results, the discussions on its main properties (spin, parity, configuration) remained inconclusive. Then, using the comparison with the I?=17/2+ isomeric state recently measured in 139La, the isomeric state of 217Pa is assigned as the fully aligned state of the (?h9/2)2(?f7/2)1 configuration.

Alain Astier and Marie-Genevive Porquet

2013-01-09T23:59:59.000Z

498

N E W S O L A R H O M E S PA R T N E R S H I P GoSolarCalifornia.org  

E-Print Network [OSTI]

N E W S O L A R H O M E S PA R T N E R S H I P GoSolarCalifornia.org About the New Solar Homes Partnership As part of Governor Arnold Schwarzenegger's $3.3 billion California Solar Initiative, California. The New Solar Homes Partnership (NSHP) is a component of the California Solar Initiative and has a goal

499

New calculation for the neutron-induced fission cross section of Pa233 between 1.0 and 3.0MeV  

Science Journals Connector (OSTI)

The Pa233(n,f) cross section, a key ingredient for fast reactors and accelerators driven systems, was measured recently with relatively good accuracy [F. Tovesson et al., Phys. Rev. Lett. 88, 062502 (2002)]. The results are at strong variance with accepted evaluations and an existing indirect experiment. This circumstance led us to perform a quite detailed and complete evaluation of the Pa233(n,f) cross section between 1.0 and 3.0MeV, where use of our newly developed routines for the parametrization of the nuclear surface and the calculation of deformation parameters and level densities (including low-energy discrete levels) were made. The results show good quantitative and excellent qualitative agreement with the experimental direct data obtained by Tovesson et al. [F. Tovesson et al., Phys. Rev. Lett. 88, 062502 (2002)]. Additionally, our methodology opens new possibilities for the analysis of subthreshold fission and above threshold second-chance fission for both Pa233 and its decay product U233, as well as other strategically important fissionable nuclides.

J. Mesa; J. D. T. Arruda-Neto; A. Deppman; V. P. Likhachev; M. V. Manso; C. E. Garcia; O. Rodriguez; F. Guzmn; F. Garcia

2003-11-20T23:59:59.000Z

500

Table 4. Principal shale gas plays: natural gas production and proved reserves, 2010-1011  

U.S. Energy Information Administration (EIA) Indexed Site

Principal shale gas plays: natural gas production and proved reserves, 2010-2011 Principal shale gas plays: natural gas production and proved reserves, 2010-2011 trillion cubic feet Basin Shale Play State(s) Production Reserves Production Reserves Production Reserves Fort Worth Barnett TX 1.9 31.0 2.0 32.6 0.1 1.6 Appalachian Marcellus PA, WV, KY, TN, NY, OH 0.5 13.2 1.4 31.9 0.9 18.7 Texas-Louisiana Salt Haynesville/Bossier TX, LA 1.5 24.5 2.5 29.5 1.0 5.0 Arkoma Fayetteville AR 0.8 12.5 0.9 14.8 0.1 2.3 Anadarko Woodford TX, OK 0.4 9.7 0.5 10.8 0.1 1.1 Western Gulf Eagle Ford TX 0.1 2.5 0.4 8.4 0.3 5.9 Sub-total 5.2 93.4 7.7 128.0 2.5 34.6 Other shale gas plays 0.2 4.0 0.3 3.6 0.1 -0.4 All U.S. Shale Plays 5.4 97.4 8.0 131.6 2.6 34.2 Change 2011-2010 2010 2011 Notes: Some columns may not add up to its subtotal because of independent rounding. Natural gas is wet after lease separation. The above table is