National Library of Energy BETA

Sample records for maps calculated actual

  1. NEW DEVELOPMENTS ON INVERSE POLYGON MAPPING TO CALCULATE GRAVITATIONAL LENSING MAGNIFICATION MAPS: OPTIMIZED COMPUTATIONS

    SciTech Connect (OSTI)

    Mediavilla, E.; Lopez, P.; Gonzalez-Morcillo, C.; Jimenez-Vicente, J.

    2011-11-01

    We derive an exact solution (in the form of a series expansion) to compute gravitational lensing magnification maps. It is based on the backward gravitational lens mapping of a partition of the image plane in polygonal cells (inverse polygon mapping, IPM), not including critical points (except perhaps at the cell boundaries). The zeroth-order term of the series expansion leads to the method described by Mediavilla et al. The first-order term is used to study the error induced by the truncation of the series at zeroth order, explaining the high accuracy of the IPM even at this low order of approximation. Interpreting the Inverse Ray Shooting (IRS) method in terms of IPM, we explain the previously reported N {sup -3/4} dependence of the IRS error with the number of collected rays per pixel. Cells intersected by critical curves (critical cells) transform to non-simply connected regions with topological pathologies like auto-overlapping or non-preservation of the boundary under the transformation. To define a non-critical partition, we use a linear approximation of the critical curve to divide each critical cell into two non-critical subcells. The optimal choice of the cell size depends basically on the curvature of the critical curves. For typical applications in which the pixel of the magnification map is a small fraction of the Einstein radius, a one-to-one relationship between the cell and pixel sizes in the absence of lensing guarantees both the consistence of the method and a very high accuracy. This prescription is simple but very conservative. We show that substantially larger cells can be used to obtain magnification maps with huge savings in computation time.

  2. New Mariners and a Massive Map: Berkeley Computers Calculate What's in the Sky

    Office of Energy Efficiency and Renewable Energy (EERE)

    Berkeley computers helped crunch the data to create the largest 3-D color map of the universe ever made.

  3. Calculation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculation of resistive magnetohydrodynamics and two-fluid tearing modes by example of reversed-field-pinch-like plasma V. A. Svidzinski and H. Li Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ͑Received 26 November 2007; accepted 7 April 2008; published online 15 May 2008͒ An algorithm suitable for numerical solution of linear eigenmode problems in resistive magnetohydrodynamics ͑MHD͒ and two-fluid MHD models without prior approximations is presented. For these plasma

  4. MAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MAP MAP MAP from Allinea Software is a parallel profiler with a simple graphical user interface. It is installed on Edison and Cori. Note that the performance of the X Windows-based MAP Graphical User Interface can be greatly improved if used in conjunction with the free NX software. Introduction Allinea MAP is a parallel profiler with simple Graphical User Interface. MAP can be run with up to 512 processors, to profile serial, OpenMP and MPI codes. The Allinea MAP web page and 'Allinea Forge

  5. Calculating electronic tunnel currents in networks of disordered irregularly shaped nanoparticles by mapping networks to arrays of parallel nonlinear resistors

    SciTech Connect (OSTI)

    Aghili Yajadda, Mir Massoud

    2014-10-21

    We have shown both theoretically and experimentally that tunnel currents in networks of disordered irregularly shaped nanoparticles (NPs) can be calculated by considering the networks as arrays of parallel nonlinear resistors. Each resistor is described by a one-dimensional or a two-dimensional array of equal size nanoparticles that the tunnel junction gaps between nanoparticles in each resistor is assumed to be equal. The number of tunnel junctions between two contact electrodes and the tunnel junction gaps between nanoparticles are found to be functions of Coulomb blockade energies. In addition, the tunnel barriers between nanoparticles were considered to be tilted at high voltages. Furthermore, the role of thermal expansion coefficient of the tunnel junction gaps on the tunnel current is taken into account. The model calculations fit very well to the experimental data of a network of disordered gold nanoparticles, a forest of multi-wall carbon nanotubes, and a network of few-layer graphene nanoplates over a wide temperature range (5-300 K) at low and high DC bias voltages (0.001 mV50 V). Our investigations indicate, although electron cotunneling in networks of disordered irregularly shaped NPs may occur, non-Arrhenius behavior at low temperatures cannot be described by the cotunneling model due to size distribution in the networks and irregular shape of nanoparticles. Non-Arrhenius behavior of the samples at zero bias voltage limit was attributed to the disorder in the samples. Unlike the electron cotunneling model, we found that the crossover from Arrhenius to non-Arrhenius behavior occurs at two temperatures, one at a high temperature and the other at a low temperature.

  6. SU-E-J-113: Effects of Deformable Registration On First-Order Texture Maps Calculated From Thoracic Lung CT Scans

    SciTech Connect (OSTI)

    Smith, C; Cunliffe, A; Al-Hallaq, H; Armato, S

    2015-06-15

    Purpose: To determine the stability of eight first-order texture features following the deformable registration of serial computed tomography (CT) scans. Methods: CT scans at two different time points from 10 patients deemed to have no lung abnormalities by a radiologist were collected. Following lung segmentation using an in-house program, texture maps were calculated from 32×32-pixel regions of interest centered at every pixel in the lungs. The texture feature value of the ROI was assigned to the center pixel of the ROI in the corresponding location of the texture map. Pixels in the square ROI not contained within the segmented lung were not included in the calculation. To quantify the agreement between ROI texture features in corresponding pixels of the baseline and follow-up texture maps, the Fraunhofer MEVIS EMPIRE10 deformable registration algorithm was used to register the baseline and follow-up scans. Bland-Altman analysis was used to compare registered scan pairs by computing normalized bias (nBias), defined as the feature value change normalized to the mean feature value, and normalized range of agreement (nRoA), defined as the range spanned by the 95% limits of agreement normalized to the mean feature value. Results: Each patient’s scans contained between 6.8–15.4 million ROIs. All of the first-order features investigated were found to have an nBias value less than 0.04% and an nRoA less than 19%, indicating that the variability introduced by deformable registration was low. Conclusion: The eight first-order features investigated were found to be registration stable. Changes in CT texture maps could allow for temporal-spatial evaluation of the evolution of lung abnormalities relating to a variety of diseases on a patient-by-patient basis. SGA and HA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology. Research reported in this publication was supported by the National Institute Of General

  7. How People Actually Use Thermostats

    SciTech Connect (OSTI)

    Meier, Alan; Aragon, Cecilia; Hurwitz, Becky; Mujumdar, Dhawal; Peffer, Therese; Perry, Daniel; Pritoni, Marco

    2010-08-15

    Residential thermostats have been a key element in controlling heating and cooling systems for over sixty years. However, today's modern programmable thermostats (PTs) are complicated and difficult for users to understand, leading to errors in operation and wasted energy. Four separate tests of usability were conducted in preparation for a larger study. These tests included personal interviews, an on-line survey, photographing actual thermostat settings, and measurements of ability to accomplish four tasks related to effective use of a PT. The interviews revealed that many occupants used the PT as an on-off switch and most demonstrated little knowledge of how to operate it. The on-line survey found that 89% of the respondents rarely or never used the PT to set a weekday or weekend program. The photographic survey (in low income homes) found that only 30% of the PTs were actually programmed. In the usability test, we found that we could quantify the difference in usability of two PTs as measured in time to accomplish tasks. Users accomplished the tasks in consistently shorter times with the touchscreen unit than with buttons. None of these studies are representative of the entire population of users but, together, they illustrate the importance of improving user interfaces in PTs.

  8. Appliance Energy Calculator

    Broader source: Energy.gov [DOE]

    Our appliance and electronic energy use calculator allows you to estimate your annual energy use and cost to operate specific products. The wattage values provided are samples only; actual wattage...

  9. ARM - Relative Humidity Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsRelative Humidity Calculations Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Relative Humidity Calculations Heat Index is an index that combines air temperature and relative humidity to estimate how hot it actually feels. The human body cools off through perspiration, which

  10. Could Material Defects Actually Improve Solar Cells?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Could Material Defects Actually Improve Solar Cells? Could Material Defects Actually Improve Solar Cells? March 21, 2016 Contact: Kathy Kincade, kkincade@lbl.gov, +1 510 495 2124 NRELsolarcell Scientists at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) are using supercomputers to study what may seem paradoxical: certain defects in silicon solar cells may actually improve their performance. The findings, published January 11, 2016 in Applied Physics Letters,

  11. Network Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Network Maps Engineering Services The Network Network Maps Network Traffic Volume Historical Network Maps Network Facts & Stats Connected Sites Peering Connections ESnet...

  12. SU-E-J-100: The Combination of Deformable Image Registration and Regions-Of-Interest Mapping Technique to Accomplish Accurate Dose Calculation On Cone Beam Computed Tomography for Esophageal Cancer

    SciTech Connect (OSTI)

    Huang, B-T; Lu, J-Y

    2015-06-15

    Purpose: We introduce a new method combined with the deformable image registration (DIR) and regions-of-interest mapping (ROIM) technique to accurately calculate dose on daily CBCT for esophageal cancer. Methods: Patients suffered from esophageal cancer were enrolled in the study. Prescription was set to 66 Gy/30 F and 54 Gy/30 F to the primary tumor (PTV66) and subclinical disease (PTV54) . Planning CT (pCT) were segmented into 8 substructures in terms of their differences in physical density, such as gross target volume (GTV), venae cava superior (SVC), aorta, heart, spinal cord, lung, muscle and bones. The pCT and its substructures were transferred to the MIM software to readout their mean HU values. Afterwards, a deformable planning CT to daily KV-CBCT image registration method was then utilized to acquire a new structure set on CBCT. The newly generated structures on CBCT were then transferred back to the treatment planning system (TPS) and its HU information were overridden manually with mean HU values obtained from pCT. Finally, the treatment plan was projected onto the CBCT images with the same beam arrangements and monitor units (MUs) to accomplish dose calculation. Planning target volume (PTV) and organs at risk (OARs) from both of the pCT and CBCT were compared to evaluate the dose calculation accuracy. Results: It was found that the dose distribution in the CBCT showed little differences compared to the pCT, regardless of whether PTV or OARs were concerned. Specifically, dose variation in GTV, PTV54, PTV66, SVC, lung and heart were within 0.1%. The maximum dose variation was presented in the spinal cord, which was up to 2.7% dose difference. Conclusion: The proposed method combined with DIR and ROIM technique to accurately calculate dose distribution on CBCT for esophageal cancer is feasible.

  13. Geothermal Maps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maps Geothermal Maps The Geothermal Technologies Office (GTO) carries out R&D and demonstration efforts to deploy 12 GWe of clean geothermal energy by 2020 and expand geothermal into new U.S. regions. Locating and developing resources is an important part of that mission. GTO works with national laboratories to develop maps and data that identify renewable, geothermal resources, possible locations for implementation of various geothermal technologies, and actual and potential geothermal

  14. Using E-beam Mapping to Detect Coil Misalignment in NCSX

    SciTech Connect (OSTI)

    Fredrickson, E.; Georgiyevskiy, A.; Rudakov, V.; Zarnstorff, M. C.

    2005-10-18

    Following assembly of the NCSX device, a program of e-beam mapping experiments is planned to validate the accuracy of the construction and assembly of the NCSX coil systems. To aid in the development of requirements for the e-beam mapping hardware and machine requirements, simulations of the e-beam mapping experiments, including various coil misalignments, have been done. The magnetic flux surface configuration was constructed using a numerical code, based on the Biot-Savart law, to calculate the magnetic field components and trace the field line trajectory many times around the torus. Magnetic surfaces are then mapped by recording the field line intersections with toroidal cross-sections of the magnetic system, much as in an actual e-beam mapping experiment.

  15. FY 2013 Real Property Deferred, Actual, and Required Maintenance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2013 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2013 DARM ...

  16. FY 2012 Real Property Deferred, Actual, and Required Maintenance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2012 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2012 DARM ...

  17. Table 13. Coal Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",999,1021,1041,1051,1056,1066,1073,1081,1087,1098,1107,1122,1121,1128,1143,1173,1201,1223 "AEO 1995",,1006,1010,1011,1016,1017,1021,1027,1033,1040,1051,1066,1076,1083,1090,1108,1122,1137 "AEO

  18. Table 22. Energy Intensity, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Intensity, Projected vs. Actual" "Projected" " (quadrillion Btu / $Billion 2005 Chained GDP)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",10.89145253,10.73335719,10.63428655,10.48440125,10.33479508,10.20669515,10.06546105,9.94541493,9.822393757,9.707148466,9.595465524,9.499032573,9.390723436,9.29474735,9.185496812,9.096176848,9.007677565,8.928276581 "AEO

  19. Location Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Map file package containing shaded relief base with Hot Pot project area, major roads, railroads, and rivers. The inset map shows regional Paleozoic structural elements.

  20. Location Map

    SciTech Connect (OSTI)

    Lane, Michael

    2013-06-27

    Map file package containing shaded relief base with Hot Pot project area, major roads, railroads, and rivers. The inset map shows regional Paleozoic structural elements.

  1. Caustic-Side Solvent Extraction: Prediction of Cesium Extraction for Actual Wastes and Actual Waste Simulants

    SciTech Connect (OSTI)

    Delmau, L.H.; Haverlock, T.J.; Sloop, F.V., Jr.; Moyer, B.A.

    2003-02-01

    This report presents the work that followed the CSSX model development completed in FY2002. The developed cesium and potassium extraction model was based on extraction data obtained from simple aqueous media. It was tested to ensure the validity of the prediction for the cesium extraction from actual waste. Compositions of the actual tank waste were obtained from the Savannah River Site personnel and were used to prepare defined simulants and to predict cesium distribution ratios using the model. It was therefore possible to compare the cesium distribution ratios obtained from the actual waste, the simulant, and the predicted values. It was determined that the predicted values agree with the measured values for the simulants. Predicted values also agreed, with three exceptions, with measured values for the tank wastes. Discrepancies were attributed in part to the uncertainty in the cation/anion balance in the actual waste composition, but likely more so to the uncertainty in the potassium concentration in the waste, given the demonstrated large competing effect of this metal on cesium extraction. It was demonstrated that the upper limit for the potassium concentration in the feed ought to not exceed 0.05 M in order to maintain suitable cesium distribution ratios.

  2. SRU Calculator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculator SRU Calculator About SRUs You can use this form to estimate your mass storage charges (in SRUs). SRUs are calculated on a daily basis. Enter your estimated daily average number of files and data storage and your yearly estimate of data transferred to and from the HPSS system. Click on Calculate and your SRU charge will appear in the light blue boxes. Enter average daily values for the allocation year Number of files*: Amount of data stored*: GB Enter total HPSS I/O for the allocation

  3. Plutonium 239 Equivalency Calculations

    SciTech Connect (OSTI)

    Wen, J

    2011-05-31

    This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.

  4. FY 2012 Real Property Deferred, Actual, and Required Maintenance Reporting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirement | Department of Energy Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2012 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2012 DARM Transmittal Letter and Attachment Final.pdf (406.93 KB) More Documents & Publications FY 2013 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement Real Property Maintenance Reporting Requirement Memorandum (July 13, 2010)

  5. Analysis of Web Based Solar Photovoltaic Mapping Tools

    Office of Energy Efficiency and Renewable Energy (EERE)

    A PV mapping tool visually represents a specific site and calculates PV system size and projected electricity production. This report identifies the commercially available solar mapping tools and thoroughly summarizes the source data type and resolution, the visualization software program being used, user inputs, calculation methodology and algorithms, map outputs, and development costs for each map.

  6. FY 2013 Real Property Deferred, Actual, and Required Maintenance Reporting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirement | Department of Energy Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2013 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2013 DARM Transmittal Letter and Attachment Final.pdf (541.36 KB) More Documents & Publications FY 2012 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY_09_DM_RM_AM_Reporting_Memo_and_attachment_072009.pdf Real Property Maintenance Reporting Requirement

  7. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2008 and Projected 2009 through 2013 " ,"(Megawatts and 2008 ...

  8. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2009 and Projected 2010 through 2014 " ,"(Megawatts and 2009 ...

  9. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Megawatts and 2006 ...

  10. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2007 and Projected 2008 through 2012 " ,"(Megawatts and 2007 ...

  11. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2007 and Projected 2008 through 2012 " ,"(Megawatts and 2007 ...

  12. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Megawatts and 2006 ...

  13. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, " ,"2005 and Projected 2006 through 2010 " ,"(Megawatts and 2005 Base ...

  14. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2009 and Projected 2010 through 2014 " ,"(Megawatts and 2009 ...

  15. Table 14a. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Average Electricity Prices, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars, cents per kilowatt-hour in ""dollar year"" specific to each AEO)" ...

  16. WBGT Calculator

    Energy Science and Technology Software Center (OSTI)

    2000-05-22

    This software calculates a Wet Bulb Globe Temperature (WBGT) using standard measurements from a meteorological station. WBGT is used by Industrial Hygenists (IH) to determine heat stress potential to outdoor workers. Through the mid 1990''s, SRS technicians were dispatched several times daily to measure WBGT with a custom hand held instrument and results were dessiminated via telephone. Due to workforce reductions, the WSRC IH Department asked for the development of an automated method to simulatemore » the WBGT measurement using existing real time data from the Atmospheric Technologies Group''s meteorological monitoring network.« less

  17. Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Access to the ALS Gate Access Guest House Lab Shuttles Maps and Directions Parking Safety Experiment Safety Safety for Staff In Case of Emergency Resources Acronyms Multimedia ...

  18. Table 5. Domestic Crude Oil Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Crude Oil Production, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,201...

  19. Table 16. Total Energy Consumption, Projected vs. Actual Projected

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6. Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 ...

  20. Table 9. Natural Gas Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Production, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2...

  1. Table 10. Natural Gas Net Imports, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Net Imports, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,...

  2. "Table 7b. Natural Gas Price, Electric Power Sector, Actual...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Natural Gas Price, Electric Power Sector, Actual vs. Projected" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,200...

  3. Table 8. Total Natural Gas Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 19.87 20.21 20.64 20.99 ...

  4. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars, cents per kilowatt-hour)" ,1993,1994,1995,1996,1997,1998,1999,2000,200...

  5. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars, cents per kilowatt-hour) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 ...

  6. Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home » Site Map Site Map Home About Overview NERSC Mission Contact us Staff Center Leadership Sudip Dosanjh Sudip Dosanjh: Select Publications Jeff Broughton Katie Antypas Richard Gerber Publications Center Administration James Craw Norma Early Jeff Grounds Betsy MacGowan Zaida McCunney Kerri Peyovich Lynn Rippe David Tooker Center Communications Jon Bashor Kathy Kincade Linda Vu Margie Wylie Advanced Technologies Nicholas Wright Brian Austin Research Projects Christopher Daley Glenn K.

  7. Tool for calculation of CO2 emissions from organisations | Open...

    Open Energy Info (EERE)

    lt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Language: English Tool for calculation of CO2 emissions from organisations Screenshot...

  8. Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Map Expand All | Collapse All Item Sir John Pople, Gaussian Code, and Complex Chemical Reactions Item DOE Research and Development Accomplishments Click to expand or collapse folder Folder DOE Research and Development Accomplishments About Item The Manhattan Project Click to expand or collapse folder Folder DOE Research and Development Accomplishments Alfred Nobel Laureates Associated with the DOE and Predecessors Item Abdus Salam and his International Influences Item Ahmed Zewail and

  9. Site Map | Geothermal

    Office of Scientific and Technical Information (OSTI)

    Site Map Site Map Home Basic Search Advanced Search Geothermal FAQ About Geothermal Site Map Geothermal Feedback Website PoliciesImportant Links

  10. Site Map | DOE Patents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Map Site Map Home Basic Search Advanced Search DOEpatents FAQ About DOEpatents Site Map Contact Us Website Policies/Important Links

  11. Manhattan Project: Maps

    Office of Scientific and Technical Information (OSTI)

    Scroll down to view thumbnails of each map. Leslie Groves looks at a map of Japan. Manhattan Project: General Manhattan Project Facilities Places map "Signature Facilities of the ...

  12. Berkeley Lab Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Berkeley Lab | Laboratory Site Map Laboratory Organization Chart DivisionalDepartmental Organization Charts Laboratory Map Interactive Laboratory Map History of the...

  13. Site Map | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Site Map Site Map Home Basic Search Advanced Search Data Explorer FAQ About Data Explorer Site Map Data Explorer Feedback Website PoliciesImportant Links

  14. Research Portfolio Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Portfolio Map Welcome to the Strategic Center for Coal Project Portfolio Web Map assembled by NETL. The web map includes projects across all Coal & Power Systems ...

  15. Dose Rate Analysis Capability for Actual Spent Fuel Transportation Cask Contents

    SciTech Connect (OSTI)

    Radulescu, Georgeta; Lefebvre, Robert A; Peplow, Douglas E.; Williams, Mark L; Scaglione, John M

    2014-01-01

    The approved contents for a U.S. Nuclear Regulatory Commission (NRC) licensed spent nuclear fuel casks are typically based on bounding used nuclear fuel (UNF) characteristics. However, the contents of the UNF canisters currently in storage at independent spent fuel storage installations are considerably heterogeneous in terms of fuel assembly burnup, initial enrichment, decay time, cladding integrity, etc. Used Nuclear Fuel Storage, Transportation & Disposal Analysis Resource and Data System (UNF ST&DARDS) is an integrated data and analysis system that facilitates automated cask-specific safety analyses based on actual characteristics of the as-loaded UNF. The UNF-ST&DARDS analysis capabilities have been recently expanded to include dose rate analysis of as-loaded transportation packages. Realistic dose rate values based on actual canister contents may be used in place of bounding dose rate values to support development of repackaging operations procedures, evaluation of radiation-related transportation risks, and communication with stakeholders. This paper describes the UNF-ST&DARDS dose rate analysis methodology based on actual UNF canister contents and presents sample dose rate calculation results.

  16. Table 4. Total Petroleum Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Petroleum Consumption, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",6449.55,6566.35,6643,6723.3,6810.9,6880.25,6956.9,7059.1,7124.8,7205.1,7296.35,7376.65,7446,7522.65,7595.65,7665,7712.45,7774.5 "AEO

  17. Table 6. Petroleum Net Imports, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Net Imports, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",2934.6,3201.05,3361.65,3504,3657.3,3737.6,3879.95,3993.1,4098.95,4212.1,4303.35,4398.25,4474.9,4540.6,4584.4,4639.15,4668.35,4672 "AEO

  18. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    SciTech Connect (OSTI)

    HERTING, D.L.

    2007-04-13

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 2224 Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cesium-137 sulfate and sodium) were exceeded in all three of the flowsheet tests that were performed.

  19. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    SciTech Connect (OSTI)

    HERTING, D.L.

    2006-10-18

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 222-S Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cs-137 sulfate, and sodium) were exceeded in all three of the flowsheet tests that were performed.

  20. PPPL Area Map | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL Area Map View Larger Map

  1. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX autosol wizard

    SciTech Connect (OSTI)

    Terwilliger, Thomas C; Adams, Paul D; Read, Randy J; Mccoy, Airlie J

    2008-01-01

    Ten measures of experimental electron-density-map quality are examined and the skewness of electron density is found to be the best indicator of actual map quality. A Bayesian approach to estimating map quality is developed and used in the PHENIX AutoSol wizard to make decisions during automated structure solution.

  2. Table 12. Total Coal Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Coal Consumption, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",920,928,933,938,943,948,953,958,962,967,978,990,987,992,1006,1035,1061,1079 "AEO 1995",,935,940,941,947,948,951,954,958,963,971,984,992,996,1002,1013,1025,1039 "AEO

  3. Table 12. Total Coal Consumption, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Coal Consumption, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 920 928 933 938 943 948 953 958 962 967 978 990 987 992 1006 1035 1061 1079 AEO 1995 935 940 941 947 948 951 954 958 963 971 984 992 996 1002 1013 1025 1039 AEO 1996 937 942 954 962 983 990 1004 1017 1027 1033 1046 1067 1070 1071 1074 1082 1087 1094 1103 AEO 1997 948 970 987 1003 1017 1020 1025 1034 1041

  4. Table 13. Coal Production, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 999 1021 1041 1051 1056 1066 1073 1081 1087 1098 1107 1122 1121 1128 1143 1173 1201 1223 AEO 1995 1006 1010 1011 1016 1017 1021 1027 1033 1040 1051 1066 1076 1083 1090 1108 1122 1137 AEO 1996 1037 1044 1041 1045 1061 1070 1086 1100 1112 1121 1135 1156 1161 1167 1173 1184 1190 1203 1215 AEO 1997 1028 1052 1072 1088

  5. Table 15. Total Electricity Sales, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electricity Sales, Projected vs. Actual" "Projected" " (billion kilowatt-hours)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",2843,2891,2928,2962,3004,3039,3071,3112,3148,3185,3228,3263,3298,3332,3371,3406,3433,3469 "AEO 1995",,2951,2967,2983,3026,3058,3085,3108,3134,3166,3204,3248,3285,3321,3357,3396,3433,3475 "AEO

  6. Table 15. Total Electricity Sales, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electricity Sales, Projected vs. Actual Projected (billion kilowatt-hours) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2843 2891 2928 2962 3004 3039 3071 3112 3148 3185 3228 3263 3298 3332 3371 3406 3433 3469 AEO 1995 2951 2967 2983 3026 3058 3085 3108 3134 3166 3204 3248 3285 3321 3357 3396 3433 3475 AEO 1996 2973 2998 3039 3074 3106 3137 3173 3215 3262 3317 3363 3409 3454 3505 3553 3604 3660 3722 3775 AEO 1997 3075

  7. Table 4. Total Petroleum Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Petroleum Consumption, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 6450 6566 6643 6723 6811 6880 6957 7059 7125 7205 7296 7377 7446 7523 7596 7665 7712 7775 AEO 1995 6398 6544 6555 6676 6745 6822 6888 6964 7048 7147 7245 7337 7406 7472 7537 7581 7621 AEO 1996 6490 6526 6607 6709 6782 6855 6942 7008 7085 7176 7260 7329 7384 7450 7501 7545 7581 7632 7676 AEO 1997 6636 6694

  8. Table 5. Domestic Crude Oil Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Crude Oil Production, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2508 2373 2256 2161 2088 2022 1953 1891 1851 1825 1799 1781 1767 1759 1778 1789 1807 1862 AEO 1995 2402 2307 2205 2095 2037 1967 1953 1924 1916 1905 1894 1883 1887 1887 1920 1945 1967 AEO 1996 2387 2310 2248 2172 2113 2062 2011 1978 1953 1938 1916 1920 1927 1949 1971 1986 2000 2018 2055 AEO 1997 2362 2307

  9. Table 6. Petroleum Net Imports, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Net Imports, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2935 3201 3362 3504 3657 3738 3880 3993 4099 4212 4303 4398 4475 4541 4584 4639 4668 4672 AEO 1995 2953 3157 3281 3489 3610 3741 3818 3920 4000 4103 4208 4303 4362 4420 4442 4460 4460 AEO 1996 3011 3106 3219 3398 3519 3679 3807 3891 3979 4070 4165 4212 4260 4289 4303 4322 4325 4347 4344 AEO 1997 3099 3245 3497

  10. Table 16. Total Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",88.02,89.53,90.72,91.73,92.71,93.61,94.56,95.73,96.69,97.69,98.89,100,100.79,101.7,102.7,103.6,104.3,105.23 "AEO 1995",,89.21,89.98,90.57,91.91,92.98,93.84,94.61,95.3,96.19,97.18,98.38,99.37,100.3,101.2,102.1,102.9,103.88 "AEO

  11. Table 8. Total Natural Gas Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Natural Gas Consumption, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",19.87,20.21,20.64,20.99,21.2,21.42,21.6,21.99,22.37,22.63,22.95,23.22,23.58,23.82,24.09,24.13,24.02,24.14 "AEO 1995",,20.82,20.66,20.85,21.21,21.65,21.95,22.12,22.25,22.43,22.62,22.87,23.08,23.36,23.61,24.08,24.23,24.59 "AEO

  12. Original Impact Calculations

    Broader source: Energy.gov [DOE]

    Original Impact Calculations, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  13. Maps of Selected State Subdivisions

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves Summary Maps of Selected State Subdivisions Map 1: Alaska Map 2: California Map 3: Louisiana Map 4: New Mexico Map ...

  14. Site Map | ScienceCinema

    Office of Scientific and Technical Information (OSTI)

    Site Map Site Map Home Audio Search Fielded Search About FAQ Site Map Contact Us Website PoliciesImportant Links

  15. Spin resonance strength calculation through single particle tracking for RHIC

    SciTech Connect (OSTI)

    Luo, Y.; Dutheil, Y.; Huang, H.; Meot, F.; Ranjbar, V.

    2015-05-03

    The strengths of spin resonances for the polarized-proton operation in the Relativistic Heavy Ion Collider are currently calculated with the code DEPOL, which numerically integrates through the ring based on an analytical approximate formula. In this article, we test a new way to calculate the spin resonance strengths by performing Fourier transformation to the actual transverse magnetic fields seen by a single particle traveling through the ring. Comparison of calculated spin resonance strengths is made between this method and DEPOL.

  16. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maps Individual Permit: Site Monitoring Area Maps Each Site Monitoring Area Map is updated whenever the map information is updated. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email What do these maps show? The Individual Permit for Storm Water site monitoring area maps display the following information: Surface hydrological features Locations of the Site(s) assigned to the Site Monitoring Area (SMA) The Site Monitoring

  17. Direct Current's Energy Unit Calculator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rushmore. Plug some more energy statistics into the calculator above and see how they ... Top 5 Maps and Interactive Graphics of 2014 "A Guide to the Energy of the Earth" is an ...

  18. Table 10. Natural Gas Net Imports, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Net Imports, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2.02 2.40 2.66 2.74 2.81 2.85 2.89 2.93 2.95 2.97 3.00 3.16 3.31 3.50 3.57 3.63 3.74 3.85 AEO 1995 2.46 2.54 2.80 2.87 2.87 2.89 2.90 2.90 2.92 2.95 2.97 3.00 3.03 3.19 3.35 3.51 3.60 AEO 1996 2.56 2.75 2.85 2.88 2.93 2.98 3.02 3.06 3.07 3.09 3.12 3.17 3.23 3.29 3.37 3.46 3.56 3.68 3.79 AEO 1997 2.82 2.96

  19. Table 14a. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Average Electricity Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars, cents per kilowatt-hour in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 6.80 6.80 6.90 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20 7.20 7.20 7.30 7.30 7.40 7.50 7.60 AEO 1995 1993 6.80 6.80 6.70 6.70 6.70 6.70 6.70 6.80 6.80 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20

  20. Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Commercial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.6 AEO 1995 6.9 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0 8.0 8.1 8.2 8.2 AEO 1997 7.4 7.4 7.4 7.5 7.5 7.6 7.7 7.7 7.8 7.8 7.9 7.9

  1. Table 22. Energy Intensity, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Intensity, Projected vs. Actual Projected (quadrillion Btu / $Billion 2005 Chained GDP) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 10.9 10.7 10.6 10.5 10.3 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 AEO 1995 10.5 10.4 10.3 10.1 10.0 9.8 9.7 9.6 9.4 9.3 9.2 9.1 9.0 8.9 8.9 8.8 8.7 AEO 1996 10.4 10.3 10.1 10.0 9.8 9.7 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.9 8.8 8.7 8.7 8.6 8.5 AEO 1997 10.0 9.9 9.8 9.7 9.6 9.5 9.4

  2. Table 9. Natural Gas Production, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Production, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 17.71 17.68 17.84 18.12 18.25 18.43 18.58 18.93 19.28 19.51 19.80 19.92 20.13 20.18 20.38 20.35 20.16 20.19 AEO 1995 18.28 17.98 17.92 18.21 18.63 18.92 19.08 19.20 19.36 19.52 19.75 19.94 20.17 20.28 20.60 20.59 20.88 AEO 1996 18.90 19.15 19.52 19.59 19.59 19.65 19.73 19.97 20.36 20.82 21.25 21.37 21.68

  3. Utility Potential Calculator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Potential Studies in the Northwest V1.0 Utility Potential Calculator V1.0 for Excel 2007 Utility Potential Calculator V1.0 for Excel 2003 Note: BPA developed the Utility...

  4. ARM - Wind Chill Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsWind Chill Calculations Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Wind Chill Calculations Wind Chill is the apparent temperature felt on the exposed human body owing to the combination of temperature and wind speed. From 1945 to 2001, Wind Chill was calculated by the Siple

  5. Career Map: Instrumentation Coordinator

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Wind Program's Career Map provides job description information for Instrumentation Coordinator positions.

  6. Newberry FORGE Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Newberry FORGE Map Newberry FORGE Map Newberry FORGE Map More Documents & Publications Newberry FORGE Map Newberry FORGE Logo Newberry FORGE Map Milford, Utah FORGE Map Newberry

  7. Multiphase flow calculation software

    DOE Patents [OSTI]

    Fincke, James R.

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  8. Waste Package Lifting Calculation

    SciTech Connect (OSTI)

    H. Marr

    2000-05-11

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation.

  9. Calculation note review

    SciTech Connect (OSTI)

    Ramble, A.L.

    1996-09-30

    This document contains a review of the calculation notes which were prepared for the Tank Waste Remediation System Basis for Interim Operation.

  10. Density Equalizing Map Projections

    Energy Science and Technology Software Center (OSTI)

    1995-07-01

    A geographic map is mathematically transformed so that the subareas of the map are proportional to a given quantity such as population. In other words, population density is equalized over the entire map. The transformed map can be used as a display tool, or it can be statistically analyzed. For example, cases of disease plotted on the transformed map should be uniformly distributed at random, if disease rates are everywhere equal. Geographic clusters of diseasemore » can be readily identified, and their statistical significance determined, on a density equalized map.« less

  11. Actual Versus Estimated Utility Factor of a Large Set of Privately Owned Chevrolet Volts

    SciTech Connect (OSTI)

    John Smart; Thomas Bradley; Stephen Schey

    2014-04-01

    In order to determine the overall fuel economy of a plug-in hybrid electric vehicle (PHEV), the amount of operation in charge depleting (CD) versus charge sustaining modes must be determined. Mode of operation is predominantly dependent on customer usage of the vehicle and is therefore highly variable. The utility factor (UF) concept was developed to quantify the distance a group of vehicles has traveled or may travel in CD mode. SAE J2841 presents a UF calculation method based on data collected from travel surveys of conventional vehicles. UF estimates have been used in a variety of areas, including the calculation of window sticker fuel economy, policy decisions, and vehicle design determination. The EV Project, a plug-in electric vehicle charging infrastructure demonstration being conducted across the United States, provides the opportunity to determine the real-world UF of a large group of privately owned Chevrolet Volt extended range electric vehicles. Using data collected from Volts enrolled in The EV Project, this paper compares the real-world UF of two groups of Chevrolet Volts to estimated UF's based on J2841. The actual observed fleet utility factors (FUF) for the MY2011/2012 and MY2013 Volt groups studied were observed to be 72% and 74%, respectively. Using the EPA CD ranges, the method prescribed by J2841 estimates a FUF of 65% and 68% for the MY2011/2012 and MY2013 Volt groups, respectively. Volt drivers achieved higher percentages of distance traveled in EV mode for two reasons. First, they had fewer long-distance travel days than drivers in the national travel survey referenced by J2841. Second, they charged more frequently than the J2841 assumption of once per day - drivers of Volts in this study averaged over 1.4 charging events per day. Although actual CD range varied widely as driving conditions varied, the average CD ranges for the two Volt groups studied matched the EPA CD range estimates, so CD range variation did not affect FUF results.

  12. Draft PEI Calculator

    Broader source: Energy.gov [DOE]

    This Excel spreadsheet is designed to perform the calculations necessary to determine PEI -- a pump's energy index -- as proposed in DOE's Notices of Proposed Rulemaking (Dockets EERE-2011-BT-STD-0031 and EERE-2013-BT-TP-0055). DOE is providing this calculator as a convenience at the request of interested parties.

  13. ARM - Instrument - maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Mesoscale Analysis and Prediction System (MAPS) Note: maps is currently inactive andor...

  14. campus-visitor-map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MC-212 Pollard Aud. MC- 210 MC- 120 MC-130 MC-100 Main Campus Map Building RoomOffice Contact Name + Number Visitor Map You are here. Emergency Assembly Point Entrance Buildings...

  15. Upper Subcritical Calculations Based on Correlated Data

    SciTech Connect (OSTI)

    Sobes, Vladimir; Rearden, Bradley T; Mueller, Don; Marshall, William BJ J; Scaglione, John M; Dunn, Michael E

    2015-01-01

    The American National Standards Institute and American Nuclear Society standard for Validation of Neutron Transport Methods for Nuclear Criticality Safety Calculations defines the upper subcritical limit (USL) as “a limit on the calculated k-effective value established to ensure that conditions calculated to be subcritical will actually be subcritical.” Often, USL calculations are based on statistical techniques that infer information about a nuclear system of interest from a set of known/well-characterized similar systems. The work in this paper is part of an active area of research to investigate the way traditional trending analysis is used in the nuclear industry, and in particular, the research is assessing the impact of the underlying assumption that the experimental data being analyzed for USL calculations are statistically independent. In contrast, the multiple experiments typically used for USL calculations can be correlated because they are often performed at the same facilities using the same materials and measurement techniques. This paper addresses this issue by providing a set of statistical inference methods to calculate the bias and bias uncertainty based on the underlying assumption that the experimental data are correlated. Methods to quantify these correlations are the subject of a companion paper and will not be discussed here. The newly proposed USL methodology is based on the assumption that the integral experiments selected for use in the establishment of the USL are sufficiently applicable and that experimental correlations are known. Under the assumption of uncorrelated data, the new methods collapse directly to familiar USL equations currently used. We will demonstrate our proposed methods on real data and compare them to calculations of currently used methods such as USLSTATS and NUREG/CR-6698. Lastly, we will also demonstrate the effect experiment correlations can have on USL calculations.

  16. WIPP Projects Interative Map

    Broader source: Energy.gov [DOE]

    View WIPP Projects in a larger map. To report corrections, please email WeatherizationInnovation@ee.doe.gov.

  17. SERC Grants Interactive Map

    Office of Energy Efficiency and Renewable Energy (EERE)

    View SERC Grants in a larger map. To report corrections, please email SustainableEnergyWAP@ee.doe.gov.

  18. National Hydropower Map

    Broader source: Energy.gov [DOE]

    High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

  19. Maps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Energy.gov » News & Blog » Maps Maps Map Title Topics - Any - Tax Credits, Rebates, Savings Energy Efficiency -Homes --Heating & Cooling ---Heating ---Cooling ---Heat Pumps --Water Heating ---Swimming Pool Heaters --Home Weatherization ---Home Energy Audits ---Insulation ---Sealing Your Home ---Ventilation --Saving Electricity ---Lighting ---Appliances & Electronics ---Buying & Making Electricity --Design & Remodeling ---Windows, Doors, & Skylights --Landscaping

  20. Quantitative DNA fiber mapping

    DOE Patents [OSTI]

    Gray, Joe W.; Weier, Heinz-Ulrich G.

    1998-01-01

    The present invention relates generally to the DNA mapping and sequencing technologies. In particular, the present invention provides enhanced methods and compositions for the physical mapping and positional cloning of genomic DNA. The present invention also provides a useful analytical technique to directly map cloned DNA sequences onto individual stretched DNA molecules.

  1. NERSC Calculations Provide Independent Confirmation of Global Land Warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Since 1901 Calculations Provide Independent Confirmation of Global Land Warming Since 1901 NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901 September 9, 2013 Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 campo.jpg These maps show the changes in air temperatures over land as measured using thermometers (left side) and as calculated by the 20th Century Reanalysis project (left side). While more than 80 percent of the observed variation is captured by

  2. Dose Calculation Spreadsheet

    Energy Science and Technology Software Center (OSTI)

    1997-06-10

    VENTSAR XL is an EXCEL Spreadsheet that can be used to calculate downwind doses as a result of a hypothetical atmospheric release. Both building effects and plume rise may be considered. VENTSAR XL will run using any version of Microsoft EXCEL version 4.0 or later. Macros (the programming language of EXCEL) was used to automate the calculations. The user enters a minimal amount of input and the code calculates the resulting concentrations and doses atmore » various downwind distances as specified by the user.« less

  3. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Annual Fuel Cost gal Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and ...

  4. ARM - Heat Index Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Heat Index Calculations Heat Index is an index that ...

  5. Aeromagnetic map | Open Energy Information

    Open Energy Info (EERE)

    map Jump to: navigation, search OpenEI Reference LibraryAdd to library Map: Aeromagnetic mapInfo GraphicMapChart Cartographer Zietz and Kirby Published U.S. Geological Survey,...

  6. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    Jaunary 2010" ,"Next Update: October 2010" ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2008 and Projected ...

  7. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2009 and Projected 2010 through 2014" ,"(Thousands of Megawatthours and ...

  8. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2008 through 2012 " ,"(Thousands of Megawatthours and ...

  9. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Thousands of Megawatthours and ...

  10. Maps of Selected State Subdivisions

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves Summary Maps of Selected State Subdivisions Map 1: Alaska Map 2: California Map 3: Louisiana Map 4: New Mexico Map 5: Texas Map 6: Western Planning Area, Gulf of Mexico Map 7: Central Planning Area, Gulf of Mexico Map 8: Eastern Planning Area, Gulf of Mexico Map 1: Alaska AK 50 - North Onshore and Offshore AK 10 - South Onshore AK 05 - South State Offshore AK 00 - South Federal Offshore Map 2: California CA 50 - Coastal Region

  11. Milford, Utah FORGE Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Milford, Utah FORGE Map More Documents & Publications Milford, Utah FORGE Map Milford, Utah FORGE Logo Milford, Utah FORGE Map Newberry FORGE Map Milford, Utah FORGE Map Fallon ...

  12. Jobs Calculator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jobs Calculator Jobs Calculator owip_jobs_calculator_v11-0.xls (1.46 MB) More Documents & Publications WPN 10-14: Calculation of Job Creation through DOE Recovery Act Funding Progress Report Template Job Counting Guidelines

  13. Fallon FORGE Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fallon FORGE Map Fallon FORGE Map Fallon FORGE Map More Documents & Publications Fallon FORGE Map Fallon FORGE Logo Fallon FORGE Map Milford, Utah FORGE Map Fallon FORGE Map Newberry

  14. Three recent TDHF calculations

    SciTech Connect (OSTI)

    Weiss, M.S.

    1981-05-01

    Three applications of TDHF are discussed. First, vibrational spectra of a post grazing collision /sup 40/Ca nucleus is examined and found to contain many high energy components, qualitatively consistent with recent Orsay experiments. Second, the fusion cross section in energy and angular momentum are calculated for /sup 16/O + /sup 24/Mg to exhibit the parameters of the low l window for this system. A sensitivity of the fusion cross section to the effective two body potential is discussed. Last, a preliminary analysis of /sup 86/Kr + /sup 139/La at E/sub lab/ = 505 MeV calculated in the frozen approximation is displayed, compared to experiment and discussed.

  15. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  16. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  17. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  18. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Mapping the Nanoscale Landscape Print Wednesday, 27 September 2006 00:00 For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave

  19. SGP Overview Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview Map SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility...

  20. Allinea MAP at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graphical User Interface can be greatly improved if used in conjunction with the free NX software. Introduction Allinea MAP is a parallel profiler with simple Graphical User...

  1. ARM - Datastreams - maps60

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1994.10.15 Measurement Categories Atmospheric State Originating Instrument Mesoscale Analysis and Prediction System (MAPS) Measurements The measurements below provided by this...

  2. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mapped the chemical structure of conjugated polymer ... heat, light, and motion, it is an essential infrastructure. Much of society's electricity is generated at fossil fuel ...

  3. Tunnel closure calculations

    SciTech Connect (OSTI)

    Moran, B.; Attia, A.

    1995-07-01

    When a deeply penetrating munition explodes above the roof of a tunnel, the amount of rubble that falls inside the tunnel is primarily a function of three parameters: first the cube-root scaled distance from the center of the explosive to the roof of the tunnel. Second the material properties of the rock around the tunnel, and in particular the shear strength of that rock, its RQD (Rock Quality Designator), and the extent and orientation of joints. And third the ratio of the tunnel diameter to the standoff distance (distance between the center of explosive and the tunnel roof). The authors have used CALE, a well-established 2-D hydrodynamic computer code, to calculate the amount of rubble that falls inside a tunnel as a function of standoff distance for two different tunnel diameters. In particular they calculated three of the tunnel collapse experiments conducted in an iron ore mine near Kirkeness, Norway in the summer of 1994. The failure model that they used in their calculations combines an equivalent plastic strain criterion with a maximum tensile strength criterion and can be calibrated for different rocks using cratering data as well as laboratory experiments. These calculations are intended to test and improve the understanding of both the Norway Experiments and the ACE (Array of conventional Explosive) phenomenology.

  4. Carbon Footprint Calculator

    Broader source: Energy.gov [DOE]

    This calculator estimates the amount of carbon emissions you and members of your household are responsible for. It does not include emissions associated with your work or getting to work if you commute by public transportation. It was developed by IEEE Spectrum magazine.

  5. Integrated Management Requirements mapping

    SciTech Connect (OSTI)

    Holmes, J.T.; Andrews, N.S.

    1992-06-01

    This document contains five appendices documenting how Sandia implemented the DOE Conduct of Operations (5480.19) and DOE Quality Assurance (5700.6C) orders. It provides a mapping of the Sandia integrated requirements to the specific requirements of each Order and a mapping to Sandia's approved program for implementing the Conduct of Operations Order.

  6. Integrated Management Requirements mapping

    SciTech Connect (OSTI)

    Holmes, J.T.; Andrews, N.S.

    1992-06-01

    This document contains five appendices documenting how Sandia implemented the DOE Conduct of Operations (5480.19) and DOE Quality Assurance (5700.6C) orders. It provides a mapping of the Sandia integrated requirements to the specific requirements of each Order and a mapping to Sandia`s approved program for implementing the Conduct of Operations Order.

  7. Site Map - Pantex Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Map Site Map Page Content Pantex.com Mission & Strategies Mission National Security Nuclear Explosive Operations Nuclear Material Operations HE Operations Strategies Advance HE Center of Excellence Exemplify a High Reliability Organization Health & Safety Safety Training Occupational Medicine Contractor Safety Environment Environmental Projects & Operations Regulatory Compliance Waste Operations Environmental Management System Environmental Document Library Public Meetings Doing

  8. Chizu Task Mapping Tool

    Energy Science and Technology Software Center (OSTI)

    2014-07-01

    Chizu is a tool for Mapping MPI processes or tasks to physical processors or nodes for optimizing communication performance. It takes the communication graph of a High Performance Computing (HPC) application and the interconnection topology of a supercomputer as input. It outputs a new MPI rand to processor mapping, which can be used when launching the HPC application.

  9. Hydrogen Threshold Cost Calculation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing

  10. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Choose a vehicle to compare fuel cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator Update Your Widget Code This widget version will stop working on March 31. Update your widget code. × Widget Code Select All Close U.S. Department of Energy Energy Efficiency and Renewable Energy

  11. Nuclear Material Variance Calculation

    Energy Science and Technology Software Center (OSTI)

    1995-01-01

    MAVARIC (Materials Accounting VARIance Calculations) is a custom spreadsheet that significantly reduces the effort required to make the variance and covariance calculations needed to determine the detection sensitivity of a materials accounting system and loss of special nuclear material (SNM). The user is required to enter information into one of four data tables depending on the type of term in the materials balance (MB) equation. The four data tables correspond to input transfers, output transfers,more » and two types of inventory terms, one for nondestructive assay (NDA) measurements and one for measurements made by chemical analysis. Each data entry must contain an identification number and a short description, as well as values for the SNM concentration, the bulk mass (or solution volume), the measurement error standard deviations, and the number of measurements during an accounting period. The user must also specify the type of error model (additive or multiplicative) associated with each measurement, and possible correlations between transfer terms. Predefined spreadsheet macros are used to perform the variance and covariance calculations for each term based on the corresponding set of entries. MAVARIC has been used for sensitivity studies of chemical separation facilities, fuel processing and fabrication facilities, and gas centrifuge and laser isotope enrichment facilities.« less

  12. Calculation of Electron Trajectories

    Energy Science and Technology Software Center (OSTI)

    1982-06-01

    EGUN, the SLAC Electron Trajectory Program, computes trajectories of charged particles in electrostatic and magnetostatic focusing systems including the effects of space charge and self-magnetic fields. Starting options include Child''s Law conditions on cathodes of various shapes, user-specified initial conditions for each ray, and a combination of Child''s Law conditions and user specifications. Either rectangular or cylindrically symmetric geometry may be used. Magnetic fields may be specified using arbitrary configuration of coils, or the outputmore » of a magnet program, such as Poisson, or by an externally calculated array of the axial fields.« less

  13. Zero Temperature Hope Calculations

    SciTech Connect (OSTI)

    Rozsnyai, B F

    2002-07-26

    The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task. The Amaldi correction is an attempt to address this problem by distorting the

  14. West Flank FORGE Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    West Flank FORGE Map West Flank FORGE Map West Flank FORGE Map More Documents & Publications West Flank FORGE Map West Flank FORGE Logo West Flank FORGE Map Milford, Utah FORGE Map West Flank

  15. Fermilab Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    use this map The Village Fermilab Meson, Nuetrino and Proton Experiment Areas Wilson Hall, Ramsey Auditorium Site 38 (Support Area) and vicinity CDF, D0, TD, Tevatron Main Injector...

  16. NREL: MapSearch

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to easily search our collection of maps created by the Geographic Information System (GIS) team. Please use the search box and the filters on the left of the screen to limit...

  17. Dating the Vinland Map

    ScienceCinema (OSTI)

    None

    2013-07-17

    Scientists from Brookhaven National Laboratory, the University of Arizona, and the Smithsonian Institution used carbon-dating technology to determine the age of a controversial parchment that might be the first-ever map of North America.

  18. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    composition maps (5 m x 5 m) of F8BT:TFB blend films (left and center). Comparative atomic-force microscopy (AFM) surface images (right) reveal micrometer-sized domains in...

  19. Wind Career Map

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This wind career map explores an expanding universe of wind energy occupations, describing diverse jobs across the industry, charting possible progression between them, and identifying the high-quality training necessary to do them well.

  20. Field Mapping | Open Energy Information

    Open Energy Info (EERE)

    Mapping Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Field Mapping Details Activities (74) Areas (44) Regions (6) NEPA(0) Exploration...

  1. Arizona Map for Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Home > Households, Buildings & Industry > Background Information on CBECS > 1979-1999 CBECS climate zone map Corrections Corrections to 1979-1999 CBECS Climate Zone Map, February...

  2. X-ray fluorescence mapping

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Microscopy and Imaging: X-ray Fluorescence Mapping Of increasing scientific interest is the detection, quantification and mapping of elemental content of samples, often down...

  3. ORISE: Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Map Contents About ORISE Careers Climate and Atmospheric Research Environmental Assessments and Health Physics Health Communication Media Center National Security and Emergency Management REAC/TS Safety Science Education Scientific Peer Review UNIRIB Worker Health Studies Working With Us Oak Ridge Institute for Science Education Site Map About ORISE Message from the Director Mission and Vision History Our Culture Publications Visiting Us ORISE Facilities ORISE Contract Back to top Careers

  4. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  5. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  6. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  7. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  8. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  9. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  10. Historical Network Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Network Maps Network Traffic Volume Historical Network Maps Network Facts & Stats Connected Sites Peering Connections ESnet Site Availabiliy OSCARS Fasterdata IPv6 Network Network Performance Tools The ESnet Engineering Team Network R&D Software-Defined Networking (SDN) Experimental Network Testbeds Performance (perfSONAR) Software & Tools Development Data for Researchers Partnerships Publications Workshops Science Engagement Move your data Programs & Workshops Science

  11. Roof Savings Calculator Suite

    SciTech Connect (OSTI)

    New, Joshua R; Garrett, Aaron; Erdem, Ender; Huang, Yu

    2013-11-22

    The software options currently supported by the simulation engine can be seen/experienced at www.roofcalc.com. It defaults all values to national averages with options to test a base-case (residential or commercial) building versus a comparison building with inputs for building type, location, building vintage, conditioned area, number of floors, and window-to-wall ratio, cooling system efficiency, type of heating, heating system efficiency, duct location, roof/ceiling insulation level, above-sheathing ventilation, radiant barrier, roof thermal mass, roof solar reflectance, roof thermal emittance, utility costs, roof pitch. The Roof Savings Caculator Suite adds utilities and website/web service and the integration of AtticSim with DOE-2.1E, with the end-result being Roof Savings Calculator.

  12. Roof Savings Calculator Suite

    Energy Science and Technology Software Center (OSTI)

    2013-11-22

    The software options currently supported by the simulation engine can be seen/experienced at www.roofcalc.com. It defaults all values to national averages with options to test a base-case (residential or commercial) building versus a comparison building with inputs for building type, location, building vintage, conditioned area, number of floors, and window-to-wall ratio, cooling system efficiency, type of heating, heating system efficiency, duct location, roof/ceiling insulation level, above-sheathing ventilation, radiant barrier, roof thermal mass, roof solar reflectance,more » roof thermal emittance, utility costs, roof pitch. The Roof Savings Caculator Suite adds utilities and website/web service and the integration of AtticSim with DOE-2.1E, with the end-result being Roof Savings Calculator.« less

  13. Powered by 500 Trillion Calculations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Argonne's supercomputer is using its superpowers to map the movement of red blood cells -- which will hopefully lead to better diagnoses and treatments for patients with blood flow complications.

  14. Directions & Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information » Directions & Maps Directions & Maps The Bradbury Science Museum is located in downtown Los Alamos at the corner of Central Avenue and 15th Street. Contact Us thumbnail of 1350 Central Avenue Bradbury Science Museum 1350 Central Avenue 505 667-4444 Email Where we're located Los Alamos (elevation 7,355 feet) is perched high atop the Pajarito Plateau in the Jemez Mountains, 35 miles northwest of Santa Fe. The Bradbury Science Museum is located in downtown Los Alamos at the

  15. Value Stream Mapping: Foam Collection and Processing.

    SciTech Connect (OSTI)

    Sorensen, Christian

    2015-07-01

    The effort to collect and process foam for the purpose of recycling performed by the Material Sustainability and Pollution Prevention (MSP2) team at Sandia National Laboratories is an incredible one, but in order to make it run more efficiently it needed some tweaking. This project started in June of 2015. We used the Value Stream Mapping process to allow us to look at the current state of the foam collection and processing operation. We then thought of all the possible ways the process could be improved. Soon after that we discussed which of the "dreams" were feasible. And finally, we assigned action items to members of the team so as to ensure that the improvements actually occur. These improvements will then, due to varying factors, continue to occur over the next couple years.

  16. How Are Momentum Savings Calculated?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simplifying the Math: How Are Momentum Savings Calculated? Many people have heard about Momentum savings but don't understand how these types of savings are calculated. The short...

  17. Category:Maps | Open Energy Information

    Open Energy Info (EERE)

    category, out of 6 total. B Map of Biomass Facilities C Map of Clean Energy Companies G Map of Geothermal Facilities S Map of Solar Energy Companies Map of Solar Power Plants W...

  18. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The spatial location and boundaries for each Site shown on the Site Monitoring Area maps ... P-SMA-2 DP-SMA-0.4 LA-SMA-2.3 LA-SMA-5.51 LA-SMA-6.38 P-SMA-2.15 DP-SMA-0.6 ...

  19. Learning maps -- Application

    SciTech Connect (OSTI)

    Paullin, W.L.

    1999-07-01

    The paper consists of a series of slides used in the presentation. They summarize the Root Learning Map process which is a tool that allows a company to modify its culture to improve productivity by allowing employees to have a vested interest in the outcome of the company. Educating the employees about different aspects of the organization is a major part of the process.

  20. Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  1. Rapid mapping tool : an ArcMap extension /

    SciTech Connect (OSTI)

    Linger, S. P.; Rich, P. M.; Walther, D.; Witkowski, M. S.; Jones, M. A.; Khalsa, H. S.

    2002-01-01

    Cartographic production laboratories produce large volumes of maps for diverse customers. Turnaround time and consistency are key concerns. The Rapid Mapping Tool is an ArcMap based tool that enables rapid creation of maps to meet customer needs. This tool was constructed using VB/VBA, ArcObjects, and ArcGIS templates. The core capability of ArcMap is extended for custom map production by storing specifications associated with a map or template in a companion XML document. These specifications include settings and preferences used to create custom maps. The tool was developed as a component of an enterprise GIS, which enables spatial data management and delivery using ArcSDE, ArcIMS, Oracle, and a web-based request tracking system.

  2. Impervious cover mapping and runoff predictions in a Dallas watershed using Landsat TM

    SciTech Connect (OSTI)

    Singletary, K.L.; Morgan, K.M.; Busbey, A.B.; Newland, L.W. . Dept. of Geology)

    1993-02-01

    As urban development increases in metropolitan areas, the amount of impervious cover also increases and directly affects stormwater runoff volume. Techniques are needed by planning agencies to monitor urban changes and update flood maps. In this study, the six 30 meter resolution bands of Landsat TM were analyzed to determine which wavelength(s) could be used to map impervious cover in a watershed near Dallas. The resulting information was utilized in a runoff equation and compared to actual stormwater flow recorded at a U.S.G.S. gauge station. Accuracies of the image mapping and predicted runoff are presented.

  3. Clinton Engineer Works map | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clinton Engineer Works map Clinton Engineer Works map

  4. maps | OpenEI Community

    Open Energy Info (EERE)

    queries developer Google maps maps multicolor result formats results Semantic Mediawiki Hi all, Recently, a couple of people on OpenEI have asked me how to do compound (or...

  5. FEM: Feature-enhanced map

    SciTech Connect (OSTI)

    Afonine, Pavel V.; Moriarty, Nigel W.; Mustyakimov, Marat; Sobolev, Oleg V.; Terwilliger, Thomas C.; Turk, Dusan; Urzhumtsev, Alexandre; Adams, Paul D.

    2015-02-26

    A method is presented that modifies a 2mFobs-DFmodelσA-weighted map such that the resulting map can strengthen a weak signal, if present, and can reduce model bias and noise. The method consists of first randomizing the starting map and filling in missing reflections using multiple methods. This is followed by restricting the map to regions with convincing density and the application of sharpening. The final map is then created by combining a series of histogram-equalized intermediate maps. In the test cases shown, the maps produced in this way are found to have increased interpretability and decreased model bias compared with the starting 2mFobs-DFmodelσA-weighted map.

  6. FEM: Feature-enhanced map

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Afonine, Pavel V.; Moriarty, Nigel W.; Mustyakimov, Marat; Sobolev, Oleg V.; Terwilliger, Thomas C.; Turk, Dusan; Urzhumtsev, Alexandre; Adams, Paul D.

    2015-02-26

    A method is presented that modifies a 2mFobs-DFmodelσA-weighted map such that the resulting map can strengthen a weak signal, if present, and can reduce model bias and noise. The method consists of first randomizing the starting map and filling in missing reflections using multiple methods. This is followed by restricting the map to regions with convincing density and the application of sharpening. The final map is then created by combining a series of histogram-equalized intermediate maps. In the test cases shown, the maps produced in this way are found to have increased interpretability and decreased model bias compared with themore » starting 2mFobs-DFmodelσA-weighted map.« less

  7. Equilibrium calculations of firework mixtures

    SciTech Connect (OSTI)

    Hobbs, M.L.; Tanaka, Katsumi; Iida, Mitsuaki; Matsunaga, Takehiro

    1994-12-31

    Thermochemical equilibrium calculations have been used to calculate detonation conditions for typical firework components including three report charges, two display charges, and black powder which is used as a fuse or launch charge. Calculations were performed with a modified version of the TIGER code which allows calculations with 900 gaseous and 600 condensed product species at high pressure. The detonation calculations presented in this paper are thought to be the first report on the theoretical study of firework detonation. Measured velocities for two report charges are available and compare favorably to predicted detonation velocities. However, the measured velocities may not be true detonation velocities. Fast deflagration rather than an ideal detonation occurs when reactants contain significant amounts of slow reacting constituents such as aluminum or titanium. Despite such uncertainties in reacting pyrotechnics, the detonation calculations do show the complex nature of condensed phase formation at elevated pressures and give an upper bound for measured velocities.

  8. SRNL Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spacer 11/22/2013 SEARCH SRNL GO SRNL Home SRNL Site Map About SRNL From the Director Operational Excellence Leadership Our History Visiting SRNL Science & Innovation National Security Enviromental Stewardship Clean Energy Innovations Fact Sheets PDRD / LDRD Working with SRNL Technology Transfer Technology Partnerships Our Facilities Main Campus ACTL - Aiken County Technology Laboratory HTRL - Hydrogen Technology Research Laboratory EMRL - Energy Materials Research Laboratory F / H Lab

  9. Site Map - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Map Cyclotron Institute About K500 Beam Schedule Recent News Seminars and Colloquia Cyclotron Institute Safety (limited access) Radiation Effects Facility REU Program Research Heavy Ion Reactions Fundamental Interactions Nuclear Astrophysics Interactions of Highly Charged Ions With Matter Theoretical Nuclear Physics Nuclear Structure External Collaborations Publications Research Groups Facilities K500 Cyclotron ECR Ion Sources MARS Big Sol MDM Spectrometer NIMROD Precision On-Line Decay

  10. WINDExchange: Wind Maps and Data

    Wind Powering America (EERE)

    Wind Maps and Data WINDExchange provides wind maps and anemometer data to help homeowners, communities, states, and regions learn more about their available wind resources and plan wind energy projects. WINDExchange also maintains more than a decade of installed capacity maps showing how wind energy has progressed across the United States over time as advances in wind technology and materials make wind resources more available. A map illustration of the United States showing the various wind

  11. Building Your Message Map Worksheet

    Broader source: Energy.gov [DOE]

    Building Your Message Map Worksheet, as posted on the U.S. Department of Energy's Better Buildings Neighborhood Program website.

  12. Geothermal Maps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Geothermal Maps Geothermal Maps Map of the United States, with color bands indicating favorability of deep EGS and dots indicating identified hydrothermal sites. The Geothermal Technologies Office (GTO) carries out R&D and demonstration efforts to deploy 12 GWe of clean geothermal energy by 2020 and expand geothermal into new U.S. regions. Locating and developing resources is an important part of that mission. GTO works with national laboratories to develop maps and

  13. Actual and Estimated Energy Savings Comparison for Deep Energy Retrofits in the Pacific Northwest

    SciTech Connect (OSTI)

    Blanchard, Jeremy; Widder, Sarah H.; Giever, Elisabeth L.; Baechler, Michael C.

    2012-10-01

    Seven homes from the Pacific Northwest were selected to evaluate the differences between estimated and actual energy savings achieved from deep energy retrofits. The energy savings resulting from these retrofits were estimated, using energy modeling software, to save at least 30% on a whole-house basis. The modeled pre-retrofit energy use was trued against monthly utility bills. After the retrofits were completed, each of the homes was extensively monitored, with the exception of one home which was monitored pre-retrofit. This work is being conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. This work found many discrepancies between actual and estimated energy savings and identified the potential causes for the discrepancies. The differences between actual energy use and modeled energy use also suggest improvements to improve model accuracy. The difference between monthly whole-house actual and estimated energy savings ranged from 75% more energy saved than predicted by the model to 16% less energy saved for all the monitored homes. Similarly, the annual energy savings difference was between 36% and -14%, which was estimated based on existing monitored savings because an entire year of data is not available. Thus, on average, for all six monitored homes the actual energy use is consistently less than estimates, indicating home owners are saving more energy than estimated. The average estimated savings for the eight month monitoring period is 43%, compared to an estimated savings average of 31%. Though this average difference is only 12%, the range of inaccuracies found for specific end-uses is far greater and are the values used to directly estimate energy savings from specific retrofits. Specifically, the monthly post-retrofit energy use differences for specific end-uses (i.e., heating, cooling, hot water, appliances, etc.) ranged from 131% under

  14. Alternative Water Sources Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Water Efficiency Alternative Water Sources Map Alternative Water Sources Map The Federal Energy Management Program (FEMP) created the Alternative Water Map to...

  15. Solar Mapping Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Mapping Resources Solar Mapping Resources Solar Mapping Resources Choosing solar energy is a big investment. In order to help consumers quantify the potential benefits,...

  16. Alternative Water Sources Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Water Efficiency Alternative Water Sources Map Alternative Water Sources Map The Federal Energy Management Program (FEMP) created the Alternative Water Map to ...

  17. Reaction chemistry of nitrogen species in hydrothermal systems: Simple reactions, waste simulants, and actual wastes

    SciTech Connect (OSTI)

    Dell`Orco, P.; Luan, L.; Proesmans, P.; Wilmanns, E.

    1995-02-01

    Results are presented from hydrothermal reaction systems containing organic components, nitrogen components, and an oxidant. Reaction chemistry observed in simple systems and in simple waste simulants is used to develop a model which presents global nitrogen chemistry in these reactive systems. The global reaction path suggested is then compared with results obtained for the treatment of an actual waste stream containing only C-N-0-H species.

  18. Treatability studies of actual listed waste sludges from the Oak Ridge Reservation (ORR)

    SciTech Connect (OSTI)

    Jantzen, C.M.; Peeler, D.K.; Gilliam, T.M.; Bleier, A.; Spence, R.D.

    1996-05-06

    Oak Ridge National Laboratory (ORNL) and Savannah River Technology Center (SRTC) are investigating vitrification for various low-level and mixed wastes on the Oak Ridge Reservation (ORR). Treatability studies have included surrogate waste formulations at the laboratory-, pilot-, and field-scales and actual waste testing at the laboratory- and pilot-scales. The initial waste to be processing through SRTC`s Transportable Vitrification System (TVS) is the K-1407-B and K-1407-C (B/C) Pond sludge waste which is a RCRA F-listed waste. The B/C ponds at the ORR K-25 site were used as holding and settling ponds for various waste water treatment streams. Laboratory-, pilot-, and field- scale ``proof-of-principle`` demonstrations are providing needed operating parameters for the planned field-scale demonstration with actual B/C Pond sludge waste at ORR. This report discusses the applied systems approach to optimize glass compositions for this particular waste stream through laboratory-, pilot-, and field-scale studies with surrogate and actual B/C waste. These glass compositions will maximize glass durability and waste loading while optimizing melt properties which affect melter operation, such as melt viscosity and melter refractory corrosion. Maximum waste loadings minimize storage volume of the final waste form translating into considerable cost savings.

  19. Characterization, Leaching, and Filtration Testing for Tributyl Phosphate (TBP, Group 7) Actual Waste Sample Composites

    SciTech Connect (OSTI)

    Edwards, Matthew K.; Billing, Justin M.; Blanchard, David L.; Buck, Edgar C.; Casella, Amanda J.; Casella, Andrew M.; Crum, J. V.; Daniel, Richard C.; Draper, Kathryn E.; Fiskum, Sandra K.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.; Swoboda, Robert G.

    2009-03-09

    .A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. The tributyl phosphate sludge (TBP, Group 7) is the subject of this report. The Group 7 waste was anticipated to be high in phosphorus as well as aluminum in the form of gibbsite. Both are believed to exist in sufficient quantities in the Group 7 waste to address leaching behavior. Thus, the focus of the Group 7 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

  20. MAp GENeralization COntroller

    Energy Science and Technology Software Center (OSTI)

    1995-02-24

    MAGENCO is a geographic information systems (GIS) tool for managing geospatial data. It assists in choosing an appropriate level of cartographic simplification (removal of vertices while preserving line character). While an effective algorithm for this task exists (Douglas-Peucker, published in 1973), the tolerance parameter depends on the fractal dimension or the natural or manmade feature, the scale of mapping, and the uses to which the data will be put. It is thus necessary to iterativelymore » test different parameters until an acceptable one is found.« less

  1. Widget:GasMap | Open Energy Information

    Open Energy Info (EERE)

    GasMap Jump to: navigation, search Gas map widget: The Gas Map displays real-time gas prices for the United States Example Output Gas map widget: Denver Gas Prices provided by...

  2. Category:Map Files | Open Energy Information

    Open Energy Info (EERE)

    has the following 4 subcategories, out of 4 total. M Map Image Files Map PDF Files N NREL Map Files 1 pages S SWERA Map Files Media in category...

  3. Alternative Water Sources Maps | Department of Energy

    Office of Environmental Management (EM)

    Facilities Water Efficiency Alternative Water Sources Maps Alternative Water Sources Maps Rainwater Harvesting Regulations Rainwater Harvesting Regulations Read more ...

  4. Quantitive DNA Fiber Mapping

    SciTech Connect (OSTI)

    Lu, Chun-Mei; Wang, Mei; Greulich-Bode, Karin M.; Weier, Jingly F.; Weier, Heinz-Ulli G.

    2008-01-28

    Several hybridization-based methods used to delineate single copy or repeated DNA sequences in larger genomic intervals take advantage of the increased resolution and sensitivity of free chromatin, i.e., chromatin released from interphase cell nuclei. Quantitative DNA fiber mapping (QDFM) differs from the majority of these methods in that it applies FISH to purified, clonal DNA molecules which have been bound with at least one end to a solid substrate. The DNA molecules are then stretched by the action of a receding meniscus at the water-air interface resulting in DNA molecules stretched homogeneously to about 2.3 kb/{micro}m. When non-isotopically, multicolor-labeled probes are hybridized to these stretched DNA fibers, their respective binding sites are visualized in the fluorescence microscope, their relative distance can be measured and converted into kilobase pairs (kb). The QDFM technique has found useful applications ranging from the detection and delineation of deletions or overlap between linked clones to the construction of high-resolution physical maps to studies of stalled DNA replication and transcription.

  5. Defect mapping system

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    1995-01-01

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline materials in a manner that distinguishes dislocation pits from grain boundaries includes a laser for illuminating a wide spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate rastor mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities.

  6. Defect mapping system

    DOE Patents [OSTI]

    Sopori, B.L.

    1995-04-11

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline materials in a manner that distinguishes dislocation pits from grain boundaries includes a laser for illuminating a wide spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate rastor mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. 20 figures.

  7. Actual versus predicted impacts of three ethanol plants on aquatic and terrestrial resources

    SciTech Connect (OSTI)

    Eddlemon, G.K.; Webb, J.W.; Hunsaker, D.B. Jr.; Miller, R.L.

    1993-03-15

    To help reduce US dependence on imported petroleum, Congress passed the Energy Security Act of 1980 (public Law 96-294). This legislation authorized the US Department of Energy (DOE) to promote expansion of the fuel alcohol industry through, among other measures, its Alcohol Fuels Loan Guarantee Program. Under this program, selected proposals for the conversion of plant biomass into fuel-grade ethanol would be granted loan guarantees. of 57 applications submitted for loan guarantees to build and operate ethanol fuel projects under this program, 11 were considered by DOE to have the greatest potential for satisfying DOE`s requirements and goals. In accordance with the National Environmental Policy Act (NEPA), DOE evaluated the potential impacts of proceeding with the Loan Guarantee Program in a programmatic environmental assessment (DOE 1981) that resulted in a finding of no significant impact (FANCY) (47 Federal Register 34, p. 7483). The following year, DOE conducted site-specific environmental assessments (EAs) for 10 of the proposed projects. These F-As predicted no significant environmental impacts from these projects. Eventually, three ethanol fuel projects received loan guarantees and were actually built: the Tennol Energy Company (Tennol; DOE 1982a) facility near Jasper in southeastern Tennessee; the Agrifuels Refining Corporation (Agrifuels; DOE 1985) facility near New Liberia in southern Louisiana; and the New Energy Company of Indiana (NECI; DOE 1982b) facility in South Bend, Indiana. As part of a larger retrospective examination of a wide range of environmental effects of ethanol fuel plants, we compared the actual effects of the three completed plants on aquatic and terrestrial resources with the effects predicted in the NEPA EAs several years earlier. A secondary purpose was to determine: Why were there differences, if any, between actual effects and predictions? How can assessments be improved and impacts reduced?

  8. TESTING OF THE SPINTEK ROTARY MICROFILTER USING ACTUAL HANFORD WASTE SAMPLES

    SciTech Connect (OSTI)

    HUBER HJ

    2010-04-13

    The SpinTek rotary microfilter was tested on actual Hanford tank waste. The samples were a composite of archived Tank 241-AN-105 material and a sample representing single-shell tanks (SST). Simulants of the two samples have been used in non-rad test runs at the 222-S laboratory and at Savannah River National Laboratory (SRNL). The results of these studies are compared in this report. Two different nominal pore sizes for the sintered steel rotating disk filter were chosen: 0.5 and 0.1 {micro}m. The results suggest that the 0.5-{micro}m disk is preferable for Hanford tank waste for the following reasons: (1) The filtrate clarity is within the same range (<<4 ntu for both disks); (2) The filtrate flux is in general higher for the 0.5-{micro}m disk; and (3) The 0.1-{micro}m disk showed a higher likelihood of fouling. The filtrate flux of the actual tank samples is generally in the range of 20-30% compared to the equivalent non-rad tests. The AN-105 slurries performed at about twice the filtrate flux of the SST slurries. The reason for this difference has not been identified. Particle size distributions in both cases are very similar; comparison of the chemical composition is not conclusive. The sole hint towards what material was stuck in the filter pore holes came from the analysis of the dried flakes from the surface of the fouled 0.1-{micro}m disk. A cleaning approach developed by SRNL personnel to deal with fouled disks has been found adaptable when using actual Hanford samples. The use of 1 M nitric acid improved the filtrate flux by approximately two times; using the same simulants as in the non-rad test runs showed that the filtrate flux was restored to 1/2 of its original amount.

  9. Home Energy Score Calculation Methodology

    Broader source: Energy.gov [DOE]

    A Qualified Assessor calculates the Home Energy Score by first conducting a brief walk-through of the home and collecting approximately 40 data points. Next, the Qualified Assessor uses the Home...

  10. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Maps GIS modeling is used to analyze and visualize the spatial relationship between resources (renewable and non renewable), hydrogen production facilities, transportation ...

  11. Transfer Area Mechanical Handling Calculation

    SciTech Connect (OSTI)

    B. Dianda

    2004-06-23

    This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAX Company L.L. C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC28-01R W12101'' (Arthur, W.J., I11 2004). This correspondence was appended by further Correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC28-OIRW12101; TDL No. 04-024'' (BSC 2004a). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The purpose of this calculation is to establish preliminary bounding equipment envelopes and weights for the Fuel Handling Facility (FHF) transfer areas equipment. This calculation provides preliminary information only to support development of facility layouts and preliminary load calculations. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process. It is intended that this calculation is superseded as the design advances to reflect information necessary to support License Application. The design choices outlined within this calculation represent a demonstration of feasibility and may or may not be included in the completed design. This calculation provides preliminary weight, dimensional envelope, and equipment position in building for the purposes of defining interface variables. This calculation identifies and sizes major equipment and assemblies that dictate overall equipment dimensions and facility interfaces. Sizing of components is based on the selection of commercially available products, where applicable. This is not a specific recommendation for the future use of these components or their related

  12. Method and apparatus for distinguishing actual sparse events from sparse event false alarms

    DOE Patents [OSTI]

    Spalding, Richard E.; Grotbeck, Carter L.

    2000-01-01

    Remote sensing method and apparatus wherein sparse optical events are distinguished from false events. "Ghost" images of actual optical phenomena are generated using an optical beam splitter and optics configured to direct split beams to a single sensor or segmented sensor. True optical signals are distinguished from false signals or noise based on whether the ghost image is presence or absent. The invention obviates the need for dual sensor systems to effect a false target detection capability, thus significantly reducing system complexity and cost.

  13. What do the DOE Zero Energy Ready Home Program Specs Actually Require?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternate HVAC Systems & the Need to Use a Credentialed HVAC Contractor What do the DOE Zero Energy Ready Home Program Specs Actually Require? The DOE Zero Energy Ready Home program frequently receives inquiries about the need for qualifying projects to use an HVAC contractor who is certified by an H-QUITO 1 . The DOE Zero Energy Ready Home program incorporates all of the ENERGY STAR Homes provisions. While commissioning is important for all HVAC systems, Versions 3 and 3.1 of the ENERGY

  14. Table 3a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per barrel in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,16.69,16.42999,16.9899,17.66,18.28,19.0599,19.89,20.72,21.65,22.61,23.51,24.29,24.9,25.6,26.3,27,27.64,28.16

  15. ACTUAL WASTE TESTING OF GYCOLATE IMPACTS ON THE SRS TANK FARM

    SciTech Connect (OSTI)

    Martino, C.

    2014-05-28

    Glycolic acid is being studied as a replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste Tank Farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the Tank Farm were addressed via a literature review and simulant testing, but several outstanding issues remained. This report documents the actual-waste tests to determine the impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The objectives of this study are to address the following: Determine the extent to which sludge constituents (Pu, U, Fe, etc.) dissolve (the solubility of sludge constituents) in the glycolate-containing 2H-evaporator feed. Determine the impact of glycolate on the sorption of fissile (Pu, U, etc.) components onto sodium aluminosilicate solids. The first objective was accomplished through actual-waste testing using Tank 43H and 38H supernatant and Tank 51H sludge at Tank Farm storage conditions. The second objective was accomplished by contacting actual 2H-evaporator scale with the products from the testing for the first objective. There is no anticipated impact of up to 10 g/L of glycolate in DWPF recycle to the Tank Farm on tank waste component solubilities as investigated in this test. Most components were not influenced by glycolate during solubility tests, including major components such as aluminum, sodium, and most salt anions. There was potentially a slight increase in soluble iron with added glycolate, but the soluble iron concentration remained so low (on the order of 10 mg/L) as to not impact the iron to fissile ratio in sludge. Uranium and plutonium appear to have been supersaturated in 2H-evaporator feed solution mixture used for this testing. As a result, there was a reduction of soluble uranium and plutonium as a function of time. The change in soluble uranium concentration was

  16. Filtration and Leach Testing for REDOX Sludge and S-Saltcake Actual Waste Sample Composites

    SciTech Connect (OSTI)

    Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Geeting, John GH; Hallen, Richard T.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Snow, Lanee A.; Swoboda, Robert G.

    2009-02-20

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.( ) The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP-RPP-WTP-467, eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste-testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan • Characterizing the homogenized sample groups • Performing parametric leaching testing on each group for compounds of interest • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on filtration/leaching tests performed on two of the eight waste composite samples and follow-on parametric tests to support aluminum leaching results from those tests.

  17. PERFORMANCE TESTING OF THE NEXT-GENERATION CSSX SOLVENT WITH ACTUAL SRS TANK WASTE

    SciTech Connect (OSTI)

    Pierce, R.; Peters, T.; Crowder, M.; Fink, S.

    2011-11-01

    Efforts are underway to qualify the Next-Generation Solvent for the Caustic Side Solvent Extraction (CSSX) process. Researchers at multiple national laboratories have been involved in this effort. As part of the effort to qualify the solvent extraction system at the Savannah River Site (SRS), SRNL performed a number of tests at various scales. First, SRNL completed a series of batch equilibrium, or Extraction-Scrub-Strip (ESS), tests. These tests used {approx}30 mL of Next-Generation Solvent and either actual SRS tank waste, or waste simulant solutions. The results from these cesium mass transfer tests were used to predict solvent behavior under a number of conditions. At a larger scale, SRNL assembled 12 stages of 2-cm (diameter) centrifugal contactors. This rack of contactors is structurally similar to one tested in 2001 during the demonstration of the baseline CSSX process. Assembly and mechanical testing found no issues. SRNL performed a nonradiological test using 35 L of cesium-spiked caustic waste simulant and 39 L of actual tank waste. Test results are discussed; particularly those related to the effectiveness of extraction.

  18. Wind farm production cost: Optimum turbine size and farm capacity in the actual market

    SciTech Connect (OSTI)

    Laali, A.R.; Meyer, J.L.; Bellot, C.; Louche, A.

    1996-12-31

    Several studies are undertaken in R&D Division of EDF in collaboration with ERASME association in order to have a good knowledge of the wind energy production costs. These studies are performed in the framework of a wind energy monitoring project and concern the influence of a few parameters like wind farm capacity, turbine size and wind speed on production costs, through an analysis of the actual market trend. Some 50 manufacturers and 140 different kind of wind turbines are considered for this study. The minimum production cost is situated at 800/900 kW wind turbine rated power. This point will probably move to more important powers in the future. This study is valid only for average conditions and some special parameters like particular climate conditions or lack of infrastructure for a special site the could modify the results shown on the curves. The variety of wind turbines (rated power as a function of rotor diameter, height and specific rated power) in the actual market is analyzed. A brief analysis of the market trend is also performed. 7 refs., 7 figs.

  19. Canister Transfer Facility Criticality Calculations

    SciTech Connect (OSTI)

    J.E. Monroe-Rammsy

    2000-10-13

    The objective of this calculation is to evaluate the criticality risk in the surface facility for design basis events (DBE) involving Department of Energy (DOE) Spent Nuclear Fuel (SNF) standardized canisters (Civilian Radioactive Waste Management System [CRWMS] Management and Operating Contractor [M&O] 2000a). Since some of the canisters will be stored in the surface facility before they are loaded in the waste package (WP), this calculation supports the demonstration of concept viability related to the Surface Facility environment. The scope of this calculation is limited to the consideration of three DOE SNF fuels, specifically Enrico Fermi SNF, Training Research Isotope General Atomic (TRIGA) SNF, and Mixed Oxide (MOX) Fast Flux Test Facility (FFTF) SNF.

  20. Multigroup Reactor Lattice Cell Calculation

    Energy Science and Technology Software Center (OSTI)

    1990-03-01

    The Winfrith Improved Multigroup Scheme (WIMS), is a general code for reactor lattice cell calculations on a wide range of reactor systems. In particular, the code will accept rod or plate fuel geometries in either regular arrays or in clusters, and the energy group structure has been chosen primarily for thermal calculations. The basic library has been compiled with 14 fast groups, 13 resonance groups and 42 thermal groups, but the user is offered themore » choice of accurate solutions in many groups or rapid calculations in few groups. Temperature dependent thermal scattering matrices for a variety of scattering laws are available in the library for the principal moderators which include hydrogen, deuterium, graphite, beryllium and oxygen. WIMSD5 is a succesor version of WIMS-D/4.« less

  1. Insertion device calculations with mathematica

    SciTech Connect (OSTI)

    Carr, R.; Lidia, S.

    1995-02-01

    The design of accelerator insertion devices such as wigglers and undulators has usually been aided by numerical modeling on digital computers, using code in high level languages like Fortran. In the present era, there are higher level programming environments like IDL{reg_sign}, MatLab{reg_sign}, and Mathematica{reg_sign} in which these calculations may be performed by writing much less code, and in which standard mathematical techniques are very easily used. The authors present a suite of standard insertion device modeling routines in Mathematica to illustrate the new techniques. These routines include a simple way to generate magnetic fields using blocks of CSEM materials, trajectory solutions from the Lorentz force equations for given magnetic fields, Bessel function calculations of radiation for wigglers and undulators and general radiation calculations for undulators.

  2. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Maps & Data Printable Version Share this resource Send a link to Alternative Fuels Data Center: Maps and Data to someone by E-mail Share Alternative Fuels Data Center: Maps and Data on Facebook Tweet about Alternative Fuels Data Center: Maps and Data on Twitter Bookmark Alternative Fuels Data Center: Maps and Data on Google Bookmark Alternative Fuels Data Center: Maps and Data on Delicious Rank Alternative Fuels Data Center: Maps and Data on Digg Find More places to share Alternative Fuels

  3. Maps and Directions | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maps Overview & General Energy Disruptions Interactive maps with energy infrastructure and real-time storm tracking Historical Disruption reports Gulf of Mexico Fact Sheet Flood Vulnerability Assessment Map - Interactive map that includes flood hazard information from FEMA as well as energy infrastructure layers. Country Analysis Briefs U.S. Census Region Map U.S. Climate Zones for 2003 Commercial Buildings Energy Consumption Survey (CBECS) U.S. Federal Region Map State Energy Profile Maps |

  4. ANL's Map and Data Browser

    Energy Science and Technology Software Center (OSTI)

    1998-07-13

    The MaD browser is a web browser Java applet developed to display and interact with vector graphic (map) objects, relational database tables, and other data sources. It was designed for use in remedial action projects to quickly and widely disseminate sampling results but is generally applicable to many other mapping situations. Its primary value is its simplicity and general availability.

  5. Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per million Btu in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,1.4699,1.4799,1.53,1.57,1.58,1.57,1.61,1.63,1.68,1.69,1.7,1.72,1.7,1.76,1.79,1.81,1.88,1.92 "AEO

  6. Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 1.47 1.48 1.53 1.57 1.58 1.57 1.61 1.63 1.68 1.69 1.70 1.72 1.70 1.76 1.79 1.81 1.88 1.92 AEO 1995 1993 1.39 1.39 1.38 1.40 1.40 1.39 1.39 1.42 1.41 1.43 1.44 1.45 1.46 1.46 1.46 1.47

  7. Table 3a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per barrel in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 16.69 16.43 16.99 17.66 18.28 19.06 19.89 20.72 21.65 22.61 23.51 24.29 24.90 25.60 26.30 27.00 27.64 28.16 AEO 1995 1993 14.90 16.41 16.90 17.45 18.00 18.53 19.13 19.65 20.16 20.63

  8. Table 7a. Natural Gas Price, Electric Power Sector, Actual vs. Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Natural Gas Price, Electric Power Sector, Actual vs. Projected Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 2.44 2.48 2.57 2.66 2.70 2.79 2.84 2.92 3.04 3.16 3.25 3.36 3.51 3.60 3.77 3.91 3.97 4.08 AEO 1995 1993 2.39 2.48 2.42 2.45 2.45 2.53 2.59 2.78 2.91 3.10 3.24 3.38 3.47 3.53 3.61 3.68

  9. Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite

    SciTech Connect (OSTI)

    Fiskum, Sandra K.; Billing, Justin M.; Crum, J. V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

    2009-02-28

    This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing.

  10. The primary test of measuremental system for the actual emittance of relativistic electron beams

    SciTech Connect (OSTI)

    Liang Fu; Tai-bin Du; Xin Chen

    1995-12-31

    Recent, a new measuremental system has been established basically in Tsinghua University PRA. This system is able to measure the lower emittance of the electron beams from the RF accelerators for the FEL. It consists of a scanning magnetic field, a slit, a fluorescent screen, and a TV camera, an image processing system, a CAD 386 computer. Using it an actual phase diagram is obtained for 4-10 Mev electron beams, The principle and structure of the facility were reported in the Proceeding of the 15th FEL Conference. This paper describes the performance of the main components and the results of first measurement for the electron gun and 4Mev standing wave LINAC, Some new suggests are related too.

  11. Actual Scale MOX Powder Mixing Test for MOX Fuel Fabrication Plant in Japan

    SciTech Connect (OSTI)

    Osaka, Shuichi; Kurita, Ichiro; Deguchi, Morimoto; Ito, Masanori; Goto, Masakazu

    2007-07-01

    Japan Nuclear Fuel Ltd. (hereafter, JNFL) promotes a program of constructing a MOX fuel fabrication plant (hereafter, J-MOX) to fabricate MOX fuels to be loaded in domestic light water reactors. Since Japanese fiscal year (hereafter, JFY) 1999, JNFL, to establish the technology for a smooth start-up and the stable operation of J-MOX, has executed an evaluation test for technology to be adopted at J-MOX. JNFL, based on a consideration that J-MOX fuel fabrication comes commercial scale production, decided an introduction of MIMAS technology into J-MOX main process, from powder mixing through pellet sintering, well recognized as mostly important to achieve good quality product of MOX fuel, since it achieves good results in both fuel production and actual reactor irradiation in Europe, but there is one difference that JNFL is going to use Japanese typical plutonium and uranium mixed oxide powder converted with the micro-wave heating direct de-nitration technology (hereafter, MH-MOX) but normal PuO{sub 2} of European MOX fuel fabricators. Therefore, in order to evaluate the suitability of the MH-MOX powder for the MIMAS process, JNFL manufactured small scale test equipment, and implemented a powder mixing evaluation test up until JFY 2003. As a result, the suitability of the MH-MOX powder for the MIMAS process was positively evaluated and confirmed It was followed by a five-years test named an 'actual test' from JFY 2003 to JFY 2007, which aims at demonstrating good operation and maintenance of process equipment as well as obtaining good quality of MOX fuel pellets. (authors)

  12. An insight into actual energy use and its drivers in high-performance buildings

    SciTech Connect (OSTI)

    Li, Cheng; Hong, Tianzhen; Yan, Da

    2014-07-12

    Using portfolio analysis and individual detailed case studies, we studied the energy performance and drivers of energy use in 51 high-performance office buildings in the U.S., Europe, China, and other parts of Asia. Portfolio analyses revealed that actual site energy use intensity (EUI) of the study buildings varied by a factor of as much as 11, indicating significant variation in real energy use in HPBs worldwide. Nearly half of the buildings did not meet the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004 energy target, raising questions about whether a building’s certification as high performing accurately indicates that a building is energy efficient and suggesting that improvement in the design and operation of HPBs is needed to realize their energy-saving potential. We studied the influence of climate, building size, and building technologies on building energy performance and found that although all are important, none are decisive factors in building energy use. EUIs were widely scattered in all climate zones. There was a trend toward low energy use in small buildings, but the correlation was not absolute; some small HPBs exhibited high energy use, and some large HPBs exhibited low energy use. We were unable to identify a set of efficient technologies that correlated directly to low EUIs. In two case studies, we investigated the influence of occupant behavior as well as operation and maintenance on energy performance and found that both play significant roles in realizing energy savings. We conclude that no single factor determines the actual energy performance of HPBs, and adding multiple efficient technologies does not necessarily improve building energy performance; therefore, an integrated design approach that takes account of climate, technology, occupant behavior, and operations and maintenance practices should be implemented to maximize energy savings in HPBs. As a result, these findings are

  13. An insight into actual energy use and its drivers in high-performance buildings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Cheng; Hong, Tianzhen; Yan, Da

    2014-07-12

    Using portfolio analysis and individual detailed case studies, we studied the energy performance and drivers of energy use in 51 high-performance office buildings in the U.S., Europe, China, and other parts of Asia. Portfolio analyses revealed that actual site energy use intensity (EUI) of the study buildings varied by a factor of as much as 11, indicating significant variation in real energy use in HPBs worldwide. Nearly half of the buildings did not meet the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004 energy target, raising questions about whether a building’s certification as high performing accuratelymore » indicates that a building is energy efficient and suggesting that improvement in the design and operation of HPBs is needed to realize their energy-saving potential. We studied the influence of climate, building size, and building technologies on building energy performance and found that although all are important, none are decisive factors in building energy use. EUIs were widely scattered in all climate zones. There was a trend toward low energy use in small buildings, but the correlation was not absolute; some small HPBs exhibited high energy use, and some large HPBs exhibited low energy use. We were unable to identify a set of efficient technologies that correlated directly to low EUIs. In two case studies, we investigated the influence of occupant behavior as well as operation and maintenance on energy performance and found that both play significant roles in realizing energy savings. We conclude that no single factor determines the actual energy performance of HPBs, and adding multiple efficient technologies does not necessarily improve building energy performance; therefore, an integrated design approach that takes account of climate, technology, occupant behavior, and operations and maintenance practices should be implemented to maximize energy savings in HPBs. As a result, these

  14. ITER Port Interspace Pressure Calculations

    SciTech Connect (OSTI)

    Carbajo, Juan J; Van Hove, Walter A

    2016-01-01

    The ITER Vacuum Vessel (VV) is equipped with 54 access ports. Each of these ports has an opening in the bioshield that communicates with a dedicated port cell. During Tokamak operation, the bioshield opening must be closed with a concrete plug to shield the radiation coming from the plasma. This port plug separates the port cell into a Port Interspace (between VV closure lid and Port Plug) on the inner side and the Port Cell on the outer side. This paper presents calculations of pressures and temperatures in the ITER (Ref. 1) Port Interspace after a double-ended guillotine break (DEGB) of a pipe of the Tokamak Cooling Water System (TCWS) with high temperature water. It is assumed that this DEGB occurs during the worst possible conditions, which are during water baking operation, with water at a temperature of 523 K (250 C) and at a pressure of 4.4 MPa. These conditions are more severe than during normal Tokamak operation, with the water at 398 K (125 C) and 2 MPa. Two computer codes are employed in these calculations: RELAP5-3D Version 4.2.1 (Ref. 2) to calculate the blowdown releases from the pipe break, and MELCOR, Version 1.8.6 (Ref. 3) to calculate the pressures and temperatures in the Port Interspace. A sensitivity study has been performed to optimize some flow areas.

  15. Petrophysical corner - calculating water cut

    SciTech Connect (OSTI)

    Elphick, R.Y. )

    1990-02-01

    The problem of determining the amount of water cut that can be expected from a well is discussed in conjunction with a program for making this calculation. The program was written for Amiga, Apple Macintosh, and MS DOS personal computers and source code for the program is provided.

  16. Fuzzy-probabilistic calculations of water-balance uncertainty

    SciTech Connect (OSTI)

    Faybishenko, B.

    2009-10-01

    Hydrogeological systems are often characterized by imprecise, vague, inconsistent, incomplete, or subjective information, which may limit the application of conventional stochastic methods in predicting hydrogeologic conditions and associated uncertainty. Instead, redictions and uncertainty analysis can be made using uncertain input parameters expressed as probability boxes, intervals, and fuzzy numbers. The objective of this paper is to present the theory for, and a case study as an application of, the fuzzyprobabilistic approach, ombining probability and possibility theory for simulating soil water balance and assessing associated uncertainty in the components of a simple waterbalance equation. The application of this approach is demonstrated using calculations with the RAMAS Risk Calc code, to ssess the propagation of uncertainty in calculating potential evapotranspiration, actual evapotranspiration, and infiltration-in a case study at the Hanford site, Washington, USA. Propagation of uncertainty into the results of water-balance calculations was evaluated by hanging he types of models of uncertainty incorporated into various input parameters. The results of these fuzzy-probabilistic calculations are compared to the conventional Monte Carlo simulation approach and estimates from field observations at the Hanford site.

  17. AGING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2004-09-10

    The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the criticality safety results to support the preliminary design of the Aging

  18. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Wind Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additional Resources Wind Prospector A web-based GIS applications designed to support ... For information on how the 50m maps were developed, access the GIS Data Background page. ...

  19. Analysis of Hydraulic Conductivity Calculations

    SciTech Connect (OSTI)

    Green, R.E.

    2003-01-06

    Equations by Marshall and by Millington and Quirk for calculating hydraulic conductivity from pore-size distribution data are dependent on an arbitrary choice of the exponent on the porosity term and a correct estimate of residual water. This study showed that a revised equation, based on the pore-interaction model of Marshall, accurately predicts hydraulic conductivity for glass beads and a loam soil from the pressure-water content relationships of these porous materials.

  20. BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE

    SciTech Connect (OSTI)

    Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

    2008-09-25

    Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The

  1. Denver Basin Map | Open Energy Information

    Open Energy Info (EERE)

    Basin Map Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Denver Basin Map Abstract This webpage contains a map of the Denver Basin. Published Colorado...

  2. HabiMap | Open Energy Information

    Open Energy Info (EERE)

    LibraryAdd to library : HabiMapInfo GraphicMapChart Abstract The Arizona Game and Fish Department developed HabiMap(tm) Arizona - a user-friendly, web-based data viewer - to...

  3. Bouguer gravity map | Open Energy Information

    Open Energy Info (EERE)

    LibraryAdd to library Map: Bouguer gravity mapInfo GraphicMapChart Cartographers J. Behrendt and L. Bajwa Organization U.S. Geological Survey Published U.S. Geological...

  4. Department of Energy Idaho -Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Web Policies No Fear Act Site Map Privacy Phone Book You are here: DOE-ID Home > Site Map Site Map Manager's Welcome Inside ID DOE-ID Mission and Vision Brief History of the Idaho ...

  5. Shielding calculations and verifications for the new Radiation Instrument Calibration Facility at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    George, G. L.; Olsher, R. H.; Seagraves, D. T.

    2002-01-01

    MCNP-4C1 was used to perform the shielding design for the new Central Health Physics Calibration Facility (CHPCF) at Los Alamos National Laboratory (LANL). The problem of shielding the facility was subdivided into three separate components: (1) Transmission; (2) Skyshine; and (3) Maze Streaming/ Transmission. When possible, actual measurements were taken to verify calculation results. The comparison of calculation versus measurement results shows excellent agreement for neutron calculations. For photon comparisons, calculations resulted in conservative estimates of the Effective Dose Equivalent (EDE) compared to measured results. This disagreement in the photon measurements versus calculations is most likely due to several conservative assumptions regarding shield density and composition. For example, reinforcing steel bars (Rebar) in the concrete shield walls were not included in the shield model.

  6. NY Solar Map and Portal

    Broader source: Energy.gov [DOE]

    The NY Solar Map and Portal helps New Yorkers determine the advantages of going solar by providing detailed and localized information about a customer's solar potential. Supported by the SunShot...

  7. A map of the universe

    SciTech Connect (OSTI)

    Gott III, J. Richard; Juric, Mario; Schlegel, David; Hoyle, Fiona; Vogeley, Michael; Tegmark, Max; Bahcall, Neta; Brinkmann, Jon

    2003-10-20

    We have produced a new conformal map of the universe illustrating recent discoveries, ranging from Kuiper belt objects in the Solar system, to the galaxies and quasars from the Sloan Digital Sky Survey. This map projection, based on the logarithm map of the complex plane, preserves shapes locally, and yet is able to display the entire range of astronomical scales from the Earth s neighborhood to the cosmic microwave background. The conformal nature of the projection, preserving shapes locally, may be of particular use for analyzing large scale structure. Prominent in the map is a Sloan Great Wall of galaxies 1.37 billion light years long, 80 percent longer than the Great Wall discovered by Geller and Huchra and therefore the largest observed structure in the universe.

  8. Interactive Map Shows Geothermal Resources

    Broader source: Energy.gov [DOE]

    The free interactive online map posted recently by the Oregon Department of Geology and Mineral Industries is part of a U.S. Department of Energy project to expand the knowledge of geothermal energy potential nationwide.

  9. Map | OpenEI Community

    Open Energy Info (EERE)

    Enabling Unique Visualization and Manipulation of Energy Data at Multiple Scales FRED Free Energy Data Map OpenEI Tool Visualization The U.S. Department of Energy, the Pacific...

  10. Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1.50 1.55 1.64 1.73 1.78 1.82 1.92 2.01 2.13 2.22 2.30 2.41 2.46 2.64 2.78 2.90 3.12 3.30 AEO 1995 1.42 1.46 1.49 1.55 1.59 1.62 1.67 1.76 1.80 1.89 1.97 2.05 2.13 2.21 2.28 2.38 2.50 AEO 1996 1.35 1.35 1.37 1.39 1.42 1.46 1.50 1.56 1.62 1.67 1.75

  11. Table 2. Real Gross Domestic Product Growth Trends, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Gross Domestic Product Growth Trends, Projected vs. Actual Projected Real GDP Growth Trend (cumulative average percent growth in projected real GDP from first year shown for each AEO) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 3.09 3.15 2.86 2.78 2.73 2.65 2.62 2.60 2.56 2.53 2.52 2.49 2.45 2.41 2.40 2.36 2.32 2.29 AEO 1995 3.66 2.77 2.53 2.71 2.67 2.61 2.55 2.48 2.46 2.45 2.45 2.43 2.39 2.35 2.31 2.27 2.24 AEO 1996 2.61

  12. Table 7b. Natural Gas Price, Electric Power Sector, Actual vs. Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Natural Gas Price, Electric Power Sector, Actual vs. Projected Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2.49 2.60 2.76 2.93 3.05 3.24 3.39 3.60 3.86 4.15 4.40 4.70 5.08 5.39 5.85 6.27 6.59 7.01 AEO 1995 2.44 2.61 2.61 2.70 2.78 2.95 3.11 3.44 3.72 4.10 4.43 4.78 5.07 5.33 5.64 5.95 6.23 AEO 1996 2.08 2.19 2.20 2.39 2.47 2.54 2.64 2.74 2.84 2.95 3.09

  13. FRACTIONAL CRYSTALLIZATION LABORATORY TESTING FOR INCLUSION & COPRECIPITATION WITH ACTUAL TANK WASTE

    SciTech Connect (OSTI)

    WARRANT, R.W.

    2006-12-11

    Fractional crystallization is being considered as a pretreatment method to support supplemental treatment of retrieved single-shell tank (SST) saltcake waste at the Hanford Site. The goal of the fractional crystallization process is to optimize the separation of the radioactivity (radionuclides) from the saltcake waste and send it to the Waste Treatment and Immobilization Plant and send the bulk of the saltcake to the supplemental treatment plant (bulk vitrification). The primary factors that influence the separation efficiency are (1) solid/liquid separation efficiency, (2) contaminant inclusions, and (3) co-precipitation. This is a report of testing for factors (2) and (3) with actual tank waste samples. For the purposes of this report, contaminant inclusions are defined as the inclusion of supernatant, containing contaminating radionuclides, in a pocket within the precipitating saltcake crystals. Co-precipitation is defined as the simultaneous precipitation of a saltcake crystal with a contaminating radionuclide. These two factors were tested for various potential fractional crystallization product salts by spiking the composite tank waste samples (SST Early or SST Late, external letter CH2M-0600248, ''Preparation of Composite Tank Waste Samples for ME-21 Project'') with the desired target salt and then evaporating to precipitate that salt. SST Early represents the typical composition of dissolved saltcake early in the retrieval process, and SST Late represents the typical composition during the later stages of retrieval.

  14. Relationship between self-reported activity levels and actual heart rates in teenagers

    SciTech Connect (OSTI)

    Terblanche, A.P.S.; Ozkaynak, H.; Spengler, J.D.; Butler, D.A. )

    1991-08-01

    A study was designed to explore the relationship between self-reported activity levels and actual heart rate (HR) as measured by a portable heart rate monitor. Twenty-two teenagers (8 boys, 14 girls, median age of 16) from Watertown High School, Massachusetts participated in this pilot study which involved continuous monitoring of HR during normal daily activities and simultaneous completion of a time-activity diary. There were 31 successful monitoring sessions ranging from 1.9 to 17 hours with a median monitoring time of 12.6 hours. Four unsuccessful monitoring sessions were experienced due to equipment failure. Apart from participant cooperation, the single most important factor affecting the feasibility of continuous heart rate monitoring was found to be equipment design. Th overall average heart rate observed was 88.4 bpm (SD = 24.3). An individual's correlation coefficient for perceived activity level (documented in half-hour intervals) and heart rate (averaged over the half-hour intervals) varied from 0.24 to 0.89. More than half of the correlation coefficients were below 0.40. There was a significant difference between average heart rate for time spent indoors (90 bpm) versus outdoors (103 bpm) even after correcting for sleeping time. It is concluded that continuous HR monitoring with simultaneous completion of a time/activity dairy is feasible and is a promising source of information for studies on exposure to air pollutants.

  15. Predicted Versus Actual Savings for a Low-Rise Multifamily Retrofit in Boulder, Colorado

    SciTech Connect (OSTI)

    Arena, L.; Williamson, J.

    2013-11-01

    To determine the most cost-effective methods of improving buildings, accurate analysis and prediction of the energy use of existing buildings is essential. However, multiple studies confirm that analysis methods tend to over-predict energy use in poorly insulated, leaky homes and thus, the savings associated with improving those homes. In NREL's report titled 'Assessing and Improving the Accuracy of Energy Analysis of Residential Buildings,' researchers propose a method for improving the accuracy of residential energy analysis methods. A key step in this process involves the comparisons of predicted versus metered energy use and savings. In support of this research need, CARB evaluated the retrofit of a multifamily building in Boulder, CO. The updated property is a 37 unit, 2 story apartment complex built in 1950, which underwent renovations in early 2009 to bring it into compliance with Boulder, CO's SmartRegs ordinance. Goals of the study were to: 1) evaluate predicted versus actual savings due to the improvements, 2) identify areas where the modeling assumptions may need to be changed, and 3) determine common changes made by renters that would negatively impact energy savings. In this study, CARB seeks to improve the accuracy of modeling software while assessing retrofit measures to specifically determine which are most effective for large multifamily complexes in the cold climate region. Other issues that were investigated include the effects of improving building efficiency on tenant comfort, the impact on tenant turnover rates, and the potential market barriers for this type of community scale project.

  16. Predicted Versus Actual Savings for a Low-Rise Multifamily Retrofit in Boulder, Colorado

    SciTech Connect (OSTI)

    Arena, L.; Williamson, J.

    2013-11-01

    To determine the most cost-effective methods of improving buildings, accurate analysis and prediction of the energy use of existing buildings is essential. However, multiple studies confirm that analysis methods tend to over-predict energy use in poorly insulated, leaky homes and thus, the savings associated with improving those homes. In this project, the Building America CARB team evaluated the retrofit of a multifamily building in Boulder, CO. The updated property is a 37 unit, 2 story apartment complex built in 1950, which underwent renovations in early 2009 to bring it into compliance with Boulder, CO's SmartRegs ordinance. Goals of the study were to: 1) evaluate predicted versus actual savings due to the improvements, 2) identify areas where the modeling assumptions may need to be changed, and 3) determine common changes made by renters that would negatively impact energy savings. Other issues that were investigated include the effects of improving building efficiency on tenant comfort, the impact on tenant turnover rates, and the potential market barriers for this type of community scale project.

  17. Property:CoverageMap | Open Energy Information

    Open Energy Info (EERE)

    Inc., dba Minnesota Power Smart Grid Project + SmartGridMap-ALLETEMNPower.JPG + American Transmission Company LLC II Smart Grid Project + SmartGridMap-AmericanTransmissionII....

  18. Density equalizing map projections (cartograms) in public health applications

    SciTech Connect (OSTI)

    Merrill, D.W.

    1998-05-01

    In studying geographic disease distributions, one normally compares rates among arbitrarily defined geographic subareas (e.g. census tracts), thereby sacrificing some of the geographic detail of the original data. The sparser the data, the larger the subareas must be in order to calculate stable rates. This dilemma is avoided with the technique of Density Equalizing Map Projections (DEMP){copyright}. Boundaries of geographic subregions are adjusted to equalize population density over the entire study area. Case locations plotted on the transformed map should have a uniform distribution if the underlying disease risk is constant. On the transformed map, the statistical analysis of the observed distribution is greatly simplified. Even for sparse distributions, the statistical significance of a supposed disease cluster can be calculated with validity. The DEMP algorithm was applied to a data set previously analyzed with conventional techniques; namely, 401 childhood cancer cases in four counties of California. The distribution of cases on the transformed map was analyzed visually and statistically. To check the validity of the method, the identical analysis was performed on 401 artificial cases randomly generated under the assumption of uniform risk. No statistically significant evidence for geographic non-uniformity of rates was found, in agreement with the original analysis performed by the California Department of Health Services.

  19. The effects of mapping CT images to Monte Carlo materials on GEANT4 proton simulation accuracy

    SciTech Connect (OSTI)

    Barnes, Samuel; McAuley, Grant; Slater, James; Wroe, Andrew

    2013-04-15

    Purpose: Monte Carlo simulations of radiation therapy require conversion from Hounsfield units (HU) in CT images to an exact tissue composition and density. The number of discrete densities (or density bins) used in this mapping affects the simulation accuracy, execution time, and memory usage in GEANT4 and other Monte Carlo code. The relationship between the number of density bins and CT noise was examined in general for all simulations that use HU conversion to density. Additionally, the effect of this on simulation accuracy was examined for proton radiation. Methods: Relative uncertainty from CT noise was compared with uncertainty from density binning to determine an upper limit on the number of density bins required in the presence of CT noise. Error propagation analysis was also performed on continuously slowing down approximation range calculations to determine the proton range uncertainty caused by density binning. These results were verified with Monte Carlo simulations. Results: In the presence of even modest CT noise (5 HU or 0.5%) 450 density bins were found to only cause a 5% increase in the density uncertainty (i.e., 95% of density uncertainty from CT noise, 5% from binning). Larger numbers of density bins are not required as CT noise will prevent increased density accuracy; this applies across all types of Monte Carlo simulations. Examining uncertainty in proton range, only 127 density bins are required for a proton range error of <0.1 mm in most tissue and <0.5 mm in low density tissue (e.g., lung). Conclusions: By considering CT noise and actual range uncertainty, the number of required density bins can be restricted to a very modest 127 depending on the application. Reducing the number of density bins provides large memory and execution time savings in GEANT4 and other Monte Carlo packages.

  20. Calculating and Communicating Program Results | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calculating and Communicating Program Results Better Buildings Neighborhood Program Data and Evaluation Peer Exchange Call: Calculating and Communicating Program Results, Call ...

  1. China 2050 Pathways Calculator | Open Energy Information

    Open Energy Info (EERE)

    2050 Pathways Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: China 2050 Pathways Calculator AgencyCompany Organization: China's Energy Research Institute...

  2. California Biomass Collaborative Energy Cost Calculators | Open...

    Open Energy Info (EERE)

    Biomass Collaborative Energy Cost Calculators Jump to: navigation, search Tool Summary LAUNCH TOOL Name: California Biomass Collaborative Energy Cost Calculators AgencyCompany...

  3. Interruption Cost Estimate Calculator | Open Energy Information

    Open Energy Info (EERE)

    Cost Estimate (ICE) Calculator This calculator is a tool designed for electric reliability planners at utilities, government organizations or other entities that are...

  4. Incorporating Weather Data into Energy Savings Calculations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incorporating Weather Data into Energy Savings Calculations Incorporating Weather Data into Energy Savings Calculations Better Buildings Residential Network Peer Exchange Call...

  5. Campus Carbon Calculator | Open Energy Information

    Open Energy Info (EERE)

    Campus Carbon Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Campus Carbon Calculator AgencyCompany Organization: Clean Air-Cool Planet Phase: Create a...

  6. NERSC Calculations Provide Independent Confirmation of Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculations Provide Independent Confirmation of Global Land Warming Since 1901 NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901 September 9, ...

  7. USAID Carbon Calculator | Open Energy Information

    Open Energy Info (EERE)

    Application ComplexityEase of Use: Not Available Website: www.afolucarbon.org Cost: Free Language: English USAID Carbon Calculator Screenshot Logo: USAID Carbon Calculator This...

  8. Incorporating Weather Data into Energy Savings Calculations ...

    Energy Savers [EERE]

    Weather Data into Energy Savings Calculations Incorporating Weather Data into Energy Savings Calculations Better Buildings Residential Network Peer Exchange Call Series: ...

  9. ACTUAL-WASTE TESTING OF ULTRAVIOLET LIGHT TO AUGMENT THE ENHANCED CHEMICAL CLEANING OF SRS SLUDGE

    SciTech Connect (OSTI)

    Martino, C.; King, W.; Ketusky, E.

    2012-07-10

    In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate Enhanced Chemical Cleaning (ECC), an alternative to the baseline 8 wt% oxalic acid (OA) chemical cleaning technology for tank sludge heel removal. ECC utilizes a more dilute OA solution (2 wt%) and an oxalate destruction technology using ozonolysis with or without the application of ultraviolet (UV) light. SRNL conducted tests of the ECC process using actual SRS waste material from Tanks 5F and 12H. The previous phase of testing involved testing of all phases of the ECC process (sludge dissolution, OA decomposition, product evaporation, and deposition tank storage) but did not involve the use of UV light in OA decomposition. The new phase of testing documented in this report focused on the use of UV light to assist OA decomposition, but involved only the OA decomposition and deposition tank portions of the process. Compared with the previous testing at analogous conditions without UV light, OA decomposition with the use of UV light generally reduced time required to reach the target of <100 mg/L oxalate. This effect was the most pronounced during the initial part of the decomposition batches, when pH was <4. For the later stages of each OA decomposition batch, the increase in OA decomposition rate with use of the UV light appeared to be minimal. Testing of the deposition tank storage of the ECC product resulted in analogous soluble concentrations regardless of the use or non-use of UV light in the ECC reactor.

  10. Calculation of Latitude and Longitude for Points on Perimeter of a Circle on a Sphere

    SciTech Connect (OSTI)

    Morris, Heidi E.

    2015-08-14

    This document describes the calculation of the Earth-Centered Earth Fixed (ECEF) coordinates for points lying on the perimeter of a circle. Here, the perimeter of the circle lies on the surface of the sphere and the center of the planar circle is below the surface. These coordinates are converted to latitude and longitude for mapping fields on the surface of the earth.