Sample records for map mitigation action

  1. EA-1941: Mitigation Action Plan (MAP) | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal NuclearofCommunicationMitigation Action7: Finding of

  2. Mitigation Action Plan

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    This Mitigation Action Plan (MAP) focuses on mitigation commitments stated in the Supplemental Environmental Impact Statement (SEIS) and the Record of Decision (ROD) for the Naval Petroleum Reserve No. 1 (NPR-1). Specific commitments and mitigation implementation actions are listed in Appendix A-Mitigation Actions, and form the central focus of this MAP. They will be updated as needed to allow for organizational, regulatory, or policy changes. It is the intent of DOE to comply with all applicable federal, state, and local environmental, safety, and health laws and regulations. Eighty-six specific commitments were identified in the SEIS and associated ROD which pertain to continued operation of NPR-1 with petroleum production at the Maximum Efficient Rate (MER). The mitigation measures proposed are expected to reduce impacts as much as feasible, however, as experience is gained in actual implementation of these measures, some changes may be warranted.

  3. Peru-Mitigation Action Plans and Scenarios (MAPS) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergy International Limited Jump to:Perrysburg,Mitigation Action

  4. MITIGATION ACTION PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9November 6, Inapril apsapsJanuaryMITIGATION ACTION

  5. Mitigation Action Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625DataNeutrinoMissionMission MissionofMitigation

  6. Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1998

    SciTech Connect (OSTI)

    Haagenstad, T.

    1999-01-15T23:59:59.000Z

    This Mitigation Action Plan Annual Report (MAPAR) has been prepared as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP) to protect workers, soils, water, and biotic and cultural resources in and around the facility.

  7. EIS-0380: Fiscal Year 2011 Mitigation Action Plan Annual Report...

    Office of Environmental Management (EM)

    EIS-0380: Fiscal Year 2011 Mitigation Action Plan Annual Report for the 2008 Los Alamos Site-Wide Environmental Impact Statement EIS-0380: Fiscal Year 2011 Mitigation Action Plan...

  8. Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1997

    SciTech Connect (OSTI)

    Haagenstad, H.T.

    1998-01-15T23:59:59.000Z

    This Mitigation Action Plan Annual Report (MAPAR) has been prepared by the US Department of Energy (DOE) as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP). This MAPAR provides a status on specific DARHT facility design- and construction-related mitigation actions that have been initiated in order to fulfill DOE`s commitments under the DARHT MAP. The functions of the DARHT MAP are to (1) document potentially adverse environmental impacts of the Phased Containment Option delineated in the Final EIS, (2) identify commitments made in the Final EIS and ROD to mitigate those potential impacts, and (3) establish Action Plans to carry out each commitment (DOE 1996). The DARHT MAP is divided into eight sections. Sections 1--5 provide background information regarding the NEPA review of the DARHT project and an introduction to the associated MAP. Section 6 references the Mitigation Action Summary Table which summaries the potential impacts and mitigation measures; indicates whether the mitigation is design-, construction-, or operational-related; the organization responsible for the mitigation measure; and the projected or actual completion data for each mitigation measure. Sections 7 and 8 discuss the Mitigation Action Plan Annual Report and Tracking System commitment and the Potential Impacts, Commitments, and Action Plans respectively. Under Section 8, potential impacts are categorized into five areas of concern: General Environment, including impacts to air and water; Soils, especially impacts affecting soil loss and contamination; Biotic Resources, especially impacts affecting threatened and endangered species; Cultural/Paleontological Resources, especially impacts affecting the archeological site known as Nake`muu; and Human Health and Safety, especially impacts pertaining to noise and radiation. Each potential impact includes a brief statement of the nature of the impact and its cause(s). The commitment made to mitigate the potential impact is identified and the Action Plan for each commitment is described in detail, with a description of actions to be taken, pertinent time frames for the actions, verification of mitigation activities, and identification of agencies/organizations responsible for satisfying the requirements of the commitment.

  9. Angola-Nationally Appropriate Mitigation Actions (NAMAs) in the...

    Open Energy Info (EERE)

    Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector Climate, Energy,...

  10. Cameroon-Nationally Appropriate Mitigation Actions (NAMAs) in...

    Open Energy Info (EERE)

    Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector Climate, Energy,...

  11. Burundi-Nationally Appropriate Mitigation Actions (NAMAs) in...

    Open Energy Info (EERE)

    Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector Climate, Energy,...

  12. Central African Republic-Nationally Appropriate Mitigation Actions...

    Open Energy Info (EERE)

    Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector Climate, Energy,...

  13. Rwanda-Nationally Appropriate Mitigation Actions (NAMAs) in the...

    Open Energy Info (EERE)

    Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector Climate, Energy,...

  14. EIS-0472: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised FindingDepartmentDepartment of EnergyEIS-0472: Mitigation Action Plan

  15. EA-1917: Mitigation Action Plan | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal NuclearofCommunication |DoesFindingofMitigation Action

  16. EA-1923: Mitigation Action Plan | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal NuclearofCommunicationMitigation Action Plan EA-1923:

  17. Science Maps in Action Dr. Katy Brner

    E-Print Network [OSTI]

    Menczer, Filippo

    Science Maps in Action Dr. Katy Börner Cyberinfrastructure for Network Science Center, Director Information Visualization Laboratory, Director School of Library and Information Science Indiana University Computational Scientometrics: Studying Science by Scientific Means Börner, Katy, Chen, Chaomei, and Boyack

  18. Ecofys-Nationally Appropriate Mitigation Actions: Insights from...

    Open Energy Info (EERE)

    Actions: Insights from Example Development1 "Ecofys elaborated in several projects, concrete examples of NAMAs to understand the issues arising from this concept. This report...

  19. EIS-0409: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised FindingDepartment of EnergyEnergy DraftEnergy 8:FinalMitigation

  20. EA-1912: Mitigation Action Plan | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal NuclearofCommunication |DoesFinding of68:Mitigation

  1. EA-1934: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-Wide ConstellationORderGreenEnergyMitigation

  2. EA-1679: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIX D9Construction This MAP is for Overhead

  3. Mitigation Action Plans (MAP) and Related Documents | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EMMinutes: EMMission Mission

  4. Colombia-Mitigation Action Plans and Scenarios (MAPS) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCityCoated Conductors CylinderColombia(RECP) in

  5. Chile-Mitigation Action Plans and Scenarios (MAPS) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: ChinaInformationChestnutCountries to

  6. Mitigation Action Plans and Scenarios (MAPS) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman Wind LLCMissouri/WindMitchell

  7. Mitigation Action Plans (MAP) and Related Documents | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe DistrictIndependentDepartment4.docfromImpact |Guidance onJuly 3,

  8. Mitigation Action Plans (MAP) and Related Documents | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe DistrictIndependentDepartment4.docfromImpact |Guidance onJuly

  9. Mitigation Action Plans and Scenarios (MAPS) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers IncMississippi: EnergyMitchell Jump

  10. Argentina-Mitigation Action Plans and Scenarios (MAPS) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon Capture andsoftware and hardware orIndexes

  11. Brazil-Mitigation Action Plans and Scenarios (MAPS) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotinsBoston CollegeBrazil TimberLowInformation

  12. EA-1931: Finding of No Significant Impact and Mitigation Action Plan |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal NuclearofCommunicationMitigation Action Plan7:Department

  13. EA-1934: 2014 Annual Report for Mitigation Action Plan | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal NuclearofCommunicationMitigation Action

  14. EA-1946: Finding of No Significant Impact and Mitigation Action Plan |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-WideBPA issued a Mitigation Action

  15. Collective action for community-based hazard mitigation: a case study of Tulsa project impact 

    E-Print Network [OSTI]

    Lee, Hee Min

    2005-11-01T23:59:59.000Z

    During the past two decades, community-based hazard mitigation (CBHM) has been newly proposed and implemented as an alternative conceptual model for emergency management to deal with disasters comprehensively in order to ...

  16. Collective action for community-based hazard mitigation: a case study of Tulsa project impact

    E-Print Network [OSTI]

    Lee, Hee Min

    2005-11-01T23:59:59.000Z

    intergovernmental governance and reduce disaster losses (Godschalk, Beatley, Berke, Brower, and Kaiser, 1999; Mileti, 1999). Nevertheless, natural disaster losses in the United States have dramatically increased rather than decreased during the past two decades..., 1991). New alternative conceptual models for community-based hazard mitigation (CBHM) have recently been developed and implemented: for example, the sustainable community (Aguirre, 2002; Beatley, 1998; Berke, Kartez, and Wenger, 1993; Mileti...

  17. EA-1950: Finding of No Significant Impact and Mitigation Action Plan |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal NuclearofCommunicationMitigation

  18. Mitigation and monitoring plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The U.S Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project is the result of the Uranium Mill Tailings Radiation Control Act(UMTRA) which was passed in response to the public's concern over the potential public health hazards related to uranium mill tailings and associated contaminated material at abandoned or otherwise uncontrolled inactive processing sites throughout the United States. The Gunnison, Colorado abandoned uranium mill site is one of the sites slated for cleanup by the DOE under authority of UMTRA. The contaminated material at this site will be transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities will temporarily disturb 0.8 acre and permanently eliminate 5.1 acres of wetlands. This report describes the proposed mitigation plan for the 5.9 acres of impacted wetlands. In conjunction with the mitigation of the permanently impacted wetlands through the enhancement of wetland and adjacent riparian areas, impacts to wildlife as a result of this project will also be mitigated. However, wildlife mitigation is not the focus of this document and is covered in relevant BLM permits for this project. This plan proposes the enhancement of a 3:1 ratio of impacted wetlands in accordance with US Environmental Protection Agency guidelines, plus the enhancement of riparian areas for wildlife mitigation. Included in this mitigation plan is a monitoring plan to ensure that the proposed measures are working and being maintained.

  19. OBJECTIVE PREDICTION OF VISUAL SALIENCY MAPS IN EGOCENTRIC VIDEOS FOR CONTENT-ACTION INTERPRETATION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    OBJECTIVE PREDICTION OF VISUAL SALIENCY MAPS IN EGOCENTRIC VIDEOS FOR CONTENT-ACTION INTERPRETATION, France ABSTRACT Extraction of visual saliency from video is in the focus of in- tensive research nowadays subjective saliency maps, recorded on the basis of gaze- tracker data in a new upcoming video content

  20. South Africa-Mitigation Action Plans and Scenarios (MAPS) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity Corp Jump to:SolibroSoursos EnergyInformation

  1. Experimental Investigation of the Root Cause Mechanism and Effectiveness of Mitigating Actions for Axial Offset Anomaly in Pressurized Water Reactors

    SciTech Connect (OSTI)

    Said Abdel-Khalik

    2005-07-02T23:59:59.000Z

    Axial offset anomaly (AOA) in pressurized water reactors refers to the presence of a significantly larger measured negative axial offset deviation than predicted by core design calculations. The neutron flux depression in the upper half of high-power rods experiencing significant subcooled boiling is believed to be caused by the concentration of boron species within the crud layer formed on the cladding surface. Recent investigations of the root-cause mechanism for AOA [1,2] suggest that boron build-up on the fuel is caused by precipitation of lithium metaborate (LiBO2) within the crud in regions of subcooled boiling. Indirect evidence in support of this hypothesis was inferred from operating experience at Callaway, where lithium return and hide-out were, respectively, observed following power reductions and power increases when AOA was present. However, direct evidence of lithium metaborate precipitation within the crud has, heretofore, not been shown because of its retrograde solubility. To this end, this investigation has been undertaken in order to directly verify or refute the proposed root-cause mechanism of AOA, and examine the effectiveness of possible mitigating actions to limit its impact in high power PWR cores.

  2. Mitigation action plan sale of Naval Petroleum Reserve No. 1 (Elk Hills) Kern County, California

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    Naval Petroleum Reserve No. 1 (NPR-1, also called {open_quotes}Elk Hills{close_quotes}), a Federally-owned oil and gas production field in Kern County, California, was created by an Executive Order issued by President Taft on September 2, 1912. He signed another Executive Order on December 13, 1912, to establish Naval Petroleum Reserve No. 2 (NPR-2), located immediately south of NPR-1 and containing portions of the town of Taft, California. NPR-1 was not developed until the 1973-74 oil embargo demonstrated the nation`s vulnerability to oil supply interruptions. Following the embargo, Congress passed the Naval Petroleum Reserves Production Act of 1976 which directed that the reserve be explored and developed to its fall economic potential at the {open_quotes}maximum efficient rate{close_quotes} (MER) of production. Since Elk Hills began full production in 1976, it has functioned as a commercial operation, with total revenues to the Federal government through FY 1996 of $16.4 billion, compared to total exploration, development and production costs of $3.1 billion. In February 1996, Title 34 of the National Defense Authorization Act for Fiscal Year 1996 (P.L. 104-106), referred to as the Elk Hills Sales Statute, directed the Secretary of Energy to sell NPR-1 by February 10, 1998.The Secretary was also directed to study options for enhancing the value of the other Naval Petroleum and Oil Shale Reserve properties such as NPR-2, located adjacent to NPR-1 in Kern County- Naval Petroleum Reserve No. 3 (NPR-3) located in Natrona County, Wyoming; Naval Oil Shale Reserves No. 1 and No. 3 (NOSR-1 and NOSR-3) located in Garfield County, Colorado; and Naval Oil Shale Reserve No. 2 (NOSR-2) located in Uintah and Carbon Counties, Utah. The purpose of these actions was to remove the Federal government from the inherently non-Federal function of operating commercial oil fields while making sure that the public would obtain the maximum value from the reserves.

  3. WREP Mitigation Action Plan

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell Director of TransmissionMedia02-03 AUDIT

  4. Mitigation Action Plan

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National 93-4EnergyMission MissionCitizens

  5. Recommendation 195: Mitigation of Contamination in Bear Creek Burial Grounds

    Broader source: Energy.gov [DOE]

    The ORSSAB requests DOE provide possible remedial actions to mitigate releases of contamination from Bear Creek Burial Grounds.

  6. Albeni Falls Wildlife Mitigation : Annual Report 2002.

    SciTech Connect (OSTI)

    Terra-Berns, Mary

    2003-01-01T23:59:59.000Z

    The Albeni Falls Interagency Work Group continued to actively engage in implementing wildlife mitigation actions in 2002. Regular Work Group meetings were held to discuss budget concerns affecting the Albeni Falls Wildlife Mitigation Program, to present potential acquisition projects, and to discuss and evaluate other issues affecting the Work Group and Project. Work Group members protected 1,386.29 acres of wildlife habitat in 2002. To date, the Albeni Falls project has protected approximately 5,914.31 acres of wildlife habitat. About 21% of the total wildlife habitat lost has been mitigated. Administrative activities have increased as more properties are purchased and continue to center on restoration, operation and maintenance, and monitoring. In 2001, Work Group members focused on development of a monitoring and evaluation program as well as completion of site-specific management plans. This year the Work Group began implementation of the monitoring and evaluation program performing population and plant surveys, data evaluation and storage, and map development as well as developing management plans. Assuming that the current BPA budget restrictions will be lifted in the near future, the Work Group expects to increase mitigation properties this coming year with several potential projects.

  7. L-325 Sagebrush Habitat Mitigation Project: Final Compensation Area Monitoring Report

    SciTech Connect (OSTI)

    Durham, Robin E.; Becker, James M.

    2013-09-26T23:59:59.000Z

    This document provides a review and status of activities conducted in support of the Fluor Daniel Hanford Company (Fluor), now Mission Support Alliance (MSA), Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades (2007). Three plantings have been installed on a 4.5-hectare mitigation area to date. This review provides a description and chronology of events, monitoring results, and mitigative actions through fiscal year (FY) 2012. Also provided is a review of the monitoring methods, transect layout, and FY 2012 monitoring activities and results for all planting years. Planting densities and performance criteria stipulated in the MAP were aimed at a desired future condition (DFC) of 10 percent mature sagebrush (Artemisia tridentata ssp wyomingensis) cover. Current recommendations for yielding this DFC are based upon a conceptual model planting of 1000 plants/ha (400/ac) exhibiting a 60-percent survival rate after 5 monitoring years (DOE 2003). Accordingly, a DFC after 5 monitoring years would not be less than 600 plants/ha (240/ac). To date, about 8700 sagebrush plants have been grown and transplanted onto the mitigation site. Harsh site conditions and low seedling survival have resulted in an estimated 489 transplants/ha on the mitigation site, which is 111 plants/ha short of the target DFC. Despite this apparent shortcoming, 71, 91, and 24 percent of the surviving seedlings planted in FY 2007 and FY 2008 and FY 2010, respectively, showed signs of blooming in FY 2012. Blooming status may be a positive indication of future sagebrush recruitment, and is therefore a potential source for reaching the target DFC of 600 plants/ha on this mitigation site over time. Because of the difficulty establishing small transplants on this site, we propose that no additional plantings be considered for this mitigation area and to rely upon the potential recruitment by established seedlings to achieve the mitigation commitment set forth in the MAP of 600 plants/ha.

  8. Democratic Republic of Congo-Nationally Appropriate Mitigation...

    Open Energy Info (EERE)

    Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector Climate, Energy,...

  9. Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electronEnergy ManufacturingMapping theMappingMaps Sign

  10. Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) -Publications &Tsao ·Resources » Maps

  11. WIPPAnnualMitigationActionReport2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report |to 40%DepartmentBradleyWHATDepartmentWIPP2-3322

  12. Nationally Appropriate Mitigation Actions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergy Information ConferenceProject| Open

  13. Heat Waves, Global Warming, and Mitigation

    E-Print Network [OSTI]

    Carlson, Ann E.

    2008-01-01T23:59:59.000Z

    Heat Waves, Global Warming, and Mitigation Ann E. Carlson*2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 175 stroke2001). 2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 177

  14. Hungry Horse Dam Fisheries Mitigation Implementation Plan, 1990-2003 Progress (Annual) Report.

    SciTech Connect (OSTI)

    Montana Department of Fish, Wildlife and Parks; Confederated Salish and Kootenai Tribes

    1993-03-10T23:59:59.000Z

    In this document the authors present mitigation implementation activities to protect and enhance resident fish and aquatic habitat affected by the construction and operation of Hungry Horse Dam. This plan only addresses non-operational actions (mitigation measures that do not affect dam operation) described in the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' (Mitigation Plan) submitted to the Northwest Power Planning Council (Council) in March 1991 and in accordance with subsequent Council action on that Mitigation Plan. Operational mitigation was deferred for consideration under the Columbia Basin System Operation Review (SOR) process. This document represents an implementation plan considered and conditionally approved by the Council in March of 1993.

  15. wind engineering & natural disaster mitigation

    E-Print Network [OSTI]

    Denham, Graham

    wind engineering & natural disaster mitigation #12;wind engineering & natural disaster mitigation Investment WindEEE Dome at Advanced Manufacturing Park $31million Insurance Research Lab for Better Homes $8million Advanced Facility for Avian Research $9million #12;wind engineering & natural disaster mitigation

  16. UNFCCC-Mitigation Assessments | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin HydropowerTrinityTurnbullGlobal Map-Annex 1 Jump to:Mitigation

  17. Peaking of world oil production: Impacts, mitigation, & risk management

    SciTech Connect (OSTI)

    Hirsch, R.L. (SAIC); Bezdek, Roger (MISI); Wendling, Robert (MISI)

    2005-02-01T23:59:59.000Z

    The peaking of world oil production presents the U.S. and the world with an unprecedented risk management problem. As peaking is approached, liquid fuel prices and price volatility will increase dramatically, and, without timely mitigation, the economic, social, and political costs will be unprecedented. Viable mitigation options exist on both the supply and demand sides, but to have substantial impact, they must be initiated more than a decade in advance of peaking.... The purpose of this analysis was to identify the critical issues surrounding the occurrence and mitigation of world oil production peaking. We simplified many of the complexities in an effort to provide a transparent analysis. Nevertheless, our study is neither simple nor brief. We recognize that when oil prices escalate dramatically, there will be demand and economic impacts that will alter our simplified assumptions. Consideration of those feedbacks will be a daunting task but one that should be undertaken. Our aim in this study is to-- • Summarize the difficulties of oil production forecasting; • Identify the fundamentals that show why world oil production peaking is such a unique challenge; • Show why mitigation will take a decade or more of intense effort; • Examine the potential economic effects of oil peaking; • Describe what might be accomplished under three example mitigation scenarios. • Stimulate serious discussion of the problem, suggest more definitive studies, and engender interest in timely action to mitigate its impacts.

  18. On the harmonic map equation

    E-Print Network [OSTI]

    S. C. Tiwari

    2007-06-09T23:59:59.000Z

    A generalized harmonic map equation is presented based on the proposed action functional in the Weyl space (PLA, 135, 315, 1989).

  19. Wind Engineering & Natural Disaster Mitigation

    E-Print Network [OSTI]

    Denham, Graham

    Wind Engineering & Natural Disaster Mitigation For more than 45 years, Western University has been internationally recognized as the leading university for wind engineering and wind- related research. Its of environmental disaster mitigation, with specific strengths in wind and earthquake research. Boundary Layer Wind

  20. Implantation, Activation, Characterization and Prevention/Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activation, Characterization and PreventionMitigation of Internal Short Circuits in Lithium-Ion Cells Implantation, Activation, Characterization and PreventionMitigation of...

  1. Mitigating Potential Environmental Impacts of Energy Development...

    Energy Savers [EERE]

    Mitigating Potential Environmental Impacts of Energy Development Mitigating Potential Environmental Impacts of Energy Development April 15, 2013 - 12:00am Addthis Partnering with...

  2. Wildlife mitigation and monitoring report Gunnison, Colorado, site

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project is administered by the U.S. Department of Energy (DOE); its purpose is to cleanup uranium mill tailings and other contaminated material at 24 UMTRA Project sites in 10 states. This report summarizes the wildlife mitigation and monitoring program under way at the Gunnison UMTRA Project, Gunnison, Colorado. Remedial action at the Gunnison site was completed in December 1995 and is described in detail in the Gunnison completion report. The impacts of this activity were analyzed in the Gunnison environmental assessment (EA). These impacts included two important game species: the pronghorn antelope (Antilocapra americans) and sage grouse (Wentrocerus urophasianus). Haul truck traffic was predicted to limit antelope access to water sources north of the Tenderfoot Mountain haul road and that truck traffic along this and other haul roads could result in antelope road kills. Clearing land at the disposal cell, haul road and borrow site activities, and the associated human activities also were predicted to negatively impact (directly and indirectly) sage grouse breeding, nesting, loafing, and wintering habitat. As a result, an extensive mitigation and monitoring plan began in 1992. Most of the monitoring studies are complete and the results of these studies, written by different authors, appear in numerous reports. This report will: (1) Analyze existing impacts and compare them to predicted impacts. (2) Summarize mitigation measures. (3) Summarize all existing monitoring data in one report. (4) Analyze the effectiveness of the mitigation measures.

  3. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    natural gas and liquefied petroleum gas have continued to make small contributions to transportation,transportation actions include electric power sector actions, eg coal to natural gas

  4. Climate Action Plan (New Orleans)

    Broader source: Energy.gov [DOE]

    New Orleans' Climate Action Plan will provide a road map to reach the City's greenhouse gas (GHG) reduction goal by 2030 while orchestrating its adaptation to climate change. The CAP will outline...

  5. Climate Action Plans and Long-Range Transportation

    E-Print Network [OSTI]

    Bertini, Robert L.

    Climate Action Plans and Long-Range Transportation Plans in the Pacific Northwest: A Review Climate Change and Impacts Mitigation versus Adaptation Impacts of Climate Change: Nation & the Pacific Northwest Climate Change Planning Efforts Transportation Sector Response - Survey Recommendations Continued

  6. Corrective Action

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corrective Action Individual Permit: Corrective Action Certifications If confirmation monitoring sample results demonstrate that one or more TALs are exceeded at a Site, the...

  7. Peru-GEF Nationally Appropriate Mitigation Actions in the Energy...

    Open Energy Info (EERE)

    of regional and global partners." Program Focus The program will focus on reducing poverty and inequality, strengthening democratic governance, increasing disaster preparedness...

  8. EIS-0323: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of98-F,-SA-01:5-SA-01: Supplement AnalysisRecord of19:3:

  9. EIS-0323: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of98-F,-SA-01:5-SA-01: Supplement AnalysisRecord of19:3:This

  10. EIS-0332: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of98-F,-SA-01:5-SA-01: SupplementFinal EnvironmentalDraftFinalkV

  11. EIS-0332: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of98-F,-SA-01:5-SA-01: SupplementFinal

  12. EIS-0350-S1: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of98-F,-SA-01:5-SA-01:Draftof Energy

  13. EIS-0380: Annual Mitigation Action Plan Annual Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised FindingDepartment of Energy : Notice of Intent to PrepareEnergy

  14. EIS-0380: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised FindingDepartment of Energy : Notice of Intent toEnergy

  15. EIS-0384: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised FindingDepartment of Energy : Notice of IntentStatement

  16. EIS-0389: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised FindingDepartment of Energy : NoticeStatement |Final

  17. EIS-0397: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised FindingDepartment of Energy :to ExtendImpact StatementStatement

  18. EIS-0422: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised FindingDepartment ofStatement | Department ofFinal Environmental

  19. EIS-0425: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised FindingDepartment ofStatement | DepartmentFinalDepartment

  20. EIS-0457: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised FindingDepartment ofStatementStatementRecord ofDepartment

  1. EA-1212: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIX D9 STAT. 1117Hill CountyLaboratory The

  2. EA-1440-S1: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIX D9 STAT.BPA's underlying

  3. EA-1440: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIX D9 STAT.BPA's underlyingLaboratory South

  4. EA-1456: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIX D9 STAT.BPA's

  5. EA-1508: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIX D9 STAT.BPA's10 CFR 433:Beaver Creek-Hoyt-Erie

  6. EA-1591: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIX D9 STAT.BPA's10 CFRNorthBasedSand Hills

  7. EA-1592: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIX D9 STAT.BPA's10 CFRNorthBasedSandDepartment

  8. EA-1595: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIX D9 STAT.BPA's10Y-12 Steam Plant Life 230-kV

  9. EA-1611: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIX D9 STAT.BPA's10Y-12

  10. EA-1617: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIX D9 STAT.BPA's10Y-12FacilityResearch2.pdfBig

  11. EA-1628: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIX D9Construction and Operation of a Proposed

  12. EA-1636: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIX D9Construction and Operation ofThe

  13. EA-1704: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIX D9Construction Thisof Energy SouthThis

  14. EA-1706: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIX D9Construction Thisof EnergyTheWest

  15. EA-1736: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIXKahuku Wind Power, LLC,FindingMonroe,Los Alamos,

  16. EA-1739: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIXKahuku Wind Power,

  17. EA-1755: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIXKahuku Wind Power,ThermalSmartReconstruction of

  18. EA-1782: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIXKahuku WindEnergyColorado:University

  19. EA-1855: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011DDelphi Automotive Systems, LLC ElectricWasteThis

  20. EA-1858: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011DDelphi Automotive Systems, LLC Nippon PaperProject The

  1. EA-1870: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011DDelphi Automotive Systems,DOE prepared thisUT The

  2. EA-1913: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011DDelphi AutomotiveLinac CoherentBenton County,

  3. EIS-0026: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJulySavannahFebruary 25, 2013 New

  4. EIS-0128: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJulySavannahFebruary 25, 2013Washington, RichlandBonnevilleLos

  5. EIS-0128: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJulySavannahFebruary 25, 2013Washington, RichlandBonnevilleLosLos

  6. Ecofys-Nationally Appropriate Mitigation Actions: Insights from Example

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential

  7. Uruguay-The Mitigation Action Implementation Network (MAIN) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLCEnergy) Redirect pageon permeabilityInformation

  8. Brazil-The Mitigation Action Implementation Network (MAIN) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,BelcherBlundellBowles,Energy InformationFossil

  9. EIS-0186: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of98-F, Western22,EERE Solar5:Recordthe WillowEIS-0183:Service6:

  10. India-The Mitigation Action Implementation Network (MAIN) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP WindSatelliteInSAR JumpRenewable

  11. Pakistan-The Mitigation Action Implementation Network (MAIN) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCN Technology Jump to:PPLPacific

  12. Panama-The Mitigation Action Implementation Network (MAIN) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCN Technology Jump2011) |

  13. Philippines-The Mitigation Action Implementation Network (MAIN) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCNInformation USPerseus|EnergyEnergy

  14. Peru-The Mitigation Action Implementation Network (MAIN) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy Resources Jump to:Personal Tax Credit

  15. Malaysia-The Mitigation Action Implementation Network (MAIN) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconvertersource History View NewWind

  16. EA-1440: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E TDrew Bittner AboutImpactFinal39:3:2:

  17. EA-1562-SA-1: Mitigation Action Plan | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal NuclearofCommunication |Does YourDr.36 EA26:48:-SA-1:

  18. EA-1891: Mitigation Action Plan | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal NuclearofCommunication |DoesFinding of68: Finding of

  19. EA-1901: Mitigation Action Plan | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal NuclearofCommunication |DoesFinding of68: Finding of901:

  20. China-The Mitigation Action Implementation Network (MAIN) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation

  1. Mexico-The Mitigation Action Implementation Network (MAIN) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <StevensMcClellan,IIMettler, California:inInformation

  2. Microsoft Word - Final Mitigated Action Plan - CNMI.docx

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovember S.Fluor-B&W Portsmouth,BARACK OBAMATEC1-23452699|

  3. EIS-0380: Annual Mitigation Action Plan Annual Report | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |FinalEESS-7 to| DepartmentEnergy UnderEnergy Los

  4. EIS-0380: Mitigation Action Plan Annual Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |FinalEESS-7 to| DepartmentEnergy UnderEnergyLos

  5. EIS-0380: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |FinalEESS-7 to| DepartmentEnergy UnderEnergyLos2008

  6. EIS-0419: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |FinalEESS-7 to|Granby Pumping

  7. EIS-0425: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |FinalEESS-7 to|Granby Pumpingdecided to implementBonneville

  8. EIS-0460: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |FinalEESS-7 to|GranbyChamplain HudsonDraft EISFuel

  9. EIS-0464: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |FinalEESS-7 to|GranbyChamplain HudsonDraftConduct

  10. EIS-0472: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |FinalEESS-7 to|GranbyChamplainEnergy Program,

  11. EIS-0473: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |FinalEESS-7 to|GranbyChamplainEnergy DOE isThis

  12. Thailand-The Mitigation Action Implementation Network (MAIN) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformation 2

  13. Democratic Republic of Congo-Nationally Appropriate Mitigation Actions

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan: Energy Resources JumpProgramme (NAP-GSP) |

  14. Mitigation Action Implementation Network (MAIN) Feed | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers IncMississippi: EnergyMitchell

  15. Mitigation Action Implementation Network (MAIN) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers IncMississippi: EnergyMitchell Jump to:

  16. Central African Republic-Nationally Appropriate Mitigation Actions (NAMAs)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGoCaterpillarCAPS JumpInformationin

  17. Chile-The Mitigation Action Implementation Network (MAIN) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER es unaChelmsford,VolcanicChevronJumpInformation

  18. Colombia-The Mitigation Action Implementation Network (MAIN) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier Technologies Inc Jump

  19. Costa Rica-The Mitigation Action Implementation Network (MAIN) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands2007) | OpenCity,Cosmos| Open|Energy

  20. Vietnam-The Mitigation Action Implementation Network (MAIN) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeter Logging JumpWorkstream Jump

  1. Indonesia-The Mitigation Action Implementation Network (MAIN) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua NewSmallholderEconomy Countries (URBAN-LEDS)

  2. Argentina-The Mitigation Action Implementation Network (MAIN) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon Capture andsoftware and hardware

  3. Burundi-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen Energy Information Burkina Faso WesternBurstPowerBasin

  4. Cameroon-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen EnergyCallaway ElectricCambridge Funds Investment

  5. Dominican Republic-The Mitigation Action Implementation Network (MAIN) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open EnergyProject Projectonly approved data?Open

  6. Libby Mitigation Program, 2007 Annual Progress Report: Mitigation for the Construction and Operation of Libby Dam.

    SciTech Connect (OSTI)

    Dunnigan, James; DeShazer, J.; Garrow, L.

    2009-05-26T23:59:59.000Z

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin (Columbia River Treaty 1964). Libby Reservoir inundated 109 stream miles of the mainstem Kootenai River in the United States and Canada, and 40 miles of tributary streams in the U.S. that provided habitat for spawning, juvenile rearing, and migratory passage (Figure 1). The authorized purpose of the dam is to provide power (91.5%), flood control (8.3%), and navigation and other benefits (0.2%; Storm et al. 1982). The Pacific Northwest Power Act of 1980 recognized possible conflicts stemming from hydroelectric projects in the northwest and directed Bonneville Power Administration to 'protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries' (4(h)(10)(A)). Under the Act, the Northwest Power Planning Council was created and recommendations for a comprehensive fish and wildlife program were solicited from the region's federal, state, and tribal fish and wildlife agencies. Among Montana's recommendations was the proposal that research be initiated to quantify acceptable seasonal minimum pool elevations to maintain or enhance the existing fisheries (Graham et al. 1982). Research to determine how operations of Libby Dam affect the reservoir and river fishery and to suggest ways to lessen these effects began in May 1983. The framework for the Libby Reservoir Model (LRMOD) was completed in 1989. Development of Integrated Rule Curves (IRCs) for Libby Dam operation was completed in 1996 (Marotz et al. 1996). The Libby Reservoir Model and the IRCs continue to be refined (Marotz et al 1999). Initiation of mitigation projects such as lake rehabilitation and stream restoration began in 1996. The primary focus of the Libby Mitigation project now is to restore the fisheries and fish habitat in basin streams and lakes. 'Mitigation for the Construction and Operation of Libby Dam' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan.

  7. Wildlife Protection, Mitigation, and Enhancement Planning Phase II, Dworshak Reservoir, Final Report.

    SciTech Connect (OSTI)

    Hansen, H. Jerome; Martin, Robert C.

    1989-11-01T23:59:59.000Z

    The Pacific Northwest Electric Power Planning and Conservation Act of 1980 directed that measures be implemented to protect, mitigate, and enhance fish and wildlife to the extent affected by development and operation of hydropower projects on the Columbia River System. This Act created the Northwest Power Planning Council, which in turn developed the Columbia River Basin Fish and Wildlife Program. This program established a four-part process: wildlife mitigation status reports; wildlife impact assessments; wildlife protection, mitigation, and enhancement plans; and implementation of protection, mitigation, and enhancement projects. This mitigation plan for the Dworshak Reservoir Hydroelectric Facility was developed to fulfill requirements of Sections 1003(b)(2) and (3) of the Columbia River Basin Fish and Wildlife Program. Specific objectives of wildlife protection, mitigation, and enhancement planning for Dworshak Reservoir included: quantify net impacts to target wildlife species affected by hydroelectric development and operation of Dworshak Dam and Reservoir; develop protection, mitigation, and enhancement goals and objectives for the target wildlife species; recommend protection, mitigation, and enhancement actions for the target wildlife species; and coordination of project activities. 46 refs., 4 figs., 31 tabs.

  8. Climate mitigation and the future of tropical landscapes

    SciTech Connect (OSTI)

    Thomson, Allison M.; Calvin, Katherine V.; Chini, Louise Parsons; Hurtt, George; Edmonds, James A.; Bond-Lamberty, Benjamin; Frolking, Steve; Wise, Marshall A.; Janetos, Anthony C.

    2010-11-16T23:59:59.000Z

    Land use change to meet 21st Century demands for food, fuel, and fiber will occur in the context of both a changing climate as well as societal efforts to mitigate climate change. This changing natural and human environment will have large consequences for forest resources, terrestrial carbon storage and emissions, and food and energy crop production over the next century. Any climate change mitigation policies enacted will change the environment under which land-use decisions are made and alter global land use change patterns. Here we use the GCAM integrated assessment model to explore how climate mitigation policies that achieve a climate stabilization at 4.5 W m-2 radiative forcing in 2100 and value carbon in terrestrial ecosystems interact with future agricultural productivity and food and energy demands to influence land use in the tropics. The regional land use results are downscaled from GCAM regions to produce gridded maps of tropical land use change. We find that tropical forests are preserved only in cases where a climate mitigation policy that values terrestrial carbon is in place, and crop productivity growth continues throughout the century. Crop productivity growth is also necessary to avoid large scale deforestation globally and enable the production of bioenergy crops. The terrestrial carbon pricing assumptions in GCAM are effective at avoiding deforestation even when cropland must expand to meet future food demand.

  9. Albeni Falls Wildlife Mitigation Project

    E-Print Network [OSTI]

    from the Albeni Falls Hydroelectric Project #12;Biological Objective 1 Protect 900 acres of wetland hydroelectric project. · 1988 publication of the Final Report Albeni Falls Wildlife Protection, Mitigation effects on wildlife resulting from hydroelectric development. 2. Select target wildlife species

  10. Agricultural Mitigation and Offsets: Policy Issues, Progress

    E-Print Network [OSTI]

    Agricultural Mitigation and Offsets: Policy Issues, Progress Purdue Climate Change Research Center, 2010 #12;Agricultural Mitigation and Offsets: Policy Issues, Progress Presentation Overview: Global Climate Change...and Agriculture Policy Landscape: US and International Agricultural Offsets and Policy

  11. October 2013 ENVIRONMENTAL SETTING, IMPACTS, AND MITIGATION

    E-Print Network [OSTI]

    Lee, Jason R.

    October 2013 4-1 CHAPTER 4 ENVIRONMENTAL SETTING, IMPACTS, AND MITIGATION MEASURES This chapter discusses the environmental setting, impacts, and mitigation measures for the 14 fully evaluated to measure changes that would result #12;Chapter 4 Environmental Setting, Impacts, and Mitigation Measures

  12. Forest fuel mapping and evaluation of LANDFIRE fuel maps in Boulder County, Colorado, USA

    E-Print Network [OSTI]

    Stephens, Scott L.

    Forest fuel mapping and evaluation of LANDFIRE fuel maps in Boulder County, Colorado, USA Kevin fuels to accumulate where previously frequent fires prevailed (Covington and Moore, 1994; Caprio management and mitigation is quantifying the fuel load and spatial arrangement of combustible material across

  13. Mitigation and monitoring plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The U.S Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project is the result of the Uranium Mill Tailings Radiation Control Act(UMTRA) which was passed in response to the public`s concern over the potential public health hazards related to uranium mill tailings and associated contaminated material at abandoned or otherwise uncontrolled inactive processing sites throughout the United States. The Gunnison, Colorado abandoned uranium mill site is one of the sites slated for cleanup by the DOE under authority of UMTRA. The contaminated material at this site will be transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities will temporarily disturb 0.8 acre and permanently eliminate 5.1 acres of wetlands. This report describes the proposed mitigation plan for the 5.9 acres of impacted wetlands. In conjunction with the mitigation of the permanently impacted wetlands through the enhancement of wetland and adjacent riparian areas, impacts to wildlife as a result of this project will also be mitigated. However, wildlife mitigation is not the focus of this document and is covered in relevant BLM permits for this project. This plan proposes the enhancement of a 3:1 ratio of impacted wetlands in accordance with US Environmental Protection Agency guidelines, plus the enhancement of riparian areas for wildlife mitigation. Included in this mitigation plan is a monitoring plan to ensure that the proposed measures are working and being maintained.

  14. Addendum to 2010 NREL Environmental Performance Report ? Traffic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update November 2011 Page 1 of 4 Traffic Mitigation Action Plan 2010 Update Traffic Management A Mitigation Action Plan (MAP), finalized in May 2008, was developed to address...

  15. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in the United States

    SciTech Connect (OSTI)

    Bojda, Nicholas; Ke, Jing; de la Rue du Can, Stephane; E. Letschert, Virginie; E. McMahon, James; McNeil, Michael A.

    2011-06-01T23:59:59.000Z

    This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption in the most cost-effective way. A major difference between the current study and some others is that we focus on individual equipment types that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. The approach of the study is to assess the impact of short-term actions on long-term impacts. “Short term” market transformation is assumed to occur by 2015, while “long-term” energy demand reduction impacts are assessed in 2030. In the intervening years, most but not all of the equipment studied will turn over completely. The 15-year time frame is significant for many products however, indicating that delay of implementation postpones impacts such as net economic savings and mitigation of emissions of carbon dioxide. Such delays would result in putting in place energy-wasting technologies, postponing improvement until the end of their service life, or potentially resulting in expensive investment either in additional energy supplies or in early replacement to achieve future energy or emissions reduction targets.

  16. Collaborative Approach to Mitigating ARP Poisoning-based Man-in-the-Middle Seung Yeob Nama

    E-Print Network [OSTI]

    Nam, Seung Yeob

    Collaborative Approach to Mitigating ARP Poisoning-based Man-in-the-Middle Attacks Seung Yeob Nama for counteracting ARP (Address Resolution Protocol) poisoning-based Man-in-the-Middle (MITM) attacks in a subnet an ARP cache poisoning attack if the mapping between an IP and the corresponding MAC addresses

  17. The detection, prevention and mitigation of cascading outages in the power system 

    E-Print Network [OSTI]

    Song, Hongbiao

    2009-05-15T23:59:59.000Z

    all the time, and takes actions when needed to help detect, prevent and mitigate the possible cascading outage. Comprehensive simulation studies have been implemented using the IEEE 14- bus, 24-bus, 39-bus and 118-bus systems and promising results show...

  18. Boston Massachusetts: Solar in Action (Brochure), Solar America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boston, Massachusetts Includes case studies on: * Incorporating Solar into Emergency Preparedness Planning * Developing the Boston Solar Map October 2011 Solar in Action Boston was...

  19. Advanced Technology Development and Mitigation | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Technology Development and Mitigation This sub-program includes laboratory code and computer engineering and science projects that pursue long-term simulation and computing goals...

  20. Environmental Mitigation Technology (Innovative System Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine Environmental Mitigation Technology (Innovative System...

  1. Estimating Mitigation Potential of Agricultural Projects: an...

    Open Energy Info (EERE)

    Tool (EX-ACT) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Brazil-Estimating Mitigation Potential of Agricultural Projects: an Application of the...

  2. Greenhouse gas mitigation by agricultural intensification

    E-Print Network [OSTI]

    Burney, J. A; Davis, S. J; Lobell, D. B

    2010-01-01T23:59:59.000Z

    et al. (2007) Agriculture. Climate Change 2007: Mitigationagriculture’s future contributions to climate change,agriculture greenhouse gas emissions mitigation carbon price | land use change | climate

  3. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01T23:59:59.000Z

    mitigate 21 MtCO 2 . Cogeneration (also called Combined Heatefficiencies. Industrial cogeneration is an important partpotential for industrial cogeneration is estimated at almost

  4. Evaluation of impacts and mitigation assessments for the UMTRA Project: Gunnison and Durango pilot studies. Final report

    SciTech Connect (OSTI)

    Beranich, S.J. [Southwest Environmental, Albuquerque, NM (United States)

    1994-08-24T23:59:59.000Z

    This report evaluates the impacts assessment and proposed mitigations provided in environmental documents concerning the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The projected impacts and proposed mitigations identified in UMTRA Project environmental documents were evaluated for two UMTRA Project sites. These sites are Gunnison and Durango, which are representative of currently active and inactive UMTRA Project sites, respectively. National Environmental Policy Act (NEPA) documentation was prepared for the remedial action at Durango and Gunnison as well as for the provision of an alternate water supply system at Gunnison. Additionally, environmental analysis was completed for mill site demolition Gunnison, and for a new road related to the Durango remedial action. The results in this report pertain only to the impact assessments prepared by the Regulatory Compliance staff as a part of the NEPA compliance requirements. Similarly, the mitigative measures documented are those that were identified during the NEPA process.

  5. Location Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Map file package containing shaded relief base with Hot Pot project area, major roads, railroads, and rivers. The inset map shows regional Paleozoic structural elements.

  6. Location Map

    SciTech Connect (OSTI)

    Lane, Michael

    2013-06-27T23:59:59.000Z

    Map file package containing shaded relief base with Hot Pot project area, major roads, railroads, and rivers. The inset map shows regional Paleozoic structural elements.

  7. Scatterometer Contamination Mitigation Michael Paul Owen

    E-Print Network [OSTI]

    Long, David G.

    Scatterometer Contamination Mitigation Michael Paul Owen A dissertation submitted to the faculty Michael Paul Owen All Rights Reserved #12;#12;ABSTRACT Scatterometer Contamination Mitigation Michael Paul are contaminated by land proximity or rain events produce wind estimates which have increased bias and variability

  8. CARBON MITIGATION HS 2014 Prof. Nicolas Gruber

    E-Print Network [OSTI]

    Fischlin, Andreas

    CARBON MITIGATION HS 2014 Prof. Nicolas Gruber Mondays 10-12, CHN E42 (nicolas & Introduction (Gruber) Introduction to the carbon mitigation problem 9/22 2 Geological CO2 sequestration (Mazzotti) Putting the CO2 underground... 9/29 3 No class ­ group formation 10/06 4 Carbon sinks on land

  9. CARBON MITIGATION HS 2013 Prof. Nicolas Gruber

    E-Print Network [OSTI]

    Fischlin, Andreas

    CARBON MITIGATION HS 2013 Prof. Nicolas Gruber Mondays 10-12, CHN E42 (nicolas & Introduction (Gruber) Introduction to the carbon mitigation problem 9/23 2 Ocean Sequestration (Gruber) Putting2 sequestration (Mazzotti) Putting the CO2 underground... 10/14 5 Carbon sinks on land (Gruber) How

  10. 2009 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    C. T. Lindsey; K. A. Gano; R. D. Teel

    2009-09-30T23:59:59.000Z

    This document details the results of revegetation and mitigation monitoring conducted in 2009, including 25 revegetation/restoration projects, one revegetation/mitigation project, and three bat mitigation projects.

  11. Mitigating Market Power in Deregulated Electricity Markets Seth Blumsack1

    E-Print Network [OSTI]

    Blumsack, Seth

    Mitigating Market Power in Deregulated Electricity Markets Seth Blumsack1 Department of Engineering thusfar from deregulation. Futher, each mitigation option has very different cost, effectiveness, and 1

  12. Korea's Green Growth Strategy: Mitigating Climate Change and...

    Open Energy Info (EERE)

    Korea's Green Growth Strategy: Mitigating Climate Change and Developing New Growth Engines Jump to: navigation, search Name Korea's Green Growth Strategy: Mitigating Climate Change...

  13. Procedures for Interagency Consultation to Avoid or Mitigate...

    Broader source: Energy.gov (indexed) [DOE]

    Consultation to Avoid or Mitigate Adverse Effects on Rivers in the Nationwide Inventory Procedures for Interagency Consultation to Avoid or Mitigate Adverse Effects on...

  14. Recent Diesel Engine Emission Mitigation Activities of the Maritime...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program Recent Diesel Engine Emission Mitigation Activities of the Maritime...

  15. Natural Gas Infrastructure R&D and Methane Emissions Mitigation...

    Energy Savers [EERE]

    Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop The Advanced Manufacturing Office...

  16. Mitigating Breakdown in High Energy Density Perovskite Polymer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors 2012...

  17. Masking line foregrounds in intensity mapping surveys

    E-Print Network [OSTI]

    Breysse, Patrick C; Kamionkowski, Marc

    2015-01-01T23:59:59.000Z

    We address the problem of line confusion in intensity mapping surveys and explore the possibility to mitigate line foreground contamination by progressively masking the brightest pixels in the observed map. We consider experiments targeting CO(1-0) at $z=3$, Ly$\\alpha$ at $z=7$, and CII at $z=7$, and use simulated intensity maps, which include both clustering and shot noise components of the signal and possible foregrounds, in order to test the efficiency of our method. We find that for CO and Ly$\\alpha$ it is quite possible to remove most of the foreground contribution from the maps via only 1%-3% pixel masking. The CII maps will be more difficult to clean, however, due to instrumental constraints and the high-intensity foreground contamination involved. While the masking procedure sacrifices much of the astrophysical information present in our maps, we demonstrate that useful cosmological information in the targeted lines can be successfully retrieved.

  18. Mitigation for the Construction and Operation of Libby Dam, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Dunnigan, James; DeShazer, Jay; Garrow, Larry (Montana Department of Fish, Wildlife and Parks, Libby, MT)

    2005-06-01T23:59:59.000Z

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana Fish, Wildlife & Parks (MFWP) uses a combination of techniques to collect physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered and threatened species, and the assessment of restoration or management activities designed to restore native fishes and their habitats.

  19. Wildlife Protection, Mitigation and Enhancement Planning for Grand Coulee Dam, Final Report.

    SciTech Connect (OSTI)

    Creveling, Jennifer

    1986-08-01T23:59:59.000Z

    The development and operation of Grand Coulee Dam inundated approximately 70,000 acres of wildlife habitat under the jurisdictions of the Colville Confederated Tribes, the Spokane Tribe, and the State of Washington. Under the provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, this study reviews losses to wildlife and habitat, and proposes mitigation for those losses. Wildlife loss estimates were developed from information available in the literature. Habitat losses and potential habitat gains through mitigation were estimated by a modified Habitat Evaluation Procedure. The mitigation plan proposes (1) acquisition of sufficient land or management rights to land to protect Habitat Units equivalent to those lost (approximately 73,000 acres of land would be required), (2) improvement and management of those lands to obtain and perpetuate target Habitat Units, and (3) protection and enhancement of suitable habitat for bald eagles. Mitigation is presented as four actions to be implemented over a 10-year period. A monitoring program is proposed to monitor mitigation success in terms of Habitat Units and wildlife population trends.

  20. Heading into the Amendment Process: Hydrosystem Mitigation

    E-Print Network [OSTI]

    reforms: Implementation of l ll d t d h t h iti ti lllegally mandated hatchery mitigation, as well uncertainties. Standardized metrics, protocols, reporting and HLIs are being adopted. A number of reforms

  1. Executive Summary Mitigation of Climate Change through

    E-Print Network [OSTI]

    Brown, Sally

    Executive Summary Mitigation of Climate Change through Land Reclamation with Biosolids: Carbon storage in reclaimed mine soils, life cycle analysis of biosolids reclamation, and ecosystem services; Pacala and Socolow, 2004). · Land reclamation with municipal wastewater solids (biosolids) can play

  2. Willow Creek Wildlife Mitigation Project. Final Environmental Assessment.

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    Today`s notice announces BPA`s proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA`s obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council`s 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI.

  3. Advanced Mitigating Measures for the Cell Internal Short Risk (Presentation)

    SciTech Connect (OSTI)

    Darcy, E.; Smith, K.

    2010-04-01T23:59:59.000Z

    This presentation describes mitigation measures for internal short circuits in lithium-ion battery cells.

  4. Rainwater Wildlife Area, Watershed Management Plan, A Columbia Basin Wildlife Mitigation Project, 2002.

    SciTech Connect (OSTI)

    Childs, Allen B.

    2002-03-01T23:59:59.000Z

    This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the project is to protect, enhance, and mitigate fish and wildlife resources impacted by Columbia River Basin hydroelectric development. The effort is one of several wildlife mitigation projects in the region developed to compensate for terrestrial habitat losses resulting from the construction of McNary and John Day Hydroelectric facilities located on the mainstem Columbia River. While this project is driven primarily by the purpose and need to mitigate for wildlife habitat losses, it is also recognized that management strategies will also benefit many other non-target fish and wildlife species and associated natural resources. The Rainwater project is much more than a wildlife project--it is a watershed project with potential to benefit resources at the watershed scale. Goals and objectives presented in the following sections include both mitigation and non-mitigation related goals and objectives.

  5. Restoration As Mitigation: Analysis of Stream Mitigation for Coal Mining Impacts in Southern Appalachia

    E-Print Network [OSTI]

    Palmer, Margaret A.

    Restoration As Mitigation: Analysis of Stream Mitigation for Coal Mining Impacts in Southern Appalachia Margaret A. Palmer* and Kelly L. Hondula National Socio-Environmental Synthesis Center annual monitoring reports indicate that the ratio of lengths of stream impacted to lengths of stream

  6. Corrective Action

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site Office (FSO)Corporate CultureCorrective Action

  7. Action Items

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth SitePresentations |State WindEconomic Dialogue | DepartmentACTION ITEMS

  8. An assessment of potential hydrologic and ecologic impacts of constructing mitigation wetlands, Rifle, Colorado, UMTRA project sites

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    This-assessment examines the consequences and risks that could result from the proposed construction of mitigation wetlands at the New and Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project sites near Rifle, Colorado. Remediation of surface contamination at those sites is now under way. Preexisting wetlands at or near the Old and New Rifle sites have been cleaned up, resulting in the loss of 0.7 and 10.5 wetland acres (ac) (0.28 and 4.2 hectares [ha]) respectively. Another 9.9 ac (4.0 ha) of wetlands are in the area of windblown contamination west of the New Rifle site. The US Army Corps of Engineers (USACE) has jurisdiction over the remediated wetlands. Before remedial action began, and before any wetlands were eliminated, the USACE issued a Section 404 Permit that included a mitigation plan for the wetlands to be lost. The mitigation plan calls for 34.2 ac (1 3.8 ha) of wetlands to be constructed at the south end and to the west of the New Rifle site. The mitigation wetlands would be constructed over and in the contaminated alluvial aquifer at the New Rifle site. As a result of the hydrologic characteristics of this aquifer, contaminated ground water would be expected to enter the environment through the proposed wetlands. A preliminary assessment was therefore required to assess any potential ecological risks associated with constructing the mitigation wetlands at the proposed location.

  9. Mitigating PQ Problems in Legacy Data Centers

    SciTech Connect (OSTI)

    Ilinets, Boris; /SLAC

    2011-06-01T23:59:59.000Z

    The conclusions of this presentation are: (1) Problems with PQ in legacy data centers still exist and need to be mitigated; (2) Harmonics generated by non-linear IT load can be lowered by passive, active and hybrid cancellation methods; (3) Harmonic study is necessary to find the best way to treat PQ problems; (4) AHF's and harmonic cancellation transformers proved to be very efficient in mitigating PQ problems; and (5) It is important that IT leaders partner with electrical engineering to appropriate ROI statements, justifying many of these expenditures.

  10. Gas powered fluid gun with recoil mitigation

    DOE Patents [OSTI]

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12T23:59:59.000Z

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  11. ORIGINAL ARTICLE Mitigation needs adaptation: Tropical forestry

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ORIGINAL ARTICLE Mitigation needs adaptation: Tropical forestry and climate change Manuel R adapt to this change. This paper discusses how tropical forestry practices can contribute to maintaining Forestry Research, P.O. Box 6596 JKPWB, Jakarta 10065, Indonesia e-mail: m.guariguata@cgiar.org J. P

  12. IDAHO HABITAT EVALUATION FOR OFFSITE MITIGATION RECORD

    E-Print Network [OSTI]

    -1 #12;This report was funded by the Bonneville Power Administration (BPA), U.S. Department of Energy Mitigation Record, Annual Report FY 1984, Report to Bonneville Power Administration, Contract No. 1984BP13381 Administration Environment, Fish and Wildlife Division P.O. Box 3621 905 N.E. 11th Avenue Portland, OR 97208

  13. Enhanced Practical Photosynthetic CO2 Mitigation

    SciTech Connect (OSTI)

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2004-07-15T23:59:59.000Z

    This report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project for the period ending 06/30/2004. The major accomplishment was the modification of the header and harvesting work, with a system designed to distribute algae at startup, sustain operations and harvest in one unit.

  14. Detection, Prevention and Mitigation of Cascading Events

    E-Print Network [OSTI]

    of automatic control and protection systems in preventing, slowing, or mitigating the impact of a large controllers that respond to unforeseen operating conditions to keep power system problems from cascading and control the effects of instability events in large electric power systems. This research produced a real

  15. Highly concentrated foam formulation for blast mitigation

    DOE Patents [OSTI]

    Tucker, Mark D. (Albuquerque, NM); Gao, Huizhen (Albuquerque, NM)

    2010-12-14T23:59:59.000Z

    A highly concentrated foam formulation for blast suppression and dispersion mitigation for use in responding to a terrorism incident involving a radiological dispersion device. The foam formulation is more concentrated and more stable than the current blast suppression foam (AFC-380), which reduces the logistics burden on the user.

  16. Place-based Mitigation of Climate Change

    E-Print Network [OSTI]

    Place-based Mitigation of Climate Change Robert Socolow Princeton University socolow should provide at least one wedge. #12;"The Wedge Model is the iPod of climate change: You fill/yr, 30 miles per gallon b) Fly 10,000 miles/yr c) Heat home Natural gas, average house, average climate d

  17. Climate Change Basics: Science, Adaptation, & Mitigation

    E-Print Network [OSTI]

    Fox-Kemper, Baylor

    Science Global atmospheric concentrations of carbon dioxide, methane and nitrous oxide have increased from ice cores spanning many thousands of years. The global increases in carbon dioxide concentrationClimate Change Basics: Science, Adaptation, & Mitigation with a Family Forest Perspective Baylor

  18. Design of a Sediment Mitigation System for Conowingo Dam

    E-Print Network [OSTI]

    were evaluated for ecosystem impact and sediment mitigation; (i) No Mitigation (ii) Hydraulic Dredging), and (iii) Hydraulic Dredging and Artificial Island. Three models were used to evaluate these design

  19. Natural Gas Infrastructure R&D and Methane Emissions Mitigation...

    Broader source: Energy.gov (indexed) [DOE]

    Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop November 12, 2014 11:00AM EST to...

  20. BMW v. Gore: Mitigating the Punitive Economics of Punitive Damages

    E-Print Network [OSTI]

    Grady, Mark F.; Rubin, Paul H.; Calfee, John E

    1997-01-01T23:59:59.000Z

    BMW v GORE: MITIGATING THE PUNITIVE ECONOMICS OF PUNITIVEE. Calfee, Mark F. Grady In BMW v Gore, the Supreme Courtadded). 480 US 102 (1987). BMW v. Gore: Mitigating the

  1. Role of Biochar in Mitigation of Climate Change

    SciTech Connect (OSTI)

    Lehmann, Johannes C.; Amonette, James E.; Roberts, Kelli G.

    2010-09-30T23:59:59.000Z

    By virtue of the large fraction of the terrestrial carbon (C) cycle controlled by human activities, agroecosystems are both sources and sinks for greenhouse gases. Their potential role in mitigation of climate change thus depends on a dual strategy of decreasing greenhouse gas emissions while increasing sinks so that the net impact on climate warming is less than at present. Emissions of carbon dioxide, methane and nitrous oxide arise from various agricultural activities, ranging from land clearing to ploughing, fertilization, and animal husbandry. Reductions in these emissions can be achieved by decreasing the heterotrophic conversion of organic C to carbon dioxide, and by better management of agricultural waste streams to minimize release of methane and nitrous oxide. Current sinks include C stored in standing biomass and soil organic matter, and the oxidation of atmospheric methane by soil bacteria. These sinks can be enhanced by increasing net primary productivity, thereby actively withdrawing more carbon dioxide from the atmosphere, and by promoting more oxidation of methane by soils. Judicious biochar management may contribute to both strategies, reductions of emissions by agriculture and active withdrawal of atmospheric carbon dioxide, as part of a comprehensive scheme in agricultural and forestry watersheds. Biochar is a carbon-rich organic material generated by heating biomass in the absence, or under a limited supply, of oxygen. This so-called charring or pyrolysis process has been used to produce charcoal as a source of fuel for millennia. Recently, interest has grown in understanding the potential of this process to improve soil health by adding biochar as an amendment to soil, to manage agricultural and forestry wastes, to generate energy, to decrease net emissions of nitrous oxide and methane, and to store carbon (C). The main incentive of biochar systems for mitigation of climate change is to increase the stability of organic matter or biomass. This stability is achieved by the conversion of fresh organic materials, which mineralize comparatively quickly, into biochar, which mineralizes much more slowly. The difference between the mineralization of uncharred and charred material results in a greater amount of carbon storage in soils and a lower amount of carbon dioxide, the major greenhouse gas, in the atmosphere. The principle of creating and managing biochar systems may address multiple environmental constraints. Biochar may help not only in mitigating climate change, but also fulfill a role in management of agricultural and forestry wastes, enhancement of soil sustainability, and generation of energy. Pyrolysis is a comparatively low-technology intervention. Deployment on a global scale, however, must be done carefully if the full mitigation potential is to be reached. Critical aspects of a successful implementation are that: 1) the biochar is sufficiently stable to reduce greenhouse gases in the atmosphere for an appropriate length of time. 2) the storage of carbon as biochar in soil is not offset by greenhouse gas emissions along the value chain of the system, such as mineralization of soil carbon or emissions of other greenhouse gases (e.g., methane and nitrous oxide). 3) net emission reductions are achieved for the entire life cycle of the system including indirect land use. 4) the biochar product does not cause unwanted side effects in soil. 5) the handling and production of biochar are in compliance with health and safety standards and do not pose hurdles to implementation. and 6) the biochar system is financially viable. This chapter discusses these issues in separate sections, identifies knowledge gaps, and proposes a road map to fully evaluate an environmentally and socially safe exploration of the biochar potential to mitigate climate change if adopted widely around the world.

  2. 2007 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    K. A. Gano; C. T. Lindsey

    2007-09-27T23:59:59.000Z

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2007 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 3 bat habitat mitigation projects.

  3. 2008 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    C. T. Lindsey; K. A. Gano

    2008-09-30T23:59:59.000Z

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2008 and includes 22 revegetation/restoration projects, one revegetation/mitigation project, and two bat habitat mitigation projects.

  4. Mitigating Geomagnetic Noise in Airborne Magnetic Surveys using GPS

    E-Print Network [OSTI]

    Calgary, University of

    Mitigating Geomagnetic Noise in Airborne Magnetic Surveys using GPS S. Skone Department and tropospheric effects on GPS. She has developed software for mitigation of atmospheric effects and is currently in this frequency band must be modeled, or measured, and mitigated. Despite reduction of many error sources for MAD

  5. MEDITERRANEAN ACTION PLAN MEDITERRANEAN COMMISSION FOR SUSTAINABLE DEVELOPMENT

    E-Print Network [OSTI]

    Zaferatos, Nicholas C.

    MEDITERRANEAN ACTION PLAN MEDITERRANEAN COMMISSION FOR SUSTAINABLE DEVELOPMENT MEDITERRANEAN STRATEGY FOR SUSTAINABLE DEVELOPMENT Draft (work in progress) UNEP/MAP Athens, 17 February 2005 #12;MEDITERRANEAN STRATEGY FOR SUSTAINABLE DEVELOPMENT TABLE OF CONTENTS 1. TOWARDS SUSTAINABLE DEVELOPMENT

  6. EPR Severe Accident Threats and Mitigation

    SciTech Connect (OSTI)

    Azarian, G. [Framatome ANP SAS, Tour Areva, Place de la Coupole 92084 Paris la Defense (France); Kursawe, H.M.; Nie, M.; Fischer, M.; Eyink, J. [Framatome ANP GmbH, Freyeslebenstrasse, 1, D-91058 Erlangen (Germany); Stoudt, R.H. [Framatome ANP Inc. - 3315 Old Forest Rd, Lynchburgh, VA 24501 (United States)

    2004-07-01T23:59:59.000Z

    Despite the extremely low EPR core melt frequency, an improved defence-in-depth approach is applied in order to comply with the EPR safety target: no stringent countermeasures should be necessary outside the immediate plant vicinity like evacuation, relocation or food control other than the first harvest in case of a severe accident. Design provisions eliminate energetic events and maintain the containment integrity and leak-tightness during the entire course of the accident. Based on scenarios that cover a broad range of physical phenomena and which provide a sound envelope of boundary conditions associated with each containment challenge, a selection of representative loads has been done, for which mitigation measures have to cope with. This paper presents the main critical threats and the approach used to mitigate those threats. (authors)

  7. Buildings GHG Mitigation Estimator Worksheet, Version 1

    Broader source: Energy.gov [DOE]

    Xcel document describes Version 1 of the the Buildings GHG Mitigation Estimator tool. This tool assists federal agencies in estimating the greenhouse gas mitigation reduction from implementing energy efficiency measures across a portfolio of buildings. It is designed to be applied to groups of office buildings, for example, at a program level (regional or site) that can be summarized at the agency level. While the default savings and cost estimates apply to office buildings, users can define their own efficiency measures, costs, and savings estimates for inclusion in the portfolio assessment. More information on user-defined measures can be found in Step 2 of the buildings emission reduction guidance. The output of this tool is a prioritized set of activities that can help the agency to achieve its greenhouse gas reduction targets most cost-effectively.

  8. 300 Area Building Retention Evaluation Mitigation Plan

    SciTech Connect (OSTI)

    D. J. McBride

    2007-07-03T23:59:59.000Z

    Evaluate the long-term retention of several facilities associated with the PNNL Capability Replacement Laboratory and other Hanfor mission needs. WCH prepared a mitigation plan for three scenarios with different release dates for specific buildings. The evaluations present a proposed plan for providing utility services to retained facilities in support of a long-term (+20 year) lifespan in addition to temporary services to buildings with specified delayed release dates.

  9. Explosive parcel containment and blast mitigation container

    DOE Patents [OSTI]

    Sparks, Michael H. (Frederick County, MD)

    2001-06-12T23:59:59.000Z

    The present invention relates to a containment structure for containing and mitigating explosions. The containment structure is installed in the wall of the building and has interior and exterior doors for placing suspicious packages into the containment structure and retrieving them from the exterior of the building. The containment structure has a blast deflection chute and a blowout panel to direct over pressure from explosions away from the building, surrounding structures and people.

  10. Mitigation planning for raptors during mining

    SciTech Connect (OSTI)

    Platt, S.W. [Wyoming Dept. of Environmental Quality/Land Quality Division, Lander, WY (United States); Hargis, N.E. [Bridger Coal Co., Rock Springs, WY (United States)

    1990-12-31T23:59:59.000Z

    Birds of prey and their eggs, young and nests are protected by state and federal laws and regulations. Surface mining operators may experience conflicts with raptors when expanding into nesting areas or when raptors are attracted into mining areas. State and federal permits are required for disturbance or manipulation of birds of prey. Mitigation planning for raptors begins before mining and continues through mining. As conflict situations changes, so must the mitigation plan. Before each nesting season the mining schedule should be compared to areas of known raptor nesting activity. If overlap occurs, nest protection measures may be needed. Areas of potential conflict should be patrolled regularly to identify the presence of a raptor pair and nest starts. Should a raptor nest be built and eggs laid, a change in the mining schedule or an egg or brood manipulation may resolve the conflict. Bridger Coal Company has successfully mitigated conflicts with 3 raptor species. A ferruginous hawk (Buteo regalis) nest with brood was successfully relocated across a pit. Red-tailed hawk (B. jamaicensis) egg clutches were removed from 2 highwall nests and transported in a portable incubator to a commercial raptor propagator where they were hatched, fed and conspecifically imprinted until achieving self-thermoregulation. All chicks were returned to the mine and successfully placed into foster nests. A metal artificial nest ledge for a prairie falcon (Falco mexicanus) was constructed in a cliff and a traditional nesting ledge rendered inaccessible. The falcon pair successfully nested in the artificial ledge.

  11. Safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-101-SY: Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Lentsch, J.W., Westinghouse Hanford

    1996-05-16T23:59:59.000Z

    This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101, which is located within the Hanford Site, Richland, Washington. The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

  12. A safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-SY-101: Hanford Site,Richland, Washington

    SciTech Connect (OSTI)

    Lentsch, J.W.

    1996-07-01T23:59:59.000Z

    This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101,which is located within the Hanford Site, Richland, Washington.The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

  13. Mitigation and Monitoring Plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    The Gunnison, Colorado, abandoned uranium mill site is one site being cleaned up by the DOE under UMTRCA authority. This site`s contaminated material is being transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities have temporarily disturbed 0.8 acre (ac) (0.3 hectares [ha]) of wetlands and permanently eliminated 4.3 ac (1.7 ha). As required by the Clean Water Act, the US Army Corps of Engineers (USACE) prepared a Section 404 Permit that addresses the loss of wetlands as a result of remedial action at the Gunnison UMTRA Project site. The 404 permit includes this report as an attachment and it describes the wetland mitigation and monitoring plan. The DOE formulated this plan in consultation with the BLM and the USACE. This report represents a revised version of the mitigation and monitoring plan (DOE, 1992b).

  14. Forest inventory: Peter T. Johnson Wildlife Mitigation Unit, Craig Mountain, Idaho. Final Report.

    SciTech Connect (OSTI)

    Narolski, Steven W.

    1996-12-01T23:59:59.000Z

    The primary objective of this report is to determine the quantity and quality of existing forest habitat types on the 59,991-acre Peter T. Johnson Wildlife Mitigation Unit (WMU). Products from this effort include a description of the ecological condition, a map of habitat types, and an inventory of forest resources on the WMU lands. The purpose of this and other resource inventories (plant and wildlife) is to assess the current resources condition of the WMU and to provide necessary information to generate a long-term management for this area.

  15. Mitigation of Radiation and EMI Effects on the Vacuum Control System of LHC

    E-Print Network [OSTI]

    Pigny, G; Krakowski, P; Rio, B

    2014-01-01T23:59:59.000Z

    The 26 km of vacuum chambers where circulates the beam of the Large Hadron Collider (LHC) must be maintained under Ultra High Vacuum (UHV) to minimize the beam interactions with residual gases, and allow the operation of specific systems. The vacuum level is measured by several thousands of gauges along the accelerator. Bad vacuum quality may trigger a beam dump and close the associated sector valves. The effects of radiation or Electromagnetic Interferences (EMI) on components that may stop the machine must be evaluated and minimized. We report on the actions implemented to mitigate their impact on the vacuum control system.

  16. Security Informatics Research Challenges for Mitigating Cyber Friendly Fire

    SciTech Connect (OSTI)

    Carroll, Thomas E.; Greitzer, Frank L.; Roberts, Adam D.

    2014-09-30T23:59:59.000Z

    This paper addresses cognitive implications and research needs surrounding the problem of cyber friendly re (FF). We dene cyber FF as intentional o*ensive or defensive cyber/electronic actions intended to protect cyber systems against enemy forces or to attack enemy cyber systems, which unintentionally harms the mission e*ectiveness of friendly or neutral forces. We describe examples of cyber FF and discuss how it ts within a general conceptual framework for cyber security failures. Because it involves human failure, cyber FF may be considered to belong to a sub-class of cyber security failures characterized as unintentional insider threats. Cyber FF is closely related to combat friendly re in that maintaining situation awareness (SA) is paramount to avoiding unintended consequences. Cyber SA concerns knowledge of a system's topology (connectedness and relationships of the nodes in a system), and critical knowledge elements such as the characteristics and vulnerabilities of the components that comprise the system and its nodes, the nature of the activities or work performed, and the available defensive and o*ensive countermeasures that may be applied to thwart network attacks. We describe a test bed designed to support empirical research on factors a*ecting cyber FF. Finally, we discuss mitigation strategies to combat cyber FF, including both training concepts and suggestions for decision aids and visualization approaches.

  17. Environmental Assessment and Finding of No Significant Impact: Implementation of the Wetland Mitigation Bank Program at the Savannah River Site

    SciTech Connect (OSTI)

    N /A

    1999-04-28T23:59:59.000Z

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1205) for the proposed implementation of a wetland mitigation bank program at the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI) and Floodplain Statement of Findings.

  18. Climate change action plan

    E-Print Network [OSTI]

    Delivery Climate change action plan 2009-2011 #12;2 | Climate change action plan ©istockphoto.com #12;Climate Change Action Plan Climate change action plan | 3 Contents Overview 4 Preface and Introduction 5 Climate change predictions for Scotland 6 The role of forestry 7 Protecting and managing

  19. The Climate Change Action Plan: Technical supplement

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This Technical Annex documents the assumptions and parameters used in developing the supporting analysis for the Climate Change Action Plan (the Plan) issued by President Clinton on October 19, 1993. The Annex is intended to meet the needs of independent energy and environmental analysts who wish to better understand the Plan, its analytical underpinnings, and the events that need to transpire for the emissions reductions called for in the Plan to be realized. The Plan documented in this Annex reflects the outcome of a wide-ranging effort by Government agencies and interested members of the public to develop and implement actions that can reduce net greenhouse gas emissions in the year 2000 to their aggregate 1990 level. Based on agency and public input, the Climate Change Mitigation Group, chaired by the White House Office on Environmental Policy, developed the Plan`s content. Many of the actions called for in the Plan are now underway, while others are in advanced planning pending congressional action on the fiscal year 1995 budget. The analysis supporting the Plan represents the results of an interagency effort. The US Department of Energy (DOE) was responsible for the integrated analysis of energy-related options, based on the analysis of individual energy-related options by DOE, the US Environmental Protection Agency (EPA), and the US Department of Transportation (DOT). EPA led in providing analysis for actions related to methane, hydrofluorocarbons, and perfluorocarbons. The US Department of Agriculture (USDA) led the analysis of carbon sequestration actions and cooperated with EPA in the analysis of actions to reduce nitrous oxide emissions.

  20. Annual Report on Wildlife Activities, September 1985 - April 1986, Action item 40.1, Columbia River Basin Fish and Wildlife Program.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1986-04-01T23:59:59.000Z

    This annual report addresses the status of wildlife projects Bonneville Power Administration (BPA) has implemented from September 1985 to April 1986 under the Columbia River Basin Fish and Wildlife Program (Program) established pursuant to the Northwest Power Act (P.L. 96-501). Wildlife projects implemented prior to September 1985 are discussed in BPA's September 1985 Annual Report on Wildlife Activities. This report provides a brief synopsis, review, and discussion of wildlife activities BPA has undertaken. When available, annual and final reports are listed for each project. The wildlife section of the Program establishes a process intended to achieve two objectives: wildlife protection, mitigation, and enhancement planning; and implementation of actions to protect, mitigate, and enhance wildlife affected by development and operation of hydroelectric facilities in the Columbia River Basin. The wildlife mitigation planning process developed by the Northwest Power Planning Council (Council) is a stepwise process that proceeds through the review of the status of wildlife mitigation at Columbia River Basin hydroelectric facilities [Measure 1004 (b)(l)]; estimates wildlife losses from hydroelectric development and operation [Measure 1004 (b)(2)]; and recommends actions for the protection, mitigation, or enhancement of wildlife [Measure 1004 (b)(3), Mitigation Plans]. Implementation of wildlife protection, mitigation, and enhancement will occur upon amendment of wildlife actions into the Program by the Council. The majority of BPA's effort to date has gone towards coordinating and implementing wildlife protection, mitigation, and enhancement planning projects.

  1. Industrial Energy Efficiency and Climate Change Mitigation

    SciTech Connect (OSTI)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02T23:59:59.000Z

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  2. Sandia Energy - Siting and Barrier Mitigation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSiting and Barrier Mitigation Home

  3. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01T23:59:59.000Z

    iron and steel production. IEA Greenhouse Gas R&D Programme,industry. Cheltenham, UK, IEA Greenhouse Gas R&D Programme,WBCSD), Geneva, Switzerland. IEA (1997) Voluntary actions

  4. Corrosion mitigation--a critical facet of well completion design

    SciTech Connect (OSTI)

    Bradburn, J.B.; Kalra, S.K.

    1982-09-01T23:59:59.000Z

    The successful completion and production of deep hot corrosive wells can be accomplished by the development of a corrosion mitigation program during the initial stages of the drilling and completion phases. The mitigation programs that have proven themselves to be safe, reliable and effective address three critical areas: tubing selection, corrosion treatment method, and completion design. These three areas when properly studied and evaluated result in a successful corrosion mitigation program and a well with a low workover frequency.

  5. Approaches for preventing and mitigating accidental gaseous chemical releases

    SciTech Connect (OSTI)

    Fthenakis, V.M.

    1996-12-31T23:59:59.000Z

    This paper presents a review of approaches to prevent and mitigate accidental releases of toxic and flammable gases. The prevention options are related to: choosing safer processes and materials, preventing initiating events, preventing or minimizing releases, and preventing human exposures. the mitigation options include: secondary confinement, de-inventory, vapor barriers, and water sprays/monitors. Guidelines for the design and operation of effective post-release mitigation systems are also presented.

  6. accident mitigation issues: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 CRED Newsletter Inside this issue: Adaptation and Mitigation Reponses to Climate Change: Complements or Substitutes? CiteSeer Summary: Traditionally these two responses to...

  7. asia mitigating systemic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    error. Montorsi, Francesco; Vitetta, Giorgio M 2012-01-01 35 Harmonic Analysis of Small Scale Industrial Loads and Harmonic Mitigation Techniques in Industrial Distribution System...

  8. assess mitigation strategies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: *** May 7, 1995 (Paper for the May 15-19 workshop, "Terrestrial Carbon Sequestration: An Economic to mitigate global change through the sequestration of...

  9. Kenya-Standard Assessment of Mitigation Potential and Livelihoods...

    Open Energy Info (EERE)

    Livelihoods in Smallholder Systems (SAMPLES) Jump to: navigation, search Name Kenya-Standard Assessment of Mitigation Potential and Livelihoods in Smallholder Systems (SAMPLES)...

  10. Mitigating Voltage Fade in Cathode Materials by Improving the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution. Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level...

  11. DOE/AMO NG Infrastructure R & D & Methane emissions Mitigation...

    Broader source: Energy.gov (indexed) [DOE]

    and Confidential to NYSEARCHNGA DOEAMO NG INFRASTRUCTURE R & D & METHANE EMISSIONS MITIGATION WORKSHOP November 2014 David Merte & Daphne D'Zurko, NYSEARCHNGA...

  12. Uruguay-Climate Change Mitigation and Agriculture in Latin America...

    Open Energy Info (EERE)

    mitigation options adapted to the farming conditions of each country. In Uruguay, Argentina and Colombia, agriculture is the main contributor to greenhouse gas emissions,...

  13. Webinar: Micro-Structural Mitigation Strategies for PEM Fuel Cells

    Broader source: Energy.gov [DOE]

    Video recording of the Fuel Cell Technologies Office webinar, Micro-Structural Mitigation Strategies for PEM Fuel Cells, originally presented on November 19, 2013.

  14. Blast damage mitigation of steel structures from near- contact charges

    E-Print Network [OSTI]

    Wolfson, Janet Crumrine

    2008-01-01T23:59:59.000Z

    OF CALIFORNIA, SAN DIEGO Blast Damage Mitigation of Steel35  Damage Levels Observed in LaboratoryFigure 3.34: Progression of damage for a Ballistic Loading

  15. Financing Climate Adaptation and Mitigation in Rural Areas of...

    Open Energy Info (EERE)

    Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Financing Climate Adaptation and Mitigation in Rural Areas of Developing Countries AgencyCompany...

  16. activation effects mitigated: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy conversion technologies which ultimately remain essential to mitigate long-term climate change. However, additional study is needed to confirm the estimates reported here...

  17. 2006 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    A. L. Johnson; K. A. Gano

    2006-10-03T23:59:59.000Z

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. One of the objectives of restoration is the revegetation of remediated waste sites to stabilize the soil and restore the land to native vegetation. The report documents the results of revegetation and mitigation monitoring conducted in 2006 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 2 bat habitat mitigation projects.

  18. Characterizing Uncertainty for Regional Climate Change Mitigation and Adaptation Decisions

    SciTech Connect (OSTI)

    Unwin, Stephen D.; Moss, Richard H.; Rice, Jennie S.; Scott, Michael J.

    2011-09-30T23:59:59.000Z

    This white paper describes the results of new research to develop an uncertainty characterization process to help address the challenges of regional climate change mitigation and adaptation decisions.

  19. Costa Rica-Mitigation of Greenhouse Gas Emissions through Avoided...

    Open Energy Info (EERE)

    Value Areas Jump to: navigation, search Name Costa Rica-Mitigation of Greenhouse Gas Emissions through Avoided Deforestation of Tropical Rainforests on Privately-owned Lands in...

  20. Shattered Pellet Disruption Mitigation Technology Development for ITER

    SciTech Connect (OSTI)

    Baylor, Larry R [ORNL; Combs, Stephen Kirk [ORNL; Jernigan, T. C. [Oak Ridge National Laboratory (ORNL); Meitner, Steven J [ORNL; Edgemon, Timothy D [ORNL; Parks, P. B. [General Atomics; Commaux, Nicolas JC [ORNL; Maruyama, S. [ITER International Team, Garching, Germany; Caughman, John B [ORNL; Rasmussen, David A [ORNL

    2010-01-01T23:59:59.000Z

    The mitigation of first wall thermal and mechanical loads and damage from runaway electrons during disruptions are critical for successful long term operation of ITER. Disruption mitigation tools based on shattered pellet injection are being developed at Oak Ridge National Laboratory that can be employed on ITER to provide the necessary mitigation of thermal and mechanical loads from disruptions as well as provide collisional damping to inhibit the formation of runaway electrons . Here we present progress on the development of the technology to provide reliable disruption mitigation with large shattered cryogenic pellets. An example of how this concept can be employed on ITER is discussed.

  1. Effect of noise on the standard mapping

    SciTech Connect (OSTI)

    Karney, C.F.F.; Rechester, A.B.; White, R.B.

    1981-03-01T23:59:59.000Z

    The effect of a small amount of noise on the standard mapping is considered. Whenever the standard mapping possesses accelerator models (where the action increases approximately linearly with time), the diffusion coefficient contains a term proportional to the reciprocal of the variance of the noise term. At large values of the stochasticity parameter, the accelerator modes exhibit a universal behavior. As a result the dependence of the diffusion coefficient on stochasticity parameter also shows some universal behavior.

  2. Global climate change and the mitigation challenge

    SciTech Connect (OSTI)

    Frank Princiotta [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States). Air Pollution Prevention and Control Division

    2009-10-15T23:59:59.000Z

    Anthropogenic emissions of greenhouse gases, especially carbon dioxide (CO{sub 2}), have led to increasing atmospheric concentrations, very likely the primary cause of the 0.8{sup o}C warming the Earth has experienced since the Industrial Revolution. With industrial activity and population expected to increase for the rest of the century, large increases in greenhouse gas emissions are projected, with substantial global additional warming predicted. This paper examines forces driving CO{sub 2} emissions, a concise sector-by-sector summary of mitigation options, and research and development (R&D) priorities. To constrain warming to below approximately 2.5{sup o}C in 2100, the recent annual 3% CO{sub 2} emission growth rate needs to transform rapidly to an annual decrease rate of from 1 to 3% for decades. Furthermore, the current generation of energy generation and end-use technologies are capable of achieving less than half of the emission reduction needed for such a major mitigation program. New technologies will have to be developed and deployed at a rapid rate, especially for the key power generation and transportation sectors. Current energy technology research, development, demonstration, and deployment (RDD&D) programs fall far short of what is required. 20 refs., 18 figs., 4 tabs.

  3. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in China

    SciTech Connect (OSTI)

    McNeil, Michael A.; Bojda, Nicholas; Ke, Jing; Qin, Yining; de la Rue du Can, Stephane; Fridley, David; Letschert, Virginie E.; McMahon, James E.

    2011-08-18T23:59:59.000Z

    This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption cost-effectively. We focus on individual end use equipment types (hereafter referred to as appliance groups) that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. As the study title suggests, the high efficiency or Business Case scenario is constructed around a model of cost-effective efficiency improvement. Our analysis demonstrates that a significant reduction in energy consumption and emissions is achievable at net negative cost, that is, as a profitable investment for consumers. Net savings are calculated assuming no additional costs to energy consumption such as carbon taxes. Savings relative to the base case as calculated in this way is often referred to as 'economic savings potential'. Chinese energy demand has grown dramatically over the last few decades. While heavy industry still plays a dominant role in greenhouse gas emissions, demand from residential and commercial buildings has also seen rapid growth in percentage terms. In the residential sector this growth is driven by internal migration from the countryside to cities. Meanwhile, income in both urban and rural subsectors allows ownership of major appliances. While residences are still relatively small by U.S. or European standards, nearly all households own a refrigerator, a television and an air conditioner. In the future, ownership rates are not expected to grow as much as in other developing countries, because they are already close to saturation. However, the gradual turnover of equipment in the world's largest consumer market provides a huge opportunity for greenhouse gas mitigation. In addition to residences, commercial floor space has expanded rapidly in recent years, and construction continues at a rapid pace. Growth in this sector means that commercial lighting and HVAC will play an increasingly important role in energy demand in China. The outlook for efficiency improvement in China is encouraging, since the Chinese national and local governments have implemented significant policies to contain energy intensity and announced their intention to continue and accelerate these. In particular, the Chinese appliance standards program, first established in 1989, was significantly strengthened and modernized after the passage of the Energy Conservation Law of 1997. Since then, the program has expanded to encompass over 30 equipment types (including motor vehicles). The current study suggests that, in spite of these efforts, there is significant savings to be captured through wide adoption of technologies already available on the Chinese market. The approach of the study is to assess the impact of short-term actions on long-term impacts. 'Short-term' market transformation is assumed to occur by 2015, while 'long-term' energy demand reduction impacts are assessed in 2030. In the intervening years, most but not all of the equipment studied will turn over completely. Early in 2011, the Chinese government announced a plan to reduce carbon dioxide emissions intensity (per unit GDP) by 16% by 2015 as part of the 12th five year plan. These targets are consistent with longer term goals to reduce emissions intensity 40-45% relative to 2005 levels by 2020. The efforts of the 12th FYP focus on short-term gains to meet the four-year targets, and concentrate mainly in industry. Implementation of cost-effective technologies for all new equipment in the buildings sector thus is largely complementary to the 12th FYP goals, and would provide a mechanism to sustain intensity reductions in the medium and long term. The 15-year time frame is significant for many products, in the sense that delay of implementation postpones economic benefits and mitigation of emissions of carbon dioxide. Such delays would result in putting in place energy-wasting technologies, postponin

  4. ACTIONS AND PARTIAL ACTIONS OF INDUCTIVE CONSTELLATIONS

    E-Print Network [OSTI]

    Gould, Victoria

    ACTIONS AND PARTIAL ACTIONS OF INDUCTIVE CONSTELLATIONS VICTORIA GOULD AND CHRISTOPHER HOLLINGS structure of a semigroup can be recovered from a partial order it possesses. Date: August 13, 2009. 2000 and FEDER, and also FCT post-doctoral grant SFRH/BPD/34698/2007. 1 #12;2 VICTORIA GOULD AND CHRISTOPHER

  5. International perspectives on mitigating laboratory biorisks.

    SciTech Connect (OSTI)

    Pinard, William J.; Salazar, Carlos A.

    2010-11-01T23:59:59.000Z

    The International Perspectives on Mitigating Laboratory Biorisks workshop, held at the Renaissance Polat Istanbul Hotel in Istanbul, Republic of Turkey, from October 25 to 27, 2010, sought to promote discussion between experts and stakeholders from around the world on issues related to the management of biological risk in laboratories. The event was organized by Sandia National Laboratories International Biological Threat Reduction program, on behalf of the US Department of State Biosecurity Engagement Program and the US Department of Defense Cooperative Biological Engagement Program. The workshop came about as a response to US Under Secretary of State Ellen O. Tauscher's statements in Geneva on December 9, 2009, during the Annual Meeting of the States Parties to the Biological Weapons Convention (BWC). Pursuant to those remarks, the workshop was intended to provide a forum for interested countries to share information on biorisk management training, standards, and needs. Over the course of the meeting's three days, participants discussed diverse topics such as the role of risk assessment in laboratory biorisk management, strategies for mitigating risk, measurement of performance and upkeep, international standards, training and building workforce competence, and the important role of government and regulation. The meeting concluded with affirmations of the utility of international cooperation in this sphere and recognition of positive prospects for the future. The workshop was organized as a series of short presentations by international experts on the field of biorisk management, followed by breakout sessions in which participants were divided into four groups and urged to discuss a particular topic with the aid of a facilitator and a set of guiding questions. Rapporteurs were present during the plenary session as well as breakout sessions and in particular were tasked with taking notes during discussions and reporting back to the assembled participants a brief summary of points discussed. The presentations and breakout sessions were divided into five topic areas: 'Challenges in Biorisk Management,' 'Risk Assessment and Mitigation Measures,' 'Biorisk Management System Performance,' 'Training,' and 'National Oversight and Regulations.' The topics and questions were chosen by the organizers through consultation with US Government sponsors. The Chattham House Rule on non-attribution was in effect during question and answer periods and breakout session discussions.

  6. Derivative actions in China 

    E-Print Network [OSTI]

    Lin, Shaowei

    2014-07-02T23:59:59.000Z

    The enactment of derivative action was expected to be actively used by shareholders to protect their interests. In fact, it turned out that this reform effort seemed futile as the right to engage in such actions was ...

  7. 2014 Joint Action Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Joint Action Workshop is an annual event for joint action agencies and their members to meet informally and discuss emerging policy, regulatory, and power supply issues, and other topics...

  8. October 2006 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    Project No. SAFT-0109 Continued on next page Standards Actions Page 2 October 2006 2.0 NON-GOVERNMENT STANDARDS ACTIONS 2.1 American National Standards Institute American...

  9. July 2006 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    were received in June 2006. Continued on next page Standards Actions Page 2 July 2005 2.0 Non-Government Standards Actions 2.1 American National Standards Institute (ANSI)...

  10. Innovative Grid Technologies Applied to Bioinformatics and Hurricane Mitigation

    E-Print Network [OSTI]

    Sadjadi, S. Masoud

    Innovative Grid Technologies Applied to Bioinformatics and Hurricane Mitigation Rosa BADIA a Gargi and hurricane mitigation. This paper describes some of these innovative technologies, such as the support to provide solutions to pharmagenomics problems and hurricane prediction ensemble simulations. Keywords. Meta

  11. CO2 Emissions Mitigation and Technological Advance: An

    E-Print Network [OSTI]

    PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Updated Analysis of Advanced/2003) #12;PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Analysis of Advanced Technology of atmospheric CO2 concentrations at 450 parts per million by volume (ppmv) and 550 ppmv in MiniCAM. Each

  12. Tillman Creek Mitigation Site As-Build Report.

    SciTech Connect (OSTI)

    Gresham, Doug [Otak, Inc.

    2009-05-29T23:59:59.000Z

    This as-built report describes site conditions at the Tillman Creek mitigation site in South Cle Elum, Washington. This mitigation site was constructed in 2006-2007 to compensate for wetland impacts from the Yakama Nation hatchery. This as-built report provides information on the construction sequence, as-built survey, and establishment of baseline monitoring stations.

  13. Security Threat Mitigation Trends in Low-cost RFID Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Security Threat Mitigation Trends in Low-cost RFID Systems Joaquin Garcia-Alfaro1,2 , Michel of security threat mitigation mecha- nisms in RFID systems, specially in low-cost RFID tags, are gaining great. Cryptography is a key tool to address these threats. Nevertheless, strong hardware constraints

  14. Mediterranean Seagrass Meadows: Resilience and Contribution to Climate Change Mitigation

    E-Print Network [OSTI]

    Boudouresque, Charles F.

    Mediterranean Seagrass Meadows: Resilience and Contribution to Climate Change Mitigation A Short to Climate Change Mitigation, A Short Summary / Les herbiers de Magnoliophytes marines de Méditerranée: 1 Evolution of the average temperature and level of the sea since 1850 (after Climate Change 2007

  15. Mitigation of radiation induced surface contamination

    DOE Patents [OSTI]

    Klebanoff, Leonard E. (Dublin, CA); Stulen, Richard H. (Livermore, CA)

    2003-01-01T23:59:59.000Z

    A process for mitigating or eliminating contamination and/or degradation of surfaces having common, adventitious atmospheric contaminants adsorbed thereon and exposed to radiation. A gas or a mixture of gases is introduced into the environment of a surface(s) to be protected. The choice of the gaseous species to be introduced (typically a hydrocarbon gas, water vapor, or oxygen or mixtures thereof) is dependent upon the contaminant as well as the ability of the gaseous species to bind to the surface to be protected. When the surface and associated bound species are exposed to radiation reactive species are formed that react with surface contaminants such as carbon or oxide films to form volatile products (e.g., CO, CO.sub.2) which desorb from the surface.

  16. Mitigation of Malicious Attacks on Networks

    E-Print Network [OSTI]

    Schneider, Christian M; Andrade, Jose S; Havlin, Shlomo; Herrmann, Hans J; 10.1073/pnas.1009440108

    2011-01-01T23:59:59.000Z

    Terrorist attacks on transportation networks have traumatized modern societies. With a single blast, it has become possible to paralyze airline traffic, electric power supply, ground transportation or Internet communication. How and at which cost can one restructure the network such that it will become more robust against a malicious attack? We introduce a unique measure for robustness and use it to devise a method to mitigate economically and efficiently this risk. We demonstrate its efficiency on the European electricity system and on the Internet as well as on complex networks models. We show that with small changes in the network structure (low cost) the robustness of diverse networks can be improved dramatically while their functionality remains unchanged. Our results are useful not only for improving significantly with low cost the robustness of existing infrastructures but also for designing economically robust network systems.

  17. Blast mitigation capabilities of aqueous foam.

    SciTech Connect (OSTI)

    Hartman, William Franklin; Larsen, Marvin Elwood; Boughton, Bruce A.

    2006-02-01T23:59:59.000Z

    A series of tests involving detonation of high explosive blanketed by aqueous foam (conducted from 1982 to 1984) are described in primarily terms of recorded peak pressure, positive phase specific impulse, and time of arrival. The investigation showed that optimal blast mitigation occurs for foams with an expansion ratio of about 60:1. Simple analyses representing the foam as a shocked single phase mixture are presented and shown inadequate. The experimental data demonstrate that foam slows down and broadens the propagated pressure disturbance relative to a shock in air. Shaped charges and flyer plates were evaluated for operation in foam and appreciable degradation was observed for the flyer plates due to drag created by the foam.

  18. List of Texas Fuel Mitigation Vendors This list of fuel mitigation vendors that offer services in Texas is divided into two groups

    E-Print Network [OSTI]

    Behmer, Spencer T.

    List of Texas Fuel Mitigation Vendors This list of fuel mitigation vendors that offer services as a service to communities and landowners seeking assistance with fuel mitigation practices on their land Service Area Mu, Be, CP, Sc, Mo, FB Page 1 of 4Last updated on 10/16/2013 #12;List of Fuel Mitigation

  19. Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund3 Outlook forSDPPP Individual Permit:Site Map TUNL

  20. Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomelandMultivariateSite Map Main Menu About the ALS ALS@20

  1. Map ID

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electronEnergy Manufacturing Energy andYou areID 90 Map

  2. Session: Avoiding, minimizing, and mitigating avian and bat impacts

    SciTech Connect (OSTI)

    Thelander, Carl; Kerlinger, Paul

    2004-09-01T23:59:59.000Z

    This session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a discussion/question answer period. The session addressed a variety of questions related to avoiding, minimizing, and mitigating the avian and bat impacts of wind power development including: what has been learned from operating turbines and mitigating impacts where they are unavoidable, such as at Altamont Pass WRA, and should there be mitigation measures such as habitat creation or land conservation where impacts occur. Other impact minimization and mitigation approaches discussed included: location and siting evaluations; options for construction and operation of wind facilities; turbine lighting; and the physical alignment/orientation. Titles and authors of the presentations were: 'Bird Fatalities in the Altamont Pass Wind Resource Area: A Case Study, Part II' by Carl Thelander and 'Prevention and Mitigation of Avian Impacts at Wind Power Facilities' by Paul Kerlinger.

  3. Integrating Agricultural and Forestry GHG Mitigation Response into General Economy Frameworks

    E-Print Network [OSTI]

    McCarl, Bruce A.

    Integrating Agricultural and Forestry GHG Mitigation Response into General Economy Frameworks. #12;2 Integrating Agricultural and Forestry GHG Mitigation Response into General Economy Frameworks for characterizing potential responses to greenhouse gas mitigation policies by the agriculture and forestry

  4. European-Led Climate Policy versus Global Mitigation Action: Implications on

    E-Print Network [OSTI]

    ) Euro-Mediterranean Center on Climate Change (CMCC) Isola di San Giorgio Maggiore, 30124 Venezia, Italy, Amit Kanudia, Sergey Paltsev, Ronald D. Sands and Katja Schumacher *Reprinted from Climate Change and predictions of the risks of climate change and the challenges of limiting human influence on the environment

  5. EIS-0421: Record of Decision and Mitigation Action Plan | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised FindingDepartment ofStatement | Department of EnergyEnergy Decision

  6. EIS-0425: Record of Decision and Mitigation Action Plan | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised FindingDepartment ofStatement | DepartmentFinalDepartmentDepartment

  7. Boyer-Tillamook Access Road Improvement Project 1 Mitigation Action Plan for Final Environmental Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximatelyBoostingand Capacity2009 DOE

  8. EA-1440-S-I: Mitigation Action Plan Completion Report | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIX D9 STAT.BPA's underlying needEnergy This

  9. Ecofys-How to get Nationally Appropriate Mitigation Actions (NAMAs) to work

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrictInformationEauEcoMotorsEcoforge(Redirected|

  10. Rwanda-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to:Energy Information Rwanda Eastern Africa|

  11. Peru-GEF Nationally Appropriate Mitigation Actions in the Energy Generation

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCNInformation USPerseus LLC (NewPersuand End-Use

  12. Republic of Congo-Nationally Appropriate Mitigation Actions (NAMAs) in the

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewable EnergyobtainedRentricity Inc JumpCongo

  13. Peru-GEF Nationally Appropriate Mitigation Actions in the Energy Generation

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergy International Limited Jump to:Perrysburg, Ohio:Countriesand

  14. EA-1973: Finding of No Significant Impact and Mitigation Action Plan |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-WideBPA issued aSunflowerfinal EA that

  15. EIS-0380: Fiscal Year 2011 Mitigation Action Plan Annual Report for the

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |FinalEESS-7 to| DepartmentEnergy UnderEnergy

  16. EIS-0425: Record of Decision and Mitigation Action Plan | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |FinalEESS-7 to|Granby Pumpingdecided to

  17. Angola-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda, Montana: Energy| Open Energy

  18. Addendum to 2010 NREL Environmental Performance Report Â… Traffic Mitigation Action Plan Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated aging of1.1Energy DPFFOA | Department ofAddendum

  19. Wildlife and Wildlife Habitat Mitigation Plan for Libby Hydroelectric Project, Final Report.

    SciTech Connect (OSTI)

    Mundinger, John

    1985-01-01T23:59:59.000Z

    This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Libby hydroelectric project. Mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. The report describes mitigation that has already taken place and 8 recommended mitigation projects designed to complete total wildlife mitigation. 8 refs., 2 figs., 12 tabs.

  20. CORRECTIVE ACTION DECISION DOCUMENT FOR CORRECTIVE ACTION UNIT 423: BUILDING 03-60 UNDERGROUND DISCHARGE POINT, TONOPAH TEST RANGE, NEVADA, REVISION 0, JUNE 1998

    SciTech Connect (OSTI)

    NONE

    1998-06-01T23:59:59.000Z

    This Corrective Action Decision Document has been prepared for the Area 3 Building 03-60 Underground Discharge Point (Corrective Action Unit 423) in accordance with the Federal Facility Agreement and Consent Order of 1996 (FFACO, 1996). Corrective Action Unit 423 is located at the Tonopah Test Range and is comprised of Corrective Action Site 03-02-002-0308. The purpose of this Corrective Action Decision Document is to identify and provide a rationale for the selection of a recommended corrective action alternative for Corrective Action Unit 423. The scope of this Correction Action Decision Document consists of the following: ? Develop corrective action objectives. ? Identify corrective action alternative screening criteria. ? Develop corrective action alternatives. ? Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria. ? Recommend and justify a preferred corrective action alternative for the Corrective Action Unit. In January 1998, a corrective action investigation was performed as set forth in the Corrective Action Investigation Plan for Corrective Action Unit No. 423: Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada (DOE/NV, 1997). A hydrocarbon plume was found to emanate from near the bottom of the Underground Discharge Point to the west. The plume encompasses approximately 65 square meters (700 square feet). The highest total petroleum hydrocarbon level detected was 2,400 milligrams per kilogram. No other contaminants were detected above preliminary action levels. Details of the investigation can be found in Appendix A of this document. Based on the potential exposure pathways identified during the Data Quality Objectives process, the following corrective action objectives have been identified for Corrective Action Unit 423: ? Prevent or mitigate human exposure to subsurface soil containing contaminants of concern. ? Prevent adverse impacts to groundwater quality. Based on the review of existing data, future land use assumption, and current operations at the Tonopah Test Range, the following alternatives were developed for consideration at the Building 03-60 Underground Discharge Point: ? Alternative 1 - No Action ? Alternative 2 - Closure in Place with Administrative Controls ? Alternative 3 - Partial Excavation, Disposal, and Administrative Controls ? Alternative 4 - In Situ Bioremediation The corrective action alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors. Based on the results of this evaluation, the preferred alternative for Corrective Action Unit 423 is Alternative 2, Closure in Place with Administrative Controls. The preferred corrective action alternative was evaluated on technical merit, focusing on performance, reliability, feasibility, and safety. The alternative was judged to meet all requirements for the technical components evaluated. The alternative also meets all applicable state and federal regulations for closure of the site and will reduce potential future exposure pathways to the contaminated soils.

  1. A greenhouse-gas information system monitoring and validating emissions reporting and mitigation

    SciTech Connect (OSTI)

    Jonietz, Karl K [Los Alamos National Laboratory; Dimotakis, Paul E [JPL/CAL TECH; Roman, Douglas A [LLNL; Walker, Bruce C [SNL

    2011-09-26T23:59:59.000Z

    Current GHG-mitigating regimes, whether internationally agreed or self-imposed, rely on the aggregation of self-reported data, with limited checks for consistency and accuracy, for monitoring. As nations commit to more stringent GHG emissions-mitigation actions and as economic rewards or penalties are attached to emission levels, self-reported data will require independent confirmation that they are accurate and reliable, if they are to provide the basis for critical choices and actions that may be required. Supporting emissions-mitigation efforts and agreements, as well as monitoring energy- and fossil-fuel intensive national and global activities would be best achieved by a process of: (1) monitoring of emissions and emission-mitigation actions, based, in part, on, (2) (self-) reporting of pertinent bottom-up inventory data, (3) verification that reported data derive from and are consistent with agreed-upon processes and procedures, and (4) validation that reported emissions and emissions-mitigation action data are correct, based on independent measurements (top-down) derived from a suite of sensors in space, air, land, and, possibly, sea, used to deduce and attribute anthropogenic emissions. These data would be assessed and used to deduce and attribute measured GHG concentrations to anthropogenic emissions, attributed geographically and, to the extent possible, by economic sector. The validation element is needed to provide independent assurance that emissions are in accord with reported values, and should be considered as an important addition to the accepted MRV process, leading to a MRV&V process. This study and report focus on attributes of a greenhouse-gas information system (GHGIS) needed to support MRV&V needs. These needs set the function of such a system apart from scientific/research monitoring of GHGs and carbon-cycle systems, and include (not exclusively): the need for a GHGIS that is operational, as required for decision-support; the need for a system that meets specifications derived from imposed requirements; the need for rigorous calibration, verification, and validation (CV&V) standards, processes, and records for all measurement and modeling/data-inversion data; the need to develop and adopt an uncertainty-quantification (UQ) regimen for all measurement and modeling data; and the requirement that GHGIS products can be subjected to third-party questioning and scientific scrutiny. This report examines and assesses presently available capabilities that could contribute to a future GHGIS. These capabilities include sensors and measurement technologies; data analysis and data uncertainty quantification (UQ) practices and methods; and model-based data-inversion practices, methods, and their associated UQ. The report further examines the need for traceable calibration, verification, and validation processes and attached metadata; differences between present science-/research-oriented needs and those that would be required for an operational GHGIS; the development, operation, and maintenance of a GHGIS missions-operations center (GMOC); and the complex systems engineering and integration that would be required to develop, operate, and evolve a future GHGIS. Present monitoring systems would be heavily relied on in any GHGIS implementation at the outset and would likely continue to provide valuable future contributions to GHGIS. However, present monitoring systems were developed to serve science/research purposes. This study concludes that no component or capability presently available is at the level of technological maturity and readiness required for implementation in an operational GHGIS today. However, purpose-designed and -built components could be developed and implemented in support of a future GHGIS. The study concludes that it is possible to develop and provide a capability-driven prototype GHGIS, as part of a Phase-1 effort, within three years from project-funding start, that would make use of and integrate existing sensing and system capabilities. As part of a Phase-2 effort, a requirem

  2. Special Issue On Estimation Of Baselines And Leakage In Carbon Mitigation Forestry Projects

    E-Print Network [OSTI]

    Sathaye, Jayant A.; Andrasko, Kenneth

    2008-01-01T23:59:59.000Z

    In Carbon Mitigation Forestry Projects Jayant A. Sathaye*,climate change. Interest in forestry mitigation activitiesled to the inclusion of forestry practices at the project

  3. Sources and Mitigation of CO and UHC Emissions in Low-temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Mitigation of CO and UHC Emissions in Low-temperature Diesel Combustion Regimes: Insights Obtained via Homogeneous Reactor Modeling Sources and Mitigation of CO and UHC...

  4. Geologic Maps Geology 200

    E-Print Network [OSTI]

    Kammer, Thomas

    Geologic Maps Geology 200 Geology for Environmental Scientists #12;Geologic Map of the US #12;Symbols found on geologic maps #12;Horizontal Strata #12;Geologic map of part of the Grand Canyon. Each color represents a different formation. #12;Inclined Strata #12;Dome #12;Geologic map of the Black Hills

  5. Maps of Selected State Subdivisions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves Summary Maps of Selected State Subdivisions Map 1: Alaska Map 2: California Map 3: Louisiana Map 4: New Mexico Map...

  6. WHC natural phenomena hazards mitigation implementation plan

    SciTech Connect (OSTI)

    Conrads, T.J.

    1996-09-11T23:59:59.000Z

    Natural phenomena hazards (NPH) are unexpected acts of nature which pose a threat or danger to workers, the public or to the environment. Earthquakes, extreme winds (hurricane and tornado),snow, flooding, volcanic ashfall, and lightning strike are examples of NPH at Hanford. It is the policy of U.S. Department of Energy (DOE) to design, construct and operate DOE facilitiesso that workers, the public and the environment are protected from NPH and other hazards. During 1993 DOE, Richland Operations Office (RL) transmitted DOE Order 5480.28, ``Natural Phenomena Hazards Mitigation,`` to Westinghouse Hanford COmpany (WHC) for compliance. The Order includes rigorous new NPH criteria for the design of new DOE facilities as well as for the evaluation and upgrade of existing DOE facilities. In 1995 DOE issued Order 420.1, ``Facility Safety`` which contains the same NPH requirements and invokes the same applicable standards as Order 5480.28. It will supersede Order 5480.28 when an in-force date for Order 420.1 is established through contract revision. Activities will be planned and accomplished in four phases: Mobilization; Prioritization; Evaluation; and Upgrade. The basis for the graded approach is the designation of facilities/structures into one of five performance categories based upon safety function, mission and cost. This Implementation Plan develops the program for the Prioritization Phase, as well as an overall strategy for the implemention of DOE Order 5480.2B.

  7. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect (OSTI)

    Dr. David J. Bayless; Dr. Morgan Vis; Dr. Gregory Kremer; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-01-16T23:59:59.000Z

    This is the first quarterly report of the project Enhanced Practical Photosynthetic CO{sub 2} Mitigation. The official project start date, 10/02/2000, was delayed until 10/31/2000 due to an intellectual property dispute that was resolved. However, the delay forced a subsequent delay in subcontracting with Montana State University, which then delayed obtaining a sampling permit from Yellowstone National Park. However, even with these delays, the project moved forward with some success. Accomplishments for this quarter include: Culturing of thermophilic organisms from Yellowstone; Testing of mesophilic organisms in extreme CO{sub 2} conditions; Construction of a second test bed for additional testing; Purchase of a total carbon analyzer dedicated to the project; Construction of a lighting container for Oak Ridge National Laboratory optical fiber testing; Modified lighting of existing test box to provide more uniform distribution; Testing of growth surface adhesion and properties; Experimentation on water-jet harvesting techniques; and Literature review underway regarding uses of biomass after harvesting. Plans for next quarter's work and an update on the project's web page are included in the conclusions.

  8. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect (OSTI)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-07-25T23:59:59.000Z

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/03/2001 through 7/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Note that this version of the quarterly technical report is a revision to add the reports from subcontractors Montana State and Oak Ridge National Laboratories The significant accomplishments for this quarter include: Development of an experimental plan and initiation of experiments to create a calibration curve that correlates algal chlorophyll levels with carbon levels (to simplify future experimental procedures); Completion of debugging of the slug flow reactor system, and development of a plan for testing the pressure drop of the slug flow reactor; Design and development of a new bioreactor screen design which integrates the nutrient delivery drip system and the harvesting system; Development of an experimental setup for testing the new integrated drip system/harvesting system; Completion of model-scale bioreactor tests examining the effects of CO{sub 2} concentration levels and lighting levels on Nostoc 86-3 growth rates; Completion of the construction of a larger model-scale bioreactor to improve and expand testing capabilities and initiation of tests; Substantial progress on construction of a pilot-scale bioreactor; and Preliminary economic analysis of photobioreactor deployment. Plans for next quarter's work are included in the conclusions. A preliminary economic analysis is included as an appendix.

  9. Protective Actions and Reentry

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21T23:59:59.000Z

    This volume defines appropriate protective actions and reentry of a site following an emergency. Canceled by DOE G 151.1-4.

  10. November 2006 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    Standards Actions 2 American National Standards Institute (ANSI) 2 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society...

  11. October 2007 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    Standards Actions 1 American National Standards Institute (ANSI) 1 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society...

  12. May 2008 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    Standards Actions 2 American National Standards Institute (ANSI) 2 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society...

  13. May 2006 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    Standards Actions 1 American National Standards Institute (ANSI) 1 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society...

  14. Geothermal: Site Map

    Office of Scientific and Technical Information (OSTI)

    Site Map Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links Site Map...

  15. Impacts of greenhouse gas mitigation policies on agricultural land

    E-Print Network [OSTI]

    Wang, Xiaodong, Ph. D. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    Greenhouse gas (GHG) emissions are widely acknowledged to be responsible for much of the global warming in the past century. A number of approaches have been proposed to mitigate GHG emissions. Since the burning of ...

  16. Local Promise for Climate Mitigation: An Empirical Assessment

    E-Print Network [OSTI]

    Feiock, Richard C.; Outka, Uma

    2012-01-01T23:59:59.000Z

    This interdisciplinary work contributes empirical grounding to the growing literature in law and public policy on local governments and climate mitigation. Much of the recent scholarship presents an optimistic view of the potential in local climate...

  17. ENERGY INFRASTRUCTURE SURVIVABILITY, INHERENT LIMITATIONS, OBSTACLES AND MITIGATION STRATEGIES

    E-Print Network [OSTI]

    Krings, Axel W.

    ENERGY INFRASTRUCTURE SURVIVABILITY, INHERENT LIMITATIONS, OBSTACLES AND MITIGATION STRATEGIES technologically complex society makes our homeland security even more vulnerable. Therefore, knowing how vulnerable such systems are is essential to improving their intrinsic reliability/survivability (in

  18. Gearbox Typical Failure Modes, Detection, and Mitigation Methods (Presentation)

    SciTech Connect (OSTI)

    Sheng, S.

    2014-01-01T23:59:59.000Z

    This presentation was given at the AWEA Operations & Maintenance and Safety Seminar and focused on what the typical gearbox failure modes are, how to detect them using detection techniques, and strategies that help mitigate these failures.

  19. Introduction to Administrative Programs that Mitigate the Insider Threat

    SciTech Connect (OSTI)

    Gerke, Gretchen K.; Rogers, Erin; Landers, John; DeCastro, Kara

    2012-09-01T23:59:59.000Z

    This presentation begins with the reality of the insider threat, then elaborates on these tools to mitigate the insider threat: Human Reliability Program (HRP); Nuclear Security Culture (NSC) Program; Employee Assistance Program (EAP).

  20. assessment protection mitigation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    San Jose Power Mitigation For Nanometer FPGAs (ISLPED 2005 Tutorial) Mike Hutton Altera San Jose 2 2005 Altera Corporation-size 4 (area) to 6 (speed) Betz, TVLSI 2000...

  1. Northwest Montana Wildlife Mitigation Habitat Protection : Advance Design : Final Report.

    SciTech Connect (OSTI)

    Wood, Marilyn A.

    1993-02-01T23:59:59.000Z

    This report summarizes the habitat protection process developed to mitigate for certain wildlife and wildlife habitat losses due to construction of Hungry Horse and Libby dams in northwestern Montana.

  2. Directions and Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions & Maps Plan Your Visit Visit About the Museum Museum Hours Directions & Maps When to Visit Arrange for a Visit Around Los Alamos Contact Us invisible utility element...

  3. CO2 Emissions Mitigation and Technological Advance: An

    E-Print Network [OSTI]

    PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Updated Analysis of Advanced/2003) #12;PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Analysis of Advanced Technology electricity 16.9 29.0 44.7 65.7 89.2 114.3 145.2 174.8 EJ/yr building trad biomass 23.5 29.9 32.1 27.9 22.9 17

  4. Release mitigation spray safety systems for chemical demilitarization applications.

    SciTech Connect (OSTI)

    Leonard, Jonathan; Tezak, Matthew Stephen; Brockmann, John E.; Servantes, Brandon; Sanchez, Andres L.; Tucker, Mark David; Allen, Ashley N.; Wilson, Mollye C.; Lucero, Daniel A.; Betty, Rita G.

    2010-06-01T23:59:59.000Z

    Sandia National Laboratories has conducted proof-of-concept experiments demonstrating effective knockdown and neutralization of aerosolized CBW simulants using charged DF-200 decontaminant sprays. DF-200 is an aqueous decontaminant, developed by Sandia National Laboratories, and procured and fielded by the US Military. Of significance is the potential application of this fundamental technology to numerous applications including mitigation and neutralization of releases arising during chemical demilitarization operations. A release mitigation spray safety system will remove airborne contaminants from an accidental release during operations, to protect personnel and limit contamination. Sandia National Laboratories recently (November, 2008) secured funding from the US Army's Program Manager for Non-Stockpile Chemical Materials Agency (PMNSCMA) to investigate use of mitigation spray systems for chemical demilitarization applications. For non-stockpile processes, mitigation spray systems co-located with the current Explosive Destruction System (EDS) will provide security both as an operational protective measure and in the event of an accidental release. Additionally, 'tented' mitigation spray systems for native or foreign remediation and recovery operations will contain accidental releases arising from removal of underground, unstable CBW munitions. A mitigation spray system for highly controlled stockpile operations will provide defense from accidental spills or leaks during routine procedures.

  5. Insider Threat - Material Control and Accountability Mitigation

    SciTech Connect (OSTI)

    Powell, Danny H [ORNL] [ORNL; Elwood Jr, Robert H [ORNL] [ORNL; Roche, Charles T [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    The technical objectives of nuclear safeguards are (1) the timely detection of diversion of significant quantities of nuclear material from peaceful uses to the manufacture of nuclear weapons or other nuclear explosive devices or for purposes unknown and (2) the deterrence of such diversion by the risk of early detection. The safeguards and security program must address both outsider threats and insider threats. Outsider threats are primarily addressed by the physical protection system. Insider threats can be any level of personnel at the site including passive or active insiders that could attempt protracted or abrupt diversion. This could occur by an individual acting alone or by collusion between an individual with material control and accountability (MC&A) responsibilities and another individual who has responsibility or control within both the physical protection and the MC&A systems. The insider threat is one that must be understood and incorporated into the safeguards posture. There have been more than 18 documented cases of theft or loss of plutonium or highly enriched uranium. The insider has access, authority, and knowledge, as well as a set of attributes, that make him/her difficult to detect. An integrated safeguards program is designed as a defense-in-depth system that seeks to prevent the unauthorized removal of nuclear material, to provide early detection of any unauthorized attempt to remove nuclear material, and to rapidly respond to any attempted removal of nuclear material. The program is also designed to support protection against sabotage, espionage, unauthorized access, compromise, and other hostile acts that may cause unacceptable adverse impacts on national security, program continuity, the health and safety of employees, the public, or the environment. Nuclear MC&A play an essential role in the capabilities of an integrated safeguards system to deter and detect theft or diversion of nuclear material. An integrated safeguards system with compensating mitigation can decrease the risk of an insider performing a malicious act without detection.

  6. Development Of Regional Climate Mitigation Baseline For A DominantAgro-Ecological Zone Of Karnataka, India

    SciTech Connect (OSTI)

    Sudha, P.; Shubhashree, D.; Khan, H.; Hedge, G.T.; Murthy, I.K.; Shreedhara, V.; Ravindranath, N.H.

    2007-06-01T23:59:59.000Z

    Setting a baseline for carbon stock changes in forest andland use sector mitigation projects is an essential step for assessingadditionality of the project. There are two approaches for settingbaselines namely, project-specific and regional baseline. This paperpresents the methodology adopted for estimating the land available formitigation, for developing a regional baseline, transaction cost involvedand a comparison of project-specific and regional baseline. The studyshowed that it is possible to estimate the potential land and itssuitability for afforestation and reforestation mitigation projects,using existing maps and data, in the dry zone of Karnataka, southernIndia. The study adopted a three-step approach for developing a regionalbaseline, namely: i) identification of likely baseline options for landuse, ii) estimation of baseline rates of land-use change, and iii)quantification of baseline carbon profile over time. The analysis showedthat carbon stock estimates made for wastelands and fallow lands forproject-specific as well as the regional baseline are comparable. Theratio of wasteland Carbon stocks of a project to regional baseline is1.02, and that of fallow lands in the project to regional baseline is0.97. The cost of conducting field studies for determination of regionalbaseline is about a quarter of the cost of developing a project-specificbaseline on a per hectare basis. The study has shown the reliability,feasibility and cost-effectiveness of adopting regional baseline forforestry sectormitigation projects.

  7. Energy Action Month

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) supports Energy Action Month by offering materials that promote energy- and water-saving practices in Federal facilities. This year's outreach materials call on Federal employees to take action and empower leadership, innovation, and excellence to realize a secure energy future.

  8. Massive Gas Injection Experiments at JET – Performance and Characterisation of the Disruption Mitigation Valve

    E-Print Network [OSTI]

    Massive Gas Injection Experiments at JET – Performance and Characterisation of the Disruption Mitigation Valve

  9. An International Environmental Agreement for Space Debris Mitigation Among Asymmetric Nations

    E-Print Network [OSTI]

    Singer, Michael Jay

    2012-01-01T23:59:59.000Z

    IEA model . . . . . . . . . . . . . . . . . . . .IEA model framework . . . . . . . . . . . . . . . . . . .Application of IEA Model to Debris Mitigation Elements of

  10. Linking Statewide Connectivity Planning to Highway Mitigation: Taking the Next Step in Linking

    E-Print Network [OSTI]

    Kintsch, Julia

    2007-01-01T23:59:59.000Z

    planning for wildlife mitigation measures (including monitoring) with transportation project timelines; • Budgeting

  11. Scientific Consensus and Action Plan for Mapping the

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    have to give priority to navigational channels in ports. USGS is broke. #12;4 Goldfinger et al., OSU, fishing boats, RIB boats using average water depth, average swath width, average vessel speed etc

  12. Mitigating greenhouse gas emissions: Voluntary reporting

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

  13. Dimensional reduction, Seiberg-Witten map, and supersymmetry

    SciTech Connect (OSTI)

    Saka, E. Ulas [Physics Department, Istanbul University, TR-34134 Vezneciler, Istanbul (Turkey); Uelker, Kayhan [Feza Guersey Institute, P.O. Box 6, TR-34684 Cengelkoey, Istanbul (Turkey)

    2007-04-15T23:59:59.000Z

    It is argued that dimensional reduction of the Seiberg-Witten map for a gauge field induces Seiberg-Witten maps for the other noncommutative fields of a gauge invariant theory. We demonstrate this observation by dimensionally reducing the noncommutative N=1 super Yang-Mills (SYM) theory in 6 dimensions to obtain noncommutative N=2 SYM in 4 dimensions. We explicitly derive Seiberg-Witten maps of the component fields in 6 and 4 dimensions. Moreover, we give a general method to define the deformed supersymmetry transformations that leave the actions invariant after performing Seiberg-Witten maps.

  14. Career Map: Instrumentation Coordinator

    Broader source: Energy.gov [DOE]

    The Wind Program's Career Map provides job description information for Instrumentation Coordinator positions.

  15. Integrated energy planning: Strategies to mitigate climate change

    SciTech Connect (OSTI)

    Ortiz, J.N.; Sheffield, J.W.

    1997-06-01T23:59:59.000Z

    The Framework Convention on Climate Change, signed by more than 150 governments worldwide in June 1992, calls on parties to the Convention to undertake inventories of national sources and sinks of greenhouse gases and to develop plans for responding to climate change. The energy sector is comprised of the major energy demand sectors (industry, residential and commercial, transport, and agriculture), and the energy supply sector, which consists of resource extraction, conversion, and delivery of energy products. Greenhouse gas (GHG) emissions occur at various points in the sector, from resource extraction to end use application, and accordingly, options for mitigation exist at various points. In most countries, the energy sector will be a major focus of GHG mitigation analysis. The primary focus of this paper is on the identification of strategies that can mitigate climate changes on the basis of integrated energy planning analysis. The overall approach follows a methodology developed by the U.S. Country Studies Program under the framework of the Convention`s commitments. It involves the development of scenarios based on energy end uses and evaluation of specific technologies that can satisfy demands for energy services. One can compare technologies based on their relative cost to achieve a unit of GHG reduction and other features of interest. This approach gives equal weight to both energy supply and energy demand options. A variety of screening criteria including indicators of cost-effectiveness as well as non-economic analysis concerns, can be used to identify and assess promising options, which can then be combined to create one or more mitigation scenario. Mitigation scenarios are evaluated against the backdrop of a baseline scenario, which simulates the events assumed to take place in the absence of mitigation efforts. Mitigation scenarios can be designed to meet specific emission reduction targets or to simulate the effect of specific policy interventions.

  16. Pitfalls of digital maps

    SciTech Connect (OSTI)

    Brewer, B.B.

    1986-05-01T23:59:59.000Z

    Computers allow us to combine maps from different sources and different scales more easily. In the past, these variations had to be ignored or only partly solved. With the advent of computers and increased digital maps, these inconsistencies become glaring errors that should no longer be ignored. The final success of a project largely lies on the accuracy and validity of its maps. This paper discusses problems and solutions associated with trying to tie maps together. The paper concentrates on the importance of understanding map projections and the problems involved in adding new maps to existing digital maps.

  17. Finite Temperature Effective Actions

    E-Print Network [OSTI]

    Ashok Das; J. Frenkel

    2009-08-27T23:59:59.000Z

    We present, from first principles, a direct method for evaluating the exact fermion propagator in the presence of a general background field at finite temperature, which can be used to determine the finite temperature effective action for the system. As applications, we determine the complete one loop finite temperature effective actions for 0+1 dimensional QED as well as the Schwinger model. These effective actions, which are derived in the real time (closed time path) formalism, generate systematically all the Feynman amplitudes calculated in thermal perturbation theory and also show that the retarded (advanced) amplitudes vanish in these theories.

  18. Rainwater Wildlife Area Management Plan Executive Summary : A Columbia Basin Wildlife Mitigation Project.

    SciTech Connect (OSTI)

    Childs, Allen B.

    2002-02-01T23:59:59.000Z

    This Executive Summary provides an overview of the Draft Rainwater Wildlife Area Management Plan. The comprehensive plan can be viewed on the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) website at: www.umatilla.nsn.us or requested in hard copy from the CTUIR at the address below. The wildlife area was established in September 1998 when the CTUIR purchased the Rainwater Ranch through Bonneville Power Administration (BPA) for purposes of fish and wildlife mitigation for the McNary and John Day dams. The Management Plan has been developed under a standardized planning process developed by BPA for Columbia River Basin Wildlife Mitigation Projects (See Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus management actions and prioritize funding during the 2002-2006 planning period. Since acquisition of the property in late 1998, the CTUIR has conducted an extensive baseline resource assessment in preparation for the management plan, initiated habitat restoration in the Griffin Fork drainage to address road-related resource damage caused by roads constructed for forest practices and an extensive flood event in 1996, and initiated infrastructure developments associated with the Access and Travel Management Plan (i.e., installed parking areas, gates, and public information signs). In addition to these efforts, the CTUIR has worked to set up a long-term funding mechanism with BPA through the NPPC Fish and Wildlife Program. The CTUIR has also continued to coordinate closely with local and state government organizations to ensure consistency with local land use laws and maintain open lines of communication regarding important issues such as big game hunting, tribal member exercise of treaty rights, and public access. During the past two years, non-Indian public concern over big game hunting issues has at times overwhelmed other issues related to the wildlife area. In 2001, the CTUIR Fish and Wildlife Committee closed the wildlife area to tribal branch antlered bull elk harvest in response to harvest data that indicated harvest rates were greater than expected. In addition, illegal harvest of mature bull elk in southeastern Washington during the 2001 season exceeded the legal tribal and nontribal harvest combined which has created a potential significant regression in the bull;cow ratio in the Blue Mountain Elk herd. CTUIR Fish and Wildlife Committee and staff and Washington Department of Fish and Wildlife Regional Director and staff have been coordinating regularly to develop strategies to address harvest rates and ensure protection of viable big game herds in southeastern Washington. The CTUIR Fish and Wildlife Committee and WDFW has jointly agreed to continue close coordination on this and other issues and continue working together to ensure the long-term vigor of the elk herd on the Rainwater Wildlife Area. The purpose of the project is to protect, enhance, and mitigate fish and wildlife resources impacted by Columbia River Basin hydroelectric development. The effort is one of several wildlife mitigation projects in the region developed to compensate for terrestrial habitat losses resulting from the construction of McNary and John Day Hydroelectric facilities located on the mainstem Columbia River. While this project is driven primarily by the purpose and need to mitigate for wildlife habitat losses, it is also recognized that management strategies will also benefit many other non-target fish and wildlife species and associated natural resources.

  19. Climate Action Plan (Michigan)

    Broader source: Energy.gov [DOE]

    On November 14, 2007, Governor Jennifer M. Granholm issued Executive Order No. 2007-42 establishing the Michigan Climate Action Council (MCAC). The Council is comprised of members representing...

  20. August 2007 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    August 2007 1.5 DOE Technical Standards Published No entries were received in August 2007 2.0 Non-Government Standards Actions 2.1 American National Standards Institute (ANSI)...

  1. July 2007 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    in June 2007 1.5 DOE Technical Standards Published No entries were received in June 2007 2.0 Non-Government Standards Actions 2.1 American National Standards Institute (ANSI)...

  2. April 2007 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    and Injury Surveillance Program Guidelines, 03222007; DOE-STD-1190-2007, OCSH-0005 2.0 Non-Government Standards Actions 2.1 American National Standards Institute (ANSI)...

  3. Estimating the potential of greenhouse gas mitigation in Kazakhstan

    SciTech Connect (OSTI)

    Monacrovich, E.; Pilifosova, O.; Danchuck, D. [Kazakh Scientific-Research Hydrometeorlogical Institute, Almaty (Kazakhstan)] [and others

    1996-09-01T23:59:59.000Z

    As part of the studies related to the obligations of the UN Framework Convention on Climate Change, the Republic of Kazakhstan started activities to inventory greenhouse gas (GHG) emissions and assess of GHG mitigation options, The objective of this paper is to present an estimate of the possibility of mitigating GHG emissions and determine the mitigation priorities. It presents a compilation of the possible options and their assessment in terms of major criteria and implementation feasibility. Taking into account the structure of GHG emissions in Kazakhstan in 1990, preliminary estimates of the potential for mitigation are presented for eight options for the energy sector and agriculture and forestry sector. The reference scenario prepared by expert assessments assumes a reduction of CO{sub 2} emissions in 1996-1998 by about 26% from the 1990 level due to general economic decline, but then emissions increase. It is estimated that the total potential for the mitigation of CO{sub 2} emissions for the year 2000 is 3% of the CO{sub 2} emissions in the reference scenario. The annual reduction in methane emissions due to the estimated options can amount to 5%-6% of the 1990 level. 10 refs., 1 fig., 4 tabs.

  4. Columbia Basin Wildlife Mitigation Project : Rainwater Wildlife Area Final Management Plan.

    SciTech Connect (OSTI)

    Childs, Allen

    2002-03-01T23:59:59.000Z

    This Draft Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary.

  5. Corrective Action Program Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-03-02T23:59:59.000Z

    This Guide was developed to assist the Department of Energy (DOE) organizations and contractors in the development, implementation, and followup of corrective action programs utilizing the feedback and improvement core safety function within DOE's Integrated Safety Management System. This Guide outlines some of the basic principles, concepts, and lessons learned that DOE managers and contractors might consider when implementing corrective action programs based on their specific needs. Canceled by DOE G 414.1-2B. Does not cancel other directives.

  6. Climate Action Plan (North Carolina)

    Broader source: Energy.gov [DOE]

    The North Carolina Department of Environmental and Natural Resources (DENR) has established a priority in the 2009 - 2013 Strategic Plan to respond to climate change using both mitigation and...

  7. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 447: Project Shoal Area, Subsurface, Nevada, Rev. No.: 3 with Errata Sheet

    SciTech Connect (OSTI)

    Tim Echelard

    2006-03-01T23:59:59.000Z

    This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for Corrective Action Unit (CAU) 447, Project Shoal Area (PSA)-Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). Corrective Action Unit 447 is located in the Sand Springs Mountains in Churchill County, Nevada, approximately 48 kilometers (30 miles) southeast of Fallon, Nevada. The CADD/CAP combines the decision document (CADD) with the Corrective Action Plan (CAP) and provides or references the specific information necessary to recommend corrective actions for CAU 447, as provided in the FFACO. Corrective Action Unit 447 consists of two corrective action sites (CASs): CAS 57-49-01, Emplacement Shaft, and CAS 57-57-001, Cavity. The emplacement shaft (CAS-57-49-01) was backfilled and plugged in 1996 and will not be evaluated further. The purpose of the CADD portion of the document (Section 1.0 to Section 4.0) is to identify and provide a rationale for the selection of a recommended corrective action alternative for the subsurface at PSA. To achieve this, the following tasks were required: (1) Develop corrective action objectives. (2) Identify corrective action alternative screening criteria. (3) Develop corrective action alternatives. (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria. (5) Recommend a preferred corrective action alternative for the subsurface at PSA. The original Corrective Action Investigation Plan (CAIP) for the PSA was approved in September 1996 and described a plan to drill and test four characterization wells, followed by flow and transport modeling (DOE/NV, 1996). The resultant drilling is described in a data report (DOE/NV, 1998e) and the data analysis and modeling in an interim modeling report (Pohll et al., 1998). After considering the results of the modeling effort, the U.S. Department of Energy (DOE) determined that the degree of uncertainty in transport predictions for PSA remained unacceptably large. As a result, a second CAIP was developed by DOE and approved by the Nevada Division of Environmental Protection (NDEP) in December 1998 (DOE/NV, 1998a). This plan prescribed a rigorous analysis of uncertainty in the Shoal model and quantification of methods of reducing uncertainty through data collection. This analysis is termed a Data Decision Analysis (Pohll et al., 1999a) and formed the basis for a second major characterization effort at PSA (Pohll et al., 1999b). The details for this second field effort are presented in an Addendum to the CAIP, which was approved by NDEP in April 1999 (DOE/NV, 1999a). Four additional characterization wells were drilled at PSA during summer and fall of 1999; details of the drilling and well installation are in IT Corporation (2000), with testing reported in Mihevc et al. (2000). A key component of the second field program was a tracer test between two of the new wells (Carroll et al., 2000; Reimus et al., 2003). Based on the potential exposure pathways, two corrective action objectives were identified for CAU 447: Prevent or mitigate exposure to groundwater contaminants of concern at concentrations exceeding regulatory maximum contaminant levels or risk-based levels; and Reduce the risk to human health and the environment to the extent practicable. Based on the review of existing data, the results of the modeling, future use, and current operations at PSA, the following alternatives have been developed for consideration at CAU 447: Alternative 1--No Further Action; Alternative 2--Proof-of-Concept and Monitoring with Institutional Controls; and Alternative 3--Contaminant Control. The corrective action alternatives were evaluated based on the approach outlined in the ''Focused Evaluation of Selected Remedial Alternatives for the Underground Test Area'' (DOE/NV, 1998b). Each alternative was assessed against nine evaluation criteria. These criteria include overall protection of human health and the environment;

  8. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect (OSTI)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-10-15T23:59:59.000Z

    This report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/03/2000 through 10/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. This is the fourth quarterly report for this project, so it also serves as a year-1 project review. We have made significant progress on our Phase I objectives, and our current efforts are focused on fulfilling these research objectives ''on time'' relative to the project timeline. Overall, we believe that we are on schedule to complete Phase I activities by 10/2002, which is the milestone date from the original project timeline. Our results to date concerning the individual factors which have the most significant effect on CO{sub 2} uptake are inconclusive, but we have gathered useful information about the effects of lighting, temperature and CO{sub 2} concentration on one particular organism (Nostoc) and significant progress has been made in identifying other organisms that are more suitable for use in the bioreactor due to their better tolerance for the high temperatures likely to be encountered in the flue gas stream. Our current tests are focused on one such thermophilic organism (Cyanidium), and an enlarged bioreactor system (CRF-2) has been prepared for testing this organism. Tests on the enhanced mass transfer CO{sub 2} absorption technique are underway and useful information is currently being collected concerning pressure drop. The solar collectors for the deep-penetration hybrid solar lighting system have been designed and a single solar collector tracking unit is being prepared for installation in the pilot scale bioreactor system currently under construction. Much progress has been made in designing the fiber optic light delivery system, but final selection of the ''optimum'' delivery system design depends on many factors, most significantly the configuration and orientation of the growth surfaces in the bioreactor. For the growth surface subsystem we have identified advantages and disadvantages for several candidate growth surface materials, we have built and tested various ''screen'' systems and fluid delivery systems, and we continue to test compatibility of the candidate materials with the organisms and with the moisture delivery and harvesting system designs. These tests will be ongoing until an ''optimum'' combination of growth surface material/organism type/harvesting system is identified. For the harvesting system, a nozzle-based water jet system has been shown to be effective, but it has disadvantages for the overall system design in terms of space utilization. A streamlined and integrated screen wetting/harvesting system design is currently under development and will be the focus of harvesting system tests in the foreseeable future. This report addresses each of the key project tasks as defined in the statement of work, giving both a summary of key accomplishments over the past year and a plan for future work.

  9. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect (OSTI)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2002-01-15T23:59:59.000Z

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/3/2001 through 1/02/2002. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Our research team has made significant progress towards completion of our Phase I objectives, and our current efforts remain focused on fulfilling these research objectives in accordance with the project timeline. Overall, we believe that we are on schedule to complete Phase I activities by 10/2002, which is the milestone date from the original project timeline. Specific results and accomplishments for the fourth quarter of 2001 include: (1) New procedures and protocols have been developed to increase the chances of successful implementation in the bioreactor of organisms that perform well in the lab. The new procedures include pre-screening of organisms for adhesion characteristics and a focus on identifying the organisms with maximum growth rate potential. (2) Preliminary results show an increase in adhesion to glass and a decrease in overall growth rates when using growth media prepared with tap water rather than distilled water. (3) Several of the organisms collected from Yellowstone National Park using the new procedures are currently being cultured in preparation for bioreactor tests. (4) One important result from a test of growth surface temperature distribution as a function of gas stream and drip-fluid temperatures showed a high dependence of membrane temperature on fluid temperature, with gas stream temperature having minimal effect. This result indicates that bioreactor growth surface temperatures can be controlled using fluid delivery temperature. The possible implications for implementation of the bioreactor concept are encouraging, since it may be possible to use the bioreactor with very high gas stream temperatures by controlling the temperature of the organisms with the fluid temperature. (5) Investigation of growth surface materials continues, with Omnisil and Scotch Brite emerging as the leading candidates. More investigation of these and other material types is still needed to determine the best material for particular combinations of organisms and harvesting methods. (6) Tests of harvesting methods and harvesting system designs have shown that desirable levels of ''percentage algae removal'' can be achieved for particular organisms and growth surface materials, for example Cyanidium on polyester felt. Additional testing continues to better characterize sensitivity of the ''percentage removal'' to various system design parameters, but these tests have been delayed due to the lack of suitable organisms for the tests. (7) The solar collectors and the pilot-scale bioreactor light distribution panels for the deep-penetration hybrid solar lighting system have been designed. One solar lighting system (solar collector tracking unit, fiber optic light transmission cables, light distribution panels) is almost completely prepared for installation during the next quarter in the pilot scale bioreactor system. (8) Pressure drop results from tests on the enhanced mass transfer CO{sub 2} absorption technique (the translating slug flow reactor) are encouraging, with reasonable values of 2.5 psi maximum over an 11.48 meter distance between pressure taps for test conditions of 0.6 m/sec slug velocity and approximately 10 m/sec gas velocity. Preparations are under way for CO{sub 2} scrubbing tests.

  10. Mitigation of geomagnetically induced and dc stray currents. Final report

    SciTech Connect (OSTI)

    Kappenman, J.G.

    1983-12-01T23:59:59.000Z

    This report primarily describes several approaches to mitigate the effects of Geomagnetic Induced Currents (GIC) and dc stray currents in power systems; the engineering and design considerations for a neutral capacitor blocking device; and development and testing of a prototype device of this type. Modeling of the power system for computation of GIC are described. Results from three field tests, for documenting the effects of GIC by injecting direct current (dc) into the neutrals of the transformers, are presented. Several mitigation concepts are discussed and evaluated. The concept of blocking GIC and dc stray currents by a neutral capacitor is addressed in detail. The development and testing of the prototype blocking device is described. The technical requirements and specifications for the application of these devices are also included. A perspective on the economics of GIC mitigation is included. The effect of GIC and dc stray currents on HVdc converter operation, supported by computer simulations, is also discussed.

  11. Mitigating avian impacts: Applying the wetlands experience to wind farms

    SciTech Connect (OSTI)

    Wolff, B. [Conservation and Renewable Energy System, Vancouver, WA (United States)

    1995-12-31T23:59:59.000Z

    The National Environmental Policy Act (NEPA) and state environmental laws spawned by NEPA, such as the California Environmental Quality Act (CEQA) and Washington State`s Environmental Policy Act (SEPA) have made us familiar with the concept of {open_quotes}mitigating{close_quotes} a project`s adverse environmental impacts. As wind energy projects expand to state with widely varying environmental regulation, the wind industry can look to other experiences in land use regulation, such as wetlands, for approaches to mitigation. Wetlands have been a point of friction between environmentalists, property rights advocates, local and state governments, and a host of federal agencies. A highly developed conceptual framework to mitigating environmental impacts has risen from this regulatory swamp of conflicting interests and overlapping jurisdictions.

  12. Underwater Blast Experiments and Modeling for Shock Mitigation

    SciTech Connect (OSTI)

    Glascoe, L; McMichael, L; Vandersall, K; Margraf, J

    2010-03-07T23:59:59.000Z

    A simple but novel mitigation concept to enforce standoff distance and reduce shock loading on a vertical, partially-submerged structure is evaluated using scaled aquarium experiments and numerical modeling. Scaled, water tamped explosive experiments were performed using three gallon aquariums. The effectiveness of different mitigation configurations, including air-filled media and an air gap, is assessed relative to an unmitigated detonation using the same charge weight and standoff distance. Experiments using an air-filled media mitigation concept were found to effectively dampen the explosive response of the aluminum plate and reduce the final displacement at plate center by approximately half. The finite element model used for the initial experimental design compares very well to the experimental DIC results both spatially and temporally. Details of the experiment and finite element aquarium models are described including the boundary conditions, Eulerian and Lagrangian techniques, detonation models, experimental design and test diagnostics.

  13. Albeni Falls Wildlife Mitigation Project, 2001 Annual Report.

    SciTech Connect (OSTI)

    Terra-Burns, Mary (Idaho Department of Fish and Game, Albeni Falls Interagency Work Group, Boise, ID)

    2002-02-11T23:59:59.000Z

    The Albeni Falls Interagency Work Group was actively engaged in implementing wildlife mitigation activities in 2001. The Work Group met quarterly to discuss management and budget issues affecting the Albeni Falls Wildlife Mitigation Program. Work Group members protected 851 acres of wetland habitat in 2001. Wildlife habitat protected to date for the Albeni Falls project is approximately 5,248.31 acres ({approx}4,037.48 Habitat Units). Approximately 14% of the total wildlife habitat lost has been mitigated. Administrative activities increased as funding was more evenly distributed among Work Group members and protection opportunities became more time consuming. In 2001, Work Group members focused on development and implementation of the monitoring and evaluation program as well as completion of site-specific management plans. With the implementation of the monitoring and evaluation program, and as management plans are reviewed and executed, on the ground management activities are expected to increase in 2002.

  14. High Precision Astrometry in Asteroid Mitigation - the NEOShield Perspective

    E-Print Network [OSTI]

    Eggl, Siegfried; Hestroffer, Daniel; Perna, Davide; Bancelin, David; Thuillot, William

    2013-01-01T23:59:59.000Z

    Among the currently known Near Earth Objects (NEOs), roughly 1400 are classified as being potentially hazardous asteroids. The recent Chelyabinsk event has shown that these objects can pose a real threat to mankind. We illustrate that high precision asteroid astrometry plays a vital role in determining potential impact risks, selecting targets for deflection demonstration missions and evaluating mitigation mission success. After a brief introduction to the NEOShield project, an international effort initiated by the European Commission to investigate aspects of NEO mitigation in a comprehensive fashion, we discuss current astrometric performances, requirements and possible issues with NEO risk assessment and deflection demonstration missions.

  15. Analysis and Design of New Harmonic Mitigation Approaches 

    E-Print Network [OSTI]

    Aeloiza Matus, Eddy 1972-

    2012-11-01T23:59:59.000Z

    is proposed to reduce the HF circulating current and a zero-sequence control loop to mitigate the low frequency circulating current is also proposed [56]-[58]. 5 Power Quality Standards 1.2. IEEE 519-1981 [67] 1.2.1 In 1981... to determine whether or not the new converters were going to be a problem. It was impractical and not economical to mitigate the harmonics for each non-linear load. Therefore, the IEEE 519-1981 was designed to help these users with the application...

  16. Method to prevent/mitigate steam explosions in casting pits

    DOE Patents [OSTI]

    Taleyarkhan, Rusi P. (Knoxville, TN)

    1996-01-01T23:59:59.000Z

    Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water.

  17. Corrective Action Decision Document for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    SciTech Connect (OSTI)

    U.S. Department of Energy Nevada Operations Office

    1999-04-02T23:59:59.000Z

    This Corrective Action Decision Document (CADD) identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 417: Central Nevada Test Area Surface, Nevada, under the Federal Facility Agreement and Consent Order. Located in Hot Creek Valley in Nye County, Nevada, and consisting of three separate land withdrawal areas (UC-1, UC-3, and UC-4), CAU 417 is comprised of 34 corrective action sites (CASs) including 2 underground storage tanks, 5 septic systems, 8 shaker pad/cuttings disposal areas, 1 decontamination facility pit, 1 burn area, 1 scrap/trash dump, 1 outlier area, 8 housekeeping sites, and 16 mud pits. Four field events were conducted between September 1996 and June 1998 to complete a corrective action investigation indicating that the only contaminant of concern was total petroleum hydrocarbon (TPH) which was found in 18 of the CASs. A total of 1,028 samples were analyzed. During this investigation, a statistical approach was used to determine which depth intervals or layers inside individual mud pits and shaker pad areas were above the State action levels for the TPH. Other related field sampling activities (i.e., expedited site characterization methods, surface geophysical surveys, direct-push geophysical surveys, direct-push soil sampling, and rotosonic drilling located septic leachfields) were conducted in this four-phase investigation; however, no further contaminants of concern (COCs) were identified. During and after the investigation activities, several of the sites which had surface debris but no COCs were cleaned up as housekeeping sites, two septic tanks were closed in place, and two underground storage tanks were removed. The focus of this CADD was to identify CAAs which would promote the prevention or mitigation of human exposure to surface and subsurface soils with contaminant concentrations above preliminary action levels. Based on the potential exposure pathways, several risk-based CAAs were developed and evaluated against the individual CAS requirements. It was determined that a combination of the CAAs would be recommended to meet all applicable state and federal regulations for closure of these sites and to eliminate potential future exposure pathways to the TPH-contaminated soils.

  18. Hungry Horse Mitigation; Flathead Lake, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Hansen, Barry; Evarts, Les (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

    2005-06-01T23:59:59.000Z

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Objective 1 in the workplan is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of Objectives 2-8.

  19. Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2008.

    SciTech Connect (OSTI)

    Hansen, Barry; Evarts, Les [Confederated Salish and Kootenai Tribes

    2009-08-06T23:59:59.000Z

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Work Element A in the Statement of Work is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of all remaining Work Elements.

  20. Enhanced Practical Photosynthetic CO2 Mitigation

    SciTech Connect (OSTI)

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2006-01-15T23:59:59.000Z

    This final report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project during the period from 10/1/2001 through 01/02/2006. As indicated in the list of accomplishments below, our efforts during this project were focused on the selection of candidate organisms and growth surfaces and initiating long-term tests in the bench-scale and pilot-scale bioreactor test systems. Specific results and accomplishments for the program include: (1) CRF-2 test system: (a) Sampling test results have shown that the initial mass of algae loaded into the Carbon Recycling Facility Version 2 (CRF-2) system can be estimated with about 3% uncertainty using a statistical sampling procedure. (b) The pressure shim header pipe insert design was shown to have better flow for harvesting than the drilled-hole design. (c) The CRF-2 test system has undergone major improvements to produce the high flow rates needed for harvesting (as determined by previous experiments). The main changes to the system are new stainless steel header/frame units, with increased flow capacity and a modified pipe-end-sealing method to improve flow uniformity, and installation and plumbing for a new high flow harvesting pump. Qualitative system tests showed that the harvesting system performed wonderfully, cleaning the growth surfaces within a matter of seconds. (d) Qualitative tests have shown that organisms can be repopulated on a harvested section of a bioreactor screen, demonstrating that continuous bioreactor operation is feasible, with continuous cycles of harvesting and repopulating screens. (e) Final preparations are underway for quantitative, long-term tests in the CRF-2 with weekly harvesting. (2) Pilot-scale test system: (a) The construction of the pilot-scale bioreactor was completed, including the solar collector and light distribution system. Over the course of the project, the solar collector used in the light delivery system showed some degradation, but performed well overall. (b) Testing confirmed that algae can be grown in a sustainable fashion in the pilot bioreactor, even with intermittent availability of sunlight. (c) The pilot-scale tests indicated that algal growth rate followed photon delivery during productivity testing. (3) Organisms and Growth Surfaces: (a) The aeration of growth media with 5% CO{sub 2} in air stimulates cyanobacterial growth 10-20 times over that with air alone. It is possible that the rate of the stimulation of cyanobacterial growth in the CRF will be higher because cyanobacteria will be grown as a biofilm. We plan to increase the concentration to 15% CO{sub 2} in air. (b) Tests have shown a doubling time of the cyanobacterial culture of about 7.5 hours with illumination of about 170 {micro}mol m{sup -2} sec{sup -1}. All lower levels of illumination led to a decrease in the cyanobacterial growth rate. (c) Macroscopical and microscopical observations suggest that the culture of this isolate undergoes significant morphological changes after 60-70 hours of incubation in the batch culture mode. First of all, the culture begins to clump. This clumping could lead to the decrease of effective illumination of culture and may reflect a medium alkalinization. (d) Organization of our collection of the thermophilic cyanobacteria isolated from Yellowstone National Park has resulted in 13 unialgal cultures of thermophilic cyanobacteria. (e) A new species (even probably a new genus) of cyanobacteria, 5.2 s. c. 1, isolated from LaDuke Spring in Great Yellowstone Basin, demonstrates an elevated resistance to some compounds of iron. This might be very important for our project, because plant gases may have elevated amount of iron. Our study of the effect of different concentration of FeCl{sub 3}* 6H{sub 2}O on the growth of the 5.2 s.c.1 isolate showed that iron additions stimulated rather then inhibited the growth of the isolate. Because of this we would recommend this isolate for further experiments. (f) The shape of the Chlorogloeopsis siderophila cells (cyanobacteria) was found to be affected b

  1. Introgression & mapping Fiber cell

    E-Print Network [OSTI]

    Germplasm Introgression Genomics & mapping Fiber cell initiation Radiation hybrid (RH) mapping and breeding. Research activities commonly include plant breeding, genetics, genomics, cytogenetics, molecular methods. (C, S) · Contribute uniquely to genomics and its relevance to genetic improvement (C,S) · Harness

  2. SERC Grants Interactive Map

    Broader source: Energy.gov [DOE]

    View SERC Grants in a larger map. To report corrections, please email SustainableEnergyWAP@ee.doe.gov.

  3. National Hydropower Map

    Broader source: Energy.gov [DOE]

    High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

  4. WIPP Projects Interative Map

    Broader source: Energy.gov [DOE]

    View WIPP Projects in a larger map. To report corrections, please email WeatherizationInnovation@ee.doe.gov.

  5. Quantitative DNA fiber mapping

    DOE Patents [OSTI]

    Gray, Joe W. (San Francisco, CA); Weier, Heinz-Ulrich G. (Oakland, CA)

    1998-01-01T23:59:59.000Z

    The present invention relates generally to the DNA mapping and sequencing technologies. In particular, the present invention provides enhanced methods and compositions for the physical mapping and positional cloning of genomic DNA. The present invention also provides a useful analytical technique to directly map cloned DNA sequences onto individual stretched DNA molecules.

  6. Quantitive DNA Fiber Mapping

    E-Print Network [OSTI]

    Lu, Chun-Mei

    2009-01-01T23:59:59.000Z

    of California. Lu et al. : DNA Fiber Mapping page - 35 Lu etal. : DNA Fiber Mapping page - 36 a b c d e f g OV P1 cloneSp6 end T7 end Lu et al. : DNA Fiber Mapping page - 37 a b c

  7. Short communication Buried relic seawall mitigates Hurricane Sandy's impacts

    E-Print Network [OSTI]

    Lynett, Patrick

    Short communication Buried relic seawall mitigates Hurricane Sandy's impacts Jennifer L. Irish a Accepted 6 June 2013 Available online xxxx Keywords: Hurricanes Storm surge Waves Storm damage Seawalls of Hurricane Sandy revealed clear differences in patterns of the impact between two neighboring boroughs along

  8. Lesson Summary Students will learn about a mitigation process

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    , posters, or other materials for group presentations Advanced Planning Preparation Time: ~10 minutes 1 The Carbon Mitigation Initiative is a joint project of Princeton University, BP, and Ford Motor Company" that need to be cut out of predicted future carbon emissions in the next 50 years to avoid a doubling

  9. SEMIACTIVE CONTROL OF CIVIL STRUCTURES FOR NATURAL HAZARD MITIGATION

    E-Print Network [OSTI]

    Spencer Jr., B.F.

    will investigate innovative smart structures, including the seismic protection of buildings and the mitigation of these smart structures, identifying viable semiactive control strategies, assessing the mer- its building control is shown to be a viable method to protect tall buildings from seismic excitation. Various

  10. Mitigated subsurface transfer line leak resulting in a surface pool

    SciTech Connect (OSTI)

    SCOTT, D.L.

    1999-02-08T23:59:59.000Z

    This analysis evaluates the mitigated consequences of a potential waste transfer spill from an underground pipeline. The spill forms a surface pool. One waste composite, a 67% liquid, 33% solid, from a single shell tank is evaluated. Even drain back from a very long pipeline (50,000 ft), does not pose dose consequences to the onsite or offsite individual above guideline values.

  11. Market Based Risk Mitigation: Risk Management vs. Risk Avoidance

    E-Print Network [OSTI]

    Market Based Risk Mitigation: Risk Management vs. Risk Avoidance Shmuel Oren University of the critical infrastructures in our society. Risk assessment and systematic consideration of risk in the design knowledge for engineers, like physics for instance, consideration of risk has penetrated all engineering

  12. REVIEW ARTICLE Legumes for mitigation of climate change

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    activity, and meeting the increasing demand for energy in the face of dwindling reserves of fossil energy to the mitigation of climate change by reducing fossil fuel use or by providing feedstock for the emerging biobased from fossil fuels. Experimental measures of total N2O fluxes from legumes and N-fertilized systems were

  13. Unconventional Nuclear Warfare Defense (UNWD) containment and mitigation subtask.

    SciTech Connect (OSTI)

    Wente, William Baker

    2005-06-01T23:59:59.000Z

    The objective of this subtask of the Unconventional Nuclear Warfare Design project was to demonstrate mitigation technologies for radiological material dispersal and to assist planners with incorporation of the technologies into a concept of operations. The High Consequence Assessment and Technology department at Sandia National Laboratories (SNL) has studied aqueous foam's ability to mitigate the effects of an explosively disseminated radiological dispersal device (RDD). These benefits include particle capture of respirable radiological particles, attenuation of blast overpressure, and reduction of plume buoyancy. To better convey the aqueous foam attributes, SNL conducted a study using the Explosive Release Atmospheric Dispersion model, comparing the effects of a mitigated and unmitigated explosive RDD release. Results from this study compared health effects and land contamination between the two scenarios in terms of distances of effect, population exposure, and remediation costs. Incorporating aqueous foam technology, SNL created a conceptual design for a stationary containment area to be located at a facility entrance with equipment that could minimize the effects from the detonation of a vehicle transported RDD. The containment design was evaluated against several criteria, including mitigation ability (both respirable and large fragment particle capture as well as blast overpressure suppression), speed of implementation, cost, simplicity, and required space. A mock-up of the conceptual idea was constructed at SNL's 9920 explosive test site to demonstrate the containment design.

  14. Corrosion mitigation-A critical facet of well completion design

    SciTech Connect (OSTI)

    Bradburn, J.B.; Karla, S.K.

    1983-09-01T23:59:59.000Z

    Successful completion and production of deep hot corrosive wells can be accomplished by the development of a corrosion mitigation program during the initial stages of the drilling and completion phases. The mitigation programs that have proved safe, reliable, and effective address three critical areas: tubing selection, corrosion treatment method, and completion design. These three areas when properly studied and evaluated result in a successful corrosion mitigation program and a well with a low workover frequency. The development of an effective well completion program in a corrosive well requires input from the drilling, completion, and corrosion engineers. Completion design, tubing selection, and the corrosion treatment method are all critical facets in the economical production of deep hot wells that contain CO/sub 2/ and/or H/sub 2/S in the produced gas. A completion design that limits the application of a corrosion inhibitor could reduce its effectiveness to less than 50%. Industry surveys and field results suggest that the use of low-alloy carbon steels in conjunction with a continuous corrosion inhibitor injection system can effectively and economically control the rate of the corrosion attack. Also evident are the potential problems that can arise if a corrosion mitigation program is designed to rely entirely on the corrosion resistance qualities of an activepassive metal alloy such as stainless steels.

  15. The Economic Impact of Drought and Mitigation in Agriculture

    E-Print Network [OSTI]

    Yang, Zong-Liang

    The Economic Impact of Drought and Mitigation in Agriculture Texas Drought and Beyond CIESS Austin · In Agriculture, it Began in 2010 ­ Wheat and other winter grazing crops are planted in the Fall ­ Lost value ­ Infrastructure losses #12;Agricultural Costs of Drought · Estimated $7.62 Billion ­ Corn, cotton, wheat, hay $4

  16. U.S. Agriculture's Role Greenhouse Gas Emission Mitigation World

    E-Print Network [OSTI]

    McCarl, Bruce A.

    U.S. Agriculture's Role in a Greenhouse Gas Emission Mitigation World: An Economic Perspective and Research Associate, respectively, Department of Agricultural Economics, Texas A&M University. Seniority of Authorship is shared. This research was supported by the Texas Agricultural Experiment Station through

  17. PEAKING OF WORLD OIL PRODUCTION: IMPACTS, MITIGATION, & RISK MANAGEMENT

    E-Print Network [OSTI]

    Laughlin, Robert B.

    PEAKING OF WORLD OIL PRODUCTION: IMPACTS, MITIGATION, & RISK MANAGEMENT Robert L. Hirsch, SAIC OF WORLD OIL PRODUCTION III. WHY TRANSITION WILL BE TIME CONSUMING IV. LESSONS FROM PAST EXPERIENCE V REMARKS APPENDICES #12;4 EXECUTIVE SUMMARY The peaking of world oil production presents the U

  18. INFLATABLE PLUG FOR THREAT MITIGATION IN TRANSPORTATION TUNNELS

    E-Print Network [OSTI]

    Barbero, Ever J.

    INFLATABLE PLUG FOR THREAT MITIGATION IN TRANSPORTATION TUNNELS Xavier Martinez1 , Julio Davalos2 and government entities. Fires, noxious fumes, deadly gasses, and flooding threats have occurred in major are of difficult and limited accessibility, but also because most of the potential threats, such as fires, flooding

  19. Ionosphere Threat to LAAS: Updated Model, User Impact, and Mitigations

    E-Print Network [OSTI]

    Stanford University

    1 Ionosphere Threat to LAAS: Updated Model, User Impact, and Mitigations Ming Luo, Sam Pullen-4], a "linear spatial gradient front" model was established and a threat space was extrapolated based on data from the 6 April 2000 ionospheric storm. User vertical error was estimated based on this threat model

  20. Efficient DHT attack mitigation through peers' ID distribution

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Efficient DHT attack mitigation through peers' ID distribution Thibault Cholez, Isabelle Chrisment.festor}@loria.fr Abstract--We present a new solution to protect the widely deployed KAD DHT against localized attacks which DHT attacks by comparing real peers' ID distributions to the theoretical one thanks to the Kullback

  1. Historical Data/Case for mitigation SDOX Design

    E-Print Network [OSTI]

    Soerens, Thomas

    Historical Dam Site Data #12;$8.46/mg change in treatment costs per mg/l TOC per 1,000,000 gallons #12 engineered the system and construction began in 2010, operation began in 2011 #12; Primary effect: Increase#12; Historical Data/Case for mitigation SDOX Design Results from 2011 season SDOX Key

  2. Mitigating the Untrusted Terminal Problem Using Conditional Signatures

    E-Print Network [OSTI]

    Bencsáth, Boldizsár

    Mitigating the Untrusted Terminal Problem Using Conditional Signatures István Zsolt BERTA Levente be a user generating an elec- tronic check at a merchant's terminal in a shop. The danger is that the terminal can obtain a signature from the card on an arbitrarily chosen document, that is different from

  3. Salt Frost Deterioration in Concrete Pavement --Causes and Mitigation

    E-Print Network [OSTI]

    Salt Frost Deterioration in Concrete Pavement --Causes and Mitigation Zhichao Liu, Will Hansen and special effects such as surface tension and osmotic effect (salt solution). ·Below the nucleation the surface contains a salt solution, pore suction attracts surface liquid and additional ice growth may

  4. Air Quality and Emissions Impacts of Heat Island Mitigation Strategies

    E-Print Network [OSTI]

    Air Quality and Emissions Impacts of Heat Island Mitigation Strategies ENVIRONMENTAL AREA RESEARCH the temperature of the ground surface and the ambient air. This situation creates areas called urban heat summertime temperatures reduces electricity demand for air conditioning, which lowers air pollution levels

  5. Climate change mitigation through forestry measures: potentials, options, practice

    E-Print Network [OSTI]

    · Harvested wood products (HWP) · Contributions of biomass/HWP in Energy and Industrial sectors. #12;18 May mitigation potential (Europe) 0 20 40 60 80 100 120 140 160 180 Avoided deforestation Afforestation Forest deforestation rates in Europe are generally small Will tend to be relevant to MS with areas of land available

  6. Albeni Falls Wildlife Mitigation Project, 2008 Annual Report.

    SciTech Connect (OSTI)

    Soults, Scott [Kootenai Tribe of Idaho

    2009-08-05T23:59:59.000Z

    The Albeni Falls Interagency Work Group (AFIWG) was actively involved in implementing wildlife mitigation activities in late 2007, but due to internal conflicts, the AFIWG members has fractionated into a smaller group. Implementation of the monitoring and evaluation program continued across protected lands. As of 2008, The Albeni Falls Interagency Work Group (Work Group) is a coalition comprised of wildlife managers from three tribal entities (Kalispel Tribe, Kootenai Tribe, Coeur d Alene Tribe) and the US Army Corps of Engineers. The Work Group directs where wildlife mitigation implementation occurs in the Kootenai, Pend Oreille and Coeur d Alene subbasins. The Work Group is unique in the Columbia Basin. The Columbia Basin Fish and Wildlife Authority (CBFWA) wildlife managers in 1995, approved what was one of the first two project proposals to implement mitigation on a programmatic basis. The maintenance of this kind of approach through time has allowed the Work Group to implement an effective and responsive habitat protection program by reducing administrative costs associated with site-specific project proposals. The core mitigation entities maintain approximately 9,335 acres of wetland/riparian habitats in 2008.

  7. Sensitivity of climate mitigation strategies to natural disturbances

    SciTech Connect (OSTI)

    Le Page, Yannick LB; Hurtt, George; Thomson, Allison M.; Bond-Lamberty, Benjamin; Patel, Pralit L.; Wise, Marshall A.; Calvin, Katherine V.; Kyle, G. Page; Clarke, Leon E.; Edmonds, James A.; Janetos, Anthony C.

    2013-02-19T23:59:59.000Z

    The present and future concentration of atmospheric carbon dioxide depends on both anthropogenic and natural sources and sinks of carbon. Most proposed climate mitigation strategies rely on a progressive transition to carbon12 efficient technologies to reduce industrial emissions, substantially supported by policies to maintain or enhance the terrestrial carbon stock in forests and other ecosystems. This strategy may be challenged if terrestrial sequestration capacity is affected by future climate feedbacks, but how and to what extent is little understood. Here, we show that climate mitigation strategies are highly sensitive to future natural disturbance rates (e.g. fires, hurricanes, droughts), because of potential effect of disturbances on the terrestrial carbon balance. Generally, altered disturbance rates affect the pace of societal and technological transitions required to achieve the mitigation target, with substantial consequences on the energy sector and on the global economy. Understanding the future dynamics and consequences of natural disturbances on terrestrial carbon balance is thus essential for developing robust climate mitigation strategies and policies

  8. Mitigating Flood Loss through Local Comprehensive Planning in Florida

    E-Print Network [OSTI]

    Kang, Jung Eun

    2010-10-12T23:59:59.000Z

    and environment planning and policy. When sustainability was embraced by international organizations and governmental organizations managing development programs and projects, the term, ?sustainable development? became popular (Beatley, 1998). Currently...; and a more economically integrated and diverse population (Vale & Campanella, 2005). Based on previous literature (Beatley, 1998; Berke, 1995; Mileti, 1999), this study develops principles of sustainability that can be applied to flood mitigation...

  9. The Role of China in Mitigating Climate Change

    E-Print Network [OSTI]

    Paltsev, S.

    We explore short- and long-term implications of several energy scenarios of China’s role in efforts to mitigate global climate risk. The focus is on the impacts on China’s energy system and GDP growth, and on global climate ...

  10. ORIGINAL PAPER Adaptation and mitigation strategies in agriculture

    E-Print Network [OSTI]

    distri- bution. Major contributing factors will include increasing atmospheric carbon dioxide, rising gases, chiefly carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) (IPCC 2001a). CurrentlyORIGINAL PAPER Adaptation and mitigation strategies in agriculture: an analysis of potential

  11. air pollution mitigation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    air pollution mitigation First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Environmental Pollution Air...

  12. Transportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation

    E-Print Network [OSTI]

    .S. CO2 emissions sources. U.S. CO2 transportation emissions sources by mode. #12;Center% of the carbon dioxide we produce. As such it is a leading candidate for greenhouse gas ((GHG) (CO2, NH4, HFCsTransportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation Oak Ridge

  13. Action plan for responses to abnormal conditions in Hanford Site radioactive waste tanks with high organic content. Revision 1

    SciTech Connect (OSTI)

    Fowler, K.D.

    1993-07-01T23:59:59.000Z

    This action plan describes the criteria and the organizational responsibilities required for ensuring that waste storage tanks with high organic contents are maintained in a safe condition at the Hanford Site. In addition, response actions are outlined for (1) prevention or mitigation of excessive temperatures; or (2) a material release from any waste tank with high organic content. Other response actions may be defined by Westinghouse Hanford Company Systems Engineering if a waste tank parameter goes out of specification. Trend analysis indicates the waste tank parameters have seasonal variations, but are otherwise stable.

  14. Thailand-National Energy Efficiency Plan and Evidence-based Mitigation...

    Open Energy Info (EERE)

    Evidence-based Mitigation Strategy Jump to: navigation, search Name GIZ-Thailand-National energy efficiency plan as a core element for an activity- and evidence-based mitigation...

  15. Conceptual Study on Air Ingress Mitigation for VHTRs

    SciTech Connect (OSTI)

    Chang H. Oh; Eung S. Kim

    2012-09-01T23:59:59.000Z

    An air-ingress accident followed by a pipe break is considered as a critical event for a very high temperature gas-cooled reactor (VHTR) safety. Following helium depressurization, it is anticipated that unless countermeasures are taken, air will enter the core through the break leading to oxidation of the in-core graphite structure. Thus, without mitigation features, this accident might lead to severe exothermic chemical reactions of graphite and oxygen depending on the accident scenario and the design. Under extreme circumstances, a loss of core structural integrity may occur and lead to a detrimental situation for the VHTR safety. This paper discusses various air-ingress mitigation concepts applicable for the VHTRs. The study begins with identifying important factors (or phenomena) associated with the air-ingress accident using a root-cause analysis. By preventing main causes of the important events identified in the root-cause diagram, the basic air-ingress mitigation ideas were conceptually developed. Among them, two concepts were finally evaluated as effective candidates. One concept is to inject helium into the lower plenum which is a direct in-vessel helium injection. The other concept is to enclose the reactor with a non-pressure boundary consisting of an opening at the bottom, which is an ex-vessel enclosure boundary. Computational fluid dynamics (CFD) methods were used to validate these concepts. As a result, it was shown that both concepts can effectively mitigate the air-ingress process. In the first concept, the injected helium replaces the air in the core and the lower plenum upper part by buoyancy force because of its low density. It prevented air from moving into the reactor core showing great potential for mitigating graphite oxidation in the core. In the second concept, the air-ingress rate is controlled by molecular diffusion through the opening at the enclosure bottom after depressurization. Some modified reactor cavity design is expected to play this role in the VHTRs.

  16. CLOSEOUT REPORT REMEDIAL ACTION

    E-Print Network [OSTI]

    FINAL CLOSEOUT REPORT REMEDIAL ACTION AREA OF CONCERN 6 BUILDING 650 RECLAMATION FACILITY SUMP York 11973 REGISTERED TO ISO 14001 #12;AOC 6 BUILDING 650 RECLAMATION FACILITY SUMP AND SUMP OUTFALL .................................................................................9 2.6.1 Final Radiological Status Survey Design

  17. Conjugate flow action functionals

    SciTech Connect (OSTI)

    Venturi, Daniele, E-mail: daniele-venturi@brown.edu [Division of Applied Mathematics, Brown University, Rhode Island 02912 (United States)] [Division of Applied Mathematics, Brown University, Rhode Island 02912 (United States)

    2013-11-15T23:59:59.000Z

    We present a new general framework to construct an action functional for a non-potential field theory. The key idea relies on representing the governing equations relative to a diffeomorphic flow of curvilinear coordinates which is assumed to be functionally dependent on the solution field. Such flow, which will be called the conjugate flow, evolves in space and time similarly to a physical fluid flow of classical mechanics and it can be selected in order to symmetrize the Gâteaux derivative of the field equations with respect to suitable local bilinear forms. This is equivalent to requiring that the governing equations of the field theory can be derived from a principle of stationary action on a Lie group manifold. By using a general operator framework, we obtain the determining equations of such manifold and the corresponding conjugate flow action functional. In particular, we study scalar and vector field theories governed by second-order nonlinear partial differential equations. The identification of transformation groups leaving the conjugate flow action functional invariant could lead to the discovery of new conservation laws in fluid dynamics and other disciplines.

  18. Action Plan Materials Science

    E-Print Network [OSTI]

    Fitze, Patrick

    sense, including all strata) has available to it a wide range of con- venient products which improve, improving companies' pros- pects and generating wealth without harming the environment. And allAction Plan 2010-2013 Materials Science Area EXECUTIVE SUMMARY #12;N.B.: If you require any further

  19. Wildlife and Wildlife Habitat Mitigation Plan for Hungry Horse Hydroelectric Project, Final Report.

    SciTech Connect (OSTI)

    Bissell, Gael

    1985-01-01T23:59:59.000Z

    This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Hungry Horse hydroelectric project. In this report, mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. Mitigation objectives for each species (group) were established based on the loss estimates but tailored to the recommended projects. 13 refs., 3 figs., 19 tabs.

  20. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    E-Print Network [OSTI]

    Kong, Lingbo

    2014-01-01T23:59:59.000Z

    combined with CCS has the potential to generate usefulthe CO 2 mitigation potential of CCS in CHP systems based on

  1. Supplement Analysis for the Wildlife Mitigation Program EIS (DOE/EIS-0246/SA-36)

    SciTech Connect (OSTI)

    N /A

    2003-10-10T23:59:59.000Z

    The compliance checklist for this project was originally completed by the Burns Paiute Tribe in 2000, and meets the standards and guidelines for the Wildlife Mitigation Program Environmental Impact Statement (EIS) and Record of Decision (ROD), as well as the Watershed Management Program Environmental Impact Statement (EIS) and Record of Decision (ROD). The Logan Valley Wildlife Mitigation Plan, now being implemented, continues to be consistent with the above mentioned EISs and RODs. Pursuant to its obligations under the Endangered Species Act, BPA has made a determination of whether its proposed project will have any effects on any listed species under the jurisdiction of the United States Fish and Wildlife Service (USFWS). A species list was obtained from USFWS on June 12, 2003, identifying bald eagles, Canada lynx, and bull trout as potentially occurring in the project area. A site assessment was conducted on July 15, 2003 to determine if these species were present and the potential effects of project activities. A ''No Effect'' determination was made for all ESA-listed species. There were no listed species under the jurisdiction of NOAA Fisheries present in the project area. As management activities proceed in the future, BPA will annually re-assess potential effects of planned activities on listed species. The Burns-Paiute Tribe conducted a literature search for historic and archaeological sites on the property on January 11, 1999. No known sites were identified. Further site-specific surveys will be conducted for individual ground disturbing activities. The results of these surveys will be sent to the Oregon State Historic Preservation Office and BPA. BPA will annually summarize and submit a report to the State Historic Preservation Office. On December 29, 1999, Fred Walasavage of BPA completed a Phase I Site Assessment and concluded that the site did not reveal any environmental factors that would pose a significant liability for remedial action or cleanup under the Comprehensive Recovery, Compensation and Liability Act. A public meeting was held when the property was initially acquired where the property acquisition and proposed activities were discussed. Subsequent public involvement was conducted on July 23, 2002 for commenting on the proposed Logan Valley Wildlife Mitigation Plan.

  2. Effectiveness of advanced coating systems for mitigating blast effects on steel components

    E-Print Network [OSTI]

    Effectiveness of advanced coating systems for mitigating blast effects on steel components C. Chen1 of this work is to study the effectiveness of an advanced coating material, polyurea, as a blast mitigation. Effects of thicknesses and locations of the polyurea on the blast mitigation are also studied

  3. Does Natural Resource Extraction Mitigate Poverty and Inequality? Evidence from Rural Mexico and a Lacandona Rainforest Community

    E-Print Network [OSTI]

    Lopez-Feldman, Alejandro; Mora, Jorge; Taylor, J. Edward

    2006-01-01T23:59:59.000Z

    Mitigate Poverty and Inequality? Evidence from Rural MexicoMitigate Poverty and Inequality? Evidence from Rural MexicoBootstrap Inference for Inequality and Poverty Measures’,

  4. Final Report. SFAA No. DEFC02-98CH10961. Technical assistance for joint implementation and other supporting mechanisms and measures for greenhouse gas emissions mitigation

    SciTech Connect (OSTI)

    Knight, Denise

    2001-10-15T23:59:59.000Z

    IIEC, a division of CERF, has developed an extensive base of experience implementing activities that support climate action by developing USIJI projects in transitional countries within Asia, Latin America, Central and Eastern Europe, and southern Africa. IIEC has been able to provide a range of technical and policy assistance to governments and industry in support of sustainable energy use. IIEC continues to work in key countries with local partners to develop and implement energy efficiency policies and standards, develop site-specific projects, and assist governing bodies to establish national priorities and evaluation criteria for approving GHG-mitigation projects. As part of this project, IIEC focused on promoting a series of activities in Thailand and South Africa in order to identify GHG mitigation projects and work within the national approval process of those countries. The sections of this report outline the activities conducted in each country in order to achieve that goal.

  5. Corrective Action Investigation Plan for Corrective Action Unit...

    Office of Scientific and Technical Information (OSTI)

    Plan for Corrective Action Unit 541: Small Boy Nevada National Security Site and Nevada Test and Training Range, Nevada Re-direct Destination: Corrective Action Unit (CAU) 541 is...

  6. Map-likelihood phasing

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Bioscience Division, Mail Stop M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2001-12-01T23:59:59.000Z

    A map-likelihood function is described that can yield phase probabilities with very low model bias. The recently developed technique of maximum-likelihood density modification [Terwilliger (2000 ?), Acta Cryst. D56, 965–972] allows a calculation of phase probabilities based on the likelihood of the electron-density map to be carried out separately from the calculation of any prior phase probabilities. Here, it is shown that phase-probability distributions calculated from the map-likelihood function alone can be highly accurate and that they show minimal bias towards the phases used to initiate the calculation. Map-likelihood phase probabilities depend upon expected characteristics of the electron-density map, such as a defined solvent region and expected electron-density distributions within the solvent region and the region occupied by a macromolecule. In the simplest case, map-likelihood phase-probability distributions are largely based on the flatness of the solvent region. Though map-likelihood phases can be calculated without prior phase information, they are greatly enhanced by high-quality starting phases. This leads to the technique of prime-and-switch phasing for removing model bias. In prime-and-switch phasing, biased phases such as those from a model are used to prime or initiate map-likelihood phasing, then final phases are obtained from map-likelihood phasing alone. Map-likelihood phasing can be applied in cases with solvent content as low as 30%. Potential applications of map-likelihood phasing include unbiased phase calculation from molecular-replacement models, iterative model building, unbiased electron-density maps for cases where 2F{sub o} ? F{sub c} or ?{sub A}-weighted maps would currently be used, structure validation and ab initio phase determination from solvent masks, non-crystallographic symmetry or other knowledge about expected electron density.

  7. SAVEnergy Action Plans

    SciTech Connect (OSTI)

    Mayo, K.; Westby, R. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); deMonsabert, S. [George Mason Univ., Fairfax, VA (United States)] [George Mason Univ., Fairfax, VA (United States); Ginsberg, M. [USDOE, Washington, DC (United States)] [USDOE, Washington, DC (United States)

    1994-04-01T23:59:59.000Z

    The Department of Energy`s Federal Energy Management Program (FEMP) is charged with carrying out key sections of EPACT and Executive Order 12903, to make the Federal government operate more efficiently. A congressionally mandated energy and water conservation audit program is one component of this growing DOE program. This paper traces the SAVEnergy Action Plan program throughout its development from (1) identifying projects and Agency champions, (2) establishing a protocol and fitting auditors into the program, (3) developing a data base to track the audits and measure their success, and (4) evaluating the process, learning from mistakes, and charting and transferring successes. A major tenet of the SAVEnergy program is to proactively prescreen all audit activities to ensure that -- where audits are done and Action Plans completed -- projects will be done.

  8. Validation of techniques to mitigate copper surface contamination in CUORE

    E-Print Network [OSTI]

    F. Alessandria; R. Ardito; D. R. Artusa; F. T. Avignone III; O. Azzolini; M. Balata; T. I. Banks; G. Bari; J. Beeman; F. Bellini; A. Bersani; M. Biassoni; T. Bloxham; C. Brofferio; C. Bucci; X. Z. Cai; L. Canonica; S. Capelli; L. Carbone; L. Cardani; M. Carrettoni; N. Casali; N. Chott; M. Clemenza; C. Cosmelli; O. Cremonesi; R. J. Creswick; I. Dafinei; A. Dally; V. Datskov; A. De Biasi; M. M. Deninno; S. Di Domizio; M. L. di Vacri; L. Ejzak; R. Faccini; D. Q. Fang; H. A. Farach; E. Ferri; F. Ferroni; E. Fiorini; M. A. Franceschi; S. J. Freedman; B. K. Fujikawa; A. Giachero; L. Gironi; A. Giuliani; J. Goett; A. Goodsell; P. Gorla; C. Gotti; E. Guardincerri; T. D. Gutierrez; E. E. Haller; K. Han; K. M. Heeger; H. Z. Huang; R. Kadel; K. Kazkaz; G. Keppel; L. Kogler; Yu. G. Kolomensky; D. Lenz; Y. L. Li; C. Ligi; X. Liu; Y. G. Ma; C. Maiano; M. Maino; M. Martinez; R. H. Maruyama; Y. Mei; N. Moggi; S. Morganti; T. Napolitano; S. Newman; S. Nisi; C. Nones; E. B. Norman; A. Nucciotti; F. Orio; D. Orlandi; J. L. Ouellet; M. Pallavicini; V. Palmieri; L. Pattavina; M. Pavan; M. Pedretti; G. Pessina; S. Pirro; E. Previtali; V. Rampazzo; R. Reil; F. Rimondi; C. Rosenfeld; C. Rusconi; S. Sangiorgio; N. D. Scielzo; M. Sisti; A. R. Smith; L. Sparks; F. Stivanello; L. Taffarello; M. Tenconi; W. D. Tian; C. Tomei; S. Trentalange; G. Ventura; M. Vignati; B. S. Wang; H. W. Wang; C. A. Whitten Jr; T. Wise; A. Woodcraft; L. Zanotti; C. Zarra; B. X. Zhu; S. Zucchelli

    2013-04-04T23:59:59.000Z

    In this article we describe the background challenges for the CUORE experiment posed by surface contamination of inert detector materials such as copper, and present three techniques explored to mitigate these backgrounds. Using data from a dedicated test apparatus constructed to validate and compare these techniques we demonstrate that copper surface contamination levels better than 10E-07 - 10E-08 Bq/cm2 are achieved for 238U and 232Th. If these levels are reproduced in the final CUORE apparatus the projected 90% C.L. upper limit on the number of background counts in the region of interest is 0.02-0.03 counts/keV/kg/y depending on the adopted mitigation technique.

  9. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    SciTech Connect (OSTI)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01T23:59:59.000Z

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This

  10. Mitigating Climate Change Through Green Buildings and Smart Growth

    SciTech Connect (OSTI)

    Brown, Marilyn A [ORNL; Southworth, Frank [ORNL

    2008-01-01T23:59:59.000Z

    Energy-efficient buildings are seen by climate change experts as one of the least-cost approaches to mitigating greenhouse gas emissions. This paper summarizes a study done for the Pew Center on Global Climate Change that takes a broader look at the potential role of a climate-friendly built environment including not only considerations of how buildings are constructed and used, but also how they interface with the electric grid and where they are located in terms of urban densities and access to employment and services. In addition to summarizing mechanisms of change (barriers and drivers), the paper reviews a set of policies that could bring carbon emissions in the building sector in 2025 back almost to 2004 levels. By mid-century, the combination of green buildings and smart growth could deliver the deeper reductions that many believe are needed to mitigate climate change.

  11. Tank vapor mitigation requirements for Hanford Tank Farms

    SciTech Connect (OSTI)

    Rakestraw, L.D.

    1994-11-15T23:59:59.000Z

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.

  12. Ocean Fertilization and Other Climate Change Mitigation Strategies: An Overview

    SciTech Connect (OSTI)

    Huesemann, Michael H.

    2008-07-29T23:59:59.000Z

    In order to evaluate ocean fertilization in the larger context of other proposed strategies for reducing the threat of the global warming, a wide range of different climate change mitigation approaches are compared in terms of their long-term potential, stage of development, relative costs and potential risks, as well as public acceptance. This broad comparative analysis is carried out for the following climate change mitigation strategies: supply-side and end-use efficiency improvements, terrestrial and geological carbon sequestration, CO2 ocean disposal and iron fertilization, nuclear power, and renewable energy generation from biomass, passive solar, solar thermal, photovoltaics, hydroelectric and wind. In addition, because of the inherent problems of conducting an objective comparative cost-benefit analysis, two non-technological solutions to global warming are also discussed: curbing population growth and transitioning to a steady-state economy.

  13. Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation...

    Open Energy Info (EERE)

    of national actions that can also lead to improvements in long term agricultural productivity, enhancing food security and increasing environmental sustainability. Main...

  14. Climate Action Plan (Manitoba, Canada)

    Broader source: Energy.gov [DOE]

    Manitoba's Climate Action Plan centers around energy efficiency, although it includes mandates and initiatives for renewable sources of energy.

  15. IPCC WGIII Assessment Reprot: Chapter 6. Mitigation Options in Buildings

    E-Print Network [OSTI]

    Urge-Vorsatz, D.; Levine, M. D.

    2007-01-01T23:59:59.000Z

    • Shading devices • Multiple glazing layers, low-emissivity coatings • Spectrally selective windows • Electrochromic and thermochromic glazing – The rate of exchange of inside and outside air • In cold climates, air leakage can cause >1/2 of heat loss..., 2005 Co-benefits of GHG Mitigation 3. Improved quality of life and comfort #0;? Improved thermal comfort - Fewer cold surfaces such as windows #0;? Reduced level of outdoor noise infiltration and indoor pollution from outdoors - Triple glazed windows...

  16. Leak detection, monitoring, and mitigation technology trade study update

    SciTech Connect (OSTI)

    HERTZEL, J.S.

    1998-11-10T23:59:59.000Z

    This document is a revision and update to the initial report that describes various leak detection, monitoring, and mitigation (LDMM) technologies that can be used to support the retrieval of waste from the single-shell tanks (SST) at the Hanford Site. This revision focuses on the improvements in the technical performance of previously identified and useful technologies, and it introduces new technologies that might prove to be useful.

  17. Mitigating Pollution Concerns through Process Integration Technology Steps

    E-Print Network [OSTI]

    Tripathi, P.; Shukla, D.; Smith, S.

    MITIGATING POLLUTION CONCERNS THROUGH PROCESS INTEGRATION TECHNOLOGY STEPS Paul Tripathi, D.Shukla TENSA Services, Houston, Tx and Steve Smith Duke Power, Charlotte, NC Abstract: With increasing concern to reduce the emission of SOx... of the studies to illustrate succesahow sful partnership can work. 1.0 Introduction: Over the past decade, there is an increasing concern for reducing environmental pollution. Some of the issues being addressed related to this topic...

  18. Implications of simultaneously mitigating and adapting to climate change: Initial experiments using GCAM

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Wise, Marshall A.; Clarke, Leon E.; Edmonds, James A.; Kyle, G. Page; Luckow, Patrick W.; Thomson, Allison M.

    2013-04-01T23:59:59.000Z

    Historically climate impacts research and climate mitigation research have been two separate and independent domains of inquiry. Climate mitigation research has investigated greenhouse gas emissions assuming that climate is unchanging. At the same time climate mitigation research has investigated the implications of climate change on the assumption that climate mitigation will proceed without affecting the degree of climate impacts or the ability of human and natural systems to adapt. The Global Change Assessment Model (GCAM) has largely been employed to study climate mitigation. Here we explore the development of capabilities to assess climate change impacts and adaptation within the GCAM model. These capabilities are being developed so as to be able to simultaneously reconcile the joint implications of climate change mitigation, impacts and adaptive potential. This is an important step forward in that it enables direct comparison between climate mitigation activities and climate impacts and the opportunity to understand interactions between the two.

  19. Comprehensive mitigation assessment process (COMAP) - Description and instruction manual

    SciTech Connect (OSTI)

    Makundi, Willy; Sathaye, Jayant

    2001-11-09T23:59:59.000Z

    In order to prepare policies and plans to reduce GHG emissions, national policy-makers need information on the costs and benefits of different mitigation options in addition to their carbon implications. Policy-makers must weigh the costs, benefits, and impacts of climate change mitigation and adaptation options, in the face of competition for limited resources. The policy goal for mitigation options in the land use sector is to identify which mix of options is likely to best achieve the desired forestry service and production objectives at the least cost, while attempting to maximize economic and social benefits, and minimize negative environmental and social impacts. Improved national-level cost estimates of response options in the land use sector can be generated by estimating the costs and benefits of different forest management practices appropriate for specific country conditions which can be undertaken within the constraint of land availability and its opportunity cost. These co st and land use estimates can be combined to develop cost curves, which would assist policy-makers in constructing policies and programs to implement forest responses.

  20. Regularity of mappings inverse to Sobolev mappings

    SciTech Connect (OSTI)

    Vodop'yanov, Sergei K [S.L. Sobolev Institute for Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2012-10-31T23:59:59.000Z

    For homeomorphisms {phi}:{Omega}{yields}{Omega}' on Euclidean domains in R{sup n}, n{>=}2, necessary and sufficient conditions ensuring that the inverse mapping belongs to a Sobolev class are investigated. The result obtained is used to describe a new two-index scale of homeomorphisms in some Sobolev class such that their inverses also form a two-index scale of mappings, in another Sobolev class. This scale involves quasiconformal mappings and also homeomorphisms in the Sobolev class W{sup 1}{sub n-1} such that rankD{phi}(x){<=}n-2 almost everywhere on the zero set of the Jacobian det D{phi}(x). Bibliography: 65 titles.

  1. Mapping in the Cloud: Working with Google Maps and other Mapping Services

    E-Print Network [OSTI]

    Peterson, Michael

    2014-11-19T23:59:59.000Z

    :document.getElementById('map'), /*ID of element on the page where you want the map added*/ zoom:10, /*initial zoom level of map*/ latLng:{lat:39.743943, lng:-105.020089}, /*center of map in latitude/longitude*/ mtype...:'map' /*map type (map)*/ }; /*Construct an instance of MQA.TileMap with the options object*/ window.map = new MQA.TileMap(options); /*An example using the MQA.Poi constructor. You will need to pass in an object containing the lat (Latitude) and lng (Longitude...

  2. Approximation of Harmonic Maps and Wave Maps Soren Bartels

    E-Print Network [OSTI]

    Bartels, Soeren

    Approximation of Harmonic Maps and Wave Maps S¨oren Bartels Partial differential equations to certain boundary condtions. If X = then critical points u : N are called harmonic maps into N, ·) = u0, tu(0, ·) = v0. To approximate harmonic maps or wave maps we consider a regular triangula- tion

  3. Highly Effective Action from Large N Gauge Fields

    E-Print Network [OSTI]

    Hyun Seok Yang

    2014-09-25T23:59:59.000Z

    Recently John H. Schwarz put forward a conjecture that the world-volume action of a probe D3-brane in an AdS5 x S5 background of type IIB superstring theory can be reinterpreted as the highly effective action (HEA) of four-dimensional N=4 superconformal field theory on the Coulomb branch. We argue that the HEA can be derived from the noncommutative (NC) field theory representation of the AdS/CFT correspondence and the Seiberg-Witten (SW) map defining a spacetime field redefinition between ordinary and NC gauge fields. It is based only on the well-known facts that the master fields of large N matrices are higher-dimensional NC U(1) gauge fields and the SW map is a local coordinate transformation eliminating U(1) gauge fields known as the Darboux theorem in symplectic geometry.

  4. VIOLENT FRAMES IN ACTION

    SciTech Connect (OSTI)

    Sanfilippo, Antonio P.; McGrath, Liam R.; Whitney, Paul D.

    2011-11-17T23:59:59.000Z

    We present a computational approach to radical rhetoric that leverages the co-expression of rhetoric and action features in discourse to identify violent intent. The approach combines text mining and machine learning techniques with insights from Frame Analysis and theories that explain the emergence of violence in terms of moral disengagement, the violation of sacred values and social isolation in order to build computational models that identify messages from terrorist sources and estimate their proximity to an attack. We discuss a specific application of this approach to a body of documents from and about radical and terrorist groups in the Middle East and present the results achieved.

  5. Corrective Action Decision Document for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    U.S. Department of Energy, Nevada Operations Office

    1999-12-23T23:59:59.000Z

    This corrective action decision document identifies and rationalizes the US Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 135, Area 25 Underground Storage Tanks, under the Federal Facility Agreement and Consent Order. Located on the Nevada Test Site (NTS), CAU 135 consists of three Corrective Action Sites (CASs): 25-02-01, Underground Storage Tanks, referred to as the Engine, Maintenance, Assembly, and Disassembly Waste Holdup Tanks and Vault; 25-02-03, Underground Electrical Vault, referred to as the Deluge Valve Pit at the Test Cell A Facility; and 25-02-10, Underground Storage Tank, referred to as the former location of an aboveground storage tank for demineralized water at the Test Cell A Facility. Two of these CASs (25-02-03 and 25-02-10) were originally considered as underground storage tanks, but were found to be misidentified. Further, radio logical surveys conducted by Bechtel Nevada in January 1999 found no radiological contamination detected above background levels for these two sites; therefore, the closure report for CAU 135 will recommend no further action at these two sites. A corrective action investigation for the one remaining CAS (25-02-01) was conducted in June 1999, and analytes detected during this investigation were evaluated against preliminary action levels. It was determined that contaminants of potential concern included polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. Two corrective action objectives were identified for this CAS (i.e., prevention and mitigation of human exposure to sediments and surrounding areas), and subsequently two CAAs developed for consideration based on a review of existing data, future use, and current operations at the NTS. These CAAs were: Alternative 1 - No Further Action, and Alternative 2 - Unrestricted Release Decontamination and Verification Survey. Alternative 2 was chosen as the preferred CAA, after evaluation of technical merit which focused on performance, reliability, feasibility, and safety. This alternative was judged to meet all applicable state and federal regulations for closure of the site and reduces the potential future exposure pathways to the contaminated surfaces at this site.

  6. Climate Action Champions: Metropolitan Washington Council of...

    Office of Environmental Management (EM)

    evaluates mitigation and adaptation strategies, and establishes greenhouse gas emission reduction goals of 20 percent by 2020, and 80 percent by 2050 as compared to a 2005...

  7. REMEDIAL ACTION PLAN

    E-Print Network [OSTI]

    Inactive Uranium; Mill Tailings Site; Uranium Mill Tremedial

    1990-01-01T23:59:59.000Z

    designated site consists of the 111-acre tailings pile, the mill yard, and piles of demolition rubble awaiting burial. The site contains 2.659 million cubic yards of tailings including 277,000 cubic yards of contaminated material in the mill yard, ore storage area, and Ann Lee Mine area; 151,000 cubic yards in the protore storage and leach pad areas; and 664,000 cubic yards of windblown contaminated soil, including excess soil that would result from excavation. Remedial action The remedial action will start with the excavation of windblown contaminated material and placement around the west, south, and east sides of the pile to buttress the slopes for increased stability. Most of the demolition rubble will be placed in the southern part of the pile and be covered with tailings. The northern part of the tailings pile (one million cubic yards) will then be excavated and placed on the south part of the pile to reduce the size of the disposal cell footprint. Demolition rubble that

  8. CO2 emissions mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

    SciTech Connect (OSTI)

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; Kitous, Alban; McCollum, David; Mejean, Aurelie; Rao, Shilpa; Turton, Hal; Paroussos, Leonidas; Ashina, Shuichi; Calvin, Katherine V.; Wada, Kenichi; Van Vuuren, Detlef

    2015-01-01T23:59:59.000Z

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher and decrease with mitigation. A first deviation from the optimal transition pathway relaxes global emission targets until 2030, in accordance with the Copenhagen pledges and regionally-specific low-carbon technology targets. Fossil fuel markets revert back to the no-policy case: though coal use increases strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger - twice and more - than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear cut across models, as we find carbon leakage effects ranging from positive to negative because leakage and substitution patterns of coal, oil, and gas differ. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.

  9. Multipole expansion at the level of the action

    E-Print Network [OSTI]

    Andreas Ross

    2013-04-05T23:59:59.000Z

    Sources of long wavelength radiation are naturally described by an effective field theory (EFT) which takes the form of a multipole expansion. Its action is given by a derivative expansion where higher order terms are suppressed by powers of the ratio of the size of the source over the wavelength. In order to determine the Wilson coefficients of the EFT, i.e. the multipole moments, one needs the mapping between a linear source term action and the multipole expansion form of the action of the EFT. In this paper we perform the multipole expansion to all orders by Taylor expanding the field in the source term and then decomposing the action into symmetric trace free tensors which form irreducible representations of the rotation group. We work at the level of the action, and we obtain the action to all orders in the multipole expansion and the exact expressions for the multipole moments for a scalar field, electromagnetism and linearized gravity. Our results for the latter two cases are manifestly gauge invariant. We also give expressions for the energy flux and the (gauge dependent) radiation field to all orders in the multipole expansion. The results for linearized gravity are a component of the EFT framework NRGR and will greatly simplify future calculations of gravitational wave observables in the radiation sector of NRGR.

  10. Scattering map for two black holes

    E-Print Network [OSTI]

    Alessandro P. S. de Moura; Patricio S. Letelier

    1999-10-25T23:59:59.000Z

    We study the motion of light in the gravitational field of two Schwarzschild black holes, making the approximation that they are far apart, so that the motion of light rays in the neighborhood of one black hole can be considered to be the result of the action of each black hole separately. Using this approximation, the dynamics is reduced to a 2-dimensional map, which we study both numerically and analytically. The map is found to be chaotic, with a fractal basin boundary separating the possible outcomes of the orbits (escape or falling into one of the black holes). In the limit of large separation distances, the basin boundary becomes a self-similar Cantor set, and we find that the box-counting dimension decays slowly with the separation distance, following a logarithmic decay law.

  11. Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Philadelphia, Pennsylvania: Solar in Action (Brochure),...

  12. Guam Energy Action Plan

    SciTech Connect (OSTI)

    Conrad, M. D.; Ness, J. E.

    2013-07-01T23:59:59.000Z

    Describes the four near-term strategies selected by the Guam Energy Task Force during action planning workshops conducted in March 2013, and outlines the steps being taken to implement those strategies. Each strategy addresses one of the energy sectors identified in the earlier Guam strategic energy plan as being an essential component of diversifying Guam's fuel sources and reducing fossil energy consumption 20% by 2020. The four energy strategies selected are: (1) expanding public outreach on energy efficiency and conservation, (2) establishing a demand-side management revolving loan program, (3) exploring waste-to-energy options, and (4) influencing the transportation sector via anti-idling legislation, vehicle registration fees, and electric vehicles.

  13. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'llMapping Particle Charges inMappingMapping

  14. Review of metallic surface treatments for corrosion mitigation. Final report

    SciTech Connect (OSTI)

    Hock, V.F.; Rigsbee, J.M.; Boy, J.H.

    1984-09-01T23:59:59.000Z

    Innovative metallic surface treatments for corrosion protection of facility systems and components were reviewed, including plasma spraying, electroless nickel plating, and ion plating. The work is part of the U.S. Army Corps of Engineers effort to find coatings with properties superior to conventional polymeric types. The three methods were judged for adhesion, corrosion and erosion resistance, rust mitigation, and possible use in electromagnetic shielding. A brief description of physics is given for these methods along with case studies documenting their performance. Such metallic treatments may be a cost-effective, long-term corrosion protection alternative to traditional polymeric coatings, depending on component design and purpose.

  15. Tritium Formation and Mitigation in High-Temperature Reactor Systems

    SciTech Connect (OSTI)

    Piyush Sabharwall; Carl Stoots; Hans A. Schmutz

    2013-03-01T23:59:59.000Z

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750 degrees C. Results of the diffusion model are presented for a steady production of tritium

  16. Tritium Formation and Mitigation in High-Temperature Reactors

    SciTech Connect (OSTI)

    Piyush Sabharwall; Carl Stoots

    2012-10-01T23:59:59.000Z

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750 degrees C. Results of the diffusion model are presented for a steady production of tritium

  17. Climate Mitigation Policy Implications for Global Irrigation Water Demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.

    2013-08-22T23:59:59.000Z

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of alternative land-use emissions mitigation policy options—one which values terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to lead to increased demand for water for agricultural systems (+200%), even in the absence of climate change. In general policies to mitigate climate change will increase agricultural demands for water, regardless of whether or not terrestrial carbon is valued or not. Burgeoning demands for water are driven by the demand for bioenergy in response to emissions mitigation policies. We also find that the policy matters. Increases in the demand for water when terrestrial carbon emissions go un-prices are vastly larger than when terrestrial system carbon emissions are prices at the same rate as fossil fuel and industrial emissions. Our estimates for increased water demands when terrestrial carbon systems go un-priced are larger than earlier studies. We find that the deployment of improved irrigation delivery systems could mitigate some of the increase in water demands, but cannot reverse the increases in water demands when terrestrial carbon emissions go un-priced. Finally we estimates that the geospatial pattern of water demands could stress some parts of the world, e.g. China, India and other countries in south and east Asia, earlier and more intensely than in other parts of the world, e.g. North America.

  18. EA-1731: Mitigation Acton Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIXKahuku Wind Power, LLC,Finding ofThis Mitigation

  19. Sandia Energy - Siting: Wind Turbine/Radar Interference Mitigation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSiting and Barrier Mitigation

  20. International Partnership on Mitigation and MRV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy Jump to:IES Jump to:Partnership on Mitigation

  1. Appropriate Use of Mitigation and Monitoring and Clarifying the Appropriate

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplication of SyntheticPowerManagementOpportunityUse of Mitigated

  2. Mitigating Wind-Radar Interference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,Official FileEnergyAERMOD-PRIME, UnitsMitigating Wind-Radar

  3. Affine maps of density matrices

    E-Print Network [OSTI]

    Thomas F. Jordan

    2004-11-21T23:59:59.000Z

    For quantum systems described by finite matrices, linear and affine maps of matrices are shown to provide equivalent descriptions of evolution of density matrices for a subsystem caused by unitary Hamiltonian evolution in a larger system; an affine map can be replaced by a linear map, and a linear map can be replaced by an affine map. There may be significant advantage in using an affine map. The linear map is generally not completely positive, but the linear part of an equivalent affine map can be chosen to be completely positive and related in the simplest possible way to the unitary Hamiltonian evolution in the larger system.

  4. Viewing biology in action | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biology in action Released: June 11, 2014 DOE-funded pilot program will create mesoscale biological imaging platform James Evans EMSL received first-year funding of almost...

  5. Inequality, Coalitions and Collective Action

    E-Print Network [OSTI]

    Bardhan, Pranab; Singh, Nirvikar

    2004-01-01T23:59:59.000Z

    Inequality, Coalitions and Collective Action Pranab K.coalitions) and underlying inequality in the distribution ofO10, P0 Key Words: inequality, self-enforcing, collective

  6. QCD Thermodynamics with Improved Actions

    E-Print Network [OSTI]

    Karsch, Frithjof; Engels, J; Joswig, R; Laermann, E; Peikert, A; Petersson, B

    1996-01-01T23:59:59.000Z

    The thermodynamics of the SU(3) gauge theory has been analyzed with tree level and tadpole improved Symanzik actions. A comparison with the continuum extrapolated results for the standard Wilson action shows that improved actions lead to a drastic reduction of finite cut-off effects already on lattices with temporal extent $N_\\tau=4$. Results for the pressure, the critical temperature, surface tension and latent heat are presented. First results for the thermodynamics of four-flavour QCD with an improved staggered action are also presented. They indicate similarly large improvement factors for bulk thermodynamics.

  7. Dating the Vinland Map

    ScienceCinema (OSTI)

    None

    2013-07-17T23:59:59.000Z

    Scientists from Brookhaven National Laboratory, the University of Arizona, and the Smithsonian Institution used carbon-dating technology to determine the age of a controversial parchment that might be the first-ever map of North America.

  8. Mitigation of the Impact of Pt Contamination on Cu-Zeolite SCR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Impact of Pt Contamination on Cu-Zeolite SCR Catalyst Performance Mitigation of the Impact of Pt Contamination on Cu-Zeolite SCR Catalyst Performance Investigates operating...

  9. Functional requirements and technical criteria for the 241-SY-101 RAPID mitigation system

    SciTech Connect (OSTI)

    ERHART, M.F.

    1999-02-26T23:59:59.000Z

    This document provides functional, performance, and design criteria for the RAPID Mitigation System. In addition, critical interface, design assumptions, and analytical requirements are identified.

  10. Light transfer in bubble sparged photobioreactors for H2 production and CO2 mitigation

    E-Print Network [OSTI]

    Berberoglu, Halil; Yin, Juan; Pilon, Laurent

    2007-01-01T23:59:59.000Z

    carbon dioxide mitigation, ge- netically modi?ed bacteria, reduced pigment, algae, cyanobacteria, bubblebubble sparged photobioreac- tor in order to maximize hydrogen production and carbon

  11. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    Shipley, and E. Brown, 2003. CHP Five Years Later: Federaland Paper Industries by Applying CHP Technologies. Lawrence112 Table 27. Potential GHG mitigation from CHP

  12. JICA's Assistance for Mitigation to Climate Change - The Co-Benefits...

    Open Energy Info (EERE)

    JICA's Assistance for Mitigation to Climate Change - The Co-Benefits Approach to Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: JICA's Assistance for...

  13. Climate Change Mitigation: Climate, Health, and Equity Implications of the Visible and the Hidden

    E-Print Network [OSTI]

    Shonkoff, Seth Berrin

    2012-01-01T23:59:59.000Z

    impacts of climate change on California agriculture. Climateby climate change in California, such as agriculture areas agriculture. Without proactive climate change mitigation

  14. Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining

    SciTech Connect (OSTI)

    Wolfe, Justin E.; Qiu, S. Roger; Stolz, Christopher J.

    2011-03-20T23:59:59.000Z

    Femtosecond laser machining is used to create mitigation pits to stabilize nanosecond laser-induced damage in multilayer dielectric mirror coatings on BK7 substrates. In this paper, we characterize features and the artifacts associated with mitigation pits and further investigate the impact of pulse energy and pulse duration on pit quality and damage resistance. Our results show that these mitigation features can double the fluence-handling capability of large-aperture optical multilayer mirror coatings and further demonstrate that femtosecond laser macromachining is a promising means for fabricating mitigation geometry in multilayer coatings to increase mirror performance under high-power laser irradiation.

  15. Upcoming Webinar November 19: Micro-Structural Mitigation Strategies for PEM Fuel Cells

    Broader source: Energy.gov [DOE]

    On November 19, the Energy Department will present a webinar on micro-structural mitigation strategies for PEM fuel cells focusing on morphological simulations and experimental approaches.

  16. Massive Pellet and Rupture Disk Testing for Disruption Mitigation Applications

    SciTech Connect (OSTI)

    Combs, Stephen Kirk [ORNL] [ORNL; Meitner, Steven J [ORNL] [ORNL; Baylor, Larry R [ORNL] [ORNL; Caughman, John B [ORNL] [ORNL; Commaux, Nicolas JC [ORNL] [ORNL; Fehling, Dan T [ORNL] [ORNL; Foust, Charles R [ORNL] [ORNL; Jernigan, Thomas C [ORNL] [ORNL; McGill, James M [ORNL] [ORNL; Parks, P. B. [General Atomics] [General Atomics; Rasmussen, David A [ORNL] [ORNL

    2009-01-01T23:59:59.000Z

    Injection of massive quantities of noble gases or D2 has proven to be effective at mitigating some of the deleterious effects of disruptions in tokamaks. Two alternative methods that might offer some advantages over the present technique for massive gas injection are shattering massive pellets and employing close-coupled rupture disks. Laboratory testing has been carried out to evaluate their feasibility. For the study of massive pellets, a pipe gun pellet injector cooled with a cryogenic refrigerator was fitted with a relatively large barrel (16.5 mm bore), and D2 and Ne pellets were made and were accelerated to speeds of ~600 and 300 m/s, respectively. Based on the successful proof-of-principle testing with the injector and a special double-impact target to shatter pellets, a similar system has been prepared and installed on DIII-D and should be ready for experiments later this year. To study the applicability of rupture disks for disruption mitigation, a simple test apparatus was assembled in the lab. Commercially available rupture disks of 1 in. nominal diameter were tested at conditions relevant for the application on tokamaks, including tests with Ar and He gases and rupture pressures of ~54 bar. Some technical and practical issues of implementing this technique on a tokamak are discussed.

  17. BIOMASS ACTION PLAN FOR SCOTLAND

    E-Print Network [OSTI]

    BIOMASS ACTION PLAN FOR SCOTLAND #12; #12;© Crown copyright 2007 ISBN: 978 0 7559 6506 9 Scottish% recyclable. #12;A BIOMASS ACTION PLAN FOR SCOTLAND #12;#12;1 CONTENTS FOREWORD 3 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 9 3. WIDER CONTEXT 13 4. SCOTLAND'S ROLE IN THE UK BIOMASS STRATEGY 17 5. BIOMASS HEATING 23 6

  18. STUDENT DISCIPLINARY ACTION FORM INSTRUCTIONS

    E-Print Network [OSTI]

    Baltisberger, Jay H.

    STUDENT DISCIPLINARY ACTION FORM INSTRUCTIONS Labor Program Office Berea College While one across campus. The "Student Disciplinary Action Form" was designed to provide labor supervisors directly with the student and discuss the matter in private. Calmly discuss the offense and the corrective

  19. North Slope (Wahluke Slope) expedited response action cleanup plan

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi{sup 2} (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives.

  20. Malheur River Wildlife Mitigation Project, Annual Report 2003.

    SciTech Connect (OSTI)

    Ashley, Paul

    2004-01-01T23:59:59.000Z

    Hydropower development within the Columbia and Snake River Basins has significantly affected riparian, riverine, and adjacent upland habitats and the fish and wildlife species dependent upon them. Hydroelectric dams played a major role in the extinction or major loss of both anadromous and resident salmonid populations and altered instream and adjacent upland habitats, water quality, and riparian/riverine function. Hydroelectric facility construction and inundation directly affected fish and wildlife species and habitats. Secondary and tertiary impacts including road construction, urban development, irrigation, and conversion of native habitats to agriculture, due in part to the availability of irrigation water, continue to affect wildlife and fish populations throughout the Columbia and Snake River Basins. Fluctuating water levels resulting from facility operations have created exposed sand, cobble, and/or rock zones. These zones are generally devoid of vegetation with little opportunity to re-establish riparian plant communities. To address the habitat and wildlife losses, the United States Congress in 1980 passed the Pacific Northwest Electric Power Planning and Conservation Act (Act) (P.L. 96-501), which authorized the states of Idaho, Montana, Oregon, and Washington to create the Northwest Power Planning Council (Council). The Act directed the Council to prepare a program in conjunction with federal, state, and tribal wildlife resource authorities to protect, mitigate, and enhance fish and wildlife species affected by the construction, inundation and operation of hydroelectric dams in the Columbia River Basin (NPPC 2000). Under the Columbia Basin Fish and Wildlife Program (Program), the region's fish and wildlife agencies, tribes, non-government organizations (NGOs), and the public propose fish and wildlife projects that address wildlife and fish losses resulting from dam construction and subsequent inundation. As directed by the Council, project proposals are subjected to a rigorous review process prior to receiving final approval. An eleven-member panel of scientists referred to as the Independent Scientific Review Panel (ISRP) examines project proposals. The ISRP recommends project approval based on scientific merit. The Bonneville Power Administration (BPA), the Columbia Basin Fish and Wildlife Authority (CBFWA), Council staff, the U.S. Fish and Wildlife Service (USFWS), the National Oceanic and Atmospheric Administration (NOAA), and subbasin groups also review project proposals to ensure each project meets regional and subbasin goals and objectives. The Program also includes a public involvement component that gives the public an opportunity to provide meaningful input on management proposals. After a thorough review, the Burns Paiute Tribe (BPT) acquired the Malheur River Mitigation Project (Project) with BPA funds to compensate, in part, for the loss of fish and wildlife resources in the Columbia and Snake River Basins and to address a portion of the mitigation goals identified in the Council's Program (NPPC 2000).

  1. Maps and inverse maps in open quantum dynamics

    E-Print Network [OSTI]

    Thomas F. Jordan

    2008-07-08T23:59:59.000Z

    Two kinds of maps that describe evolution of states of a subsystem coming from dynamics described by a unitary operator for a larger system, maps defined for fixed mean values and maps defined for fixed correlations, are found to be quite different for the same unitary dynamics in the same situation in the larger system. An affine form is used for both kinds of maps to find necessary and sufficient conditions for inverse maps. All the different maps with the same homogeneous part in their affine forms have inverses if and only if the homogeneous part does. Some of these maps are completely positive; others are not, but the homogeneous part is always completely positive. The conditions for an inverse are the same for maps that are not completely positive as for maps that are. For maps defined for fixed mean values, the homogeneous part depends only on the unitary operator for the dynamics of the larger system, not on any state or mean values or correlations. Necessary and sufficient conditions for an inverse are stated several different ways: in terms of the maps of matrices, basis matrices, density matrices, or mean values. The inverse maps are generally not tied to the dynamics the way the maps forward are. A trace-preserving completely positive map that is unital can not have an inverse that is obtained from any dynamics described by any unitary operator for any states of a larger system.

  2. Interference Mitigation via Power Control under the One-Power-Zone Constraint

    E-Print Network [OSTI]

    Yu, Wei

    Interference Mitigation via Power Control under the One-Power-Zone Constraint Hayssam Dahrouj, Wei on different zones. The objective of this paper is to design power control strategies to mitigation inter this constrained power control problem based on an iterative function evaluation technique. The proposed algorithms

  3. Impacts of ocean acidification and mitigative hydrated lime addition on Pacific oyster larvae

    E-Print Network [OSTI]

    Impacts of ocean acidification and mitigative hydrated lime addition on Pacific oyster larvae, and for other species. Keywords: Ocean acidification; Pacific oyster; Larval stages; Hydrated lime; Shellfish No.: 577 Title of Project: Impacts of ocean acidification and mitigative hydrated lime addition

  4. Lifetime of carbon capture and storage as a climate-change mitigation technology

    E-Print Network [OSTI]

    Lifetime of carbon capture and storage as a climate-change mitigation technology Michael L) In carbon capture and storage (CCS), CO2 is captured at power plants and then injected underground contributor to climate change (1). One promising technology to mitigate CO2 emissions is carbon cap- ture

  5. ASSESSING CLIMATE CHANGE MITIGATION WITH A HYBRID ENERGY-ECONOMY APPROACH FOR

    E-Print Network [OSTI]

    ASSESSING CLIMATE CHANGE MITIGATION WITH A HYBRID ENERGY-ECONOMY APPROACH FOR AFRICA, THE MIDDLE Management Title of Thesis: Assessing Climate Change Mitigation with a Hybrid Energy-Economy Approach create a hybrid energy-economy model for developing countries in Africa, the Middle East and Latin

  6. Climate change mitigation and co-benefits of feasible transport demand policies in Beijing

    E-Print Network [OSTI]

    Kammen, Daniel M.

    i n f o Keywords: Climate change mitigation Transport demand management External costs Urban and potential impacts of travel demand management help to define policy instruments that mitigate the damaging. The paper investi- gates the role of demand elasticities and demonstrates that joint demand and supply-side

  7. Carbon Mitigation The goal of this project is to identify and develop standards and

    E-Print Network [OSTI]

    Magee, Joseph W.

    Carbon Mitigation CERAMICS The goal of this project is to identify and develop standards and measurement methods currently needed by the energy industry to enable the development of cost efficient carbon of carbon mitigation approaches to stabilize the CO2 concentration while more sustainable energy

  8. Agriculture, Climate Change and Climate Change Mitigation Bruce A. McCarl

    E-Print Network [OSTI]

    McCarl, Bruce A.

    Agriculture, Climate Change and Climate Change Mitigation Bruce A. McCarl Regents Professor of Agricultural Economics Texas A&M University mccarl@tamu.edu ageco.tamu.edu/faculty/mccarl Let's Let Climate Change Happen Let's Avoid Climate Change Mitigation Effects Presented at Texas Recycling

  9. Concepts for Wind Turbine Sound Mitigation Page 1 of 16 AWEA Windpower 2013

    E-Print Network [OSTI]

    McCalley, James D.

    Concepts for Wind Turbine Sound Mitigation Page 1 of 16 AWEA Windpower 2013 Chicago, IL May 6-8, 2013 Concepts for Wind Turbine Sound Mitigation Dr. Kevin Kinzie , Dr. Roger Drobietz , Dr. Benoit (*) Freisinger Lanstr. 50, 85748 Garching b. MĂĽnchen [Germany] Abstract An overview of fundamental wind turbine

  10. Individual Pitch Control for Mitigation of Power Fluctuation of Variable Speed Wind Turbines

    E-Print Network [OSTI]

    Hu, Weihao

    Individual Pitch Control for Mitigation of Power Fluctuation of Variable Speed Wind Turbines, China mcheng@seu.edu.cn Abstract-- Grid connected wind turbines are the sources of power fluctuations presents an individual pitch control (IPC) strategy to mitigate the wind turbine power fluctuation at both

  11. Official Merit Promotion System and Its Impact on Climate Change Mitigation Policy in China

    E-Print Network [OSTI]

    Zhou, Pei

    on mitigating carbon emission, strengthening performance standards to control carbon standards and implementing in a long term in carbon dioxides reduction is to use its "iron hand". "Iron hand" came from Premier WenOfficial Merit Promotion System and Its Impact on Climate Change Mitigation Policy in China

  12. Electrodes mitigating effects of defects in organic electronic devices

    DOE Patents [OSTI]

    Heller, Christian Maria Anton (Albany, NY)

    2008-05-06T23:59:59.000Z

    A compound electrode for organic electronic devices comprises a thin first layer of a first electrically conducting material and a second electrically conducting material disposed on the first layer. In one embodiment, the second electrically conducting material is formed into a plurality of elongated members. In another embodiment, the second material is formed into a second layer. The elongated members or the second layer has a thickness greater than that of the first layer. The second layer is separated from the first layer by a conducting material having conductivity less than at least the material of the first layer. The compound electrode is capable of mitigating adverse effects of defects, such as short circuits, in the construction of the organic electronic devices, and can be included in light-emitting or photovoltaic devices.

  13. Alternate VHTR/HTE INterface for mitigating tritum.

    SciTech Connect (OSTI)

    Vilim, R.; Nuclear Engineering Division

    2009-02-25T23:59:59.000Z

    High temperature creep in structures at the interface between the nuclear plant and the hydrogen plant and the migration of tritium from the core through structures in the interface are two key challenges for the Very High Temperature Reactor (VHTR) coupled to the High Temperature Electrolysis (HTE) process. The severity of these challenges, however, can be reduced by lowering the temperature at which the interface operates. Preferably this should be accomplished in a way that does not reduce combined plant efficiency and other performance measures. A means for doing so is described in this report. A heat pump is used to raise the temperature of near-waste heat from the PCU to the temperature at which nine-tenths of the HTE process heat is needed. In addition to mitigating tritium transport and creep of structures, structural material commodity costs are reduced and plant efficiency is increased by a couple of percent.

  14. Pressurized water nuclear reactor system with hot leg vortex mitigator

    DOE Patents [OSTI]

    Lau, Louis K. S. (Monroeville, PA)

    1990-01-01T23:59:59.000Z

    A pressurized water nuclear reactor system includes a vortex mitigator in the form of a cylindrical conduit between the hot leg conduit and a first section of residual heat removal conduit, which conduit leads to a pump and a second section of residual heat removal conduit leading back to the reactor pressure vessel. The cylindrical conduit is of such a size that where the hot leg has an inner diameter D.sub.1, the first section has an inner diameter D.sub.2, and the cylindrical conduit or step nozzle has a length L and an inner diameter of D.sub.3 ; D.sub.3 /D.sub.1 is at least 0.55, D.sub.2 is at least 1.9, and L/D.sub.3 is at least 1.44, whereby cavitation of the pump by a vortex formed in the hot leg is prevented.

  15. Environmental Responses to Carbon Mitigation through Geological Storage

    SciTech Connect (OSTI)

    Cunningham, Alfred; Bromenshenk, Jerry

    2013-08-30T23:59:59.000Z

    In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO{sub 2} into geologic formations. The research plan has two interrelated research objectives. ? Objective 1: Determine the influence of CO{sub 2}-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites. ? Objective 2: Determine the Effects of CO{sub 2} leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

  16. Harvesting SSL Certificate Data to Mitigate Web-Fraud

    E-Print Network [OSTI]

    Mishari, Mishari Al; Defrawy, Karim El; Tsudik, Gene

    2009-01-01T23:59:59.000Z

    Web-fraud is one of the most unpleasant features of today's Internet. Two eminent examples of web-fraudulent activities are phishing and typosquatting. Phishing aims to elicit sensitive information from users by presenting them with mock-ups of legitimate web sites. Typosquatting is the nefarious practice of fielding web sites with names closely resembling those of legitimate and popular Internet destinations. Effects range from relatively benign (such as unwanted or unexpected ads) to downright sinister (especially, when typosquatting is combined with phishing). Prior work has assessed the risks of phishing and typosquatting and even attempted to profile and mitigate them. However, the problem remains largely unsolved. This paper presents a novel technique to detect web-fraud domains that utilize HTTPS. To achieve this, we conduct the first comprehensive study of SSL certificates for legitimate and popular domains, as opposed to those used for web-fraud. Drawing from extensive measurements, we build a classi...

  17. Deriving Optimal Operational Rules for Mitigating Inter-area Oscillations

    SciTech Connect (OSTI)

    Diao, Ruisheng; Huang, Zhenyu; Zhou, Ning; Chen, Yousu; Tuffner, Francis K.; Fuller, Jason C.; Jin, Shuangshuang; Dagle, Jeffery E.

    2011-05-23T23:59:59.000Z

    This paper introduces a new method to mitigate inter-area oscillations of a large scale interconnected power system by means of generation re-dispatch. The optimal operational control procedures are derived as the shortest distance from the current operating condition to a desired damping ratio of the oscillation mode by adjusting generator outputs. A sensitivity based method is used to select the most effective generators for generation re-dispatch and decision tree is trained to approximate the security boundary in a space characterized by the selected generators. The optimal operational rules can be found by solving an optimization problem where the boundary constraints are provided by the decision tree rules. This method is tested on a Western Electricity Coordinating Council (WECC) 179-bus simplified network model and simulation results have demonstrated the proof of concept and shown promising application in real time operation.

  18. Timelines for mitigating methane emissions from energy technologies

    E-Print Network [OSTI]

    Roy, Mandira; Trancik, Jessika E

    2015-01-01T23:59:59.000Z

    Energy technologies emitting differing proportions of methane and carbon dioxide vary in their relative climate impacts over time, due to the different atmospheric lifetimes of the two gases. Standard technology comparisons using the global warming potential (GWP) emissions equivalency metric do not reveal these dynamic impacts, and may not provide the information needed to assess technologies and emissions mitigation opportunities in the context of broader climate policy goals. Here we formulate a portfolio optimization model that incorporates changes in technology impacts as a radiative forcing (RF) stabilization target is approached. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher methane-emitting technologies prior to an optimal switching year, followed by methane-light technologies as the stabilization year approac...

  19. Near-Term Climate Mitigation by Short-Lived Forcers

    SciTech Connect (OSTI)

    Smith, Steven J.; Mizrahi, Andrew H.

    2013-08-12T23:59:59.000Z

    Emissions reductions focused on anthropogenic climate forcing agents with relatively short atmospheric lifetimes such as methane (CH4) and black carbon (BC) have been suggested as a strategy to reduce the rate of climate change over the next several decades. We find that reductions of methane and BC would likely have only a modest impact on near-term climate warming. Even with maximally feasible reductions phased in from 2015 to 2035, global mean temperatures in 2050 are reduced by 0.16 °C, with an uncertainty range of 0.04-0.36°C, with the high end of this range only possible if total historical aerosol forcing is small. More realistic mitigation scenarios would likely provide a smaller climate benefit. The climate benefits from targeted reductions in short-lived forcing agents are smaller than previously estimated and are not substantially different in magnitude from the benefits due to a comprehensive climate policy.

  20. actions significant actions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commitment in January 2009. In doing so, he joined more than 600 presidents to achieve climate neutrality as soon as possible. 2. Initiate two or more tangible actions to reduce...

  1. Mind Out of Action: The Intentionality of Automatic Actions 

    E-Print Network [OSTI]

    Di Nucci, Ezio

    2008-01-01T23:59:59.000Z

    We think less than we think. My thesis moves from this suspicion to show that standard accounts of intentional action can't explain the whole of agency. Causalist accounts such as Davidson's and Bratman's, according to ...

  2. Malheur River Wildlife Mitigation Project : 2008 Annual Report.

    SciTech Connect (OSTI)

    Kesling, Jason; Abel, Chad; Schwabe, Laurence

    2009-01-01T23:59:59.000Z

    In 1998, the Burns Paiute Tribe (BPT) submitted a proposal to Bonneville Power Administration (BPA) for the acquisition of the Malheur River Wildlife Mitigation Project (Project). The proposed mitigation site was for the Denny Jones Ranch and included Bureau of Land Management (BLM) and Oregon Division of State Lands (DSL) leases and grazing allotments. The Project approval process and acquisition negotiations continued for several years until the BPT and BPA entered into a Memorandum of Agreement, which allowed for purchase of the Project in November 2000. The 31,781 acre Project is located seven miles east of Juntura, Oregon and is adjacent to the Malheur River (Figure 1). Six thousand three hundred eighty-five acres are deeded to BPT, 4,154 acres are leased from DSL, and 21,242 acres are leased from BLM (Figure 2). In total 11 grazing allotments are leased between the two agencies. Deeded land stretches for seven miles along the Malheur River. It is the largest private landholding on the river between Riverside and Harper, Oregon. Approximately 938 acres of senior water rights are included with the Ranch. The Project is comprised of meadow, wetland, riparian and shrub-steppe habitats. The BLM grazing allotment, located south of the ranch, is largely shrub-steppe habitat punctuated by springs and seeps. Hunter Creek, a perennial stream, flows through both private and BLM lands. Similarly, the DSL grazing allotment, which lies north of the Ranch, is predominantly shrub/juniper steppe habitat with springs and seeps dispersed throughout the upper end of draws (Figure 2).

  3. Design review report for the SY-101 RAPID mitigation system

    SciTech Connect (OSTI)

    SCHLOSSER, R.L.

    1999-05-24T23:59:59.000Z

    This report documents design reviews conducted of the SY-101 Respond And Pump In Days (RAPID) Mitigation System. As part of the SY-101 Surface-Level-Rise Remediation Project, the SY-101 WID Mitigation System will reduce the potential unacceptable consequences of crust growth in Tank 241-SY-101 (SY-101). Projections of the crust growth rate indicate that the waste level in the tank may reach the juncture of the primary and secondary confinement structures of the tank late in 1999. Because of this time constraint, many design activities are being conducted in parallel and design reviews were conducted for system adequacy as well as design implementation throughout the process. Design implementation, as used in this design review report, is the final component selection (e.g., which circuit breaker, valve, or thermocouple) that meets the approved design requirements, system design, and design and procurement specifications. Design implementation includes the necessary analysis, testing, verification, and qualification to demonstrate compliance with the system design and design requirements. Design implementation is outside the scope of this design review. The design activities performed prior to detailed design implementation (i.e., system mission requirements, functional design requirements, technical criteria, system conceptual design, and where design and build contracts were placed, the procurement specification) have been reviewed and are within the scope of this design review report. Detailed design implementation will be controlled, reviewed, and where appropriate, approved in accordance with Tank Waste Remediation System (TWRS) engineering procedures. Review of detailed design implementation will continue until all components necessary to perform the transfer function are installed and tested.

  4. Site Map - Pantex Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomelandMultivariateSite Map Main Menu About the ALSSite Map

  5. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electronEnergy ManufacturingMapping the NanoscaleMapping

  6. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electronEnergy ManufacturingMapping theMapping the

  7. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electronEnergy ManufacturingMapping theMapping

  8. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'llMapping Particle Charges inMapping

  9. RCRA corrective action: Work plans

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    This Information Brief describes the work plans that owners/operators may have to prepare in conjunction with the performance of corrective action for compliance with RCRA guidelines. In general, the more complicated the performance of corrective action appears from the remedial investigation and other analyses, the more likely it is that the regulator will impose work plan requirements. In any case, most owner/operators will prepare work plans in conjunction with the performance of corrective action processes as a matter of best engineering management practices.

  10. Idaho Habitat Evaluation for Offsite Mitigation Record : Annual Report FY 1984.

    SciTech Connect (OSTI)

    Petrosky, Charles Edward; Holubetz, Terry

    1985-06-01T23:59:59.000Z

    An evaluation of existing and proposed habitat improvement projects for anadromous fish in the Clearwater River and Salmon River drainages was conducted. The Clearwater River and Salmon River drainages account for virtually all of Idaho's wild and natural production of summer steelhead and spring and summer chinook salmon, as well as a remnant run of sockeye salmon. Habitat enhancement projects are intended to either increase the amount of habitat, or increase the carrying capacity of existing (usually, degraded) habitat, or both. Migration barriers, such as waterfalls, culverts, and water diversions, can be modified to make available habitat that is not being used, or is underutilized, by anadromous fish. The objectives of this evaluation are: (1) document physical changes in habitat; (2) measure changes in steelhead and chinook production attributable to habitat enhancement projects; (3) measure changes in standing crops of resident fish species due to enhancement; and (4) determine project effectiveness, including relative costs and benefits, to establish the record of credit for mitigation and to guide future management actions. It was not possible to define the level of enhancement for any BPA project in 1984. Evaluations for all projects except three were in the pre-treatment phase during 1984. Because full benefits cannot be defined at current low seeding levels, projects must be monitored until full-seeding is approached. We obtained post-treatment information for three projects in 1984: Lolo Creek instream structures; upper Lochsa River instream structures; and screening of the irrigation diversion on Pole Creek. Of the three, only the Lolo Creek project exhibited any apparent benefits; these apparent benefits were not conclusively determined in 1984. The Lolo Creek project requires a follow-up evaluation in 1985. The Pole Creek project requires better passage for adult chinook at the irrigation diversion. 36 refs., 71 figs., 50 tabs. (ACR)

  11. SILER: Seismic-Initiated events risk mitigation in Lead-cooled Reactors

    SciTech Connect (OSTI)

    Forni, M. [ENEA, Via Martin di Monte Sole 4, 40129 Bologna (Italy); De Grandis, S. [SINTEC, Via Santo Stefano 20, 40125 Bologna (Italy)

    2012-07-01T23:59:59.000Z

    SILER is a Collaborative Project, partially funded by the European Commission, aimed at studying the risk associated to seismic initiated events in Generation IV Heavy Liquid Metal reactors and developing adequate protection measures. The attention is focused on the evaluation of the effects of earthquakes (with particular regards to beyond design seismic events) and to the identification of mitigation strategies, acting both on structures and components design (as well as on the development of seismic isolation devices) which can also have positive effects on economics, leading to an high level of plant design standardization. Attention is also devoted to the identification of plant layout solutions able to avoid risks of radioactive release from both the core and other structures (i.e. the spent fuel storage pools). Specific effort is paid to the development of guidelines and design recommendations for addressing the seismic issue in next generation reactor systems. In addition, consideration will be devoted to transfer the knowledge developed in the project to Generation III advanced systems, in line with the objective of the SNE-TP SRA to support present and future Light Water Reactors and their further development, for which safety issues are key aspects to be addressed. Note, in this respect, that the benefits of base isolation in terms of response to design seismic actions are already widely recognized for Generation III LWRs, along with the possibility of a significant standardization of structural and equipment design. SILER activities started on October 1 st 2011 and are carried out by 18 partners: ENEA (Italy, Coordinator), AREVA NP SAS (France), SCK-CEN (Belgium), FIP Industriale (Italy), MAURER SOHENE (Germany), EC-JRC (Ispra (Italy)), SINTEC (Italy), KTH (Sweden), BOA-BKT (Germany), IDOM (Spain), ANSALDO (Italy), IPUL (Latvia), NUMERIA (Italy), VCE (Austria), SRS (Italy), CEA (France), EA (Spain), NUVIA (France). (authors)

  12. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term

    E-Print Network [OSTI]

    Six, J; Ogle, S M; Breidt, F J; Conant, R T; Mosier, A R; Paustian, K

    2004-01-01T23:59:59.000Z

    The potential to mitigate global warming with no-tillageNT adoption reduces the net global warming potential (GWP)soil for purposes of global warming mitigation. Our results

  13. Mitigating Climate Change with Managed Forests: Balancing Expectations,

    E-Print Network [OSTI]

    Vermont, University of

    with anticipation regarding how managed forests will be able to par- ticipate in emerging markets for carbon offsets. Carbon markets may in the future offer some potential for com- pensating forest landowners for actions (Bell 2008). Forestry projects can influence CO2 sequestration in essentially three ways: (i

  14. Speed Map for Autonomous Rovers over Rough Terrain

    E-Print Network [OSTI]

    Loh, Jonathan Edau

    2012-01-01T23:59:59.000Z

    Grid Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . .considered obstacles [27] Grid Map showing Tile Size, Cellspeed map. It also covers grid maps and terrain roughness,

  15. Phase Shifting Prior to Spatial Filtering Enhances Optical Recordings of Cardiac Action Potential Propagation

    E-Print Network [OSTI]

    Cosman, Pamela C.

    of electrical activity in the heart using a voltage-sensitive dye has proven to be a useful tool; accepted 7 July 2001) Abstract--Optical imaging of cardiac electrical activity using a voltage-sensitive dye provides high spatial resolution maps of action potential propagation and repolarization. Charge

  16. ICDF Complex Remedial Action Report

    SciTech Connect (OSTI)

    W. M. Heileson

    2007-09-26T23:59:59.000Z

    This Idaho CERCLA Disposal Facility (ICDF) Remedial Action Report has been prepared in accordance with the requirements of Section 6.2 of the INEEL CERCLA Disposal Facility Remedial Action Work Plan. The agency prefinal inspection of the ICDF Staging, Storage, Sizing, and Treatment Facility (SSSTF) was completed in June of 2005. Accordingly, this report has been developed to describe the construction activities completed at the ICDF along with a description of any modifications to the design originally approved for the facility. In addition, this report provides a summary of the major documents prepared for the design and construction of the ICDF, a discussion of relevant requirements and remedial action objectives, the total costs associated with the development and operation of the facility to date, and identification of necessary changes to the Agency-approved INEEL CERCLA Disposal Facility Remedial Action Work Plan and the ICDF Complex Operations and Maintenance Plan.

  17. Climate Action Plan (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    Climate Ready, Ontario's Adaptation Strategy and Action Plan, outlines the problems, goals, and key strategies for the province's approach to climate change and the problems it poses. The Plan...

  18. UCSF Sustainability Action Plan: Executive Summary

    E-Print Network [OSTI]

    Yamamoto, Keith

    UCSF Sustainability Action Plan: Executive Summary Issue Date: April 21, 2011 #12;UCSF Sustainability Action Plan Executive Summary April 21, 2011 Page 1 Table of Contents An Introduction to the Sustainability Action Plan

  19. Historical Maps Online

    E-Print Network [OSTI]

    Rumsey, David Y.

    2005-01-31T23:59:59.000Z

    geospatial data to see change over time. The online map collection can be accessed over the Internet from search engines, library catalogs, GIS databases and many other entry points. Rumsey continues to add new content to the online collection and develops...

  20. Mapping the Competitiveness

    E-Print Network [OSTI]

    Levinson, David M.

    Alberta Oil & Gas Companies Source: InnovationAtlas #12;Mapping the Midwest's Future: Regional Innovation,000 11 GDP Growth Rate 2.0% 117 Life Expectancy 81 14 Urbanization 81% 47 Source: World Bank Top exports: Crude Oil & Bitumen $81.0B Motor Vehicles & Parts $68.1B Consumer Goods $52.1B Intermediate Metal

  1. MINERAL FACILITIES MAPPING PROJECT

    E-Print Network [OSTI]

    Gilbes, Fernando

    MINERAL FACILITIES MAPPING PROJECT Yadira Soto-Viruet Supervisor: David Menzie, Yolanda Fong-Sam Minerals Information Team (MIT) USGS Summer Internship 2009 U.S. Department of the Interior U.S. Geological Minerals Information Team (MIT): Annually reports on the minerals facilities of more than 180 countries

  2. Servant dictionary battery, map

    E-Print Network [OSTI]

    Rosenthal, Jeffrey S.

    Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X Cupboard1 wireless Potting gloves aunt[3] Storage dumbwaiter wrench OldFurn parcel, med whistle Over] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key

  3. battery, map parcel, med

    E-Print Network [OSTI]

    Rosenthal, Jeffrey S.

    Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X Cupboard1 wireless Potting gloves aunt[3] Storage dumbwaiter wrench OldFurn parcel, med whistle Over] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key

  4. Rapid mapping tool : an ArcMap extension /

    SciTech Connect (OSTI)

    Linger, S. P. (Steve P.); Rich, P. M. (Paul M.); Walther, D. (Douglas); Witkowski, M. S. (Marc S.); Jones, M. A. (Marcia A.); Khalsa, H. S. (Hari S.)

    2002-01-01T23:59:59.000Z

    Cartographic production laboratories produce large volumes of maps for diverse customers. Turnaround time and consistency are key concerns. The Rapid Mapping Tool is an ArcMap based tool that enables rapid creation of maps to meet customer needs. This tool was constructed using VB/VBA, ArcObjects, and ArcGIS templates. The core capability of ArcMap is extended for custom map production by storing specifications associated with a map or template in a companion XML document. These specifications include settings and preferences used to create custom maps. The tool was developed as a component of an enterprise GIS, which enables spatial data management and delivery using ArcSDE, ArcIMS, Oracle, and a web-based request tracking system.

  5. Evaluating the effectiveness of wildlife accident mitigation installations with the wildlife accident reporting system (WARS) in British Columbia

    E-Print Network [OSTI]

    Sielecki, Leonard E.

    2001-01-01T23:59:59.000Z

    EFFECTIVENESS OF WILDLIFE ACCIDENT MITIGATION INSTALLATIONSWITH THE WILDLIFE ACCIDENT REPORTING SYSTEM (WARS) INadministers the Wildlife Accident Reporting System (WARS), a

  6. Oil Shortages, Climate Change and Collective Action

    E-Print Network [OSTI]

    Newbery, David

    strategies, all provide tools to guide policy analysis. Stern (2006) took over 600 pages to both quantify and analyse the economics of climate change, specifically asking how to estimate the social cost of carbon and the benefits of mitigating climate...

  7. The Effect of Debris on Collector Optics, its Mitigation and Repair: Next-Step a Gaseous Sn EUV DPP Source

    E-Print Network [OSTI]

    Spila, Timothy P.

    The Effect of Debris on Collector Optics, its Mitigation and Repair: Next-Step a Gaseous Sn EUV DPP to advanced fuel plasma EUV sources is collector lifetime. The Illinois Debris-mitigation EUV Applications based on this work. Keywords: EUV source, debris, optics, collector lifetime, mitigation, plasma

  8. 1 Managed by UT-Battelle for the U.S. Department of Energy NF Splash Mitigation 12 July 2011

    E-Print Network [OSTI]

    McDonald, Kirk

    1 Managed by UT-Battelle for the U.S. Department of Energy NF Splash Mitigation 12 July 2011 by UT-Battelle for the U.S. Department of Energy NF Splash Mitigation 12 July 2011 Splash Mitigation for comparison & final determination #12;3 Managed by UT-Battelle for the U.S. Department of Energy NF Splash

  9. Completely Reducible maps in Quantum Information Theory

    E-Print Network [OSTI]

    Daniel Cariello

    2015-02-18T23:59:59.000Z

    In order to compute the Schmidt decomposition of $A\\in M_k\\otimes M_m$, we must consider an associated self-adjoint map. Here, we show that if $A$ is positive under partial transposition (PPT) or symmetric with positive coefficients (SPC) or invariant under realignment then its associated self-adjoint map is completely reducible. We give applications of this fact in Quantum Information Theory. We recover some theorems recently proved for PPT and SPC matrices and we prove these theorems for matrices invariant under realignment using theorems of Perron-Frobenius theory. We also provide a new proof of the fact that if $\\mathbb{C}^{k}$ contains $k$ mutually unbiased bases then $\\mathbb{C}^{k}$ contains $k+1$. We search for other types of matrices that could have the same property. We consider a group of linear transformations acting on $M_k\\otimes M_k$, which contains the partial transpositions and the realignment map. For each element of this group, we consider the set of matrices in $M_k\\otimes M_k\\simeq M_{k^2}$ that are positive and remain positive, or invariant, under the action of this element. Within this family of sets, we have the set of PPT matrices, the set of SPC matrices and the set of matrices invariant under realignment. We show that these three sets are the only sets of this family such that the associated self-adjoint map of each matrix is completely reducible. We also show that every matrix invariant under realignment is PPT in $M_2\\otimes M_2$ and we present a counterexample in $M_k\\otimes M_k$, $k\\geq 3$.

  10. On the Power of Nonlinear Mappings in Switching Map Systems

    E-Print Network [OSTI]

    Sato, Yuzuru

    On the Power of Nonlinear Mappings in Switching Map Systems Yuzuru Sato 1 # , Makoto Taiji 2 operations would be allowed. It is also expected that the computational power of switching map systems stronger computational power than classical Turing machines. On the other hand, these dynamical systems

  11. Sandia National Laboratories: International Smart Grid Action...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Action Network Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution Grid Integration,...

  12. Energy Agency Coordinators for Energy Action Month

    Broader source: Energy.gov [DOE]

    Agency coordinators serve as primary Federal agency points of contact for Energy Action Month. Contact them if you have questions about implementing an Energy Action Month campaign.

  13. Worldwide Energy Efficiency Action through Capacity Building...

    Open Energy Info (EERE)

    and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Name Worldwide Energy Efficiency Action...

  14. Ecology Action: Small Market Advanced Retrofit Transformation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ecology Action: Small Market Advanced Retrofit Transformation Program - 2015 Peer Review Ecology Action: Small Market Advanced Retrofit Transformation Program - 2015 Peer Review...

  15. National climate change action plans: Interim report for developing and transition countries

    SciTech Connect (OSTI)

    Benioff, R.; Ness, E.; Hirst, J. [eds.

    1997-10-01T23:59:59.000Z

    Under its Support for National Action Plans (SNAP) initiative, the U.S. Country Studies Program is providing financial and technical assistance to 18 countries for the development of climate change action plans. Although most of the countries have not yet completed their plans, the important lessons learned thus far are valuable and should be shared with other countries and international institutions that have an interest in the process of action plan development. This interim report describes the experience of 11 countries that are the furthest along in their planning activity and who have offered to share their results to date with the larger community of interested nations. These action plans delineate specific mitigation and adaptation measures that the countries will implement and integrate into their ongoing development programs. This report focuses on the measures the countries have selected and the methods they used to prepare their action plans. This executive summary presents key lessons and common themes using a structure similar to that used in the individual country chapters.

  16. Designing, implementing and monitoring social impact mitigation strategies: Lessons from Forest Industry Structural Adjustment Packages

    SciTech Connect (OSTI)

    Loxton, Edwina A., E-mail: Edwina.Loxton@anu.edu.au [Fenner School of Environment and Society, The Australian National University, Canberra, 0200 (Australia); Schirmer, Jacki, E-mail: Jacki.Schirmer@canberra.edu.au [Fenner School of Environment and Society, The Australian National University, Canberra, 0200 (Australia) [Fenner School of Environment and Society, The Australian National University, Canberra, 0200 (Australia); Cooperative Research Centre for Forestry, Hobart, 7001 (Australia); Kanowski, Peter, E-mail: P.Kanowski@cgiar.org [Fenner School of Environment and Society, The Australian National University, Canberra, 0200 (Australia) [Fenner School of Environment and Society, The Australian National University, Canberra, 0200 (Australia); Cooperative Research Centre for Forestry, Hobart, 7001 (Australia)

    2013-09-15T23:59:59.000Z

    Social impact mitigation strategies are implemented by the proponents of policies and projects with the intent of reducing the negative, and increasing the positive social impacts of their activities, and facilitating the achievement of policy/project goals. Evaluation of mitigation strategies is critical to improving their future success and cost-effectiveness. This paper evaluates two Forest Industry Structural Adjustment Packages (FISAP) implemented in Australia in the 1990s to 2000s as part of broader policy changes that reduced access to timber from publicly owned native forests. It assesses the effectiveness of the structure, design, implementation and monitoring of the FISAPs, and highlights the interactions between these four elements and their influence on social impacts. The two FISAPs were found to be effective in terms of reducing negative impacts, encouraging positive impacts and contributing towards policy goals, although they did not mitigate negative impacts in all cases, and sometimes interacted with external factors and additional policy changes to contribute to significant short and long term negative impacts. -- Highlights: ? Mitigation strategies aim to reduce negative and enhance positive social impacts ? Mitigation strategy design, implementation, and monitoring are critical to success ? Effective mitigation enhanced the capacity of recipients to respond to change ? Mitigation strategies influenced multiple interacting positive and negative impacts ? Success required good communication, transparency, support, resources and timing.

  17. Annual Adaptive Management Report for Compensatory Mitigation at Keyport Lagoon: Mitigation of Pier B Development at the Bremerton Naval Facilities - Compensatory Mitigation at Keyport Lagoon - Naval Underwater Warfare Center Division - Keyport, Washington

    SciTech Connect (OSTI)

    Vavrinec, John; Borde, Amy B.; Woodruff, Dana L.; Brandenberger, Jill M.; Thom, Ronald M.; Wright, Cynthia L.; Cullinan, Valerie I.

    2012-06-01T23:59:59.000Z

    Unites States Navy capital improvement projects are designed to modernize and improve mission capacity. Such capital improvement projects often result in unavoidable environmental impacts by increasing over-water structures, which results in a loss of subtidal habitat within industrial areas of Navy bases. In the Pacific Northwest, compensatory mitigation often targets alleviating impacts to Endangered Species Act-listed salmon species. The complexity of restoring large systems requires limited resources to target successful and more coordinated mitigation efforts to address habitat loss and improvements in water quality that will clearly contribute to an improvement at the site scale and can then be linked to a cumulative net ecosystem improvement.

  18. Mitigation of Severe Accident Consequences Using Inherent Safety Principles

    SciTech Connect (OSTI)

    R. A. Wigeland; J. E. Cahalan

    2009-12-01T23:59:59.000Z

    Sodium-cooled fast reactors are designed to have a high level of safety. Events of high probability of occurrence are typically handled without consequence through reliable engineering systems and good design practices. For accidents of lower probability, the initiating events are characterized by larger and more numerous challenges to the reactor system, such as failure of one or more major engineered systems and can also include a failure to scram the reactor in response. As the initiating conditions become more severe, they have the potential for creating serious consequences of potential safety significance, including fuel melting, fuel pin disruption and recriticality. If the progression of such accidents is not mitigated by design features of the reactor, energetic events and dispersal of radioactive materials may result. For severe accidents, there are several approaches that can be used to mitigate the consequences of such severe accident initiators, which typically include fuel pin failures and core disruption. One approach is to increase the reliability of the reactor protection system so that the probability of an ATWS event is reduced to less than 1 x 10-6 per reactor year, where larger accident consequences are allowed, meeting the U.S. NRC goal of relegating such accident consequences as core disruption to these extremely low probabilities. The main difficulty with this approach is to convincingly test and guarantee such increased reliability. Another approach is to increase the redundancy of the reactor scram system, which can also reduce the probability of an ATWS event to a frequency of less than 1 x 10-6 per reactor year or lower. The issues with this approach are more related to reactor core design, with the need for a greater number of control rod positions in the reactor core and the associated increase in complexity of the reactor protection system. A third approach is to use the inherent reactivity feedback that occurs in a fast reactor to automatically respond to the change in reactor conditions and to result in a benign response to these events. This approach has the advantage of being relatively simple to implement, and does not face the issue of reliability since only fundamental physical phenomena are used in a passive manner, not active engineered systems. However, the challenge is to present a convincing case that such passive means can be implemented and used. The purpose of this paper is to describe this third approach in detail, the technical basis and experimental validation for the approach, and the resulting reactor performance that can be achieved for ATWS events.

  19. A hidden BFKL / XXX s = -1/2 spin chain mapping

    E-Print Network [OSTI]

    Alberto Romagnoni; Agustin Sabio Vera

    2011-11-19T23:59:59.000Z

    A new mapping between the BFKL equation and Beisert's representation of the XXX Heisenberg ferromagnet with spin s = - 1/2 is given. The action of the Hamiltonian operator of a spin chain with SL(2) invariance on a symmetric double copy of a harmonic oscillator excited state is shown to be identical to the action of the BFKL Hamiltonian on the gluon Green function for the azimuthal-angle averaged forward scattering case. A natural mapping between the gluon Green function, discretized in virtuality space, and the double harmonic oscillator excited state emerges.

  20. A hidden BFKL / XXX s = -1/2 spin chain mapping

    E-Print Network [OSTI]

    Romagnoni, Alberto

    2011-01-01T23:59:59.000Z

    A new mapping between the BFKL equation and Beisert's representation of the XXX Heisenberg ferromagnet with spin s = - 1/2 is given. The action of the Hamiltonian operator of a spin chain with SL(2) invariance on a symmetric double copy of a harmonic oscillator excited state is shown to be identical to the action of the BFKL Hamiltonian on the gluon Green function for the azimuthal-angle averaged forward scattering case. A natural mapping between the gluon Green function, discretized in virtuality space, and the double harmonic oscillator excited state emerges.