National Library of Energy BETA

Sample records for manufacturing sector consists

  1. Number of Large Energy User Manufacturing Facilities by Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector) State...

  2. Static Sankey Diagram Full Sector Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Full Sector Manufacturing Static Sankey Diagram Full Sector Manufacturing The U.S. Manufacturing Sector Static Sankey diagram shows how total primary energy is used by U.S. manufacturing plants. Click on the Onsite Generation, Process Energy or Nonprocess Energy thumbnails below the diagram to see further detail on energy flows in manufacturing. Also, see the Dynamic Manufacturing Energy Sankey Tool to pan, zoom, and customize the manufacturing Sankey data and compare energy consumption across

  3. Manufacturing Energy and Carbon Footprint - Sector: Iron and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS ...

  4. Slideshow: Innovation in the Manufacturing Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Slideshow: Innovation in the Manufacturing Sector Slideshow: Innovation in the Manufacturing Sector December 12, 2013 - 5:00pm Addthis AEMC Summit 1 of 12 AEMC Summit In partnership with the Council on Competitiveness, the Energy Department hosted the first American Energy and Manufacturing Competitiveness (AEMC) Summit in Washington, DC. A culmination of a series of dialogues held across the country over the past year, the summit focused on how we can increase U.S. competitiveness in clean

  5. Manufacturing Energy and Carbon Footprint- Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006)

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) with Total Energy Input

  6. Static Sankey Diagram of Process Energy in U.S. Manufacturing Sector |

    Energy Savers [EERE]

    Department of Energy Nonprocess Energy in U.S. Manufacturing Sector Static Sankey Diagram of Nonprocess Energy in U.S. Manufacturing Sector The Nonprocess Energy Static Sankey diagram shows how energy is used for supporting functions by U.S. manufacturing plants. Click on the Full Sector, Onsite Generation, and Process Energy thumbnails below the diagram to see further detail on energy flows in manufacturing. Also, see the Dynamic Manufacturing Energy Sankey Tool to pan, zoom, and customize

  7. Static Sankey Diagram of Nonprocess Energy in U.S. Manufacturing Sector |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Nonprocess Energy in U.S. Manufacturing Sector Static Sankey Diagram of Nonprocess Energy in U.S. Manufacturing Sector The Nonprocess Energy Static Sankey diagram shows how energy is used for supporting functions by U.S. manufacturing plants. Click on the Full Sector, Onsite Generation, and Process Energy thumbnails below the diagram to see further detail on energy flows in manufacturing. Also, see the Dynamic Manufacturing Energy Sankey Tool to pan, zoom, and customize

  8. Changes in Energy Intensity in the Manufacturing Sector 1985...

    U.S. Energy Information Administration (EIA) Indexed Site

    (34) Machinery (35) El. Equip.(36) Instruments (38) Misc. (39) Appendices Survey Design Quality of Data Sector Description Nonobservation Errors Glossary Intensity Sites...

  9. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  10. Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), January 2014 (MECS 2010)

    Energy Savers [EERE]

    3311, 3312), October 2012 (MECS 2006) | Department of Energy - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) PDF icon steel_footprint_2012.pdf More Documents & Publications MECS 2006 - Iron and Steel Iron and Steel (2010 MECS) MECS 2006 - Cement

    Iron and Steel (NAICS 3311, 3312) Process Energy Electricity and Steam Generation Losses Process Losses 49

  11. Manufacturing

    Energy Savers [EERE]

    Than $2 Billion in Energy Costs; Program Expands to Help America's Water Systems | Department of Energy Manufacturers in U.S. Energy Department's Better Plants Program Save More Than $2 Billion in Energy Costs; Program Expands to Help America's Water Systems Manufacturers in U.S. Energy Department's Better Plants Program Save More Than $2 Billion in Energy Costs; Program Expands to Help America's Water Systems September 30, 2015 - 9:03am Addthis NEWS MEDIA CONTACT (202) 586-4940

  12. Manufacturing Energy and Carbon Footprint - Sector: Alumina and Aluminum (NAICS 3313), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Alumina and Aluminum (NAICS 3313) Process Energy Electricity and Steam Generation Losses Process Losses 3 Nonprocess Losses 456 105 Steam Distribution Losses 3 7 Nonprocess Energy 99 Electricity Generation Steam Generation 456 5 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 16 198 116 Generation and Transmission Losses Generation and Transmission Losses 2 234 214 207 13 220 351 7 10 0.4 20.3 20.8 4.2 24.0 1.3 26 5.3 26.1 0.4 Fuel Total

  13. Manufacturing Energy and Carbon Footprint - Sector: Cement (NAICS 327310), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Cement (NAICS 327310) Process Energy Electricity and Steam Generation Losses Process Losses 1 Nonprocess Losses 307 101 Steam Distribution Losses 1 3 Nonprocess Energy 214 Electricity Generation Steam Generation 307 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 6 237 31 Generation and Transmission Losses Generation and Transmission Losses 0 62 243 240 5 245 93 0 4 0.0 5.4 5.4 18.5 23.5 0.6 25 19.1 24.6 0.2 Fuel Total Primary Energy, 2010

  14. Manufacturing Energy and Carbon Footprint - Sector: Chemicals (NAICS 325), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Chemicals (NAICS 325) Process Energy Electricity and Steam Generation Losses Process Losses 381 Nonprocess Losses 4,252 871 Steam Distribution Losses 247 86 Nonprocess Energy 2,447 Electricity Generation Steam Generation 4,252 324 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 229 2,364 450 Generation and Transmission Losses Generation and Transmission Losses 126 905 2,594 1,745 1,476 3,221 1,355 450 1,095 28.5 78.6 107.2 52.4 145.9 15.4 252

  15. Manufacturing Energy and Carbon Footprint - Sector: Fabricated Metals (NAICS 332), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Fabricated Metals (NAICS 332) Process Energy Electricity and Steam Generation Losses Process Losses 6 Nonprocess Losses 557 90 Steam Distribution Losses 4 35 Nonprocess Energy 174 Electricity Generation Steam Generation 557 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 80 211 127 Generation and Transmission Losses Generation and Transmission Losses 0 255 291 275 26 301 382 1 20 0.0 22.2 22.2 5.6 22.4 7.7 32 9.3 31.5 2.3 Fuel Total Primary

  16. Manufacturing Energy and Carbon Footprint - Sector: Food and Beverage (NAICS 311, 312), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Food and Beverage (NAICS 311, 312) Process Energy Electricity and Steam Generation Losses Process Losses 128 Nonprocess Losses 1,836 455 Steam Distribution Losses 104 72 Nonprocess Energy 919 Electricity Generation Steam Generation 1,836 41 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 178 835 285 Generation and Transmission Losses Generation and Transmission Losses 16 574 1,014 620 625 1,245 860 57 497 3.6 50.0 53.6 13.5 55.8 13.7 109 55.5

  17. Manufacturing Energy and Carbon Footprint - Sector: Forest Products (NAICS 321, 322), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Forest Products (NAICS 321, 322) Process Energy Electricity and Steam Generation Losses Process Losses 530 Nonprocess Losses 3,152 1,016 Steam Distribution Losses 287 87 Nonprocess Energy 2,135 Electricity Generation Steam Generation 3,152 186 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 224 1,538 252 Generation and Transmission Losses Generation and Transmission Losses 72 507 1,762 656 1,917 2,573 759 258 1,393 16.4 45.1 61.5 10.6 64.2 9.2

  18. Manufacturing Energy and Carbon Footprint - Sector: Foundries (NAICS 3315), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Foundries (NAICS 3315) Process Energy Electricity and Steam Generation Losses Process Losses 1 Nonprocess Losses 173 34 Steam Distribution Losses 0 8 Nonprocess Energy 59 Electricity Generation Steam Generation 173 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 19 77 38 Generation and Transmission Losses Generation and Transmission Losses 0 76 96 95 2 97 114 0 2 0.0 6.6 6.6 1.8 7.2 1.9 9 2.6 9.2 0.6 Fuel Total Primary Energy, 2010 Total

  19. Manufacturing Energy and Carbon Footprint - Sector: Glass (NAICS 3272, 327993), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Glass and Glass Products (NAICS 3272, 327993) Process Energy Electricity and Steam Generation Losses Process Losses 1 Nonprocess Losses 294 100 Steam Distribution Losses 0 7 Nonprocess Energy 149 Electricity Generation Steam Generation 294 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 16 180 48 Generation and Transmission Losses Generation and Transmission Losses 0 97 196 195 2 197 145 0 1 0.0 8.4 8.4 7.3 14.3 1.7 16 7.7 16.1 0.4 Fuel

  20. Manufacturing Energy and Carbon Footprint - Sector: Machinery (NAICS 333), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Machinery (NAICS 333) Process Energy Electricity and Steam Generation Losses Process Losses 1 Nonprocess Losses 288 37 Steam Distribution Losses 1 27 Nonprocess Energy 77 Electricity Generation Steam Generation 288 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 67 78 70 Generation and Transmission Losses Generation and Transmission Losses 0 141 144 139 8 147 211 1 7 0.0 12.2 12.3 1.8 8.9 6.9 16 4.2 16.4 2.0 Fuel Total Primary Energy, 2010

  1. Manufacturing Energy and Carbon Footprint - Sector: Petroleum Refining (NAICS 324110), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Petroleum Refining (NAICS 324110) Process Energy Electricity and Steam Generation Losses Process Losses 234 Nonprocess Losses 3,542 689 Steam Distribution Losses 150 22 Nonprocess Energy 2,873 Electricity Generation Steam Generation 3,542 150 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 59 2,734 153 Generation and Transmission Losses Generation and Transmission Losses 58 308 2,793 2,285 891 3,176 461 208 657 13.2 26.7 40.0 139.2 176.3 3.2

  2. Manufacturing Energy and Carbon Footprint - Sector: Plastics (NAICS 326), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Plastics and Rubber Products (NAICS 326) Process Energy Electricity and Steam Generation Losses Process Losses 12 Nonprocess Losses 586 72 Steam Distribution Losses 8 28 Nonprocess Energy 115 Electricity Generation Steam Generation 586 1 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 64 187 156 Generation and Transmission Losses Generation and Transmission Losses 1 314 251 218 54 272 470 2 42 0.1 27.3 27.4 1.9 23.5 7.0 34 6.4 33.8 1.3 Fuel

  3. Manufacturing Energy and Carbon Footprint - Sector: Textiles (NAICS 313-316), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Textiles (NAICS 313-316) Process Energy Electricity and Steam Generation Losses Process Losses 6 Nonprocess Losses 242 47 Steam Distribution Losses 6 12 Nonprocess Energy 59 Electricity Generation Steam Generation 242 6 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 26 84 58 Generation and Transmission Losses Generation and Transmission Losses 2 117 111 91 32 123 175 8 27 0.5 10.1 10.7 1.4 9.1 3.1 14 3.7 14.3 0.3 Fuel Total Primary Energy,

  4. Manufacturing Energy and Carbon Footprint - Sector: Transportation Equipment (NAICS 336), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Transportation Equipment (NAICS 336) Process Energy Electricity and Steam Generation Losses Process Losses 10 Nonprocess Losses 541 68 Steam Distribution Losses 6 48 Nonprocess Energy 143 Electricity Generation Steam Generation 541 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 115 145 132 Generation and Transmission Losses Generation and Transmission Losses 0 266 259 234 41 275 398 0 32 0.0 23.1 23.1 3.0 16.6 11.9 31 7.9 31.0 2.6 Fuel

  5. Energy Intensity Indicators: Manufacturing Energy Intensity

    Broader source: Energy.gov [DOE]

    The manufacturing sector comprises 18 industry sectors, generally defined at the three-digit level of the North American Industrial Classification System (NAICS). The manufacturing energy data...

  6. Manufacturing Energy and Carbon Footprint - Sector: Computer, Electronics and Appliances (NAICS 334, 335), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Computers, Electronics and Electrical Equipment (NAICS 334, 335) Process Energy Electricity and Steam Generation Losses Process Losses 5 Nonprocess Losses 493 46 Steam Distribution Losses 4 41 Nonprocess Energy 80 Electricity Generation Steam Generation 493 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 103 105 137 Generation and Transmission Losses Generation and Transmission Losses 0 276 208 193 24 217 413 0 19 0.0 23.9 23.9 1.4 14.4 12.4

  7. Manufacturing Supply Chain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration (EIA) ‹ Consumption & Efficiency Manufacturing Energy Consumption Survey (MECS) Glossary › FAQS › Overview Data 2010 2006 2002 1998 1994 1991 Archive Analysis & Projections Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy Consumption Survey (MECS) 1998-2010, September 6, 2013. New 2010 Manufacturing Energy

  8. FHP Manufacturing Company Geothermal | Open Energy Information

    Open Energy Info (EERE)

    FHP Manufacturing Company Geothermal Jump to: navigation, search Name: FHP Manufacturing Company: Geothermal Place: Florida Sector: Geothermal energy Product: FHP Manufacturing...

  9. All Manufacturing (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    All Manufacturing (2010 MECS) All Manufacturing (2010 MECS) Manufacturing Energy and Carbon Footprint for All Manufacturing Sector (NAICS 31-33) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: June 2015 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon All Manufacturing More Documents & Publications MECS 2006 - All Manufacturing Cement (2010 MECS) Chemicals (2010 MECS) Manufacturing Energy Sankey Diagrams Manufacturing

  10. Energy Analysis by Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Energy Analysis by Sector Energy Analysis by Sector Manufacturers often rely on energy-intensive technologies and processes. AMO conducts a range of analyses to explore energy use and trends by sector. Manufacturing Energy and Carbon Footprints Static Manufacturing Energy Sankey Diagrams Dynamic Manufacturing Energy Sankey Tool Energy & Environmental Profiles Bandwidth Studies Large Energy User Manufacturing Facilities by State MANUFACTURING ENERGY and carbon

  11. 1991 Manufacturing Consumption of Energy 1991 Executive Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Summary The Manufacturing Consumption of Energy 1991 report presents statistics about the energy consumption of the manufacturing sector, based on the 1991 Manufacturing Energy...

  12. MECS 2006 - All Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    All Manufacturing MECS 2006 - All Manufacturing Manufacturing Energy and Carbon Footprint - Sector: All Manufacturing (NAICS 31-33) with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint PDF icon All Manufacturing (NAICS 31-33) More Documents & Publications All Manufacturing (2010 MECS) MECS 2006 - Alumina and Aluminum MECS 2006 - Cement

  13. 2014 Manufacturing Energy and Carbon Footprints: Scope

    Energy Savers [EERE]

    Scope The energy and carbon footprint analysis examines fifteen individual manufacturing sectors that together consume 95% of U.S. manufacturing primary energy consumption and ...

  14. Leitner Shriram Manufacturing Ltd | Open Energy Information

    Open Energy Info (EERE)

    Manufacturing Ltd Jump to: navigation, search Name: Leitner Shriram Manufacturing Ltd Place: Chennai, Tamil Nadu, India Zip: 600095 Sector: Wind energy Product: Chennai-based JV...

  15. Aurora Photovoltaics Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Manufacturing Jump to: navigation, search Name: Aurora Photovoltaics Manufacturing Place: Lawrenceville, New Jersey Zip: 8648 Sector: Solar Product: A subsidiary of...

  16. Advanced Manufacturing Office FY 2017 Budget At-A-Glance

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector.

  17. Manufacturing Demonstration Facilities Workshop, March 12, 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... public sectors) National PolicySecurity Objectives * ... Approach: * Provide manufacturers and product developers ... Plan * Financial Sustainability * Intellectual Property ...

  18. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. 1 The manufacturing sector is composed of establishments classified...

  19. United States Industrial Sector Energy End Use Analysis

    SciTech Connect (OSTI)

    Shehabi, Arman; Morrow, William R.; Masanet, Eric

    2012-05-11

    The United States Department of Energys (DOE) Energy Information Administration (EIA) conducts the Manufacturing Energy Consumption Survey (MECS) to provide detailed data on energy consumption in the manufacturing sector. The survey is a sample of approximately 15,000 manufacturing establishments selected from the Economic Census - Manufacturing Sector. MECS provides statistics on the consumption of energy by end uses (e.g., boilers, process, electric drives, etc.) disaggregated by North American Industry Classification System (NAICS) categories. The manufacturing sector (NAICS Sector 31-33) consists of all manufacturing establishments in the 50 States and the District of Columbia. According to the NAICS, the manufacturing sector comprises establishments engaged in the mechanical, physical, or chemical transformation of materials, substances, or components into new products. The establishments are physical facilities such as plants, factories, or mills. For many of the sectors in the MECS datasets, information is missing because the reported energy use is less than 0.5 units or BTUs, or is withheld to avoid disclosing data for individual establishments, or is withheld because the standard error is greater than 50%. We infer what the missing information likely are using several approximations techniques. First, much of the missing data can be easily calculated by adding or subtracting other values reported by MECS. If this is not possible (e.g. two data are missing), we look at historic MECS reports to help identify the breakdown of energy use in the past and assume it remained the same for the current MECS. Lastly, if historic data is also missing, we assume that 3 digit NAICS classifications predict energy use in their 4, 5, or 6 digit NAICS sub-classifications, or vice versa. Along with addressing data gaps, end use energy is disaggregated beyond the specified MECS allocations using additional industry specific energy consumption data. The result is a completed table of energy end use by sector with mechanical drives broken down by pumps, fans, compressed air, and drives.

  20. Miracle Wind Power Components Manufacture Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Wind Power Components Manufacture Co Ltd Jump to: navigation, search Name: Miracle Wind Power Components Manufacture Co Ltd Place: Wuxi, Jiangsu Province, China Sector: Wind energy...

  1. Indian Wind Turbine Manufacturers Association | Open Energy Informatio...

    Open Energy Info (EERE)

    Turbine Manufacturers Association Jump to: navigation, search Name: Indian Wind Turbine Manufacturers Association Place: Chennai, India Zip: 600 041 Sector: Wind energy Product:...

  2. Iskra Wind Turbine Manufacturers Ltd | Open Energy Information

    Open Energy Info (EERE)

    Iskra Wind Turbine Manufacturers Ltd Jump to: navigation, search Name: Iskra Wind Turbine Manufacturers Ltd Place: Nottingham, United Kingdom Sector: Wind energy Product: Iskra...

  3. Society of Indian Electric Vehicle Manufacturers | Open Energy...

    Open Energy Info (EERE)

    Indian Electric Vehicle Manufacturers Jump to: navigation, search Name: Society of Indian Electric Vehicle Manufacturers Place: New Delhi, Delhi (NCT), India Sector: Vehicles...

  4. Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd | Open...

    Open Energy Info (EERE)

    Yeelong Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd Place: Hebei Province, China Sector:...

  5. Pihsiang Electric Vehicle Manufacturing Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Electric Vehicle Manufacturing Co Ltd Jump to: navigation, search Name: Pihsiang Electric Vehicle Manufacturing Co Ltd Place: Taiwan Sector: Vehicles Product: Taiwan-based maker of...

  6. Taiwan Semiconductor Manufacturing Co Ltd TSMC | Open Energy...

    Open Energy Info (EERE)

    Manufacturing Co Ltd TSMC Jump to: navigation, search Name: Taiwan Semiconductor Manufacturing Co Ltd (TSMC) Place: Hsinchu, Taiwan Zip: 300 Sector: Solar Product: Taiwan-based...

  7. Mingchuang Energy Manufacturing Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Mingchuang Energy Manufacturing Co Ltd Jump to: navigation, search Name: Mingchuang Energy Manufacturing Co Ltd Place: China Sector: Wind energy Product: Chinese wind turbine...

  8. Suzhou Eagle Electric Vehicle Manufacturing Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Suzhou Eagle Electric Vehicle Manufacturing Co Ltd Jump to: navigation, search Name: Suzhou Eagle Electric Vehicle Manufacturing Co Ltd Place: Suzhou, China Sector: Vehicles...

  9. Changing the Advanced Energy Manufacturing Game in America's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    With incentives from both the federal and private sectors, clean energy manufacturers are drawing on the traditionally strong manufacturing base of states like Ohio and Michigan to ...

  10. A.J. Rose Manufacturing Company | Open Energy Information

    Open Energy Info (EERE)

    search Name: A.J. Rose Manufacturing Company Address: 38000 Chester Road Place: Avon, OH Zip: 44011 Sector: Renewable Energy Product: Manufacturing Phone Number:...

  11. President Obama Announces New Public-Private Manufacturing Innovation Institute

    Broader source: Energy.gov [DOE]

    The President today will announce new steps with the private sector to strengthen the manufacturing sector, boost advanced manufacturing, and attract the good paying jobs that a growing middle class requires.

  12. Understanding the 2014 Manufacturing Energy and Carbon Footprints

    Energy Savers [EERE]

    Understanding the 2010 Manufacturing Energy and Carbon Footprints The Manufacturing Energy and Carbon Footprints map energy use and combustion greenhouse gas (GHG) emissions from energy supply to end use. Footprints are published for 15 manufacturing sectors (representing 95% of all manufacturing energy use and 94% of U.S. manufacturing combustion GHG emissions) and for U.S. manufacturing as a whole (NAICS 31 - 33). These sectors are described in more detail in the document 2010 Manufacturing

  13. Additive Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST » MST Research Programs » Additive Manufacturing Additive Manufacturing A method allowing unparalleled manufacturing control, data visualization, and high-value parts repair. Through additive manufacturing, Los Alamos is developing materials for the future. Taking complex manufacturing challenges from design to fabrication. A science and engineering approach for additive manufacturing solutions. Get Expertise John Carpenter Technical Staff Member Metallurgy Email Division Leader Materials

  14. Bandwidth Study U.S. Chemical Manufacturing

    Broader source: Energy.gov [DOE]

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study...

  15. Bandwidth Study U.S. Pulp and Paper Manufacturing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pulp and Paper Manufacturing Bandwidth Study U.S. Pulp and Paper Manufacturing Pulp-Paper.jpg Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational ...

  16. Manufacturing consumption of energy 1994

    SciTech Connect (OSTI)

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  17. Additive Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manufacturing and national security To realize additive manufacturing's potential as a disruptive technology for Los Alamos National Laboratory's national security missions,...

  18. Manufacturing Innovation Institute for Smart Manufacturing: Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing Manufacturing Innovation Institute for Smart ...

  19. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  20. Manufacturing Energy and Carbon Footprint - Sector: Computer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation and Transmission Losses 0 276 208 193 24 217 413 0 19 0.0 23.9 23.9 1.4 14.4 12.4 28 4.3 28.2 1.7 Fuel Total Primary Energy, 2010 Total Primary Energy Use: Total ...

  1. Manufacturing Energy and Carbon Footprint - Sector: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Facility HVAC 6.7 2.2 Machine Drive Losses 8.6 0.2 Fuel Type % of Total Waste Gas (byproduct fuel) LPG and NGL Waste OilsTars and Waste Materials (byproduct fuel) Other Fuels 1.4% ...

  2. Manufacturing Energy and Carbon Footprint - Sector: Petroleum...

    Broader source: Energy.gov (indexed) [DOE]

    Total Emissions Offsite Emissions + Onsite Emissions Energy Use (TBtu Trillion British ... Fuel Type % of Total Waste Gas (byproduct fuel) 49% Natural Gas 26% Petroleum Coke ...

  3. Manufacturing Energy and Carbon Footprint - Sector: Foundries...

    Broader source: Energy.gov (indexed) [DOE]

    Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy Use (TBtu ... Total Onsite 0 0 0 Fuel Type % of Total Natural Gas 71% Coke and Breeze 12% Petroleum Coke ...

  4. Manufacturing Energy and Carbon Footprints (2006 MECS)

    Broader source: Energy.gov [DOE]

    Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lost—and where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also available in the U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis report.

  5. Clean Energy Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and

  6. Next Generation Manufacturing Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Projects » Next Generation Manufacturing Processes Next Generation Manufacturing Processes New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high-quality products at competitive cost. Four process technology areas are expected to generate large energy, carbon, and economic benefits across the manufacturing sector. Click the areas

  7. 2010 Manufacturing Energy and Carbon Footprints: Scope | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Scope 2010 Manufacturing Energy and Carbon Footprints: Scope This five-page document provides detailed descriptions of the manufacturing sectors examined in the Energy and Carbon Footprints (MECS 2010) PDF icon Scope of the Manufacturing Energy and Carbon Footprints (MECS 2010) More Documents & Publications Manufacturing Energy and Carbon Footprints Scope End-Use Sector Flowchart U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis

  8. Sector 9

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sector 9 About Science and Research Beamlines Operations and Schedule Safety Search APS ... Search Argonne Home > Advanced Photon Source > Contacts Advisory Committee Beamlines...

  9. Manufacturing Glossary

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Home > Energy Users > Energy Efficiency Page > Glossary for the Manufacturing...

  10. Advanced Manufacturing Office in DOE Multimaterial Joining Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    domestic manufacturing jobs and enhance the global competitiveness of the United States. ... and Universities Private sector Gap "Valley of Death" Primary AMO Focus DOE ...

  11. Advanced Manufacturing Office, U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    domestic manufacturing jobs and enhance the global competitiveness of the United States. ... and Universities Private sector Gap "Valley of Death" Primary AMO Focus Primary ...

  12. Clean Energy Manufacturing Leaders to Convene at Northeast Regional...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    numerous Energy Department contributions in the manufacturing sector, including new public-private partnership models, increased investment in breakthrough technologies, and ...

  13. Bandwidth Study U.S. Pulp and Paper Manufacturing

    Broader source: Energy.gov [DOE]

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study...

  14. Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing...

    Broader source: Energy.gov (indexed) [DOE]

    this program is available to small businesses located in Michigan who are seeking to invest and diversify in clean energy sectors, manufacturing renewable energy and energy...

  15. Bandwidth Study U.S. Iron and Steel Manufacturing

    Broader source: Energy.gov [DOE]

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study...

  16. Manufacturing Energy and Carbon Footprints (2006 MECS) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Manufacturing Energy and Carbon Footprints (2006 MECS) Manufacturing Energy and Carbon Footprints (2006 MECS) Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lost-and where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also

  17. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  18. Manufacturing Energy Consumption Survey (MECS) - Residential...

    Gasoline and Diesel Fuel Update (EIA)

    Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010 MECS 2006-2010 - Release date: March 28, 2012 ...

  19. Sustainable Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Principal Investigator (Presenter): Dr. Troy D. Marusich , CTO Washington, D.C. May 6-7, 2014 Third Wave Systems Inc. U.S. DOE Advanced Manufacturing Office Peer Review Meeting ...

  20. Celebrating Two Years of Building America's Clean Energy Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future | Department of Energy Two Years of Building America's Clean Energy Manufacturing Future Celebrating Two Years of Building America's Clean Energy Manufacturing Future March 27, 2015 - 3:23pm Addthis Watch the video above to find out how the federal government and private sector partners are working together to strengthen U.S. clean energy manufacturing competitiveness. | Video courtesy of the Clean Energy Manufacturing Initiative. It's an exciting time for clean energy manufacturing

  1. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Innovating Clean Energy Technologies in Advanced Manufacturing September 2015 Quadrennial Technology Review 6 Innovating Clean Energy Technologies in Advanced Manufacturing Issues and RDD&D Opportunities  Manufacturing affects the way products are designed, fabricated, used, and disposed; hence, manufacturing technologies have energy impacts extending beyond the industrial sector.  Life-cycle analysis is essential to assess the total energy impact of a manufactured product. 

  2. Energy Department Launches New Clean Energy Manufacturing Initiative |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy New Clean Energy Manufacturing Initiative Energy Department Launches New Clean Energy Manufacturing Initiative March 26, 2013 - 10:56am Addthis News Media Contact (202) 586-4940 OAK RIDGE - As part of the Obama Administration's commitment to revitalizing America's manufacturing sector, today the Energy Department launched the Clean Energy Manufacturing Initiative (CEMI), a new Department initiative focused on growing American manufacturing of clean energy products and

  3. All Manufacturing Footprint, October 2012 (MECS 2006)

    SciTech Connect (OSTI)

    2012-10-17

    Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.

  4. Innovative Manufacturing Initiative Recognition Day, Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office (AMO) | Department of Energy Day, Advanced Manufacturing Office (AMO) Innovative Manufacturing Initiative Recognition Day, Advanced Manufacturing Office (AMO) PDF icon imi_recogitionday_leo_june2012.pdf More Documents & Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry

  5. Cincinnati Incorporated- A Success Story in American Manufacturing

    Broader source: Energy.gov [DOE]

    Cincinnati Incorporated, a fourth-generation-owned company, is one of the largest machine tool manufacturers in the United States, with almost 400 employees at its 500-thousand square foot plant and technical center. It’s also the first company in the manufacturing machine tool industry sector to enter the additive manufacturing arena.

  6. Manufacturing Innovation Institute for Smart Manufacturing: Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensors, Controls, Platforms, and Modeling for Manufacturing | Department of Energy Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing September 23, 2015 - 2:38pm Addthis Posted Date: Sep 15, 2015 Original Closing Date for Applications: Jan 29, 2016 A mandatory Concept Paper is due

  7. Chapter 2 - Energy Sectors and Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 - Energy Sectors and Systems Chapter 2 - Energy Sectors and Systems Chapter 2 - Energy Sectors and Systems Within and between the electricity, fuels, transportation, buildings, and manufacturing sectors, increasing interconnectedness and complexity are creating opportunities and challenges that can be approached from a systems perspective. Some of the most transformational opportunities exist at the systems level. They are enabled by the ability to understand, predict, and control very large

  8. additive manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    additive manufacturing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  9. Green Manufacturing

    SciTech Connect (OSTI)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  10. All Manufacturing Footprint, December 2010 (MECS 2006)

    SciTech Connect (OSTI)

    none,

    2010-06-01

    Manufacturing energy and carbon footprints map fuel energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing industry sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released due to the combustion of fuel. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high-level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The energy data is primarily provided by the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), and therefore reflects consumption in the year 2006, when the survey was last completed.

  11. Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on ...

  12. Advanced Manufacturing Office: Smart Manufacturing Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Smart Manufacturing is a network data-driven process that combines innovative automation ... Smart Manufacturing is a network data-driven process that combines innovative automation ...

  13. Cincinnati Incorporated - A Success Story in American Manufacturing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cincinnati Incorporated - A Success Story in American Manufacturing Cincinnati Incorporated - A Success Story in American Manufacturing April 15, 2015 - 1:33pm Addthis Cincinnati Incorporated, a fourth-generation-owned company, is one of the largest machine tool manufacturers in the United States, with almost 400 employees at its 500-thousand square foot plant and technical center. It's also the first company in the manufacturing machine tool industry sector to enter the

  14. Clean Energy Manufacturing Initiative Partnerships | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnerships Clean Energy Manufacturing Initiative Partnerships The Clean Energy Manufacturing Initiative (CEMI) engages in partnerships to improve U.S. clean energy manufacturing competitiveness. Growing U.S. clean energy manufacturing competitiveness requires an "all hands on deck" approach, with the nation's private and public sectors, universities, think tanks, and labor leaders working together to identify and commit to a path forward. Initial partnerships include: Council on

  15. Bandwidth Study U.S. Chemical Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Manufacturing Bandwidth Study U.S. Chemical Manufacturing Chemicals.jpg Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing

  16. Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration (EIA) About the MECS Survey forms Maps MECS Terminology Archives Features First 2010 Data Press Release 2010 Data Brief Other End Use Surveys Commercial Buildings - CBECS Residential - RECS Transportation DOE Uses MECS Data Manufacturing Energy and Carbon Footprints Associated Analysis Manufacturing Energy Sankey Diagrams Manufacturing Energy Flows Tool Cost of Natural Gas Used in Manufacturing Sector Has Fallen MECS 2010 - Release date: September 6,

  17. Energy Department Takes Major Steps to Increase U.S. Energy Productivity and Manufacturing

    Broader source: Energy.gov [DOE]

    The Department of Energy today announced expansions of its Clean Energy Manufacturing Initiative in support of the American manufacturing sector and a new initiative to support President Obama’s goal of doubling energy productivity by 2030.

  18. Solar Manufacturing Projects | Department of Energy

    Energy Savers [EERE]

    Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects SOLAR ...

  19. Transportation Sector Module

    Gasoline and Diesel Fuel Update (EIA)

    cost changes due to production volume economies of scale and potential scientific, manufacturing, and design advances. Manufacturing advances can generally be thought of as...

  20. Dispatchable Distributed Generation: Manufacturing's Role in Support of

    Broader source: Energy.gov (indexed) [DOE]

    Grid Modernization, FEBRUARY 10-11 | Department of Energy Advanced Manufacturing Office (AMO) held a workshop in Austin, Texas at the Embassy Suites Hotels on February 10-11, 2016. The topic of this 2 day workshop was the Role of the Manufacturing Sector in Grid Modernization. This workshop included discussions on the technological barriers of grid modernization in the industrial sector. Through this workshop, AMO aims to work with industry leaders to address barriers in an attempt to

  1. Manufacturing Demonstration Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORNL is managed by UT-Battelle for the US Department of Energy Manufacturing Demonstration Facility DOE Advanced Manufacturing Office Merit Review Craig Blue Director, Manufacturing Demonstration Facility Energy and Environmental Sciences Directorate May 6-7, 2014 Washington, DC This presentation does not include proprietary, confidential, or otherwise restricted information. Outline * Manufacturing Demonstration Facility * Impacts with Industry - Metal additive manufacturing - Polymer additive

  2. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program ...

  3. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect (OSTI)

    Selldorff, John; Atwell, Monte

    2014-09-23

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  4. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema (OSTI)

    Selldorff, John; Atwell, Monte

    2014-12-03

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  5. Energy-Saving Homes, Buildings, and Manufacturing Success Stories

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy's (EERE) successes in converting tax dollars into more efficient energy solutions for our nation's buildings and manufacturing supply lines mean large-scale energy and cost savings. Learn how EERE's investments in energy solutions for homes, buildings, manufacturing, and the federal energy management sector translate into significant cost savings and a reduction in fossil fuel use.

  6. Manufacturing Demonstration Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to develop broad dissemination of additive manufacturing Industry Collaborations * ... 5 DOE-AMO 2015 Peer Review Understanding Additive Manufacturing Mainstream applications ...

  7. Next Generation Manufacturing Processes

    Broader source: Energy.gov [DOE]

    New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high...

  8. HPC4Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab capabilities Manufacturing domain expertise National mission and guidance Bringing HPC to U.S. Manufacturers Energy Efficient Processes Energy Efficient Products...

  9. NREL: Photovoltaics Research - Photovoltaic Manufacturing R&D Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Manufacturing R&D Project Photo of blue solar cells being sorted in a production line. A woman works behind the protective glass in the background. BP Solar's manufacturing capabilities include automatic sorting of solar cells after final testing. NREL's Photovoltaic (PV) Manufacturing Research and Development (R&D) Project was a cost-shared partnership between NREL and a number of private-sector solar companies. The primary project goals were to reduce costs for consumers

  10. Bandwidth Study U.S. Iron and Steel Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iron and Steel Manufacturing Bandwidth Study U.S. Iron and Steel Manufacturing Bandwidth Study U.S. Iron and Steel Manufacturing Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. iron and steel manufacturing. The study relies on multiple sources to estimate the energy used in

  11. Iron and Steel Sector (NAICS 3311 and 3312) Energy and GHG Combustion Emissions Profile, November 2012

    Energy Savers [EERE]

    99 2.6 IRON AND STEEL SECTOR (NAICS 3311, 3312) 2.6.1. Overview of the Iron and Steel Manufacturing Sector The iron and steel sector is an essential part of the U.S. manufacturing sector, providing the necessary raw material for the extensive industrial supply chain. U.S. infrastructure is heavily reliant on the U.S. iron and steel sector, as it provides the foundation for construction (bridges, buildings), transportation systems (railroads, cars, trucks), utility systems (municipal water

  12. Advanced Manufacturing Technician

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Manufacturing Production Technician; Electro-Mechanical Technician; Electronics Maintenance Technician  

  13. Advanced Manufacturing Office News

    SciTech Connect (OSTI)

    2013-08-08

    News stories about advanced manufacturing, events, and office accomplishments. Subscribe to receive updates.

  14. Changes in Energy Intensity in the Manufacturing Sector 1985...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Introduction Rankeda EI Numbers of Total Inputs of Energy SIC Codeb Intensity for 1985c Intensity for 1994c 29 18.11 25.85 26 17.82 17.71 33 19.57 16.27 32 14.75 14.69 28 11.09...

  15. Changes in Energy Intensity in the Manufacturing Sector 1985...

    U.S. Energy Information Administration (EIA) Indexed Site

    Census agents have access to individual survey responses. The sample design allows attachment of economic data obtained by other agencies (e.g., Census Bureau, Bureau of Economic...

  16. Manufacturing Energy and Carbon Footprint - Sector: Glass (NAICS...

    Broader source: Energy.gov (indexed) [DOE]

    Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy Use (TBtu ... Total Onsite 0 3 1 Fuel Type % of Total Natural Gas 95% Coke and Breeze 1% Distillate and ...

  17. Manufacturing Energy and Carbon Footprint - Sector: Cement (NAICS...

    Broader source: Energy.gov (indexed) [DOE]

    Emissions Energy Use (TBtu Trillion British Thermal Units) All Energy Electricity Steam Fuel Losses Total Onsite 0 3 1 Fuel Type % of Total Coal 69% Petroleum Coke ...

  18. Manufacturing Energy and Carbon Footprint - Sector: Forest Products...

    Broader source: Energy.gov (indexed) [DOE]

    Total Emissions Offsite Emissions + Onsite Emissions Energy Use (TBtu Trillion British ... Materials (byproduct fuel) 1% Petroleum Coke (byproduct fuel) 1% LPG and NGL < 0.5% ...

  19. Manufacturing Energy and Carbon Footprint - Sector: Iron and...

    Broader source: Energy.gov (indexed) [DOE]

    Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy Use (TBtu ... Total Onsite 0 10 2 Fuel Type % of Total Natural Gas 43% Coke and Breeze 22% Blast ...

  20. National Network for Manufacturing Innovation: A Preliminary Design |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Network for Manufacturing Innovation: A Preliminary Design National Network for Manufacturing Innovation: A Preliminary Design The Federal investment in the National Network for Manufacturing Innovation (NNMI) serves to create an effective manufacturing research infrastructure for U.S. industry and academia to solve industry-relevant problems. The NNMI will consist of linked Institutes for Manufacturing Innovation (IMIs) with common goals, but unique

  1. Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Additive manufacturing, also know as 3D printing, has helped spark a creative manufacturing renaissance, allowing companies to create products in new ways while also reducing material waste, saving energy and shortening the time needed to bring products to market. Learn more about this game-changing technology. Manufacturing is the lifeblood of the American economy -- providing jobs for hard working American families

  2. Manufacturing fuel-switching capability, 1988

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

  3. Chemical Sector Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACChemical Sector Analysis content top Chemical Supply Chain Analysis Posted by Admin on Mar 1, 2012 in | Comments 0 comments Chemical Supply Chain Analysis NISAC has developed ...

  4. Commercial Sector Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  5. Energy Use in Manufacturing

    Reports and Publications (EIA)

    2006-01-01

    This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

  6. Manufacturing Day 2015

    Broader source: Energy.gov [DOE]

    All over the country, manufacturing companies and other organizations are preparing to host an anticipated 400,000 people who want to experience U.S. manufacturing up close and in person. On...

  7. Energy Sector Cybersecurity Framework Implementation Guidance | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Cybersecurity Framework Implementation Guidance Energy Sector Cybersecurity Framework Implementation Guidance On January 8, 2015, the Energy Department released guidance to help the energy sector establish or align existing cybersecurity risk management programs to meet the objectives of the Cybersecurity Framework released by the National Institutes of Standards and Technology (NIST) in February 2014. The voluntary Cybersecurity Framework consists of standards, guidelines, and

  8. NREL: Innovation Impact - Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Increasing U.S. Market Share in Solar Photovoltaic Manufacturing Close From 2000 to 2010, global shipments of solar cells and modules grew 53%, a wave that China and Taiwan rode to increase their combined market share from less than 2% to 54%. Meanwhile, U.S. market share

  9. Manufacturing Innovation Topics Workshop

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office (AMO) and the Office of the Secretary of Defense Manufacturing Technology Program (OSD ManTech) will host a workshop to discuss AMO's recent Request for Information (RFI) on Clean Energy Manufacturing Topic Areas as well as the recent areas of interest announced by OSD ManTech for a new Manufacturing Innovation Institute on October 8-9, 2014 in Fort Worth, TX.

  10. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Bio-Manufacturing: A ... Volume 1, No.2 NRELDOE EERE QCMetrology Workshop - EERE Fuel Cell Technologies Office ...

  11. Bandwidth Study U.S. Pulp and Paper Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pulp and Paper Manufacturing Bandwidth Study U.S. Pulp and Paper Manufacturing Pulp-Paper.jpg Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. pulp and paper manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas,

  12. Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit

    Broader source: Energy.gov [DOE]

    Presentation on fuel cell manufacturing by Sunita Satyapal at the American Energy and Manufacturing Competitiveness Summit on December 12, 2013.

  13. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    SciTech Connect (OSTI)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  14. Advanced Manufacturing Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... sector Gap "Valley of Death" (Risk Spike) DOE Energy ... capability for the United States * Impactful: Has a ... or products: * Production rate * Processes established * ...

  15. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Productivity Video | Department of Energy Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and

  16. Additive Manufacturing: Going Mainstream

    Broader source: Energy.gov [DOE]

    Additive manufacturing, or 3D printing, is receiving attention from media, investment communities and governments around the world transforming it from obscurity to something to be talked about.

  17. Manufacturing R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    such as metrology and quality control standards, modeling and simulation tools ... the establishment of a robust, domestic hydrogen and fuel cell manufacturing industry. ...

  18. Manufacturing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

  19. Contribution to Nanotechnology Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    50 award for directed assembly September 3, 2008 Contribution to Nanotechnology Manufacturing LOS ALAMOS, New Mexico, September 3, 2008-A team of scientists spanning three...

  20. Roll to Roll Manufacturing

    SciTech Connect (OSTI)

    Daniel, Claus

    2015-06-09

    ORNL researchers are developing roll to roll technologies for manufacturing, automotive, and clean energy applications in collaboration with industry partners such as Eastman Kodak.

  1. Private Sector Outreach and Partnerships

    Office of Energy Efficiency and Renewable Energy (EERE)

    ISER’s partnerships with the private sector are a strength which has enabled the division to respond to the needs of the sector and the nation.

  2. Clean Energy Manufacturing Initiative

    SciTech Connect (OSTI)

    2013-04-01

    The initiative will strategically focus and rally EEREs clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  3. AMO Issues Request for Information on Clean Energy Manufacturing Topics, Including Fuel Cell and Hydrogen Applications

    Broader source: Energy.gov [DOE]

    The AMO seeks information on mid-Technology Readiness Level R&D needs, market challenges, supply chain challenges, and shared facility needs addressing clean energy manufacturing topics, including the fuel cell and hydrogen sectors.

  4. Federal and Industry Partners Issue Challenge to Manufacturers | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy and Industry Partners Issue Challenge to Manufacturers Federal and Industry Partners Issue Challenge to Manufacturers June 6, 2013 - 10:09am Addthis News Media Contact (202) 586-4940 WASHINGTON -- A coalition that includes the U.S. federal government and over 200 major commercial building sector partners has issued a simple challenge to U.S. manufacturers: if you can build wireless sub-meters that cost less than $100 apiece and enable us to identify opportunities to save money by

  5. Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

  6. Manufacturing Energy and Carbon Footprint

    Energy Savers [EERE]

    ORNL is managed by UT-Battelle for the US Department of Energy Manufacturing Demonstration Facility DOE Advanced Manufacturing Office Merit Review Craig Blue Director, Manufacturing Demonstration Facility Energy and Environmental Sciences Directorate May 6-7, 2014 Washington, DC This presentation does not include proprietary, confidential, or otherwise restricted information. Outline * Manufacturing Demonstration Facility * Impacts with Industry - Metal additive manufacturing - Polymer additive

  7. Introduction: U.S. Manufacturing Energy Use and Greenhouse Gas...

    Broader source: Energy.gov (indexed) [DOE]

    As shown in Fig. 1.1-1, the U.S. manufacturing sector is estimated to consume over one quarter of all U.S. energy use. Fig. 1.1-1. 2006 U.S. energy consumption EIA 2010a ...

  8. Public-Private Partnerships for Clean Energy Manufacturing

    SciTech Connect (OSTI)

    2015-09-01

    As part of its mission, CEMI builds partnerships around strategic priorities to increase U.S. clean energy manufacturing competitiveness. This requires an “all-hands-on-deck” approach that involves the nation’s private and public sectors, universities, think tanks, and labor leaders working together.

  9. Energy substitution in US manufacturing: a regional approach

    SciTech Connect (OSTI)

    Harper, C.; Field, B.C.

    1983-10-01

    Elasticities of energy substitution estimated from region-specific models are reported for major two-digit manufacturing sectors using state cross section data for 1972-1973, years which were relatively stable preceding the oil-import embargo and large-scale inflation. 32 references, 3 figures.

  10. The Advanced Manufacturing Partnership and the Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Program Office | Department of Energy The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office This presentation describes the Advanced Manufacturing Partnership from its beginning as a recommendation of the President's Council of Advisers on Science and Technology to its development and organization. PDF icon The Advanced Manufacturing Partnership and

  11. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Libby Wayman, Director, EERE Clean Energy Manufacturing Initiative PDF icon b13_wayman_1-a.pdf More Documents & Publications Amped Up! Volume 1, No.2 NREL/DOE EERE QC/Metrology

  12. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI has recently commercialized.

  13. Renewable Energy Manufacturing Program

    Broader source: Energy.gov [DOE]

    Note: The initial application deadline for the Renewable Energy Manufacturing Program is June 30, 2016. Applications will be accepted following that date only if there are remaining funds available...

  14. NREL: Innovation Impact - Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buildings Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Buildings Use 40% of U.S. Energy Close Americans spend $400 billion annually to power homes and commercial buildings. An estimated $80 billion could be saved through energy efficiency. Close NREL's net-zero-energy Research Support Facility employs cutting-edge energy efficiency

  15. Additive Manufacturing Technology Assessment

    Energy Savers [EERE]

    of Energy Additive Manufacturing Meets the Critical Materials Shortage Additive Manufacturing Meets the Critical Materials Shortage April 9, 2014 - 11:15am Addthis Green light reflection from a low-oxygen environment, 3D-printer laser deposition of metal powder alloys. | Photo courtesy of Critical Materials Institute, Ames Laboratory Green light reflection from a low-oxygen environment, 3D-printer laser deposition of metal powder alloys. | Photo courtesy of Critical Materials Institute, Ames

  16. Innovative Manufacturing Initiative Project Selections

    Broader source: Energy.gov [DOE]

    The Department announced nearly $23 million for 12 projects across the country to advance technologies aimed at helping American manufacturers dramatically increase the energy efficiency of their manufacturing facilities, lower costs, and develop new manufacturing technologies.

  17. Laser Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Impact > Advanced Laser Manufacturing Tools Deliver Higher Performance Click to ... Advanced Laser Manufacturing Tools Deliver Higher Performance In a research lab looking ...

  18. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THE OPPORTUNITY OF CLEAN ENERGY MANUFACTURING By 2030, the global market for new energy ... and domestic energy resources in manufacturing represents important opportunities for ...

  19. Innovative Manufacturing Initiative Recognition Day

    Broader source: Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers...

  20. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption...

  1. Advanced Materials Manufacturing (AMM) Session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Office (AMO) manufacturing.energy.gov 2 WELCOME & THANK YOU from your friendly support staff: Eric Miller, David Forrest, Fred Crowson, Jessica Savell... ...

  2. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the ...

  3. Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing

    Reports and Publications (EIA)

    2006-01-01

    Based on the Manufacturing Energy Consumption Survey (MECS) conducted by the U.S. Department of Energy, Energy Information Administration (EIA), this paper presents historical energy-related carbon dioxide emission estimates for energy-intensive sub-sectors and 23 industries. Estimates are based on surveys of more than 15,000 manufacturing plants in 1991, 1994, 1998, and 2002. EIA is currently developing its collection of manufacturing data for 2006.

  4. Buildings Sector Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    July 22, 2013 AEO2014 Model Development For discussion purposes only Not for citation Overview Builldings Working Group Forrestal 2E-069 / July 22, 2013 2 * Residential projects - RECS update - Lighting model - Equipment, shell subsidies - ENERGY STAR benchmarking - Housing stock formation and decay * Commercial projects - Major end-use capacity factors - Hurdle rates - ENERGY STAR buildings * Both sectors - Consumer behavior workshop - Comparisons to STEO - AER  MER - Usual annual updates -

  5. Process Intensification - Chemical Sector Focus

    Energy Savers [EERE]

    Process Intensification - Chemical Sector Focus 1 Technology Assessment 2 Contents 3 1. ......... 5 5 2.1 Chemical Industry Focus ......

  6. Manufacturing Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

  7. Advanced Manufacture of Reflectors

    Broader source: Energy.gov [DOE]

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  8. Manufacturing Innovation in the DOE

    Energy Savers [EERE]

    October 2012 | Department of Energy Definitions and Assumptions, October 2012 Manufacturing Energy and Carbon Footprint Definitions and Assumptions, October 2012 PDF icon footprints_assumptions_definitions_2012.pdf More Documents & Publications Understanding Manufacturing Energy and Carbon Footprints, October 2012 2010 Manufacturing Energy and Carbon Footprints: Definitions and Assumptions U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis

    References Manufacturing

  9. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  10. Drug development and manufacturing

    DOE Patents [OSTI]

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2015-10-13

    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.

  11. Clean Energy Manufacturing Initiative Midwest Regional Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout Session Summary More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Multimaterial Joining Workshop Manufacturing ...

  12. Self-consistent klystron simulations

    SciTech Connect (OSTI)

    Carlsten, B.E.; Tallerico, P.J.

    1985-01-01

    A numerical analysis of large-signal klystron behavior based on general wave-particle interaction theory is presented. The computer code presented is tailored for the minimum amount of complexity needed in klystron simulation. The code includes self-consistent electron motion, space-charge fields, and intermediate and output fields. It also includes use of time periodicity to simplify the problem, accurate representation of the space-charge fields, accurate representation of the cavity standing-wave fields, and a sophisticated particle-pushing routine. In the paper, examples are given that show the effects of cavity detunings, of varying the magnetic field profile, of electron beam asymmetries from the gun, and of variations in external load impedance. 4 refs., 7 figs.

  13. Behavioral Assumptions Underlying California Residential Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report) Behavioral Assumptions Underlying California Residential Sector Energy ...

  14. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies ...

  15. Energy Sector Cybersecurity Framework Implementation Guidance

    Broader source: Energy.gov (indexed) [DOE]

    FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of Contents...

  16. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    engineering and mathematics (STEM) education ... manufacturing from university spinouts & licensing * ... * High school teaching and learning models must be adapted ...

  17. National Electrical Manufacturers Association

    Energy Savers [EERE]

    July 24, 2014 VIA EMAIL TO: Regulatory.Review@hq.doe.gov Steven Croley, General Counsel Office of the General Counsel U.S. Department of Energy 1000 Independence Avenue SW., Washington, DC 20585 NEMA Comments on DOE Reducing Regulatory Burden RFI 79 Fed.Reg. 28518 (July 3, 2014) Dear Mr. Croley, The National Electrical Manufacturers Association (NEMA) thanks you for the opportunity to provide comments on the Department of Energy's efforts to make its regulatory program more effective and less

  18. Energy Sector Market Analysis

    SciTech Connect (OSTI)

    Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

    2006-10-01

    This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

  19. Manufactured Homes Tool

    Energy Science and Technology Software Center (OSTI)

    2005-03-09

    The MH Tool software is designed to evaluate existing and new manufactured homes for structural adequacy in high winds. Users define design elements of a manufactured home and then select the hazard(s) for analysis. MH Tool then calculates and reports structural analysis results for the specified design and hazard Method of Solution: Design engineers input information (geometries, materials, etc.) describing the structure of a manufactured home, from which the software automatically creates a mathematical model.more » Windows, doors, and interior walls can be added to the initial design. HUD Code loads (wind, snow loads, interior live loads, etc.) are automatically applied. A finite element analysis is automatically performed using a third party solver to find forces and stresses throughout the structure. The designer may then employ components of strength (and cost) most appropriate for the loads that must be carried at each location, and then re-run the analysis for verification. If forces and stresses are still within tolerable limits (such as the HUD requirements), construction costs would be reduced without sacrificing quality.« less

  20. Fuel Oil Use in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  1. Additive Manufacturing for Fuel Cells

    Broader source: Energy.gov [DOE]

    Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

  2. Laser Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Manufacturing at GE Global Research Click to email this to a friend (Opens in new ... Laser Manufacturing at GE Global Research Learn how laser sintering, an additive laser ...

  3. Sector Collaborative on Energy Efficiency

    SciTech Connect (OSTI)

    none,

    2008-06-01

    Helps stakeholders identify and act on cost-effective opportunities for expanding energy efficiency resources in the hospitality, retail, commercial real estate, grocery, and municipal sectors.

  4. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  5. Energy 101: Clean Energy Manufacturing

    SciTech Connect (OSTI)

    2015-07-09

    Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.

  6. NREL: Energy Analysis - Manufacturing Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent Publications "Economic Measurements of Polysilicon for the Photovoltaic Industry: Market Competition and Manufacturing Competitiveness" IEEE Journal of Photovoltaics Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry Economic Development Impact of 1,000 MW of Wind Energy in Texas Manufacturing Analysis With world-class manufacturing analysis capabilities, NREL analyzes clean energy industry trends; cost, price, and performance trends; market and

  7. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 ITP Nanomanufacturing: Nanomanufacturing Portfolio: ...

  8. Energy 101: Clean Energy Manufacturing

    Broader source: Energy.gov [DOE]

    Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.

  9. Revolutionizing Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineering, and Mathematics -- education outreach at the Energy Department's ... National Network for Manufacturing Innovation pilot announcement. | Photo courtesy of ...

  10. International Energy Outlook 2016-Buildings sector energy consumption -

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information Administration 6. Buildings sector energy consumption Overview Energy consumed in the buildings sector consists of residential and commercial end users and accounts for 20.1% of the total delivered energy consumed worldwide. Consumption of delivered, or site, energy contrasts with the use of the primary energy that also includes the energy used to generate and deliver electricity to individual sites such as homes, offices, or industrial plants. In the International Energy

  11. Out of bounds additive manufacturing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Holshouser, Chris; Newell, Clint; Palas, Sid; Love, Lonnie J.; Kunc, Vlastimil; Lind, Randall F.; Lloyd, Peter D.; Rowe, John C.; Blue, Craig A.; Duty, Chad E.; et al

    2013-03-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  12. Out of Bounds Additive Manufacturing

    SciTech Connect (OSTI)

    Holshouser, Chris [Lockheed Martin Corporation; Newell, Clint [Lockheed Martin Corporation; Palas, Sid [Lockheed Martin Corporation; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Lind, Randall F [ORNL; Lloyd, Peter D [ORNL; Rowe, John C [ORNL; Blue, Craig A [ORNL; Duty, Chad E [ORNL; Peter, William H [ORNL; Dehoff, Ryan R [ORNL

    2013-01-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing (AM) system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  13. Advanced Manufacturing Office Update, March 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 2015 Advanced Manufacturing Office Update, March 2015 March 30, 2015 - 3:13pm Addthis In This Issue Featured Articles Better Plants Welcomes New Partners from Diverse Sectors Better Plants Challenge Partners Share Energy-Saving Solutions Harbec Receives 2014 Environmental Excellence Award from New York State AMO and Industry News Heat Exchange Materials Research Advances Accomplishments Highlighted at Critical Materials Institute Annual Peer Review Benefits of Combined Heat and Power

  14. Advanced Manufacturing Office (Formerly Industrial Technologies Program) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon DOE's Advanced Manufacturing Office More Documents & Publications Innovative Manufacturing Initiative Recognition Day Manufacturing Demonstration Facilities Workshop Agenda, March 2012 Advanced Manufacturing

  15. Manufacturing Energy Consumption Survey (MECS) - Analysis & Projection...

    Gasoline and Diesel Fuel Update (EIA)

    Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010 MECS 2010 - ...

  16. Manufacturing Energy Consumption Survey (MECS) - Analysis & Projection...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    That increase in supply has in turn lowered the price of natural gas to manufacturers Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use ...

  17. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy...

  18. Additive Manufacturing: Pursuing the Promise | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Fact sheet overviewing additive manufacturing techniques that are projected to exert a profound impact on manufacturing. Additive Manufacturing: Pursuing the Promise More Documents...

  19. Teksun PV Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    Teksun PV Manufacturing Inc Jump to: navigation, search Logo: Teksun PV Manufacturing Inc Name: Teksun PV Manufacturing Inc Address: 401 Congress Ave Place: Austin, Texas Zip:...

  20. Secure Manufacturing | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure Manufacturing Secure Manufacturing The depth and breadth of Y-12's manufacturing capabilities and expertise enable Y-12 to address current and emerging national security...

  1. WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW PDF icon Sustainable Manufacturing Workshop Agenda.pdf ...

  2. Petroleum Refining Sector (NAICS 324110) Energy and GHG Combustion Emissions Profile, November 2012

    Energy Savers [EERE]

    69 2.4 PETROLEUM REFINING SECTOR (NAICS 324110) 2.4.1. Overview of the Petroleum Refining Manufacturing Sector Petroleum refining is a complex industry that generates a diverse slate of fuel products and petrochemicals, from gasoline to asphalt. Refining requires a range of processing steps, including distillation, cracking, reforming, and treating. Most of these processes are highly reliant on process heating and steam energy. Petroleum refineries are an essential part of the U.S. economy.

  3. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Iron and Steel Manufacturing

    SciTech Connect (OSTI)

    Keith Jamison, Caroline Kramer, Sabine Brueske, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. iron and steel manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas and select subareas, representing 82% of sector-wide energy consumption. Energy savings opportunities for individual processes and subareas are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  4. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Pulp and Paper Manufacturing

    SciTech Connect (OSTI)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. pulp and paper manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas, representing 52% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity

  5. Wind Manufacturing Facilities | Department of Energy

    Energy Savers [EERE]

    Manufacturing Facilities Wind Manufacturing Facilities Wind Manufacturing Facilities America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state

  6. Oak Ridge Centers for Manufacturing Technology - The Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Manufacturing Skills Campus Another of the inputs came from Garry Whitley, President of the Atomic Trades and Labor Council, since retired. Garry and I have worked together...

  7. Oak Ridge Centers for Manufacturing Technology ? The Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Manufacturing Skills Campus Another of the inputs came from Garry Whitley, President of the Atomic Trades and Labor Council, since retired. Garry and I have worked together...

  8. Plumbing Manufacturer's Institute Ex Parte Communication Regarding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Letter to Department ...

  9. INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING TRANSFORMATIONAL ENERGY PRODUCTIVITY GAINS INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING ...

  10. Nakagawa Electric Machinery Manufacturer | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Nakagawa Electric Machinery Manufacturer Place: Saku, Nagano, Japan Product: A company engages in electrical equipment manufacture. Coordinates:...

  11. ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing of Surfaces with Nanoscale and Microscale Features ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale and Microscale Features PDF icon...

  12. Clean Energy Manufacturing Innovation Institute for Composites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures ...

  13. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program Fact ...

  14. American Energy and Manufacturing Competitiveness Summit Introduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis Description Introduction video for the American Energy and Manufacturing ... for the American Energy and Manufacturing Competetitiveness Summit Introduction video. ...

  15. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel ...

  16. Semiconductor Manufacturing International Corp SMIC | Open Energy...

    Open Energy Info (EERE)

    Manufacturing International Corp SMIC Jump to: navigation, search Name: Semiconductor Manufacturing International Corp (SMIC) Place: Shanghai, Shanghai Municipality, China Zip:...

  17. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy Efficiency & Renewable Energy's (EERE's) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. Clean Energy Manufacturing Initiative: http://www1.eere.energy.gov/energymanufacturing

  18. Advanced Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Advanced Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers

  19. Transformational Manufacturing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and

  20. NREL: Energy Systems Integration - Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Manufacturing capabilities at NREL support the production of components for fuel cells and electrochemical cells and the development of methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their production to meet national goals. Fuel cells cleanly and efficiently convert hydrogen into electricity through an electrochemical process. Fuel cells offer promise in a wide range of

  1. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

  2. Manufacturing Spotlight: Boosting American Competitiveness

    Broader source: Energy.gov [DOE]

    Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient.

  3. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... projects that reduce the cost and risk of commercializing new technologies or ... manufacturing, data management, and operation of complex energy and communication systems. ...

  4. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    the CM, the ASM contains two components. The first component is the mail portion, a probability sample of manufacturing establishments selected from the list of establishments...

  5. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by ensuring critical feedback from the production phase to invention and discovery. Additive manufacturing is just one of several technologies advanced by the Energy...

  6. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information AdministrationManufacturing Consumption of Energy 1994 SIC Residual...

  7. High Pressure Hydrogen Tank Manufacturing

    Broader source: Energy.gov [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

  8. Electrolyzer Manufacturing Progress and Challenges

    Broader source: Energy.gov [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

  9. Manufacturing Fuel Cell Manhattan Project

    Broader source: Energy.gov [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

  10. WINDExchange: Wind Energy Market Sectors

    Wind Powering America (EERE)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Wind Energy Market Sectors U.S. power plants generate electricity for homes, factories, and businesses from a variety of resources, including coal, hydro, natural gas, nuclear, petroleum, and (non-hydro) renewable resources such as wind and solar energy. This power generation mix varies significantly across the country depending on

  11. Manufacturing Competitiveness and Supply Chain Analysis | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Manufacturing Competitiveness and Supply Chain Analysis Manufacturing Competitiveness and Supply Chain Analysis Lead Performer: National Renewable Energy Laboratory (NREL) - Golden, CO FY16 DOE Funding: $200,000 Project Term: October 1, 2014 - December 31, 2016 Funding Type: Direct Lab Funding PROJECT OBJECTIVE The Clean Energy Manufactuing Analysis Center at NREL conducts credible, objective, industry-relevant, consistent, and timely snapshots of the global competitiveness of a

  12. Property:DeploymentSector | Open Energy Information

    Open Energy Info (EERE)

    search Property Name DeploymentSector Property Type String Description Depolyment Sector as used in cleanenergysolutions.org Allows the following values: Commercial...

  13. Technologies for Climate Change Mitigation: Transport Sector...

    Open Energy Info (EERE)

    Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector...

  14. Energy Sector Cybersecurity Framework Implementation Guidance

    Energy Savers [EERE]

    JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector ...

  15. Advanced Manufacture of Reflectors

    SciTech Connect (OSTI)

    Angel, Roger

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings • A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. • Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square – a unique capability. • The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. • A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test and alignment of trough or dish reflectors. • Ten full size (2.5 m2) cylindrically curved reflectors, molded in 950 seconds and measured with the laser test facility, show shape repeatability to 0.5 mrad rms. These replicas met the Phase I Go/No-Go targets for speed (1000 sec), accuracy (< 5 mrad) and reproducibility (< 2 mrad). • Our research and tests show that the hoped-for improvements in mirror reflectivity achievable with titania antisoil coatings are not very effective in dry climates and are therefore unlikely to be economically worthwhile, and that glass with iron in the Fe+3 state to achieve very low absorption cannot be made economically by the float process.

  16. Market study for direct utilization of geothermal resources by selected sectors of economy

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    A comprehensive analysis is presented of industrial markets potential for direct use of geothermal energy by a total of six industry sectors: food and kindred products; tobacco manufactures; textile mill products; lumber and wood products (except furniture); chemicals and allied products; and leather and leather products. A brief statement is presented regarding sectors of the economy and major manufacturing processes which can readily utilize direct geothermal energy. Previous studies on plant location determinants are summarized and appropriate empirical data provided on plant locations. Location determinants and potential for direct use of geothermal resources are presented. The data was gathered through interviews with 30 senior executives in the six sectors of economy selected for study. Probable locations of plants in geothermal resource areas and recommendations for geothermal resource marketing are presented. Appendix A presents factors which impact on industry location decisions. Appendix B presents industry executives interviewed during the course of this study. (MHR)

  17. Manufacturers' View on Benchmarking and Disclosure

    U.S. Energy Information Administration (EIA) Indexed Site

    Association of Electrical and Medical Imaging Equipment Manufacturers Manufacturing Solutions for Energy Efficiency in Buildings Patrick Hughes Policy Director, High Performance Buildings National Electrical Manufacturers Association The Association of Electrical and Medical Imaging Equipment Manufacturers What is NEMA? The Association of Electrical Equipment and Medical Imaging Manufacturers Which policies encourage energy efficiency in buildings? Energy Savings Performance Contracts Tax

  18. Manufacturing serendipity: Chicago Innovation Exchange enhancing regional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Association of Electrical and Medical Imaging Equipment Manufacturers Manufacturing Solutions for Energy Efficiency in Buildings Patrick Hughes Policy Director, High Performance Buildings National Electrical Manufacturers Association The Association of Electrical and Medical Imaging Equipment Manufacturers What is NEMA? The Association of Electrical Equipment and Medical Imaging Manufacturers Which policies encourage energy efficiency in buildings? Energy Savings Performance Contracts Tax

  19. Advanced Technology Vehicles Manufacturing Incentive Program | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles manufacturing incentive program. PDF icon Advanced Technology Vehicles Manufacturing Incentive Program More Documents & Publications Advanced Technology Vehicles Manufacturing Incentive Program MEMA: Comments MEMA: Letter

  20. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of...

  1. Alternative Energy Manufacturing Tax Credit

    Broader source: Energy.gov [DOE]

    The Alternative Energy Manufacturing Tax Credit is a nonrefundable tax credit for up to 100% of new state tax revenues (including state, corporate, sales, and withholding taxes) over the life of a...

  2. 2014 Manufacturing Energy Consumption Survey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U S C E N S U S B U R E A U 2014 Manufacturing Energy Consumption Survey Sponsored by the Energy Information Administration U.S. Department of Energy Administered and Compiled by ...

  3. Manufacturing means jobs ? Mike Arms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Means Jobs - Mike Arms Mike Arms and I usually meet and say hello at the East Tennessee Economic Council meetings each Friday morning at 7:30 a.m. This unique meeting...

  4. CFL Manufacturers: ENERGY STAR Letters

    Broader source: Energy.gov [DOE]

    DOE issued letters to 25 manufacturers of compact fluorescent lamps (CFLs) involving various models after PEARL Cycle 9 testing indicated that the models do not meet the ENERGY STAR specification and, therefore, are disqualified from the ENERGY STAR Program.

  5. Sector Profiles of Significant Large CHP Markets, March 2004

    Broader source: Energy.gov [DOE]

    Overview of market assessments of large CHP sector profiles of the chemicals, food, and pharmaceuticals sectors

  6. Innovative Manufacturing Initiative Recognition Day

    Broader source: Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers dramatically increase the energy efficiency of their operations and reduce costs. Each project will advance transformational technologies and materials that can benefit a broad cross-section of the domestic economy. This event created a platform for inter-agency and industry networking and also raised awareness among congressional staff and private investors.

  7. The President's Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation prepared by Dale Hall for the Roadmap Workshop on Manufacturing R&D for the ... Manufacturing National Program Office Roadmap on Manufacturing R&D for the Hydrogen ...

  8. Advanced Manufacturing Office Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office Overview Advanced Manufacturing Office Overview PDF icon mw_rf_workshop_july2012.pdf More Documents & Publications Microwave and Radio Frequency Workshop Manufacturing Demonstration Facility Workshop Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

  9. Upcoming Clean Energy Manufacturing Initiative (CEMI) Southeast...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upcoming Clean Energy Manufacturing Initiative (CEMI) Southeast Regional Summit on July 9 in Atlanta, GA Upcoming Clean Energy Manufacturing Initiative (CEMI) Southeast Regional ...

  10. Additive Manufacturing Meets the Critical Materials Shortage

    Broader source: Energy.gov [DOE]

    Find out how the Energy Department's Advanced Manufacturing Office is working to address potential shortages of critical materials through additive manufacturing, or 3D printing.

  11. Miraial formerly Kakizaki Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Miraial (formerly Kakizaki Manufacturing) Place: Tokyo, Japan Zip: 171-0021 Product: Manufacturer of wafer handling products and other components...

  12. Energy Department Invests in Innovative Manufacturing Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Innovative Manufacturing Technologies Energy Department Invests in Innovative Manufacturing Technologies June 13, 2012 - 12:00am Addthis The Energy Department announced on June...

  13. Manufacturing Institutes Exhibit American Innovation at Hannover...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Institutes Exhibit American Innovation at Hannover Messe Manufacturing Institutes Exhibit American Innovation at Hannover Messe April 25, 2016 - 4:30pm Addthis The ...

  14. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    unit processes, smart manufacturing (SM) systems that ... A smart system that not only sought to recover waste heat, ... is based on current manufacturing and IT industry standards. ...

  15. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic ...

  16. American Wind Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Wind Manufacturing Addthis 1 of 9 Nordex USA -- a global manufacturer of wind turbines -- delivered and installed turbine components for the Power County Wind...

  17. National Network for Manufacturing Innovation: A Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network for Manufacturing Innovation: A Preliminary Design National Network for Manufacturing Innovation: A Preliminary Design The Federal investment in the National Network for ...

  18. China Shandong Penglai Electric Power Equipment Manufacturing...

    Open Energy Info (EERE)

    Penglai Electric Power Equipment Manufacturing Jump to: navigation, search Name: China Shandong Penglai Electric Power Equipment Manufacturing Place: Penglai, Shandong Province,...

  19. National Electrical Manufacturers Association (NEMA) Response...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI National Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI The National Electrical ...

  20. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Workshop Poster Abstract Submission - deadline July 10, 2015 Advanced Qualification of Additive Manufacturing Materials using in situ sensors, diagnostics...

  1. FY 2008 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2008 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2008 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  2. FY 2010 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2010 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2010 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  3. FY 2009 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2009 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2009 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  4. FY 2006 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2006 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2006 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  5. FY 2007 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2007 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2007 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  6. FY 2011 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2011 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2011 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  7. Manufacturing Barriers to High Temperature PEM Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D ...

  8. Manufacturing Demonstration Facilities Workshop Agenda, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Demonstration Facilities Workshop Marriott Springhill Suites O'Hare - Chicago, IL March 12, 2012 Objectives Introduce the manufacturing community to the U.S. DOE ...

  9. Understanding Manufacturing Energy and Carbon Footprints, October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Understanding the 2010 Manufacturing Energy and Carbon Footprints U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis MECS 2006 - Cement

  10. Oak Ridge Centers for Manufacturing Technology - Partnership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact on the Semiconductor Industry, part 2 The Oak Ridge Centers for Manufacturing Technology in partnership with SEMATECH (Semiconductor Manufacturing TECHnology) had...

  11. Clean Energy Manufacturing Initiative Southeast Regional Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative Southeast Regional Summit Clean Energy Manufacturing Initiative Southeast Regional Summit July 9, 2015 8:30AM to 6:00PM EDT Renaissance...

  12. Batteries - Materials Processing and Manufacturing Breakout session

    Broader source: Energy.gov (indexed) [DOE]

    the Other Technical Areas Being Discussed * Li metal manufacturing * Variability in cell manufacturing -intrinsic reduction and aging differences in pack? * Understanding of...

  13. Processing and Manufacturing Equipment | Open Energy Information

    Open Energy Info (EERE)

    Processing and Manufacturing Equipment Jump to: navigation, search TODO: Add description List of Processing and Manufacturing Equipment Incentives Retrieved from "http:...

  14. Technologies Enabling Agile Manufacturing (TEAM) ? an ORCMT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Enabling Agile Manufacturing (TEAM) - An ORCMT success story Technologies Enabling Agile Manufacturing (TEAM) was one of the larger programs to come from the...

  15. Bio Solutions Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    Solutions Manufacturing Inc Jump to: navigation, search Name: Bio Solutions Manufacturing Inc Place: Las Vegas, Nevada Zip: 89103 Product: Waste-to-energy bioremediation developer....

  16. DOE - Office of Legacy Management -- Manufacturing Laboratories...

    Office of Legacy Management (LM)

    Manufacturing Laboratories Inc - MA 0-04 FUSRAP Considered Sites Site: MANUFACTURING LABORATORIES, INC. (MA.0-04 ) Eliminated from further consideration under FUSRAP Designated...

  17. Chung Hsin Electric Machinery Manufacturing Corporation CHEM...

    Open Energy Info (EERE)

    Chung Hsin Electric Machinery Manufacturing Corporation CHEM Jump to: navigation, search Name: Chung Hsin Electric & Machinery Manufacturing Corporation (CHEM) Place: Taoyuan...

  18. advanced manufacturing office | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Manufacturing Office The U.S. Department of Energy (DOE) funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies....

  19. Advanced Qualification of Additive Manufacturing Materials Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Qualification of Additive Manufacturing Materials Workshop Advanced Qualification of Additive Manufacturing Materials Workshop WHEN: Jul 20, 2015 8:30 AM - Jul 21, 2015...

  20. Industrial Activities at DOE: Efficiency, Manufacturing, Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop ...

  1. Wind Energy & Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy & Manufacturing Jump to: navigation, search Blades manufactured at Gamesa's factory in Ebensburg, Pennsylvania, will be delivered to wind farms across the United...

  2. Manufacturing Consumption of Energy 1991--Combined Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of...

  3. Stronger Manufacturers' Energy Efficiency Standards for Residential...

    Energy Savers [EERE]

    Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today Stronger Manufacturers' Energy Efficiency Standards for Residential Air ...

  4. Derived annual estimates of manufacturing energy consumption, 1974--1988

    SciTech Connect (OSTI)

    Not Available

    1992-08-05

    This report presents a complete series of annual estimates of purchased energy used by the manufacturing sector of the US economy, for the years 1974 to 1988. These estimates interpolate over gaps in the actual data collections, by deriving estimates for the missing years 1982--1984 and 1986--1987. For the purposes of this report, ``purchased`` energy is energy brought from offsite for use at manufacturing establishments, whether the energy is purchased from an energy vendor or procured from some other source. The actual data on purchased energy comes from two sources, the US Department of Commerce Bureau of the Census`s Annual Survey of Manufactures (ASM) and EIA`s Manufacturing Energy Consumption Survey (MECS). The ASM provides annual estimates for the years 1974 to 1981. However, in 1982 (and subsequent years) the scope of the ASM energy data was reduced to collect only electricity consumption and expenditures and total expenditures for other purchased energy. In 1985, EIA initiated the triennial MECS collecting complete energy data. The series equivalent to the ASM is referred to in the MECS as ``offsite-produced fuels.``

  5. Clean Energy Manufacturing Initiative Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative Events Clean Energy Manufacturing Initiative Events

  6. Worldwide Energy and Manufacturing USA Inc formerly Worldwide...

    Open Energy Info (EERE)

    and Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name: Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)...

  7. Photovoltaic manufacturing technology, Phase 1

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS Eureka'' facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the Eureka'' facility to Chronar's batch'' plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

  8. End use energy consumption data base: transportation sector

    SciTech Connect (OSTI)

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  9. Water Impacts of the Electricity Sector (Presentation)

    SciTech Connect (OSTI)

    Macknick, J.

    2012-06-01

    This presentation discusses the water impacts of the electricity sector. Nationally, the electricity sector is a major end-user of water. Water issues affect power plants throughout the nation.

  10. Metrology for Fuel Cell Manufacturing

    SciTech Connect (OSTI)

    Stocker, Michael; Stanfield, Eric

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  11. Oak Ridge Manufacturing Demonstration Facility (MDF)

    Broader source: Energy.gov [DOE]

    The Manufacturing Demonstration Facility (MDF) is a collabora­tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber.

  12. Manufacturing Demonstration Facilities Workshop Agenda, March 2012

    Broader source: Energy.gov [DOE]

    Agenda for the Manufacturing Demonstration Facilities Workshop on March 12, 2012 outlining objectives and times

  13. Multi-Sector General Permit (MSGP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MSGP Multi-Sector General Permit (MSGP) The Multi-Sector General Permit authorizes the discharge of stormwater associated with industrial activity. What's New Documents submitted to EPRR in last 30 Days TBD What is the Multi-Sector General Permit? Storm water discharges from EPA specified industrial activities are regulated under the National Pollutant Discharge Elimination System (NPDES) Multi-Sector General Permit (MSGP). LANL regulated industrial activities include: Metal fabrication Power

  14. Accelerating Investments in the Geothermal Sector, Indonesia...

    Open Energy Info (EERE)

    Accelerating Investments in the Geothermal Sector, Indonesia (Presentation) Author Paul Brophy Conference World Geothermal Energy Summit; Jakarta, Indonesia; 20120706...

  15. SEP Special Projects Report: Buildings Sector

    SciTech Connect (OSTI)

    2009-01-18

    The buildings section of this Sharing Success document describes SEP special projects in the buildings sector including funding.

  16. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  17. Method for manufacturing glass frit

    DOE Patents [OSTI]

    Budrick, Ronald G.; King, Frank T.; Nolen, Jr., Robert L.; Solomon, David E.

    1977-01-01

    A method of manufacturing a glass frit for use in the manufacture of uniform glass microspheres to serve as containers for laser fusion fuel to be exposed to laser energy which includes the formation of a glass gel which is then dried, pulverized, and very accurately sized to particles in a range of, for example, 125 to 149 micrometers. The particles contain an occluded material such as urea which expands when heated. The sized particles are washed, dried, and subjected to heat to control the moisture content prior to being introduced into a system to form microspheres.

  18. Changes in energy intensity in the manufacturing sector 1985--1991

    SciTech Connect (OSTI)

    1995-09-15

    In this report, energy intensity is defined as the ratio of energy consumption per unit of output. Output is measured as the constant dollar of value of shipments and receipts, and two measures of energy consumption are presented in British thermal units (Btu): Offsite-Produced Energy and Total Inputs of Energy. A decrease in energy intensity from one period to another suggests an increase in energy efficiency, and vice versa. Energy efficiency can be defined and measured in various ways. Certain concepts of energy efficiency, especially those limited to equipment efficiencies, cannot be measured over time using changes in energy-intensity ratios. While improved energy efficiency will tend to reduce energy intensity, it is also true that a change in energy intensity can be due to factors unrelated to energy efficiency. For this report, energy intensity is used as a surrogate measure for energy efficiency, based on industry knowledge and current methodological analyses.

  19. Manufacturing Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency » Manufacturing Success Stories Manufacturing Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in developing technologies and processes for more efficient energy management systems create big opportunities for energy savings and new jobs in manufacturing. Explore EERE's manufacturing success stories below. November 17, 2015 Manufacturing Success Stories EERE Success Story-ORNL Unveils 3D-Printed Home and Vehicle with the Unique

  20. White House Announces Eighth Manufacturing Innovation Institute |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy White House Announces Eighth Manufacturing Innovation Institute White House Announces Eighth Manufacturing Innovation Institute April 6, 2016 - 4:49pm Addthis On Thursday, April 1, the White House announced a new institute which will focus on revolutionary fibers and textile manufacturing. This new institute is the eighth manufacturing hub to be awarded as part of the National Network for Manufacturing Innovation (NNMI). Collectively, the federal government's commitment

  1. Explore Careers in Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Explore Careers in Manufacturing The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a transformation in U.S. manufacturing. The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a

  2. Solar Manufacturing Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Market » Solar Manufacturing Technology Solar Manufacturing Technology The SunShot Solar Manufacturing Technology (SolarMat) program funds the development of innovative manufacturing technologies that can achieve a significant market impact in one to four years. Launched in September 2013, the SolarMat program is supporting five projects working in two topic areas: photovoltaics (PV) and concentrating solar power (CSP). Both topics focus on driving down the cost of manufacturing

  3. On the initial state and consistency relations

    SciTech Connect (OSTI)

    Berezhiani, Lasha; Khoury, Justin E-mail: jkhoury@sas.upenn.edu

    2014-09-01

    We study the effect of the initial state on the consistency conditions for adiabatic perturbations. In order to be consistent with the constraints of General Relativity, the initial state must be diffeomorphism invariant. As a result, we show that initial wavefunctional/density matrix has to satisfy a Slavnov-Taylor identity similar to that of the action. We then investigate the precise ways in which modified initial states can lead to violations of the consistency relations. We find two independent sources of violations: i) the state can include initial non-Gaussianities; ii) even if the initial state is Gaussian, such as a Bogoliubov state, the modified 2-point function can modify the q-vector ?0 analyticity properties of the vertex functional and result in violations of the consistency relations.

  4. Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry

    Broader source: Energy.gov [DOE]

    Over the past decade, significant wind manufacturing capacity has been built in the United States in response to an increasingly large domestic market. Recent U.S. manufacturing production levels exceed anticipated near-term domestic demand for select parts of the supply chain, in part due to policy uncertainty, and this is resulting in some restructuring in the industry. Factor location decisions are influenced by a combination of quantitative and qualitative factors; proximity to end-markets is often a key consideration, especially for manufacturers of large wind turbine components. Technology advancements in the wind sector are continuing , and larger blade designs are being pursued in the market, which may increase U.S.-based manufacturing opportunities.

  5. Heat treating of manufactured components

    DOE Patents [OSTI]

    Ripley, Edward B.

    2012-05-22

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material is disclosed. The system typically includes an insulating vessel placed within a microwave applicator chamber. A moderating material is positioned inside the insulating vessel so that a substantial portion of the exterior surface of each component for heat treating is in contact with the moderating material.

  6. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    6 Number of companies expecting to introduce new solar new solar thermal collector products in 2010 Low-Temperature Collectors 4 Medium-Temperature Collectors 16 High-Temperature Collectors 11 Noncollector Components 12 Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey." New Product Type Number of Companies Source: U.S. Energy Information Administration,

  7. Process for manufacturing multilayer capacitors

    DOE Patents [OSTI]

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  8. Process for manufacturing multilayer capacitors

    DOE Patents [OSTI]

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1996-01-02

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

  9. Energy Efficiency and the Finance Sector | Open Energy Information

    Open Energy Info (EERE)

    and the Finance Sector Jump to: navigation, search Name Energy Efficiency and the Finance Sector AgencyCompany Organization United Nations Environment Programme Sector Energy...

  10. Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy...

    Open Energy Info (EERE)

    Nepal-Sectoral Climate Impacts Economic Assessment (Redirected from Nepal Sectoral Climate impacts Economic Assessment) Jump to: navigation, search Name Nepal Sectoral Climate...

  11. Precision replenishable grinding tool and manufacturing process

    DOE Patents [OSTI]

    Makowiecki, Daniel M.; Kerns, John A.; Blaedel, Kenneth L.; Colella, Nicholas J.; Davis, Pete J.; Juntz, Robert S.

    1998-01-01

    A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools.

  12. Precision replenishable grinding tool and manufacturing process

    DOE Patents [OSTI]

    Makowiecki, D.M.; Kerns, J.A.; Blaedel, K.L.; Colella, N.J.; Davis, P.J.; Juntz, R.S.

    1998-06-09

    A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool are disclosed. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools. 11 figs.

  13. Additive Manufacturing: Pursuing the Promise | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Manufacturing: Pursuing the Promise Additive Manufacturing: Pursuing the Promise Fact sheet overviewing additive manufacturing techniques that are projected to exert a profound impact on manufacturing. PDF icon Additive Manufacturing: Pursuing the Promise More Documents & Publications QTR Webinar: Chapter 8 - Industry and Manufacturing WORKSHOP: SUSTAINABILITY IN MANUFACTURING, JANUARY 6-7 Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry

  14. Electric energy sector in Argentina

    SciTech Connect (OSTI)

    Bastos, C.M.

    1994-06-01

    This article describes how the organization of the electric energy sector in Argentina has changed dramatically from a sector in which state-owned companies worked under a central planning to one in which private companies make their own decisions. The way that the electrical system used to work can be shown by these statements: demand growth estimated by central planning team; projects to be developed and the timetable determined by the same team; unit operations ruled by central dispatch, and under state-owned companies responsibility; integration with neighbor countries focused on physical projects, such as Salto Grande with Uruguay and Yacyreta with Paraguay. Today the electrical system works under these rules: the system has been vertically separated and the companies cannot be integrated; electric energy is considered as an ordinary wealth and the value that consumers give it is taken into account, (the distribution companies pay consumers a penalty for the energy that they cannot supply, the penalty is worth the economic damage consumers suffer due to its lack); producers have to compete for demand. They can sell in two ways: sell under private agreements or sell to the system. Both ways of selling compete with each other because the system buys giving priority to lower costs and, as a consequence, some of the producers do not sell at all.

  15. Manufacturing

    Office of Environmental Management (EM)

    ... (waste and waste water management) and emerged 201 as a field in response to concern over widespread environmental quality degradation from water and air 202 pollution impacts. ...

  16. Agenda: Fiber Reinforced Polymer Composite Manufacturing Workshop

    Energy Savers [EERE]

    Advanced Manufacturing Office (AMO) manufacturing.energy.gov 3 Morning Agenda 9:00am - 9:05am Welcome Mark Johnson Director, Advanced Manufacturing Office 9:05am - 9:20am Clean Energy Manufacturing Initiative David Danielson Assistant Secretary Energy Efficiency and Renewable Energy 9:20am - 9:50am Advanced Manufacturing Office Overview and Review of RFI Results Mark Johnson Director, Advanced Manufacturing Office 9:50am - 10:30am Panel Discussion: DOE Perspectives Mark Shuart, Advanced

  17. Estimates of emergency operating capacity in US manufacturing and nonmanufacturing industries

    SciTech Connect (OSTI)

    Belzer, D.B. ); Serot, D.E. ); Kellogg, M.A. )

    1991-03-01

    Development of integrated mobilization preparedness policies requires planning estimates of available productive capacity during national emergency conditions. Such estimates must be developed in a manner that allows evaluation of current trends in capacity and the consideration of uncertainties in various data inputs and in engineering assumptions. This study, conducted by Pacific Northwest Laboratory (PNL), developed estimates of emergency operating capacity (EOC) for 446 manufacturing industries at the 4-digit Standard Industrial Classification (SIC) level of aggregation and for 24 key non-manufacturing sectors. This volume presents tabular and graphical results of the historical analysis and projections for each SIC industry. (JF)

  18. Additive Manufacturing: Technology and Applications

    Energy Savers [EERE]

    Lower energy intensity: These techniques save energy by eliminating production steps, using substantially less material, enabling reuse of by-products, and producing lighter products. Remanufacturing parts through advanced additive manufacturing and surface treatment processes can also return end-of-life products to as-new condition, 1 using only 2-25% of the energy required to make new parts. 2 * Less waste: Building objects up layer by layer, instead of traditional machining processes that

  19. Geothermal Heat Pump Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    0 Geothermal heat pump domestic shipments by customer type, 2008 and 2009 (rated capacity in tons) Customer 2008 2009 Exporter - - Wholesale Distributor 184,869 173,065 Retail Distributor 1,256 10,463 Installer 160,084 154,321 End-User 413 840 U.S. Total 346,622 338,689 - = No data reported. Source: U.S. Energy Information Administration (EIA), Form EIA-902, "Annual Geothermal Heat Pump Manufacturers Survey

  20. Geothermal Heat Pump Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    5 Companies involved in geothermal heat pump activities by type, 2008 and 2009 Type of Activity 2008 2009 Geothermal Heat Pump or System Design 17 17 Prototype Geothermal Heat Pump Development 12 13 Prototype Systems Geothermal Development 5 7 Wholesale Distribution 15 18 Retail Distribution 3 3 Installation 4 3 Manufacture of System Components 3 4 Source: U.S. Energy Information Administration (EIA), Form EIA-902, "Annual Geothermal

  1. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    5 Shipments of complete solar thermal collector systems, 2008 and 2009 Shipment Information 2008 2009 Complete Collector Systems Shipped 63,961 75,066 Thousand Square Feet 4,058 5,995 Percent of Total Shipments 24 43 Number of Companies 46 62 Revenue of Systems (Thousand Dollars) 47,523 159,085 Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey."

  2. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    9 Companies involved in solar thermal collector related activities by type, 2008 and 2009 Type of Activity 2008 2009 Collector or System Design 45 59 Prototype Collector Development 27 27 Prototype System Development 23 23 Wholesale Distribution 58 61 Retail Distribution 29 31 Installation 21 27 Noncollector System Component Manufacture 26 32 Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal

  3. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    0 Soloar-related sales as a percentage of total company sales revenue, 2008 and 2009 2008 2009 90-100 49 56 50-89 9 7 10-49 7 12 Less than 10 9 13 U.S. Total 74 88 Percent of Total Sales Revenue Number of Companies Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey."

  4. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect (OSTI)

    Knapp, Cameron M

    2012-08-01

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  5. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction ...

  6. Artisan Manufacturing: Order (2010-CW-0712)

    Broader source: Energy.gov [DOE]

    DOE ordered Artisan Manufacturing Company, Inc., to pay a $5,000 civil penalty after finding Artisan Manufacturing had failed to certify that certain models of faucets comply with the applicable water conservation standard.

  7. Advanced Methods for Manufacturing Newslettter- Issue 3

    Broader source: Energy.gov [DOE]

    The Advanced Methods for Manufacturing newsletter includes information about selected projects pertaining to additive manufacturing, concrete technologies, welding innovations and imaging techniques for design reconstruction currently funded by the Department of Energy's Office of Nuclear Energy.

  8. Refrigerator Manufacturers: Order (2013-CE-5341)

    Broader source: Energy.gov [DOE]

    DOE ordered Refrigerator Manufacturers, LLC to pay a $8,000 civil penalty after finding Refrigerator Manufacturers had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  9. USA Manufacturing: Order (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE ordered USA Manufacturing to pay a $8,000 civil penalty after finding USA Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  10. Clean Energy Manufacturing Initiative: Technology Research and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Its Advanced Natural Gas Systems Manufacturing Initiative's R&D is helping U.S. manufacturers take advantage of this lower-priced fuel by modernizing the nations natural gas ...

  11. National Manufacturing Day | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    anticipated 400,000 people who want to experience U.S. manufacturing up close and in person. On October 2, the U.S. Department of Commerce's fourth annual Manufacturing Day will...

  12. QTR Webinar: Chapter 8- Industry and Manufacturing

    Broader source: Energy.gov [DOE]

    The DOE EERE Advanced Manufacturing Office hosted a QTR webinar to obtain input from Leaders in Academia, Industry, and Government on Chapter 8, Industry and Manufacturing, and the associated Technology Assessments.

  13. Imperial Manufacturing: Order (2013-CE-5322)

    Broader source: Energy.gov [DOE]

    DOE ordered Imperial Manufacturing, Inc. to pay a $8,000 civil penalty after finding Imperial Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  14. Clean Energy Manufacturing Incentive Grant Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    "Clean energy manufacturer" is defined as a biofuel producer, a manufacturer of renewable energy or nuclear equipment/products, or "products used for energy conservation, storage, or grid efficie...

  15. AMO Hosted Workshop on Composite Manufacturing

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Advanced Manufacturing Office will host a workshop on Fiber Reinforced Polymer Composite Manufacturing on January 13, 2014 at the Hilton Crystal City in Arlington, VA.

  16. Goodman Manufacturing: Order (2012-CE-1509)

    Broader source: Energy.gov [DOE]

    DOE ordered Goodman Manufacturing Company L.P. to pay an $8,000 civil penalty after finding Goodman Manufacturing had failed to certify that certain room air conditioners comply with the applicable energy conservation standard.

  17. Goodman Manufacturing: Proposed Penalty (2011-SE-4301)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Goodman Manufacturing manufactured and distributed noncompliant basic model CPC180* commercial package air conditioners in the U.S.

  18. Energy & Manufacturing Workforce Training Topics List - Version...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Manufacturing Workforce Training Topics List - Version 1.7 (02.11.14) Energy & Manufacturing Workforce Training Topics List - Version 1.7 (02.11.14) View this searchable list of ...

  19. FACT SHEET: 48C MANUFACTURING TAX CREDITS

    Broader source: Energy.gov [DOE]

    The Advanced Energy Manufacturing Tax Credit Program is helping build a robust U.S. manufacturing capacity to supply clean energy projects with American-made parts and equipment. On February 7,...

  20. Summit Manufacturing: Case Closure (2010-SE-0303)

    Broader source: Energy.gov [DOE]

    DOE closed this case against Summit Manufacturing, Inc. without civil penalty after Summit Manufacturing provided information that the non-compliant products were not sold in the United States.

  1. Chapter 2: Energy Sectors and Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Energy Sectors and Systems September 2015 Quadrennial Technology Review 2 Energy Sectors and Systems Issues and RDD&D Opportunities Energy systems are becoming increasingly interconnected and complex. Integrated energy systems present both opportunities for performance improvement as well as risks to operability and security. The size and scope of these opportunities and risks are just beginning to be understood. This chapter addresses both the key issues of energy sectors and their

  2. DOE Issues Energy Sector Cyber Organization NOI

    Energy Savers [EERE]

    Issues National Energy Sector Cyber Organization Notice of Intent February 11, 2010 The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) announced on Jan. 7 that it intends to issue a Funding Opportunity Announcement (FOA) for a National Energy Sector Cyber Organization, envisioned as a partnership between the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security

  3. Advanced Manufacturing Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Office NOTICE OF INTENT: Clean Energy Manufacturing Innovation Institute for Reducing Energy of Materials And Decreasing Emissions in M NOTICE OF INTENT: Clean Energy Manufacturing Innovation Institute for Reducing Energy of Materials And Decreasing Emissions in M The Energy Department intends to issue a Funding Opportunity Announcement for approximately $70 million entitled "Clean Energy Manufacturing Innovation Institute for Reducing EMbodied-energy And Decreasing

  4. Clean Energy Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative AEMC Northeast Regional Summit AEMC Northeast Regional Summit On May 12, 2016, join Assistant Secretary Dr. Dave Danielson for an unforgettable dialogue on advances and obstacles in clean energy manufacturing in the northeast and across the nation. Read more Funding Opportunity: High-Performance Computing for Manufacturing Funding Opportunity: High-Performance Computing for Manufacturing The Energy Department announced up to $3 million in funding for

  5. advanced manufacturing office | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Manufacturing Office The U.S. Department of Energy (DOE) funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies. DOE has supported the development of more than 250 energy-saving industrial technologies that have been commercialized since 1976. DOE is also working to create a network of Manufacturing Innovation Institutes, each of which will create collaborative communities to target a unique technology in advanced manufacturing.

  6. Advanced Manufacturing Initiative Improves Turbine Blade Productivity |

    Energy Savers [EERE]

    Department of Energy Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an excerpt from the Second Quarter 2011 edition of the Wind Program R&D Newsletter. The Advanced Manufacturing Initiative (AMI) at DOE's Sandia National Laboratories is working with industry to improve manufacturing processes and create U.S. jobs by improving labor productivity in wind

  7. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial ...

  8. Partnering for Clean Energy Manufacturing Competitiveness

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Libby Wayman Director, Clean Energy Manufacturing Initiative Partnering for Clean Energy Manufacturing Competitiveness 2 Mission: To create American leadership in the global transition to a clean energy economy 1) High-Impact Research, Development, and Demonstration to Make Clean Energy as Affordable and Convenient as Traditional Forms of Energy 2) Breaking Down Barriers to Market Entry 3 Coordination of Clean Energy Manufacturing in EERE Coordination for: * Clean Energy Manufacturing Strategies

  9. Clean Energy Manufacturing Analysis Center Webinar

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy offers a webinar to address clean energy manufacturing on April 5. Register today!

  10. Clean Energy Manufacturing Innovation Institute for Composite...

    Broader source: Energy.gov (indexed) [DOE]

    and Fuel Cell Technologies Research, Development, and Demonstrations Funding Opportunity Announcement Webinar Slides Fiber Reinforced Polymer Composite Manufacturing Workshop

  11. Modeling Distributed Generation in the Buildings Sectors

    Reports and Publications (EIA)

    2013-01-01

    This report focuses on how the Energy Information Administrationmodels residential and commercial sector distributed generation, including combined heat and power, for the Annual Energy Outlook.

  12. Energy Sector Cybersecurity Framework Implementation Guidance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In February 2014, the National Institute of Standards and Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the ...

  13. Property:Sector | Open Energy Information

    Open Energy Info (EERE)

    is a property of type Page. Subproperties This property has the following 1 subproperty: G Green Economy Toolbox Pages using the property "Sector" Showing 25 pages using this...

  14. Category:Public Sectors | Open Energy Information

    Open Energy Info (EERE)

    no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:PublicSectors&oldid272249" Feedback Contact needs updating Image needs updating...

  15. Model Documentation Report: Commercial Sector Demand Module...

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  16. Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    Department released guidance to help the energy sector establish or align existing cybersecurity risk management programs to meet the objectives of the Cybersecurity Framework...

  17. Draft Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    in the Federal Register, inviting the public to comment on DOE's Energy Sector Cybersecurity Framework Implementation Guidance. Comments must be received on or before October...

  18. Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    invites public comment on a draft of the Energy Sector Cybersecurity Framework Implementation Guidance. Comments must be received on or before October 14, 2014. The draft document...

  19. Federal Sector Renewable Energy Project Implementation: ""What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by Robert Westby, National Renewable Energy Laboratory, at the Waste-to-Energy Using ...

  20. Manufacturing Demonstration Facilities Workshop, March 12, 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Demonstration Facilities Workshop, March 12, 2012 Manufacturing Demonstration Facilities Workshop, March 12, 2012 PDF icon mdf_workshop_presentation_march2012.pdf More Documents & Publications Manufacturing Demonstration Facility Workshop Microwave and Radio Frequency Workshop Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

  1. Manufacturing Demonstration Facility Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Facility Workshop Manufacturing Demonstration Facility Workshop March 12, 2012 The Manufacturing Demonstration Facility Workshop (held in Chicago, IL, on March 12, 2012, and simultaneously broadcast as a webinar) invited stakeholders to discuss key foundational aspects of planning a series of Manufacturing Demonstration Facilities (MDFs). MDFs will create a collaborative, shared infrastructure around targeted technical areas that will develop, use, and promote energy efficient,

  2. Clean Energy Manufacturing Initiative Midwest Regional Summit:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweighting Breakout Session Summary | Department of Energy Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary June 21, 2013 PDF icon Lightweighting Breakout Session Summary More Documents & Publications Fiber Reinforced Polymer

  3. MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen

    Energy Savers [EERE]

    MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Industrial Gas Manufacturing 325120 All Other Basic Inorganic Chemical Manufacturing 325188 Plastics Material and Resin Manufacturing 325211 Explosives Manufacturing 325920 All Other Plastics Product Manufacturing 326199 Nonferrous Metal (except Copper and Aluminum) Rolling, Drawing, and Extruding 331491 Fabricated Structural Metal Manufacturing 332312 Metal Tank (Heavy Gauge)

  4. Manufacturing Demonstration Facility Workshop Videos | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Demonstration Facility Workshop Videos Manufacturing Demonstration Facility Workshop Videos Dr. Leo Christodoulou, Program Manager, EERE Advanced Manufacturing Office, and Mike Molnar, Chief Manufacturing Officer, National Institute of Standards & Technology, speaking at the Manufacturing Demonstration Facility Workshop held in Chicago, Illinois Dr. Leo Christodoulou, Program Manager, EERE Advanced Manufacturing Office speaking at the Manufacturing Demonstration Facility

  5. Energy Efficiency Services Sector: Workforce Education and Training Needs

    SciTech Connect (OSTI)

    Goldman, Charles A.; Peters, Jane S.; Albers, Nathaniel; Stuart, Elizabeth; Fuller, Merrian C.

    2010-03-19

    This report provides a baseline assessment of the current state of energy efficiency-related education and training programs and analyzes training and education needs to support expected growth in the energy efficiency services workforce. In the last year, there has been a significant increase in funding for 'green job' training and workforce development (including energy efficiency), through the American Recovery and Reinvestment Act (ARRA). Key segments of the energy efficiency services sector (EESS) have experienced significant growth during the past several years, and this growth is projected to continue and accelerate over the next decade. In a companion study (Goldman et al. 2009), our research team estimated that the EESS will increase two- to four-fold by 2020, to 220,000 person-years of employment (PYE) (low-growth scenario) or up to 380,000 PYE (high-growth scenario), which may represent as many as 1.3 million individuals. In assessing energy efficiency workforce education and training needs, we focus on energy-efficiency services-related jobs that are required to improve the efficiency of residential and nonresidential buildings. Figure ES-1 shows the market value chain for the EESS, sub-sectors included in this study, as well as the types of market players and specific occupations. Our assessment does not include the manufacturing, wholesale, and retail distribution subsectors, or energy efficiency-focused operations and maintenance performed by facility managers.

  6. BN Bonded BN fiber article and method of manufacture

    DOE Patents [OSTI]

    Hamilton, Robert S.

    1981-08-18

    A boron nitride bonded boron nitride fiber article and the method for its manufacture which comprises forming a shaped article with a composition comprising a bonding compound selected from boron oxide and boric acid and a structural fiber selected from the group consisting of boron oxide, boron nitride and partially nitrided boron oxide fibers, heating the composition in an anhydrous gas to a temperature above the melting point of the compound and nitriding the resulting article in ammonia gas.

  7. Microporous microchannel plates and method of manufacturing same

    DOE Patents [OSTI]

    Beetz, Jr., Charles P.; Boerstler, Robert W.; Steinbeck, John; Winn, David R.

    2000-01-01

    A microchannel plate and method of manufacturing same is provided. The microchannel plate includes a plate consisting of an anodized material and a plurality of channels which are formed during the anodization of the material and extend between the two sides of the plate. Electrodes are also disposed on each side of the plate for generating an electrical field within the channels. Preferably, the material is alumina and the channels are activated such that the channel walls are conductive and highly secondary emissive.

  8. Manufacturing method of photonic crystal

    DOE Patents [OSTI]

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  9. Method for manufacturing magnetohydrodynamic electrodes

    DOE Patents [OSTI]

    Killpatrick, D.H.; Thresh, H.R.

    1980-06-24

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.

  10. Geothermal Heat Pump Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    9 Distribution of U.S. geothermal heat pump imports by country of origin, 2008 and 2009 (rated capacity in tons) Asia China 86 250 100.00 Total 86 250 100.00 U.S. Total 86 250 100.00 Region/Country 2008 2009 Percent of U.S. Imports 2009 Note: Totals may not equal sum of components due to independent rounding. Source: U.S. Energy Information Administration (EIA), Form EIA-902, "Annual Geothermal Heat Pump Manufacturers Survey

  11. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    1 Distribution of domestic solar thermal collector shipments (thousand square feet) 2008 2009 Wholesale Distributors 8,680 4,063 Retail Distributors 3,997 5,739 Exporters 368 346 Installers 948 939 End Users 723 1,134 U.S. Total 14,716 12,221 Customer Type Shipments Notes: Totals may not equal sum of components due to independent rounding. U.S. total includes territories. Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey

  12. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    4 Average thermal performance rating of solar thermal collectors by type shipped in 2009 (Btu per square foot per day) Low- High Temperature Temperature Liquid/air Parabolic Year Metallic and Nonmetallic Air ICS/Thermosi phon Flat-Plate (Pumped) Evaculated Tube Concentrator Paraboloic Dish/Trough 2009 1,139 971 913 981 973 2,196 1,262 Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey." Medium-Temperature Type Liquid

  13. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1993-02-02

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  14. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1993-01-01

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  15. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    DOE Patents [OSTI]

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  16. Manufacturing Energy Consumption Survey (MECS) - U.S. Energy...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Residential - RECS Transportation DOE Uses MECS Data Manufacturing Energy and Carbon Footprints Associated Analysis Manufacturing Energy Sankey Diagrams Manufacturing Energy Flows ...

  17. SunShot Photovoltaic Manufacturing Initiative | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Market SunShot Photovoltaic Manufacturing Initiative SunShot Photovoltaic Manufacturing Initiative The SunShot Photovoltaic Manufacturing Initiative (PVMI) invests ...

  18. Webtrends Archives by Fiscal Year - Advanced Manufacturing Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Office Webtrends Archives by Fiscal Year - Advanced Manufacturing Office From the EERE Web Statistics Archive: Advanced Manufacturing Office, Webtrends ...

  19. $23.5 Million Investment in Innovative Manufacturing Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    23.5 Million Investment in Innovative Manufacturing Projects Supports the New Clean Energy Manufacturing Initiative 23.5 Million Investment in Innovative Manufacturing Projects ...

  20. Notice of Intent (NOI): Clean Energy Manufacturing Innovation...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing" (DE-FOA-0001263). This is a Notice of...

  1. National Electric Sector Cybersecurity Organization Resource (NESCOR)

    SciTech Connect (OSTI)

    None, None

    2014-06-30

    The goal of the National Electric Sector Cybersecurity Organization Resource (NESCOR) project was to address cyber security issues for the electric sector, particularly in the near and mid-term. The following table identifies the strategies from the DOE Roadmap to Achieve Energy Delivery Systems Cybersecurity published in September 2011 that are applicable to the NESCOR project.

  2. Advanced Vehicle Electrification & Transportation Sector Electrification |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt071_vss_cesiel_2011_o.pdf More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

  3. Additive manufacturing of hybrid circuits

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bell, Nelson S.; Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David M.; Hirschfeld, Deidre; Hall, Aaron Christopher

    2016-03-26

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less

  4. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    SciTech Connect (OSTI)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are represented, in addition to the extensive data compiled from recent studies on bottom-up representation of efficiency measures for the sector. We also defined various mitigation scenarios including long-term production trends to project country-specific production, energy use, trading, carbon emissions, and costs of mitigation. Such analyses can provide useful information to assist policy-makers when considering and shaping future emissions mitigation strategies and policies. The technical objective is to analyze the costs of production and CO{sub 2} emission reduction in the U.S, China, and India’s iron and steel sectors under different emission reduction scenarios, using the ISEEM-IS as a cost optimization model. The scenarios included in this project correspond to various CO{sub 2} emission reduction targets for the iron and steel sector under different strategies such as simple CO{sub 2} emission caps (e.g., specific reduction goals), emission reduction via commodity trading, and emission reduction via carbon trading.

  5. Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture

    Office of Scientific and Technical Information (OSTI)

    of Customized Electric Vehicles (Technical Report) | SciTech Connect Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles Citation Details In-Document Search Title: Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local

  6. Manufacturing Industrial Development for the Alternative Energy Systems-Final Report

    SciTech Connect (OSTI)

    Dr. Chuck Ryan, National Center for Manufacturing Sciences; Dr. Dawn White, Accio Energy; Mr. Duncan Pratt, General Electric Global Research

    2013-01-30

    NCMS identified and developed critical manufacturing technology assessments vital to the affordable manufacturing of alternative-energy systems. NCMS leveraged technologies from other industrial sectors and worked with our extensive member organizations to provide DOE with two projects with far-reaching impact on the generation of wind energy. In the response for a call for project ideas, 26 project teams submitted ideas. Following a detailed selection criteria, two projects were chosen for development: Advanced Manufacturing for Modular Electro-kinetic (E-K) Wind Energy Conversion Technology - The goal of this project was to demonstrate that a modular wind energy technology based on electrohydrodynamic wind energy principles and employing automotive heritage high volume manufacturing techniques and modular platform design concepts can result in significant cost reductions for wind energy systems at a range of sizes from 100KW to multi-MW. During this program, the Accio/Boeing team made major progress on validating the EHD wind energy technology as commercially viable in the wind energy sector, and moved along the manufacturing readiness axis with a series of design changes that increased net system output. Hybrid Laser Arc Welding for Manufacture of Wind Towers - The goal of this research program was to reduce the cost of manufacturing wind towers through the introduction of hybrid laser arc welding (HLAW) into the supply chain for manufacturing wind towers. HLAW has the potential to enhance productivity while reducing energy consumption to offset the foreign low-cost labor advantage and thereby enhance U.S. competitiveness. HLAW technology combines laser welding and arc welding to produce an energy efficient, high productivity, welding process for heavy manufacturing. This process leverages the ability of a laser to produce deep weld penetration and the ability of gas metal arc welding (GMAW) to deposit filler material, thereby producing stable, high quality, welds on joints with gaps and mismatches typical of those seen in heavy manufacturing. Wind towers utilize varying thicknesses of steel throughout their structures to meet the mechanical load requirements while keeping material costs low. A typical tower might have as many as twelve different material thicknesses. Joining each thickness requires a unique joint design and welding approach to enable the management of quality, productivity, and mechanical properties. In this program, laser joining of materials with thicknesses ranging from 12mm to 35mm were evaluated against the standard quality and mechanical requirements for General Electric wind tower components. The joining processes demonstrated showed the ability to meet key requirements with the appropriate process controls in place.

  7. Geothermal Heat Pump Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    1 Geothermal heat pump domestic shipments by sector and model type, 2009 (rated capacity in tons) ARI-320 ARI-325/330 ARI-870 Other Non-ARI Rated Total Residential 8,348 152,107 2,524 9,580 172,559 Commercial 1 42,051 94,917 18 19,547 156,533 Industrial 3,274 1,448 - 4,875 9,597 Electric Power - - - - - Transportation - - - - - U.S. Total 53,673 248,472 2,542 34,002 338,689 ARI-320 = Water-Source Heat Pumps. ARI-325 = Ground Water-Source Heat Pumps. ARI-330 = Ground Source Closed-Loop Heat

  8. Taiwan: An energy sector study

    SciTech Connect (OSTI)

    Johnson, T.; Fridley, D.; Kang, Wu

    1988-03-01

    A study on the economy of Taiwan, with special reference to the energy sector, revealed the following: Taiwan's rapid export-driven economic growth in the 1970s and 1980s has earned them the rank of ''Newly Industrialized Countries.'' Coal reserves measure less than 1 billion tons, and annual output has declined to below 2 million tons per year. Marginal amounts of crude are produced. Natural gas resources have been exploited both on- and offshore, through production amounts to little more than 1 billion cubic meters per year. Domestic hydrocarbon production is forecast to decline. Taiwan prssesses an estimated 5300 mW of exploitable hydropower capacity, of which 2564 mW had been installed by 1986. Taiwan has undertaken a massive program of nuclear power construction in response to the rapid rise in oil prices during the 1970s. Energy demand has risen an average of 9.0 percent per year since 1954, while real GNP has grown 8.6 percent per year. Sine 1980, oil has provided a lower share of total energy demand. Oil demand for transport has continued to grow rapidly. Declining production of domestic natural gas has led Taiwan to initiate LNG imports from Indonesia beginning in 1990. Coal has regained some of its earlier importance in Taiwan's energy structure. With declining domestic production, imports now provide nearly 90 percent of total coal demand. Taiwan is basically self-sufficient in refining capacity. Energy demand is expected to grow 5.4 percent per year through the yeat 2000. With declining output of domestic resources, energy dependency on imports will rise from its current 90 percent level. Government policy recognizes this external dependency and has directed it efforts at diversification of suppliers. 18 refs., 11 figs., 40 tabs.

  9. Starr Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    Sharon Rd Place: Vienna, Ohio Zip: 44473 Sector: Biofuels, Biomass, Buildings, Carbon, Efficiency, Hydrogen, Renewable Energy, Services, Wind energy Product: Engineering...

  10. Advanced Manufacturing Office Update, July 2014 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and 15 individual sectors (such as chemicals, iron and steel, and food and beverage). ... More World Energy Engineering Congress October 1-3 | Washington, DC Annual conference ...

  11. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  12. Means of manufacturing annular arrays

    DOE Patents [OSTI]

    Day, R.A.

    1985-10-10

    A method is described for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90/sup 0/. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings hold the transducer together until it can be mounted on a lens.

  13. Method for manufacturing magnetohydrodynamic electrodes

    DOE Patents [OSTI]

    Killpatrick, Don H.; Thresh, Henry R.

    1982-01-01

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator comprising the steps of preparing a billet having a core 10 of a first metal, a tubular sleeve 12 of a second metal, and an outer sheath 14, 16, 18 of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket 14. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MDH channel frame. The method forms a bond between the first metal of the core 10 and the second metal of the sleeve 12 strong enough to withstand a hot and corrosive environment.

  14. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect (OSTI)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  15. USCAR LEP ESST Advanced Manufacturing

    SciTech Connect (OSTI)

    Lazarus, L.J.

    2000-09-25

    The objective of this task was to provide processing information data summaries on powder metallurgy (PM) alloys that meet the partner requirements for the production of low mass, highly accurate, near-net-shape powertrain components. This required modification to existing ISO machinability test procedures and development of a new drilling test procedure. These summaries could then be presented in a web page format. When combined with information generated from the USCAR CRADA this would allow chemical, metallurgical, and machining data on PM alloys to be available to all engineering and manufacturing personnel that have access to in-house networks. The web page format also allows for the additions of other wrought materials, making this a valuable tool to the technical staffs.

  16. Notice of Intent (NOI): Clean Energy Manufacturing Innovation Institute on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing | Department of Energy Clean Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Notice of Intent (NOI): Clean Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing December 11, 2014 - 11:30am Addthis The purpose of this Notice of Intent is

  17. Manufacturing Energy and Carbon Footprint Definitions and Assumptions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Definitions and Assumptions, October 2012 Manufacturing Energy and Carbon Footprint ... More Documents & Publications Understanding Manufacturing Energy and Carbon Footprints, ...

  18. Advanced manufacturing: Technology and international competitiveness

    SciTech Connect (OSTI)

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  19. Advanced Technology Vehicles Manufacturing Loan Program | Department of

    Energy Savers [EERE]

    of Energy Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles manufacturing incentive program. PDF icon Advanced Technology Vehicles Manufacturing Incentive Program More Documents & Publications Advanced Technology Vehicles Manufacturing Incentive Program MEMA: Comments MEMA: Letter Energy

    Technology Vehicles Manufacturing Loan Program Advanced Technology Vehicles

  20. Clean Energy Manufacturing Initiative: Increasing American Competitiveness

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Through Innovation | Department of Energy Manufacturing Initiative: Increasing American Competitiveness Through Innovation Clean Energy Manufacturing Initiative: Increasing American Competitiveness Through Innovation March 31, 2014 - 8:45pm Addthis Watch the video above to find out how private and public partnerships are critical to addressing the nation's energy challenges and expanding our clean energy economy. Manufacturing is making a resurgence in America. Companies such as Whirlpool -

  1. Clean Energy Manufacturing Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reports Clean Energy Manufacturing Reports The Clean Energy Manufacturing Initiative develops competitiveness analysis and strategies that inform R&D investments and other efforts needed to address key barriers to growing U.S. clean energy manufacturing competitiveness. This unprecedented competitiveness analysis evaluates the costs of producing clean energy products in the U.S. compared to competitor nations to understand factory location decisions and identify key drivers to U.S. clean

  2. Clean Energy Manufacturing Resources - Technology Feasibility | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource

  3. FACTSHEET: Next Generation Power Electronics Manufacturing Innovation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Institute | Department of Energy Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - 9:20am Addthis The Obama Administration today announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. Supported by a $70 million Energy Department investment over five years as well as a

  4. National Electrical Manufacturers Association Comment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Comment National Electrical Manufacturers Association Comment The National Electrical Manufacturers Association (NEMA) appreciates the opportunity to provide the attached comments on the Request for Information to Reduce Regulatory Burden as announced in the U.S. Federal Register Vol. 80, No. 127, beginning on page 38019. PDF icon Regulatory Burden RFI NEMA Comments regarding small motor regulations 17July2015 v5_1 More Documents & Publications National Electrical Manufacturers

  5. Advanced Blade Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blade Manufacturing Advanced Blade Manufacturing While the blades of a turbine may be one of the most recognizable features of any wind installation, they also represent one of the largest physical challenges in the manufacturing process. Turbine blades can reach up to 75 meters (250 feet) in length, and will continue to increase in size as the demand for renewable energy grows and as wind turbines are deployed offshore. Because of their size and aerodynamic complexity, wind turbine blades are

  6. Advanced Drivetrain Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drivetrain Manufacturing Advanced Drivetrain Manufacturing The U.S. Department of Energy (DOE) supports advanced manufacturing techniques that are leading to the "next-generation" of more reliable, affordable, and efficient wind turbine drivetrains. As turbines continue to increase in size, each and every component must also be scaled to meet the demands for renewable energy. What is the Drivetrain? The drivetrain of a wind turbine is composed of the gearbox and the generator, the

  7. Articles about Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Articles about Manufacturing RSS Below are stories about manufacturing featured by the U.S. Department of Energy (DOE) Wind Program. September 17, 2015 Statistics Show Bearing Problems Cause the Majority of Wind Turbine Gearbox Failures In the past, the wind energy industry has been relatively conservative in terms of data sharing, especially with the general public, which has inhibited the research community's efforts to identify and mitigate the premature failures of wind turbine

  8. Agenda Advanced Methods for Manufacturing Workshop

    Energy Savers [EERE]

    Agenda Advanced Methods for Manufacturing Workshop September 29, 2015 Lockheed Martin 2021 Crystal Drive Arlington, Virginia 8:30 Safety, Security and Housekeeping Dr. Scott Anderson 8:45 - 10:45 2012 Projects, 30 minutes with questions Lockheed Martin - Direct manufacturing of Nuclear Power components EPRI - Innovative Manufacturing Process for Nuclear power Plant Components Purdue - Modular Connection Technologies for SC Walls INL - Monitoring and Control of Hybrid Laser-GMAW Process 10:45 -

  9. Project Profile: Improved Large Aperture Collector Manufacturing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Concentrating Solar Power » Project Profile: Improved Large Aperture Collector Manufacturing Project Profile: Improved Large Aperture Collector Manufacturing Abengoa logo -- This project is inactive -- Abengoa Solar, under the Solar Manufacturing Technology (SolarMat) program, will be investigating the use of an automotive-style high-rate fabrication and automated assembly techniques to achieve a substantial reduction in the deployment cost of their new SpaceTube

  10. Revitalizing American Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revitalizing American Manufacturing Revitalizing American Manufacturing September 13, 2010 - 5:30pm Addthis A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer Granholm at the opening of their Livonia, MI plant. The plant will develop and manufacture advanced batteries systems for electric vehicles. | Department of Energy Photo | A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer

  11. Working with SRNL - The Advanced Manufacturing Collaborative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4/2016 SEARCH SRNL GO The Advanced Manufacturing Collaborative Academia Government Industry AMC Leadership Contact AMC Home SRNL Home Working with SRNL The Advanced Manufacturing Collaborative For over 50 years, the Savannah River National Laboratory (SRNL) has been providing the science behind nuclear chemical manufacturing at the Savannah River Site (SRS), a sprawling nuclear complex that was once part of our nation's Cold War. Time has changed the mission at SRS from nuclear production for

  12. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Workshop Advanced Qualification of Additive Manufacturing Materials (AM) Workshop Our goal is to define opportunities and research gaps within additive manufacturing (AM) and to engage the broader scientific/engineering community to discuss future research directions. thumbnail of thumbnail of Contact Institute Director Dr. Alexander V. Balatsky Institute for Materials Science (505) 665-0077 Email Deputy Director Dr. Jennifer S. Martinez Institute for Materials Science

  13. Cincinnati Big Area Additive Manufacturing (BAAM)

    SciTech Connect (OSTI)

    Duty, Chad E.; Love, Lonnie J.

    2015-03-04

    Oak Ridge National Laboratory (ORNL) worked with Cincinnati Incorporated (CI) to demonstrate Big Area Additive Manufacturing which increases the speed of the additive manufacturing (AM) process by over 1000X, increases the size of parts by over 10X and shows a cost reduction of over 100X. ORNL worked with CI to transition the Big Area Additive Manufacturing (BAAM) technology from a proof-of-principle (TRL 2-3) demonstration to a prototype product stage (TRL 7-8).

  14. Performance, Market and Manufacturing Constraints relevant to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance, Market and Manufacturing Constraints relevant to the Industrialization of Thermoelectric Devices Market pricing of thermoelectric raw materials and processing, cost of ...

  15. National Network for Manufacturing Innovation: A Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Resnick, Ralph, National Center for Manufacturing Sciences Rochester Regional Photonics Cluster Ruen Blanchard, Sarah, ASERTTI Salay, David, Ohio Aerospace Institute NAT I O NA L N ...

  16. Solar Manufacturing Technology 2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Flextronics International USA, to deploy a fully integrated solar glass coating manufacturing line ... total energy yields from these panels enabling a significant reduction ...

  17. Integrated Design and Manufacturing of Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Generator Using Thermal Spray Integrated Design and Manufacturing of Thermoelectric Generator Using Thermal Spray Presents progress in cost-effective thermoelectric ...

  18. PRESENTATION: BRIEFING ON CLEAN ENERGY MANUFACTURING

    Broader source: Energy.gov [DOE]

    A briefing to the Secretary's Energy Advisory Board on the clean energy manufacturing delivered by David Danielson, Assistant Secretary for Energy Efficiency and Renewable Energy.

  19. Fiber Reinforced Polymer Composite Manufacturing Workshop

    Broader source: Energy.gov [DOE]

    A workshop on Fiber Reinforced Polymer (FRP) Composite Manufacturing (held January 13, 2014, in Arlington, VA) brought together stakeholders from industry and academia to discuss manufacturing of composites. The workshop explored emerging FRP composite market applications in clean energy and barriers to the development and widespread commercial use of these lightweight, high-strength and high-stiffness materials. Improving the manufacturing speed and quality-and reducing their manufacturing costs-could accelerate their use in automotive, wind, compressed gas storage and other clean energy and industrial applications.

  20. Solid Oxide Fuel Cell Manufacturing Overview

    Broader source: Energy.gov [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

  1. Manufacturing Ecosystems and Keystone Technologies (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Manufacturing Ecosystems and Keystone Technologies video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  2. Dispatchable Distributed Generation: Manufacturing's Role in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Presentation.pdf PDF icon Adams ERCOTDOE DER.PDF PDF icon WASHOM Austin ... 10 2016.pdf More Documents & Publications R&D For Dispatchable Distributed Energy ...

  3. Lessons Learned from the Photovoltaic Manufacturing Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... yet be poised for actual manufacturing, to enter the field. ... in their technologies in terms of conversion efficiencies ... programmatic decisions and search for ways to minimize ...

  4. Clean Energy Manufacturing Initiative: Increasing American Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These include: The SunShot Initiative's efforts to improve manufacturing of solar energy systems; The Wind Program's work on taller wind energy towers; and The Vehicle Technologies ...

  5. Solid State Lighting LED Manufacturing Roundtable Summary

    SciTech Connect (OSTI)

    none,

    2010-03-31

    Summary of a meeting of LED experts to develop proposed priority tasks for the Manufacturing R&D initiative, including task descriptions, discussion points, recommendations, and presentation highlights.

  6. LightManufacturing | Open Energy Information

    Open Energy Info (EERE)

    greenhouse gas emissions resulting from rotational molding. 6 Unlike concentrated solar power firms which focus on utility-scale electric production 7 , LightManufacturing...

  7. 2014 American Energy & Manufacturing Competitiveness Summit in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summit. Image: John Harrington, Council on Competitiveness 6 of 10 Local Motors CEO Jay Rogers demonstrates the 3D-printed car during the American Energy & Manufacturing...

  8. Microstructural Properties of Gamma Titanium Aluminide Manufactured...

    Office of Scientific and Technical Information (OSTI)

    COMPOUNDS In recent years, Electron Beam Melting (EBM) has matured as a technology for additive manufacturing of dense metal parts. The parts are built by additive consolidation...

  9. Clean Energy Manufacturing Initiative: Technology Research and...

    Energy Savers [EERE]

    manufacturers take advantage of this lower-priced fuel by modernizing the nations natural gas transmission and distribution systems and improving natural gas system efficiency....

  10. Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology...

    Broader source: Energy.gov (indexed) [DOE]

    conducted at the Solutia Inc. chemical production facility in Springfield, Massachusetts. ... PDF icon Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology to Identify ...

  11. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  12. Microstructural Properties of Gamma Titanium Aluminide Manufactured...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; 71 ... GRAIN SIZE; MANUFACTURING; OXYGEN; TESTING; TITANIUM; TITANIUM COMPOUNDS Word Cloud ...

  13. Energy-Related Carbon Emissions in Manufacturing

    Reports and Publications (EIA)

    2000-01-01

    Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

  14. 2014 Manufacturing Energy and Carbon Footprints: Definitions...

    Broader source: Energy.gov (indexed) [DOE]

    Definitions and Assumptions A number of key terms are used to interpret the manufacturing energy and carbon footprints. The terms associated with the energy footprint analysis are ...

  15. American Energy and Manufacturing Competitiveness Summit

    Broader source: Energy.gov [DOE]

    The American Energy and Manufacturing Competitiveness Summit will bring together leaders and perspectives from industry, government, academia, national laboratories, labor, and policy organizations...

  16. Smart Manufacturing Innovation Institute: Overview, Goals and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... o A manufacturing platform architecture, based on an open-standards, open- ... facilities Transition Plan o Sustainability plan for the proposed Institute past ...

  17. EI Summary of All Manufacturing SIC

    U.S. Energy Information Administration (EIA) Indexed Site

    try... Energy Consumption Use of Energy Electricity Manufacturing Floorspace Prices Energy Storage Energy and Operating Ratios Energy-Management Activities Technology...

  18. Advanced Manufacturing Office and Potential Technologies for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sustainability is improved in the making, use, and full lifecycle of the product made. ... Manufacturing Policy & DOE's Role * DOE ... End & What are the Metrics for This ...

  19. Advanced Manufacturing Office Small Business Innovation Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office Small Business Innovation Research Small Business Technology ... in thermal and degradation resistance, high-performance, and lower-cost for energy systems. ...

  20. Manufacturing Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Advanced Manufacturing Office; John Dennis, Mayor of West Lafayette; Mitch Daniels, President of Purdue University; R. Byron Pipes, John Leighton Bray Distinguished...

  1. 2010 Manufacturing Energy and Carbon Footprints: Definitions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (MECS 2010) More Documents & Publications U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis MECS 2006 - Computer, Electronics and Appliances MECS 2006 - Cement

  2. Oak Ridge Centers for Manufacturing Technology - Partnership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with some of the people who experienced the Oak Ridge Centers for Manufacturing Technology firsthand. Here is his introduction followed by the first of three letters...

  3. FACTSHEET: Next Generation Power Electronics Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    manufacturing innovation institute for next ... 70 million in non-federal cost-share, the institute will ... - ultimately helping to lower the cost of electricity and ...

  4. Low Energy Ion Implantationin Semiconductor Manufacturing | U...

    Office of Science (SC) Website

    Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home ... Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building ...

  5. Manufacturing Energy and Carbon Footprint References

    Broader source: Energy.gov (indexed) [DOE]

    References AMO (Advanced Manufacturing Office), EERE (Energy Efficiency and Renewable Energy). 2012. Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators. ...

  6. Battery Manufacturing Processes Improved by Johnson Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Johnson Controls Project Improving battery manufacturing processes can help make plug-in electric vehicles more affordable and convenient. This will help meet the government's EV...

  7. Oak Ridge Centers for Manufacturing Technology ? testimonials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    testimonials The first testimonial for the successful Oak Ridge Centers for Manufacturing Technology came from Mitchell Burnett. Mitch was among the first hourly paid employees, an...

  8. Advanced Manufacturing Office | Department of Energy

    Energy Savers [EERE]

    Advanced Manufacturing Office ISO 50001SEP Pilot Program - Applications Due 182016 ISO 50001SEP Pilot Program - Applications Due 182016 The U.S. DOE invites applications for...

  9. Fiber Reinforced Polymer Composite Manufacturing Workshop | Department...

    Broader source: Energy.gov (indexed) [DOE]

    A workshop on Fiber Reinforced Polymer (FRP) Composite Manufacturing (held January 13, 2014, in Arlington, VA) brought together stakeholders from industry and academia to discuss...

  10. Institute for Advanced Composites Manufacturing Innovation Holds...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of Energy Advanced Manufacturing Office; John Dennis, Mayor of West Lafayette; Mitch Daniels, President of Purdue University; R. Byron Pipes, John Leighton Bray Distinguished ...

  11. 2015 American Energy and Manufacturing Competitiveness Summit

    Broader source: Energy.gov [DOE]

    The 2015 American Energy & Manufacturing Competitiveness (AEMC) Summit is a gathering of preeminent leaders from industry, academia, labor, the national laboratories, government and media to:

  12. Manufacturing Barriers to High Temperature PEM Commercialization

    Broader source: Energy.gov [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

  13. Derived Annual Estimates of Manufacturing Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    > Derived Annual Estimates - Executive Summary Derived Annual Estimates of Manufacturing Energy Consumption, 1974-1988 Figure showing Derived Estimates Executive Summary This...

  14. Composite Tube Trailer Design/Manufacturing Needs

    Broader source: Energy.gov [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

  15. Low Temperature PEM Fuel Cell Manufacturing Needs

    Broader source: Energy.gov [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

  16. Electric Drive Component Manufacturing Facilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive Component Manufacturing Facilities Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Advanced ...

  17. Welcome and Advanced Manufacturing Partnership (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Welcome and Advanced Manufacturing Partnership video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  18. Elastomeric member and method of manufacture therefor

    DOE Patents [OSTI]

    Hoppie, L.O.

    1985-12-10

    An energy storage device is disclosed consisting of a stretched elongated elastomeric member disposed within a tubular housing, which elastomeric member is adapted to be torsionally stressed to store energy. The elastomeric member is configured in the relaxed state with a uniform diameter body section, and transition end sections, attached to rigid end piece assemblies of a lesser diameter. The profile and deflection characteristic of the transition sections are such that upon stretching of the elastomeric member, a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing. Each of the transition sections are received within and bonded to a woven wire mesh sleeve having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves are forced against a forming surface and bonded to the associated transition section to provide the correct profile and helix angle. 12 figs.

  19. Elastomeric member and method of manufacture therefor

    DOE Patents [OSTI]

    Hoppie, Lyle O.

    1985-01-01

    An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16) disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section (74), and transition end sections (76, 78), attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the elastomeric member (16), a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing (14). Each of the transition sections (76, 78) are received within and bonded to a woven wire mesh sleeve (26, 28) having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve (26, 28) also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle.

  20. Market Report for the Industrial Sector, 2009

    SciTech Connect (OSTI)

    Sastri, Bhima; Brueske, Sabine; de los Reyes, Pamela; Jamison, Keith; Justiniano, Mauricio; Margolis, Nancy; Monfort, Joe; Raghunathan, Anand; Sabouni, Ridah

    2009-07-01

    This report provides an overview of trends in industrial-sector energy use. It focuses on some of the largest and most energy-intensive industrial subsectors and several emerging technologies that could transform key segments of industry.

  1. Federal Sector Renewable Energy Project Implementation: "What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Sector Renewable Energy Project Implementation: "What's Working and Why" Implementation: What s Working and Why DOD-DOE Waste-to- Energy and Fuel Cell Workshop January 13, ...

  2. DOE Issues Energy Sector Cyber Organization NOI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security of the grid. ...

  3. NREL: Energy Analysis: Electric Sector Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Sector Integration Integrating higher levels of renewable resources into the U.S. electricity system could pose challenges to the operability of the nation's grid. NREL's electric sector integration analysis work investigates the potential impacts of expanding renewable technology deployment on grid operations and infrastructure expansion including: Feasibility of higher levels of renewable electricity generation. Options for increasing electric system flexibility to accommodate higher

  4. New Manufacturing Method for Paper filler and Fiber Material

    SciTech Connect (OSTI)

    Doelle, Klaus

    2011-11-22

    The study compares commercial available filler products with a new developed “Hybrid Fiber Filler Composite Material” and how main structural, optical and strength properties are affected by increasing the filler content of at least 5% over commercial values. The study consists of: (i) an overview of paper filler materials used in the paper production process, (ii) discusses the manufacturing technology of lime based filler materials for paper applications, (iii) gives an overview of new emerging paper filler technologies, (iv) discusses a filler evaluation of commercial available digital printing paper products, (v) reports from a detailed handsheet study and 12” pilot plant paper machine trial runs with the new Hybrid Fiber Filler Composite Material, and (vi) evaluates and compares commercial filler products and the new Hybrid Fiber Filler Composite Material with a life cycle analyses that explains manufacturing, economic and environmental benefits as they are applied to uncoated digital printing papers.

  5. 2015 Energy Sector-Specific Plan | Department of Energy

    Energy Savers [EERE]

    Energy Sector-Specific Plan 2015 Energy Sector-Specific Plan The U.S. Department of Energy (DOE), as the Sector-Specific Agency for the Energy Sector, has worked closely with government and industry partners to develop the 2015 Energy Sector-Specific Plan (SSP). DOE conducted much of this work in collaboration with the Energy Sector Coordinating Councils (SCCs) and the Energy Government Coordinating Council (GCC). The Energy SCCs represent the interests of the Electricity and Oil and Natural Gas

  6. Energy Intensity Indicators: Indicators for Major Sectors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy for Major Sectors Energy Intensity Indicators: Indicators for Major Sectors This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors - transportation, industry, commercial, and residential, as well as the electric power sector. These sectors are shown in Figure 1. Please go to the menu below the figure to see a more detailed discussion of historical trends in the energy intensity indicator for a particular sector.

  7. Roadmap to Secure Control Systems in the Energy Sector - January...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap to Secure Control Systems in the Energy Sector - January 2006 Roadmap to Secure Control Systems in the Energy Sector - January 2006 This document, the Roadmap to Secure...

  8. Template:Energy Generation Facilities by Sector | Open Energy...

    Open Energy Info (EERE)

    Energy Generation Facilities by Sector Jump to: navigation, search This is the Energy Generation Facilities by Sector template. It will display energy generation facilities for the...

  9. LED Site Lighting in the Commercial Building Sector: Opportunities...

    Energy Savers [EERE]

    Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification LED Site Lighting in the Commercial Building Sector: ...

  10. Energy-Sector Stakeholders Attend the Department of Energy's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Sector Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's ...

  11. Energy-Sector Stakeholders Attend the Department of Energy's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's 2010 ...

  12. List of Companies in Geothermal Sector | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Sector Jump to: navigation, search Companies in the Geothermal energy sector: Add a Company Download CSV (rows 1-212) Map of Geothermal energy companies Loading map......

  13. EIA Energy Efficiency-Residential Sector Energy Intensities,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Sector Energy Intensities RESIDENTIAL SECTOR ENERGY INTENSITIES: 1978-2005 Released Date: August 2004 Page Last Modified:June 2009 These tables provide estimates of...

  14. National and Sectoral GHG Mitigation Potential: A Comparison...

    Open Energy Info (EERE)

    and Sectoral GHG Mitigation Potential: A Comparison Across Models Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National and Sectoral GHG Mitigation Potential: A...

  15. Climate Change: Risks and Opportunities for the Finance Sector...

    Open Energy Info (EERE)

    Finance Sector Online Course Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change: Risks and Opportunities for the Finance Sector Online Course Agency...

  16. OECD-Private Sector Engagement in Adaptation to Climate Change...

    Open Energy Info (EERE)

    Private Sector Engagement in Adaptation to Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: OECD-Private Sector Engagement in Adaptation to Climate Change...

  17. Energy Critical Infrastructure and Key Resources Sector-Specific

    Energy Savers [EERE]

    Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) May 2007 Department of Energy Energy Sector ...

  18. Morocco-Low Carbon Development Planning in the Power Sector ...

    Open Energy Info (EERE)

    Low Carbon Development Planning in the Power Sector Jump to: navigation, search Logo: Morocco-Low Carbon Development Planning in the Power Sector Name Morocco-Low Carbon...

  19. Nigeria-Low Carbon Development Planning in the Power Sector ...

    Open Energy Info (EERE)

    Low Carbon Development Planning in the Power Sector Jump to: navigation, search Logo: Nigeria-Low Carbon Development Planning in the Power Sector Name Nigeria-Low Carbon...

  20. South Africa-Danish Government Sector Programmes | Open Energy...

    Open Energy Info (EERE)

    Sector Programmes Jump to: navigation, search Name South Africa-Danish Government Sector Programmes AgencyCompany Organization Danish Government Partner Danish Ministry for...

  1. Overcoming Multifamily Sector Barriers in Austin, Texas | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overcoming Multifamily Sector Barriers in Austin, Texas Overcoming Multifamily Sector Barriers in Austin, Texas Presents techniques on overcoming the barriers of multifamily energy...

  2. Renewable Energy Cross Sectoral Assessments Terms of Reference...

    Open Energy Info (EERE)

    Renewable Energy Cross Sectoral Assessments Terms of Reference Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Cross Sectoral Assessments Terms of...

  3. Workforce Training for the Electric Power Sector | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Training for the Electric Power Sector Workforce Training for the Electric Power Sector PDF icon 04-08-2010SGWorkforceSelections.pdf More Documents & Publications ...

  4. List of Companies in Hydrogen Sector | Open Energy Information

    Open Energy Info (EERE)

    Companies in Hydrogen Sector Jump to: navigation, search Companies in the Hydrogen sector: Add a Company Download CSV (rows 1-196) Map of Hydrogen companies Loading map......

  5. Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy...

    Open Energy Info (EERE)

    Nepal-Sectoral Climate Impacts Economic Assessment Jump to: navigation, search Name Nepal Sectoral Climate impacts Economic Assessment AgencyCompany Organization Climate and...

  6. Smart Manufacturing Institute Industry Day Workshop Proceedings

    Broader source: Energy.gov [DOE]

    AMO hosted an Industry Day workshop to explain the concept, vision, and technology needs associated with support for a Clean Energy Manufacturing Innovation Institute on Smart Manufacturing. The workshop was held on February 25, 2015 at the Georgia Tech Hotel & Conference Center in Atlanta, GA.

  7. Clean Energy Manufacturing Resources - Technology Maturation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Maturation Clean Energy Manufacturing Resources - Technology Maturation Clean Energy Manufacturing Resources - Technology Maturation Find resources to help you commercialize and market your clean energy technology or product. For technology maturation, areas to consider include regulations and standards; exporting; product testing or demonstration; energy-efficient product qualifications; and energy efficiency and performance improvements for plants. For more resources, see the

  8. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 | Department of Energy Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 PDF icon nanomanufacturing_portfolio.pdf More Documents & Publications Sustainable

  9. Innovative Manufacturing Initiative Recognition Day - Final Participant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Listing | Department of Energy Day - Final Participant Listing Innovative Manufacturing Initiative Recognition Day - Final Participant Listing PDF icon imi_recogitionday_participants.pdf More Documents & Publications Innovative Manufacturing Initiative Recognition Day 2015 AMO Peer Review Agenda CX-100154 Categorical Exclusion Determination

  10. Duracold Refrigeration Manufacturing: Order (2013-CE-5342)

    Broader source: Energy.gov [DOE]

    DOE ordered Duracold Refrigeration Manufacturing Company, LLC to pay a $8,000 civil penalty after finding Duracold Refrigeration Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  11. Clean Energy Manufacturing Analysis Center (CEMAC)

    SciTech Connect (OSTI)

    2015-12-01

    The U.S. Department of Energy's Clean Energy Manufacturing Analysis Center (CEMAC) provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Policymakers and industry leaders seek CEMAC insights to inform choices to promote economic growth and the transition to a clean energy economy.

  12. Photonic crystal scintillators and methods of manufacture

    DOE Patents [OSTI]

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  13. additive manufacturing | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Home additive manufacturing LLNL researchers outline what happens during metal 3D printing, enhancing confidence From left, Lawrence Livermore National Laboratory researchers Ibo Matthews, a principal investigator leading the lab's effort on the joint open source software project; Wayne King, director of the Accelerated Certification of Additively Manufactured Metals Initiative; and Gabe Guss, engineering...

  14. Proposal for a Guide for Quality Management Systems for PV Manufacturing: Supplemental Requirements to ISO 9001-2008 (Revised)

    SciTech Connect (OSTI)

    Norum, P.; Sinicco, I.; Eguchi, Y.; Lokanath, S.; Zhou, W.; Brueggemann, G.; Mikonowicz, A.; Yamamichi, M.; Kurtz, S.

    2013-09-01

    This technical specification provides a guideline for photovoltaic module manufacturers to produce modules that, once the design has proven to meet the quality and reliability requirements, replicate such design in an industrial scale without compromising its consistency with the requirements.

  15. Clean Energy Manufacturing Funding Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunities Clean Energy Manufacturing Funding Opportunities To accomplish the goals of the Clean Energy Manufacturing Initiative (CEMI), the U.S. Department of Energy (DOE) supports increased funding for manufacturing research and development across the board, specifically with the goal of growing the clean energy manufacturing industry in the United States. Examples include: Photo of carbon fiber rolls being manufactured. Solar Manufacturing Technology Solar Manufacturing Technology

  16. Integrating Materials, Manufacturing, Design and Validation for Sustainability in Future Transport Systems

    SciTech Connect (OSTI)

    Price, M. A.; Murphy, A.; Butterfield, J.; McCool, R.; Fleck, R.

    2011-05-04

    The predictive methods currently used for material specification, component design and the development of manufacturing processes, need to evolve beyond the current 'metal centric' state of the art, if advanced composites are to realise their potential in delivering sustainable transport solutions. There are however, significant technical challenges associated with this process. Deteriorating environmental, political, economic and social conditions across the globe have resulted in unprecedented pressures to improve the operational efficiency of the manufacturing sector generally and to change perceptions regarding the environmental credentials of transport systems in particular. There is a need to apply new technologies and develop new capabilities to ensure commercial sustainability in the face of twenty first century economic and climatic conditions as well as transport market demands. A major technology gap exists between design, analysis and manufacturing processes in both the OEMs, and the smaller companies that make up the SME based supply chain. As regulatory requirements align with environmental needs, manufacturers are increasingly responsible for the broader lifecycle aspects of vehicle performance. These include not only manufacture and supply but disposal and re-use or re-cycling. In order to make advances in the reduction of emissions coupled with improved economic efficiency through the provision of advanced lightweight vehicles, four key challenges are identified as follows: Material systems, Manufacturing systems, Integrated design methods using digital manufacturing tools and Validation systems. This paper presents a project which has been designed to address these four key issues, using at its core, a digital framework for the creation and management of key parameters related to the lifecycle performance of thermoplastic composite parts and structures. It aims to provide capability for the proposition, definition, evaluation and demonstration of advanced lightweight structures for new generation vehicles in the context of whole life performance parameters.

  17. Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles

    SciTech Connect (OSTI)

    Love, Lonnie J.

    2015-08-01

    This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local Motors Inc. Phase 1 was previously reported as Advanced Manufacturing of Complex Cyber Mechanical Devices through Community Engagement and Micro-manufacturing and demonstrated the integration of components onto a prototype body part for a vehicle. Phase 2 was reported as Utility of Big Area Additive Manufacturing (BAAM) for the Rapid Manufacture of Customized Electric Vehicles and demonstrated the high profile live printing of an all-electric vehicle using ONRL s Big Area Additive Manufacturing (BAAM) technology. This demonstration generated considerable national attention and successfully demonstrated the capabilities of the BAAM system as developed by ORNL and Cincinnati, Inc. and the feasibility of additive manufacturing of a full scale electric vehicle as envisioned by the CRADA partner Local Motors, Inc.

  18. The Transportation Sector Model of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration NEMS Transportation Demand Model Documentation Report 2005 25 manufacturing, and design advances. Manufacturing advances can generally be thought of as...

  19. Understanding Manufacturing Energy and Carbon Footprints, October...

    Broader source: Energy.gov (indexed) [DOE]

    ... Notable examples of byproduct fuels include the use of black liquor and wood byproducts in ... represent a genuine distribution of energy use and losses across the sector as a whole. ...

  20. Clean Energy Manufacturing Revolving Loan Fund

    Broader source: Energy.gov [DOE]

    The Wisconsin Economic Development Corporation and The Wisconsin Department of Administration are offering private sector businesses eligible for low interest loans up to $1,000,000 from the CERL...